Science.gov

Sample records for landfill gas composition

  1. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B.

    1998-08-01

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  2. Temporal variability of soil gas composition in landfill covers.

    PubMed

    Gebert, Julia; Rachor, Ingke; Gröngröft, Alexander; Pfeiffer, Eva-Maria

    2011-05-01

    In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO(2) to CH(4) were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil. PMID:21074982

  3. MUNICIPAL LANDFILL GAS CONDENSATE

    EPA Science Inventory

    New regulations relative to air emissions from municipal landfills may require the installation of gas collection systems at landfills. As landfill gas (LFG) is collected, water and other vapors in the gas condense in the system or are purposely removed in the normal treatment of...

  4. LANDFILL GAS MEASUREMENT METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane from landfills contributes to greenhouse gas emissions. The development of cost-effective methods for measuring diffuse emissions from landfills remains a difficult issue for regulators and landfill operators. Currently, two major options are available: (1) above-ground methods which quantif...

  5. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  6. Beneficial use of landfill gas at the Burnsville sanitary landfill

    SciTech Connect

    Michels, M.; Morely, J.; Kitts, S.

    1995-08-01

    A beneficial use study was conducted to determine the most economical method of converting landfill gas to energy at the Burnsville Sanitary Landfill. The existing 98.5-acre landfill is permitted for nine million cubic yards of municipal solid waste and estimated to generate significant quantities of landfill gas. The beneficial use study reviewed four options to utilize the landfill gas, as follows; generate electric power and utilize on site; generate electric power and sell to local utility; clean up the landfill gas and sell to natural gas company; and sell landfill gas to nearby asphalt and concrete plants in the summer months, then to 15 commercial businesses for heat in the winter months. The study concluded that it is most economical to generate electricity and sell power to the local utility. Since May 1994, 3.2 megawatts of power have been generated. Upon site closure, the potential for 4.8 megawatts of power generation may exist.

  7. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  8. Landfill gas collection from an operating bioreactor landfill

    SciTech Connect

    Townsend, T.G.; Miller, W.L.; Reinhart, G.A.

    1995-08-01

    The operation of landfills as controlled bioreactors under wet conditions offers the potential for safer and more effective management of landfilled solid waste relative to traditional dry landfill systems. The effects of different environmental conditions on the degree and rate of landfill stabilization have been evaluated in a number of pilot-scale studies during the previous twenty years. These studies have demonstrated that increased levels of moisture in the waste and the recycle of leachate through the waste increase the rate of waste stabilization. Benefits of leachate recycle, including leachate hydrologic management and in-situ leachate treatment, make leachate recycle an attractive option for some landfill operators. A number of landfill currently practice leachate recycle throughout the United States. This paper reviews recent results regarding gas collection from an operating bioreactor landfill in Alachua County, Florida.

  9. Tracing landfill gas migration using chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Archbold, M.; Elliot, T. E.; Redeker, K.; Boshoff, G.

    2003-04-01

    Typical landfill gas (LFG) compositions include a wide range of trace-level Volatile Organic Compounds (VOCs). The most mobile VOCs are chlorofluorocarbons (CFCs), and their presence around landfills may reflect the initial flushing out of VOCs during the early aerobic stage when landfills are most active reaching high temperatures, driving off VOCs, and injecting LFG into the surrounding environment. CFCs are aerobically stable and therefore, may prove a useful means of characterising the environmental impact of landfill gas in the unsaturated zone around landfills. Moreover, as a possible pathfinder environmental tracer of LFG impacts in the environment, any subsequent changes in the CFCs concentrations after injection potentially reflect natural attenuation (NA) processes, which can also affect other VOCs. Thus tracing the CFCs around a landfill may provide an analogue indicator/proxy for other VOCs transport and fate. To assess the feasibility of using chlorofluorocarbons (CFC-11, CFC-12, CFC-113) as proxy tracers, it is imperative to characterise the effects of possible NA processes on both CFC abundances and their overall systematics. In this research, anaerobic biodegradation microcosm studies, which mimic the unsaturated zone of a LFG plume, are conducted using methanogenic soil samples. Results are discussed in terms of the potential effects on CFCs signatures due to anaerobic biodegradation in the unsaturated zone and will also explore ways of characterising NA processes by identifying the effects of diffusion on transport processes, and degradation products of CFCs. The discussion will also include how stable carbon isotopic signatures may be used to enhance our assessments of biodegradation of CFCs in the unsaturated zone around landfills.

  10. Experience with horizontal landfill gas collectors at Cedar Hills regional landfill

    SciTech Connect

    Kraemer, T.A.; Roudebush, S.T.; Henderson, E.

    1995-08-01

    The Cedar Hills Regional Landfill is a municipal solid waste (MSW) disposal facility in King County, Washington, which includes the greater Seattle metropolitan area. The facility is publicly owned and operated by the King County Solid Waste Division. The facility has been in operation since the 1940s. Approximately two thousand tons of MSW are disposed of at the facility each day. Prior to 1986, the landfill was an unlined landfill with no provisions for gas collection. The unlined area of the landfill is known as the {open_quotes}Main Hill{close_quotes} and includes approximately 100 acres. In 1985 the King County Solid Waste Division, anticipating current federal requirements by more than five years, began planning a new cell at the landfill that would be underlain by a composite lining system. It was decided that the new cell would also include a leachate collection and removal system (LCRS) and a landfill gas (LFG) collection system.

  11. 19th Annual landfill gas symposium

    SciTech Connect

    1996-11-01

    This document contains the Proceedings of the 19th Annual Landfill Gas Symposium sponsored by the Solid Waste Association of America (SWANA), held on March 19-21, 1996 in Research Triangle Park near Raleigh, North Carolina, USA.The technical papers presented by the speakers cover a broad range of topics of interest to professionals in the municipal solid waste field. Technical sessions on the following subjects were presented: U.S. Landfill Gas Regulations, Control Technologies, Emission and Migration Control, Landfill Gas Generation Models, Field Practices, Case Studies of Landfill Gas Utilization, Global Methane Control, International Perspectives, and Emerging Technologies and Issues in the field of Landfill Gas Utilization.

  12. SWANA 18th annual landfill gas symposium

    SciTech Connect

    1995-08-01

    This document contains reports presented from the Annual Landfill Gas Symposium. The reports represent a wide variety of topics of importance to professionals in the municipal solid waste field. Topics are organized under the following headings: control technologies; landfill gas utilization; environmental compliance; landfill gas utilization economics; field practices; and future issues in LFG-to-energy. Individual reports have been processed separately for the Department of Energy databases.

  13. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  14. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  15. Long term performance of boilers using landfill gas

    SciTech Connect

    Gulledge, J.; Cosulich, J.; Ahmed, S.L.

    1996-11-01

    The US EPA estimates that approximately 600 to 700 landfills produce sufficient gas for profitable energy production in the United States. The gas from these landfills could provide enough electricity for about 3 million homes. Yet, there are only about 120 operating landfill gas to energy facilities. A lack of information on successful projects may cause part of this shortfall. This paper provides information on 4 successful projects using landfill gas fired boilers, some of which have operated over a decade. Natural gas fired boilers can be easily converted to bum landfill gas. Several modifications to Districts` boilers, described in this paper, have resulted in many years of safe and corrosion free operation. Most of the modifications are minor. Conversion can be accomplished for under $100,000 in many cases. Information on the reliability and longevity of landfill gas supplies is also provided. Gas from a given landfill is generally available over 99.5% of the time with about 5 brief flow interruptions annually. Actual data from 3 landfills document the high availability of landfill gas. To show the longevity of landfill gas flows, data from the Palos Verdes Landfill are provided. The Palos Verdes Landfill closed in 1980. The Palos Verdes. Landfill Gas to Energy Facility is currently producing over 8 megawatts. Landfill gas pretreatment is not required for boilers. In cases where the landfill gas is being piped offsite, it is usually cost effective to dehydrate the landfill gas. Landfill gas bums cleaner than natural gas. NO{sub x} emissions from landfill gas fired boilers are lower because of the carbon dioxide in the landfill gas. Trace organic destruction efficiency is usually over 99% in landfill gas fired boilers. In addition, flare emissions are eliminated when landfill gas is used to displace fossil fuels in boilers.

  16. How landfill gas causes RCRA compliance problems

    SciTech Connect

    Kerfoot, H.B.

    1996-06-01

    The Resource Conservation and Recovery Act (RCRA) requires landfill operators to monitor groundwater at their facilities. This regulatory requirement is designed to prevent contamination that can result as rainfall drains through refuse, causing pollutants to leach into the groundwater. Several parameters commonly associated with leachate are monitored under RCRA as indicator parameters, or parameters that represent readily detected indicators of contamination. These parameters include volatile organic compounds (VOCs) and alkalinity. Because of its potentially high concentration of VOCs and non-volatile contaminants, landfill leachate represents the greatest threat to groundwater from solid waste facilities. However, other sources can elevate indicator parameters as well. Increasingly lower detection limits can be achieved for VOCs in groundwater, enabling detection of VOCs and carbon dioxide (CO{sub 2}) from landfill gas. In addition, CO{sub 2} from landfill gas can increase groundwater alkalinity. Releases of VOCs in landfill gas can be eliminated by minimizing the gas pressure within the landfill, either by installing a gas-collection system or upgrading an existing gas-collection system by adding wells or altering gas flow in portions of the system.

  17. Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-10-15

    Compositions of deposits forming on engines parts operated with landfill gas (LFG) were analyzed. The deposit compositions were compared before and after the installation of activated carbon system for treatment of LFG. Deposits forming on the spark plugs had significantly higher levels of calcium, chromium, and nickel in comparison to those forming on the engine heads. The LFG contained about 9.5 ± 0.4 mg/m(3) total siloxanes, majority of which were octamethylcyclotetrasiloxane (D4) (5.0 ± 0.2 mg/m(3)), decamethylcyclopentasiloxane (D5) (2.9 ± 0.1 mg/m(3)) and hexamethyldisiloxane (L2) (1.6 ± 0.1 mg/m(3)). The samples collected from the engine heads before the activated carbon treatment of LFG had significantly high levels of silicon (149,400 ± 89,900 mg/kg) as well as calcium (70,840 ± 17,750 mg/kg), sulfur (42,500 ± 11,500 mg/kg), and zinc (22,300 ± 7200 mg/kg). After the activated carbon treatment, silicon levels decreased significantly; however, deposits had higher sulfur content (104,560 ± 68,100 mg/kg) indicating that the activated carbon released some sulfur during treatment. The analyses indicate that zinc and calcium originated from the additives in the lube oil while lead, aluminum, copper, nickel, iron, chromium were due to the engine wear. PMID:23770437

  18. Effects of landfill gas on subtropical woody plants

    NASA Astrophysics Data System (ADS)

    Chan, G. Y. S.; Wong, M. H.; Whitton, B. A.

    1991-05-01

    An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species ( Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, and Tristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth of Aporusa chinensis, Bombax malabaricum, Machilus breviflora, and Tristania confera was stimulated by the gas, with shallow root systems being induced. Acacia confusa, Albizzia lebbek, and Litsea glutinosa were gas-tolerant, while root growth of Castanopsis fissa, Liquidambar formosana, and Pinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions being Bombax malabaricum, Liquidambar formosana, and Tristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration. Acacia confusa, Albizzia lebbek, and Tristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.

  19. Landfill gas boosted to pipeline quality

    SciTech Connect

    Not Available

    1984-03-01

    The world's largest landfill recovery facility, located on Staten Island, went on stream in 1982 and is expected to produce 1.3 billion CF/yr of pipeline gas. Containing 45% carbon dioxide, the gas is compressed and cooled in stages to meet the requirements of the Selexol purification plant. Two 1120-kW (1500-hp) Copper Bessemer GMVS-8C integral gas engine-compressors, fueled by the landfill gas, provide the compression needed from the wells to the final solvent-contact stage.

  20. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect

    Dever, S.A. . E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. . E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. . E-mail: r.stuetz@unsw.edu.au

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  1. Reducing landfill gas emissions and energy costs

    SciTech Connect

    Dailey, A.

    1998-12-31

    Landfill gas (LFG) is collected from the White Street Municipal Sanitary Landfill in Greensboro, North Carolina. This gas is transported by a three mile pipeline to Cone Mill`s White Oak Plant where it is burned in a retrofitted boiler to generate process and heating steam. The operation started in December, 1996 and by early 1997 sufficient gas was available to generate 30,000 lb/hr of 350 psig saturated steam on a continuous basis. Since then, the project has increased the capacity of the LFG production by one-third to just under 2 million standard cubic feet per day (MMSCFD) with the addition of new collection wells as areas of the landfill are closed.

  2. Using landfill gas for energy: Projects that pay

    SciTech Connect

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  3. Landfill gas collection system efficiencies - facts and fallacies

    SciTech Connect

    Mosher, F.A.; Yardley, J.R.

    1996-11-01

    Landfill gas collection and treatment systems are becoming one of the primary control systems necessary to effectively operate and maintain both active and, in a number of cases, closed landfill sites. The emphasis on the development and use of landfill gas collection systems over the last 20 years and specifically in the last 5 to 10 years relates to such items as: (1) the development of larger landfills; (2) the increase in the rate of waste acceptance at landfills; (3) the development of urban areas around existing landfills; (4) the siting of landfills closer to urban areas; and (5) the issues dealing with landfill gas release to the environment from both a global environmental perspective and a human health perspective. Over the last several years, the emphasis in landfill gas collection assessments has slowly been re-orienting from {open_quotes}How much landfill gas is collected?{close_quotes} to {open_quotes}How much landfill gas is released without treatment or use?{close_quotes}. Working on this premise, it is the rate and characteristics of the landfill gas (LFG) released that controls whether or not a landfill will have a LFG related issue. A range of LFG emissions from a landfill should be able to be estimated which represent emission rates at which released LFG has potential to become an issue at a site.

  4. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  5. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  6. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs between the point of tracer injection and tracer extraction because the partitioning tracer is retarded due to water in the landfill. The degree of tracer retardation can be used to determine the average water saturation between the injection and extraction points. This partitioning gas tracer test yields a large-scale estimate of the water saturation, is not affected by solid waste compaction or heterogeneity in the composition of the solid waste, and has been successfully tested in a recent field experiment in soils. We report the results from a series of laboratory experiments designed to evaluate this technology with various trash mixtures. Experimental conditions were selected to mimic the range of moisture conditions that may exist within municipal landfills. The influence of leachate composition and temperature on gas tracer partitioning were also evaluated. In our trash mixtures, the partitioning gas tracer test determined volumetric water contents that were within 12% of actual values. We discuss these data in detail and describe environmental conditions (e.g., temperature variations) that may affect the utility of the partitioning gas tracer test.

  7. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  8. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  9. Gas movement through fractured landfill cover materials

    SciTech Connect

    Bogner, J.E.; Moore, C.A.

    1986-01-01

    Bidirectional gas movement through fractured landfill cover materials is being studied at the Mallard North Landfill in DuPage County, Illinois. Vertical pressure and concentration gradients were monitored during changing meteorological and soil moisture conditions. Nests of probes for direct observation of subsurface soil gas pressures were installed in the top of the refuse and at depths of 1.2 m and 0.6 m. Subsurface gas pressures, barometric pressure, wind speed, wind direction, solar radiation, air temperature, and precipitation were continuously monitored. A field gas chromatograph permitted frequent analysis of methane, carbon dioxide, nitrogen, and oxygen in soil gas samples from the various probes. Tensiometers provided information on soil moisture conditions. During dry weather, soil gas pressures at all depths equilibrated rapidly with barometric pressure and exhibited diurnal variations that were inversely proportional to diurnal temperature variations. When cover materials became saturated, changes in soil gas pressures sometimes lagged behind changes in atmospheric pressure by two to three hours. Soil gas concentrations generally exhibited relatively small short-term variations, but responded over the longer term to changing soil moisture conditions. Carbon-dioxide:methane ratios suggest that an important near-surface process is the activity of methane-oxidizing bacteria, which consume methane that might otherwise be available to a gas recovery system.

  10. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  11. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  12. Landfill gas pretreatment for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sandelli, G. J.; Trocciola, J. C.; Spiegel, R. J.

    1994-04-01

    The US Environmental Protection Agency (EPA) has proposed regulations (1) to control air emissions from municipal solid waste landfills. If these regulations are adopted, they would require waste methane mitigation in order to prevent emission into the atmosphere and reduce the effect on global warming. One potential use of the waste methane is in a device which produces energy, the fuel cell. This device would reduce air emissions affecting global warming, acid rain, and other health and environmental issues. By producing useable energy, it would also reduce our dependency on foreign oil. This paper discusses the US EPA program underway at International Fuel Cells Corporation to demonstrate landfill methane control, and the fuel cell energy recovery concept. In this program, two critical issues needed to be addressed: (1) a landfill gas cleanup method that would remove contaminants from the gas sufficient for fuel cell operation; and (2) successful operation of a commercial fuel cell power plant on that lower-heating value waste methane gas.

  13. Commercialization of landfill gas based methanol production facilities

    SciTech Connect

    Bonny, A.M.

    1995-08-01

    TMI`s technologies provide a new solution for landfill gas abatement, timed to coincide with increasing scrutiny by regulators on landfill gas. We believe that environmental problems are best solved with business-driven solutions provided through technology innovation and demonstration. Consequently, it is a pleasure to be invited to provide details on this new opportunity to entities with interests in landfill gas utilization.

  14. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity of pMMO-expressing methanotrophs was observed, suggesting that these methanotrophs were responsible for nitrous oxide production. Collectively, these data demonstrate that methanotrophic activity and community structure can be differentially affected by both landfill gas composition and amendments, thus providing insights as how best to manipulate methanotrophic processes to better mitigate greenhouse gas emissions.

  15. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  16. PC Windows finite element modeling of landfill gas flow

    SciTech Connect

    Mull, S.R.; Lang, R.J.; Vigil, S.A.; Cota, H.

    1996-09-01

    A two dimensional demonstration program, GAS, has been developed for the solution of landfill gas (LFG) flow problems on a personal computer (PC). The program combines a Windows{trademark} graphical user interface, object oriented programming (OOP) techniques, and finite element modeling (FEM) to demonstrate the practicality of performing LFG flow modeling on the PC. GAS is demonstrated on a sample LFG problem consisting of a landfill, one gas extraction well, the landfill liner, cap, and surrounding soil. Analyses of the program results are performed for successively finer grid resolutions. Element flux imbalance, execution time, and required memory are characterized as a function of grid resolution.

  17. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. PMID:26346020

  18. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    SciTech Connect

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  19. Evaluation of Partitioning Gas Tracer Tests for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Han, B.; Jafarpour, Y.; Gallagher, V. N.; Chiu, P. C.; Fluman, D. A.; Vasuki, N. C.; Yazdani, R.; Augenstein, D.; Cohen, K. K.

    2003-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. An important issue in the operation of bioreactor landfills is knowing how much water to add and where to add it. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. We are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. We report the results from laboratory and field tests designed to evaluate the partitioning gas tracer test within an anaerobic landfill operated by the Delaware Solid Waste Authority. Vertical wells were installed within the landfill to inject and extract tracer gases. Gas flow and tracer gas movement in the solid waste were controlled by the landfill's existing gas collection system, which included vertical wells installed throughout the landfill through which a vacuum was applied. The results from this test are reported along with an overview of a similar test planned for the bioreactor landfill cells operated by the Yolo County Department of Planning and Public Works.

  20. Horizontal collectors for landfill gas collection and migration control

    SciTech Connect

    Dobrowski, J.G.

    1995-08-01

    Landfill owners and operators are forever challenged with properly managing landfill gas (LFG). Collecting this LFG has evolved into an art, as well as a science. Technical expertise and sheer creativity complementary skills required to successfully manage both LFG collection and migration. The vertical LFG collection well has been an essential component for landfill owners and operators for over three decades. They have proved troublesome, however, for active landfill owners who attempt to collect LFG from the midst of an active site-the vertical wells prove more a {open_quotes}target{close_quotes} for refuse collection vehicles disposing their load, than for effective, long term LFG collection. Active and inactive/closed landfill owners must also contend with LFG migration at or near the refuse boundary. Multiple vertical LFG wells must be used to control LFG migration and surface emissions. Vertical LFG wells do work, but at significant expense of the landfill owner. In the past 10 years, the use of horizontal LFG wells or collectors has gained momentum, both for effectiveness and cost. The City of Los Angeles, Bureau of Sanitation operates one active Class III landfill and manages five closed Class III landfills. At Lopez Canyon Landfill (active), horizontal LFG collection wells were installed as early as 1987, for LFG collection. At Toyon Canyon Landfill (closed), horizontal collection wells were installed in 1992 and 1994 for LFG migration and surface emissions control.

  1. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    EPA Science Inventory

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  2. Understanding natural and induced gas migration through landfill cover materials: the basis for improved landfill gas recovery

    SciTech Connect

    Bogner, J.E.

    1986-01-01

    Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of the refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.

  3. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  4. Gas production by accelerated in situ bioleaching of landfills

    SciTech Connect

    Ghosh, S.

    1982-04-06

    A process for improved gas production and accelerated stabilization of landfills by accelerated in situ bioleaching of organic wastes by acid forming bacteria in substantially sealed landfills, passing the leachate of hydrolysis and liquefaction products of microbial action of the microorganisms with the organic material to an acid phase digester to regenerate the activated culture of acid forming microorganisms for recirculation to the landfill, passing the supernatant from the acid phase digester to a methane phase digester operated under conditions to produce methane rich gas. The supernatant from the methane phase digester containing nutrients for the acid forming microorganisms and added sewage sludge or other desired nutrient materials are circulated through the landfill. Low Btu gas is withdrawn from the acid phase digester while high Btu gas is withdrawn from the methane phase digester and may be upgraded for use as SNG. The process of this invention is applicable to small as well as large organic waste landfills, provides simultaneous disposal of municipal solid waste and sewage sludge or other aqueous organic waste in a landfill which may be stabilized much more quickly than an uncontrolled landfill as presently utilized.

  5. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  6. Comparison study of landfill gas emissions from subtropical landfill with various phases: A case study in Wuhan, China.

    PubMed

    Yang, Lie; Chen, Zhulei; Zhang, Xiong; Liu, Yanyan; Xie, Ying

    2015-08-01

    The compositions and annual variations of landfill gas (LFG) were studied at two large-scale sites of Chen-Jia-Chong Landfill. Seventy-six wells were built and used for the collection and measurement of LFG. The investigation revealed the similarities and differences of LFG components and variations at two sites with different phases. It was found that ambient temperature and rainfall exhibited strong correlations with LFG components at both sites. Methane (CH₄) contents showed excellent correlations with CO₂at both sites. Notable correlations between hydrogen sulfide (H₂S) and major components (CH₄and carbon dioxide [CO₂]) were only observed in unstable methane phase. Especially, the CH₄/CO₂volumetric ratio could act as an excellent indicator for anaerobic reaction stage by judging its phasic variations. The study is beneficial for the efficient operation of LFG collection system and could shed light on gas purification and utilization. PMID:26030713

  7. LANDFILL GAS ENERGY UTILIZATION: TECHNICAL AND NON-TECHNICAL CONSIDERATIONS

    EPA Science Inventory

    The paper discusses technical issues associated with the use of landfill gas (LFG) compared with natural gas--which is the primary fuel used for energy conversion equipment such as internal combustion engines, gas turbines, and fuel cells. FG is a medium-heating-value fuel contai...

  8. Gas emissions from biodegradable waste in United Kingdom landfills.

    PubMed

    Donovan, Sally Maree; Jilang Pan; Bateson, Thomas; Gronow, Jan R; Voulvoulis, Nikolaos

    2011-01-01

    The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term. PMID:21088129

  9. Landfill gas-fired power plant pays cost of operating landfill

    SciTech Connect

    Wallace, I.P.

    1991-01-01

    This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative.

  10. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged over fivefold the "typical" values for comparable landfill waste. In terms of "greenhouse benefit," fractional VOC and methane energy recovery are estimated to exceed 90%, with corresponding methane and VOC emission reductions. Analyses done for the greenhouse gas mitigation program of the U.S. Department of Energy National Energy Technology Laboratory indicate favorable economics justified on landfill life extension, as well as environmental benefits. The "controlled landfill" project findings suggest potential for low-cost mitigation of waste greenhouse methane emissions, maximum landfill carbon sequestration, and maximization of beneficial energy capture from landfills. Details and results obtained since 1994 will be presented.

  11. TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON LANDFILL GAS AT THE GROTON, CT, LANDFILL

    EPA Science Inventory

    The paper summarizes the results from a seminal assessment conducted on a fuel cell technology which generates electrical power from waste landfill gas. This assessment/ demonstration was the second such project conducted by the EPA, the first being conducted at the Penrose Power...

  12. LCA and economic evaluation of landfill leachate and gas technologies.

    PubMed

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0.013 PE and 0.002 to 0.003 PE respectively). The reason for this is that even if the leachate is treated, slight amounts of contaminants are released through emissions of treated wastewater to surface waters. The largest environmental improvement with regard to the direct cost of the landfill was the capping and leachate treatment system. The capping, though very cheap to establish, gave a huge benefit in lowered impacts, the leachate collection system though expensive gave large benefits as well. The other gas measures were found to give further improvements, for a minor increase in cost. PMID:21435856

  13. Bidirectional gas movement through landfill cover materials, Volume 1: Instrumentation and preliminary site investigations at Mallard North Landfill, Dupage County, Illinois

    SciTech Connect

    Bogner, J.; Brubaker, K.; Tome, C.; Vogt, M.; Gartman, D.

    1988-02-01

    Since the first commercial landfill gas recovery system was installed in 1975 at the Palos Verdes Landfill in southern California (Zimmerman et al., 1983), there have been few systematic research efforts aimed at understanding gas dynamics in the landfill and, in particular, gas exchange between the landfill and the atmosphere through the cover materials. To maximize the amount of landfill gas available to a recovery system, the impact of processes by which gas is vented or consumed in near-surface zones must be minimized. This report describes a project undertaken to monitor the flow of gas in a landfill. Data from the observations are presented. 32 refs., 12 figs., 3 tabs.

  14. 40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-3 Table HH-3 to Subpart HH of Part 98—Landfill Gas Collection Efficiencies... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Landfill Gas Collection...

  15. 40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Landfill Gas Collection Efficiencies... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-3 Table HH-3 to Subpart HH of Part 98—Landfill Gas Collection...

  16. 40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Landfill Gas Collection Efficiencies... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-3 Table HH-3 to Subpart HH of Part 98—Landfill Gas Collection...

  17. 40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Landfill Gas Collection Efficiencies... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-3 Table HH-3 to Subpart HH of Part 98—Landfill Gas Collection...

  18. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  19. LANDFILL GAS UTILIZATION--OPTIONS, BENEFITS, AND BARRIERS

    EPA Science Inventory

    The paper describes the options for landfill-gas (LFG)-to-energy projects and provides statistics on the U. S. LFG industry. It also provides an overview of the benefits associated with LFG utilization and identifies some of the current barriers in the U. S. that affect LFG utili...

  20. EMERGING TECHNOLOGIES FOR THE MANAGEMENT AND UTILIZATION OF LANDFILL GAS

    EPA Science Inventory

    The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3) for the management of landfill gas (LFG) emissions or for the ...

  1. LANDFILL GAS UTILIZATION - DATABASE OF NORTH AMERICAN PROJECTS

    EPA Science Inventory

    The paper summarizes data in an updated and expanded database for North American landfill-gas (LFG)-to-energy projects. t provides summary statistics, including a list of current projects, trends in conversion technologies, and a list of major developers, energy equipment supplie...

  2. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  3. Lateral migration and offsite surface emission of landfill gas at City of Montreal Landfill Site.

    PubMed

    Franzidis, Jean-Pierre; Héroux, Martin; Nastev, Miroslav; Guy, Christophe

    2008-04-01

    An evaluation of lateral landfill gas migration was carried out at the Saint-Michel Environmental Complex in Montreal, City of Montreal Landfill Site, Canada, between 2003 and 2005. Biogas concentration measurements and gas-pumping tests were conducted in multilevel wells installed in the backfilled overburden beside the landfill site. A migration event recorded in autumn 2004 during the maintenance shutdown of the extraction system was simulated using TOUGH-LGM software. Eleven high-density instantaneous surface monitoring (ISM) surveys of methane were conducted on the test site. Gas fluxes were calculated by geostatistical analyses of ISM data correlated to dynamic flux chamber measurements. Variograms using normal transformed data showed good structure, and kriged estimates were much better than inverse distance weighting, due to highly skewed data. Measurement-based estimates of yearly off-site surface emissions were two orders of magnitude higher than modelled advective lateral methane flux. Nucleodensimeter measurements of the porosity were abnormally high, indicating that the backfill was poorly compacted. Kriged porosity maps correlated well with emission maps and areas with vegetation damage. Pumping tests analysis revealed that vertical permeability was higher than radial permeability. All results suggest that most of the lateral migration and consequent emissions to the atmosphere were due to the existence of preferential flow paths through macropores. In December 2006, two passively vented trenches were constructed on the test site. They were successful in countering lateral migration. PMID:18578151

  4. Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report

    SciTech Connect

    1983-09-01

    The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

  5. Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report

    SciTech Connect

    Steinfeld, G.; Sanderson, R.

    1998-02-01

    Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

  6. U.S. ENVIRONMENTAL PROTECTION AGENCY'S LANDFILL GAS EMISSION MODEL (LANDGEM)

    EPA Science Inventory

    The paper discusses EPA's available software for estimating landfill gas emissions. This software is based on a first-order decomposition rate equation using empirical data from U.S. landfills. The software provides a relatively simple approach to estimating landfill gas emissi...

  7. U.S. EPA'S RESEARCH TO UPDATE GUIDANCE FOR QUANTIFYING LANDFILL GAS EMISSIONS

    EPA Science Inventory

    Landfill emissions, if left uncontrolled, contribute to air toxics, climate change, tropospheric ozone, and urban smog. EPA's Office of Research and Development is conducting research to help update EPA's landfill gas emission factors. The last update to EPA's landfill gas emiss...

  8. Negotiating the sale and purchase of landfill gas

    SciTech Connect

    Opdahl, C.D.

    1995-08-01

    This paper discusses many of the business and legal issues which may be encountered in negotiating an agreement for the sale and purchase of landfill gas. A landfill gas sale and purchase contract is really three different agreements wrapped up into one. First, it is a purchase agreement. As a purchase agreement it specifies the parties` obligations about the quantity and quality of the commodity being purchased and sold. It also sets forth the price to be paid for the commodity, payment terms, warranty provisions, indemnification obligations and other matters commonly found in purchase and sale transactions. Second, a landfill gas sale and purchase agreement is a construction agreement. As a construction agreement it obligates the parties to each construct a facility, one facility to collect the gas and the other to generate electricity from consumption of the gas. It also should require the construction of the projects in accordance with approved plans and specifications, in a timely manner and in accordance with applicable laws and ordinances. Third, a landfill gas sale and purchase agreement is a lease or easement agreement. As a lease or easement agreement it requires one party to grant use of a portion of its property to the other party. Also, it sets out the circumstances which will allow landowner to extinguish the right to use or occupy its property, as well as any rights of the land user to maintain or have rights to access to the property and any rights of first refusal. In certain instances it might provide for the grant of security interests as to one of the party`s assets or the entire facility. This paper discusses how these three types of agreements are combined in a single agreement.

  9. Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction.

    PubMed

    Chen, Zezhi; Gong, Huijuan; Zhang, Mengqun; Wu, Weili; Liu, Yu; Feng, Jin

    2011-05-01

    Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term. PMID:21232931

  10. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  11. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  12. Response of tomato plants to simulated landfill gas mixtures

    SciTech Connect

    Arthur, J.J.; Leone, I.A.; Flower, F.B.

    1985-01-01

    The roots of tomato plants were fumigated with simulated refuse-generated gas mixtures at levels of methane (CH/sub 4/), carbon dioxide (CO/sub 2/), and oxygen (O/sub 2/) previously measured in the atmospheres of landfill cover soils associated with poor growth or death of plants. A concentration of 18% CO/sub 2/ or greater, exceeded in almost 30% of thirty-two landfills examined throughout the US, caused reduced growth and visible symptoms on tomato after 1 wk, regardless of O/sub 2/ level. Doubling the CO/sub 2/ level to that encountered in a typical local site (Edgeboro Landfill) resulted in more severe symptom development and the subsequent death of plants. Methane, in concentrations of 20% and above, found in more than 25% of the landfills visited, while not observed to be toxic per se; was associated with drastic O/sub 2/ depletion in the soil atmosphere, which activity was believed to be the cause of the plant decline.

  13. Mswi bottom ash for upgrading of biogas and landfill gas.

    PubMed

    Mostbauer, P; Lenz, S; Lechner, P

    2008-07-01

    A new upgrading process for biogas and landfill gas (LFG) has been designed recently by the authors' institute. The process uses the alkalinity of the fine fraction of bottom ash from municipal solid waste incineration (MSWI) for sorbing CO2 and H2S. Results from process development and optimisation are presented in this paper. It is expected that nearly pure CH4 can be produced for substitution of fossil fuels. Simultaneously, the leachability of MSWI bottom ash is clearly reduced. PMID:18697517

  14. Migration behavior of landfill leachate contaminants through alternative composite liners.

    PubMed

    Varank, Gamze; Demir, Ahmet; Top, Selin; Sekman, Elif; Akkaya, Ebru; Yetilmezsoy, Kaan; Bilgili, M Sinan

    2011-08-01

    Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻⁸ m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. PMID:21621822

  15. Gas flow to a vertical gas extraction well in deformable MSW landfills.

    PubMed

    Yu, Li; Batlle, Francisco; Carrera, Jesús; Lloret, Antonio

    2009-09-15

    Active gas control systems are commonly used in municipal solid waste (MSW) landfills and the design of such systems requires thorough understanding of the gas flow pattern. A model is developed to predict the two-dimensional radial transient gas flow to a vertical gas extraction well in deformable MSW landfills. Variations of gas storage include time-dependent compression of the refuse, dissolution of gas components and porosity enlargement due to organic matter degradation. Mechanical compression of solid skeleton is coupled with gas pressure using K-H rheological model which is capable of reproduce the evolution of settlement for MSW landfills. The new analytical solution obtained in Laplace transform domain can be used to determine excess gas pressure fields, gas fluxes in the well and through the top cover as well as landfill settlements. The solution is validated by comparison with field measurements and numerical simulations. It demonstrates that the gas storage variation term becomes predominant only during early times. Long-term gas flow is controlled by the gas generation rate and the quasi-steady solution is valid. Parametric studies indicate that the solution given in this paper is useful for the prediction of gas fluxes, for the choice of the optimum spacing between wells, and for the determination of the final cover properties as well as appropriate vacuum pressure imposed in the extraction well. PMID:19356846

  16. Effect of enhanced leachate recirculated (ELR) landfill operation and gas extraction on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Samir, Sonia

    The bioreactor/ enhanced leachate recirculated (ELR) landfill operation with the addition of moisture/ leachate to the landfill, accelerate the process of landfill waste decomposition; and increase the generation of LFG over a shorter period of time. Since emissions from the landfills are directly related to the gas generation, the increase in gas generation might also increase the emission from the landfill. On the contrary, the presence of gas extraction is suggested to mitigate the fugitive emissions from the landfills. Therefore, the motivation of the current study was to evaluate the effect of ELR operation as well as the gas extraction on the greenhouse gas emissions from the landfill. The current study was conducted in the City of Denton Landfill, Texas. Methane emission was investigated using a portable FID and static flux chamber technique from the landfill surface. Emission was measured from an ELR operated cell (cell 2) as well as a conventional cell (cell 0) in the City of Denton Landfill. Methane emission for cell 2 varied from 9544.3 ppm to 0 ppm while for cell 0, it varied from 0 ppm to 47 ppm. High spatial variations were observed during monitoring from both cells 0 and cell 2 which could be recognized as the variation of gas generation below the cover soil. The comparison between emissions from the slope and surface of the landfill showed that more methane emission occurred from the slopes than the top surface. In addition, the average landfill emission showed an increasing trend with increase in temperature and decreasing trend with increasing precipitation. The effect of ELR operation near the recirculation pipes showed a lag period between the recirculation and the maximum emission near the pipe. The emission near the pipe decreased after 1 day of recirculation and after the initial decrease, the emission started to increase and continued to increase up to 7 days after the recirculation. However, approximately after 10 days of recirculation, the emission resumed its original state before the recirculation. It should be noted that the change in emission was only limited near the pipe. No overall change in emission was observed from the cell due to the recirculation. The comparison between the emissions from the conventional and ELR cell showed an overall higher emission from the ELR cell which could be attributed to the overall higher gas generation from the ELR cell as well. The gas extraction had a direct impact on emission, the emission dropped substantially right after the gas extraction from the landfill. However, the gas was extracted once in a month and comparison with the amount of gas extraction and emission showed that the emission decreased as the gas extraction increased. An attempt was made to incorporate the effect of ELR operation and the gas extraction in the estimating the methane emission from the landfills. Multiple linear regression (MLR) model was developed using the statistical tool SAS. The developed model was validated and the model showed an excellent agreement between the predicted emission and the measured emission from the landfills (average variation 9.6%).

  17. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    NASA Astrophysics Data System (ADS)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  18. A decision support tool for landfill methane generation and gas collection.

    PubMed

    Emkes, Harriet; Coulon, Frédéric; Wagland, Stuart

    2015-09-01

    This study presents a decision support tool (DST) to enhance methane generation at individual landfill sites. To date there is no such tool available to provide landfill decision makers with clear and simplified information to evaluate biochemical processes within a landfill site, to assess performance of gas production and to identify potential remedies to any issues. The current lack in understanding stems from the complexity of the landfill waste degradation process. Two scoring sets for landfill gas production performance are calculated with the tool: (1) methane output score which measures the deviation of the actual methane output rate at each site which the prediction generated by the first order decay model LandGEM; and (2) landfill gas indicators' score, which measures the deviation of the landfill gas indicators from their ideal ranges for optimal methane generation conditions. Landfill gas indicators include moisture content, temperature, alkalinity, pH, BOD, COD, BOD/COD ratio, ammonia, chloride, iron and zinc. A total landfill gas indicator score is provided using multi-criteria analysis to calculate the sum of weighted scores for each indicator. The weights for each indicator are calculated using an analytical hierarchical process. The tool is tested against five real scenarios for landfill sites in UK with a range of good, average and poor landfill methane generation over a one year period (2012). An interpretation of the results is given for each scenario and recommendations are highlighted for methane output rate enhancement. Results demonstrate how the tool can help landfill managers and operators to enhance their understanding of methane generation at a site-specific level, track landfill methane generation over time, compare and rank sites, and identify problems areas within a landfill site. PMID:26168873

  19. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system.

    PubMed

    Haibin Han; Jisheng Long; Shude Li; Guangren Qian

    2010-04-01

    Electricity generation and greenhouse gas (GHG) reductions were researched by making comparisons between municipal solid waste (MSW) landfill and incineration systems with three different electricity generation efficiencies - 10%, 21%, and 24.7%. For MSW landfill systems, it is shown that the total electricity generation is 198,747 MWh, and the total GHG emission reduction is 1,386,081 tonne CO( 2) during a 21-year operation period. For incineration systems, the total electricity generation is 611,801 MWh, and the total GHG emission reduction is 1,339,158 tonne CO(2) during a 10-year operation period even if the electricity generation efficiency is only 10%. It is also shown that electricity generation increases quicker than the GHG emission reductions with the increase of electricity generation efficiency. However, incineration systems show great superiority in LFG utilisation and GHG emission reductions. PMID:20124321

  20. Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant

    SciTech Connect

    Not Available

    1982-10-01

    Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

  1. Development of the utilization of combustible gas produced in existing sanitary landfills: Effects of corrosion at the Mountain View, California landfill gas-recovery plant

    NASA Astrophysics Data System (ADS)

    1982-10-01

    Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

  2. LANDFILL GAS EMISSIONS MODEL (LANDGEM) VERSION 3.02 USER'S GUIDE

    EPA Science Inventory

    The Landfill Gas Emissions Model (LandGEM) is an automated estimation tool with a Microsoft Excel interface that can be used to estimate emission rates for total landfill gas, methane, carbon dioxide, nonmethane organic compounds, and individual air pollutants from municipal soli...

  3. Improved methodology to assess modification and completion of landfill gas management in the aftercare period.

    PubMed

    Morris, Jeremy W F; Crest, Marion; Barlaz, Morton A; Spokas, Kurt A; Kerman, Anna; Yuan, Lei

    2012-12-01

    Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers. PMID:22884579

  4. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.

    PubMed

    Tercan, Safak Hengirmen; Cabalar, Ali Firat; Yaman, Gokhan

    2015-08-01

    This paper presents an analysis of the electricity generation from municipal solid waste (MSW), via landfill gas valorization technology, at the landfill of Gaziantep City, Turkey. Rapid increase in population, and industrial developments, throughout the world including Turkey results in larger amount of waste materials generated, increased need for energy, and adverse affects on the environment and human health. Turkey plans to produce 1/3 of its electricity demand using renewable energy sources by the year of 2023. It is recommended to use each year around 25 million tonnes of the MSW generated nationwide for a renewable energy supply. In this study, a concise summary of current status of electricity generation from a MSW landfill gas plant (via biogas harnessing) located in Gaziantep City was analyzed as a case study. PMID:26211632

  5. Numerical modeling of landfill gas and heat transport in the deformable MSW landfill body. Part 1. Development of the model

    NASA Astrophysics Data System (ADS)

    Kutsyi, D. V.

    2015-06-01

    The article is devoted to studying the parameters of wells that are used as part of vertical gas extraction systems for degassing landfills. To this end, approaches to modeling the main processes occurring in the landfill's porous medium are considered. The considered approaches served as a basis for elaborating a thermophysical gas and heat transport model that takes into account variation in the hydrodynamic properties of wastes resulting from their secondary settlement. The adequacy of the results obtained using the developed model is confirmed by the data of classic works. The effect the secondary settlement of wastes has on the distribution of pressure and temperature in the landfill body is determined. It is shown that compaction of wastes due to their secondary settlement results in a growth of pressure by 40% on the average.

  6. Studies of soil gas, gas generation, and shallow microbial activity at Mallard North Landfill, Dupage County, Illinois

    SciTech Connect

    Bogner, J.E.; Vogt, M.; Miller, R.M.

    1990-01-01

    Three types of investigations at the Mallard North Landfill during the last five years have led to the development of useful field and laboratory techniques for better understanding gas generation, gas migration, and shallow microbial processes at any landfill. This paper summarizes the techniques with reference to representative results from Mallard North and discusses their general applicability to landfill site investigations. 29 refs., 5 figs., 1 tab.

  7. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  8. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect

    Steinfield, G.; Sanderson, R.

    1998-02-01

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  9. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.

    PubMed

    Röwer, Inga Ute; Geck, Christoph; Gebert, Julia; Pfeiffer, Eva-Maria

    2011-05-01

    In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level. PMID:20943363

  10. Measured gas emissions from four landfills in south africa and some implications for landfill design and methane recovery in semi-arid climates.

    PubMed

    Fourie, A B; Morris, J W F

    2004-12-01

    The magnitude of annual global emissions of methane from municipal solid waste landfills without landfill gas control systems implies that these landfills are significant contributors to the atmospheric load of greenhouse gases. There have been a number of field studies undertaken internationally to measure actual fluxes of methane and carbon dioxide from landfills, with a view to corroborating modelled predictions of the contribution of landfills to the global greenhouse gas budget. The vast majority of these studies have been undertaken in more temperate climates and in developed countries. This paper reports a study of landfill gas emissions from four large landfills located in the semi-arid interior of South Africa. A static accumulation chamber was used and measurements were made at each site over a period of two to three days. The results were analysed by three different methods, all of them leading to the same general conclusion that landfill gas emission rates were lower than expected. A common conclusion based on results from all four sites was that capping of landfills in semi-arid climates with low permeability covers would probably significantly retard the already low rate of waste degradation and thus gas generation. While this may be regarded as advantageous in the short term, it cannot be relied upon in perpetuity as clayey landfill covers will inevitably desiccate and crack in a semiarid environment. In addition, reasonable after-care periods for such landfills are likely to extend well beyond the currently stipulated 30-year period, and efforts to encourage energy recovery from landfills may be hampered because gas generation rates decrease as the waste dries out under conditions of minimal recharge from precipitation. A landfill cover that allows small amounts of percolation of rainfall into the waste may therefore in fact be beneficial in semiarid climates, although care would need to be taken to carefully regulate this infiltration. PMID:15666447

  11. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  12. Modelling the behaviour of mechanical biological treatment outputs in landfills using the GasSim model.

    PubMed

    Donovan, S M; Bateson, T; Gronow, J R; Voulvoulis, N

    2010-03-15

    The pretreatment of the biodegradable components of municipal solid waste (MSW) has been suggested as a method of reducing landfill gas emissions. Mechanical biological treatment (MBT) is the technology being developed to provide this reduction in biodegradability, either as an alternative to source segregated collection or for dealing with residual MSW which still contains high levels of biodegradable waste. The compost like outputs (CLOs) from MBT plants can be applied to land as a soil conditioner; treated to produce a solid recovered fuel (SRF) or landfilled. In this study the impact that landfilling of these CLOs will have on gaseous emissions is investigated. It is important that the gas production behaviour of landfilled waste is well understood, especially in European member states where the mitigation of gaseous emissions is a legal requirement. Results of an experiment carried out to characterise the biodegradable components of pretreated biowastes have been used with the GasSim model to predict the long term emissions behaviour of landfills accepting these wastes, in varying quantities. The landfill directive also enforces the mitigation of potential methane emissions from landfills, and the ability of landfill operators to capture gaseous emissions from low emitting landfills of the future is discussed, as well as new techniques that could be used for the mitigation of methane generation. PMID:20092874

  13. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  14. U.S. EPA'S FIELD TEST PROGRAMS TO UPDATE DATA ON LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper discusses a field test program in which the EPA is currently engaged to improve data on landfill gas (LFG) emissions. LFG emissions data in use at this time are based on determinations made in the late 1980s and early 1990s; changes in landfill operations, such as using...

  15. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3.0)

    EPA Science Inventory

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfil...

  16. Tracer method to measure landfill gas emissions from leachate collection systems.

    PubMed

    Fredenslund, Anders M; Scheutz, Charlotte; Kjeldsen, Peter

    2010-11-01

    This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH(4)) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH(4) emissions, it was found that approximately 47% (351 kg CH(4) d(-1)) and 27% (211 kg CH(4) d(-1)), respectively, of the CH(4) emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH(4) d(-1). A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH(4) was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure. PMID:20378325

  17. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions

    NASA Astrophysics Data System (ADS)

    Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B.

    2016-02-01

    Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US (ref. ). The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill--open and actively receiving waste or closed--was the most significant predictor of collection system performance. Gas collection systems at closed landfills were statistically significantly more efficient (p < 0.001) and on average 17 percentage points more efficient than those at open landfills, but open landfills were found to represent 91% of all landfill methane emissions. These results demonstrate the clear need to target open landfills to achieve significant near-term methane emission reductions. This observation is underscored by landfill disposal rates in the US significantly exceeding previously reported national estimates, with this study reporting 262 million tonnes in the year 2012 compared with 122 million tonnes in 2012 as estimated by the US Environmental Protection Agency.

  18. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    PubMed

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare. PMID:22442931

  19. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  20. GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

    EPA Science Inventory

    This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation...

  1. Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism.

    PubMed

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-01

    This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH(4) flux values calculated through tessellation, inverse distance weighing and kriging were 0.1880.014, 0.2240.012 and 0.2370.008 l CH(4)/m(2) hr, respectively, compared to an arithmetic mean of 0.24 l/m(2) hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m(2) hr), and lower than the reported range for active landfills (0.42-2.46 l/m(2) hr). Simulation results matched field measurements for low methane generation potential (L(0)) values in the range of 19.8-102.6 m(3)/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste. PMID:22265005

  2. The effect of landfill age on municipal leachate composition.

    PubMed

    Kulikowska, Dorota; Klimiuk, Ewa

    2008-09-01

    The influence of municipal landfill age on temporal changes in municipal leachate quality on the basis of elaboration of 4 years monitoring of leachate from landfill in Wysieka near Bartoszyce (Poland) is presented in this study. In leachate, concentrations of organic compounds (COD, BOD(5)), nutrients (nitrogen, phosphorus), mineral compounds, heavy metals and BTEX were investigated. It was shown that the principal pollutants in leachate were organics and ammonia - as landfill age increased, organics concentration (COD) in leachate decreased from 1,800 mg COD/l in the second year of landfill exploitation to 610 mg COD/l in the sixth year of exploitation and increase of ammonia nitrogen concentration from 98 mg N(NH)/l to 364 mg N(NH4) /l was observed. Fluctuation of other indexes (phosphorus, chlorides, calcium, magnesium, sulfate, dissolved solids, heavy metals, BTEX) depended rather on season of the year (seasonal variations) than landfill age. Moreover, the obtained data indicate that despite of short landfill's lifetime some parameters e.g. high pH (on average 7.84), low COD concentration (<2,000 mg COD/l), low BOD(5)/COD ratio (<0.4) and low heavy metal concentration, indicated that the landfill was characterized by methanogenic conditions already at the beginning of the monitoring period. PMID:18060769

  3. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  4. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    NASA Astrophysics Data System (ADS)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( < 3 km2 footprints) and high accuracy ( 0.5 to 3 ppm) CO2 measurements. The original OCO satellite failed to achieve orbit in February 2009. A replacement satellite (OCO-2) is under construction and scheduled for launch in February 2013. These characteristics will allow the measurement of CO2 emissions from large landfills on the orbit path. Because surface landfill gas emissions include both CH4 and CO2 , the CH4 concentration can be inferred from CO2 concentrations. The CarbonSAT satellite which is being designed by the University of Bremen, Institute for Environmental Physics, has similar characteristics to OCO-2 but it has been optimized for measurement of both CH4 and CO2 . Key specifications for the CarbonSAT satellite include XCO2 single measurement error of < 1 to 3 ppm and XCH4 single measurement error of < 10 to 18 ppb. These characteristics will make it possible to detect both CO2 and CH4 emissions from large landfills. The spatial resolution and accuracy of the CO2 measurements from OCO-2 and CO2 and CH4 measurements from CarbonSAT present a unique opportunity to measure landfill gas emissions from large landfills such as exist in the United States and other developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  5. No pain-no gain, the evolution of a landfill gas project

    SciTech Connect

    Morford, K.L.

    1995-08-01

    After the City`s utility department closed down an on-site landfill gas (LFG) fired electrical generating facility for permitting problems, and shortly thereafter suffered a traumatic experience with a leaking and inefficient gas collection system, the development of another landfill gas project in the City of Glendale was not a safe thought to harbor. Yet, in 1990, Glendale was approached by several persistent developers who convinced the City to explore another, but larger gas project. Scholl Canyon Landfill, owned principally by the City of Glendale, is a moderately sized facility with 22 million tons of refuse in place and a 12 million ton remaining capacity. The site is comprised of two separate adjoining canyons totalling 410 acres. The smaller canyon is no longer active and today supports a privately operated golf course and driving range. While the active site is within Glendale, the landfill has split ownership with Glendale retaining an 83 percent share, Los Angeles County 10 percent and Southern California Edison 7 percent. Landfill operations are managed by the Los Angeles County Sanitation Districts (LACSD) in accordance with a joint powers agreement that originated in the early 1960`s. Generating approximately 9 million cubic feet of landfill gas per day with a heating value about one-third that of natural gas, private developers could envision a lucrative project, particularly considering the availability of Federal tax credits for producing fuel from a non-conventional source. The evolution of the Glendale project is described in this paper.

  6. Observations from using models to fit the gas production of varying volume test cells and landfills.

    PubMed

    Lamborn, Julia

    2012-12-01

    Landfill operators are looking for more accurate models to predict waste degradation and landfill gas production. The simple microbial growth and decay models, whilst being easy to use, have been shown to be inaccurate. Many of the newer and more complex (component) models are highly parameter hungry and many of the required parameters have not been collected or measured at full-scale landfills. This paper compares the results of using different models (LANDGEM, HBM, and two Monod models developed by the author) to fit the gas production of laboratory scale, field test cell and full-scale landfills and discusses some observations that can be made regarding the scalability of gas generation rates. The comparison of these results show that the fast degradation rate that occurs at laboratory scale is not replicated at field-test cell and full-scale landfills. At small scale, all the models predict a slower rate of gas generation than actually occurs. At field test cell and full-scale a number of models predict a faster gas generation than actually occurs. Areas for future work have been identified, which include investigations into the capture efficiency of gas extraction systems and into the parameter sensitivity and identification of the critical parameters for field-test cell and full-scale landfill predication. PMID:22796013

  7. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  8. Landfill Methane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  9. Reduced sulfur compounds in gas from construction and demolition debris landfills.

    PubMed

    Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel

    2006-01-01

    The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices. PMID:16403620

  10. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  11. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    SciTech Connect

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6 m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6 m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions)

  12. A CASE STUDY DEMONSTRATING U.S. EPA GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--BUSH VALLEY LANDFILL, HARFORD COUNTY, MARYLAND

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  13. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  14. Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?

    PubMed

    Spokas, K; Bogner, J; Chanton, J P; Morcet, M; Aran, C; Graff, C; Golvan, Y Moreau-Le; Hebe, I

    2006-01-01

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH(4) m(-2) d(-1). Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery. PMID:16198554

  15. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  16. Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Garaj-Vrhovac, Vera

    2012-04-01

    Chemical analysis and an in vitro approach were performed to assess elemental composition and genotoxic effects of the samples of landfill leachate taken from Lokva Vidotto sanitary landfill the official landfill for Rovinj town, Croatia. Two samples of landfill leachate were collected and analyzed in order to evaluate macro, micro and trace elements by atomic absorption spectroscopy, energy dispersive X-ray spectrometry and colorimetry. Genotoxicity of sanitary landfill leachate was evaluated in human lymphocytes by the use of the micronucleus test and comet assay. Samples were characterized with relatively low concentrations of heavy metals while organic component level exceeded upper permissible limit up to 39 times. Observed genotoxic effects should be connected with high concentrations of ammonia nitrogen, which exceeded permissible limit up to 180 times. Leachate samples of both sanitary landfills increased the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. Increase of DNA damage in human lymphocytes was also detected by virtue of measuring comet assay parameters. All parameters showed statistically significant difference compared to negative control. Increased micronucleus and comet assay parameters indicate that both samples of sanitary landfill leachate are genotoxic and could pose environmental and human health risk if discharged to an aquatic environment. PMID:22177983

  17. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  18. The Use of Biofilter to Reduce Atmospheric Global Warming Gas (CH4) Eemissions from Landfills

    NASA Astrophysics Data System (ADS)

    Park, S.; Thomas, J. C.; Brown, K. W.; Sung, K.

    2001-12-01

    The emission of greenhouse gasses resulting from anthropogenic activities is increasing the atmospheric concentration of these gases, which can influence the climatic system by changing the temperature, precipitation, wind and other climate factors. Methane (CH4) is a very potent greenhouse gas and CH4 emission from landfills in US has been reported as 37% of total anthropogenic source of CH4 emission. Properly designed soil biofilters may reduce atmospheric CH4 emissions from landfills and help reduce the accumulation of greenhouse gasses in the atmosphere. Biofilter performance was tested under a variety of environmental and design conditions. The results showed that biofilters have the potential to reduce CH4 emissions from landfills by as much as 83%. A quadratic equation was developed to describe the dependence of methane oxidation rate in a sandy loam textured soil as a function of soil temperature, soil moisture and ammonium nitrogen concentration. Using this equation and the averaged soil temperature and moisture contents, and census data for the largest cities of each of the 48 contiguous states, oxidation rates was calculated. A methane emission model was also developed to estimate the methane emission from municipal waste landfills with different covers. Older landfills with soil covers emitted an average of 83% of the generated CH4. Landfills with RCRA covers emitted 90% of the generated CH4 without biofilters and only 10% with biofilters. Thus, the installation of properly sized biofilters should significantly reduce atmospheric CH4 emissions from landfills.

  19. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  20. Gas generation as a function of leachate management: Mid Auchencarroch experimental landfill

    SciTech Connect

    Hayes, C.W.; Fleming, G.; Gronow, J.

    1997-12-31

    Sustainable development is becoming a goal within most of the developed world. In terms of waste management, and specifically landfill, the goal is to progress the waste mass to a non-polluting state, within the relatively short period of 30--50 years. The flushing bioreactor landfill is seen potentially as a method of achieving this goal. The second experimental landfill at the Mid Auchencarroch Landlab facility builds on the success and experience gained on the first site, completed some three years ago. Phase 2 of Mid Auchencarroch Landlab seeks to evaluate methods of managing and controlling the biodegradation processes of landfilled municipal solid waste (MSW). The US$ 500,000 experiment, financed by the landfill industry and UK government research funds, comprises four cells each containing approximately 4000 tonnes of MSW. The main variables of this experiment are pre-treatment of waste by wet pulverization, leachate recirculation at optimum rates, and co-disposal of inert materials with MSW. The manipulation of the moisture regime within the landfill is seen as a key control parameter. Leachate recirculation, via a novel sub cap irrigation system, seeks to develop the concept of the flushing bioreactor, in which the aims of recirculation are not only to homogenize moisture content in order to enhance degradation, but further to flush soluble pollutants from the waste mass. The project moved into the monitoring stage in November 1995, when the cells were capped. A comprehensive regime of data collection operates, including full time gas flow monitoring, with a new type of flowmeter specifically developed for landfill gas. Thus, results presented are both quantitative and qualitative, and in the future will attempt to put a meaningful time scale on landfill gas production curves under various controlling regimes.

  1. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the coarser (< 35 mm) fraction became larger than finer (< 2 mm) for the given soil-air content. Further, compaction effort was much significant for ka than Dp for both fractions. We suggest this is because of compaction effects caused to create well-aligned macropore networks that are available for gas transport through the porous material. Then, the famous predictive models, the water induced linear reduction (WLR) model for Dp and the reference point law (RPL) model for ka were modified with reference point measurements (dry conditions) and model parameters and they correlated linearly to dry bulk density values for both fractions of landfill final cover soil.

  2. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  3. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills.

    PubMed

    Jung, Yoojin; Han, Byunghyun; Mostafid, M Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T

    2012-02-01

    Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF(6)), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences. PMID:21996285

  4. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes-Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. his phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impur...

  5. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. PMID:24140376

  6. Terrestrial laser scanning for detection of landfill gas: a pilot study

    NASA Astrophysics Data System (ADS)

    Reshetyuk, Yuriy; Mårtensson, Stig-Göran

    2014-04-01

    Methane built up in landfills as a result of breaking down of organic materials can be a renewable energy source if it is taken advantage of. The aim of research presented in this paper is to detect landfill gas (that contains methane) by means of terrestrial laser scanning. The hypothesis is that where no surface leakage has been reported, the landfill gas will expand or migrate. Therefore, it is possible to detect it through repeated scanning of the same area and comparison of Digital Terrain Models (DTMs) generated from the point clouds. Only the most significant movements, i.e. vertical, are of interest in this case. During September-November 2011, a small area at Forsbacka landfill in the vicinity of Gävle was scanned 10 times. Epoch-to-epoch comparisons of the resulting DTMs have shown two significant changes (-27 and +19 mm) in elevation of the surface, and it is not impossible that they are caused by migrating landfill gas. The method tested in this study is deemed to be rigorous and accurate for detecting small-scale swell-shrink behaviour of the ground surface (in our case a landfill surface). However, both data processing and interpretation of the results have been considerably complicated by presence of low vegetation (weeds) on the study site, which was dificult to filter away completely from the data. Based on our pilot study, we recommend that a larger area and a longer period of time are chosen to give basis for more grounded conclusions about presence of landfill gas.

  7. Site Characterization of Landfill using Soil gas, Hydrochemical and Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ko, K.; Park, S.; Son, J.; Oh, I.

    2005-12-01

    To identify the effect of landfill waste for groundwater and unsaturated soil environment, the expedited site assessment, soil gas, geophysical prospecting, and in-situ chemical analysis of contaminants and indicators of pollution were executed. The aquifer of the study area is mainly composed of 8 to 10 m sandy sediment overlying Jurassic granite. The active sampling method was addressed to investigate the distribution of soil gas at the study area. The spatial distribution of soil gas at the depth of 80-100cm showed the boundary of buried waste and the biodegradation processes and the degree of waste decomposition. The CO2 and CH4 concentration across the disposed direction increased by the intensive decomposition of waste and this indicated the methanogenic condition of unsaturated zone of landfill. The geophysical survey at the municipal landfill was executed to delineate the size and extent of soil and groundwater contamination. The electromagnetic (EM), magnetic, and resistivity method were used for site investigation. From the EM method, we can get the information of soil conductivity directly related to the leachate of the contamination. The magnetic anomalies showed the boundary of landfill which was not identified on the surface due to soil capping. The results of geophysical survey were well matched to those of hydrogeochemical survey carried out inside and near the landfill. Electric conductivity (EC) of the groundwater sampled from low resistivity anomaly region of EM result was higher than background value and the border estimated from the magnetic survey showed good agreement with that estimated from the soil gas detection survey. The monitoring of electrical resistivity survey showed the leakage of leachate from landfill and this results well coincided with the groundwater chemistry. From the research results for groundwater quality, it was considered that the groundwater contamination by leachate from landfill is controlled by groundwater flow attributed by the original topography and liner.

  8. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover.

    PubMed

    Ng, C W W; Chen, Z K; Coo, J L; Chen, R; Zhou, C

    2015-10-01

    Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas-water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions). PMID:26184895

  9. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    EPA Science Inventory

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  10. Using alternatives to implement economic and effective NSPS/EG landfill gas control systems

    SciTech Connect

    Conway, R.A.; Huitric, R.L.

    1996-11-01

    The new source performance standards (NSPS) for {open_quotes}new{close_quotes} municipal solid waste (MSW) landfills and emission guidelines (EG) for {open_quotes}existing{close_quotes} MSW landfills were finalized on March 1, 1996. This concludes an arduous rule development process which the Environmental Protection Agency (EPA) began in the 1980`s. The rule evolved from rigidly prescriptive requirements to the present combination of goal oriented design guidance and performance standards. The SWANA Landfill Gas Management Division strongly encouraged this evolution. The flexibility in the final rule provides opportunities for states to facilitate, and landfill operators to develop, landfill gas systems that are both economic in their design, operation, and monitoring as well as effective in their control of gas emissions. The purpose of this paper is to describe those opportunities. The NSPS rule applies to {open_quotes}new{close_quotes} municipal solid waste landfills that began construction, reconstruction or modification, or began accepting waste on or after May 30, 1991. The emission guidelines (EG) apply to {open_quotes}existing{close_quotes} landfills for which construction, reconstruction, or modification was commenced before May 30, 1991 and has accepted waste at any time since November 8, 1987 or has additional future capacity. The nomograph based method had never been field tested and the area-of-influence method was widely regarded as being either unnecessary or inappropriate for design purposes. Subsequently, on June 21, 1993, the EPA published in the Federal Register (58 FR 33791) a notice providing information on additional data used in developing the final NSPS and EG which improved the reasonableness of some rule aspects but notably added a performance standard while retaining prescriptive design requirements.

  11. Qualitative nontarget analysis of landfill leachate using gas chromatography time-of-flight mass spectrometry.

    PubMed

    Jernberg, Joonas; Pellinen, Jukka; Rantalainen, Anna-Lea

    2013-01-15

    Nontarget analysis means that a sample is analysed without preselection of the studied analytes. While target analysis attempts to determine whether certain selected compounds are present in the sample, nontarget analysis is performed to explore what unknown compounds can be found. We developed a nontarget method using a landfill leachate sample as a complex test sample. The method was based on the use of a gas chromatograph-time-of-flight mass spectrometer (GC-TOF-MS) for final analysis and a deconvolution computer application for data processing. This nontarget analysis method was tested and validated by applying it to a landfill leachate sample spiked with 11 organic pollutants that were treated as unknowns. Sensitivity was found to be the most critical parameter affecting the success of nontarget analysis. The limit of identification (LOI) was 2500 ng L(-1) for four of the 11 compounds, 500 ng L(-1) for three compounds and 100 ng L(-1) for one compound. Three compounds were not detected in any of the spiked samples. A six-stage identification process was developed based on the spiking experiments. The process was based on the forward fit value of the library hit, the number of deconvoluted ions and the accurate mass scoring of the measured ions. The process was applied to an unspiked leachate water sample. Altogether, 44 compounds were tentatively identified in the sample. Elemental compositions of 36 components were additionally determined for which an unequivocal compound identification could not be given. Nontarget analysis with GC-TOF-MS is a promising method for the qualitative analysis of complex water samples. However, we conclude that the computer application for nontarget analysis needs improvement to decrease the amount of manual work needed in the identification process. PMID:23200403

  12. Kentucky State Primer. A Primer on Developing Kentucky's Landfill Gas-to-Energy Potential

    NASA Astrophysics Data System (ADS)

    2000-05-01

    Throughout the country, the number of landfill gas-to-energy (LFGTE) projects is growing. Recovering methane gas at solid waste landfills provides significant environmental and economic benefits by eliminating methane emissions while capturing the emissions energy value. The methane captured from landfills can be transformed into a cost-effective fuel source for generating electricity and heat, firing boilers, or even powering vehicles. Permits, incentive programs, and policies for LFGTE project development vary greatly from state to state. To guide LFGTE project developers through the state permitting process and to help them to take advantage of state incentive programs, the U.S. Environmental Protection Agencys (EPAs) Landfill Methane Outreach Program (LMOP) has worked with state agencies to develop individual primers for states participating in the State Ally Program. By presenting the latest information on federal and state regulations and incentives affecting LFGTE projects in this primer, the LMOP and Kentucky state officials hope to facilitate development of many of the landfills listed in Table A. To develop this primer, the Commonwealth of Kentucky identified all the permits and funding programs that could apply to LFGTE projects developed in Kentucky. It should be noted, however, that the regulations, agencies, and policies described are subject to change. Changes are likely to occur whenever a state legislature meets, or when the federal government imposes new directions on state and local governments. LFGTE project developers should verify and continuously monitor the status of laws and rules that might affect their plans or the operations of their projects.

  13. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  14. DATABASE OF LANDFILL GAS TO ENERGY PROJECTS IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses factors influencing the increase of landfill gas to energy (LFG-E) projects in the U.S. and presents recent statistics from a database,. There has been a dramatic increase in the number of LFG-E projects in the U.S., due to such factors as implementation of t...

  15. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    EPA Science Inventory

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  16. LANDFILL GAS ENERGY UTILIZATION EXPERIENCE: DISCUSSION OF TECHNICAL AND NON-TECHNICAL ISSUES, SOLUTIONS, AND TRENDS

    EPA Science Inventory

    The report discusses technical and non-technical considerations associated with the development and operation of landfill gas to energy projects. Much of the report is based on interviews and site visits with the major developers and operators of the more than 110 projects in the...

  17. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    EPA Science Inventory

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  18. A CASE STUDY OF THE LOS ANGELES COUNTY PALOS VERDES LANDFILL GAS DEVELOPMENT PROJECT

    EPA Science Inventory

    This report documents the first-ever-attempt to capture sanitary landfill gases and beneficiate them to natural gas pipeline quality--or very nearly so. For this reason the authors must credit the entrepreneurs for a successful first full-scale demonstration of a technology that ...

  19. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-01-01

    Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons. PMID:23063306

  20. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers?

    PubMed

    Gebert, Julia; Röwer, Inga Ute; Scharff, Heijo; Roncato, Camila D L; Cabral, Alexandre R

    2011-05-01

    A method is proposed to estimate CH(4) oxidation efficiency in landfill covers, biowindows or biofilters from soil gas profile data. The approach assumes that the shift in the ratio of CO(2) to CH(4) in the gas profile, compared to the ratio in the raw landfill gas, is a result of the oxidation process and thus allows the calculation of the cumulative share of CH(4) oxidized up to a particular depth. The approach was validated using mass balance data from two independent laboratory column experiments. Values corresponded well over a wide range of oxidation efficiencies from less than 10% to nearly total oxidation. An incubation experiment on 40 samples from the cover soil of an old landfill showed that the share of CO(2) from respiration falls below 10% of the total CO(2) production when the methane oxidation capacity is 3.8 μg CH(4)g(dw)(-1)h(-1) or higher, a rate that is often exceeded in landfill covers and biofilters. The method is mainly suitable in settings where the CO(2) concentrations are not significantly influenced by processes such as respiration or where CH(4) loadings and oxidation rates are high enough so that CO(2) generated from CH(4) oxidation outweighs other sources of CO(2). The latter can be expected for most biofilters, biowindows and biocovers on landfills. This simple method constitutes an inexpensive complementary tool for studies that require an estimation of the CH(4) oxidation efficiency values in methane oxidation systems, such as landfill biocovers and biowindows. PMID:21074981

  1. TESTING OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: GROTON LANDFILL

    EPA Science Inventory

    The report summarizes the results of follow-on tests following a four-phase EPA program. The environmental impact of widespread use of this concept would be a significant reduction of global warming gas emissions (methane and carbon dioxide). The follow-on testing, conducted by N...

  2. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay. PMID:26092359

  3. Numerical modeling of landfill gas and heat transport in the deformable MSW landfill body. Part 2. Verification and application of the model

    NASA Astrophysics Data System (ADS)

    Kutsyi, D. V.

    2015-07-01

    The article is devoted to studying the parameters of wells that are used as part of vertical landfill gas collection systems for degassing landfills. To this end, the thermophysical model developed in the first part of this work is considered. The model is constructed using the initial data obtained at real dump and landfill with subsequently comparing the calculation results with the data of experimental measurements. A method for determining the average hydrodynamic properties of wastes is proposed, using which the heterogeneity of wastes can be taken into account. The effect the operating and design parameters of the well have on its performance is investigated on the basis of these properties. It has been determined that increasing the suction pressure, drilling diameter, and perforation height allows the well production rate to be increased by around 10%. The effect the increase of the well production rate has on the landfill gas collection project's payback period is demonstrated taking typical dump and landfill as an example.

  4. Gas pressure and concentration gradients at the top of a landfill

    SciTech Connect

    Bogner, J.; Vogt, M.; Moore, C.; Gartman, D.

    1987-01-01

    Vertical gas pressure and concentration gradients are being investigated at the Mallard North Landfill (DuPage County, Illinois) using nests of probes installed in the top of refuse and at two depths in the clay cover materials. Soil gas pressures and atmospheric pressure are monitored continuously using electronic pressure transducers linked to a microcomputer. Concentrations of methane, carbon dioxide, nitrogen, and oxygen in the soil gas are determined using a field gas chromatograph. Supporting meteorological, soil temperature, and soil moisture data also are obtained. Based on data from the fall of 1985 and the spring, summer, and fall of 1986, soil gas pressures at all depths responded to changes in barometric pressure; however, the type of response varied, depending on soil moisture and temperature. During warm, dry weather, for example, soil gas pressures in the cover and the top of the refuse equilibrate rapidly with barometric pressure, indicating that diffusion is the major mechanism for gas transport at that time (no pressure gradients). The rate of diffusional flow depends on the properties of the cover materials, as well as the concentration gradients. Increases in soil moisture, in particular, decrease the gas-filled porosity of the cover materials and retard gas movement. Our results suggest that design and maintenance of tighter landfill covers should be considered at sites where gas recovery is anticipated, to prevent loss of methane and influx of oxygen.

  5. SALE OF SURPLUS DIGESTER AND LANDFILL GAS TO PUBLIC UTILITIES

    EPA Science Inventory

    Methane gas produced by anaerobic digestion of wastewater sludge can be upgraded to pipeline quality and sold to a public utility for injection into a natural gas distribution system. Upgrading the gas typically involves treatment for removal of carbon dioxide and hydrogen sulfid...

  6. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    PubMed

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy. PMID:18954969

  7. A CASE STUDY DEMONSTRATING GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--SOMERSWORTH, NEW HAMPSHIRE

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  8. Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing.

    PubMed

    Köchling, Thorsten; Sanz, José Luis; Gavazza, Sávia; Florencio, Lourdinha

    2015-07-01

    Microorganisms are responsible for degrading the raw leachate generated in sanitary landfills, extracting the soluble fraction of the landfill waste and biotransforming organic matter and toxic residues. To increase our understanding of these highly contaminated ecosystems, we analyzed the microbial communities in the leachate produced by three landfill cells of different ages. Using high-throughput 454 pyrosequencing of the 16S rRNA gene, we describe the structure of the leachate communities and present their compositional characteristics. All three communities exhibited a high level of abundance but were undersampled, as indicated by the results of the rarefaction analysis. The distribution of the taxonomic operational units (OTUs) was highly skewed, suggesting a community structure with a few dominant members that are key for the degradation process and numerous rare microorganisms, which could act as a resilient microorganism seeder pool. Members of the phylum Firmicutes were dominant in all of the samples, accounting for up to 62% of the bacterial sequences, and their proportion increased with increasing landfill age. Other abundant phyla included Bacteroidetes, Proteobacteria, and Spirochaetes, which together with Firmicutes comprised 90% of the sequences. The data illustrate a microbial community that degrades organic matter in raw leachate in the early stages, before the methanogenic phase takes place. The genera found fit well into the classical pathways of anaerobic digestion processes. PMID:25652654

  9. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  10. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    PubMed

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. PMID:25909498

  11. Assessment of soil-gas, soil, and water contamination at the former hospital landfill, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene were in the southern part of the study area to the west of the debris field. However, all other detections of total petroleum hydrocarbons greater than 10 micrograms and diesel greater than 0.04 micrograms, and all detections of the combined mass of benzene, toluene, ethylbenzene, and xylene were found down slope from the debris field in the central and northern parts of the study area. Five soil-gas samplers were deployed and recovered from September 16 to 22, 2010, and were analyzed for organic compounds classified as chemical agents or explosives. Chloroacetophenones (a tear gas component) were the only compounds detected above a method detection level and were detected at the same location as the highest total petroleum hydrocarbons and diesel detections in the southern part of the 14-acre study area. Composite soil samples collected at five locations were analyzed for 35 inorganic constituents. None of the inorganic constituents exceeded the regional screening levels. One surface-water sample collected in the western end of the hyporheic-zone study area had a trichlorofluoromethane concentration above the laboratory reporting level and estimated concentrations of chloroform, fluoranthene, and isophorone below laboratory reporting levels.

  12. Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008

    SciTech Connect

    Karen Koslow Arthur Rood

    2009-08-31

    This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

  13. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. PMID:23684695

  14. Impact of different plants on the gas profile of a landfill cover.

    PubMed

    Reichenauer, Thomas G; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H

    2011-05-01

    Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa+grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa+grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content. PMID:20888746

  15. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    PubMed

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. PMID:25819927

  16. Gas Transport Parameters for Landfill Cover Soils: Effects of Soil Compaction and Water Blockages

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Hamamoto, S.; Kawamoto, K.; Nawagamuwa, U.; Komatsu, T.; Moldrup, P.

    2009-12-01

    Recently, landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric CH4. landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest source of anthropogenic CH4 emission , the final cover system should also be designed for minimizing the biogas migration into the atmosphere or the areas surrounding the landfill. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil , there are few studies about gas transport characteristics of landfill cover soils. Therefore, the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size and water blockage effects on the gas exchange in t highly compacted final cover soil are largely unknown. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport . In this study, the effects of compaction level and water blockage effects on ka and Dp for two landfill final cover soils were investigated. The disturbed soil samples were taken from landfill final covers in Japan and Sri Lanka. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm) at two different compaction levels (2700 kN/m2 and 600 kN/m2). After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential (pF; pF equals to log(-ɛ) where ɛ is soil-water matric potential in cm H2O) of 1.5, 2.0, 3.0, 4.1, and with air-dried (pF 6.0) and oven-dried (pF 6.9) conditions. Results showed that measured Dp values increased rather linearly with increasing soil air content (ɛ) for both compacted and repacked samples using different size fractions and compaction levels in Japanese and Sri Lankan soils. This suggests that the gas diffusion was controlled primarily by the air-filled pore space and was less affected by the pore structure variations such as tortuosity and connectivity. On the other hand, measured ka values showed nonlinear relations with ɛ and were highly affected by compaction levels and water blockage effects. For the compacted soils at high energy level, peak values in ka appeared at drier conditions than optimum water contents in the compaction curves. This would be partially caused by the pore structure changes at different water conditions under compaction. Combined effects of soil compaction and water reduction will be further discussed taking pore structure characteristics derived from measured Dp and ka into account.

  17. Development of the utilization of combustible gas produced in existing sanitary landfills: Investigation of effects of air inclusion

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The effects of nitrogen and oxygen on landfill gas operations are discussed. A combustible gas mixture composed of methane and carbon dioxide is generated in municipal solid waste landfills. A consequence of the collection of this fuel gas is the inclusion of some air in the collected product. The effects include increased collected and purification costs, reduction in the quality of the fuel gas produced, corrosion, explosion hazards, and interference with odorant systems. The scope of such effects was determined by using landfill data of a gas recovery site as a basis. Useful supplemental fuel gas may be recovered despite the inclusion of air. Recommendations are made for establishing limits for nitrogen and oxygen content and minimizing the costs associated with their presence.

  18. Landfill bioreactor design and operation

    SciTech Connect

    Reinhart, D.R.; Townsend, T.

    1998-12-31

    Landfill Bioreactor Design and Operation covers the history and background of landfill technology, research studies of actual bioreactor landfills, expected leachate and gas yields, specific design criteria, operation guidelines, and reuse of landfill sites to avoid having to establish new sites. For anyone looking for an alternative to large, wasteful landfill sites, this book provides a practical alternative to the problem.

  19. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    PubMed

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. PMID:24018116

  20. Two years of operation completed for large landfill gas power plant

    SciTech Connect

    Mullins, P.

    1994-10-01

    The V16 GEC Alsthom Ruston Diesels RK270GS engine, one of the largest lean-burn, spark-ignited engines running on landfill gas anywhere in the world, has just completed its second year of commercial operation at the Calvert landfill site. It has developed 2.8 MW at 1000 r/min and drives a Brush air-cooled alternator, feeding electricity at 11 kV into the area grid 24 hours a day. The site has already taken some seven million tonnes of waste and will eventually absorb around 20 million over a projected life of 20-30 years. By that time, electrical output from the site should amount to about 13 MW. 3 figs.

  1. Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis

    SciTech Connect

    Schweigkofler, M.; Niessner, R.

    1999-10-15

    Biogases such as landfill gas and sewage gas undergo a combustion process which is generating electric energy. Since several trace compounds such as siloxanes (also halogenated and sulfur compounds) are known to cause severe problems to these gas combustion engines, they are of particular interest. In this work, a new technique for sampling, identification, and quantification of siloxanes and volatile organic carbon (VOC) in landfill gas and sewage gas is presented. After sample collection using evacuated stainless steel canisters biogas was analyzed by gas chromatography-mass spectrometry/atomic emission spectroscopy (GC-MS/AES). Using gas canisters, the sampling process was simplified (no vacuum pump needed), and multiple analysis was possible. The simultaneous application of MSD and AED allowed a rapid screening of silicon compounds in the complex biogases. Individual substances were identified independently both by MSD analysis and by determination of their elemental constitution. Quantification of trace compounds was achieved using a 30 component external standard containing siloxanes, organochlorine and organosulfur compounds, alkanes, terpenes, and aromatic compounds. Precision, linearity, and detection limits have been studied. In real samples, concentrations of silicon containing compounds (trimethylsilanol, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasilioxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane) in the mg/m{sub 3} range have been observed.

  2. Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico

    SciTech Connect

    McVey, M.D.; Goering, T.J.; Peace, J.L.

    1996-02-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

  3. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    SciTech Connect

    Félix, Juliana S.; Domeño, Celia; Nerín, Cristina

    2013-03-15

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.

  4. Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997

    SciTech Connect

    Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

    1998-02-01

    The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

  5. Monitoring of leachate quality stored in gas ventilation pipes for evaluating the degree of landfill stabilization.

    PubMed

    Tojo, Yasumasa; Sato, Masahiro; Matsuo, Takayuki; Matsuto, Toshihiko

    2011-01-01

    Monitoring of leachate quality is the essential measure in aftercare for evaluating landfill stabilization. Generally, the most common way of leachate monitoring is executed at the inlet of the leachate treatment facility. However, it does not necessarily reflect the actual state of the site. Thus, methodologies which focus on both the discharge, in order to determine when the post-closure care of the facility should terminate, and on the degree of waste stabilization in the landfill are required. In the present study, monitoring of leachate quality stored in 68 gas ventilation pipes was conducted and the degree of waste stabilization at each location in the landfill was estimated by a statistical approach using the results obtained by monitoring. Leachate characteristics varied significantly for each pipe but seemed to reflect the waste condition of the nearby location. Correlation among the analysed items was quite high. Namely, the difference of leachate quality seemed to be categorized only by the level of concentration but not by the specific characteristics. To confirm this, Euclidean distances of dissimilarity were calculated by multidimensional scaling using six items of leachate quality and temperature. Two factors (thickness of leachate and concentration of total organic carbon (TOC) and electric conductivity (EC)) that distinguish leachate characteristics appeared. To indicate the degree of stabilization by location, the spatial distribution of TOC, total nitrogen (TN), inorganic carbon (IC), and chloride ion were estimated by using the ordinary Kriging methodology. As the result, it was estimated that the concentration of leachate existing within the landfill, especially TN, was higher than the completion criteria for leachate in most parts of the investigated area. PMID:20937618

  6. Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok.

    PubMed

    Menikpura, S N M; Sang-Arun, Janya; Bengtsson, Magnus

    2013-10-01

    Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO(2))-equivalents (eq) over its 10-year LFG recovery period.This amount is equivalent to only 12% of the methane (CH(4)) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO(2)-eq during the 20-year project period, which is equivalent to 43% of the CH(4) generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable. PMID:23797299

  7. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  8. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill af...

  9. Radiolytic Bubble Gas Hydrogen Compositions

    SciTech Connect

    Hester, J.R.

    2001-08-28

    Radioactive waste solids can trap bubbles containing hydrogen that may pose a flammability risk if they are disturbed and hydrogen is released. Whether a release is a problem or not depends, among other things, on the hydrogen composition of the gas. This report develops a method for estimating the hydrogen composition of trapped bubbles based on waste properties.

  10. Radiolytic Bubble Gas Hydrogen Compositions

    SciTech Connect

    Hester, J.R.

    2003-02-05

    Radioactive waste solids can trap bubbles containing hydrogen that may pose a flammability risk if they are disturbed and hydrogen is released. Whether a release is a problem or not depends, among other things, on the hydrogen composition of the gas. This report develops a method for estimating the hydrogen composition of trapped bubbles based on waste properties.

  11. The estimation of methane emissions from landfills with different cover systems

    NASA Astrophysics Data System (ADS)

    Park, S.; Lee, K.; Sung, K.

    2006-12-01

    Methane is a very potent greenhouse gas, second only to CO2 as an anthropogenic contributor to global warming. Landfills are important anthropogenic source in the CH4 emissions. Microbially mediated CH4 oxidation in landfills with conventional soil covers can serve as an efficient biological sink. Methane from modern sanitary landfills equipped with composite covers and gas collection system is vented directly to the atmosphere, except for some of the largest landfills at which it is collected and burned. However, previous laboratory research has shown that biofilters have the potential to reduce CH4 emissions from landfills with modern composite covers. In this study a CH4 emission model was developed. The model used the calculated CH4 oxidation rates to estimate CH4 emissions from landfills constructed with conventional soil covers, modern composite covers, and modern composite covers plus biofilters. According to the CH4 emission rates predicted by CH4 emission model, it was estimated that 90% of the generated CH4 was emitted to the atmosphere for landfills with modern composite cover. For landfills with modern composite cover plus biofilters, an average of only 9% of the generated CH4 was estimated to be emitted. For landfills with conventional covers, an average of 83% of the generated CH4 was estimated to be emitted. By comparing the CH4 emission rates from three different landfill types, the use of a properly managed biofilter should be an effective technique to reduce CH4 emissions from landfills.

  12. Electrical power obtained from burning landfill gas into a gas turbine generator: Experience after one year of operation

    SciTech Connect

    Fabbri, R.; Mignani, N.

    1998-07-01

    A typical example of a ``waste to energy'' concept can be found also in the landfill environment. The biogas derived by fermentation process is usually burnt into gas engines. This choice is usually due to the electric efficiency that is normally higher than gas turbine application and to the size that usually, almost in Italian landfill size, does not allow power higher than 1,000 kW. On the other side gas turbine applications, typically based on generator sets greater than 1,000 kW do not require special biogas pre-treatment; require less maintenance and have an extremely higher reliability. The paper describes an application of a gas turbine generator of 4,800 kW outlining the experiences collected after one year of operation. During this period, the system fulfilled the target of a total operating time greater than 8,000 hours. Description is done of the biogas compression system feeding the turbine and also of the subsystem adopted to reach the above mentioned target reliability.

  13. Ionic composition and greenhouse gases evaluation in Tietê River sediment and mud landfill

    NASA Astrophysics Data System (ADS)

    La-Scalea, M. A.; Fornaro, A.; Abreu, E. L.; Mendonça, C. A.

    2012-04-01

    There are 39 cities composing the Metropolitan Area of São Paulo (MASP) which has grown seven times during the last sixty years, reaching, in 2011, 19.3 million inhabitants. This fact associated with a strong industrial development provoked, among other consequences, a disordered urbanization along the most important river of the region: Tietê. About 100 Km of its 1,150 Km full extension crosses MASP and, during the 60's, Marginal Tietê roadway was constructed, occupying the river banks as access routes. Tietê River was straightened and several landfills were created with its deposit (sediment and mud). EACH-USP (46.50 W, 23.48 S) lies nowadays in one of these areas, where this work has been developed. Therefore, the goal is to evaluate the chemical composition (ionic and gases) and its variability in function of the depth levels using three wells, from 0.60 to 9.0 m of depth. The wells were perforated in September 2011, end of the dry weather. Each well owns a homemade multiport sampling device (HMSD), being possible to push gas and/or water up from 15 available ports. The gases measurements were carried out using a GEM-2000 plus (Landtec) portable analyzer. Aqueous samples containing solid material were taken at each level depth from ports of the HMSD. However, no water was found in some levels. All samples were kept cooled until analysis procedures. After decantation of the solid material, the supernatant liquid was divided in two portions, being its conductivity (Micronal conductimeter) and pH (pH-meter Metrohm 654 with combined glass electrode) measured with the former and ionic analysis with the latter, in which all samples were filtered (Millex 0.22 micrometer pores) before each ionic chromatographic analysis, using Metrohm 850 System, for the ions: sodium, ammonium, potassium, calcium, magnesium, chloride, nitrate and sulfate. The first sampling stage was carried out during November and December 2011 in the beginning of rainy season in the mid Spring. From all the analysis performed, a large variability of the results may be observed for both gases and ionic composition not only among the wells, but also among the different depth levels. Vertically, one of the wells (W2) showed the same percentage of gases, methane 55% and carbon dioxide 45%, at all depth levels, while the other two wells (W1 and W3) presented these gases percentages only under 5.0 m deep. Concerning oxygen, 25% of this gas was detected at 1.0 m under the surface in W1 and W3. In relation to aqueous samples, the most acidity was observed near the surface (0.60 m deep, W1), pH 4.65, while pH 7.88 was obtained under 5.0 m deep (W3). For ionic concentrations a large range was observed considering all wells, being the lowest values for sulfate, from 0.60 to 20 mg/l, and the highest values for ammonium, between 14 and 53 mg/l. These results variability can be associated to the different soil composition layers, as well as to the biodegradation process and the time confinement of the river material deposit.

  14. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: volatile compounds and olfactometric analysis.

    PubMed

    Félix, Juliana S; Domeño, Celia; Nerín, Cristina

    2013-03-01

    Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). An odor profile was also obtained by HS-SPME and GC-MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC. PMID:23259974

  15. A new route to financing landfill gas-to-energy projects

    SciTech Connect

    Siever, D.R.

    1995-03-01

    For the last several years, just over half of the nation`s new power capacity has been supplied by private, independent power project developers. Of this, virtually all the projects over 10 megawatts in size have been financed with non-recourse debt - that is, where the lender can look only to cash flows from the project for repayment, rather than to the financial resources of the project developer. This has allowed relatively small, entrepreneurial development companies to compete on an equal footing with much larger companies, including the utilities themselves. But developers of the 140 or so landfill gas projects operating in North America haven`t shared the advantages of these other independent projects. While equity financing for landfill gas projects has been available for some time, most LFG developers have found it extremely difficult to attract non-recourse debt due to the small size and perceived technology/environmental risk of LFG projects. Lenders` attitudes are changing however, and more are looking more favorably at providing non-recourse loans for LFG projects. Fulfilling certain requirements, project developers may be able to qualify for this financing technique.

  16. [Impact of leachate recirculation loadings on efficiency of landfill gas (LFG) generation].

    PubMed

    Yang, Guo-dong; Jiang, Jian-guo; Huang, Yun-feng; Huang, Zhong-lin; Feng, Xiang-ming; Zhou, Sheng-yong; Deng, Zhou

    2006-10-01

    Effects of leachate recirculation loading on the efficiency of aerogenesis or methanogenesis of municipal solid wastes (MSWs) was investigated in four simulated anaerobic bioreactors (R1-R4), which were filled with 30 tons of wet weight waste each and recirculated weekly with 1.6, 0.8 and 0.2 m3 leachate and 0.1 m3 pure water, respectively. The results indicated that R1, with the highest recirculation ratio of 5.3%, began to produce landfill gas (LFG) largely after 5 weeks of leachate recirculation, while the other columns took 7-13 more weeks of lag phase time of LFG production. And LFG generation rates had good relationships with pollution loadings, such as COD and VFA in the leachate. By the 50th week, the waste in R1 was more stabilized with the highest loading rate. The accumulative transfer ratios to gas phase of TOC and COD were 28.96% and 14.57%, respectively, which meant large mount of organic matter was carried out by the effluent of the early stage and thus the potential of LFG generation was reduced. Therefore, to enhance the efficiency of LFG generation, the regimes of leachate recirculation in bioreactor landfills should be adjusted timely according to the phases of waste stabilization. PMID:17256623

  17. PRESENT AND LONG-TERM COMPOSITION OF MSW LANDFILL LEACHATE: A REVIEW. (R827580)

    EPA Science Inventory

    The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobi...

  18. Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study area. All samplers in the survey had detections of TPH, but only eight of the samplers had detections of TPH greater than 0.9 mg. Four samplers had TPH detections greater than 9 mg; the only other fuel-related compounds detected in these four samplers included toluene in three of the samplers and undecane in the fourth sampler. Three samplers deployed along the western margin of the northern landfill had detections of both diesel-and gasoline-related compounds; however, the diesel-related compounds were detected at or below method detection levels. Seven samplers in the northern study area had detections of chlorinated compounds, including three perchloroethene detections, three chloroform detections, and one 1,4-dichloro-benzene detection. One sampler on the western margin of the landfill had detections of 1,2,4-trimethylbenzene and 1,3,5-tr-methylbenene below method detection levels.

  19. Assessment of soil-gas and groundwater contamination at the Gibson Road landfill, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Soil-gas and groundwater assessments were conducted at the Gibson Road landfill in 201 to provide screening-level environmental contamination data to supplement the data collected during previous environmental studies at the landfill. Passive samplers were used in both assessments to detect volatile and semivolatile organic compounds and polycyclic aromatic hydrocarbons in soil gas and groundwater. A total of 56 passive samplers were deployed in the soil in late July and early August for the soil-gas assessment. Total petroleum hydrocarbons (TPH) were detected at masses greater than the method detection level of 0.02 microgram in all samplers and masses greater than 2.0 micrograms in 13 samplers. Three samplers located between the landfill and a nearby wetland had TPH masses greater than 20 micrograms. Diesel was detected in 28 of the 56 soil-gas samplers. Undecane, tridecane, and pentadecane were detected, but undecane was the most common diesel compound with 23 detections. Only five detections exceeded a combined diesel mass of 0.10 microgram, including the highest mass of 0.27 microgram near the wetland. Toluene was detected in only five passive samplers, including masses of 0.65 microgram near the wetland and 0.85 microgram on the southwestern side of the landfill. The only other gasoline-related compound detected was octane in two samplers. Naphthalene was detected in two samplers in the gully near the landfill and two samplers along the southwestern side of the landfill, but had masses less than or equal to 0.02 microgram. Six samplers located southeast of the landfill had detections of chlorinated compounds, including one perchloroethene detections (0.04 microgram) and five chloroform detections (0.05 to0.08 microgram). Passive samplers were deployed and recovered on August 8, 2011, in nine monitoring wells along the southwestern, southeastern and northeastern sides of the landfill and down gradient from the eastern corner of the landfill. Six of the nine samplers had TPH concentrations greater than 100 micrograms per liter. TPH concentrations declined from 320 micrograms per liter in a sampler near the landfill to 18 micrograms in a sampler near the wetland. Five of the samplers had detections of one or more diesel compounds but detections of individual diesel compounds had concentrations below a method detection level of 0.01 microgram per liter. Benzene was detected in three samplers and exceeded the national primary drinking-water standard of 5 micrograms per liter set by the U.S. Environmental Protection Agency. The concentrations of benzene, and therefore BTEX, were 6.1 micrograms per liter in the sampler near the eastern corner of the landfill, 27 micrograms per liter in the sampler near the wetland, and 37 micrograms per liter in the sampler at the southern corner of the landfill. Nonfuel-related compounds were detected in the four wells that are aligned between the eastern corner of the landfill and the wetland. The sampler deployed nearest the eastern corner of the landfill had the greatest number of detected organic compounds and had the only detections of two trimethylbenzene compounds, naphthalene, 2-methyl naphthalene, and 1,4-dichlorobenzene. The two up gradient samplers had the greatest number of chlorinated compounds with five compounds each, compared to detections of four compounds and one compound in the two down gradient samplers. All four samplers had detections of 1,1-dichloroethane which ranged from 42 to 1,300 micrograms per liter. Other detections of chlorinated compounds included trichloroethene, perchloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane and chloroform.

  20. Composition of bacterial and archaeal communities during landfill refuse decomposition processes.

    PubMed

    Song, Liyan; Wang, Yangqing; Zhao, Heping; Long, David T

    2015-12-01

    Little is known about the archaeal and the bacterial diversities in a landfill during different phases of decomposition. In this study, the archaeal and the bacterial diversities of Laogang landfill (Shanghai, China) at two different decomposition phases (i.e., initial methanogenic phase (IMP) and stable methanogenic phase (SMP)), were culture-independently examined using PCR-based 454 pyrosequencing. A total of 47,753 sequences of 16S rRNA genes were retrieved from 69,954 reads and analyzed to evaluate the diversities of the archaeal and bacterial communities. The most predominant types of archaea were hydrogenotrophic Methanomicrobiales, and of bacteria were Proteobacteria, Firmicutes, and Bacteroidetes. As might be expected, their abundances varied at decomposition phases. Archaea Methanomicrobiales accounts for 97.6% of total archaeal population abundance in IMP and about 57.6% in SMP. The abundance of archaeal genus Halobacteriale was 0.1% in IMP and was 20.3% in the SMP. The abundance of Firmicutes was 21.3% in IMP and was 4.3% in SMP. The abundance of Bacteroidetes represented 11.5% of total bacterial in IMP and was dominant (49.4%) in SMP. Both the IMP and SMP had unique cellulolytic bacteria compositions. IMP consisted of members of Bacillus, Fibrobacter, and Eubacterium, while SMP harbored groups of Microbacterium. Both phases had Clostridium with different abundance, 4-5 folds higher in SMP. PMID:25991030

  1. Measurements of methane emissions from landfills using mobile plume method with trace gas and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Mønster, J.; Kjeldsen, P.; Scheutz, C.

    2012-04-01

    Methane is emitted to the atmosphere from both anthropogenic and natural sources. One of the major anthropogenic sources is methane produced by bacteria in anaerobic environments such as rice pads and landfills. Land filling has for many years been the preferred waste disposal method, resulting in a large methane production with a large contribution to the global increase in atmospheric green house gas concentration. Several steps have been taken to reduce the emission of methane from landfills. In order to validate the effect of these steps, a measurement method is needed to quantify methane emissions with a large spatial variation. One method is to use a highly sensitive and fast analytical method, capable of measuring the atmospheric concentration methane downwind from emission areas. Combined with down-wind measurements of a trace gas, emitted at a controlled mass flow rate, the methane emission can be calculated. This method is called the mobile plume method, as the whole plume is measured by doing several transects. In the current study a methane/acetylene analyzer with cavity ring-down spectroscopy detection (Picarro, G2203) was used to estimate methane from a number of Danish landfills. We measured at both active and closed landfills and investigated the difference in methane emission. At landfills where the emissions could have more than one origin, the source strength of the different emission areas was determined by accurate trace gas positioning and choosing appropriate wind speed and measurement distance. To choose these factors, we addressed the uncertainties and limitations of the method with respect to the configuration of the trace gas bottles and the distance between the emission area and the measurement points. Composting of organic material in large piles was done at several of the investigated landfills and where possible, the methane emission from this partly anaerobic digestion was measured as a separate emission.

  2. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: drawbacks and potential direction.

    PubMed

    Sun, Yue; Yue, Dongbei; Li, Rundong; Yang, Ting; Liu, Shiliang

    2015-01-01

    In China, municipal solid waste (MSW) is primarily treated by landfilling. Landfill gas (LFG) collection effectively reduces methane emission from MSW landfills. An accurate system of LFG collection is important in landfill planning, design, and operation. However, China has not developed such systems. In this study, the efficiency of methane collection is calculated in three Chinese landfills with different collection systems (A: vertical wells for MSW before 2010; combined horizontal trenches and under-membrane pipes for MSW from 2011 onwards; B: combined horizontal trenches and vertical wells; C: vertical wells only). This efficiency was computed by dividing the quantity of methane obtained from landfill operation records by the quantity estimated based on the LandGEM model. Results show that the collection efficiencies of landfills with vertical wells and/or horizontal pipes ranged from 8.3% to 27.9%, whereas those of a system equipped with geomembrane reached 65.3%. The poor performance of the landfills was attributed to the open burning of early-stage LFG, LFG release from cracks in high-density polyethylene covers, and high levels of leachate within a landfill site. Therefore, this study proposes an integrated LFG collection system that can remove leachate and collect gas from landfills that accept waste with high moisture content. PMID:26510610

  3. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  4. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect

    Steinfeld, G.; Sanderson, R.

    1998-02-01

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  5. A CASE STUDY DEMONSTRATING GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--SOUTH KINGSTOWN, RHODE ISLAND

    EPA Science Inventory

    The report describes a case study that applies EPA/600/R-05/123a, the guidance for conducting air pathway analyses of landfill gas emissions that are of interest to superfund remedial project managers, on-scene coordinators, facility owners, and potentially responsible parties. T...

  6. Hydraulic permeability of bentonite-polymer composites for application in landfill technology

    NASA Astrophysics Data System (ADS)

    Dehn, Hanna; Haase, Hanna; Schanz, Tom

    2015-04-01

    Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated with Aggressive Inorganic Solutions', Journal of Geotechnical and Geoenvironmental Engineering 140(3). Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B. & Lin, L. (2000), 'Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids', Geotextiles and Geomembranes 18, 133-161.

  7. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  8. In-Situ Quantification of Methanotrophic Activity in a Landfill Cover Soil Using Gas Push-Pull Tests

    NASA Astrophysics Data System (ADS)

    Gomez, K. E.; Gonzalez-Gil, G.; Schroth, M. H.; Zeyer, J.

    2007-12-01

    Landfills are both a major anthropogenic source and a sink for the greenhouse gas CH4. Methanogenic bacteria produce CH4 during the anaerobic digestion of landfill waste, whereas, methanotrophic bacteria consume CH4 as it is transported through a landfill cover soil. Methanotrophs are thought to be ubiquitous in soils, but typically exist in large numbers at oxic/anoxic interfaces, close to anaerobic methane sources but exposed to oxygen required for metabolism. Accurate in-situ quantification of the sink strength of methanotrophs in landfill cover soils is needed for global carbon balances and for local emissions mitigation strategies. We measured in-situ CH4 concentrations at 30, 60, and 100 cm depth at 18 evenly spaced locations across a landfill cover soil. Furthermore, we performed Gas Push-Pull Tests (GPPTs) to estimate in-situ rates of methanotrophic activity in the cover soil. The GPPT is a gas-tracer test in which a gas mixture containing CH4, O2, and non-reactive tracer gases is injected (pushed) into the soil followed by extraction (pull) from the same location. Quantification of CH4 oxidation rates is based upon comparison of the breakthrough curves of CH4 and tracer gases. We present the results of a series of GPPTs conducted at two locations in the cover soil to assess the feasibility and reproducibility of this technique to quantify methanotrophic activity. Additional GPPTs were performed with a methanotrophic inhibitor in the injection gas mixture to confirm the appropriate choice of tracers to quantify CH4 oxidation. Estimated CH4 oxidation rate constants indicate that the cover soil contains a highly active methanotrophic community.

  9. Greenhouse gas emissions from two-stage landfilling of municipal solid waste

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Yue, Dongbei; Nie, Yongfeng

    2012-08-01

    Simulations were conducted to investigate greenhouse gas emissions from aerobic pretreatment and subsequent landfilling. The flows in carbon balance, such as gas, leachate, and solid phases, were considered in the simulations. The total amount of CO2 eq. decreased as organic removal efficiency (ORE) increased. At ORE values of 0, 0.30, 0.41, and 0.54, the total amounts of CO2 eq. were 2614, 2326, 2075, and 1572 kg CO2 eq. per one ton dry matter, respectively; gas accounted for the main contribution to the total amount. The reduction in CO2 eq. from leachate was the primary positive contribution, accounting for 356%, 174%, and 100% of total reduction at ORE values of 0.30, 0.41, and 0.54, respectively. The CO2 eq. from energy consumption was the negative contribution to total reduction, but this contribution is considerably lower than that from gas. Aerobic pretreatment shortened the lag time of biogas production by 74.1-97.0%, and facilitated the transfer of organic carbon in solid waste from uncontrolled biogas and highly polluting leachate to aerobically generated CO2.

  10. Assessment of soil-gas, soil, and water contamination at the former 19th Street landfill, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi

  11. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    SciTech Connect

    Bockreis, A. . E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I.

    2005-07-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

  12. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  13. Steady-state analytical models for performance assessment of landfill composite liners.

    PubMed

    Xie, Haijian; Jiang, Yuansheng; Zhang, Chunhua; Feng, Shijin; Qiu, Zhanhong

    2015-08-01

    One-dimensional mathematical models were developed for organic contaminant transport through landfill composite liners consisting of a geomembrane (GM) and a geosynthetic clay liner (GCL) or a GM and a compacted clay liner (CCL). The combined effect of leakage through GM defects, diffusion in GM and the underlying soil liners, and degradation in soil liners were considered. Steady state analytical solutions were provided for the proposed mathematical models, which consider the different combinations of advection, diffusion, and degradation. The analytical solutions of the time lag for contaminant transport in the composite liners were also derived. The performance of GM/GCL and GM/CCL was analyzed. For GM/GCL, the bottom flux can be reduced by a factor of 4 when the leachate head decreases from 10 to 0.3 m. The influence of degradation can be ignored for GM/GCL. For GM/CCL, when the leachate head decreases from 10 to 0.3 m, the bottom flux decreases by a factor of 2-4. Leachate head has greater influence on bottom flux in case of larger degradation rate (e.g., half-life = 1 year) compared to the case with lower degradation rate (e.g., half-life = 10 years). As contaminant half-life in soil liner decreases from 10 to 1 year, bottom flux decreases by approximately 2.7 magnitudes of orders. It is indicated that degradation may have greater influence on time lag of composite liner than leachate head. As leachate head increases from zero to 10 m, time lag for GM/CCL can be reduced by 5-6 years. Time lag for the same composite liner can be reduced by 10-11 years as contaminant half-life decreases from 10 to 1 year. Reducing leachate head acting on composite liners and increasing the degradation capacity of the soil liner would be the effective methods to improve the performance of the composite liners. The proposed analytical solutions are relatively simple and can be used for preliminary design and performance assessment of composite liners. PMID:25893615

  14. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  15. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  16. Laboratory and field screening strategies for measuring volatile organic compounds in landfill gas

    SciTech Connect

    Emerson, C.W.

    1999-11-01

    Distinct patterns often exist in the presence and absence of hazardous contaminants in the environment. These patterns can be used to select efficient screening tools, or groups of compounds that provide the most information on overall occurrences of a larger target group of compounds. By using these screens to indicate whether a sample is contaminated with detectable amounts of the compounds of interest, attention can be focused on those samples considered most likely to contain measurable concentrations of targeted compounds. The cost savings that result from eliminating samples that are most likely uncontaminated can be applied to obtaining additional samples that more accurately characterize the spatial or temporal variability of the environmental problem. In a retrospective application of screening techniques to the State of California's database of volatile organic compounds in landfill gas, two laboratory screening compounds, perchloroethylene and methylene chloride, represent over 95% of the total number of positive detections of a target group of 10 volatile organic compounds. Benzene and vinyl chloride, two field screening compounds that were selected using the characteristics of commercially available colorimetric detector tubes, recorded 74% of the total contaminant detections and a 52% savings in analytical costs as compared to an exhaustive analysis of every sample for all 10 volatile organic compounds. The number of detections recorded could have been improved if more sensitive and less selective field screening devices were available.

  17. A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers.

    PubMed

    Ng, C W W; Feng, S; Liu, H W

    2015-03-01

    Methane oxidation in landfill covers is a complex process involving water, gas and heat transfer as well as microbial oxidation. The coupled phenomena of microbial oxidation, water, gas, and heat transfer are not fully understood. In this study, a new model is developed that incorporates water-gas-heat coupled reactive transport in unsaturated soil with methane oxidation. Effects of microbial oxidation-generated water and heat are included. The model is calibrated using published data from a laboratory soil column test. Moreover, a series of parametric studies are carried out to investigate the influence of microbial oxidation-generated water and heat, initial water content on methane oxidation efficiency. Computed and measured results of gas concentration and methane oxidation rate are consistent. It is found that the coupling effects between water-gas-heat transfer and methane oxidation are significant. Ignoring microbial oxidation-generated water and heat can result in a significant difference in methane oxidation efficiency by 100%. PMID:25489976

  18. Research, development and demonstration in the design of sanitary landfill to optimize the generation and capture of compressible gas

    NASA Astrophysics Data System (ADS)

    Nosanov, M. E.; Teeple, F. E.; Buesch, S. C.

    1982-02-01

    The influences of selected factors on the generation and recovery of methane gas from sanitary landfills were investigated. The factors included encapsulation, shredding, air classifying, moisture, and pH. Facilities consisting of six model sanitary landfill cells, each with a capacity of approximately 450 cubic yards of municipal waste, and auxiliary subsystems were constructed. Municipal waste in each cell is contained in a 30-mil thick polyvinly chloride plastic sheeting forming a virtually gas-tight envelope. Two cells were filled with as-collected urban waste, two with shredded waste, and two with shredded and air classified waste, constituting three pairs of cells. One of each pair is a control cell with the other used as an experimental variable. Systems were provided for adding measured amounts of water, removing and recirculating leachate, and for extracting gas and measuring gas flow. During testing, gas production and internal cell characteristics were measured to determine the effects of mechanical processing, moisture content, and leachate pH.

  19. Landfills in the year 2000

    SciTech Connect

    Glebs, B. )

    1994-03-01

    The 21st century landfill will have the proper public and customer image from the environmental standpoint. The landfill of the 21st century will provide diverse services right at the landfill. You will not only have burial of waste, but a bioremediation pad for handling certain petro-chemical soils and a reuse area for concrete and rubble. Landfills will reuse special wastes. The industry now has more than seven specialized industrial wastes approved for landfill cover. So, instead of spending money for landfill cover or alternative cover like foam, landfills will actually get paid for the landfill cover. The landfill of the 21st century will have some level of recycling and composting. The sites will broaden their service base to make sure that the customer will be able to bring the wide variety of waste to one place. All of this technology will be designed to function at the landfill to keep waste out of the landfill. From a regulatory standpoint, obviously 21st century landfills will exceed all of the standards. It will be a given that the landfill will have liners, leachate collection, leachate treatment, and gas recovery and, probably, reuse. The 21st century landfill will receive a very different waste type. It will have less municipal solid waste and a greater volume of special waste-compatible, nonhazardous waste.

  20. Gas composition shifts in Devonian shales

    SciTech Connect

    Schettler, P.D.; Parmely, C.R. )

    1989-08-01

    Analysis of the gas composition of Devonian shale wells indicates that the composition of produced gas shifts during the production history of the well. Possible mechanisms to explain this behavior are examined in light of field and laboratory data. Application of diffusion theory is made to explain adsorption-like behavior exhibited by some shales.

  1. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  2. Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates.

    PubMed

    Lee, Hyeong-Hoon; Ahn, Sook-Hyun; Nam, Byong-Uk; Kim, Byeong-Soo; Lee, Gang-Woo; Moon, Donghyun; Shin, Hyung Joon; Han, Kyu Won; Yoon, Ji-Ho

    2012-04-01

    Landfill gas (LFG), which is primarily composed of CH(4), CO(2), and N(2), is produced from the anaerobic digestion of organic materials. To investigate the feasibility of the storage and transportation of LFG via the formation of hydrate, we observed the phase equilibrium behavior of CO(2)-CH(4)-N(2) mixture hydrates. When the specific molar ratio of CO(2)/CH(4) was 40/55, the equilibrium dissociation pressures were gradually shifted to higher pressures and lower temperatures as the mole fraction of N(2) increased. X-ray diffraction revealed that the CO(2)-CH(4)-N(2) mixture hydrate prepared from the CO(2)/CH(4)/N(2) (40/55/5) gas mixture formed a structure I clathrate hydrate. A combination of Raman and solid-state (13)C NMR measurements provided detailed information regarding the cage occupancy of gas molecules trapped in the hydrate frameworks. The gas storage capacity of LFG hydrates was estimated from the experimental results for the hydrate formations under two-phase equilibrium conditions. We also confirmed that trace amounts of nonmethane organic compounds do not affect the cage occupancy of gas molecules or the thermodynamic stability of LFG hydrates. PMID:22380606

  3. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  4. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  5. Prediction of Combustion Gas Deposit Compositions

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Mcbride, B. J.; Zeleznik, F. J.; Gordon, S.

    1985-01-01

    Demonstrated procedure used to predict accurately chemical compositions of complicated deposit mixtures. NASA Lewis Research Center's Computer Program for Calculation of Complex Chemical Equilibrium Compositions (CEC) used in conjunction with Computer Program for Calculation of Ideal Gas Thermodynamic Data (PAC) and resulting Thermodynamic Data Base (THDATA) to predict deposit compositions from metal or mineral-seeded combustion processes.

  6. Superfund Record of Decision (EPA Region 5): Land and Gas Reclamation Landfill Site, Williamstown, WI, January 1994

    SciTech Connect

    Not Available

    1994-09-01

    The document presents the decision of the Wisconsin Department of Natural Resources (WDNR) that no further source control interim action is necessary at the Land and Gas Reclamation Landfill site in the Town of Williamstown, Dodge County, Wisconsin. The WDNR has determined that no further source control interim action is necessary at this site for this first operable unit. The reason for this determination is that the source control action which was implemented under the Dodge County Circuit Court Order has eliminated potential exposure to source related contaminants, except for contaminants in the groundwater, which will be addressed in the second operable unit.

  7. Microbial Methane Oxidation Processes and Technologies for Mitigation of Landfill Gas Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this paper is to review the present knowledge regarding the microbial methane oxidation in natural or engineered landfill environments with focus on process understanding, engineering experiences and modeling. This review includes seven sections. First, the methane oxidation is put in con...

  8. USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY

    EPA Science Inventory

    The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...

  9. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.

    PubMed

    Mostbauer, P; Lombardi, L; Olivieri, T; Lenz, S

    2014-01-01

    Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65-90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500-1000 kg of bottom ash and up to 9.2 Nm(3)/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 Nm(3)/(htBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5-99%. PMID:24120459

  10. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil.

    PubMed

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-01

    Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models. PMID:21813272

  11. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Bokerman, Gary (Inventor); Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  12. Quantifying spatial and temporal variability of methane emissions from a complex area source: case study of a central Indiana landfill

    EPA Science Inventory

    strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emissi...

  13. Graphene-supported CoPc/TiO?synthesized by sol-gel-hydrothermal method with enhanced photocatalytic activity for degradation of the typical gas of landfill exhaust.

    PubMed

    Fan, Xiao-Fen; Liu, Jie-Min

    2015-01-01

    This work was focused on the enhanced photocatalytic activity of cobalt phthalocyanine (CoPc)/TiO?under visible light irradiation supported on reduced graphene oxide (RGO). A series of RGO/CoPc/TiO?nanocomposites were synthesized via sol-gel-hydrothermal method. The photocatalysts were characterized by X-ray diffraction, BET surface area, Scanning electron microscopy, Raman spectra, Fourier transform infrared spectra, UV-Vis spectra and Photoluminescence spectra. The results demonstrated that the TiO?existed as anatase phase both of CoPc/TiO?and RGO/CoPc/TiO?composites, and the absorption range in visible light of RGO/CoPc/TiO?composites were broadened further. The photodegradation results of diethyl sulfide, the typical gas of landfill exhaust, under visible light revealed that RGO/CoPc/TiO?nanocomposites exhibited much higher photocatalytic activity than CoPc/TiO?and pure TiO?, indicating the ideal amount of RGO was 7.5 wt.%, the optimal amount of 7.5% RGO/CoPc/TiO?composite on each plat was 0.3g and the degradation efficiency of diethyl sulfide was about 90%. PMID:25946957

  14. 2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.

    NASA Astrophysics Data System (ADS)

    Amaral, N. D.; Mendonça, C. A.; Doherty, R.

    2014-12-01

    This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.

  15. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    PubMed

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested. PMID:16933645

  16. Method for designing gas tag compositions

    DOEpatents

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  17. Method for designing gas tag compositions

    DOEpatents

    Gross, Kenny C.

    1995-01-01

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

  18. Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS.

    PubMed

    Xiaoli, Chai; Shimaoka, Takayuki; Qiang, Guo; Youcai, Zhao

    2008-01-01

    Humic acid (HA) and fulvic acid (FA) extracted from landfills at different landfill ages were characterized by elemental composition, (13)C CP/MAS NMR, and TMAH-Py-GC/MS. The elemental composition analysis revealed high O/C and low H/C ratios in the FA, indicating a high proportion of O-alkyl and carboxylic acids in the FA. The analytical results of (13)C CP/MAS NMR suggested that there were more oxygenated aliphatic carbons and fewer aromatic carbons in FA than in HA. The Py-GC/MS products showed that the HA and FA extracted from the refuse in the landfill were mainly composed of various lignin-derived compounds. Oxidized aromatic acid derivatives originated from the oxidation of side-chains of lignin-like compounds, and this process played a significant role in the process of HA and FA formation in the landfill. All of the results demonstrated that the degree of humification increased with landfill age. PMID:17376666

  19. Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill.

    PubMed

    Le Guédard, Marina; Faure, Olivier; Bessoule, Jean-Jacques

    2012-07-01

    We compared the fatty acid composition of leaves taken from poplars on a metal-contaminated landfill, and on the uncontaminated roadside bordering this site. For the first time, it is shown that the percentage of linolenic acid, which is mainly associated with thylakoid lipids, was significantly lower in tree species within the landfill than within the control area. A correlation study was carried out to investigate relationships between the C18:3/(C18:0 + C18:1 + C18:2) fatty acid ratios and the metal contents in soils and leaves. Lead and chromium leaf contents were significantly negatively correlated to this fatty acid ratio. The impact of each of these metals remains difficult to evaluate, but chromium in leaf likely plays a major role in toxicity. In addition, the decrease in the C18:3/(C18:0 + C18:1 + C18:2) fatty acid ratio occurred at low leaf metal content, and therefore it is shown that this ratio can be used as an early indicator of the effect of metals. PMID:22531865

  20. Evolved gas composition monitoring by repetitive injection gas chromatography.

    PubMed

    White, Robert L

    2015-11-20

    Performance characteristics and applications of a small volume gas chromatograph oven are described. Heating and cooling properties of the apparatus are evaluated and examples are given illustrating the advantages of greatly reducing the air bath volume surrounding fused silica columns. Fast heating and cooling of the oven permit it to be employed for repetitive injection analyses. By using fast gas chromatography separations to achieve short assay cycle times, the apparatus can be employed for on-line species-specific gas stream composition monitoring when volatile species concentrations vary on time scales of a few minutes or longer. This capability facilitates repeated sampling and fast gas chromatographic separations of volatile product mixtures produced during thermal analyses. Applications of repetitive injection gas chromatography-mass spectrometry evolved gas analyses to monitoring purge gas effluent streams containing volatile acid catalyzed polymer cracking products are described. The influence of thermal analysis and chromatographic experimental parameters on effluent sampling frequency are delineated. PMID:26250962

  1. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    PubMed Central

    Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  2. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    PubMed

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  3. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-15

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D{sub p}({epsilon}/f) and k{sub a}({epsilon}/f) models were developed based on a single parameter (water blockage factor M for D{sub p} and P for k{sub a}). The water blockage factors, M and P, were found to be linearly correlated to {rho}{sub b} values, and the effects of dry bulk density on D{sub p} and k{sub a} for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  4. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  5. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.

  6. Analysis and removal of organic pollutants in biologically treated landfill leachate by an inorganic flocculent composite of Al(III)-Mg(II).

    PubMed

    Sang, Yimin; Gu, Qingbao; Sun, Tichang; Li, Fasheng; Pan, Yiting

    2008-10-01

    A novel inorganic flocculent composite of Al(III)-Mg(II) poly-magnesium-aluminum-sulfate (PMAS) is used to remove organic matter from biologically treated leachate in some landfills in Beijing, China. Jar-test experiments are employed to determine the optimum conditions for the removal of organic matter, which is represented as UV(254). Under optimum conditions, the removal of COD, BOD(5), and color is also determined. Moreover, gas chromatography coupled with mass spectrometry (GC-MS) is used to analyze the organic matter in the biologically treated leachate before and after treatment by the coagulant. The experimental results indicate that the removal of COD, BOD(5), UV(254), and color by coagulation with PMAS can reach above 65%, 60%, 85%, and 85%, respectively, under optimal conditions. This greatly weakens its pollution extent and improves its visual appeal. Forty-one kinds of organic pollutants in the biologically treated leachate were determined. Some of them belong to the Black List of water environmental preferred controlled pollutants, as judged by the United States and China. The species of alkyl, alkene, acyclic alcohol, and acyclic acyl amines are about 85% removed, some of them are removed completely, while the species of acids, esters, and ketones are removed at about 65%. Those contaminants with benzene rings, such as aromatic hydrocarbons, hydroxybenzene, aromatic alcohol, and aromatic acyl amine, are about 50% partially removed. PMID:18991941

  7. Gas plume modeling of landfill emissions - a real-life engineering application of large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Chow, F. K.; Han, B.; Imhoff, P. T.

    2012-12-01

    Methane emissions from landfills pose a challenge not only for mitigation of greenhouse gases, but for regulatory monitoring efforts which seek to quantify these emissions. Current measurement practices are usually based on and limited by sparse and/or infrequent field measurements. Mesoscale atmospheric models, on the other hand, can provide better spatial and temporal coverage of the impacted region, though their usefulness is traditionally limited to regional- and synoptic-scales, due to the coarse grid-spacing as well as the treatment of turbulence. In this study, we explore the use of state-of-the-art large-eddy simulations (LES), to model CH4 emissions from Sandtown Landfill in Delaware. Since LES can explicitly resolve the unsteady, turbulent atmospheric flows, it is potentially beneficial in assessing the local impact of the CH4 plume on a short-term (hourly) scale. It can thus be used to enhance interpretation of field measurements. To ensure a faithful representation of atmospheric flow, real initial and boundary conditions are provided through grid nesting from the mesoscale to the microscale. LES is performed on the innermost domain with 30 m horizontal grid spacing. In addition, we incorporate two existing techniques, a vegetation canopy model and a tracer decay method into our LES. The former provides a better representation of the flow, and the latter is used to calculate scalar plume advection/diffusion statistics. Model results are verified against surface and airborne observations. This numerical study demonstrates the usefulness of LES in a real-life environmental engineering application. The LES results are used to help interpret tracer dilution measurements of methane emission at this site, helping to explain plume meandering and differences in tracer concentrations measured at the surface versus aloft with a weather balloon. A snapshot of the gas plume, represented by an iso-surface contour.

  8. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    PubMed

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers. PMID:21546687

  9. OUTER LOOP LANDFILL CASE STUDY

    EPA Science Inventory

    This presentation will describe the interim data reaulting from a CRADA between USEPA and Waste Management, Inc. at the outer Loop Landfill Bioreactor research project located in Louisville, KY. Recently updated data will be presented covering landfill solids, gas being collecte...

  10. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  11. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  12. Comparison between controlled landfill reactor and conditioned landfill bioreactor.

    PubMed

    Luo, Feng; Chen, Wan-Zhi; Song, Fu-Zhong; Li, Xiao-Peng; Zhang, Guo-Qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste (MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill (CSL) simulator, to the leachate-recirculated landfill (LRL) simulator and to the conditioned bioreactor landfill (CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio. PMID:15559832

  13. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  14. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  15. Waste management in the Irkutsk Region, Siberia, Russia: environmental assessment of current practice focusing on landfilling.

    PubMed

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut; Christensen, Thomas H

    2014-05-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has no gas or leachate collection system. The global warming contribution is due to the emission of methane of the order of 420 000 tons CO2-equivalents per year. Collection and transport of the waste are insignificant compared with impacts from the landfill. As the old landfill runs out of capacity in a few years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce the global warming completely and result in a net saving of 100 000 CO2-equivalents per year due to storage of biogenic carbon in the landfill beyond 100 years. Considering other first-order degradation rates for the landfilled organic matter did not overtly affect the results, while assumptions about the top cover oxidation of methane significantly affected the results. This shows the importance of controlling the gas escape from the landfill. PMID:24692457

  16. Acceleration of landfill stabilization using leachate recycle

    SciTech Connect

    Townsend, T.G.; Miller, W.L.; Lee, H.J.; Earle, J.F.K.

    1996-04-01

    A leachate recycle system was constructed and operated at an existing lined landfill in North-Central Florida to observe the effects of leachate recycle on landfill stabilization. Samples of leachate, landfill gas, and landfilled solid waste were collected and analyzed throughout a four-year period, before and after the start of leachate recycle. The settlement of landfilled waste was also measured in wetted and dry areas of the landfill. Leachate quality was not dramatically impacted by leachate recycle. Moisture content was significantly greater in the area of the landfill subjected to leachate recycle. Waste temperature and pH measurements indicated that conditions suitable for anaerobic decomposition were present in both the treated and untreated areas. Measurements of solid waste biochemical methane potential and subsidence showed that a greater degree of landfill stabilization had occurred in the leachate recycle area relative to the untreated area.

  17. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    SciTech Connect

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  18. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    PubMed

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. PMID:25323146

  19. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  20. Acoustic composition sensor for cryogenic gas mixtures

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    1991-01-01

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  1. Theory for a gas composition sensor based on acoustic properties

    NASA Technical Reports Server (NTRS)

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M.

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent.

  2. Theory for a gas composition sensor based on acoustic properties.

    PubMed

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent. PMID:14552356

  3. 30 CFR 36.26 - Composition of exhaust gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Composition of exhaust gas. 36.26 Section 36.26... EQUIPMENT Construction and Design Requirements § 36.26 Composition of exhaust gas. (a) Preliminary engine... the engine shall be adjusted so that the undiluted exhaust gas shall contain not more than...

  4. 30 CFR 36.26 - Composition of exhaust gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Composition of exhaust gas. 36.26 Section 36.26... EQUIPMENT Construction and Design Requirements § 36.26 Composition of exhaust gas. (a) Preliminary engine... the engine shall be adjusted so that the undiluted exhaust gas shall contain not more than...

  5. Trends in landfill leachate characteristics

    SciTech Connect

    Akyurek, M.

    1995-12-31

    Leachate may be defined as the water or other liquid that has been contaminated by dissolved or suspended materials due to contact with solid waste or gases within the landfill. Research shows that leachate composition is a function of various factors such as rainfall, refuse permeability, refuse depth, and landfill age. Of these factors, landfill age has been found to have the greatest effect on leachate composition. Generally, leachate from new landfills will be higher in chemical oxygen demand (COD) and will show a steady decline leveling off at about 10 years. Traditionally, leachate treatment methods have been based on the leachate`s metals, COD, and ammonia concentrations. A different approach based on mass of contaminant released from the landfill may be more appropriate. This paper presents data from a landfill (Landfill A) showing mass of contaminant release over a period of time. This paper also presents a different design approach based on leachate mass contaminant release in lieu of a design approach based on leachate concentrations.

  6. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    PubMed

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. PMID:25323145

  7. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  8. Engineered Municipal Waste Landfills: Climate Significance, Benefits, and some Landfill "Geophysics"

    NASA Astrophysics Data System (ADS)

    Augenstein, D.; Yazdani, R.

    2002-12-01

    Municipal Solid Waste (MSW) landfills have unique features: Wastes worldwide emit biogenic methane to the atmosphere of magnitude comparable to the total atmospheric buildup between 1980 and 1990. Carbon sequestered in landfills is large in geologic terms Management of decomposition in landfilled waste is desirable: (a) Control of waste decomposition and methane promises over tenfold cheaper greenhouse gas abatement compared to most other greenhouse gas abatement strategies. This is due in part to carbon sequestration and landfill gas energy offset of fossil fuel consumption (b) Landfill gas energy potential worldwide, is up to 1% of world energy. Use of landfill gas conserves a resource otherwise wasted (c) Monetary benefits of landfill life extension from decomposition and rapid volume reduction can be quite attractive This is a benefit for the US, where landfills are increasingly difficult and expensive to site. (d) Landfills containing mixed waste can be significant sources of atmospheric and groundwater pollutants needing control. Control is possible from advancing landfill management approaches (e) The stabilization of waste lessens pollutant risk and needs for costly long-term landfill aftercare. Greater control of landfill decomposition has been advocated in the form of "controlled" or "bioreactor" landfills. (SWANA, 1999; Reinhart and Townsend, 1996). Field trials are encouraging by several environmental/monetary criteria. Control of moisture and temperature have given fivefold or more acceleration of methane generation (Augenstein et al, 1998, 2000). There has been rapid volume loss of the landfilled waste as well, with conversion of waste organics to gas. Many trials over years have shown potential for abatement of pollutants in landfill leachate. Demonstration work by the solid waste management community attests to the benefits potential. Increasing field demonstrations, have been accompanied by observation and/or solution of several issues. As noted the heat generation in landfills may become controlling, Heat can be dissipated, but at energy and monetary cost. Increased waste liquid content, required for biological activity has been a concern. Offsetting risk is the accelerated treatment of many dissolved contaminants in landfill liquid with time. It has proven possible to manage liquid flows within environmental and regulatory constraints. There have been concerns about containment by chemosynthetic lining of leachate liquids draining from landfills. Yet molecular bonds of lining under anaerobic conditions could be expected to last for centuries (and in fact up to millenia). There is of course no landfill experience over millenia but analogous compounds of geologic relevance have shown very desirable long term stability. Two other areas being investigated are waste slope stability and the precipitation of carbonate salts The climate significance and geophysical issues with landfills will be discussed, and some experimental findings leading to conclusions will be reviewed

  9. Bringing new life to old landfills

    SciTech Connect

    Rabasca, L.

    1996-01-01

    On the West Coast, Waste Management, Inc. is bringing new life to old landfills. The Bradley Landfill in Sun Valley, CA, just outside of Los Angeles, is being transformed into a recycling park, while a few hundred miles north, in the San Francisco Bay Area, an old landfill is now home to a transfer station and recycling center. WMI began transforming the landfill in the early 1990s.The first change was to process wood and green waste rather than landfilling it. In 1993, WMI added a sorting facility, and in 1994, after the Jan. 17 Northridge earthquake, the company added a construction and demolition debris (C and D) facility. There also is a landfill gas collection facility on the site. In the future, WMI hopes to add the following facilities: composting, railhaul, alternative fuels production, tire processing, and soil remediation. WMI also hopes several companies that use recycled materials as feedstock will build their plants at the landfill.

  10. Impacts of landfill New Source Performance Standards

    SciTech Connect

    Vogt, W.G.; McGuigan, M.J.

    1996-09-01

    On May 30, 1991, the US Environmental Protection Agency (EPA) proposed a Rule to control landfill gas (LFG) emissions under the authority of the Clean Air Act (CAA). Since that time the Rule has been modified significantly, with an emphasis on regulating large US landfills. To date, landfill owners and operators have not been affected by this new CAA regulation. However, with the Rule promulgated in early 1996 and its subsequent implementation by the states to follow by the end of the year, landfill owners and operators need to understand these new requirements and their associated costs. To this end, the goal of this paper is to provide insight into the impacts of the Rule on individual landfill sites. By performing the emission analyses specified in the Rule on actual landfills, and comparing these sites to others, an understanding can be gained on the potential impacts of the NSPS Rule`s requirements on individual landfills.

  11. Venice Park landfill: Working with the community

    SciTech Connect

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  12. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  13. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  14. Estimation of landfill emission lifespan using process oriented modeling.

    PubMed

    Ustohalova, Veronika; Ricken, Tim; Widmann, Renatus

    2006-01-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section. PMID:16406761

  15. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We quantified the seasonal variability of CH4, CO2, and N2O emissions from fresh refuse and daily, intermediate, and final cover materials at two California landfills. Fresh refuse fluxes (g m-2 d-1) averaged CH4 0.053[+/-0.03], CO2 135[+/-117], and N2O 0.063[+/-0.059]. Average CH4 emissions across ...

  16. Case study of landfill reclamation at a Florida landfill site.

    PubMed

    Jain, Pradeep; Townsend, Timothy G; Johnson, Patrick

    2013-01-01

    A landfill reclamation project was considered to recover landfill airspace and soil, reduce future groundwater impacts by removing the waste buried in the unlined area, and optimize airspace use at the site. A phased approach was utilized to evaluate the technical and economic feasibility of the reclamation project; based on the results of these evaluations, approximately 6.8 ha of the unlined cells were reclaimed. Approximately 371,000 in-place cubic meters of waste was mined from 6.8 ha in this project. Approximately 230,600 cubic meters of net airspace was recovered due to beneficial use of the recovered final cover soil and reclaimed soil as intermediate and daily cover soil, respectively, for the current landfill operations. This paper presents the researchers' landfill reclamation project experience, including a summary of activities pertaining to reclamation operations, an estimation of reclamation rates achieved during the project, project costs and benefits, and estimated composition of the reclaimed materials. PMID:23089299

  17. Landfills as a biorefinery to produce biomass and capture biogas.

    PubMed

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills. PMID:23069612

  18. Tunable Composite Membranes for Gas Separations.

    SciTech Connect

    Ferraris, J.P.; Balkus, K.J. Jr.; Musselman, I.H.

    1997-07-01

    Solution cast membranes of poly(3-dodecylthiophene) (PDDT) were studied for the room temperature separation of N{sub 2}, 0{sub 2}, and C0{sub 2} procedure for fabricating reproducible, smooth, uniformly thick (-35-pm), defect-free membranes was established. Permeability values were measured for as-cast PDDT membranes (PO{sub 2} = 9.4, PN{sub 2} = 20.2, PCO{sub 2} = 88. 2 Barrers) and selectivity values were calculated (XO{sub 2}/N{sub 2} = 2.2, XC0{sub 2}/N{sub 2} = 9.4). Chemically induced doping (-23%) with SbCI5 resulte in a decrease in permeability (PN{sub 2} = 3.5, P0{sub 2} =10.5, PCO{sub 2} = 48.5 Barrers) and a corresponding increase in permselectivity (X 0{sub 2}/N{sub 2} = 0, (xCO{sub 2}/N{sub 2} =14.0)). Membrane undoping with hydrazine partially reversed these trends (PN{sub 2} = 5.4, P0{sub 2} = 15.1, PCO{sub 2} = 62.9 Barrers), (XO{sub 2}/N{sub 2} = 2.8), (XCO{sub 2}/N{sub 2} =I 1. 6). The chemical composition cast, doped, and undoped PDDT membranes were determined using elemental analysis and energy dispersive x-ray spectrometry. Membrane microstructure was investigated by optical microscopy, TappingModeTM atomic force microscopy and scanning electron microscopy. The composition and microscopy results were correlated with changes in gas-transport properties. Two papers were presented at the Meeting of the North American Membranes Society, (June 2-4,1997, Baltimore, MD).

  19. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  20. Emissions of C&D refuse in landfills: a European case.

    PubMed

    López, Ana; Lobo, Amaya

    2014-08-01

    A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity. PMID:24824964

  1. Shaping regulatory policies: How can SWANA influence and assist states in the development of sound landfill gas regulations under NSPS?

    SciTech Connect

    Rice, F.C.

    1996-11-01

    Ever since the development of the USEPA`s New Source Performance Standards (NSPS) for MSW Landfills began more than eight years ago, it proceeded under the close scrutiny and constructive criticism of SWANA and other municipal organizations, who considered it as being impractical, too expensive, overly detailed and highly theoretical. The initial draft of the NSPS Rule was issued in 1991 over the strong objections of SWANA, which felt that it contained too many theoretical and unproven tests and procedures, as well as a number of impossible-to-achieve standards. All in all, SWANA has submitted six sets of formal comments to EPA, aimed at making the rule more realistic and achievable, while minimizing its theoretical aspects. SWANA`s input to the EPA has had a positive effect on the content of the NSPS Rule. For example, after SWANA showed conclusively that several presumptions in the 1991 draft were in error, revisions were issued in 1993 and 1994. Most recently, SWANA`s input in January 1995 resulted in the main thrust of the final rule being changed from a design and proscriptive standard to a performance standard, and the threshold size of landfills subject to the rule being raised from one to 2.5 million metric tons, which reflects a more realistic standard aimed at the large landfills, which are the most significant emitters. As a result of SWANA`s efforts, the final rule, although still not perfect, is more reasonable and realistic than its predecessors.

  2. Metal oxides remove hydrogen sulfide from landfill gas produced from waste mixed with plaster board under wet conditions.

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2008-08-01

    Hydrogen sulfide (H2S) is a major odorant in landfills. We have studied H2S production from landfill residual waste with and without sulfur-containing plaster board, including the influence of the water content in the waste. The laboratory experiments were conducted in 30-L polyethylene containers with a controlled water level. We also studied how different materials removed H2S in reactive layers on top of the waste. The organic waste produced H2S in concentrations of up to 40 parts per million (ppm) over a period of 80 days. When plaster board was added, the H2S concentration increased to 800 ppm after a lag period of approximately 40 days with a high water level, and to approximately 100 ppm after 50 days with a low water level. The methane (CH4) concentration in the initial experiment was between 5 and 70% after 80 days. The CH4 concentration in the second experiment increased to nearly 70% in the container with a high water level, slowly declining to approximately 60% between days 20 and 60. The CH4 concentrations during the experiments resembled normal landfill concentrations. Metallic filter materials were very efficient in removing H2S, whereas organic filter materials showed poor H2S removal. PMID:18720651

  3. In situ denitrification in controlled landfill systems

    SciTech Connect

    Onay, T.T.; Pohland, F.G.

    1996-11-01

    The characteristics of leachate from landfill disposal sites vary according to the operational stage of the landfill. Leachates from old landfills are often rich in ammonia nitrogen due to the hydrolysis and fermentation of nitrogenous fractions of biodegradable refuse substrates. The relative concentration accumulating as stabilization progresses is also influenced by washout as leachate is collected and removed for external treatment. However, in landfills operated as bioreactors with leachate containment, collection and in situ recirculation to accelerate decomposition of readily available organic fractions of the refuse, leachate ammonia nitrogen concentrations may accumulate to much higher levels. High leachate ammonia nitrogen concentrations in landfill leachate have been reported, resulting in separate treatment challenges if direct discharge to either land or receiving waters is practiced. External treatment options for landfill leachate may involve complex physical-chemical and/or biological processes for removal of both high-strength organic and inorganic fractions, including nitrogen. Such separate leachate treatment systems are often costly and difficult to control on a continuum. Therefore, this study focused on the investigation of landfill ammonia nitrogen generation patterns, and the potential for its in situ attenuation and conversion in landfills constructed to permit sequential nitrification and denitrification using leachate recirculation. Accordingly, the landfill is constructed and operated as a controlled bioreactor system, with opportunity to convert ammonia to nitrate by nitrification and nitrate to nitrogen gas by denitrification. The results presented in this paper focus on in situ landfill denitrification of nitrified ammonia.

  4. Evaluation of processed municipal wastes in landfill cells

    SciTech Connect

    Kemper, J.M.; Kleinhenz, N.J.; Swartzbaugh, J.T.

    1984-11-01

    The U.S. Environmental Protection Agency (EPA) engaged Systems Technology Corporation (SYSTECH) to compare the leachates and gases produced by municipal solid wastes (MSW) that were processed in various ways prior to landfilling. Beginning in January 1975, five tests cells (buried landfill simulators) were monitored until August 1980. These five test cells contained municipal refuse in the following conditions: (1) shredded and baled, (2) baled, (3) baled and saturated with water, (4) shredded, and (5) nonprocessed. Leachate and gas samples were collected to determine moisture balances, leachate pollutant concentrations, and gas compositions in order to evaluate the processing methods. The baled wastes were found to produce large quantities of dilute leachate, while the shredded waste produced smaller quantities of more concentrated leachate, compared to nonprocessed waste.

  5. Assessing methods to estimate emissions of non-methane organic compounds from landfills.

    PubMed

    Saquing, Jovita M; Chanton, Jeffrey P; Yazdani, Ramin; Barlaz, Morton A; Scheutz, Charlotte; Blake, Don R; Imhoff, Paul T

    2014-11-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (C(NMOCs)/C(CH4)) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (C(NMOCs)/C(CH4)) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills for cases in which the ratio method results in biased estimates. This study focuses on emissions through landfill covers measured with flux chambers and evaluates the utility of the ratio method for estimating NMOC emission through this pathway. Evaluation of the ratio method was performed using CH4 and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (<40 cm), predicting composite NMOC flux (as hexane-C) to within a factor of 10× for 13 out of 15 measurements. However, for thick covers (⩾40 cm) the ratio method overestimated NMOC emissions by ⩾10× for 8 out of 10 measurements. Alternative models were explored incorporating other chemical properties into the ratio method. A molecular weight squared (MW)(2)-modified ratio equation was shown to best address the tendency of the current ratio method to overestimate NMOC fluxes for thick covers. While these analyses were only performed using NMOC fluxes through landfill covers measured with flux chambers, results indicate the current USEPA approach for estimating NMOC emissions may overestimate speciated NMOC emission ⩾10× for many compounds. PMID:25108756

  6. Missing Halocarbon Source? Data from a Recent New England Landfill Field Campaign

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Prinn, R.

    2005-12-01

    Anthropogenic emissions of long-lived halocarbons, namely chlorofluorocarbons (CFCs), hydrofluorocarbons (HCFCs), methyl chloroform (CH3CCl3), and carbon tetrachloride (CCl4) represent the largest source of atmospheric chlorine. All of these gases with the exception of the HCFCs are banned under the Montreal Protocol from being produced within the US or imported into the US. Several recent studies indicate that lingering emissions of these compounds are occurring around urban areas in the US. One possible source for these emissions is leakage from landfills. Landfill emissions are not currently considered explicitly in the published industry based global estimations of emissions for these gases. Previous studies have been done in the UK and suggested that this leakage may be significant (on the order of 1 Gg/year in the UK) in comparison with industry emissions estimates, but no measurement based estimates of Montreal Protocol gas emissions from US landfills have been previously reported. To further investigate this idea, flask samples were taken during the winter of 2004 at two Eastern Massachusetts landfills and during the summer of 2004 at four landfills in southwestern Britain. These studies showed more data was needed to create clear regression relationships between the landfill parameters (waste composition, landfill age, and total trash volume) and halocarbon gas emissions of CFC-12, CFC-11, CFC-113, and CH3CCl3. In a movement towards creating the necessary database of measurements, an intensive Fall 2005 landfill measurement campaign was conducted in New England. The results from this campaign will be presented, analyzed and compared to our results from the above two 2004 investigations.

  7. The Application Of Biofilter System For Reduction Of Methane Emissions From Modern Sanitary Landfills

    NASA Astrophysics Data System (ADS)

    Sung, K.; Park, S.

    2007-12-01

    Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.

  8. MANAGEMENT OF GAS AND LEACHATE IN LANDFILLS: PROCEEDINGS OF THE ANNUAL MUNICIPAL SOLID WASTE RESEARCH SYMPOSIUM (3RD) HELD AT ST. LOUIS, MISSOURI ON MARCH 14, 15 AND 16, 1977

    EPA Science Inventory

    Contents: Current research on land disposal of municipal solid wastes; Summary of office of solid waste gas and leachate activities; State of Missouri solid waste management activities; Region VII solid waste activities; Landfill research activities in Canada; The effects of indu...

  9. Cleaner Landfills

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.

  10. Corrosion inhibition by control of gas composition during mist drilling

    SciTech Connect

    Hinkebein, T.E.; Snyder, T.L.

    1981-05-01

    Chemical compositional specifications have been generated for inert gases which reduce drill string corrosion when used in conjunction with mist drilling processes. These specifications are based on the assumption that the corrosion rate is dependent on the dissolved gaseous species concentrations. Data taken both from the literature and from a mist drilling field test with nitrogen in Valle Grande, NM, relate corrosion rates to fluid compositions. These solution compositions are then associated with gas phase compositions using equilibrium data available from the literature and material balances. Two sources of gas were considered: cryogenically purified nitrogen from air and exhaust gas from a diesel engine, which contain (in addition to N/sub 2/ and O/sub 2/) CO/sub 2/, NO/sub x/, SO/sub 2/, H/sub 2/O, and CO. A maximum concentration of 50 ppM O/sub 2/ in the gas phase is recommended to alleviate pitting corrosion.

  11. Gas Composition Sensing Using Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jing; Meyyappan, Meyya

    2012-01-01

    This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.

  12. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    SciTech Connect

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Samuelsson, Jerker

    2014-07-15

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.

  13. Gas composition sensing using carbon nanotube arrays

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2008-01-01

    A method and system for estimating one, two or more unknown components in a gas. A first array of spaced apart carbon nanotubes (''CNTs'') is connected to a variable pulse voltage source at a first end of at least one of the CNTs. A second end of the at least one CNT is provided with a relatively sharp tip and is located at a distance within a selected range of a constant voltage plate. A sequence of voltage pulses {V(t.sub.n)}.sub.n at times t=t.sub.n (n=1, . . . , N1; N1.gtoreq.3) is applied to the at least one CNT, and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of a curve I(t.sub.n) for current or a curve e(t.sub.n) for electric charge transported from the at least one CNT to the constant voltage plate. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas.

  14. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  15. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect

    Cen Renyue

    2013-06-20

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  16. Composition of Low-redshift Halo Gas

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2013-06-01

    Halo gas in low-z (z < 0.5) >=0.1 L * galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <105, 105-6, and >106 K, respectively. Utilizing O VI λλ1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at ~30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  17. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  18. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

    USGS Publications Warehouse

    Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin

    2012-01-01

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.

  19. Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China.

    PubMed

    Ying, Ding; Chuanyu, Cai; Bin, Hu; Yueen, Xu; Xuejuan, Zheng; Yingxu, Chen; Weixiang, Wu

    2012-02-01

    Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH(3) and H(2)S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H(2)S (56.58-579.84 ?g/m(3)) and NH(3) (520-4460 ?g/m(3)) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H(2)S and NH(3) concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run. PMID:22137772

  20. Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill.

    PubMed

    Bell, Terrence H; Cloutier-Hurteau, Benoît; Al-Otaibi, Fahad; Turmel, Marie-Claude; Yergeau, Etienne; Courchesne, François; St-Arnaud, Marc

    2015-08-01

    Although plants introduced for site restoration are pre-selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post-planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post-planting than 16 months post-planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post-planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant-fungus specificity may be essential. PMID:25970820

  1. Ground penetrating radar characterization of a landfill

    NASA Astrophysics Data System (ADS)

    Yochim, April Theresa

    Ground penetrating radar was investigated in an active landfill to determine if the in-situ water content could be measured. Water content is an important parameter in predicting the generation of landfill gas (LFG), an important renewable energy source. Unfortunately, predicting the quantity of LFG is difficult due to the heterogeneities present in a landfill and the lack of in-situ input parameters. GPR is a non-invasive, near-surface geophysical technique that provides high resolution images of dielectric properties in the earth's subsurface. A transmitter emits high frequency (10 - 1000 MHz) electromagnetic pulses through the subsurface, with the receiver recording the echo. Specialized software is then used to create images of the subsurface. The challenge with using GPR in landfills is the heterogeneity of the subsurface and the clay cap linear covering landfills, both affecting the transmission of the electromagnetic pulses. The use of GPR in a landfill was evaluated at the Region of Waterloo's Waste Management Centre. Measurements were completed using both the surface and the borehole approach. The results indicated that a borehole GPR can be used, with successful measurement of water content a function of borehole separation distance and frequency of the electromagnetic pulses. The developed approach was confirmed at the City of Hamilton's Glanbrook Landfill. The successful comparison of in-situ water content values to laboratory determined values at both landfills shows that GPR can be used to measure in-situ water content.

  2. Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials - A landfill reactor study

    SciTech Connect

    Michalzik, B. Ilgen, G.; Hertel, F.; Hantsch, S.; Bilitewski, B.

    2007-07-01

    Due to their broad industrial production and use as PVC-stabilisers, agro-chemicals and anti-fouling agents, organo-metal compounds are widely distributed throughout the terrestrial and marine biogeosphere. Here, we focused on the emission dynamics of various organo-metal compounds (e.g., di,- tri-, tetra-methyl tin, di-methyl mercury, tetra-methyl lead) from two different kinds of pre-treated mass waste, namely mechanically-biologically pre-treated municipal solid waste (MBP MSW) and municipal waste incineration ash (MWIA). In landfill simulation reactors, the emission of the organo-metal compounds via the leachate and gas pathway was observed over a period of 5 months simulating different environmental conditions (anaerobic with underlying soil layer/aerated/anaerobic). Both waste materials differ significantly in their initial amounts of organo-metal compounds and their environmental behaviour with regard to the accumulation and depletion rates within the solid material during incubation. For tri-methyl tin, the highest release rates in leachates were found in the incineration ash treatments, where anaerobic conditions in combination with underlying soil material significantly promoted its formation. Concerning the gas pathway, anaerobic conditions considerably favour the emission of organo-metal compounds (tetra-methyl tin, di-methyl mercury, tetra-methyl lead) in both the MBP material and especially in the incineration ash.

  3. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  4. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  5. Composite clay materials for removal of SOx from gas streams

    SciTech Connect

    Pinnavaia, T.J.; Polansky, C.A.; Amarasekera, J.

    1993-08-10

    A composition is described for use in removing SO[sub x] from a flue gas stream when the composition is heated which comprises in admixture: (a) a basic compound selected from the group consisting of sodium and calcium salts and bases; and (b) a smectite clay wherein the ratio of basic compound to clay is between about 1 to 3 and 5 to 1 by weight so that the composition when heated removes SO[sub x] and; wherein the basic compound is provided in an aqueous suspension with the clay and then dried to form the composition, wherein the salts or bases are dispersed on the clay and wherein the mixture is a powder. The composition of claim 1 is described wherein the admixture of an iron salt for oxidizing SO[sub 2] to SO[sub 3] when the composition is heated which forms Fe[sub 2]O[sub 3] upon thermal decomposition of the salt.

  6. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part I: The hydrology of Landfill Lostorf, Switzerland

    NASA Astrophysics Data System (ADS)

    Johnson, C. Annette; Richner, Gérald A.; Vitvar, Tomas; Schittli, Nina; Eberhard, Mark

    1998-10-01

    The objective of the investigation of the municipal solid waste incinerator (MSWI) bottom ash landfill, Landfill Lostorf, was to determine the residence time of water in the landfill and the flow paths through the landfill. Over a period of 22 months, measurements of rainfall, landfill discharge and leachate electrical conductivity were recorded and tracer experiments made. Over the yearly period 1995, approximately 50% of the incident rainfall was measured in the discharge. An analysis of single rain events showed that in winter, 90-100% of rainfall was expressed in the landfill discharge, whereas in summer months, the value was between 9 and 40% depending on the intensity of the rain event. The response to rainfall was rapid. Within 30-100 h, approximately 50% of water discharged in response to a rain event had left the landfill. The discharge was less than 4 l/min for approximately 50% of the measurement periods. Qualitative tracer studies with fluorescein, pyranine and iodide clearly showed the existence of preferential flow paths. This was further substantiated by quantitative tracer studies of single rain events using 18O/ 16O ratios and electrical conductivity measurements. The proportion of rainwater passing directly through the landfill was found to be between 20 and 80% in summer months and around 10% in winter months. The difference has been ascribed to the water content in the landfill. The average residence time of the water within the landfill has been estimated to be roughly 3 years and this water is the predominant component in the discharge over a yearly period.

  7. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  8. Degradability of Chlorinated Solvents in Landfill Environment

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Litman, M.

    2002-12-01

    The use of landfills as an in situ remediation system represents a cost-effective alternative for groundwater remediation in the source area. This research was conducted to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). This research, using excavated refuse samples, studied how the reductive dechlorination of CAHs is linked to the decomposition of solid waste in landfills. Most research effort in groundwater remediation has focused on the contaminant plumes beneath and downgradient from landfills, while the source area remediation has received increasing attention. Bioreactor landfill and leachate recirculation projects have been planned and implemented by the USEPA and some states. However, the use of bioreactor landfill has primarily been considered only to expedite refuse decomposition. This research provides an understanding of the biological fate of CAHs in landfills, an understanding that can lead to the bioreactor landfill system designed to promote the degradation of pollutants right at the source. The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples were excavated from a municipal solid waste landfill located in Wayland, Massachusetts, USA. Bioreactors were designed and operated to facilitate refuse decomposition under landfilling conditions. For each reactor, leachate was collected and recirculated back to the reactor and gas was collected into a gas bag and the methane production rate was monitored. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at about 20 uM each in leachate. The design is to study the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. Changes of biochemical conditions in bioreactors, including leachate pH, leachate COD, and methane production, were monitored throughout the refuse decomposition process. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Complementary to the bioreactor experiment, the serum bottle experiment was designed to investigate specific conditions that potentially control or limit the reductive dechlorination of CAHs in landfills. The conditions tested include 1) inhibited refuse methanogenesis, 2) enhanced methanogenic refuse decomposition, 3) presence of other organic carbons commonly found in landfills such as cellulose, lactate, ethanol, and acetate and 4) presence of yeast extract and humic acids which are commonly found in aged landfills. This research investigated the degradability, the degradation rate, and the extent of dechlorination of CAHs in a landfill ecosystem as the refuse decomposition progresses. The results can lead to a broader application of the intrinsic bioattenuation capacity of landfills. An in situ remedial strategy directly tackling the contaminant source can minimize the risk of future impact and achieve a significant saving in remediation cost. The information of contaminant fate in landfills can also help regulatory agencies formulate risk-based guidelines for post-closure monitoring programs and potential re-development projects.

  9. Assessing sanitary landfill stabilization using winter and summer waste streams in simulated landfill cells.

    PubMed

    Saint-Fort, R

    2002-01-01

    This study was undertaken to provide a better understanding and to further define the stabilization processes involved in a typical municipal landfill representative of the city of Calgary, Canada, area. The objectives of this study were: (1) to characterize the composition of the solid waste constituents entering the landfill site, (2) to assess the relative decomposition of various waste components in the simulated test cells, (3) to parametize selected chemical and physical changes occurring during the stabilization process and (4) to determine water absorptive capacity of the different waste constituents. The results of the long term landfill stabilization using simulated landfill cell systems filled with winter and summer waste streams, respectively, have illustrated the potential changes that may occur with time with such systems. Based on the results, it can be inferred that the seasonal variation in waste composition deposited in a landfill will likely effect the rate of decomposition and settlement, chemical and physical characteristics of the leachate, moisture sorbing capacity of the site as well as variation in seasonal contaminants. Assuming that the results from the simulated landfills used during this study can be extrapolated to larger-scale landfill operations, it seems that summer waste streams pose a higher pollution threat to the environment than winter waste streams. The several trends observed in this study and the conclusions reported herein would have wide applications in landfill management. PMID:11846282

  10. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect

    Blazek, C.F.; Grimes, J.; Freeman, P.; Bailey, B.K.; Colucci, C.

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  11. 30 CFR 36.26 - Composition of exhaust gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Composition of exhaust gas. 36.26 Section 36.26 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Construction and...

  12. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    SciTech Connect

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-07-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  13. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model

    SciTech Connect

    Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M. Sinan; Top, Selin; Sekman, Elif

    2011-11-15

    Highlights: > We conduct 1D advection-dispersion modeling to estimate transport parameters. > We examine fourteen phenolic compounds and three inorganic contaminants. > 2-MP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,3,4,6-TeCP have the highest coefficients. > Dispersion coefficients of Cu are determined to be higher than Zn and Fe. > Transport of phenolics can be prevented by zeolite and bentonite in landfill liners. - Abstract: One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m{sup 3}) with different composite liners (R1: 0.10 + 0.10 m of compacted clay liner (CCL), L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10 + 0.10 m of CCL, L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 1 x 10{sup -8} m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 4.24 x 10{sup -7} m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77 x 10{sup -10} to 10.67 x 10{sup -10} m{sup 2}/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 x 10{sup -6} m{sup 2}/s to 5.37 x 10{sup -2} m{sup 2}/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 x 10{sup -10} m{sup 2}/s, 5.37 x 10{sup -10} m{sup 2}/s, 2.69 x 10{sup -10} m{sup 2}/s and 3.29 x 10{sup -10} m{sup 2}/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater is believed to be prevented with the use of zeolite and bentonite materials in landfill liner systems.

  14. Development of an empirical model of methane emissions from landfills. Final report Mar-Dec 91

    SciTech Connect

    Peer, R.L.; Epperson, D.L.; Campbell, D.L.; von Brook, P.

    1992-03-01

    The report gives results of a field study of 21 U.S. landfills with gas recovery systems, to gather information that can be used to develop an empirical model of methane (CH4) emissions. Site-specific information includes average CH4 recovery rate, landfill size, tons of refuse (refuse mass), average age of the refuse, and climate. A correlation analysis showed that refuse mass was positively linearly correlated with landfill depth, volume, area, and well depth. Regression of the CH4 recovery rate on depth, refuse mass, and volume was significant, but depth was the best predictive variable (R2 = 0.53). Refuse mass was nearly as good (R2 = 0.50). None of the climate variables (precipitation, average temperature, dewpoint) were correlated with the CH4 recovery rate or with CH4 recovery per metric ton of refuse. Much of the variability in CH4 recovery remains unexplained, and is likely due to between-site differences in landfill construction, operation, and refuse composition. A model for global landfill emissions estimation is proposed.

  15. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-01

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a "ring" shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  16. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  17. Geothermal gas compositions in yellowstone National Park, USA

    USGS Publications Warehouse

    Sheppard, D.S.; Truesdell, A.H.; Janik, C.J.

    1992-01-01

    Gas samples collected between 1974 and 1986 have been analysed for the ten major components. Samples have been collected almost exclusively from the tops of pools, which has degraded the value of the data, and limited inter-comparisons to the relatively insoluble components, Ar, N2, CH4, H2 and He. A general gas distribution pattern in the park, in terms of these components, shows the major heat source(s) to underlie the Gibbon and Mud Volcano areas with all other geothermal areas having gas compositions consistent with a general north-south water flow. Shoshone Basin gases show a large range of compositions and these are analysed in detail. The patterns conform to that which would be expected from an east-west flow or fluid with progressive boiling and subsequent dilution. ?? 1992.

  18. The carbon isotopic composition of catalytic gas: A comparative analysis with natural gas

    SciTech Connect

    Mango, F.D.; Elrod, L.W.

    1999-04-01

    Tee idea that natural gas is the thermal product of organic decomposition has persisted for over half a century. Crude oil is thought to be an important source of gas, cracking to wet gas above 150 C, and dry gas above 200 C. But there is little evidence to support this view. For example, crude oil is proving to be more stable than previously thought and projected to remain intact over geologic time at typical reservoir temperature. Moreover, when oil does crack, the products do not resemble natural gas. Oil to gas could be catalytic, however, promoted by the transition metals in carbonaceous sediments. This would explain the low temperatures at which natural gas forms, and the high amounts of methane. This idea gained support recently when the natural progression of oil to dry gas was duplicated in the laboratory catalytically. The authors report here the isotopic composition of catalytic gas generated from crude oil and pure hydrocarbons between 150 and 200 C. {delta}{sup 13}C for C{sub 1} through C{sub 5} was linear with 1/n (n = carbon number) in accordance with theory and typically seen in natural gases. Over extended reaction, isobutane and isopentane remained lighter than their respective normal isomers and the isotopic differentials were constant as all isomers became heavier over time. Catalytic methane, initially {minus}51.87{per_thousand} (oil = {minus}22.5{per_thousand}), progressed to a final composition of {minus}26.94{per_thousand}, similar to the maturity trend seen in natural gases: {minus}50{per_thousand} to {minus}20{per_thousand}. Catalytic gas is thus identical to natural gas in molecular and isotopic composition adding further support to the view that catalysis by transition metals may be a significant source of natural gas.

  19. Simulations of Flow, Transport, and Biodegradation in Landfills

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Borglin, S. E.; Hazen, T. C.

    2002-12-01

    Biotreatment of landfill materials may involve coupled nonisothermal flow and transport of water and gas in the refuse mass. With the objective of carrying out analyses that depend on flow and transport processes, we are developing T2LBM, a module for the TOUGH2 multiphase flow and transport simulator that implements a Landfill Bioreactor Model. T2LBM models the processes of aerobic and anaerobic biodegradation of municipal solid waste and the associated three-dimensional flow and transport of gas, liquid, and heat through the refuse mass. The components modeled in T2LBM are water, acetic acid, carbon dioxide, methane, oxygen, and nitrogen in aqueous and gas phases, with partitioning specified by temperature-dependent Henry's coefficients. The local oxygen concentration is used to control whether aerobic or anaerobic biodegradation reactions occur to produce carbon dioxide, or methane and carbon dioxide, respectively. Acetic acid is used as a proxy for all of the biodegradable components in the refuse. The biodegradation rate of acetic acid is modeled using a Monod kinetic rate law for the exothermic reactions in the aqueous phase. The compaction rate is specified by the user and modeled as a linear decrease with time of porosity and contraction of the vertical grid dimension by generation of a new grid at each time step. Local differences in moisture content, pressure, gas composition, aerobicity, and temperature, among other properties, within the heterogeneous refuse can be modeled with T2LBM. Comparison of simulation results against observations of an aerobic landfill bioreactor laboratory experiment and an anaerobic field pilot study show good agreement for oxygen consumption and gas production. Predictions and sensitivity analyses of different biotreatments can be made using this new simulation capability. This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.

  20. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    SciTech Connect

    Mønster, Jacob; Samuelsson, Jerker; Scheutz, Charlotte

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for 2011.

  1. Hazardous pollutants in class II landfills

    SciTech Connect

    Wood, J.A.; Porter, M.L.

    1987-05-01

    Class II landfills accept nontoxic municipal trash. Their gaseous emissions were originally assumed to be relatively free of hazardous substances. However, one Class II site in Southern California was found to be emitting enough vinyl chloride to exceed the California Air Quality Standard of 10 ppb for a 24-hour average in surrounding neighborhood. This paper presents a summary of the results of the analysis of landfill gas from over 20 additional Class II landfills. Ambient air surveys were conducted around five of the landfills. About 90% of the landfills contained measurable amounts of vinyl chloride and/or benzene. The concentrations exceeded 1 ppm in about half of the sites studied. Vinyl chloride is produced in situ by the action of bacteria on chlorinated solvents, and can be found in landfills that have been closed for over 30 years. The relative amounts of methane and vinyl chloride vary so much within a single landfill that methane measurements cannot be used as a surrogate for vinyl chloride.

  2. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  3. Municipal Solid Waste Landfills Harbor Distinct Microbiomes.

    PubMed

    Stamps, Blake W; Lyles, Christopher N; Suflita, Joseph M; Masoner, Jason R; Cozzarelli, Isabelle M; Kolpin, Dana W; Stevenson, Bradley S

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  4. Characterization of ceramic composite materials for gas turbine applications

    SciTech Connect

    Reifsnider, K.; Stinchcomb, W.; Liao, K.; Oleksuk, L.; Stinton, D.

    1993-05-01

    Ceramic composite materials have the capability to sustain high stress in the presence of high temperatures and aggressive atmospheres. Such materials are being considered for application as cumbustors, burner cubes, heat exchangers, headers. hot-gas filters, and even rotors of stationary gas turbine engines. In the present program, Nicalon preforms of tubular geometry were fabricated with different fiber architectures (filament winding, 3D braiding, or cloth winding) to tailor the mechanical properties for specific applications. However, these applications require that candidate materials be carefully characterized. Mechanical characterization must establish the properties and performance that are essential for structural design of the turbine components. For this purpose, a full complement of properties is needed, i.e., the stiffness and strengths of the composite material at a range of temperatures, and the fatigue and creep behavior of the materials under the stress states anticipated by the user. This mechanical characterization requires specialized equipment and methodologies, which are now under development by the authors. This paper will present a description of the methodologies required for ceramic composite characterization, and will describe initial results for ceramic composite tubes, a representative geometry for gas turbine components. Future needs and opportunities will also be discussed.

  5. Characterization of ceramic composite materials for gas turbine applications

    SciTech Connect

    Reifsnider, K.; Stinchcomb, W.; Liao, K.; Oleksuk, L. ); Stinton, D. )

    1993-01-01

    Ceramic composite materials have the capability to sustain high stress in the presence of high temperatures and aggressive atmospheres. Such materials are being considered for application as cumbustors, burner cubes, heat exchangers, headers. hot-gas filters, and even rotors of stationary gas turbine engines. In the present program, Nicalon preforms of tubular geometry were fabricated with different fiber architectures (filament winding, 3D braiding, or cloth winding) to tailor the mechanical properties for specific applications. However, these applications require that candidate materials be carefully characterized. Mechanical characterization must establish the properties and performance that are essential for structural design of the turbine components. For this purpose, a full complement of properties is needed, i.e., the stiffness and strengths of the composite material at a range of temperatures, and the fatigue and creep behavior of the materials under the stress states anticipated by the user. This mechanical characterization requires specialized equipment and methodologies, which are now under development by the authors. This paper will present a description of the methodologies required for ceramic composite characterization, and will describe initial results for ceramic composite tubes, a representative geometry for gas turbine components. Future needs and opportunities will also be discussed.

  6. Environmental assessment of Ammässuo Landfill (Finland) by means of LCA-modelling (EASEWASTE).

    PubMed

    Niskanen, Antti; Manfredi, Simone; Christensen, Thomas H; Anderson, Reetta

    2009-08-01

    The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the Old Ammässuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity-related impact categories and an impact categorized as spoiled groundwater resources (SGR). With respect to standard and toxicity-related impact categories, the LCA results show that substantial impact potentials are estimated for global warming (GW), ozone depletion (OD), human toxicity via soil (HTs) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall, the results demonstrate that gas management has great importance to the environmental performance of the Old Ammässuo Landfill. However, several chemicals related to gas composition (especially trace compounds) and specific emissions from on-site operations were not available or were not measured and were therefore taken from the literature. Measurement campaigns and field investigations should be undertaken in order to obtain a more robust and comprehensive dataset that can be used in the LCA-modelling, before major improvements regarding landfill management are finalized. PMID:19423588

  7. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ{sup 13}C-DIC of about −20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  8. Development of analytical procedure for the determination of methyltin, butyltin, phenyltin and octyltin compounds in landfill leachates by gas chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez

    2011-05-23

    Landfilling is the most common disposal of municipal waste. During the decomposition of different waste materials, several toxic compounds are leached. Although organotin compounds (OTC) represent an important group of pollutants in landfill leachates, there are only few analytical procedures reported for their analysis. These procedures are complex or recommend the use of enriched stable isotopes that are available only for butyltins. In the present work analytical procedure for simultaneous routine speciation analysis of methyl-, butyl-, phenyl- and octyl-tins in landfill leachates by GC-ICP-MS was developed. For this purpose the applicability of methanol as co-extraction reagent and Tris-citrate buffer for adjustment of pH for derivatization of OTC in landfill leachates was carefully investigated. The use of NaBEt(4) and NaBPr(4) as derivatization reagents for liquid-liquid extraction into hexane was critically evaluated. 15m GC column was used for rapid separation of OTC. The developed analytical procedure was sensitive (LODs for OTC investigated in general better than 2 ng Sn L(-1)) with good repeatability of measurement (RSDs mostly better than 3%) and was successfully applied in the analysis of OTC in landfill leachates using standard addition calibration method. Due to its simplicity and reliability it is appropriate to be used in routine laboratories for monitoring of OTC in landfill leachates. PMID:21565298

  9. A composite scheme for gas dynamics in Lagrangian coordinates

    SciTech Connect

    Shashkov, M.; Wendroff, B.

    1999-04-10

    One cycle of a composite finite difference scheme is defined as several time steps of an oscillatory scheme such as Lax-Wendroff followed by one step of a diffusive scheme such as Lax-Friedrichs. The authors apply this idea to gas dynamics in Lagrangian coordinates. They show numerical results in two dimensions for Noh`s infinite strength shock problem and the Sedov blast wave problem, and for several one-dimensional problems including a Riemann problem with a contact discontinuity. For Noh`s problem the composite scheme produces a better result than that obtained with a more conventional Lagrangian code.

  10. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  11. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors.

    PubMed

    Chen, Siyuan Feng; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  12. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    PubMed Central

    Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  13. Comet Halley - The gas composition derived from space missions

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.

    1987-09-01

    Important results have been obtained by the Vega and Giotto missions concerning Comet Halley's gas composition. Water vapor and CO2 have been identified with respective production rates of about 10 to the 30th/s and 10 to the 28th/s. In addition, there is evidence for the presence of hydrocarbons and/or carbonaceous material in large amounts in the immediate vicinity of the nucleus.

  14. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect

    PACKER, M.J.

    2000-05-10

    The purpose of this document is to evaluate selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying operations. The problems were evaluated to answer specific design questions. The document is formatted as a topical report with each section representing a specific problem solution. The problem solutions are reported in the calculation format specified in HNF-1613, Rev. 0, EP 7.6.

  15. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  16. Gas treatment of Cr(VI)-contaminated sediment samples from the North 60`s pits of the chemical waste landfill

    SciTech Connect

    Thornton, E.C.; Amonette, J.E.

    1997-12-01

    Twenty sediment samples were collected at depths ranging from 5 to 100 ft (1.5 to 30 m) beneath a metal-contaminated plating-waste site and extensively characterized for Cr(VI) content and environmental availability. Three samples were selected for treatment with diluted gas mixtures with the objective of converting Cr(VI) to Cr(III), which is relatively nontoxic and immobile. These tests were designed to provide information needed to evaluate the potential application of gas injection as an in situ remediation technique. Gas treatment was performed in small columns (4.9-cm ID, 6.4- to 13.9-cm long) using 100 ppm ({mu}L L{sup -1}) H{sub 2}S or ethylene mixtures in N{sub 2}. Treatment progress during the tests involving H{sub 2}S was assessed by monitoring the breakthrough of H{sub 2}S. Evaluation of H{sub 2}S treatment efficacy included (1) water-leaching of treated and untreated columns for ten days, (2) repetitive extraction of treated and untreated subsamples by water, 0.01 M phosphate (pH 7) or 6 M HCl solutions, and (3) Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy of treated and untreated subsamples. Results of the water-leaching studies showed that the H{sub 2}S treatment decreased Cr(VI) levels in the column effluent by 90% to nearly 100%. Repetitive extractions by water and phosphate solutions echoed these results, and the extraction by HCl released only 35-40% as much Cr in the treated as in the untreated samples. Analysis by XANES spectroscopy showed that a substantial portion of the Cr in the samples remained as Cr(VI) after treatment, even though it was not available to the water and phosphate extracting solutions. These results suggest that this residual Cr(VI) is present in low solubility phases such as PbCrO{sub 4} or sequestered in unreacted grain interiors under impermeable coatings formed during H{sub 2}S treatment. However, this fraction is essentially immobile and thus unavailable to the environment.

  17. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  18. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  19. Acid gas scrubbing by composite solvent-swollen membranes

    SciTech Connect

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  20. Acid gas scrubbing by composite solvent-swollen membranes

    SciTech Connect

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  1. Shielding gas composition and electrode geometry influence on arc properties

    SciTech Connect

    Key, J.F.; McIlwain, M.E.

    1981-01-01

    The effects of welding electrode geometry and of shielding gas composition using pure argon, argon-helium mixtures, and an argon-hydrogen mixture on welding arc properties, particularly acr temperature distribution was studied. Plasma diagnostic techniques were used to measure the arc properties presented. A computer-controlled emission spectroscopy system comprised of an Optical Multichannel Analyzer (OMA) interfaced to 0.3-m monochromator was used to make temperature and composition measurements. Electrode tip geometry was found to have a somewhat restricted influence on arc temperature distribution. The addition of significant amounts of helium to argon shielding gas causes a gas tungsten arc to be a broader, more isothermal, heat source than an arc shielded with pure argon. Blunt electrode tip geometries, compared to sharp ones, tend to cause flatter temperature distributions in pure argon but have temperature distributions similar to sharp electrode tips in moderate to high helium environments. Thermophysical properties of the shielding gas constituents appear to have greater influence on fusion zone profile than does arc temperature. However, refined heat transfer models of the future will require arc temperature distributions as a function of essential welding variables since these models will use properties which are strongly temperature dependent.

  2. CORRIGENDUM: Normalization of natural gas composition data measured by gas chromatography Normalization of natural gas composition data measured by gas chromatography

    NASA Astrophysics Data System (ADS)

    Milton, Martin J. T.; Harris, Peter M.; Brown, Andrew S.; Cowper, Chris J.

    2009-11-01

    The authors unintentionally omitted to mention work [1] that pre-dated the cited work by Haesselbarth and Bremser [2]. This work formulated the problem within a mathematical framework and had been cited by the authors in a previous publication [3]. The major conclusion of the authors' work goes beyond the mathematics presented in [1] and [2] because it is applied to several real data sets and the results are interpreted in practical terms. References [1] Haesselbarth W and Bremser W 2001 Correlation in natural gas composition data Proc. Int. Gas Research Conf. (Amsterdam) [2] Haesselbarth W and Bremser W 2007 Metrologia 44 128-45 [3] Brown A S, Milton M J T, Cowper C J, Squire G D, Bremser W and Branch R W 2004 J. Chromatogr. A 1040 215-25

  3. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Determination of exhaust-gas composition. 36.43... TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be taken to determine the composition of the exhaust gas while the engine is operated at loads and...

  4. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM LANDFILLS AND OPEN DUMPS

    EPA Science Inventory

    The report presents an empirical model to estimate global methane (CH4) emissions from landfills and open dumps based on EPA data from landfill gas (LFG) recovery projects. The EPA CH4 estimates for 1990 range between 19 and 40 teragrams (10 to the 12th power) per year (Tg/yr), w...

  5. DEVELOPMENT OF AN EMPIRICAL MODEL OF METHANE EMISSIONS FROM LANDFILLS

    EPA Science Inventory

    The report gives results of a field study of 21 U.S. landfills with gas recovery systems, to gather information that can be used to develop an empirical model of methane (CH4) emissions. Site-specific information includes average CH4 recovery rate, landfill size, tons of refuse (...

  6. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  7. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  8. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables. ImagesFIGURE 3.FIGURE 4.FIGURE 7.FIGURE 7. PMID:738247

  9. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  10. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables. PMID:738247

  11. Effect of gas composition on octane number of natural gas fuels. Topical report, December 1991-March 1992

    SciTech Connect

    Kubesh, J.T.

    1992-05-01

    Variations in the composition of natural gas fuels are recognized to have a significant impact on the performance of internal combustion engines. In particular, the knock resistance of the fuel is governed by its gas composition. The octane number is a standard measure of the knock resistance of a fuel, and several gas blends were tested to determine their octane numbers. Octane number of natural gas fuels was found to be dependent on gas composition. Several correlations were found between gas composition and the octane number of a fuel, which allow prediction of the motor octane number if gas composition is known. In particular, a good correlation was found between the hydrogen-carbon ratio of the fuel and the octane number. Correlations were also found between measured motor octane numbers and measured methane numbers, as well as between motor octane numbers and predicted methane numbers.

  12. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model.

    PubMed

    Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M Sinan; Top, Selin; Sekman, Elif

    2011-11-01

    One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m3) with different composite liners (R1: 0.10+0.10 m of compacted clay liner (CCL), L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10+0.10 m of CCL, L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 1 × 10(-8) m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 4.24 × 10(-7) m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77×10(-10) to 10.67 × 10(-10)m2/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 × 10(-6) m(2)/s to 5.37 × 10(-2) m2/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 × 10(-10) m2/s, 5.37 × 10(-10) m2/s, 2.69 × 10(-10) m2/s and 3.29 × 10(-10) m2/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater is believed to be prevented with the use of zeolite and bentonite materials in landfill liner systems. PMID:21745733

  13. Field performance of a geosynthetic clay liner landfill capping system under simulated waste subsidence

    SciTech Connect

    Weiss, W.; Siegmund, M.; Alexiew, D.

    1995-10-01

    A flexible landfill capping system consisting of a 3-D-geocore composite for gas vent, a Geosynthetic Clay Liner (GCL) for sealing and a 3-D-geocore composite for drainage of the vegetation soil was built on a test field at Michelshoehe landfill near Weimar, Germany. At four locations airbags were installed underneath the thin capping system to simulate subsidences. On top of three of these airbags overlaps of the GCL were positioned, for comparison there was no overlap at the fourth location. After hydratation of the GCL the airbags were de-aerated and subsidences occurred with app. 5 % tensile strain in the GCL. For three weeks the test field was intensively sprinkled in intervals. Then horizontal and vertical deformations were measured, but not displacements were registered in the overlaps. The evaluation of the GCL`s permeability showed no significant difference between the locations with and without overlaps.

  14. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method.

    PubMed

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h(-1), corresponding to 0.7-13.2 g m(-2)d(-1), with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y(-1). This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y(-1), which is significantly lower than the 33,300 tons y(-1) estimated for the national greenhouse gas inventory for 2011. PMID:25442105

  15. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and the German Research Center for Geoscience (GFZ) in Potsdam. The in-situ measurements were obtained by a greenhouse gas (GHG) in-situ analyser operated by NASA's Ames Research Center (ARC). Both instruments were installed aboard a DHC-6 Twin Otter aircraft operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). Initial results - including estimated fugitive emission rates - will be presented for the landfill Olinda Alpha in Brea, Orange County, Los Angeles Basin, California, which was overflown on four different days during the COMEX field campaign in late summer 2014.

  16. Emissions of Nonmethane Organic Compounds at an Illinois (USA) Landfill: Preliminary Field Measurements

    SciTech Connect

    Bogner, J.; Spokas, K.; Niemann, M.; Niemann, L.; Baker, J.

    1997-08-01

    Current US regulatory models for estimating emissions of nonmethane organic compounds (NMOCs) from municipal solid waste (MSW) landfills require field validation to determine if the models are realistic. A project was initiated to begin to develop a field method for direct measurement of landfill NMOC emissions and, concurrently, develop improved sampling and analysis methods for individual NMOCs in landfill gas matrices. Two contrasting field sites at the Greene Valley Landfill, DuPage County, Illinois, USA, were established.

  17. Ultrasensitive Gold Nanostar-Polyaniline Composite for Ammonia Gas Sensing.

    PubMed

    Kumar, Vished; Patil, Vithoba; Apte, Amey; Harale, Namdev; Patil, Pramod; Kulkarni, Sulabha

    2015-12-01

    Gold in the form of bulk metal mostly does not react with gases or liquids at room temperature. On the other hand, nanoparticles of gold are very reactive and useful as catalysts. The reactivity of nanoparticles depends on the size and the morphology of the nanoparticles. Gold nanostars containing copper have rough surfaces and large numbers of active sites due to tips, sides, corners, and large surface area-to-volume ratios due to their branched morphology. Here the sensitivity of the gold nanostar-polyaniline composite (average size of nanostars ∼170 nm) toward ammonia gas has been investigated. For 100 ppm ammonia, the sensitivity of the composite increased to 52% from a mere 7% value for pure polyaniline. The gold nanostar-polyaniline composite even showed a response time as short as 15 s at room temperature. The gold nanostars act as a catalyst in the nanocomposite. The stability and sensitivity at different concentrations and the selectivity for ammonia gas were also investigated. PMID:26522375

  18. Nitrogen management in bioreactor landfills

    SciTech Connect

    Price, G. Alexander; Barlaz, Morton A.; Hater, Gary R

    2003-07-01

    One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO{sub 3}-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH{sub 4}{sup +} by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.

  19. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland

    NASA Astrophysics Data System (ADS)

    Johnson, C. Annette; Kaeppeli, Michael; Brandenberger, Sandro; Ulrich, Andrea; Baumann, Werner

    1999-12-01

    The leachate composition of the Landfill Lostorf, Buchs, Switzerland has been examined as a function rain events and dry periods between November 1994 and November 1996. Discharge and electrical conductivity of the central drainage discharge were monitored continuously, whilst samples for chemical analysis were taken at discrete intervals. The average total concentrations of Na, Cl, K, Mg, Ca and SO 4 are 44.5, 47.1, 11.8, 0.63, 8.2 and 12.4 mM, respectively. During rain events, the leachate is diluted by the preferential flow of rainwater into the drainage discharge. Drainage discharge pH values range between 8.68 and 11.28, the latter under dry conditions. Thermodynamic calculations indicate that CaSO 4, ettringite (3CaOAl 2O 3CaSO 4·32H 2O) and Al(OH) 3 may control the concentrations of the components Ca, SO 4 and Al. Dissolved Si may be in thermodynamic equilibrium with either Ca silicate hydrate or imogolite. Cadmium, Mo, V, Mn and Zn are also diluted during rain events and concentration changes agree with those of conductivity (representing the major constituents). Average concentrations are 0.012, 5.4, 2.3, 0.085, and 0.087 μM, respectively. Components such as Al, Cu, Sb and Cr increase in concentration with increased discharge. Average concentrations are 1.6, 0.27 and 0.21 μM, respectively. For Cu, the explanation lies in its affinity for total organic carbon (TOC). Thermodynamic calculations indicate that whilst dissolution/precipitation reactions with metal hydroxides and carbonates can explain the observed concentrations of Cd, sorption and complexation reactions probably influence the concentrations of Cu, Pb (average measurable concentration 0.013 μM), Zn and Mn. For the oxyanion species such as MoO 4 and WO 4 (average concentration 0.61 μM), it is probable that Ca metallate formation plays a dominant role in determining concentration ranges. Geochemical processes appear to determine concentration ranges and the hydrological factors, the fluctuations in concentration.

  20. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  1. Gas separation by composite solvent-swollen membranes

    SciTech Connect

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  2. Gas separation by composite solvent-swollen membranes

    SciTech Connect

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  4. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  5. Implementing landfill surfaces methane monitoring for the municipal solid waste landfill NSPS/EG

    SciTech Connect

    Huitric, R.; Banaji, J.

    1996-11-01

    The United States Environmental Protection Agency`s (USEPA) Municipal Solid Waste Landfill New Source Performance Standard (NSPS) and Emission Guidelines (EG) implements a landfill surface methane performance standard to verify emissions control effectiveness. The standard requires that periodic measures of surface gases along a predesignated route be less than 500 ppm methane at any point. During rule proposal, SWANA`s Landfill Gas Management Division (LFGMD) had advocated a performance standard as a more economic and effective alternative to the very prescriptive requirements first proposed by the USEPA in 1991. However, LFGMD recommended an averaged rather than a point source measure of the surface gases. Under the final NSPS rule, the landfill surface gas must be tested along the landfill`s perimeter and along interior routes each quarter. The interior routes must be aligned such that no route portion is more than 30 meters from any other portion. Exemptions are allowed for hazardous areas. A portable methane detector meeting USEPA`s Method 21 requirements is used to continuously sample air pumped from a probe or wand placed between 5 and 10 centimeters of the ground surface as a technician walks along a route. This paper addresses various implementation issues and discusses the development of possible monitoring alternatives, as allowed by the rule.

  6. Bioreactor landfill technology in municipal solid waste treatment: an overview.

    PubMed

    Kumar, Sunil; Chiemchaisri, Chart; Mudhoo, Ackmez

    2011-03-01

    In recent years, due to an advance in knowledge of landfill behaviour and decomposition processes of municipal solid waste, there has been a strong thrust to upgrade existing landfill technologies for optimizing these degradation processes and thereafter harness a maximum of the useful bioavailable matter in the form of higher landfill gas generation rates. Operating landfills as bioreactors for enhancing the stabilization of wastes is one such technology option that has been recently investigated and has already been in use in many countries. A few full-scale implementations of this novel technology are gaining momentum in landfill research and development activities. The publication of bioreactor landfill research has resulted in a wide pool of knowledge and useful engineering data. This review covers leachate recirculation and stabilization, nitrogen transformation and corresponding extensive laboratory- and pilot-scale research, the bioreactor landfill concept, the benefits to be derived from this bioreactor landfill technology, and the design and operational issues and research trends that form the basis of applied landfill research. PMID:20578971

  7. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  8. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials.

    PubMed

    Rachor, Ingke; Gebert, Julia; Gröngröft, Alexander; Pfeiffer, Eva-Maria

    2011-05-01

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm(-3), reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100g CH(4)m(-2)d(-1), covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH(4)m(-2)d(-1) and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material. PMID:21067907

  9. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    PubMed

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  10. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  11. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management. PMID:20935025

  12. Structure and Composition Analysis of Natural Gas Hydrates: 13C NMR Spectroscopic and Gas Uptake Measurements of Mixed Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Seo, Yutaek; Kang, Seong-Pil; Jang, Wonho

    2009-08-01

    Gas hydrates are becoming an attractive way of storing and transporting large quantities of natural gas, although there has been little effort to understand the preferential occupation of heavy hydrocarbon molecules in hydrate cages. In this work, we present the formation kinetics of mixed hydrate based on a gas uptake measurement during hydrate formation, and how the compositions of the hydrate phase are varied under corresponding formation conditions. We also examine the effect of silica gel pores on the physical properties of mixed hydrate, including thermodynamic equilibrium, formation kinetics, and hydrate compositions. It is expected that the enclathration of ethane and propane is faster than that of methane early stage hydrate formation, and later methane becomes the dominant component to be enclathrated due to depletion of heavy hydrocarbons in the vapor phase. The composition of the hydrate phase seems to be affected by the consumed amount of natural gas, which results in a variation of heating value of retrieved gas from mixed hydrates as a function of formation temperature. 13C NMR experiments were used to measure the distribution of hydrocarbon molecules over the cages of hydrate structure when it forms either from bulk water or water in silica gel pores. We confirm that 70% of large cages of mixed hydrate are occupied by methane molecules when it forms from bulk water; however, only 19% of large cages of mixed hydrate are occupied by methane molecules when it forms from water in silica gel pores. This result indicates that the fractionation of the hydrate phase with heavy hydrocarbon molecules is enhanced in silica gel pores. In addition when heavy hydrocarbon molecules are depleted in the vapor phase during the formation of mixed hydrate, structure I methane hydrate forms instead of structure II mixed hydrate and both structures coexist together, which is also confirmed by 13C NMR spectroscopic analysis.

  13. Risk assessment of an old landfill regarding the potential of gaseous emissions--a case study based on bioindication, FT-IR spectroscopy and thermal analysis.

    PubMed

    Tintner, Johannes; Smidt, Ena; Böhm, Katharina; Matiasch, Lydia

    2012-12-01

    Risk assessment of two sections (I and II) of an old landfill (ALH) in Styria (Austria) in terms of reactivity of waste organic matter and the related potential of gaseous emissions was performed using conventional parameters and innovative tools to verify their effectiveness in practice. The ecological survey of the established vegetation at the landfill surface (plant sociological relevés) indicated no relevant emissions over a longer period of time. Statistical evaluation of conventional parameters reveals that dissolved organic carbon (DOC), respiration activity (RA(4)), loss of ignition (LOI) and total inorganic carbon (TIC) mostly influence the variability of the gas generation sum (GS(21)). According to Fourier Transform Infrared (FT-IR) spectral data and the results of the classification model the reactivity potential of the investigated sections is very low which is in accordance with the results of plant sociological relevés and biological tests. The interpretation of specific regions in the FT-IR spectra was changed and adapted to material characteristics. Contrary to mechanically-biologically treated (MBT) materials, where strong aliphatic methylene bands indicate reactivity, they are rather assigned to the C-H vibrations of plastics in old landfill materials. This assumption was confirmed by thermal analysis and the characteristic heat flow profile of plastics containing landfill samples. Therefore organic carbon contents are relatively high compared to other stable landfills as shown by a prediction model for TOC contents based on heat flow profiles and partial least squares regression (PLS-R). The stability of the landfill samples, expressed by the relation of CO(2) release and enthalpies, was compared to unreactive landfills, archeological samples, earthlike materials and hardly degradable organic matter. Due to the material composition and the aging process the landfill samples are located between hardly degradable, but easily combustible materials and thermally resistant materials with acquired stability. PMID:22902203

  14. Landfills for the 21st century

    SciTech Connect

    Poland, R. )

    1994-01-01

    In the next 10 years, the role of landfills will not change significantly. Landfills are, and will continue to be, the cornerstone of any waste services system. A number of factors will, however, cause adjustments in the way landfills function. The character of the waste is also changing. Mankind will see more treated industrial residue in future years. Certain types of these materials have, in the past, gone to hazardous waste disposal sites. These are non-hazardous wastes, but generators found a certain comfort in sending them to hazardous waste facilities that had double composite liners, leachate collection, and financial assurance. With the new technical standards and environmental security of sanitary landfills, there will be a reluctance on the part of generators to pay a premium to send this waste to a hazardous waste site. There is also a growing interest in treating characteristic'' hazardous waste to a level where it is no longer hazardous and can be placed in a sanitary landfill.

  15. Landfill leachate treatment: Review and opportunity.

    PubMed

    Renou, S; Givaudan, J G; Poulain, S; Dirassouyan, F; Moulin, P

    2008-02-11

    In most countries, sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). In spite of many advantages, generation of heavily polluted leachates, presenting significant variations in both volumetric flow and chemical composition, constitutes a major drawback. Year after year, the recognition of landfill leachate impact on environment has forced authorities to fix more and more stringent requirements for pollution control. This paper is a review of landfill leachate treatments. After the state of art, a discussion put in light an opportunity and some results of the treatment process performances are given. Advantages and drawbacks of the various treatments are discussed under the items: (a) leachate transfer, (b) biodegradation, (c) chemical and physical methods and (d) membrane processes. Several tables permit to review and summarize each treatment efficiency depending on operating conditions. Finally, considering the hardening of the standards of rejection, conventional landfill leachate treatment plants appear under-dimensioned or do not allow to reach the specifications required by the legislator. So that, new technologies or conventional ones improvements have been developed and tried to be financially attractive. Today, the use of membrane technologies, more especially reverse osmosis (RO), either as a main step in a landfill leachate treatment chain or as single post-treatment step has shown to be an indispensable means of achieving purification. PMID:17997033

  16. 3-D woven ceramic composite hot gas filter development

    SciTech Connect

    Lane, Jay E.; LeCostaouec, Jean-Francois; LeCostaouec, J.F., Westinghouse

    1998-01-01

    Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1997 pilot-scale demonstration in one of the two hot- gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and 11) goal is to develop and demonstrate the suitability of the Westinghouse/ Techniweave next- generation, composite, candle filter for use in Pressurized Fluidized- Bed Combustion (PFBC) and/or Integrated Gasification Combined-Cycle (IGCC) power generation systems. The Optional Task (Phase 111, Task 5) objective is to fabricate, inspect, and ship to Wilsonville 50 advanced candle filters for pilot-scale testing.

  17. Full-scale leachate-recirculating MSW landfill bioreactor assessments

    SciTech Connect

    Carson, D.A.

    1995-10-01

    The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

  18. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    USGS Publications Warehouse

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  19. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  20. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect

    Hibbard, C.S.

    1999-07-01

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  1. Quantifying Spatial and Temporal Variability of Methane Emissions from a Complex Area Source: Case Study of a Central Indiana Landfill

    NASA Astrophysics Data System (ADS)

    Cambaliza, M. O. L.; Bogner, J. E.; Green, R. B.; Shepson, P. B.; Thoma, E. D.; Foster-wittig, T. A.; Spokas, K.

    2014-12-01

    Atmospheric methane is a powerful greenhouse gas that is responsible for about 17% of the total direct radiative forcing from long-lived greenhouse gases (IPCC 2013). While the global emission of methane is relatively well quantified, the temporal and spatial variability of methane emissions from individual area or point sources are still poorly understood. Using 4 field methods (aircraft-based mass balance, tracer correlation, vertical radial plume mapping, and static chambers) and a new field-validated process-based model (California Landfill Methane Inventory Model, CALMIM 5.4), we investigated both the total emissions from a central Indiana landfill as well as the partitioned emissions inclusive of methanotrophic oxidation for the various cover soils. This landfill is an upwind source for the city of Indianapolis, so the resolution of m2 to km2 scale emissions, as well as understanding the temporal variability for this complex area source, contributes to improved regional inventory calculations. Emissions for the site as a whole were measured using both an aircraft-based mass balance approach as well as a ground-based tracer correlation method, permitting direct comparison of the strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emission signatures and strengths from the various cover areas. Thus we also deployed static chambers and vertical radial plume mapping to quantify the spatial variability of emissions from the thinner daily and intermediate cover areas. Understanding the daily, seasonal and annual emission rates from a landfill is not trivial, and usually requires a combination of measurement and modeling approaches. Thus, our unique data set provides an opportunity to gain an improved understanding of the emissions from a complex area source, an essential requirement for developing improved urban-scale greenhouse gas inventories relevant for addressing mitigation strategies. We report on the results here.

  2. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  3. Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report

    EPA Science Inventory

    Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...

  4. ADAPTING WOODY SPECIES AND PLANTING TECHNIQUES TO LANDFILL CONDITIONS, FIELD AND LABORATORY INVESTIGATIONS

    EPA Science Inventory

    A study was undertaken to determine which tree species can best maintain themselves in a landfill environment; to investigate the feasibility of preventing landfill gas from penetrating the root zone of selected species by using gas-barrier techniques; and to identify the (those)...

  5. Extraction wells and biogas recovery modeling in sanitary landfills.

    PubMed

    Rodríguez-Iglesias, J; Vázquez, I; Marañón, E; Castrillón, L; Sastre, H

    2005-02-01

    A general methodology is established that permits the characterization and evaluation of the optimum potential of biogas extraction at each vertical well in the sanitary landfill of Asturias, Spain. Twenty wells were chosen from a total of 225 for the study, and the maximum production flow of biogas, which is a result of the degradation of the municipal solid waste deposited within its area of influence, was determined for each well. It was found that this flow varied with time and is characteristic of each extraction well. The maximum extractable flow also was determined as a function of the composition of the biogas needed for its subsequent utilization. The biogas extraction yield in the wells under study varied between approximately 26 and 97%, with a mean recovery value of 82%. The low yields found in certain cases were generally caused by a sealing defect, which leads to excessive incorporation of air into the landfill gas through the surrounding soil or through the extraction shaft, and which make its subsequent utilization difficult. PMID:15796107

  6. Methods of Sensing Land Pollution from Sanitary Landfills

    NASA Technical Reports Server (NTRS)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  7. The volatile composition of comets as inferred from gas production

    NASA Astrophysics Data System (ADS)

    McKay, Adam Joseph

    Comets are small (1-10 km in radius) icy objects that orbit the Sun on highly eccentric orbits. The composition of comets has been relatively unalterred since their formation 4.5 billion years ago due to their small size and their cold storage in the Kuiper Belt and Oort Cloud. This makes comets "fossils" that can be studied in order to understand the physical conditions and composition of our Solar System during its infancy. Specifically, studying the volatile (ice) composition of comets can place constraints on molecule formation during the planetary formation stage and volatile transport to the inner Solar System. However, for most comets we must infer the volatile composition of the nucleus from gas present in the coma. The composition of the coma is alterred by physical and chemical processes, so the composition of the coma does not exactly reflect that of the nucleus. In this thesis we present analysis of observations of comets 103P/Hartley and C/2009 P1 Garradd in an effort to understand the physical and chemical processes operating in cometary comae. We obtained optical and NIR spectra in an effort to understand the gas production of comets Hartley and Garradd. We employed the ARCES instrument mounted on the ARC 3.5-meter telescope at Apache Point Observatory in Sunspot, NM to acquire optical spectra, while we used the CSHELL instrument mounted on NASA IRTF on Mauna Kea in Hawaii to acquire NIR spectra. We started our analysis with studies of atomic oxygen using the optical spectra and of CO and H2O using the NIR spectra. Specifically, the 5577 A, 6300, and 6300 A lines can potentially used as a proxy for CO2 in comets, which is very imporant because CO2 cannot be observed from the ground directly. Our analysis of the oxygen lines in several comets confirms that analysis of the oxygen line intensities can be employed to obtain quantitative measurements of CO2 in comets, though the accuracy of this method still needs to be firmly established. We also confirmed from observations of CO, H2O, and atomic oxygen in Garradd that CO photodissociation is not an important source of atomic oxygen in cometary comae. Our analysis of comets C/2006 W3 Christensen and C/2009 P1 Garradd at large heliocentric distance showed that the CO2 abundance in comets at heliocentric distances of > 2.5 AU is systematically higher than that of comets that are observed when they are closer to the Sun. Applying our analysis to other comets at heliocentric distances of < 2.5 AU demonstrates that comets have much higher CO2/H20 ratios than previously thought. This may suggest that comets formed in an oxidizing environment. We extended our analysis to the simple molecules CN, C2, CH, and NH2. These molecules are all products of coma photochemistry, and are not inherently present in the nucleus of the comet in ice form. Therefore understanding the progeny of these molecules is important for understanding coma photochemistry. We found that the CN and NH2 abundances in both Hartley and Garradd can be accounted for by HCN and NH 3 photodissociation, respectively. However, the C2 abundance in both comets cannot be accounted for by invoking only C2H 2 photodissociation. Therefore another source is needed. From studies of the rotational variation of C2 production in Hartley and heliocentric distance variation in Garradd, we present the hypothesis that a large fraction of the observed C2 in these comets originates from the sublimation of carbonaceous dust grains. We provide evidence that CH4 photodissociation cannot be the sole source of CH, and that another source, possibly carbonaceous dust grains or PAH's, is required. From analysis of the rotational variation of mixing ratios in Hartley and heliocentric distance variation of mixing ratios in Garradd, we found evidence that the parent of CN (HCN) is spatially correlated with CO 2 in the nucleus and is distinct from the H2O ice. This suggests that two or more phases of ice exist in cometary nuclei, thereby exhibiting small scale compositional heterogeneity. These results have profound consequences for cometary science, and pave the way for future work in the field. These results will prove beneficial to the in-tepretation of cosmogonie parameters, such as isotope and ortho-para ratios, in photodissociation products such as CN and NH2. This,.along with the possibility of atomix oxygen and C2 serving as tracers for CO2 and carbonaceous dust grains, respectively, will provide new avenues for cometary science that have previously been unexplored.

  8. Carbon Dioxide Gas Sensing Application of GRAPHENE/Y2O3 Quantum Dots Composite

    NASA Astrophysics Data System (ADS)

    Nemade, K. R.; Waghuley, S. A.

    Graphene/Y2O3 quantum dots (QDs) composite was investigated towards the carbon dioxide (CO2) gas at room temperature. Graphene synthesized by electrochemical exfoliation of graphite. The composite prepared by mixing 20-wt% graphene into the 1 g Y2O3 in organic medium (acetone). The chemiresistor of composite prepared by screen-printing on glass substrate. The optimum value of sensing response (1.08) was showed by 20-wt% graphene/Y2O3 QDs composite. The excellent stability with optimum sensing response evidenced for the composite. The gas sensing mechanism discussed on the basis of electron transfer reaction.

  9. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOEpatents

    Abrevaya, Hayim; Targos, William M.

    1987-01-01

    A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  10. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOEpatents

    Abrevaya, H.; Targos, W.M.

    1987-12-22

    A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  11. Developments to a landfill processes model following its application to two landfill modelling challenges.

    PubMed

    White, J K; Beaven, R P

    2013-10-01

    The landfill model LDAT simulates the transport and bio-chemical behaviour of the solid, liquid and gas phases of waste contained in a landfill. LDAT was applied to the LMC1 and LMC2 landfill modelling challenges held in 2009 and 2011. These were blind modelling challenges with the model acting in a predictive mode based on limited early time sections of full datasets. The LMC1 challenge dataset was from a 0.34m deep 0.48m diameter laboratory test cell, and the LMC2 dataset was from a 55m×80m 8m deep landfill test cell which formed part of the Dutch sustainable landfill research programme at Landgraaf in the Netherlands. The paper describes developments in LDAT arising directly from the experience of responding to the two challenges, and discusses the model input and output data obtained from a calibration using the full datasets. The developments include the modularisation of the model into a set of linked sub-models, the strategy for converting conventional waste characteristics into model input parameters, the identification of flexible degradation pathways to control the CO2:CH4 ratio, and the application of a chemical equilibrium model that includes a stage in which the solid waste components dissolve into the leachate. PMID:23318154

  12. Generating CO{sub 2}-credits through landfill in situ aeration

    SciTech Connect

    Ritzkowski, M.; Stegmann, R.

    2010-04-15

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

  13. Controlling landfill closure costs

    SciTech Connect

    Millspaugh, M.P.; Ammerman, T.A.

    1995-05-01

    Landfill closure projects are significant undertakings typically costing well over $100,000/acre. Innovative designs, use of alternative grading and cover materials, and strong project management will substantially reduce the financial impact of a landfill closure project. This paper examines and evaluates the various elements of landfill closure projects and presents various measures which can be employed to reduce costs. Control measures evaluated include: the beneficial utilization of alternative materials such as coal ash, cement kiln dust, paper mill by-product, construction surplus soils, construction debris, and waste water treatment sludge; the appropriate application of Mandate Relief Variances to municipal landfill closures for reduced cover system requirements and reduced long-term post closure monitoring requirements; equivalent design opportunities; procurement of consulting and contractor services to maximize project value; long-term monitoring strategies; and grant loan programs. An analysis of closure costs under differing assumed closure designs based upon recently obtained bid data in New York State, is also provided as a means for presenting the potential savings which can be realized.

  14. HAZARDOUS WASTE LANDFILL RESEARCH

    EPA Science Inventory

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface ...

  15. The use of engineered lightweight fill for landfill cover remediation

    SciTech Connect

    Poe, D.E.; Gardner, R.B.; Xiaoyu Fu

    1995-12-31

    In 1991, SCS was retained to provide design and construction engineering services to retrofit a landfill gas migration control system and regrade/repair an existing low-permeability soil final cover system for a 10-acre closed landfill located in west-central Florida. The final cover system modifications consisted of regrading the top of the landfill to re-establish positive drainage across and off of the top of the landfill. While active, the landfill had received municipal solid waste (MSW), commercial solid waste, and various industrial wastes and sludges. The landfill was closed in the early 1980`s. At the time of filling, the subject landfill was operated as a trench fill. A series of 40-foot deep trenches were excavated across the fill area, and the MSW was placed and compacted into the trenches. The soil excavated during construction of the trenches was used to construct berms along the sides of the individual trenches. No constructed bottom liner or leachate collection system was incorporated into the design. This report presents the results of a conceptual evaluation of utilizing expanded polystyrene blocks or Geofoam, as the lightweight fill component for an alternative cover remediation.

  16. Approaches to assess biocover performance on landfills.

    PubMed

    Huber-Humer, M; Röder, S; Lechner, P

    2009-07-01

    Methane emissions from active or closed landfills can be reduced by means of methane oxidation enhanced in properly designed landfill covers, known as "biocovers". Biocovers usually consist of a coarse gas distribution layer to balance gas fluxes placed beneath an appropriate substrate layer. The application of such covers implies use of measurement methods and evaluation approaches, both during the planning stage and throughout the operation of biocovers in order to demonstrate their efficiency. Principally, various techniques, commonly used to monitor landfill surface emissions, can be applied to control biocovers. However, particularly when using engineered materials such as compost substrates, biocovers often feature several altered, specific properties when compared to conventional covers, e.g., respect to gas permeability, physical parameters including water retention capacity and texture, and methane oxidation activity. Therefore, existing measuring methods should be carefully evaluated or even modified prior to application on biocovers. This paper discusses possible strategies to be applied in monitoring biocover functionality. On the basis of experiences derived from investigations and large-scale field trials with compost biocovers in Austria, an assessment approach has been developed. A conceptual draft for monitoring biocover performance and recommendations for practical application are presented. PMID:19282167

  17. GAS CHROMATOGRAPHIC RETENTION PARAMETERS DATABASE FOR REFRIGERANT MIXTURE COMPOSITION MANAGEMENT

    EPA Science Inventory

    Composition management of mixed refrigerant systems is a challenging problem in the laboratory, manufacturing facilities, and large refrigeration machinery. Ths issue of composition management is especially critical for the maintenance of machinery that utilizes zeotropic mixture...

  18. Measuring Gas Composition and Pressure Within Sealed Containers Using Acoustic Resonance Spectroscopy

    SciTech Connect

    Veirs, D.K.; Heiple, C.R.; Rosenblatt, G.M.; Baiardo, J.P.

    1997-05-19

    Interim and long-term storage of carefully prepared plutonium material within hermetically sealed containers may generate dangerous gas pressures and compositions. The authors have been investigating the application of acoustic resonance spectroscopy to non-intrusively monitor changes in these parameters within sealed containers. In this approach a drum-like gas cavity is formed within the storage container which is excited using a piezoelectric transducer mounted on the outside of the container. The frequency response spectrum contains a series of peaks whose positions and widths are determined by the composition of the gas and the geometry of the cylindrical resonator; the intensities are related to the gas pressure. Comparing observed gas frequencies with theory gives excellent agreement. Small changes in gas composition, better than 1:1000, are readily measurable.

  19. Development of computer simulations for landfill methane recovery

    SciTech Connect

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  20. Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils.

    PubMed

    Park, Soyoung; Lee, Incheol; Cho, Changhwan; Sung, Kijune

    2008-01-01

    Landfill gases could be vented through a layer of landfill cover soil that could serve as a biofilter to oxidize methane to carbon dioxide and water. Properly managed landfill cover soil layers may reduce atmospheric CH4 emissions from landfills. In the present study, the effects of earthworm cast and powdered activated carbon (PAC) on the CH4 removal capacity of the landfill cover soil was investigated. For this purpose, column and batch tests were conducted using three different materials: typical landfill cover soil, landfill cover soil amended with earthworm cast, and landfill cover soil amended with PAC. The maximum CH4 removal rate of the columns filled with landfill cover soil amended with earthworm cast was 14.6mol m(-2)d(-1), whereas that of the columns filled with typical landfill cover soil was 7.4mol m(-2)d(-1). This result shows that amendment with earthworm cast could stimulate the CH4-oxidizing capacity of landfill cover soil. The CH4 removal rate of the columns filled with landfill cover soil amended with PAC also showed the same removal rate, but the vertical profile of gas concentrations in the columns and the methanotrophic population measured in the microbial assay suggested that the decrease of CH4 concentration in the columns is mainly due to sorption. Based on the results from this study, amendment of landfill cover soil with earthworm cast and PAC could improve its CH4 removal capacity and thus achieve a major reduction in atmospheric CH4 emission as compared with the same landfill cover soil without any amendment. PMID:17764722

  1. Landfilling of waste: accounting of greenhouse gases and global warming contributions.

    PubMed

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo

    2009-11-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling. PMID:19808732

  2. Installation of geosynthetic clay liners at California MSW landfills

    SciTech Connect

    Snow, M.; Jesionek, K.S.; Dunn, R.J.; Kavazanjian, E. Jr.

    1997-11-01

    The California regulations for liner systems at municipal solid waste (MSW) landfills require that alternatives to the prescriptive federal Subtitle D liner system have a containment capability greater than that of the prescriptive system. Regulators may also require a demonstration that use of the prescriptive system is burdensome prior to approval of an alternative liner design. This paper presents seven case histories of the design and installation of geosynthetic clay liners (GCL) as an alternative to the low-permeability soil component of the prescriptive Subtitle D composite liner system at MSW landfills in California. These case histories cover GCLs from different manufacturers and landfill sites with a wide range of conditions including canyon landfills with slopes as steep as 1H:1V.

  3. Method and apparatus for off-gas composition sensing

    DOEpatents

    Ottesen, David Keith; Allendorf, Sarah Williams; Hubbard, Gary Lee; Rosenberg, David Ezechiel

    1999-01-01

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  4. Method and apparatus for off-gas composition sensing

    SciTech Connect

    Ottesen, D.K.; Allendorf, S.W.; Hubbard, G.L.; Rosenberg, D.E.

    1999-11-16

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  5. Melt-infiltrated Sic Composites for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2004-01-01

    SiC-SiC ceramic matrix composites (CMCs) manufactured by the slurry -cast melt-infiltration (MI) process are leading candidates for many hot-section turbine engine components. A collaborative program between Goodrich Corporation and NASA-Glenn Research Center is aimed at determining and optimizing woven SiC/SiC CMC performance and reliability. A variety of composites with different fiber types, interphases and matrix compositions have been fabricated and evaluated. Particular focus of this program is on the development of interphase systems that will result in improved intermediate temperature stressed-oxidation properties of this composite system. The effect of the different composite variations on composite properties is discussed and, where appropriate, comparisons made to properties that have been generated under NASA's Ultra Efficient Engine Technology (UEET) Program.

  6. Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece

    NASA Astrophysics Data System (ADS)

    Shimizu, Aya; Sumino, Hirochika; Nagao, Keisuke; Notsu, Kenji; Mitropoulos, Panagiotis

    2005-02-01

    In contrast to most other arcs with oceanic plate subduction, the Aegean arc is characterized by continent-continent subduction. Noble gas abundances and isotopic compositions of 45 gas samples have been determined from 6 volcanoes along the arc, 2 islands in the back-arc region and 7 sites in the surrounding areas. The 3He/ 4He ratios of the samples ranged from 0.027 RA to 6.2 RA ( RA denotes the atmospheric 3He/ 4He ratio of 1.410 -6), demonstrating that even the maximum 3He/ 4He ratio in the region is significantly lower than the maximum ratios of most oceanic subduction systems, which are equal to the MORB value of 81 RA. Regional variations in the 3He/ 4He ratio were observed both along and across the arc. The maximum 3He/ 4He ratio was obtained from Nisyros volcano located in the eastern end of the arc, and the ratio decreased westward possibly reflecting the difference in potential degree of crustal assimilation or the present magmatic activity in each volcano. Across the volcanic arc, the 3He/ 4He ratio decreased with an increasing distance from the arc front, reaching a low ratio of 0.063 RA in Macedonia, which suggested a major contribution of radiogenic helium derived from the continental crust. At Nisyros, a temporal increase in 3He/ 4He ratio due to ascending subsurface magma was observed after the seismic crisis of 1995-1998 and mantle neon was possibly detected. The maximum 3He/ 4He ratio (6.2 RA) in the Aegean region, which is significantly lower than the MORB value, is not probably due to crustal assimilation at shallow depth or addition of slab-derived helium to MORB-like mantle wedge, but inherent characteristics of the subcontinental lithospheric mantle (SCLM) beneath the Aegean arc.

  7. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills. PMID:25488731

  8. Claymax landfill cap

    SciTech Connect

    Selby, C.L.

    1989-12-15

    A commercial product called Claymax'' consisting of one-quarter inch of bentonite clay between two geotextile sheets is a candidate landfill cap to replace kaolin caps. A permeability apparatus incorporating a 20 foot water head was operated for 56 days to estimate a Claymax permeability of 2 {times} 10{sup {minus}9} cm/sec compared with 10{sup {minus}8}, the EPA max for a burial site cap. 1 fig.

  9. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  10. Landfills in karst terrains

    SciTech Connect

    Hughes, T.H. ); Memon, B.A.; LaMoreaux, P.E. )

    1994-06-01

    State and Federal regulations have established restrictions for location of hazardous waste and municipal, solid waste landfills. Regulations require owners/operators to demonstrate that the hydrogeology has been completely characterized at proposed landfills, and that locations for monitoring wells have been properly selected. Owners/operators are also required to demonstrate that engineering measures have been incorporated in the design of the municipal solid waste landfills, so that the site is not subject to destabilizing events, as a result of location in unstable areas, such as karst terrains. Karst terrains are typically underlain by limestone or dolomite, and may contain a broad continuum of karst features and karst activity. Preliminary investigation of candidate sites will allow ranking of the sites, rejection of some unsuitable sites, and selection of a few sites for additional studies. The complexity of hydrogeologic systems, in karst terrains, mandates thorough hydrogeologic studies to determine whether a specific site is, or can be rendered, suitable for a land disposal facility. Important components of hydrogeologic studies are: field mapping of structural and stratigraphic units; interpretation of sequential aerial photographs; test drilling and geophysical analyses; fracture analyses; seasonal variation in water-levels; spatial variation of hydraulic characteristics of the aquifer and aquiclude; velocity and direction of movement of ground water within aquifers; determination of control for recharge, discharge, and local base level; and evaluation of the effects of man's activities, such as pumping, dewatering and construction.

  11. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  12. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOEpatents

    Morrison, Jay Alan; Merrill, Gary Brian; Ludeman, Evan McNeil; Lane, Jay Edgar

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  13. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach. PMID:16869439

  14. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  15. Gas and condensate composition in the deep Tuscaloosa trend, southern Louisiana - influence of oil and wet gas cracking

    SciTech Connect

    Claypool, G.E.; Rooney, M.A.; Vuletich, A.K. )

    1996-01-01

    Natural gas and condensate samples from 34 wells in six fields producing from deep Tuscaloosa sandstones show regular changes in chemical and isotopic composition with increasing depth of burial. A gas-condensate system at 5.2 km (17,000 ft) changes to dry gas at 6.1 km (20,500 ft). Carbon isotopic compositions of ethane and propane become heavier ([delta] [sup 13]C[sub 2] increases from -31 to -23 permil); ([delta][sup 13]C[sub 3] increases from -29 to -21 permil), while methane becomes lighter ([delta][sup 13]C[sub 1] decreases from -38 to -42 permil). Depletion of condensate liquids relative to gas over this same depth interval (condensate/gas ratios decrease from 120 to 1 bbl/mmcf) is accompanied by systematic molecular and isotopic changes in the residual liquids. Higher molecular-weight (>C[sub 20]) hydrocarbons are progressively depleted, and isoprenoids are lost relative to adjacent normal alkanes. The liquids shift to heavier [delta][sup 13]C values (from -27 to -23 permil). These changes are believed to be caused by thermal cracking and progressive conversion of oil and wet gas hydrocarbons to dry gas in Tuscaloosa reservoirs at temperatures of 165 to 195[degrees]C.

  16. Gas and condensate composition in the deep Tuscaloosa trend, southern Louisiana - influence of oil and wet gas cracking

    SciTech Connect

    Claypool, G.E.; Rooney, M.A.; Vuletich, A.K.

    1996-12-31

    Natural gas and condensate samples from 34 wells in six fields producing from deep Tuscaloosa sandstones show regular changes in chemical and isotopic composition with increasing depth of burial. A gas-condensate system at 5.2 km (17,000 ft) changes to dry gas at 6.1 km (20,500 ft). Carbon isotopic compositions of ethane and propane become heavier ({delta} {sup 13}C{sub 2} increases from -31 to -23 permil); ({delta}{sup 13}C{sub 3} increases from -29 to -21 permil), while methane becomes lighter ({delta}{sup 13}C{sub 1} decreases from -38 to -42 permil). Depletion of condensate liquids relative to gas over this same depth interval (condensate/gas ratios decrease from 120 to 1 bbl/mmcf) is accompanied by systematic molecular and isotopic changes in the residual liquids. Higher molecular-weight (>C{sub 20}) hydrocarbons are progressively depleted, and isoprenoids are lost relative to adjacent normal alkanes. The liquids shift to heavier {delta}{sup 13}C values (from -27 to -23 permil). These changes are believed to be caused by thermal cracking and progressive conversion of oil and wet gas hydrocarbons to dry gas in Tuscaloosa reservoirs at temperatures of 165 to 195{degrees}C.

  17. [Research advances in control of N2O emission from municipal solid waste landfill sites].

    PubMed

    Cai, Chuan-Yu; Li, Bo; Lü, Hao-Hao; Wu, Wei-Xiang

    2012-05-01

    Landfill is one of the main approaches for municipal solid waste treatment, and landfill site is a main emission source of greenhouse gases nitrous oxide (N2O) and methane (CH4). As a high-efficient trace greenhouse gas, N2O has a very high warming potential, with a warming capacity 296 times of CO2, and has a long-term stability in atmosphere, giving greater damage to the ozone layer. Aiming at the researches in the control of N2O emission from municipal solid waste landfill sites, this paper summarized the characteristics and related affecting factors of the N2O emission from the landfill sites, and put forward a series of the measures adaptable to the N2O emission control of present municipal solid waste landfill sites in China. Some further research focuses on the control of N2O emission from the landfill sites were also presented. PMID:22919857

  18. Development of a coupled reactor model for prediction of organic contaminant fate in landfills.

    PubMed

    Lowry, Michael I; Bartelt-Hunt, Shannon L; Beaulieu, Stephen M; Barlaz, Morton A

    2008-10-01

    Models describing the behavior of organic chemicals in landfills can be useful to predict their fate and transport and also to generate input data for estimates of exposure and risk. The landfill coupled-reactor (LFCR) model developed in this work simulates a landfill as a series of fully mixed reactors, each representing a daily volume of waste. The LFCR model is a numerical model allowing time-variable input parameters such as gas generation, and cover type and thickness. The model was applied to three volatile organic chemicals (acetone, toluene, benzene) as well as naphthalene and the chemical warfare agent sarin under three landfill conditions (conventional, arid, bioreactor). Sarin was rapidly hydrolyzed, whereas naphthalene was largely associated with the landfill solid phase in all scenarios. Although similar biodegradation rates were used for acetone and toluene, toluene was more persistent in the landfill due to its hydrophobicity. The cover soil moisture content had a significant impact on gaseous diffusive losses. PMID:18939584

  19. A Philippinite with an Unusually Large Bubble: Gas Pressure and Noble Gas Composition

    NASA Astrophysics Data System (ADS)

    Matsuda, J.; Maruoka, T.; Pinti, D. L.; Koeberl, C.

    1995-09-01

    Bubbles are common in tektites, but usually their sizes range up to only a few mm. They are most abundant in Muong Nong-type tektites. The gases contained in these bubbles are of terrestrial atmospheric composition, with pressures below 1 atm (e.g., [1]). The abundances of light noble gases (He, Ne) are controlled by diffusion from the atmosphere [2], and noble gases dissolved in tektite glass indicate that the glass solidified at atmospheric pressures equivalent to about 40 km altitude [3]. Large bubbles in splash-form tektites are rather rare. Thus, the finding that a philippinite (size: 6.0 x 4.5 cm; weight: 199.6 g) contains an unusually large bubble justified a detailed study. The volume of the bubble, which was confirmed by X-ray photography, was estimated at 5.4 cm^3, by comparing the density of this tektite (2.288 g/cm^3) to that of normal philippinites (2.438 g/cm^3). A device was specifically constructed for crushing the present sample under vacuum. The 10x10 cm cylindrical device has a piston that allows to gently crush the sample by turning a handle. Various disk spacers can be used to adjust the inner height to that of the sample. The device is made of stainless steel, yielding a low noble gas blank. The crushing device is connected to a purification line and a noble gas sector-type mass spectrometer (VG 5400) [4]. Before crushing, the complete tektite was wrapped in aluminum foil. A first crushing attempt, using stainless steel disk spacers, failed and resulted in damage to the steel spacers, indicating a high strength of the tektite. Using iron disk spacers resulted in an ambient pressure increase (probably due to hydrogen from the Fe) in the sample chamber. However, the noble gas blanks were negligible. The background pressure, at 2 x 10-4 Torr, increased to 3 x 10-4 Torr when the sample was crushed. From the volume of the crushing device and that of the bubble in the tektite, the total gas pressure in the bubble was estimated at about 1 x 10-4 atm. Part of the extracted gas was kept for total gas analysis, while the remainder has been purified for the noble gas measurements. Total amounts and isotopic ratios of all noble gases were measured. The amounts of Ar, Kr, and Xe close to the blank level, while those of He and Ne were about 3 to 4 orders of magnitude larger than the blank. The ^20Ne/^36Ar ratio in the bubble gas is more than 4 orders of magnitude higher than the atmospheric value, which is similar to the pattern previously observed in tektites [2,3,5]. The isotopic ratios of Ar, Kr and Xe were, within uncertainties, similar to those of the terrestrial atmosphere. However, the Ne isotopic ratios were significantly different from atmospheric values, and differ from the results reported in previous studies [2,5]. The Ne isotope data seem to lie on the mass fractionation line from the atmosphere in a ^20Ne/^22Ne vs. ^21Ne/^22Ne three isotope plot, suggesting that the Ne in the bubble has diffused in from the atmosphere. However, it is generally believed that the isotopic fractionation during a steady state is very small, and the observed Ne values are higher than those calculated from simple mass fractionation [6]. The high isotopic fractionation is likely to be associated with the non-equilibrium conditions prevailing during tektite formation. Acknowledgments: We are grateful to D. Heinlein for bringing the precious sample to our attention and for allowing its analysis. References: [1] Jessberger E. K. and Gentner W. (1972) EPSL, 14, 221-225. [2] Matsubara K. and Matsuda J. (1991) Meteoritics, 26, 217-220. [3] Matsuda J. et al. (1993) Meteoritics, 28, 586-599. [4] Maruoka T. and Matsuda J. (1995) J. Mass Spectrom. Soc. Jpn., 43, 1-8. [5] Hennecke et al. (1975) JGR, 80, 2931-2934. [6] Kaneoka I., EPSL, 48, 284-292.

  20. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect

    Koehler, J.

    1998-12-31

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  1. CHEMICAL COMPOSITION OF EXHAUST PARTICLES FROM GAS TURBINE ENGINES

    EPA Science Inventory

    A program was conducted to chemically characterize particulate emissions from a current technology, high population, gas turbine engine. Attention was focused on polynuclear aromatic compounds, phenols, nitrosamines and total organics. Polynuclear aromatic hydrocarbons (PAH) were...

  2. Decolorization of landfill leachate using electrochemical oxidation technique

    NASA Astrophysics Data System (ADS)

    Jumaah, Majd Ahmed; Othman, Mohamed Rozali

    2015-09-01

    The study was carried out to investigate the electrochemical oxidation of landfill leachate from the Jeram sanitary landfill leachate using charcoal base metallic composite electrodes. The control parameters used were applied voltage, Cl- concentration (as supporting electrolyte) and pH of the solution. The optimum conditions obtained were NaCl concentration of 1.5 % (w/v), applied voltage of 10 V, operating time 180 min and C60CG Co10PVC15 electrode as an anode.15 Electrochemical treatment using charcoal base metallic composite electrode was able to remove color up to 79%.

  3. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  4. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  5. Compositional Discrimination of Decompression and Decomposition Gas Bubbles in Bycaught Seals and Dolphins

    PubMed Central

    Bernaldo de Quirós, Yara; Seewald, Jeffrey S.; Sylva, Sean P.; Greer, Bill; Niemeyer, Misty; Bogomolni, Andrea L.; Moore, Michael J.

    2013-01-01

    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis. PMID:24367623

  6. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    DOEpatents

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  7. A finite element simulation of biological conversion processes in landfills

    SciTech Connect

    Robeck, M.; Ricken, T.

    2011-04-15

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  8. LANDFILL GAS CONSUMPTION IN RHIZOSPHERE OF ALTERNATIVE LANDFILL COVERS

    EPA Science Inventory

    The two identical 12 ft by 12 ft by 12 ft, polished stainless steel, insulated Environmental Chambers, located within the Testing and Evaluation (T&E) Facility, incorporate unique design features. Each chamber is equipped with 16 light fixtures containing a total of 32 light bulb...

  9. Compositional Effect on Hydrate/Free Gas Transition and BSR

    NASA Astrophysics Data System (ADS)

    Gu, G.; Jaiswal, P.; Chapman, W. G.; Zelt, C. A.; Hirasaki, G. J.

    2008-12-01

    Gas hydrate is often characterized in remote detection by seismic profiles and Bottom-Simulating Reflector (BSR), which is due to an abrupt acoustic impedance contrast between the base of gas hydrate stability zone (GHSZ) and free gas layer below. However, in some cases, hydrate is present but BSR is not observed. We hypothesize that multi-hydrocarbon components in a hydrate system can induce a gradual transition of hydrate/free gas saturations, and result in a weak seismic reflection. In this work, we demonstrate that a small fraction of a heavier hydrocarbon component can induce a gradual transition of hydrate/free gas saturations in sediment over a significant distance (relative to acoustic wavelength). If the thermogenic gas source from deeper sediment contains 5% (mol/mol) propane, a transition zone as thick as ~50 m can be formed, in which hydrate, gas, and aqueous phases can co-exist. The saturations of each phase change gradually, causing a gradual transition of acoustic impedance. Seismic waves with different characteristic wavelengths are tested to generate synthetic seismic responses. Results show that, if the ratio of characteristic wavelength to thickness of transition zone (λ/Ltrans) is less than 1, then the reflection is very weak; if the ratio is much higher than 1, the reflection is very strong. This indicates that in the case of a multi-hydrocarbon hydrate system, the reflection response is dependent on the thickness of transition zone and seismic wavelength. This provides a possible mechanism why in some places hydrate is present but BSR is not observed.

  10. Changes in the composition of formation gases in gas-condensate fields formed by vertical migration

    SciTech Connect

    Stepanova, G.S.; Slobodskoy, M.I.; Lukin, A.E.; Levashev, V.N.

    1982-12-01

    A model was developed for calculating the change in gas composition in the pool during its formation by vertical migration. A conical trap with varying cap-rock thickness was considered. Amputations were made for different thermodynamic conditions, different initial states of the gas entering the trap, and different flow rates. The coefficient of compressibility of the gaseous phase was calculated from the Redlich-Quong equation. The results gave the degree of filling of the trap with gas and its composition as functions of time. It was concluded: (1) one of the main factors determining the composition of the formation mixture in a pool formed by vertical migration was diffusion processes, (2) the data on changes in the composition of the formation gas obtained from the theoretical model of hydrocarbon diffusive dispersion through the caprock was not at variance with the actual patterns noted in gas-condensate fields formed by vertical migration and (3) statistical study of fields in the Dnepr-Donets Basin had established a relationship between the composition of the formation gas and the properties of the caprock. 3 references, 4 figures.

  11. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook

    2014-03-15

    Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C. PMID:24473403

  12. NOVEL COMPOSITE MEMBRANES AND PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Ben Bikson; Sal Giglia; Jibin Hao

    2003-03-01

    In the second phase of this project, the newly developed membrane module for natural gas dehydration was tested and evaluated in a pilot plant located at a commercial natural gas treatment site. This phase was undertaken jointly with UOP LLC, our commercialization partner. The field test demonstrated that a commercial-size membrane module for natural gas dehydration was successfully manufactured. The membrane module operated reliably over 1000 psi differential pressure across the membrane in the field test. The effects of feed gas pressure, permeate gas pressure, feed flow rate, purge ratio (flow rate ratio of permeate outlet to feed), and feed gas dew point on the membrane module performance were determined and found to meet the design expectations. Although water vapor permeance was lower than expected, substantial natural gas dehydration was demonstrated with low purge ratio. For example, dew point was suppressed by as much as 30 F with only about 2 {approx} 3% purge ratio. However the bore side pressure drops were significantly higher than the projected value from the fluid dynamic calculation. It is likely that not all the fibers were open in either the sweep or the permeate tube sheet end. This could help to explain the relatively low water vapor permeances that were measured in the field. An economic evaluation of the membrane process and the traditional Triethylene Glycol (TEG) process to dehydrate natural gas was performed and the economics of the two processes were compared. Two sets of membrane module performance properties were used in the economic analysis of the membrane process. One was from the results of this field test and the other from the results of the previous small-scale test with a medium pressure membrane variant conducted at 750 psig. The membrane process was competitive with the TEG process for the natural gas feed flow rate below 10 MMSCFD for the membrane with previously measured water vapor permeance. The membrane process was competitive for the feed flow rate below 1 MMSCFD even for the membrane with the water vapor permeance of this field test.

  13. Radioactivity and elemental analysis in the Ruseifa municipal landfill, Jordan.

    PubMed

    Al-Jundi, J; Al-Tarazi, E

    2008-01-01

    In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36microSva(-1) in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91microSva(-1). The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70microSva(-1). Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn=2.52 and Ba=1.33; old landfill site: Cr=1.88, Zn=3.64, and Ba=1.26; and recent landfill site: Cr=1.57, Zn=2.19, and Ba=1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste. PMID:18215446

  14. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.

    PubMed

    Lee, Sung-Woo; Lowry, Gregory V; Hsu-Kim, Heileen

    2016-02-17

    Mercury (Hg) is present in a variety of solid wastes including industrial wastes, household products, consumer electronics, and medical wastes, some of which can be disposed in conventional landfills. The presence of this neurotoxic metal in landfills is a concern due to the potential for it to leach or volatilize from the landfill and impact local ecosystems. The objective of this review is to describe general practices for the disposal of mercury-bearing solid wastes, summarize previous studies on the release of mercury from landfills, and delineate the expected transformations of Hg within landfill environments that would influence transport of Hg via landfill gas and leachate. A few studies have documented the emissions of Hg as landfill gas, primarily as gaseous elemental Hg(0) and smaller amounts as methylated Hg species. Much less is known regarding the release of Hg in leachate. Landfill conditions are unique from other subsurface environments in that they can contain water with very high conductivity and organic carbon concentration. Landfills also experience large changes in redox potential (and the associated microbial community) that greatly influence Hg speciation, transformations, and mobilization potential. Generally, Hg is not likely to persist in large quantities as dissolved species, since Hg(0) tends to evolve in the gas phase and divalent Hg(ii) sorbs strongly to particulate phases including organic carbon and sulfides. However, Hg(ii) has the potential to associate with or form colloidal particles that can be mobilized in porous media under high organic carbon conditions. Moreover, the anaerobic conditions within landfills can foster the growth of microorganisms that produced monomethyl- and dimethyl-Hg species, the forms of mercury with high potential for bioaccumulation. Much advancement has recently been made in the mercury biogeochemistry research field, and this study seeks to incorporate these findings for landfill settings. PMID:26745831

  15. Leachate recirculation at the Nanticoke sanitary landfill using a bioreactor trench. Final report

    SciTech Connect

    Pagano, J.J.; Scrudato, R.J.; Sumner, G.M.

    1998-02-01

    A one-year landfill leachate recirculation demonstration project was conducted in a 20-acre cell at the Broome County, NY, Nanticoke Landfill using a retrofit bioreactor trench design concept to introduce landfill leachate to the surrounding refuse mass. Over the course of the project, 1.1 million gallons of landfill leachate were distributed through the bioreactor trench, substantially increasing the moisture content (approaching 70%) of the surrounding municipal solid waste. Experimental results also indicate that the bioreactor trench functioned as an in-situ anaerobic bioreactor, effectively treating landfill leachate retained within the trench due to decreasing refuse permeability and enhanced leachate hydraulic retention time. A significant and steady decline was noted in landfill leachate chemical oxygen demand (COD), volatile fatty acid (VFA), and total organic carbon (TOC), suggesting that the rapid biological stabilization of the refuse within the 20-acre demonstration area was influenced by the bioreactor trench. Characterization of the resulting landfill gas indicated that optimum methane:carbon dioxide ratios were measured in all experimental gas wells and in the bioreactor trench. No apparent enhancement of landfill gas production was noted in promixity to the bioreactor trench.

  16. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  17. MONITORING GUIDANCE FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  18. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  19. Changing face of the landfill

    SciTech Connect

    1995-10-01

    Integrated approach at Oregon landfill diverts wood and yard trimmings, while turning methane into power for 1,800 homes. Opened in the 1940`s as an open burn dump, Coffin Butte has evolved over the years into a sophisticated waste management facility incorporating ambitious recovery programs. While some of this change has been driven by regulatory demands, many of Valley Landfill`s innovations have come in response to market opportunities. Valley Landfill`s Processing and Recovery Center (PRC) is located a half mile down the road from the landfill site. Opened in 1990, the facility recycles urban wood waste, yard trimmings and street sweepings. The heart of this operation is a 500 hp horizontal feed, fixed-hammer grinder. Although this machine is typically used only for wood grinding, PRC was able to adapt it to handle both wood and yard trimmings by installing special feed roll assembly to compress green waste passing over the infeed belt. The facility handles approximately 40,000 cubic yards of loose green material and produces 15,000 to 18,000 yards of compost. The finished product is run through a trommel with a 5/8 inch mesh screen. Most of the compost is sold in bulk to area garden centers. A portion is processed through a 3/8 inch shaker screen and sold to a local company for use in bagged soil products. Valley Landfill is a partner in an ambitious project to generate electricity from landfill biogas.

  20. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.

    PubMed

    Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

    2012-11-01

    This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies. PMID:22464865

  1. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, L.; Lewicki, S.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the New Jersey Meadowlands Commission (NJMC) Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ and operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory brings hands-on scientific experiences to the ˜25,000 students and ˜15,000 visitors that come to our site from the NY/NJ region each year.

  2. Using observed data to improve estimated methane collection from select U.S. landfills.

    PubMed

    Wang, Xiaoming; Nagpure, Ajay S; DeCarolis, Joseph F; Barlaz, Morton A

    2013-04-01

    The anaerobic decomposition of solid waste in a landfill produces methane, a potent greenhouse gas, and if recovered, a valuable energy commodity. Methane generation from U.S. landfills is usually estimated using the U.S. EPA's Landfill Gas Emissions Model (LandGEM). Default values for the two key parameters within LandGEM, the first-order decay rate (k) and the methane production potential (L0) are based on data collected in the 1990s. In this study, observed methane collection data from 11 U.S. landfills and estimates of gas collection efficiencies developed from site-specific gas well installation data were included in a reformulated LandGEM equation. Formal search techniques were employed to optimize k for each landfill to find the minimum sum of squared errors (SSE) between the LandGEM prediction and the observed collection data. Across nearly all landfills, the optimal k was found to be higher than the default AP-42 of 0.04 yr(-1) and the weighted average decay for the 11 landfills was 0.09 - 0.12 yr(-1). The results suggest that the default k value assumed in LandGEM is likely too low, which implies that more methane is produced in the early years following waste burial when gas collection efficiencies tend to be lower. PMID:23469937

  3. Reactant gas composition for fuel cell potential control

    DOEpatents

    Bushnell, Calvin L.; Davis, Christopher L.

    1991-01-01

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  4. Use of lightweight composites for GAS payload structures

    NASA Technical Reports Server (NTRS)

    Spencer, Mark B.

    1987-01-01

    A key element in the design of a small self-contained payload is the supporting structure. This structure must support the experiments and other components while using as little space and weight as possible. Hence, the structure material must have characteristics of being both strong and light. Aluminum was used for the structure on the first Purdue University payload, but consumed a relatively large percentage of the total payload weight. The current payload has a larger power supply requirement than did the previous payload. To allow additional weight for the batteries, a composite material has been chosen for the structure which has the required strength while being considerably lighter than aluminum. A radial fin design has been chosen for ease of composite material lay-up and its overall strength of design. A composite plate will connect the free ends of the fins and add strength and reduce vibration. The physical characteristics of the composite material and the method of open lay-up construction is described. Also discussed are the testing, modifications, and problems encountered during assembly of the experiments to the structure.

  5. Public health assessment for Islip Municipal Sanitary Landfill (a/k/a Blydenburgh Road Landfill) Hauppauge, Suffolk County, New York, Region 2. Cerclis No. NYD980506901. Final report

    SciTech Connect

    1996-01-22

    The Islip Landfill site (also known as the Blydenburgh Landfill), which is on the National Priorities List (NPL), is in the Town of Islip, Suffolk County, New York. On-site and off-site groundwater is contaminated with chlorinated solvents. As many as 18 private water supply wells downgradient from the landfill are contaminated with volatile organic compounds (VOCs). In late 1979 and during the early part of 1980, the Town`s consultant determined that soil gas was migrating from the landfill onto neighboring properties. Based on the information reviewed and the Agency for Toxic Substances and Disease Registry`s (ATSDR) criteria, the Islip Landfill was a public health hazard in the past.

  6. Isotope composition (C, H, O) and gas potential assessment in the South Caspian depression (Azerbaijan)

    NASA Astrophysics Data System (ADS)

    Poletayev, A. V.

    2009-04-01

    The large amount of HC isotope composition material of over 330 samples allows to study gas potential assessment within the South Caspian depression. Maps of isotope composition changes according to area extent, as well as graphs of HC distribution depending upon stratigraphic age including rocks, graphs of isotope composition change on sampling depth were compiled for HC study and oil-gas deposits formation. Comparison of mud volcanoes gases, oil and gas fields, gas-hydrates and bottom sediments was conducted. Gases genesis according to M. Shoelle and A. James methodic was studied. Model of area paleoconstruction was studied. Comparison of mud volcanoes gases with gases of oil fields within South Caspian depression shows that their isotope composition varies within the same ranges. Their difference is observed in chemical composition. Mud volcanoes gases are sharply impoverished by amount of heavy hydrocarbons. Study of isotope gases composition distribution in extent area allowed to distinguish zones and areas with different composition of heavy isotope. For example, in the deep-seated areas of the South Caspian depression toward flank zones of Low Kura depression as well some areas of Baku archipelago and Absheron peninsula gradually one can observe zones with a low content of heavy carbon isotope etc. Isotope gases composition depending upon stratigraphic age of including rocks has a certain peculiarities. From low to the upper section of PS as well as deposits of Cretaceous system toward chokrak regiostage (underlying PS deposits) one can observe increase of light carbon isotope. This fact allows to suppose that there exits two stages of HC formation. Comparison of HC gases isotope composition with sampling depth allowed to conclude that in the near-flank zones oil-gas deposits were re-formed by a large gas volumes the source of which was there same deposits within new thermobaric conditions. Gases of biochemical, diagenetic and thermocatalytic genesis etc. were obtained. Isotope HC data in the deposits testify to the fact that within oil-gas bearing suite of Azerbaijan - PS in the deep-seated zones of the South Caspian depression there occurs generation in large amounts of liquid and gaseous HC. The studied chemical and HC gases isotope composition showed that basic source of oil and gas formation is located in the deep areas of central and near-flank parts of depression. HC migration has mainly occurred upward the layer. Study of HC migration trend in time and space and generation areas etc. allows to reveal some structures where there is evidence of HC accumulation with large and gigantic reserves.

  7. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  8. Constraints on the origins of hydrocarbon gas from compositions of gases at their site of origin

    USGS Publications Warehouse

    Price, L.C.; Schoell, M.

    1995-01-01

    IT is widely accepted that natural gas is formed from thermal decomposition of both oil in reservoirs and, to a lesser extent, the organic matter in shales from which the oil was derived1-6. But laboratory pyrolysis experiments on shales do not reproduce the methane-rich composition typical of most gas reservoirs7, leading to suggestions7 that other mechanisms, such as transition-metal catalysis, may be important. The discrepancy might, however, instead arise because gas (and oil) deposits have migrated from their source rocks, so that the reservoir composition might not be representative of the composition in the source rocks where the hydrocarbons were generated. To address this question, we have analysed gas samples coproduced with oils directly from a source rock (the Bakken shales, North Dakota, USA) where the local geology has prevented significant hydrocarbon migration. The methane contents of these Bakken-shale gases are much lower than that of conventional gas reservoirs, but are consistent with that from pyrolysis experiments8,9 on these shales. Thus, because these Bakken gases form with (rather than from) oils, we argue that compositional differences between gases from source rocks and conventional gas deposits result from fractionation processes occurring after hydrocarbon expulsion from the source rock.

  9. Constraints on the origins of hydrocarbon gas from compositions of gases at their site of origin

    PubMed

    Price, L C; Schoell, M

    1995-11-23

    It is widely accepted that natural gas is formed from thermal decomposition of both oil in reservoirs and, to a lesser extent, the organic matter in shales from which the oil was derived. But laboratory pyrolysis experiments on shales do not reproduce the methane-rich composition typical of most gas reservoirs, leading to suggestions that other mechanisms, such as transition-metal catalysis, may be important. The discrepancy might, however, instead arise because gas (and oil) deposits have migrated from their source rocks, so that the reservoir composition might not be representative of the composition in the source rocks where the hydrocarbons were generated. To address this question, we have analysed gas samples coproduced with oils directly from a source rock (the Bakken shales, North Dakota, USA) where the local geology has prevented significant hydrocarbon migration. The methane contents of these Bakken-shale gases are much lower than that of conventional gas reservoirs, but are consistent with that from pyrolysis experiments on these shales. Thus, because these Bakken gases form with (rather than from) oils, we argue that compositional differences between gases from source rocks and conventional gas deposits result from fractionation processes occurring after hydrocarbon expulsion from the source rock. PMID:11536709

  10. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  11. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals

    PubMed Central

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  12. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals.

    PubMed

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO(2), suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  13. Gas-desulfurization plant handles wide range of sour gas compositions

    SciTech Connect

    Taylor, N.A.; Augill, J.A. ); van Kessel, M.M.; Verburg, R.P.J. )

    1991-08-19

    The Nederlandse Aardolie Maatschappij B.V. (NAM) gas desulfurization facilities at Emmen treat a natural gas feed containing H{sub 2}S, CO{sub 2}, and mercaptans, to tight pipeline specifications. This paper reports on the highly selective Sulfinol-M solvent which enables the plant to treat natural gases with a CO{sub 2}/H{sub 2}S ratio as high as 25:1, while producing an acid- gas feed suitable for a conventional Claus unit. To help meet the stringent environmental regulations, an integrated Shell Claus off-gas treating (SCOT) unit achieves an overall sulfur recovery of better than 99.8%.

  14. Composition of matter useful in flue gas desulfurization process

    SciTech Connect

    Lurie, D.

    1983-05-03

    Flue gas having a content of sulfur dioxide is passed upwardly through a scrubbing tower against a descending flow of recycled aqueous sodium aluminate-sodium hydroxide liquor. The sulfur dioxide in the gas is converted to sodium and aluminum sulfates and sulfites and the liquor removes any fly ash present in the gas. Underflow is continuously discharged from the tower and is sent to an evaporator for removal of excess water. Make-up solutions of sodium sulfate and aluminum sulfate are added, as necessary. Carbonaceous reducing agent is added to the discharge from the evaporator. The mixture is continuously fed into a reducing furnace where the sulfates and sulfites are reduced to sulfides. The product of the furnace (Molten sodium and aluminum sulfides) is charged into a continuous hydrolyzer. Hydrogen sulfide is evolved and collected, and, if desired, its sulfur content is converted to elementary sulfur. The underflow from the hydrolyzer is filtered. The filtrate is aqueous sodium aluminate sodium hydroxide solution which is recycled to the scrubbing tower.

  15. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    SciTech Connect

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-15

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  16. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA).

    PubMed

    Read, A D; Hudgins, M; Phillips, P

    2001-01-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices. PMID:11530917

  17. Gas-phase detonation propagation in mixture composition gradients.

    PubMed

    Kessler, D A; Gamezo, V N; Oran, E S

    2012-02-13

    The propagation of detonations through several fuel-air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon-air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient. PMID:22213660

  18. The best MSW treatment option by considering greenhouse gas emissions reduction: a case study in Georgia.

    PubMed

    Tayyeba, Omid; Olsson, Monika; Brandt, Nils

    2011-08-01

    The grave concern over climate change and new economic incentives such as the clean development mechanism (CDM) have given more weight to the potential of projects for reducing greenhouse gas (GHG) emissions. In the Adjara solid waste management project, even though the need for reductions in GHG emissions is acknowledged, it is not one of the key factors for selecting the most appropriate treatment method. This study addresses the benefit of various solid waste treatment methods that could be used in the Adjara project in terms of reducing GHG emissions. Seven different options for solid waste treatment are examined: open dumping as the baseline case, four options for landfill technology (no provision of landfill gas capture, landfill gas capture with open flare system, with enclosed flare system and with electricity generation), composting and anaerobic digestion with electricity production. CDM methodologies were used to quantify the amount of reductions for the scenarios. The study concludes sanitary landfill with capture and burning of landfill gas by an enclosed flare system could satisfy the requirements, including GHG reduction potential. The findings were tested for uncertainty and sensitivity by varying the data on composition and amount of waste and were found to be robust. PMID:21382876

  19. Stable volcanic gas composition during a variety of activities at the persistently degassing Asama volcano, Japan

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Ohminato, Takao; Takeo, Minoru; Tsuji, Hiroshi; Kazahaya, Ryunosuke

    2015-04-01

    Asama volcano at central Japan is a persistently degassing andesitic volcano and repeated eruptions every several years. The recent eruptions occurred in September 2004, August 2008 and February 2009 and are followed by increase of the volcanic gas emission during several months. The SO2 flux is typically 1,000-4,000 t/d during the high flux period after the eruption, whereas the flux is around 100 t/d during the low gas flux periods. This study aims to understand the controlling process of volcano degassing based on the volcanic gas composition data. In particular, we focus to evaluate the gas composition contrast between the high and low gas flux periods. Since 2004, we repeated manual measurements of Multi-GAS and alkali-filters at the summit crater of the volcano and installed an automatic Multi-GAS monitoring station for a daily measurement at the western rim of the summit crater in 2010. During our observation, the high flux period occurred twice, 2004-2006 and 2008-2010, both with eruptive activities. In spite of the large SO2 flux variation and eruptions, we did not see any clear variation in the gas compositions during these periods. The typical CO2/SO2 ratios of 0.8 and H2O/SO2 ratios of 30 were measured both during the high flux periods and the low flux periods. A manual gas measurement was conducted on 13 Sept. 2004, after a small vulcanian eruption on 1st Sept. and just before the continuous ash emission started on 15 Sept, however, the measured gas compositions are similar with those during other periods. The HCl/SO2 ratios measured with the alikali-filters agree well with those obtained by FT-IR on 15 and 16th Sept, as well as those by leachates of ashes erupted during this period. The constant gas composition suggests a stable degassing conditions regardless of the variety of the activity. The similar HCl/SO2 ratios obtained during both the eruptive period and the persistent degassing stage indicate a low pressure gas degassing, suggesting the conduit magma convection.

  20. Determination of gas composition in a biogas plant using a Raman-based sensor system

    NASA Astrophysics Data System (ADS)

    Eichmann, S. C.; Kiefer, J.; Benz, J.; Kempf, T.; Leipertz, A.; Seeger, T.

    2014-07-01

    We propose a gas sensor, based on spontaneous Raman scattering, for the compositional analysis of typical biogas mixtures and present a description of the sensor, as well as of the calibration procedure, which allows the quantification of condensable gases. Moreover, we carry out a comprehensive characterization of the system, in order to determine the measurement uncertainty, as well as influences of temperature and pressure fluctuation. Finally, the sensor is applied at different locations inside a plant in which biogas is produced from renewable raw materials. The composition is monitored after fermenting, after purification and after the final conditioning, where natural gas is added. The Raman sensor is able to detect all the relevant gas components, i.e. CH4, CO2, N2 and H2O, and report their individual concentrations over time. The results were compared to reference data from a conventional gas analyzer and good agreement was obtained.

  1. Use of compositional simulation in the management of Arun gas condensate reservoir

    SciTech Connect

    Sutan-Assin, T.; Rastogi, S.C.; Abdullah, M. ); Hidayat, D. ); Bette, S.; Heineman, R.F. )

    1988-01-01

    This paper describes the simulation of the Arun gas condensate reservoir using a fully compositional simulator, COSMOS (COmpositional System Mobil Oil Simulator). The reservoir is a Miocene carbonate reef complex which occurs at a depth of approximately 10,000 feet, and is up to 1,000 feet thick in some areas. The Arun reservoir is a compositionally dynamic system. The purpose of this simulation study was to predict future reservoir performance under various demand scenarios and optimize gas and NGL recovery. The simulation model utilizes the Peng-Robinson equation of state to account for the compositionally dynamic behavior of the reservoir in predictions of future performance. The equation of state was modified to incorporate special features for Arun such as water vaporization in the reservoir under high temperature conditions.

  2. Separation of gases through gas enrichment membrane composites

    DOEpatents

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  3. Separation of gases through gas enrichment membrane composites

    DOEpatents

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  4. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

  5. Variation of Volcanic Gas Composition at a Persistently Degassing Asama Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Ohminato, T.; Takeo, M.

    2013-12-01

    Asama volcano at central Japan is a persistently degassing andesitic volcano and repeated eruptions every several years. The recent eruptions occurred in September 2004, August 2008 and February 2009 and are followed by increase of the volcanic gas emission during several months. The SO2 flux is typically 1,000-4,000 t/d during the high flux period after the eruption, whereas the flux is around 100 t/d during the low gas flux periods (JMA, 2013; Ohwada et al., in review). This study aims to understand the controlling process of volcano degassing based on the volcanic gas composition data. In particular, we focus to evaluate the gas composition contrast between the high and low gas flux periods. As the fumaroles and degassing vent locate in the summit crater of 500-m-diamter and are inaccessible, we estimated the gas composition by plume measurements with the Multi-GAS at the crater rim. The HCl/SO2 ratios are obtained by the alkali-filter trap. We started the repeat Multi-GAS measurements in 2004 and installed an automatic Multi-GAS monitoring station for a daily measurement at the western rim of the summit crater in 2010. The gas compositions obtained by the Multi-GAS measurements are often scattered even during the day of measurements, in particular during the low flux period and the scatter is likely due to variable contamination of gases from low-temperature fumaroles locating along the crater rim because the low-temperature fumaroles locate closer to the measurement site that the major degassing vent at the bottom of the crater. If we plot the gas concentration ratio, such as CO2/SO2 against SO2 concentration, the ratio commonly converges to a certain value at high SO2 concentration and this ratio is considered as representative of the major gas emission. The estimated molar ratios are CO2/SO2=1×0.5, HCl/SO2=0.2×0.1 and H2O/SO2=60×30 without clear contrast during the high and low flux periods. The CO2/SO2 ratios obtained based on a single day data tend to be higher than the average, however, the analyses with a larger data set, e.g., for a month, results in the average value. The HCl/SO2 ratios agree well with those obtained during the 2004 eruptive period by FT-IR and ash-leachate analyses with the range of 0.15-0.2 and 0.1-0.2, respectively (Mori and Notsu, 2005; Nogami et al., 2004). The H2O/SO2 ratios also tend to be higher during the low flux period and this can be due to a larger contribution of meteoric water during the low flux period. The constant gas composition regardless of the large variation of the gas flux suggests that the degassing process and its condition remains the same for the high and low flux periods. The similar HCl/SO2 ratio obtained during both the eruptive period by FT-IR and ash leachate and the persistent degassing stage in this study indicates that persistent degassing is fed by low pressure gas separation from continuously ascending magmas, consistent with the conduit magma convection model (Ohwada et al., in review; Shinohara, 2008). Based on the conduit magma convection model, the large flux changes without variation of the gas composition can be caused by the change of the magma convection rate with similar degassing pressure and magma composition.

  6. Preparation and characterization of composite membrane for high temperature gas separation

    SciTech Connect

    Ilias, S.; King, F.G.; Su, N.

    1994-10-01

    The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates and then characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane fabrication; Characterization of composite membrane; and Development of theoretical model for hydrogen gas separation. The experimental procedures are described.

  7. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus

    SciTech Connect

    Amole, C.; Capra, A.; Menary, S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Little, A.; Povilus, A.; So, C.; Turner, M.; Bertsche, W.; Butler, E.; Cesar, C. L.; Silveira, D. M.; Charlton, M.; Eriksson, S.; Isaac, C. A.; Madsen, N.; Napoli, S. C.; Collaboration: ALPHA Collaboration; and others

    2013-06-15

    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

  8. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  9. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  10. The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment

    NASA Astrophysics Data System (ADS)

    Mwiganga, M.; Kansiime, F.

    Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (<200 m) and cattle farms. It is also located upstream of a wetland. The landfill generates nuisances like bad odour; there is scattering of waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.

  11. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  12. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  13. Calibration of the U.S. EPA`s landfill air emissions estimation model for dispersion modelling of vinyl chloride at municipal landfills

    SciTech Connect

    Alberico, J.J.; Handy, B.; Chadder, D.S.

    1997-12-31

    Ambient air quality monitoring programs of vinyl chloride have been conducted at two municipal landfills -- Eastview and Britannia -- in Ontario, Canada. These programs were designed to provide actual data as a basis for better estimating impacts of vinyl chloride emitted from the landfills on the surrounding environment. Dispersion modelling was conducted to replicate vinyl chloride levels measured during the sampling programs. This was accomplished by using the vinyl chloride emission rates determined by the US EPA`s Landfill Air Emissions Estimation Model and modelling the same meteorological conditions and sampling locations recorded during the monitoring program. This emissions model is known to produce conservative estimates of gas emissions from landfills. Predicted vinyl chloride levels were generally much higher than the measured values at both landfill sites. Based on statistical comparisons of the data sets, it was found that predicted vinyl chloride levels were 4 and 51 times higher than levels measured at the Eastview and Britannia Landfill sites, respectively. These reduction factors were applied to the emission rates estimated by the emissions model and the predicted impacts were re-assessed. These reduction factors ensure a more realistic prediction of vinyl chloride levels but still ensure that the predicted levels were generally higher than the measured levels. The air quality impact, when generated using the adjusted model, indicated no need for mitigation measures such as landfill gas collection and destruction.

  14. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  15. Central Appalachian basin natural gas database: distribution, composition, and origin of natural gases

    USGS Publications Warehouse

    Román Colón, Yomayra A.; Ruppert, Leslie F.

    2015-01-01

    The U.S. Geological Survey (USGS) has compiled a database consisting of three worksheets of central Appalachian basin natural gas analyses and isotopic compositions from published and unpublished sources of 1,282 gas samples from Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The database includes field and reservoir names, well and State identification number, selected geologic reservoir properties, and the composition of natural gases (methane; ethane; propane; butane, iso-butane [i-butane]; normal butane [n-butane]; iso-pentane [i-pentane]; normal pentane [n-pentane]; cyclohexane, and hexanes). In the first worksheet, location and American Petroleum Institute (API) numbers from public or published sources are provided for 1,231 of the 1,282 gas samples. A second worksheet of 186 gas samples was compiled from published sources and augmented with public location information and contains carbon, hydrogen, and nitrogen isotopic measurements of natural gas. The third worksheet is a key for all abbreviations in the database. The database can be used to better constrain the stratigraphic distribution, composition, and origin of natural gas in the central Appalachian basin.

  16. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, L.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in astronomical activities is one of the main goals of the New Jersey Meadowlands Commission Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ, operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of the International Year of Astronomy 2009 (IYA2009) to the ˜25,000 students and ˜15,000 visitors that visit our site from the NY/NJ region each year.

  17. Determination of breath gas composition of lung cancer patients using gas chromatography/mass spectrometry with monolithic material sorptive extraction.

    PubMed

    Ma, Wen; Gao, Peng; Fan, Jun; Hashi, Yuki; Chen, Zilin

    2015-06-01

    A gas chromatographic-mass spectrometric method with monolithic material sorptive extraction (MMSE) pretreatment was developed to determine the breath gas composition in lung cancer patients. MonoTrap silica monolithic and hybrid adsorbent was selected as the extraction medium during MMSE, given its strong capacity to extract volatile organic compounds (VOC) from exhaled gas. Under the appropriate conditions, high extraction efficiency was achieved. Using the selected ion-monitoring mode, the limit of detection (signal-to-noise ratio 3) for the benzene series was 0.012-2.172?ng?L(-1) . The limit of quantitation (signal-to-noise ratio, 10) was 0.042-7.24?ng?L(-1) . The linearity range of the method was 4-400?ng?L(-1) . Average recovery of the benzene series at lower concentrations was 65-74% (20?ng?L(-1) ). The relative standard deviation of benzene series contents determined within the linear range of detection was <10% of the mean level determined. Our proposed method is simple, rapid and sensitive, and can be competently applied to determine the breath gas composition of lung cancer patients. PMID:25421853

  18. Release and conversion of ammonia in bioreactor landfill simulators.

    PubMed

    Lubberding, Henk J; Valencia, Roberto; Salazar, Rosemarie S; Lens, Piet N L

    2012-03-01

    Bioreactor landfills are an improvement to normal sanitary landfills, because the waste is stabilised faster and the landfill gas is produced in a shorter period of time in a controlled way, thus enabling CH(4) based energy generation. However, it is still difficult to reach, within 30 years, a safe status of the landfill due to high NH(4)(+) levels (up to 3 g/L) in the leachate and NH(4)(+) is extremely important when defining the closure of landfill sites, due to its potential to pollute aquatic environments and the atmosphere. The effect of environmental conditions (temperature, fresh versus old waste) on the release of NH(4)(+) was assessed in experiments with bench (1 L) and pilot scale (800 L) reactors. The NH(4)(+) release was compared to the release of Cl(-) and BOD in the liquid phase. The different release mechanisms (physical, chemical, biological) of NH(4)(+) and Cl(-) release from the solid into the liquid phase are discussed. The NH(4)(+) level in the liquid phase of the pilot scale reactors starts decreasing after 100 days, which contrasts real-scale observations, where the NH(4)(+) level increases or remains constant. Based on the absence of oxygen in the simulators, the detectable levels of hydrazin and the presence of Anammox bacteria, it is likely that Anammox is involved in the conversion of NH(4)(+) into N(2). Nitrogen release was shown to be governed by physical and biological mechanisms and Anammox bacteria are serious candidates for the nitrogen removal process in bioreactor landfills. These results, combined with carbon removal and improved hydraulics, will accelerate the achievement of environmental sustainability in the landfilling of municipal solid waste. PMID:20884112

  19. Isotopic composition of gas hydrates in subsurface sediments from offshore Sakhalin Island, Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Hachikubo, Akihiro; Krylov, Alexey; Sakagami, Hirotoshi; Minami, Hirotsugu; Nunokawa, Yutaka; Shoji, Hitoshi; Matveeva, Tatiana; Jin, Young K.; Obzhirov, Anatoly

    2010-06-01

    Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500-50,000, while δ13C and δD values of methane ranged from -66.0 to -63.2‰ VPDB and -204.6 to -196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., -40.8 to -27.4‰ VPDB and -41.3 to -30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3-16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.

  20. Venus lower atmospheric composition - Analysis by gas chromatography

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  1. Development of ceramic composite hot-gas filters

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J.

    1995-04-01

    A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to fullsize, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are underway. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues and the status of commercialization of the filters are described.

  2. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  3. Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process

    NASA Astrophysics Data System (ADS)

    Xu, Xiongwen; Liu, Jinping; Cao, Le

    2014-01-01

    In this paper, the energy optimization of the PRICO natural gas liquefaction (LNG) process was performed with the genetic algorithm (GA) and the process simulation software Aspen Plus. Then the characteristics of the heat transfer composite curves of the cold box were obtained and analyzed. Based on it, the heat exchange process in the cold box was divided into three regions. At last, in order to find the relationship between the energy consumption and the composition of the mixed refrigerant, the effects of the refrigerant flow composition on the temperature difference and the pinch point location were deeply investigated, which would be useful to guide the refrigerant charging.

  4. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  5. LANDFILL CONTAINMENT AND COVER SYSTEMS

    EPA Science Inventory

    The U.S. Environmental Protection Agency through its research and field experiences has developed control strategies for hazardous and municipal solid waste landfills and surface impoundments. hese control strategies include liner and cover systems. he liner systems include doubl...

  6. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    PubMed Central

    Bairi, Venu Gopal; Bourdo, Shawn E.; Sacre, Nicolas; Nair, Dev; Berry, Brian C.; Biris, Alexandru S.; Viswanathan, Tito

    2015-01-01

    A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported. PMID:26501291

  7. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    PubMed

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-01-01

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported. PMID:26501291

  8. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas re