Science.gov

Sample records for landing systems analysis

  1. Land Analysis System (LAS)

    NASA Technical Reports Server (NTRS)

    Pease, P. B.

    1989-01-01

    Version 4.1 of LAS provides flexible framework for algorithm development and processing and analysis of image data. Over 500,000 lines of code enable image repair, clustering, classification, film processing, geometric registration, radiometric correction, and manipulation of image statistics.

  2. Microwave landing system autoland system analysis

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Craven, B. K.

    1991-01-01

    The objective was to investigate the ability of present day aircraft equipped with automatic flight control systems to fly advanced Microwave Landing Systems (MLS) approaches. The tactical approach used to achieve this objective included reviewing the design and autoland operation of the MD-80 aircraft, simulating the MLS approaches using a batch computer program, and assessing the performance of the autoland system from computer generated data. The results showed changes were required to present Instrument Landing System (ILS) procedures to accommodate the new MLS curved paths. It was also shown that in some cases, changes to the digital flight guidance systems would be required so that an autoland could be performed.

  3. Entry, Descent and Landing Systems Analysis Study: Phase 1 Report

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Komar, David R.; Munk, Michelle M.; Samareh, Jamshid A.; Powell, Richard W.; Shidner, Jeremy D.; Stanley, Douglas O.; Wilhite, Alan W.; Kinney, David J.; McGuire, M. Kathleen; Arnold, James O.; Howard, Austin R.; Sostaric, Ronald R.; Studak, Joseph W.; Zumwalt, Carlie H.; Llama, Eduardo G.; Casoliva, Jordi; Ivanov, Mark C.; Clark, Ian; Sengupta, Anita

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the motivation, approach and top-level results from Year 1 of the study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission

  4. An overview of the Land Analysis System (LAS)

    NASA Technical Reports Server (NTRS)

    Lu, Yun-Chi

    1986-01-01

    An outline covering the history, development methodology, and major hardware/software components of the Land Analysis System (LAS) is presented. System support services including the Transportable Applications Executive (TAE), Catalog Manager, history files, and applications services are briefly described along with the general functional capabilities of the 224 available applications programs. Example interface menus are given and desired enhancements to the LAS system are listed.

  5. An economic systems analysis of land mobile radio telephone services

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Stevenson, S. M.

    1980-01-01

    This paper deals with the economic interaction of the terrestrial and satellite land-mobile radio service systems. The cellular, trunked and satellite land-mobile systems are described. Parametric equations are formulated to allow examination of necessary user thresholds and growth rates as functions of system costs. Conversely, first order allowable systems costs are found as a function of user thresholds and growth rates. Transitions between satellite and terrestrial service systems are examined. User growth rate density (user/year/km squared) is shown to be a key parameter in the analysis of systems compatibility. The concept of system design matching the price demand curves is introduced and examples are given. The role of satellite systems is critically examined and the economic conditions necessary for the introduction of satellite service are identified.

  6. The Land Analysis System (LAS) for multispectral image processing

    USGS Publications Warehouse

    Wharton, S. W.; Lu, Y. C.; Quirk, Bruce K.; Oleson, Lyndon R.; Newcomer, J. A.; Irani, Frederick M.

    1988-01-01

    The Land Analysis System (LAS) is an interactive software system available in the public domain for the analysis, display, and management of multispectral and other digital image data. LAS provides over 240 applications functions and utilities, a flexible user interface, complete online and hard-copy documentation, extensive image-data file management, reformatting, conversion utilities, and high-level device independent access to image display hardware. The authors summarize the capabilities of the current release of LAS (version 4.0) and discuss plans for future development. Particular emphasis is given to the issue of system portability and the importance of removing and/or isolating hardware and software dependencies.

  7. Dynamic heave-pitch analysis of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Captain, K. M.; Boghani, A. B.; Wormley, D. N.

    1975-01-01

    A program to develop analytical tools for evaluating the dynamic performance of Air Cushion Landing Systems (ACLS) is described. The heave (vertical) motion of the ACLS was analyzed, and the analysis was extended to cover coupled heave-pitch motions. The mathematical models developed are based on a fundamental analysis of the body dynamics and fluid mechanics of the aircraft-cushion-runway interaction. The air source characteristics, flow losses in the feeding ducts, trunk and cushion, the effects of fluid compressibility, and dynamic trunk deflections, including ground contact are considered. A computer program, based on the heave-pitch analysis, was developed to simulate the dynamic behavior of an ACLS during landing impact and taxi over an irregular runway. The program outputs include ACLS motions, loadings, pressures, and flows as a function of time. To illustrate program use, three basic types of simulations were carried out. The results provide an initial indication of ACLS performance during (1) a static drop, (2) landing impact, and (3) taxi over a runway irregularity.

  8. LAS - LAND ANALYSIS SYSTEM, VERSION 5.0

    NASA Technical Reports Server (NTRS)

    Pease, P. B.

    1994-01-01

    The Land Analysis System (LAS) is an image analysis system designed to manipulate and analyze digital data in raster format and provide the user with a wide spectrum of functions and statistical tools for analysis. LAS offers these features under VMS with optional image display capabilities for IVAS and other display devices as well as the X-Windows environment. LAS provides a flexible framework for algorithm development as well as for the processing and analysis of image data. Users may choose between mouse-driven commands or the traditional command line input mode. LAS functions include supervised and unsupervised image classification, film product generation, geometric registration, image repair, radiometric correction and image statistical analysis. Data files accepted by LAS include formats such as Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Advanced Very High Resolution Radiometer (AVHRR). The enhanced geometric registration package now includes both image to image and map to map transformations. The over 200 LAS functions fall into image processing scenario categories which include: arithmetic and logical functions, data transformations, fourier transforms, geometric registration, hard copy output, image restoration, intensity transformation, multispectral and statistical analysis, file transfer, tape profiling and file management among others. Internal improvements to the LAS code have eliminated the VAX VMS dependencies and improved overall system performance. The maximum LAS image size has been increased to 20,000 lines by 20,000 samples with a maximum of 256 bands per image. The catalog management system used in earlier versions of LAS has been replaced by a more streamlined and maintenance-free method of file management. This system is not dependent on VAX/VMS and relies on file naming conventions alone to allow the use of identical LAS file names on different operating systems. While the LAS code has been improved, the original capabilities of the system have been preserved. These include maintaining associated image history, session logging, and batch, asynchronous and interactive mode of operation. The LAS application programs are integrated under version 4.1 of an interface called the Transportable Applications Executive (TAE). TAE 4.1 has four modes of user interaction: menu, direct command, tutor (or help), and dynamic tutor. In addition TAE 4.1 allows the operation of LAS functions using mouse-driven commands under the TAE-Facelift environment provided with TAE 4.1. These modes of operation allow users, from the beginner to the expert, to exercise specific application options. LAS is written in C-language and FORTRAN 77 for use with DEC VAX computers running VMS with approximately 16Mb of physical memory. This program runs under TAE 4.1. Since TAE 4.1 is not a current version of TAE, TAE 4.1 is included within the LAS distribution. Approximately 130,000 blocks (65Mb) of disk storage space are necessary to store the source code and files generated by the installation procedure for LAS and 44,000 blocks (22Mb) of disk storage space are necessary for TAE 4.1 installation. The only other dependencies for LAS are the subroutine libraries for the specific display device(s) that will be used with LAS/DMS (e.g. X-Windows and/or IVAS). The standard distribution medium for LAS is a set of two 9track 6250 BPI magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. This program was developed in 1986 and last updated in 1992.

  9. Data-Analysis System for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Pham, Timothy; Chang, Christine; Sartorius, Edgar; Finley, Susan; White, Leslie; Estabrook, Polly; Fort, David

    2005-01-01

    A report describes the Entry Descent Landing Data Analysis (EDA), which is a system of signal-processing software and computer hardware for acquiring status data conveyed by multiple-frequency-shift-keying tone signals transmitted by a spacecraft during descent to the surface of a remote planet. The design of the EDA meets the challenge of processing weak, fluctuating signals that are Doppler-shifted by amounts that are only partly predictable. The software supports both real-time and post processing. The software performs fast-Fourier-transform integration, parallel frequency tracking with prediction, and mapping of detected tones to specific events. The use of backtrack and refinement parallel-processing threads helps to minimize data gaps. The design affords flexibility to enable division of a descent track into segments, within each of which the EDA is configured optimally for processing in the face of signal conditions and uncertainties. A dynamic-lock-state feature enables the detection of signals using minimum required computing power less when signals are steadily detected, more when signals fluctuate. At present, the hardware comprises eight dual-processor personal-computer modules and a server. The hardware is modular, making it possible to increase computing power by adding computers.

  10. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; Olds, Aaron D.; Powell, Richard W.; Shidner, Jeremy D.; Kinney, Daivd J.; McGuire, M. Kathleen; Arnold, James O.; Covington, M. Alan; Sostaric, Ronald R.; Zumwalt, Carlie H.; Llama, Eduardo G.

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  11. Overview of the NASA Entry, Descent and Landing Systems Analysis Study

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Dwyer-Cianciolo, Alicia M.; Kinney, David J.; Howard, Austin R.; Chen, George T.; Ivanov, Mark C.; Sostaric, Ronald R.; Westhelle, Carlos H.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the approach and top-level results from Year 1 of the Study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission.

  12. An economics systems analysis of land mobile radio telephone services

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Stevenson, S. M.

    1980-01-01

    The economic interaction of the terrestrial and satellite systems is considered. Parametric equations are formulated to allow examination of necessary user thresholds and growth rates as a function of system costs. Conversely, first order allowable systems costs are found as a function of user thresholds and growth rates. Transitions between satellite and terrestrial service systems are examined. User growth rate density (user/year/sq km) is shown to be a key parameter in the analysis of systems compatibility. The concept of system design matching the price/demand curves is introduced and examples are given. The role of satellite systems is critically examined and the economic conditions necessary for the introduction of satellite service are identified.

  13. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  14. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  15. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  16. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  17. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  18. Using System Dynamics Analysis for Evaluating Neighborhood Economic Outcomes from Transportation and Land Use Decisions

    EPA Science Inventory

    Proposed Title: Using System Dynamics Analysis for Evaluating Neighborhood Economic Outcomes from Transportation and Land Use Decisions Topic (must choose one item from a drop-down list): Community Indicators Learning Objectives (must list 2): • What are the benefits and l...

  19. Using System Dynamics Analysis for Evaluating Neighborhood Economic Outcomes from Transportation and Land Use Decisions

    EPA Science Inventory

    Proposed Title: Using System Dynamics Analysis for Evaluating Neighborhood Economic Outcomes from Transportation and Land Use Decisions Topic (must choose one item from a drop-down list): Community Indicators Learning Objectives (must list 2): What are the benefits and l...

  20. AIR LAND WATER ANALYSIS SYSTEM (ALEAS): A MULTI-MEDIA MODEL FOR TOXIC SUBSTANCES

    EPA Science Inventory

    The Air Land Water Analysis System (ALWAS) is a multi-media environmental model for describing the atmospheric dispersion of toxicants, the surface runoff of deposited toxicants, and the subsequent fate of these materials in surface water bodies. ALWAS dipicts the spatial and tem...

  1. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  2. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  3. A Comparative Analysis on Assessment of Land Carrying Capacity with Ecological Footprint Analysis and Index System Method

    PubMed Central

    Qian, Yao; Tang, Lina; Qiu, Quanyi; Xu, Tong; Liao, Jiangfu

    2015-01-01

    Land carrying capacity (LCC) explains whether the local land resources are effectively used to support economic activities and/or human population. LCC can be evaluated commonly with two approaches, namely ecological footprint analysis (EFA) and the index system method (ISM). EFA is helpful to investigate the effects of different land categories whereas ISM can be used to evaluate the contributions of social, environmental, and economic factors. Here we compared the two LCC-evaluation approaches with data collected from Xiamen City, a typical region where rapid economic growth and urbanization are found in China. The results show that LCC assessments with EFA and ISM not only complement each other but also are mutually supportive. Both assessments suggest that decreases in arable land and increasingly high energy consumption have major negative effects on LCC and threaten sustainable development for Xiamen City. It is important for the local policy makers, planners and designers to reduce ecological deficits by controlling fossil energy consumption, protecting arable land and forest land from converting into other land types, and slowing down the speed of urbanization, and to promote sustainability by controlling rural-to-urban immigration, increasing hazard-free treatment rate of household garbage, and raising energy consumption per unit industrial added value. Although EFA seems more appropriate for estimating LCC for a resource-output or self-sufficient region and ISM is more suitable for a resource-input region, both approaches should be employed when perform LCC assessment in any places around the world. PMID:26121142

  4. Application of NCEP Land Data Assimilation Systems for Global and Regional Drought Analysis, Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Meng, C. J.; Dong, J.

    2012-12-01

    Currently, NCEP/EMC includes three Land Data Assimilation Systems (LDASs): (1) Global LDAS (GLDAS), (2) North American LDAS (NLDAS), and (3) high resolution NLDAS on the Hydrologic Rainfall Analysis Project (HRAP) grid (HRAP-NLDAS). GLDAS was developed to provide initial conditions for NCEP coupled global weather and climate models, NLDAS to provide hydrometeorological products to support the National Integrated Drought Information System (NIDIS), and HRAP-NLDAS for long-term and near real-time high-resolution (~4 km) hydrometeorological products to support hydrological research and application at National Weather Service (NWS) River Forecast Centers and the Office of Hydrologic Development (OHD). These three systems are independent but closely related. The core model of the three systems is the NCEP operational land surface model (Noah) and the OHD operational hydrological model (SAC-HT); two additional land surface/hydrological models are used in NLDAS. The three systems are all moving towards being used for global and regional drought analysis, monitoring and prediction. The uncoupled GLDAS used the Noah land model in the Climate Forecast System Reanalysis (CFSR), with blended atmospheric model and observed precipitation forcing used to generate long-term (1979-present) global hydrometeorological products (at ~38 km) as part of the proposed Global Drought Information System (GDIS) in association with the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projection (MAPP) Drought Task Force; use of GLDAS/Noah continues in the operational Climate Forecast System version 2 (CFSv2). NLDAS is a quasi-operational system that supports U.S. operational drought monitoring and seasonal hydrological prediction, in particular for NIDIS. One key application of the near real-time updates is drought monitoring over the Continental United States (CONUS), shown at the "NLDAS Drought" tab of the NLDAS website (www.emc.ncep.noaa.gov/mmb/nldas). NLDAS is mature, with NCEP operational implementation planned for the near future. At the same time, the NCEP/EMC NLDAS team is collaborating with the NASA Goddard Hydrological Sciences Laboratory to add their Land Information System (LIS) to the current NLDAS which will allow assimilation of remotely-sensed data sets and in-situ observations. HRAP-NLDAS centers on supporting NCEP and OHD operational land surface and hydrological modeling missions, as well as providing support for the NOAA Hydrology Test Bed, the NOAA Climate Test Bed, and NIDIS, with long-term retrospective (1979-present) and near real-time multi-model hydrometerological products over CONUS. New capabilities include the use of enhanced versions of the Noah and Sacramento Heat Transfer (SAC-HT) land models. As HRAP-NLDAS is developed under the NASA LIS framework, more land surface/hydrological models will be included in this system. This high resolution exercise will allow drought monitoring with spatial scales from state to sub-county levels.

  5. Interfacing geographic information systems and remote sensing for rural land-use analysis

    NASA Technical Reports Server (NTRS)

    Nellis, M. Duane; Lulla, Kamlesh; Jensen, John

    1990-01-01

    Recent advances in computer-based geographic information systems (GISs) are briefly reviewed, with an emphasis on the incorporation of remote-sensing data in GISs for rural applications. Topics addressed include sampling procedures for rural land-use analyses; GIS-based mapping of agricultural land use and productivity; remote sensing of land use and agricultural, forest, rangeland, and water resources; monitoring the dynamics of irrigation agriculture; GIS methods for detecting changes in land use over time; and the development of land-use modeling strategies.

  6. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.

  7. Uncertainty Analysis in the Decadal Survey Era: A Hydrologic Application using the Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Harrison, K.; Kumar, S.; Peters-Lidard, C. D.; Santanello, J. A.

    2010-12-01

    Computing and algorithmic advancements are making possible a more complete accounting of errors and uncertainties in earth science modeling. Knowledge of uncertainty can be critical in many application areas and can help to guide scientific research efforts. Here, we describe a plan and progress to date for a fuller accounting of hydrologic modeling uncertainties that addresses the challenges posed by decadal survey missions. These challenges include the need to account for a wide range of error sources (e.g., model error, stochastically varying inputs, observational error, downscaling) and uncertainties (model parameters, error parameters, model selection). In addition, there is a need to incorporate into an assessment all available data, which for decadal survey missions includes the wealth of data from ground, air and satellite observing systems. Our core tool is NASA’s Land Information System (LIS), a high-resolution, high-performance, land surface modeling and data assimilation system that supports a wide range of land surface research and applications. Support for parameter and uncertainty estimation was recently incorporated into the software architecture, and to date three optimization algorithms (Levenberg-Marquardt, Genetic Algorithm, and SCE-UA) and two Markov chain Monte Carlo algorithms for Bayesian analysis (random walk, Differential Evolution-Monte Carlo) have been added. Results and discussion center on a case study that was the focus of Santanello et al. (2007) who demonstrated the use of remotely sensed soil moisture for hydrologic parameter estimation in the Walnut Gulch Experimental Watershed. We contrast results from uncertainty estimation to those from parameter estimation alone. We demonstrate considerable but not complete uncertainty reduction. From this analysis, we identify remaining challenges to a more complete accounting of uncertainties.

  8. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. PMID:22050390

  9. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.

  10. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.

    1973-01-01

    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.

  11. Analysis and design of a capsule landing system and surface vehicle control system for Mars exporation

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    The problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars were investigated. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; navigation, terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks were studied: vehicle model design, mathematical modeling of dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement and transport parameter evaluation.

  12. Study of USGS/NASA land use classification system. [computer analysis from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1975-01-01

    The results of a computer mapping project using LANDSAT data and the USGS/NASA land use classification system are summarized. During the computer mapping portion of the project, accuracies of 67 percent to 79 percent were achieved using Level II of the classification system and a 4,000 acre test site centered on Douglasville, Georgia. Analysis of response to a questionaire circulated to actual and potential LANDSAT data users reveals several important findings: (1) there is a substantial desire for additional information related to LANDSAT capabilities; (2) a majority of the respondents feel computer mapping from LANDSAT data could aid present or future projects; and (3) the costs of computer mapping are substantially less than those of other methods.

  13. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1971-01-01

    Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.

  14. Land system change and food security: towards multi-scale land system solutions☆

    PubMed Central

    Verburg, Peter H; Mertz, Ole; Erb, Karl-Heinz; Haberl, Helmut; Wu, Wenbin

    2013-01-01

    Land system changes are central to the food security challenge. Land system science can contribute to sustainable solutions by an integrated analysis of land availability and the assessment of the tradeoffs associated with agricultural expansion and land use intensification. A land system perspective requires local studies of production systems to be contextualised in a regional and global context, while global assessments should be confronted with local realities. Understanding of land governance structures will help to support the development of land use policies and tenure systems that assist in designing more sustainable ways of intensification. Novel land systems should be designed that are adapted to the local context and framed within the global socio-ecological system. Such land systems should explicitly account for the role of land governance as a primary driver of land system change and food production. PMID:24143158

  15. Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Komar, D. R.

    2011-01-01

    This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.

  16. Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary

    2010-01-01

    Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.

  17. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  18. Mars Exploration Rovers Landing Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  19. Space shuttle post-entry and landing analysis. Volume 1: Candidate system evaluations

    NASA Technical Reports Server (NTRS)

    Crawford, B. S.; Duiven, E. M.

    1973-01-01

    The general purpose of this study is to aid in the evaluation and design of multi-sensor navigation schemes proposed for the orbiter. The scope of the effort is limited to the post-entry, energy management, and approach and landing mission phases. One candidate system based on conventional navigation aids is illustrated including two DME (Distance Measuring Equipment) stations and ILS (Instrument Landing System) glide slope and localizer antennas. Some key elements of the system not shown are the onboard IMUs (Inertial Measurement Units), altimeters, and a computer. The latter is programmed to mix together (filter) the IMU data and the externally-derived data. A completely automatic, all-weather landing capability is required. Since no air-breathing engines will be carried on orbital flights, there will be no chance to go around and try again following a missed approach.

  20. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  1. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  2. Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo

    2010-01-01

    The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.

  3. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters. [Instrument Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.; Bull, J. S.; Peach, L. L.; Demko, P. S.

    1984-01-01

    The present investigation is concerned with a sensitivity analysis of the Decelerated Steep Approach and Landing (DSAL) maneuver to on-board and ground-based navigation system parameters. The Instrument Meteorological Conditions (IMC) DSAL maneuver involves decelerating to zero range rate while tracking the localizer and glideslope. The considered study investigated the performance of the navigation systems using Constant Deceleration Profile (CDP) guidance and a six degrees glideslope trajectory. A closed-loop computer simulation of the UH1H helicopter DSAL system was developed for the sensitivity analysis. Conclusions on system performance parameter sensitivity are discussed.

  4. Land Cover Change Community-based Processing and Analysis System (LC-ComPS): Lessons Learned from Technology Infusion

    NASA Astrophysics Data System (ADS)

    Masek, J.; Rao, A.; Gao, F.; Davis, P.; Jackson, G.; Huang, C.; Weinstein, B.

    2008-12-01

    The Land Cover Change Community-based Processing and Analysis System (LC-ComPS) combines grid technology, existing science modules, and dynamic workflows to enable users to complete advanced land data processing on data available from local and distributed archives. Changes in land cover represent a direct link between human activities and the global environment, and in turn affect Earth's climate. Thus characterizing land cover change has become a major goal for Earth observation science. Many science algorithms exist to generate new products (e.g., surface reflectance, change detection) used to study land cover change. The overall objective of the LC-ComPS is to release a set of tools and services to the land science community that can be implemented as a flexible LC-ComPS to produce surface reflectance and land-cover change information with ground resolution on the order of Landsat-class instruments. This package includes software modules for pre-processing Landsat-type satellite imagery (calibration, atmospheric correction, orthorectification, precision registration, BRDF correction) for performing land-cover change analysis and includes pre-built workflow chains to automatically generate surface reflectance and land-cover change products based on user input. In order to meet the project objectives, the team created the infrastructure (i.e., client-server system with graphical and machine interfaces) to expand the use of these existing science algorithm capabilities in a community with distributed, large data archives and processing centers. Because of the distributed nature of the user community, grid technology was chosen to unite the dispersed community resources. At that time, grid computing was not used consistently and operationally within the Earth science research community. Therefore, there was a learning curve to configure and implement the underlying public key infrastructure (PKI) interfaces, required for the user authentication, secure file transfer and remote job execution on the grid network of machines. In addition, science support was needed to vet that the grid technology did not have any adverse affects of the science module outputs. Other open source, unproven technologies, such as a workflow package to manage jobs submitted by the user, were infused into the overall system with successful results. This presentation will discuss the basic capabilities of LC-ComPS, explain how the technology was infused, and provide lessons learned for using and integrating the various technologies while developing and operating the system, and finally outline plans moving forward (maintenance and operations decisions) based on the experience to date.

  5. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1973-01-01

    The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.

  6. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.

    1975-01-01

    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.

  7. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Yerazunis, S. W.

    1977-01-01

    A number of problems related to unmanned exploration of planets or other extraterrestrial bodies with Mars as a case in point were investigated. The design and evaluation of a prototype rover concept with emphasis on mobility, maneuverability, stability, control and propulsion is described along with the development of terrain sensor concepts and associated software for the autonomous control of any planetary rover. Results are applicable not only to the design of a mission rover but the vehicle is used as a test bed for the rigorous evaluation of alternative autonomous control systems.

  8. LSD (Landing System Development) Impact Simulation

    NASA Astrophysics Data System (ADS)

    Ullio, R.; Riva, N.; Pellegrino, P.; Deloo, P.

    2012-07-01

    In the frame of the Exploration Programs, a soft landing on the planet surface is foreseen. To ensure a successful final landing phase, a landing system by using leg tripod design landing legs with adequate crushable damping system was selected, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, insuring stability. TAS-I developed a numerical non linear dynamic methodology for the landing impact simulation of the Lander system by using a commercial explicit finite element analysis code (i.e. Altair RADIOSS). In this paper the most significant FE modeling approaches and results of the analytical simulation of landing impact are reported, especially with respect to the definition of leg dimensioning loads and the design update of selected parts (if necessary).

  9. Sensitivity analysis of land unit suitability for conservation using a knowledge-based system.

    PubMed

    Humphries, Hope C; Bourgeron, Patrick S; Reynolds, Keith M

    2010-08-01

    The availability of spatially continuous data layers can have a strong impact on selection of land units for conservation purposes. The suitability of ecological conditions for sustaining the targets of conservation is an important consideration in evaluating candidate conservation sites. We constructed two fuzzy logic-based knowledge bases to determine the conservation suitability of land units in the interior Columbia River basin using NetWeaver software in the Ecosystem Management Decision Support application framework. Our objective was to assess the sensitivity of suitability ratings, derived from evaluating the knowledge bases, to fuzzy logic function parameters and to the removal of data layers (land use condition, road density, disturbance regime change index, vegetation change index, land unit size, cover type size, and cover type change index). The amount and geographic distribution of suitable land polygons was most strongly altered by the removal of land use condition, road density, and land polygon size. Removal of land use condition changed suitability primarily on private or intensively-used public land. Removal of either road density or land polygon size most strongly affected suitability on higher-elevation US Forest Service land containing small-area biophysical environments. Data layers with the greatest influence differed in rank between the two knowledge bases. Our results reinforce the importance of including both biophysical and socio-economic attributes to determine the suitability of land units for conservation. The sensitivity tests provided information about knowledge base structuring and parameterization as well as prioritization for future data needs. PMID:20623353

  10. Sensitivity Analysis of Land Unit Suitability for Conservation Using a Knowledge-Based System

    NASA Astrophysics Data System (ADS)

    Humphries, Hope C.; Bourgeron, Patrick S.; Reynolds, Keith M.

    2010-08-01

    The availability of spatially continuous data layers can have a strong impact on selection of land units for conservation purposes. The suitability of ecological conditions for sustaining the targets of conservation is an important consideration in evaluating candidate conservation sites. We constructed two fuzzy logic-based knowledge bases to determine the conservation suitability of land units in the interior Columbia River basin using NetWeaver software in the Ecosystem Management Decision Support application framework. Our objective was to assess the sensitivity of suitability ratings, derived from evaluating the knowledge bases, to fuzzy logic function parameters and to the removal of data layers (land use condition, road density, disturbance regime change index, vegetation change index, land unit size, cover type size, and cover type change index). The amount and geographic distribution of suitable land polygons was most strongly altered by the removal of land use condition, road density, and land polygon size. Removal of land use condition changed suitability primarily on private or intensively-used public land. Removal of either road density or land polygon size most strongly affected suitability on higher-elevation US Forest Service land containing small-area biophysical environments. Data layers with the greatest influence differed in rank between the two knowledge bases. Our results reinforce the importance of including both biophysical and socio-economic attributes to determine the suitability of land units for conservation. The sensitivity tests provided information about knowledge base structuring and parameterization as well as prioritization for future data needs.

  11. NASA Low Visibility Landing and Surface Operations (LVLASO) Atlanta Demonstration: Surveillance Systems Performance Analysis

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Evers, Carl; Hicok, Dan; Lee, Derrick

    1999-01-01

    NASA conducted a series of flight experiments at Hartsfield Atlanta International Airport as part of the Low Visibility Landing and Surface Operations (LVLASO) Program. LVLASO is one of the subelements of the NASA Terminal Area Productivity (TAP) Program, which is focused on providing technology and operating procedures for achieving clear-weather airport capacity in instrument-weather conditions, while also improving safety. LVLASO is investigating various technologies to be applied to airport surface operations, including advanced flight deck displays and surveillance systems. The purpose of this report is to document the performance of the surveillance systems tested as part of the LVLASO flight experiment. There were three surveillance sensors tested: primary radar using Airport Surface Detection Equipment (ASDE-3) and the Airport Movement Area Safety System (AMASS), Multilateration using the Airport Surface Target Identification System (ATIDS), and Automatic Dependent Surveillance - Broadcast (ADS-B) operating at 1090 MHz. The performance was compared to the draft requirements of the ICAO Advanced Surface Movement Guidance and Control System (A-SMGCS). Performance parameters evaluated included coverage, position accuracy, and update rate. Each of the sensors was evaluated as a stand alone surveillance system.

  12. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  13. Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System (GLDAS) Land Surface States

    NASA Technical Reports Server (NTRS)

    Gottschalck, Jon; Meng, Jesse; Rodel, Matt; Houser, paul

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. NASA's Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type). Precipitation is arguably the most important input to LSMs. Many precipitation datasets have been produced using satellite and rain gauge observations and weather forecast models. In this study, seven different global precipitation datasets were evaluated over the United States, where dense rain gauge networks contribute to reliable precipitation maps. We then used the seven datasets as inputs to GLDAS simulations, so that we could diagnose their impacts on output stocks and fluxes of water. In terms of totals, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) had the closest agreement with the US rain gauge dataset for all seasons except winter. The CMAP precipitation was also the most closely correlated in time with the rain gauge data during spring, fall, and winter, while the satellitebased estimates performed best in summer. The GLDAS simulations revealed that modeled soil moisture is highly sensitive to precipitation, with differences in spring and summer as large as 45% depending on the choice of precipitation input.

  14. Using a similarity-based algorithm within NASA Land Information System (LIS) framework for regional land surface parameter analysis over Amazonia

    NASA Astrophysics Data System (ADS)

    de Goncalves, L.; Rosero, E.; Bastidas, L.

    2008-05-01

    NASA Land Information Systems (LIS) is a framework for sophisticated land surface models capable to ingest remotely sensed and ground-based observations, such as parameters, atmospheric forcing, and data for assimilation. It produces enhanced fields of land surface states and fluxes. It has been successfully employed on land data assimilation studies LDAS (Land Data Assimilation System) at global GLDAS (Global LDAS) and regional, NLDAS (North American LDAS) scales, including regions with sparse observations i.e. SALDAS (South American LDAS). Although modeling of the land surface responses to atmospheric forcing and terrain characteristics is an important tool for climate and hydrological assessment, the regional heterogeneities associated with soil and vegetation properties as well as the temporal and spatial variability of the atmospheric variables makes the applicability of such physically-based models limited. The work presented here uses LIS as a framework to improve the values of sensitive land-surface model parameters. By evaluating output using a single, multidimensional, distance-based metric, the Hausdorff norm, several fields of predictions are compared simultaneously in time and space. The metric allows us to identify parameterizations that maximize the similarity between predictions and observations. We present results of a synthetic experiment in the Large Biosphere- Atmosphere (LBA) experiment region. We show that parameter sensitivities vary within the Amazon region and that ascribing parameters based on functional groups is an effective way to address the distributed calibration problem. Additionally we discuss the issue of computational constraints in sensitivity studies and parameter estimation endeavors.

  15. A design for a new catalog manager and associated file management for the Land Analysis System (LAS)

    NASA Technical Reports Server (NTRS)

    Greenhagen, Cheryl

    1986-01-01

    Due to the larger number of different types of files used in an image processing system, a mechanism for file management beyond the bounds of typical operating systems is necessary. The Transportable Applications Executive (TAE) Catalog Manager was written to meet this need. Land Analysis System (LAS) users at the EROS Data Center (EDC) encountered some problems in using the TAE catalog manager, including catalog corruption, networking difficulties, and lack of a reliable tape storage and retrieval capability. These problems, coupled with the complexity of the TAE catalog manager, led to the decision to design a new file management system for LAS, tailored to the needs of the EDC user community. This design effort, which addressed catalog management, label services, associated data management, and enhancements to LAS applications, is described. The new file management design will provide many benefits including improved system integration, increased flexibility, enhanced reliability, enhanced portability, improved performance, and improved maintainability.

  16. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  17. Agricultural drought analysis and famine early warning with the FEWS NET land data assimilation system

    NASA Astrophysics Data System (ADS)

    McNally, A.; Shukla, S.; Funk, C. C.; Husak, G. J.; Arsenault, K. R.; Peters-Lidard, C. D.; Verdin, J. P.

    2013-12-01

    Global and regional changes related to water resources and agriculture affect food and fresh water security. To mitigate and adapt to these changes it is important to quantify how climate variability and change has impacted agricultural production and water resources. This research examines trends in supply and demand for moisture availability in rain-fed agro-pastoral regions. With a focus on the Sahel region of Africa we ask the following two questions: (1) Do land surface models, forced with remotely sensed data, detect the spatio-temporal patterns of agricultural drought over the past 30 years? (2) How have these trends impacted agricultural productivity and food security? To explore implications of hydro-climatic (e.g. precipitation and potential evapotranspiration (PET)) change on agriculture, we use the Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) forced with rainfall from the University of California Santa Barbara Climate Hazards Infrared-Precipitation with Stations (CHIRPS) dataset (1981-present) and 10 km meteorological data (wind, temperature, radiation, humidity) from Cheney and Sheffield, released in 2012, for continental Africa north of 10S (1979-2008). We examine trends in model outputs (e.g. soil moisture and evapotranspiration (ET)), as well as composite indices, such at the evapotranspiration-rainfall ratio and water requirement satisfaction index (WRSI). We compare these results to the Normalized Difference Vegetation Index (NDVI) and microwave soil moisture. Finally, we examine how the different model outputs and composite indices relate to reported trends in agricultural production. Preliminary results show that the FLDAS Noah3.2 and geoWRSI models accurately estimate near surface (0-40cm) soil moisture anomalies as defined by microwave and in-situ observations across the Sahel. With respect to ET, the literature reports that vegetation biomass, as indicated by NDVI, has increased in conjunction with rainfall (i.e. ';re-greening' of the Sahel). However, at least one study has reported a downward trend in modeled ET in the Sahel. Preliminary results indicate that the spatial and temporal patterns of transpiration in Noah3.2 and geoWRSI are highly sensitive to their respective vegetation parameterizations. Our model runs explore the timing and magnitude of ';crop' vegetation parameters, such as LAI and green vegetation fraction, to assess agricultural drought trends and confirm findings from previous work.

  18. Dual Heat Pulse, Dual Layer Thermal Protection System Sizing Analysis and Trade Studies for Human Mars Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    McGuire, Mary Kathleen

    2011-01-01

    NASA has been recently updating design reference missions for the human exploration of Mars and evaluating the technology investments required to do so. The first of these started in January 2007 and developed the Mars Design Reference Architecture 5.0 (DRA5). As part of DRA5, Thermal Protection System (TPS) sizing analysis was performed on a mid L/D rigid aeroshell undergoing a dual heat pulse (aerocapture and atmospheric entry) trajectory. The DRA5 TPS subteam determined that using traditional monolithic ablator systems would be mass expensive. They proposed a new dual-layer TPS concept utilizing an ablator atop a low thermal conductivity insulative substrate to address the issue. Using existing thermal response models for an ablator and insulative tile, preliminary hand analysis of the dual layer concept at a few key heating points indicated that the concept showed potential to reduce TPS masses and warranted further study. In FY09, the followon Entry, Descent and Landing Systems Analysis (EDL-SA) project continued by focusing on Exploration-class cargo or crewed missions requiring 10 to 50 metric tons of landed payload. The TPS subteam advanced the preliminary dual-layer TPS analysis by developing a new process and updated TPS sizing code to rapidly evaluate mass-optimized, full body sizing for a dual layer TPS that is capable of dual heat pulse performance. This paper describes the process and presents the results of the EDL-SA FY09 dual-layer TPS analyses on the rigid mid L/D aeroshell. Additionally, several trade studies were conducted with the sizing code to evaluate the impact of various design factors, assumptions and margins.

  19. Multicomponent Body and Surface Wave Seismic Analysis using an Urban Land Streamer System: An Integrative Earthquake Hazards Assessment Approach

    NASA Astrophysics Data System (ADS)

    Gribler, G.; Liberty, L. M.

    2014-12-01

    We present earthquake site response results from a 48-channel multicomponent seismic land streamer and large weight drop system. We acquired data along a grid of city streets in western Idaho at a rate of a few km per day where we derived shear wave velocity profiles to a depth of 40-50 m by incorporating vertical and radial geophone signals to capture the complete elliptical Rayleigh wave motion. We also obtained robust p-wave reflection and refraction results by capturing the returned signals that arrive at non-vertical incidence angles that result from the high-velocity road surface layer. By integrating the derived shear wave velocity profiles with p-wave reflection results, we include depositional and tectonic boundaries from the upper few hundred meters into our analysis to help assess whether ground motions may be amplified by shallow bedrock. By including p-wave refraction information into the analysis, we can identify zones of high liquefaction potential by comparing shear wave and p-wave velocity (Vp/Vs) measurements relative to refraction-derived water table depths. The utilization of multicomponent land streamer data improves signal-noise levels over single component data with no additional field effort. The added multicomponent data processing step can be as simple as calculating the magnitude of the vector for surface wave and refraction arrivals or rotating the reflected signals to the maximum emergence angle based on near surface p-wave velocity information. We show example data from a number of Idaho communities where historical earthquakes have been recorded. We also present numerical models and systematic field tests that show the effects of a high velocity road surface layer in surface and body wave measurements. We conclude that multicomponent seismic information derived from seismic land streamers can provide a significant improvement in earthquake hazard assessment over a standard single component approach with only a small addition in processing time.

  20. FEDERAL MINERAL LAND INFORMATION SYSTEM.

    USGS Publications Warehouse

    Kleckner, Richard L.

    1984-01-01

    The ability of geographic information systems to combine point, line, and areal data has been widely documented, although the establishment of a particular data base presents its own unique problems. The U. S. Geological Survey is developing a geographic information system consisting of information on Federal surface ownership, Federal subsurface mineral rights, location of actual mineral occurrences and (or) known potential, and formal restrictions to mineral development. By utilizing information already compiled or soon to be collected by other agencies, the Federal Mineral Land Information System should be able to provide answers relating to mineral availability on public lands.

  1. Integrating NASA's Land Analysis System (LAS) image processing software with an appropriate Geographic Information System (GIS): A review of candidates in the public domain

    NASA Technical Reports Server (NTRS)

    Rochon, Gilbert L.

    1989-01-01

    A user requirements analysis (URA) was undertaken to determine and appropriate public domain Geographic Information System (GIS) software package for potential integration with NASA's LAS (Land Analysis System) 5.0 image processing system. The necessity for a public domain system was underscored due to the perceived need for source code access and flexibility in tailoring the GIS system to the needs of a heterogenous group of end-users, and to specific constraints imposed by LAS and its user interface, Transportable Applications Executive (TAE). Subsequently, a review was conducted of a variety of public domain GIS candidates, including GRASS 3.0, MOSS, IEMIS, and two university-based packages, IDRISI and KBGIS. The review method was a modified version of the GIS evaluation process, development by the Federal Interagency Coordinating Committee on Digital Cartography. One IEMIS-derivative product, the ALBE (AirLand Battlefield Environment) GIS, emerged as the most promising candidate for integration with LAS. IEMIS (Integrated Emergency Management Information System) was developed by the Federal Emergency Management Agency (FEMA). ALBE GIS is currently under development at the Pacific Northwest Laboratory under contract with the U.S. Army Corps of Engineers' Engineering Topographic Laboratory (ETL). Accordingly, recommendations are offered with respect to a potential LAS/ALBE GIS linkage and with respect to further system enhancements, including coordination with the development of the Spatial Analysis and Modeling System (SAMS) GIS in Goddard's IDM (Intelligent Data Management) developments in Goddard's National Space Science Data Center.

  2. Landing gear energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Christopher P. (Inventor)

    1994-01-01

    A landing pad system is described for absorbing horizontal and vertical impact forces upon engagement with a landing surface where circumferentially arranged landing struts respectively have a clevis which receives a slidable rod member and where the upper portion of a slidable rod member is coupled to the clevis by friction washers which are force fit onto the rod member to provide for controlled constant force energy absorption when the rod member moves relative to the clevis. The lower end of the friction rod is pivotally attached by a ball and socket to a support plate where the support plate is arranged to slide in a transverse direction relative to a housing which contains an energy absorption material for absorbing energy in a transverse direction.

  3. Application and analysis of anchored geosynthetic systems for stabilization of abandoned mine land slopes

    SciTech Connect

    Vitton, S.J.; Whitman, F.; Liang, R.Y.; Harris, W.W.

    1996-12-31

    An anchored geosynthetic system (AGS) was used in the remediation of a landslide associated with an abandoned coal mine located near Hindman, Kentucky. In concept, AGS is a system that provides in-situ stabilization of soil slopes by combining a surface-deployed geosynthetic with an anchoring system of driven reinforcing rods similar to soil nailing. Installation of the system of driven reinforcing rods similar to soil nailing. Installation of the system involves tensioning a geosynthetic over a slope`s surface by driving anchors through the geosynthetic at a given spacing and distance. By tensioning the geosynthetic over the slope`s surface, a compressive load is applied to the slope. Benefits of AGS are described to include the following: (1) increase soil strength due to soil compression including increased compressive loading on potential failure surfaces, (2) soil reinforcement through soil nailing, (3), halt of soil creep, (4) erosion control, and (5) long term soil consolidation. Following installation of the AGS and one year of monitoring, it was found that the anchored geosynthetic system only provided some of the reported benefits and in general did not function as an active stabilization system. This was due in part to the inability of the system to provide and maintain loading on the geosynthetic. The geosynthetic, however, did tension when slope movement occurred and prevented the slope from failing. Thus, the system functioned more as a passive restraint system and appeared to function well over the monitoring period.

  4. The Land Gini Coefficient and Its Application for Land Use Structure Analysis in China

    PubMed Central

    Zheng, Xinqi; Xia, Tian; Yang, Xin; Yuan, Tao; Hu, Yecui

    2013-01-01

    We introduce the Gini coefficient to assess the rationality of land use structure. The rapid transformation of land use in China provides a typical case for land use structure analysis. In this study, a land Gini coefficient (LGC) analysis tool was developed. The land use structure rationality was analyzed and evaluated based on statistical data for China between 1996 and 2008. The results show: (1)The LGC of three major land use types–farmland, built-up land and unused land–was smaller when the four economic districts were considered as assessment units instead of the provinces. Therefore, the LGC is spatially dependent; if the calculation unit expands, then the LGC decreases, and this relationship does not change with time. Additionally, land use activities in different provinces of a single district differed greatly. (2) At the national level, the LGC of the three main land use types indicated that during the 13 years analyzed, the farmland and unused land were evenly distributed across China. However, the built-up land distribution was relatively or absolutely unequal and highlights the rapid urbanization in China. (3) Trends in the distribution of the three major land use types are very different. At the national level, when using a district as the calculation unit, the LGC of the three main land use types increased, and their distribution became increasingly concentrated. However, when a province was used as the calculation unit, the LGC of the farmland increased, while the LGC of the built-up and unused land decreased. These findings indicate that the distribution of the farmland became increasingly concentrated, while the built-up land and unused land became increasingly uniform. (4) The LGC analysis method of land use structure based on geographic information systems (GIS) is flexible and convenient. PMID:24130764

  5. A SYSTEMIC APPROACH TO MITIGATING URBAN STORM WATER RUNOFF VIA DEVELOPMENT PLANS BASED ON LAND SUITABILITY ANALYSIS

    EPA Science Inventory

    We advocate an approach to reduce the anticipated increase in stormwater runoff from conventional development by demonstrating a low-impact development that incorporates hydrologic factors into an expanded land suitability analysis. This methodology was applied to a 3 hectare exp...

  6. Information analysis of a spatial database for ecological land classification

    NASA Technical Reports Server (NTRS)

    Davis, Frank W.; Dozier, Jeff

    1990-01-01

    An ecological land classification was developed for a complex region in southern California using geographic information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification was ecologically reasonable and performed well when tested with higher quality data from the region.

  7. An Automated Land Analysis System (ALAS) for applications at a range of spatial scales: Watershed to global

    SciTech Connect

    Miller, N.L.

    1995-08-01

    Recent advances in Digital Elevation Model (DEM) data availability and topographic analysis have enabled us to develop an Automated Land Analysis System (ALAS). ALAS is based on a series of codes which determine topographic and hydrologic characteristics at each pixel, watershed, and each large scale cell. The input requirements are a DEM from any location in the world, it`s resolution, and array size. A Motif accessed script reads in these inputs and generates a series of data sets which further describe the watershed properties such as flow directions, hydrologic characteristic probability density functions, etc.). Postscript files and arrays indicating the fme river networks and each subcatchment, as well as numerous other properties, are produced and catalogued. The motivation behind the development of ALAS is a direct response to the conceptualization of convergent scales between hydrologic and atmospheric models as defined by the World Climate Research Programme. The remainder of this paper highlights ALAS components, capabilities, and provides some discussion on its applications.

  8. Land mobile satellite demonstration system

    NASA Technical Reports Server (NTRS)

    Gooch, Guy M.; Nicholas, David C.

    1988-01-01

    A land mobile satellite demonstration system is described. It ulilizes the INMARSAT MARECS B2 satellite at 26 degrees W. The system provides data transmission using a poll-response protocol with error detection and retransmission at 200 b/s rate. For most tests a 1.8 inch monopole antenna was used, along with a satellite EIRP normally used for four voice channels. A brief summary of the results are given and the overall system consisting of three elements in addition to the satellite (the mobile unit, the base station, and the office terminal and map display) is described. Throughput statistics from one trip are summarized.

  9. Testing and analysis of dual-mode adaptive landing gear, taxi mode test system for YF-12A

    NASA Technical Reports Server (NTRS)

    Gamon, M. A.

    1979-01-01

    The effectiveness of a dual mode adaptive landing gear system in reducing the dynamic response of an airplane during ground taxiing was studied. The dynamic taxi tests of the YF-12A research airplane are presented. A digital computer program which simulated the test conditions is discussed. The dual mode system as tested provides dynamic taxi response reductions of 25 percent at the cg and 30 to 45 percent at the cockpit.

  10. Autonomous landing guidance system validation

    NASA Astrophysics Data System (ADS)

    Bui, Long Q.; Franklin, Michael R.; Taylor, Christopher; Neilson, Graham

    1997-06-01

    ALG is a combination of raster imaging sensor, head-up displays, flight guidance and procedures which allow pilots to perform hand flown aircraft maneuvers in adverse weather, at night, or in low visibility conditions at facilities with minimal or no ground aids. Maneuvers in the context of ALG relate to takeoff, landing, rollout, taxi and terminal parking. Commercial needs are driven by potential revenue savings since today only 43 Type III and 80 Type II instrumented landing system (ILS) runway ends in the United States are equipped for lower minimum flight operations. Additionally, most of these ILS facilities are clustered at major gateway airports which further impacts on dispatch authority and general ATC regional delays. Infrastructure consists to upgrade additional runways must not only account for the high integrity ground instrumentation, but also the installation of lights and markers mandated for Cat III operations. The military services ability to train under realistic battlefield conditions, to project power globally in support of national interests, while providing humanitarian aid, is significantly impaired by the inability to conduct precision approaches and landings in low visibility conditions to either instrumented runways or to a more tactical environment with operations into and out of unprepared landing strips, particularly when time does not permit deployment of ground aids and the verification of their integrity. Recently, Lear Astronics, in cooperation with Consortium members of the ALG Program, concluded a flight test program which evaluated the utility of the ALG system in meeting both civil and military needs. Those results are the subject of this paper.

  11. Design and implementation of land reservation system

    NASA Astrophysics Data System (ADS)

    Gao, Yurong; Gao, Qingqiang

    2009-10-01

    Land reservation is defined as a land management policy for insuring the government to control primary land market. It requires the government to obtain the land first, according to plan, by purchase, confiscation and exchanging, and then exploit and consolidate the land for reservation. Underlying this policy, it is possible for the government to satisfy and manipulate the needs of land for urban development. The author designs and develops "Land Reservation System for Eastern Lake Development District" (LRSELDD), which deals with the realistic land requirement problems in Wuhan Eastern Lake Development Districts. The LRSELDD utilizes modern technologies and solutions of computer science and GIS to process multiple source data related with land. Based on experiments on the system, this paper will first analyze workflow land reservation system and design the system structure based on its principles, then illustrate the approach of organization and management of spatial data, describe the system functions according to the characteristics of land reservation and consolidation finally. The system is running to serve for current work in Eastern Lake Development Districts. It is able to scientifically manage both current and planning land information, as well as the information about land supplying. We use the LRSELDD in our routine work, and with such information, decisions on land confiscation and allocation will be made wisely and scientifically.

  12. Land mobile satellite system requirements

    NASA Technical Reports Server (NTRS)

    Kiesling, J. D.

    1983-01-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  13. Land mobile satellite system requirements

    NASA Astrophysics Data System (ADS)

    Kiesling, J. D.

    1983-05-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  14. Analysis of Landing-Gear Behavior

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Cook, Francis E

    1953-01-01

    This report presents a theoretical study of the behavior of the conventional type of oleo-pneumatic landing gear during the process of landing impact. The basic analysis is presented in a general form and treats the motions of the landing gear prior to and subsequent to the beginning of shock-strut deflection. The applicability of the analysis to actual landing gears has been investigated for the particular case of a vertical landing gear in the absence of drag loads by comparing calculated results with experimental drop-test data for impacts with and without tire bottoming. The calculated behavior of the landing gear was found to be in good agreement with the drop-test data.

  15. Crew Office Evaluation of a Precision Lunar Landing System

    NASA Technical Reports Server (NTRS)

    Major, Laura M.; Duda, Kevin R.; Hirsh, Robert L.

    2011-01-01

    A representative Human System Interface for a precision lunar landing system, ALHAT, has been developed as a platform for prototype visualization and interaction concepts. This facilitates analysis of crew interaction with advanced sensors and AGNC systems. Human-in-the-loop evaluations with representatives from the Crew Office (i.e. astronauts) and Mission Operations Directorate (MOD) were performed to refine the crew role and information requirements during the final phases of landing. The results include a number of lessons learned from Shuttle that are applicable to the design of a human supervisory landing system and cockpit. Overall, the results provide a first order analysis of the tasks the crew will perform during lunar landing, an architecture for the Human System Interface based on these tasks, as well as details on the information needs to land safely.

  16. LDAS Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Mocko, David; Beaudoing, Hiroko Kato

    2014-01-01

    The land-surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. The characterization of the spatial and temporal variability of water and energy cycles is critical to improve our understanding of the land-surface-atmosphere interaction and the impact of land-surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land-surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes.

  17. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    NASA Astrophysics Data System (ADS)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland conservation is first and foremost driven by the FSA signup choices. Environmental criteria used in FSA offer selection play a secondary role in farmland-to-fallow-land conversion. Farmer decision making is mainly influenced by the willingness to reduce the potential annual rental payments. As the case study demonstrates, our approach leads to ABM simplification without the loss of outcome variability. It also shows how to represent the magnitude of ABM complexity and isolate the effects of the interconnected explanatory variables on the simulated emergent phenomena. More importantly, the results of our research indicate that some of the parameters exert influence on model outcomes only if analyzed in combination with other parameters. Without evaluating the interaction effects among inputs, we risk losing important functional relationships among ABM components and, consequently, we potentially reduce its explanatory power.

  18. Land-based hatchery systems for finfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early rearing of most marine species will be land-based because of the need for precise control of the rearing environment. This chapter evaluates the resource and energy requirements of six different types of land-based, hatchery production systems: flow-through with a gravity water supply, flo...

  19. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  20. Flight test evaluation of the E-systems Differential GPS category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Mcnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.

  1. Portable-Beacon Landing System for Helicopters

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Clary, George R.; Chisholm, John P.; Macdonald, Stanley L.

    1987-01-01

    Prototype beacon landing system (BLS) allows helicopters to make precise landings in all weather. BLS easily added to existing helicopter avionic equipment and readily deployed at remote sites. Small and light, system employs X-band radar and digital processing. Variety of beams pulsed sequentially by ground station after initial interrogation by weather radar of approaching helicopter. Airborne microprocessor processes pulses to determine glide slope, course deviation, and range.

  2. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    PubMed

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. PMID:25617787

  3. Future Landing Capabilities of the Mars 2020 Entry, Descent, and Landing System

    NASA Astrophysics Data System (ADS)

    Kipp, K. A.; Hines, E. K.; Chen, A.

    2014-06-01

    This study examines landing site elevation capability as a function of landing season, for a future mission using the heritage MSL/Mars 2020 EDL system. Results are presented for a 1200kg landed mass with different parachute technology assumptions.

  4. An analysis of Milwaukee county land use

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. E.

    1973-01-01

    The identification and classification of urban and suburban phenomena through analysis of remotely-acquired sensor data can provide information of great potential value to many regional analysts. Such classifications, particularly those using spectral data obtained from satellites such as the first Earth Resources Technology Satellite (ERTS-1) orbited by NASA, allow rapid frequent and accurate general land use inventories that are of value in many types of spatial analyses. In this study, Milwaukee County, Wisconsin was classified into several broad land use categories on the basis of computer analysis of four bands of ERTS spectral data (ERTS Frame Number E1017-16093). Categories identified were: (1) road-central business district, (2) grass (green vegetation), (3) suburban, (4) wooded suburb, (5) heavy industry, (6) inner city, and (7) water. Overall, 90 percent accuracy was attained in classification of these urban land use categories.

  5. Crew procedures for microwave landing system operations

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1987-01-01

    The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approach and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

  6. Land system architecture: Using land systems to adapt and mitigate global environmental change

    SciTech Connect

    Turner, B.L.; Janetos, Anthony C.; Verbug, Peter H.; Murray, Alan T.

    2013-04-01

    Land systems (mosaics of land use and cover) are human environment systems, the changes in which drive and respond to local to global environmental changes, climate to macro-economy (Foley et al., 2005). Changes in land systems have been the principal proximate cause in the loss of habitats and biota globally, long contributed to atmospheric greenhouse gases, and hypothesized to have triggered climate changes in the early Holocene (Ruddiman, 2003). Land use, foremost agriculture, is the largest source of biologically active nitrogen to the atmosphere, critical to sources and sinks of carbon, and a major component in the hydrologic cycle (e.g., Bouwman et al., 2011). Changes in land systems also affect regional climate (Feddema et al., 2005; Pielke, 2005), ecosystem functions, and the array of ecosystem services they provide. Land systems, therefore, are a central feature of how humankind manages its relationship with nature-intended or not, or whether this relationship proceeds sustainably or not.

  7. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  8. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  9. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  10. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  11. Magneto-rheological (MR) damper for landing gear system

    NASA Astrophysics Data System (ADS)

    Khani, Mahboubeh

    2010-11-01

    Depending on the different sink speeds, angles of attack and masses; aircraft landing gears could face a wide range of impact conditions which may possibly cause structural damage or failure. Thus, in hard landing scenarios, the landing gear must absorb sufficient energy in order to minimize dynamic stress on the aircraft airframe. Semi-active control systems are the recent potential solutions to overcome these limitations. Among semi-active control strategies, those based on smart fluids such as magneto-rheological (MR) fluids have received recent attraction as their rheological properties can be continuously controlled using magnetic or electric field and they are not sensitive to the contaminants and the temperature variation and also require lower powers. This thesis focuses on modeling of a MR damper for landing gear system and analysis of semi-active controller to attenuate dynamic load and landing impact. First, passive landing gear of a Navy aircraft is modeled and the forces associated with the shock strut are formulated. The passive shock strut is then integrated with a MR valve to design MR shock strut. Here, MR shock strut is integrated with the landing gear system modeled as the 2DOF system and governing equations of motion are derived in order to simulate the dynamics of the system under different impact conditions. Subsequently the inverse model of the MR shock strut relating MR yield stress to the MR shock strut force and strut velocity is formulated. Using the developed governing equations and inverse model, a PID controller is formulated to reduce the acceleration of the system. Controlled performance of the simulated MR landing gear system is demonstrated and compared with that of passive system.

  12. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  13. Apollo experience report: Earth landing system

    NASA Technical Reports Server (NTRS)

    West, R. B.

    1973-01-01

    A brief discussion of the development of the Apollo earth landing system and a functional description of the system are presented in this report. The more significant problems that were encountered during the program, the solutions, and, in general, the knowledge that was gained are discussed in detail. Two appendixes presenting a detailed description of the various system components and a summary of the development and the qualification test programs are included.

  14. Simulating the Phoenix Landing Radar System

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2008-01-01

    A computer program called phxlrsim simulates the behavior of the radar system used as an altimeter and velocimeter during the entry, descent, and landing phases of the Phoenix lander spacecraft. The simulation includes modeling of internal functions of the radar system, the spacecraft trajectory, and the terrain. The computational models incorporate representations of nonideal hardware effects in the radar system and effects of radar speckle (coherent scatter of radar signals from terrain).

  15. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  16. Eutrophication potential of lakes: an integrated analysis of trophic state, morphometry, land occupation, and land use.

    PubMed

    Silvino, R F; Barbosa, F A R

    2015-08-01

    Despite being inside a protected area, Lake Sumidouro has been impacted by the anthropogenic occupation of the surrounding area since the 1970's, compromising the ecological integrity of the lake and the sustainable use of natural resources. This study examined the current trophic classification of the lake and developed methods for improving it through an integrated analysis of morphometric and limnological parameters, land use and land occupation in the watershed, and eutrophication potential. Data for the limnological parameters, land use and land occupation, and morphometric characteristics of Lake Sumidouro were collected in the rainy and dry seasons of 2009 and 2010. Depending on the trophic classification system used, Lake Sumidouro is classified as oligotrophic to hypereutrophic. In our study, the highest concentration of nutrients occurred in the rainy season, indicating that high nutrient inputs played an important role during this period. Areas of anthropogenic occupation comprised approximately 62.9% of the total area of the watershed, with pasture and urban settlement as the main types of land use. The influent total phosphorus load was estimated to be 15,824.3 kg/year. To maintain mesotrophic conditions, this load must be reduced by 29.4%. By comparing the isolated use of trophic state indices, this study demonstrated that comparing the trophic state classification with morphometric analyses, land use and land occupation types in the watershed, and potential phosphorus load provided better information to guide management actions for restoration and conservation. Furthermore, this approach also allowed for evaluating the vulnerability of the environment to the eutrophication process. PMID:26292101

  17. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Reed, B.

    2005-01-01

    Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms. ?? 2004 Elsevier Inc. All rights reserved.

  18. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  19. A land mobile satellite data system

    NASA Technical Reports Server (NTRS)

    Kent, John D. B.

    1990-01-01

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  20. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  1. Multi Sensor Evolution Analysis (MEA): Land Use and Land Cover Analysis Applied to (A)ATSR Time Series

    NASA Astrophysics Data System (ADS)

    Beccati, Alan; Folegani, Marco; D'Elia, Sergio; Barboni, Damiano; Selmi, Stefano

    2010-12-01

    The problem of (better) exploiting long-term satellite image databases is not yet resolved. Meanwhile the continuous growth of satellite data is generating an unprecedented increase in data types and volume. All this makes unrealistic to proceed with the current, mainly manual, image processing. Therefore the upcoming challenge is to find new methods permitting in near real-time to store and access large data volumes and to simplify or even automate the extraction of meaningful information for application domains, such as Land Use / Land Cover Change (LU/LCC) mapping. In the framework of the ESA Support by Pre-classification to Specific Applications (SPA) project [1] a fully automatic LU/LCC application (initially named (A)ATSR Land Classification System (ALCS)) known as Multi sensor Evolution Analysis (MEA) system [2], has been implemented and tested. MEA data store is built using 15 years of ATSR2-AATSR data (C1P 4713, C1P 5016).

  2. Development of a portable precision landing system

    NASA Technical Reports Server (NTRS)

    Davis, T. J.; Clary, G. R.; Macdonald, S. L.

    1986-01-01

    A portable, tactical approach guidance (PTAG) system, based on a novel, X-band, precision approach concept, was developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. The system is based on state-of-the-art X-band technology and digital processing techniques. The PTAG airborne hardware consists of an X-band receiver and a small microprocessor installed in conjunction with the aircraft instrument landing system (ILS) receiver. The microprocessor analyzes the X-band, PTAG pulses and outputs ILS compatible localizer and glide slope signals. The ground stations are inexpensive, portable units, each weighing less than 85 lb, including battery, that can be quickly deployed at a landing site. Results from the flight test program show that PTAG has a significant potential for providing tactical aircraft with low cost, portable, precision instrument approach capability.

  3. The Sand Land Soil System and Society

    NASA Astrophysics Data System (ADS)

    Mahjoory, R. A.

    Worldwide arid soils such as Latterites from African Savannas to the Xeralfs and Xererts of the Mediterranean Basin Ortents and Orthids of Asian Deserts are uniquely different in their strategic roles for utilizing the land in places where a delicate balance between annual climatic cycles and general trends toward desertification predominate Arid lands cover 1 3 of global land surface and contain irreplaceable natural resources with potential productivity of meeting the demands of more than two billion people and serving as sources and sinks of atmospheric CO2 to combat global warming The soil system in these arid areas are being degraded underutilized and kept in a stage of obliviousness due to inadequate public literacy and most importantly in-sufficient scientific evaluations based on pedology and soil taxonomy standards Implementation of food security projects and sustainable development programs on randomly selected sites and assessment of land degradation worldwide by powerful computers and satellite imagery techniques without field work and identification of Representative Soil Units are data producing and grant attracting but counter productive We live in a world in which there is an order out there and things are precisely measured and categorized for efficient utilization Why not the soils mainly in arid areas How we could generalize the world of soils under our feet by concept of soils are the same Expansion of educational programs quantification of multiple ecosystems within the arid regions through detailed and correlated

  4. Video guidance, landing, and imaging systems

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.

    1975-01-01

    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.

  5. A Vision For A Land Observing System

    NASA Astrophysics Data System (ADS)

    Lewis, P.; Gomez-Dans, J.; Disney, M.

    2013-12-01

    In this paper, we argue that the exploitation of EO land surface data for modelling and monitoring would be greatly facilitated by the routine generation of inter- operable low-level surface bidirectional reflectance factor (BRF) products. We consider evidence from a range of ESA, NASA and other products and studies as well as underlying research to outline the features such a processing system might have, and to define initial research priorities.

  6. The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications

    NASA Technical Reports Server (NTRS)

    McAllister, William K.

    2003-01-01

    One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they can work together so that land based information can be shared among different users and compared over time.

  7. GIS Toolsets for Planetary Geomorphology and Landing-Site Analysis

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan

    2015-04-01

    Modern Geographic Information Systems (GIS) allow expert and lay users alike to load and position geographic data and perform simple to highly complex surface analyses. For many applications dedicated and ready-to-use GIS tools are available in standard software systems while other applications require the modular combination of available basic tools to answer more specific questions. This also applies to analyses in modern planetary geomorphology where many of such (basic) tools can be used to build complex analysis tools, e.g. in image- and terrain model analysis. Apart from the simple application of sets of different tools, many complex tasks require a more sophisticated design for storing and accessing data using databases (e.g. ArcHydro for hydrological data analysis). In planetary sciences, complex database-driven models are often required to efficiently analyse potential landings sites or store rover data, but also geologic mapping data can be efficiently stored and accessed using database models rather than stand-alone shapefiles. For landings-site analyses, relief and surface roughness estimates are two common concepts that are of particular interest and for both, a number of different definitions co-exist. We here present an advanced toolset for the analysis of image and terrain-model data with an emphasis on extraction of landing site characteristics using established criteria. We provide working examples and particularly focus on the concepts of terrain roughness as it is interpreted in geomorphology and engineering studies.

  8. Microwave landing system requirements for STOL operations

    NASA Technical Reports Server (NTRS)

    Burrous, C. N.; Brown, S. C.; Goka, T.; Park, K. E.

    1974-01-01

    The operational/functional requirements for the new Microwave Landing System (MLS) are examined for STOL operations. The study utilizes a nonlinear six-degree-of-freedom simulation of a De Havilland Buffalo C-8A aircraft and automatic flight control system to assess the MLS/STOL accuracy, coverage, and data rate requirements for the azimuth, DME, primary elevation, and flare elevation functions. The aircraft performance is statistically determined for representative curved flight paths through touchdown. A range of MLS errors and coverages, environmental disturbances, and navigation filtering are investigated. The study indicates that STOL applications do not place any unique requirements on the MLS.

  9. Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review

    NASA Technical Reports Server (NTRS)

    Manning, Rob; Schmitt, Harrison H.; Graves, Claude

    2005-01-01

    Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.

  10. A new digital land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schneider, Philip

    1990-01-01

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  11. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  12. Safer approaches and landings: A multivariate analysis of critical factors

    NASA Astrophysics Data System (ADS)

    Heinrich, Durwood J.

    The approach-and-landing phases of flight represent 27% of mission time while resulting in 61 of the accidents and 39% of the fatalities. The landing phase itself represents only 1% of flight time but claims 45% of the accidents. Inadequate crew situation awareness (SA), crew resource management (CRM), and crew decision-making (DM) have been implicated in 51%, 63%, and 73% respectively of these accidents. The human factors constructs of SA, CRM, and DM were explored; a comprehensive definition of SA was proposed; and a "proactive defense" safety strategy was recommended. Data from a 1997 analysis of worldwide fatal accidents by the Flight Safety Foundation (FSF) Approach-and-Landing Accident Reduction (ALAR) Task Force was used to isolate crew- and weather-related causal factors that lead to approach-and-landing accidents (ALAs). Logistic regression and decision tree analysis were used on samplings of NASA's Aviation Safety Reporting System (ASRS) incident records ("near misses") and the National Transportation Safety Board's (NTSB) accident reports to examine hypotheses regarding factors and factor combinations that can dramatically increase the opportunity for accidents. An effective scale of risk factors was introduced for use by crews to proactively counter safety-related error-chain situations.

  13. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon

    PubMed Central

    Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes – forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates. PMID:24127130

  14. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon.

    PubMed

    Lu, Dengsheng; Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes - forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates. PMID:24127130

  15. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  17. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1996-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  18. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  19. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.

  20. Terrain modeling for microwave landing system

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    A powerful analytical approach for evaluating the terrain effects on a microwave landing system (MLS) is presented. The approach combines a multiplate model with a powerful and exhaustive ray tracing technique and an accurate formulation for estimating the electromagnetic fields due to the antenna array in the presence of terrain. Both uniform theory of diffraction (UTD) and impedance UTD techniques have been employed to evaluate these fields. Innovative techniques are introduced at each stage to make the model versatile to handle most general terrain contours and also to reduce the computational requirement to a minimum. The model is applied to several terrain geometries, and the results are discussed.

  1. What's Cookin' With Helicopter Microwave Landing Systems?

    NASA Technical Reports Server (NTRS)

    Taylor, Richard L.

    1980-01-01

    This article describes a joint effort of the FAA, NASA and the Helicopter Industry to establish a data base for (Microwave Landing Systems) MLS approaches, and to aid the FAA in developing the MLS Terminal Instrument Procedures (TERPS) criteria for rotary-wing IFR operations. The latter is of particular importance for it appears to signal sincere official interest in filling in the blanks in Chapter 11 of TERPS -- that portion set aside for helicopter IFR operations and recognition of the unique capabilities of the helicopter in the instrument environment. One of the program objectives is to find out what a sample of pilots can do with the MLS in a minimum machine.

  2. AGFATL- ACTIVE GEAR FLEXIBLE AIRCRAFT TAKEOFF AND LANDING ANALYSIS

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1994-01-01

    The Active Gear, Flexible Aircraft Takeoff and Landing Analysis program, AGFATL, was developed to provide a complete simulation of the aircraft takeoff and landing dynamics problem. AGFATL can represent an airplane either as a rigid body with six degrees of freedom or as a flexible body with multiple degrees of freedom. The airframe flexibility is represented by the superposition of up to twenty free vibration modes on the rigid-body motions. The analysis includes maneuver logic and autopilots programmed to control the aircraft during glide slope, flare, landing, and takeoff. The program is modular so that performance of the aircraft in flight and during landing and ground maneuvers can be studied separately or in combination. A program restart capability is included in AGFATL. Effects simulated in the AGFATL program include: (1) flexible aircraft control and performance during glide slope, flare, landing roll, and takeoff roll under conditions of changing winds, engine failures, brake failures, control system failures, strut failures, restrictions due to runway length, and control variable limits and time lags; (2) landing gear loads and dynamics for up to five gears; (3) single and multiple engines (maximum of four) including selective engine reversing and failure; (4) drag chute and spoiler effects; (5) wheel braking (including skid-control) and selective brake failure; (6) aerodynamic ground effects; (7) aircraft carrier operations; (8) inclined runways and runway perturbations; (9) flexible or rigid airframes; 10) rudder and nose gear steering; and 11) actively controlled landing gear shock struts. Input to the AGFATL program includes data which describe runway roughness; vehicle geometry, flexibility and aerodynamic characteristics; landing gear(s); propulsion; and initial conditions such as attitude, attitude change rates, and velocities. AGFATL performs a time integration of the equations of motion and outputs comprehensive information on the airframe, state-of-maneuver logic, autopilots, control response, and aircraft loads from impact, runway roll-out, and ground operations. Flexible-body and total (elastic plus rigid-body) displacements, velocities, and accelerations are also output in the flexible-body option for up to twenty points on the aircraft. The AGFATL program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with an overlayed central memory requirement of approximately 141 (octal) of 60 bit words. The AGFATL program was last updated in 1984.

  3. Mars Science Laboratory Entry, Descent and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen

    2013-01-01

    The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.

  4. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  5. Land use changes and its impact on land surface temperature of Yancheng City from 2000 to 2009 analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xinghan

    2014-02-01

    In the paper, based on the technology of remote sensing and geographic information system, and according to the Landsat TM images obtained the land use database and land surface temperature of Yancheng city in the year of 2000 and 2009. Five land use types were identified, namely: farmland, building site, forest and grassland, water, and beach wetland. And then analysis of the urban expansion model based on the Defense Meteorological satellite data. The results show that: (1) In the five kinds of land use types, the largest rate of land use change is beach wetland, which is -8.23, followed by water as -5.17, forest and grassland is 3.27, building site is 2.24, farmland is 0.69. (2) During the 2000-2009, the towns of Yancheng city continuous outward expansion. In the old town, the expansion model is similar to the concentric circles spread to the periphery, but in the new district, which mainly concentrated in the northeast and southeast, the expansion model is re-planning, development and construction. (3) The land use structure change, especially the changes of beach wetland have a largest influence on the land surface temperature of Yancheng city. Among them, the average land surface temperature has increased over 8 degrees. However, the farmland change due to the overall land surface temperature decreased. And the increase of building site, making the urban heat island effect has been enhanced, while the town where the land surface temperature increases in value added in 0 to 5 degrees. At the same time, the water changes, this due to the land surface temperature increases and the added value in the range of 5 to 8 degrees.

  6. Quantitative Geomorphological Analysis & Land Use/ Land Cover Change Detection of Two Sub-Watersheds in NE region of Punjab, India

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Singh, S.; Verma, V. K.; Pateriya, B.

    2014-11-01

    Morphometric analysis is the measurement and mathematical analysis of the landforms. The delineation of drainage system is of utmost importance in understanding hydrological system of an area, water resource management and it's planning in an effective manner. Morphometric analysis and land use change detection of two sub-watersheds namely Kukar Suha and Ratewal of district Shahid Bhagat Singh Nagar, Punjab, India was carried out for quantitative description of drainage and characterisation. The stream order, stream number, stream length, mean stream length, and other morphometric analysis like bifurcation ratio, drainage density, texture, relief ratio, ruggedness number etc. were measured. The drainage pattern of Kukar Suha and Ratewal is mainly dendritic. The agriculture and settlements came up along the drainage network causes the pattern disturbance in the watershed. The study was undertaken to spotlight the morphometric parameters, their impact on the basin and the land use land cover changes occurred over the period of time. Morphometric parameters such as linear aspect, areal aspect and relief aspect of the watershed are computed. The land use/land cover change was extracted from LISS IV Mx + Cartosat1 PAN data. ASTER data is used to prepare DEM (digital elevation model) and geographical information system (GIS) was used to evaluate various morphometric parameters in ArcGIS10 software.

  7. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included. PMID:20702023

  8. Position determination accuracy from the microwave landing system

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.

    1973-01-01

    Analysis and results are given for the position determination accuracy obtainable from the microwave landing guidance system. Siting arrangements, coverage volumes, and accuracy standards for the azimuth, elevation, and range functions of the microwave system are discussed. Results are given for the complete coverage of the systems and are related to flight operational requirements for position estimation during flare, glide slope, and general terminal area approaches. Range rate estimation from range data is also analyzed. The distance measuring equipment accuracy required to meet the range rate estimation standards is determined, and a method of optimizing the range rate estimate is also given.

  9. Evolutionary direction of land-atmosphere system

    NASA Astrophysics Data System (ADS)

    Paik, Kyungrock

    2015-04-01

    Natural landscape is always subject to dynamic change, leaving characteristic patterns at various time scales. Noticeable patterns, ranging from meandering to fractal characteristics of river networks, have been investigated with physical modeling, mathematical modeling, and other manners. One revolutionary idea to foster holistic understanding of landscape evolution is the optimality concept. There have been several optimality hypotheses proposed for different types of landforms. However, none of them seems fully verified (Paik, 2012). It has been argued that lack of feedbacks between different processes into account is critical limitation of present optimality hypotheses (Paik and Kumar, 2010). In this regards, this study presents how optimality context to be formulated for a clear case where strong feedbacks are exchanged during co-evolution, i.e. land-atmosphere system. While most landscape evolution models, either physical, numerical, or optimality-based, assume simple spatio-temporal variability in climate forcing (e.g., rainfall), climatic field evolves together with landscape in reality. For example, orographic precipitation is enhanced as tectonic uplift continues. Accordingly, landscape and atmosphere are closely linked and we should look at them as a single system, rather than separated individuals. In this presentation, limitation of existing optimality hypotheses will be demonstrated with examples of coupled evolution of land-atmosphere system. Fundamental implications for general optimality concept for evolutionary direction of the coupled system will be discussed. Keywords: Optimal channel network; Landscape evolution; Orographic rainfall References Paik, K. and P. Kumar (2010) Optimality approaches to describe characteristic fluvial patterns on landscapes. Philosophical Transactions of the Royal Society B-Biological Sciences, Vol.365, No.1545, pp.1387-1395, DOI: 10.1098/rstb.2009.0303. Paik, K. (2012) Search for the optimality signature of river network development, Physical Review E, Vol.86, 046110, DOI: 10.1103/PhysRevE.86.046110.

  10. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H. (Inventor)

    1989-01-01

    The invention is a real-time takeoff and landing performance monitoring system which provides the pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V sub R) within the safe zone of the runway or stopping the aircraft on the runway after landing or take off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. An important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in headwind occurring as the takeoff roll progresses. The system displays the position of the airplane on the runway, indicating runway used and runway available, summarizes the critical information into a situation advisory flag, flags engine failures and off-nominal acceleration performance, and indicates where on the runway particular events such as decision speed (V sub 1), rotation speed (V sub R) and expected stop points will occur based on actual or predicted performance. The display also indicates airspeed, wind vector, engine pressure ratios, second segment climb speed, and balanced field length (BFL). The system detects performance deficiencies by comparing the airplane's present performance with a predicted nominal performance based upon the given conditions.

  11. Design and implementation of multi-source data mining system for land use

    NASA Astrophysics Data System (ADS)

    Hong, Xiaofeng; Liu, Yaolin; Liu, Dianfeng; Xia, Yin; Hu, Xi

    2009-10-01

    With the development of "3S" technologies, a large quantity of spatial-temporal data related to land use has been accessed. Being scattered across different departments and lacking of relevant analysis tools made them utilize insufficiently. Although some experts have applied data mining to solve this problem, most of them have only provided one method for single task to build the mining systems. However, it is undesirable to use just one method to mine. In addition, the single function systems can not be used widely and conveniently. Hence, under full investigation on operations of land use, a multi-source data mining prototype system for land use is proposed by integrating of technologies of GIS and spatial data mining. According to the general data mining process, aiming at the multi-demands of land evaluation and land planning and so on, the system is developed by using ArcEngine 9.0 and VB.net. The system integrates basic geospatial data, land use/cover data, and thematic data as data sources, excavates different knowledge of land Quality, land use zoning rules, land use patterns and change rules and so on. Based on the types of knowledge, the system accordingly provides several different mining methods, including decision tree, support vector machine, artificial neural network, time series, spatial association rules, etc. Wide adaptability of the system is demonstrated by using some cases. The results of the system can meet multipurpose needs and be used to support decision-making of the land management department.

  12. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  13. The land potential knowledge system (LandPKS): Increasing land productivity and resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Africa must significantly increase agricultural production to meet the needs of a growing population. Current efforts focus on intensifying production on currently used lands and expanding to un- or under-utilized lands. The success of both strategies requires understanding the land’s potential prod...

  14. Remote sensing and GIS integration for land cover analysis, a case study: Bozcaada Island.

    PubMed

    Bektas, F; Goksel, C

    2005-01-01

    In this study, remote sensing and geographic information system (GIS) techniques were used in order to accomplish land cover change of Bozcaada Island, Turkey, by using multitemporal Landsat Thematic Mapper data. Digital image processing techniques were conducted for the processes of image enhancement, manipulation, registration and classification for land cover change analysis. The land cover changes between two different dates were visualized and analyzed by using Geographic Information System techniques. The results showed that remotely sensed data and GIS are effective and powerful tools for carrying out changes on land cover of the island and monitoring of its impact on the environment. PMID:16114638

  15. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Project Integrated Landing System

    NASA Technical Reports Server (NTRS)

    Baker, John D.; Yuchnovicz, Daniel E.; Eisenman, David J.; Peer, Scott G.; Fasanella, Edward L.; Lawrence, Charles

    2009-01-01

    Crew Exploration Vehicle (CEV) Chief Engineer requested a risk comparison of the Integrated Landing System design developed by NASA and the design developed by Contractor- referred to as the LM 604 baseline. Based on the results of this risk comparison, the CEV Chief engineer requested that the NESC evaluate identified risks and develop strategies for their reduction or mitigation. The assessment progressed in two phases. A brief Phase I analysis was performed by the Water versus Land-Landing Team to compare the CEV Integrated Landing System proposed by the Contractor against the NASA TS-LRS001 baseline with respect to risk. A phase II effort examined the areas of critical importance to the overall landing risk, evaluating risk to the crew and to the CEV Crew Module (CM) during a nominal land-landing. The findings of the assessment are contained in this report.

  16. Analysis of land-use/land-cover change in the Carpathian region based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Dezsõ, Zs.; Bartholy, J.; Pongrácz, R.; Barcza, Z.

    2003-04-01

    Human activities result in different significant environmental changes, these complex feedback processes may cause dramatic changes in our everyday life. Among others they include land-use and consequently land-cover changes. In order to study such complex variables full spatial coverage of the given area is one of the key issues. Rapid development of satellite use in different topics of research has provided an excellent tool to build agricultural monitoring systems and to improve our understanding of the complex links between air, water and land, including vegetation. In the last few years serious flood events occurred at the watershed of the river Tisza (both in Hungary and in Ukraine). One of the reasons of these floods is heavy precipitation at the region, which result in severe runoff consequences because of the significant change in land-use/land-cover. In this analysis both land-use change and Normalized Difference Vegetation Index (NDVI) values for the Carpathian Region have been statistically analysed for the last two decades. Remotely sensed datasets observed by NOAA and NASA satellites are available for this period. The spatial resolution of these measurements is 1 to 8 km. Tendencies in the change of natural and artificial land-cover types are investigated in the upper watershed of the river Tisza. According to our estimations the forest area on the Ukrainian part of the watershed decreased by about 10% in the last decade. Possible reasons include regional effects of the global climate change, deforestation in the region, etc.

  17. Land System Science: between global challenges and local realities?

    PubMed Central

    Verburg, Peter H; Erb, Karl-Heinz; Mertz, Ole; Espindola, Giovana

    2013-01-01

    This issue of Current Opinion in Environmental Sustainability provides an overview of recent advances in Land System Science while at the same time setting the research agenda for the Land System Science community. Land System Science is not just representing land system changes as either a driver or a consequence of global environmental change. Land systems also offer solutions to global change through adaptation and mitigation and can play a key role in achieving a sustainable future earth. The special issue assembles 14 articles that entail different perspectives on land systems and their dynamics, synthesizing current knowledge, highlighting currently under-researched topics, exploring scientific frontiers and suggesting ways ahead, integrating a plethora of scientific disciplines. PMID:24851141

  18. Land System Science: between global challenges and local realities.

    PubMed

    Verburg, Peter H; Erb, Karl-Heinz; Mertz, Ole; Espindola, Giovana

    2013-10-01

    This issue of Current Opinion in Environmental Sustainability provides an overview of recent advances in Land System Science while at the same time setting the research agenda for the Land System Science community. Land System Science is not just representing land system changes as either a driver or a consequence of global environmental change. Land systems also offer solutions to global change through adaptation and mitigation and can play a key role in achieving a sustainable future earth. The special issue assembles 14 articles that entail different perspectives on land systems and their dynamics, synthesizing current knowledge, highlighting currently under-researched topics, exploring scientific frontiers and suggesting ways ahead, integrating a plethora of scientific disciplines. PMID:24851141

  19. The Pilot Land Data System: Report of the Program Planning Workshops

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access.

  20. A Land Surface Data Assimilation Framework Using the Land Information System: Description and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Land Information System (LIS) is a hydrologic modeling framework that integrates various community land surface models, ground and satellite-based observations, and high performance computing and data management tools to enable assessment and prediction of hydrologic conditions at various spatia...

  1. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  2. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2004-01-01

    The Mars Exploration Rover mission successfully landed two rovers "Spirit" and "Opportunity" on Mars on January 4th and 25th of 2004, respectively. The trajectory analysis performed to define the entry, descent, and landing (EDL) scenario is described. The entry requirements and constraints are presented, as well as uncertainties used in a Monte Carlo dispersion analysis to statistically assess the robustness of the entry design to off-nominal conditions. In the analysis, six-degree-of-freedom and three-degree-of-freedom trajectory results are compared to assess the entry characteristics of the capsule. Comparison of the preentry results to preliminary post-landing reconstruction data shows that all EDL parameters were within the requirements. In addition, the final landing position for both "Spirit" and "Opportunity" were within 15 km of the predicted landing location.

  3. Advances in Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    2001-01-01

    Assimilation of remotely sensed land surface observations into regional to global scale numerical models have the potential to significantly advance our ability, to assess, understand, and predict surface water, energy, and carbon cycles. This session seeks to assess the state-of-the-art in data assimilation methods for integrating land surface remote sensing and modeling, with a focus on practical applications and techniques. Assimilated land surface variables of interest include (but are not limited to, soil moisture, surface temperature, snowpack, streamflow, vegetation dynamics, and carbon storage. Contributions describing the development of practical land surface data assimilation methods, multivariate land surface data assimilation strategies, evaluation of the required accuracy and resolution of remote sensing observations, the effects of scale, process complexity, and uncertainty on data assimilation, and the optimal treatment of model and observation errors are encouraged.

  4. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration. [performance tests of remote control equipment for roving vehicles

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. W.

    1976-01-01

    Problems related to the design and control of an autonomous rover for the purpose of unmanned exploration of the planets were considered. Building on the basis of prior studies, a four wheeled rover of unusual mobility and maneuverability was further refined and tested under both laboratory and field conditions. A second major effort was made to develop autonomous guidance. Path selection systems capable of dealing with relatively formidable hazard and terrains involving various short range (1.0-3.0 meters), hazard detection systems using a triangulation detection concept were simulated and evaluated. The mechanical/electronic systems required to implement such a scheme were constructed and tested. These systems include: laser transmitter, photodetectors, the necessary data handling/controlling systems and a scanning mast. In addition, a telemetry system to interface the vehicle, the off-board computer and a remote control module for operator intervention were developed. Software for the autonomous control concept was written. All of the systems required for complete autonomous control were shown to be satisfactory except for that portion of the software relating to the handling of interrupt commands.

  5. Land Cover Analysis of Temperate Asia

    NASA Technical Reports Server (NTRS)

    Justice, Chris

    1998-01-01

    Satellite data from the advanced very high resolution radiometer (AVHRR) instrument were used to produce a general land cover distribution of temperate Asia (referred to hence as Central Asia) from 1982, starting with the NOAA-7 satellite, and continuing through 1991, ending with the NOAA-11 satellite. Emphasis was placed upon delineating the and and semi-arid zones of Central Asia (largely Mongolia and adjacent areas), mapping broad categories of aggregated land cover, and upon studying photosynthetic capacity increases in Central Asia from 1982 to 1991.

  6. Policy implications in developing a land use management information systems

    NASA Technical Reports Server (NTRS)

    Landini, A. J.

    1975-01-01

    The current land use map for the city of Los Angeles was developed by the guesstimation process and provides single stage information for each level in the critical geographical hierarchy for land use planning management. Processing and incorporation of LANDSAT data in the land use information system requires special funding; however, computergraphic maps are able to provide a viable information system for city planning and management.

  7. Sediment source attribution from multiple land use systems with CSIA

    NASA Astrophysics Data System (ADS)

    Alewell, C.; Birkholz, A.; Meusburger, K.; Schindler Wildhaber, Y.; Mabit, L.

    2015-08-01

    As sediment loads impact freshwater systems and infrastructure, their origin in complex landscape systems is of crucial importance for optimization of catchment management. We differentiated sediment source contribution to a lowland river in Central Switzerland in using compound specific stable isotopes analysis (CSIA). We found a clear distinction of sediment sources originating from forest and agricultural land use. We suggest to generally reduce uncertainty of sediment source attribution, in (i) aiming for approaches with least possible data complexity to reduce analytical effort as well as refraining from undetected source attribution and/or tracer degradation obscured by complex high data demanding modelling approaches, (ii) to use compound content (in our case long chain fatty acid (FA)) rather than soil organic matter content when converting isotopic signature to soil contribution and (iii) to restrict evaluation to the long-chain FAs (C22:0 to C30:0) not to introduce errors due to aquatic contributions from algae and microorganisms. Results showed unambiguously that during base flow agricultural land contributed up to 65 % of the suspended sediments, while forest was the dominant sediment source during high flow, which indicates that during base and high flow conditions connectivity of sediment source areas with the river change. Our findings are the first results highlighting significant differences in compound specific stable isotope (CSSI) signature and quantification of sediment sources from land uses dominated by C3 plant cultivation.

  8. 75 FR 41886 - Public Land Order No. 7744; Withdrawal of National Forest System Land for Inyan Kara Area; WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Bureau of Land Management Public Land Order No. 7744; Withdrawal of National Forest System Land for Inyan... order withdraws 1,278.09 acres of National Forest System land from location and entry under the United States mining laws for a period of 20 years on behalf of the United States Forest Service to protect...

  9. Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS)

    NASA Astrophysics Data System (ADS)

    Cosgrove, Brian A.; Lohmann, Dag; Mitchell, Kenneth E.; Houser, Paul R.; Wood, Eric F.; Schaake, John C.; Robock, Alan; Sheffield, Justin; Duan, Qingyun; Luo, Lifeng; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan

    2003-11-01

    The process of a model adjusting to its forcing (model spin-up) can severely bias land surface simulations, and result in questionable land surface model (LSM) output during the spin-up process. To gain a better understanding of how spin-up processes affect complex spatial and temporal land surface modeling situations in general, and the Retrospective North American Land Data Assimilation System (NLDAS) simulations in particular, a two-phase study was conducted. The first phase examined results from Control, Wet, and Dry 11 year-long Mosaic simulations, while the second phase attempted to explain spin-up behavior in NLDAS Retrospective simulations from the Mosaic, Noah, VIC and Sacramento LSMs based in part on the results from phase 1. Total column and root zone soil moisture spin up slowly, while evaporation and deep soil temperature spin up more quickly. Mosaic soil moisture initialization with NCEP/DOE Global Reanalysis 2 (NCEP/DOE R-2) data (Control run) leads to a faster spin-up time than saturated (Wet run) or dry (Dry run) initialization, with the Control run reaching equilibrium 1 to 2 years sooner than the Wet run and 3 to 4 years more quickly than the Dry run. Overall, practical drift of land surface stores and output ceased in the Control run within approximately 1 year, and fine-scale equilibrium was reached within 5.5 years. Spin-up times exhibited large spatial variability, and although no single causal factor could be determined, they were correlated most strongly with precipitation and temperature forcing. In general, NLDAS models reach a state of rough equilibrium within the first 1 to 2 years of the 3-year Retrospective simulation. The Sacramento LSM has the shortest spin-up phase, followed by the Mosaic, VIC, and Noah LSMs. Initial NCEP/DOE R-2 conditions were too dry in general for the VIC and Noah LSMs, and too moist for the Mosaic and Sacramento LSMs. These results indicate that in most cases, the 1-year spin-up time used in the Retrospective NLDAS simulations eliminated spin-up problems from the subsequent period that was used for analysis.

  10. 77 FR 44144 - National Forest System Land Management Planning; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ...) published a National Forest System land management planning rule in the Federal Register, on April 9, 2012, (77 FR 21162). Errors have been found in the rule with respect to punctuation, hyphenation, and... Forest Service 36 CFR Part 219 RIN 0596-AD02 National Forest System Land Management Planning;...

  11. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  12. Evolving the Land Information System into a Cloud Computing Service

    SciTech Connect

    Houser, Paul R.

    2015-02-17

    The Land Information System (LIS) was developed to use advanced flexible land surface modeling and data assimilation frameworks to integrate extremely large satellite- and ground-based observations with advanced land surface models to produce continuous high-resolution fields of land surface states and fluxes. The resulting fields are extremely useful for drought and flood assessment, agricultural planning, disaster management, weather and climate forecasting, water resources assessment, and the like. We envisioned transforming the LIS modeling system into a scientific cloud computing-aware web and data service that would allow clients to easily setup and configure for use in addressing large water management issues. The focus of this Phase 1 project was to determine the scientific, technical, commercial merit and feasibility of the proposed LIS-cloud innovations that are currently barriers to broad LIS applicability. We (a) quantified the barriers to broad LIS utility and commercialization (high performance computing, big data, user interface, and licensing issues); (b) designed the proposed LIS-cloud web service, model-data interface, database services, and user interfaces; (c) constructed a prototype LIS user interface including abstractions for simulation control, visualization, and data interaction, (d) used the prototype to conduct a market analysis and survey to determine potential market size and competition, (e) identified LIS software licensing and copyright limitations and developed solutions, and (f) developed a business plan for development and marketing of the LIS-cloud innovation. While some significant feasibility issues were found in the LIS licensing, overall a high degree of LIS-cloud technical feasibility was found.

  13. Flight tests of the Digital Integrated Automatic Landing System (DIALS)

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1984-01-01

    The design, development, implementation and flight tests of the Digital Integrated Automatic Landing System (DIALS) are discussed. The system was implemented and flight tested on the Transport Systems Research Vehicle (TSRV), a Boeing 737-100. The design uses modern optimal control methods. The direct digital design obtained uses a 10 Hz rate for the sampling of sensors and the control commands. The basic structure of the control law consists of a steady state Kalman filter followed by a control gain matrix. The sensor information used includes Microwave Landing System (MLS) position, attitude, calibrated airspeed, and body accelerations. The phases of the final approach considered are localized and steep glideslope capture (which may be performed simultaneously or independently), localizer and glideslope track, crab/decrab, and flare to touchdown. The system can capture, track, and flare from conventional, as well as steep, glideslopes ranging from 2.5 deg to 5.5 deg. All of the modes of the control law including the Kalman filters were implemented on the TSRV flight computers which use fixed point arithmetic with 16 bit words. The implementation considerations are described as well as an analysis of the flight test results.

  14. The effects of war on land-use/land-cover change: An analysis of Landsat imagery for northeast Bosnia

    NASA Astrophysics Data System (ADS)

    Witmer, Frank D. W.

    The use of satellite technology by military planners has a relatively long history as a tool of warfare, but little research has used satellite technology to study the effects of war. This research addresses this gap by applying satellite remote sensing imagery to study the effects of war on land-use/land-cover change in northeast Bosnia. The war in Bosnia, 1992-1995, resulted in over 100,000 deaths, many more wounded, and the mass displacement of nearly half the population of 4.2 million. When combined with the destruction of much of the transportation infrastructure and housing stock, widespread mine placement, and loss of agricultural machinery, the impacts to both the people and land were dramatic. Though the most severe war impacts are visible at local scales (e.g. destroyed buildings), this study focuses on impacts to agricultural land, a larger scale visible to satellite sensors. Multispectral Landsat Thematic Mapper (TM) data (30m pixels) from before and during the war in addition to recent imagery from 2004/05 were used to detect abandoned agricultural land. The satellite images were co-registered to enable a perpixel analysis of changes based on the statistical properties of the pixels using multiple change detection methods. Ground reference data were collected in May of 2006 at survey sites selected using a stratified random sampling approach based on the derived map of abandoned agricultural land. Fine resolution (60cm) Quickbird imagery was also used to verify the accuracy of the classification. The remote sensing analysis results were then used to test two hypotheses related to war outcomes: (a) land abandonment is due to wartime minefields and (b) land abandonment is greater in pre-war Croat areas and areas where ethnic cleansing was heaviest. The effects of minefields on land abandonment was first tested in a geographic information system (GIS), and then by using multiple regression models that account for spatial autocorrelation among observations. The spatial regression analysis was conducted at the opstina (county) areal unit and used minefield locations, refugee returns and population change data as predictors of abandoned agricultural land. Results from these analyses show that a supervised classification of the Landsat TM data identified abandoned agricultural land with an overall accuracy of 82.5%. The GIS and spatial regression analysis of how war affects agricultural land showed that the presence of minefields and population declines are both associated with abandoned agricultural land. This research holds significance for both the remote sensing and civil war research communities. The use of freely available Quickbird imagery both as training data for the supervised classifier and as supplementary ground reference data suggest these methods are applicable to other civil wars (e.g. Darfur region of Sudan and the Horn of Africa) that may still be too dangerous for researchers to conduct field work in. By extending these methods to other war zones, comparisons of similarities and differences between such studies can then be made to draw broader conclusions of war impacts to land use and land cover.

  15. Analysis of the vertical structure of the atmospheric heating process and its seasonal variation over the Tibetan Plateau using a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Seto, Rie; Koike, Toshio; Rasmy, Mohamed

    2013-11-01

    atmospheric heating process over the Tibetan Plateau (TP) in the premonsoon and mature monsoon seasons of 2008 and 2009 was investigated using radiosonde data and a land data assimilation system coupled with a mesoscale model (LDAS-A), which assimilates microwave brightness temperature and accurately reproduces land and atmospheric states. Focusing on the temperature observed below 200 hPa, we found that there were warming and cooling periods alternately in the premonsoon season within a general warming trend, and the profiles of heating in the two seasons were reversed. Then we identified the vertical structure of each heating component: sensible heat (SH), latent heat (LH), and horizontal advection (Hadv), using the LDAS-A in each season. The troposphere over the TP in warming periods was divided into three vertical layers in terms of the major heating process: SH transport below 450 hPa, LH from 450 to 250 hPa, and Hadv above 250 hPa. The SH and LH are transported by local convections. In contrast, the heat source for Hadv originated in the southwest of the plateau, related to synoptic-scale circulations. Latent cooling with cloud evaporation and adiabatic cooling with convection negatively contributed to heating in the upper troposphere. In cooling periods, the vertical structure of each heating component was similar to that in warming periods, but net heating was reversed because of the influence of synoptic-scale disturbances. In the mature monsoon season, warm Hadv in the upper troposphere rapidly weakened in response to the initial formation of the Tibetan High.

  16. A land use and land cover classification system for use with remote sensor data

    USGS Publications Warehouse

    Anderson, James R.; Hardy, Ernest E.; Roach, John T.; Witmer, Richard E.

    1976-01-01

    The framework of a national land use and land cover classification system is presented for use with remote sensor data. The classification system has been developed to meet the needs of Federal and State agencies for an up-to-date overview of land use and land cover throughout the country on a basis that is uniform in categorization at the more generalized first and second levels and that will be receptive to data from satellite and aircraft remote sensors. The proposed system uses the features of existing widely used classification systems that are amenable to data derived from remote sensing sources. It is intentionally left open-ended so that Federal, regional, State, and local agencies can have flexibility in developing more detailed land use classifications at the third and fourth levels in order to meet their particular needs and at the same time remain compatible with each other and the national system. Revision of the land use classification system as presented in U.S. Geological Survey Circular 671 was undertaken in order to incorporate the results of extensive testing and review of the categorization and definitions.

  17. A Reusable Design for Precision Lunar Landing Systems

    NASA Technical Reports Server (NTRS)

    Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve

    2005-01-01

    The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference system architecture.

  18. Application of the global Land-Potential Knowledge System (LandPKS) mobile apps to land degradation, restoration and climate change adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combatting land degradation, promoting restoration and adapting to climate change all require an understanding of land potential. A global Land-Potential Knowledge System (LandPKS) is being developed that will address many of these limitations using an open source approach designed to allow anyone w...

  19. SANITARY SEWER SYSTEMS - LAND APPLICATION AREAS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Sewer system land applications as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting a...

  20. Impacts of Current and Previous Land Use on Greenhouse Gas Fluxes for Biofuel Cropping Systems

    NASA Astrophysics Data System (ADS)

    Del Grosso, S.; Parton, W.; Adler, P.; Ogle, S.; West, T.

    2008-12-01

    Biofuel cropping systems are both a source and sink of greenhouse gases (GHG). Fertilizer and pesticide manufacture and transport, farm machinery operation, and processing of biomass into fuel all lead to carbon dioxide (CO2) emissions, but the largest GHG sources for biofuel systems are often soil nitrous oxide (N2O) emissions and loss of organic carbon as a result of land use change. However, improved land management can increase soil carbon levels and decrease N2O emissions, thus complementing the CO2 sink from displaced fossil fuel combustion. Previously cropped land, grazed land, and Conservation Reserve Program (CRP) land is being converted to biofuel cropping. We report results for the central US because most of the land used for biofuel cropping is in the central region of the country (corn/soy belt). The primary tool for this analysis is the DAYCENT ecosystem model. The ability of the model to simulate soil GHG fluxes and crop yields is demonstrated and results from simulations of different land management scenarios are presented. Our analyses suggest that conversion of CRP or grazed land to corn ethanol cropping under conventional management leads to a net source of GHG, but that converting these lands to perennial cellulosic biofuel cropping results in a GHG sink. Previously cropped land converted to corn ethanol under conventional management is a small GHG sink, but improved management and conversion to cellulosic based crops can greatly increase this sink strength.

  1. Neutron-based land mine detection system development

    SciTech Connect

    Davis, H.A.; McDonald, T.E. Jr.; Nebel, R.A.; Pickrell, M.M.

    1997-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to examine the feasibility of developing a land mine detection system that can detect nonmetallic (plastic) mines using the detection and analysis of prompt gamma neutron activation analysis (PGNAA). The authors approached this study by first carrying out a review of other nonmetallic land mine detection methods for comparison with the PGNAA concept. They reviewed issues associated with detecting and recording the return gamma signal resulting from neutrons interacting with high explosive in mines and they examined two neutron source technologies that have been under development at Los Alamos for the past several years for possible application to a PGNAA system. A major advantage of the PGNAA approach is it`s ability to discriminate detection speed and need for close proximity. The authors identified approaches to solving these problems through development of improved neutron sources and detection sensors.

  2. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  3. A Meta-Analysis of Global Urban Land Expansion

    PubMed Central

    Seto, Karen C.; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K.

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely. PMID:21876770

  4. A meta-analysis of global urban land expansion.

    PubMed

    Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely. PMID:21876770

  5. Image interpretation for a multilevel land use classification system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential use is discussed of three remote sensors for developing a four level land use classification system. Three types of imagery for photointerpretation are presented: ERTS-1 satellite imagery, high altitude photography, and medium altitude photography. Suggestions are given as to which remote sensors and imagery scales may be most effectively employed to provide data on specific types of land use.

  6. Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...

  7. Acquiring observation error covariance information for land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estimat...

  8. PLANS FOR THE LAND MANAGEMENT SYSTEM (LMS) INITIATIVE

    EPA Science Inventory

    The Land Management System (LMS) is an initiative of the U.S. Army Engineer Research and Development Center (ERDC) to address technology requirements related to land and water resource management in both military and Civil Works mission areas. The purpose of LMS is to provide rel...

  9. Aeroacoustic Analysis of a Simplified Landing Gear

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Khorrami, Mehdi, R.; Li, Fei

    2004-01-01

    A hybrid approach is used to investigate the noise generated by a simplified landing gear without small scale parts such as hydraulic lines and fasteners. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from flow data provided by an unsteady computational fluid dynamics calculation. A simulation with 13 million grid points has been completed, and comparisons are made between calculations with different turbulence models. Results indicate that the turbulence model has a profound effect on the levels and character of the unsteadiness. Flow data on solid surfaces and a set of permeable surfaces surrounding the gear have been collected. Noise predictions using the porous surfaces appear to be contaminated by errors caused by large wake fluctuations passing through the surfaces. However, comparisons between predictions using the solid surfaces with the near-field CFD solution are in good agreement giving confidence in the far-field results.

  10. Measurement of semantic similarity for land use and land cover classification systems

    NASA Astrophysics Data System (ADS)

    Deng, Dongpo

    2008-12-01

    Land use and land cover (LULC) data is essential to environmental and ecological research. However, semantic heterogeneous of land use and land cover classification are often resulted from different data resources, different cultural contexts, and different utilities. Therefore, there is need to develop a method to measure, compare and integrate between land cover categories. To understand the meaning and the use of terminology from different domains, the common ontology approach is used to acquire information regarding the meaning of terms, and to compare two terms to determine how they might be related. Ontology is a formal specification of a shared conceptualization of a domain of interest. LULC classification system is a ontology. The semantic similarity method is used to compare to entities of three LULC classification systems: CORINE (European Environmental Agency), Oregon State, USA), and Taiwan. The semantic properties and relations firstly have been extracted from their definitions of LULC classification systems. Then semantic properties and relations of categories in three LULC classification systems are mutually compared. The visualization of semantic proximity is finally presented to explore the similarity or dissimilarity of data. This study shows the semantic similarity method efficiently detect semantic distance in three LULC classification systems and find out the semantic similar objects.

  11. Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II

    2010-01-01

    The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle

  12. Preliminary analysis of knee stress in Full Extension Landing

    PubMed Central

    Makinejad, Majid Davoodi; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Bayat, Mehdi

    2013-01-01

    OBJECTIVE: This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height. METHODS: The impact time and loads were measured via inverse dynamic analysis of free landing without knee flexion from three different heights (25, 50 and 75 cm), using five subjects with an average body mass index of 18.8. Three-dimensional data were developed from computed tomography scans and were reprocessed with modeling software before being imported and analyzed by finite element analysis software. The whole leg was considered to be a fixed middle-hinged structure, while impact loads were applied to the femur in an upward direction. RESULTS: Straight landing exerted an enormous amount of pressure on the knee joint as a result of the body's inability to utilize the lower extremity muscles, thereby maximizing the threat of injury when the load exceeds the height-safety threshold. CONCLUSIONS: The researchers conclude that extended-knee landing results in serious deformation of the meniscus and cartilage and increases the risk of bone-to-bone contact and serious knee injury when the load exceeds the threshold safety height. This risk is considerably greater than the risk of injury associated with walking downhill or flexion landing activities. PMID:24141832

  13. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.

    2011-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems

  14. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Kumar, Sujay V.; Santanello, Joseph A., Jr.; Reichle, Rolf H.

    2009-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins,". As described in Kumar et al., 2007, and demonstrated in Case et al., 2008, and Santanello et al., 2009, LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling the enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation as described in Peters-Lidard et al. (2008) and Santanello et al. (2007), who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs. LIS has also recently been demonstrated for multi-model data assimilation (Kumar et al., 2008) using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature. Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation. Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeoroogical modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems.

  15. A guide to NASA's Pilot Land Data System (PLDS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's Pilot Land Data System (PLDS) is a distributed information management system designed to support NASA's land science community. The PLDS provides a wide range of services including management of information about scientific data, access to a library of scientific data, a data ordering capability, communications, connection to data analysis facilities, and electronic mail. The PLDS provides these services by offering the scientist the capability to search for and order data, and to communicate electronically with other scientists and computers. Three functions enable scientists to find what data are available and where they reside. The first two, Find data summaries and Read detailed descriptions give summary and detailed descriptions about data sets or groups of related data sets, science, projects, and institutions which archive land data. The third, gives information about specific pieces of data. This last function has two components, Search systemwide inventory and Search local inventory. The first component enables the user to find data elements (images, geological samples, transects, maps, etc.) that exist anywhere in the PLDS while the second has only information about data at the local site. The first enables the user to find pieces of data from several different data sets with the same temporal and spatial coverage and other elements common to most data sets, while the second allows the user to select a data set based on these descriptors and on those that are unique to a data set. The PLDS provides capabilities that enable electronic file transfers, intercomputer connection, and electronic mail. Both TCP/IP and DECnet protocols are supported via the NASA Science Internet (NIS). Access is also available through Telenet.

  16. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2011-01-01

    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  17. Analysis-test correlation of airbag impact for Mars landing

    SciTech Connect

    Salama, M.; Davis, G.; Kuo, C.P.

    1994-12-31

    The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags are deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.

  18. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  19. The shock-absorbed system of the airplane landing gear

    NASA Technical Reports Server (NTRS)

    Callerio, Pietro

    1940-01-01

    A discussion is given of the behavior of the shock-absorbing system, consisting of elastic struts and tires, under landing, take-off, and taxying conditions, and a general formula derived for obtaining the minimum stroke required to satisfy the conditions imposed on the landing gear. Finally, the operation of some typical shock-absorbing systems are examined and the necessity brought out for taking into account, in dynamic landing-gear tests, the effect of the wing lift at the instant of contact with the ground.

  20. Incorporating land use land cover probability information into endmember class selections for temporal mixture analysis

    NASA Astrophysics Data System (ADS)

    Li, Wenliang; Wu, Changshan

    2015-03-01

    As a promising method for estimating fractional land covers within a remote sensing pixel, spectral mixture analysis (SMA) has been successfully applied in numerous fields, including urban analysis, forest mapping, etc. When implementing SMA, an important step is to select the number, type, and spectra of pure land covers (also termed endmember classes). While extensive studies have been conducted in addressing endmember variability (e.g. spectral variability of endmember classes), little research has paid attention to the selection of an appropriate number and types of endmember classes. To address this problem, in this study, we proposed to automatically select endmember classes for temporal mixture analysis (TMA), a variant of SMA, through incorporating land use land cover probability information derived from socio-economic and environmental drivers. This proposed model includes three consecutive steps, including (1) quantifying the distribution probability of each endmember class using a logistic regression analysis, (2) identifying whether each endmember class exists or not in a particular pixel using a classification tree method, and (3) estimating fractional land covers using TMA. Results indicate that the proposed TMA model achieves a significantly better performance than the simple TMA and a comparable performance with the METMA with an SE of 2.25% and an MAE of 3.18%. In addition, significantly better accuracy was achieved in less developed areas when compared to that of developed areas. This may indicate that an appropriate endmember class set might be more essential in less developed areas, while other factors like endmember variability is more important in developed areas.

  1. Improved aircraft dynamic response and fatigue life during ground operations using an active control landing gear system

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Carden, H. D.; Edson, R.

    1978-01-01

    A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.

  2. Temporal Land Cover Analysis for Net Ecosystem Improvement

    SciTech Connect

    Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.

    2013-04-09

    We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysis period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.

  3. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  4. Applications of Skylab data to land use and climatological analysis

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Lewis, J. E., Jr.; Lins, H. F., Jr.; Jenner, C. B.; Outcalt, S. I.; Pease, R. W.

    1976-01-01

    The author has identified the following significant results. Skylab study in Central Atlantic Regional Ecological Test Site encompassed two separate but related tasks: (1) evaluation of photographic sensors S190A and B as sources of land use data for planning and managing land resources in major metropolitan regions, and (2) evaluation of the multispectral scanner S192 used in conjunction with associated data and analytical techniques as a data source on urban climates and the surface energy balance. Photographs from the Skylab S190B earth terrain camera were of greatest interest in the land use analysis task; they were of sufficiently high resolution to identify and map many level 2 and 3 land use categories. After being corrected to allow for atmosphere effects, output from thermal and visible bands of the S192 was employed in constructing computer map plots of albedo and surface temperature.

  5. Quantitative Change and Use Analysis of Agricultural Land in China

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Chou, J.; Dong, W.

    2013-12-01

    Climatic change, economic and scientific development and political guidance irritate the change of land use. With the index of crop sown area, this paper mainly explores the agricultural land use situation in these years of China. Accumulated temperature and urbanization rate are used to analyze space-time difference and its impact mechanism of crop sown area, for the quantitative change of agricultural land. While cropping index reflected agricultural land use is considered to obtain the actual use of cultivated land and its surplus capacity. Some results are concluded as follows: (1) from 1949 to 2010, crop sown area has a generally slow growth in China, however, with obvious space diversity. Most quickly increase and decrease are reflected in Xinjiang and North China, and the size of agricultural land ranks from the midland to the east and to the west of China. (2) Based on the relationship of accumulated temperature and cropping system, effect of climatic change, urbanization and other factors aggregated on crop sown area increase are considered. It is confirmed that warming promotes much little, urbanization restrains mainly in South China, northeast China, Xinjiang and southwest China, and other factors aggregated accelerate agricultural land of the rest of China. (3) From 1980 to 2009, agricultural land use degree keeps unceasing deepening. By the common influence of decreased cultivated area and less potential cropping index than actual cropping index, surplus capacity of cultivated area induces, from 6.27*107 hm2 in 1980 to 3.85*107 hm2 in 2009. However, it still accounts for about 20 percent of agricultural land to the full potential, which verifies the necessary of sufficient and reasonable use in further.

  6. Control systems for platform landings cushioned by air bags

    NASA Astrophysics Data System (ADS)

    Ross, Edward W.

    1987-07-01

    This report presents an exploratory mathematical study of control systems for airdrop platform landings cushioned by airbags. The basic theory of airbags is reviewed and solutions to special cases are noted. A computer program is presented, which calculates the time-dependence of the principal variables during a landing under the action of various control systems. Two existing control systems of open-loop type are compared with a conceptual feedback (closed-loop) system for a fairly typical set of landing conditions. The feedback controller is shown to have performance much superior to the other systems. The feedback system undergoes an interesting oscillation not present in the other systems, the source of which is investigated. Recommendations for future work are included.

  7. Controllable set analysis for planetary landing under model uncertainties

    NASA Astrophysics Data System (ADS)

    Long, Jiateng; Gao, Ai; Cui, Pingyuan

    2015-07-01

    Controllable set analysis is a beneficial method in planetary landing mission design by feasible entry state selection in order to achieve landing accuracy and satisfy entry path constraints. In view of the severe impact of model uncertainties on planetary landing safety and accuracy, the purpose of this paper is to investigate the controllable set under uncertainties between on-board model and the real situation. Controllable set analysis under model uncertainties is composed of controllable union set (CUS) analysis and controllable intersection set (CIS) analysis. Definitions of CUS and CIS are demonstrated and computational method of them based on Gauss pseudospectral method is presented. Their applications on entry states distribution analysis under uncertainties and robustness of nominal entry state selection to uncertainties are illustrated by situations with ballistic coefficient, lift-to-drag ratio and atmospheric uncertainty in Mars entry. With analysis of CUS and CIS, the robustness of entry state selection and entry trajectory to model uncertainties can be guaranteed, thus enhancing the safety, reliability and accuracy under model uncertainties during planetary entry and landing.

  8. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  9. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  10. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  11. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  12. Application of ERTS-1 imagery to state wide land information system in Minnesota

    NASA Technical Reports Server (NTRS)

    Sizer, J. E.; Borchert, J. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. To update and refine existing state-wide land resource information systems, the Minnesota State Planning Agency is assessing the feasibility of extracting resource information from ERTS-1 imagery. Work has centered on a comparative analysis of Minnesota Land Management Information System (MLMIS) and ERTS-1 land use classes. The associated problems of determining appropriate data cell size and optimal seasonal timing have also been addressed. Using ERTS-1 images, dominant land use is classified as follows: urban, forest, agriculture, extractive, transportation, water, and wetlands. Preliminary analysis suggests that with appropriate changes in operational definitions these general classes can be further refined for the benefit of MLMIS users. Additional detail appears most feasible extractive classes.

  13. Land-use suitability analysis for urban development in Beijing.

    PubMed

    Liu, Renzhi; Zhang, Ke; Zhang, Zhijiao; Borthwick, Alistair G L

    2014-12-01

    Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing. PMID:25036557

  14. Development of a digital integrated automatic landing system /DIALS/ for steep approach and landing

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Hueschen, R. M.

    1981-01-01

    This paper describes the development of a three-dimensional digital integrated automatic landing system (DIALS) for a small commercial jet transport. The system uses the Microwave Landing System (MLS), body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not require inertial platforms. The system development uses modern digital control techniques. The phases of flight considered are the localizer and glideslope capture, which may be performed simultaneously or sequentially, localizer and glideslope track (hold), crab/decrab, and flare to touchdown. The system captures, tracks and flares from steep glideslopes (2.5 - 5.5 deg) selected prior to glideslope capture. The results of a nonlinear simulation are presented.

  15. Ongoing Development of NASA's Global Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Kato, H.; Zaitchik, B. F.

    2008-05-01

    NASA's Global Land Data Assimilation System (GLDAS) produces global fields of land surface states (e.g., soil moisture and temperature) and fluxes (e.g., latent heat flux and runoff) by driving offline land surface models with observation-based inputs, using the Land Information System (LIS) software. Since production began in 2001, GLDAS has supported more than 100 scientific investigations and applications. Some examples are GEWEX and NASA Energy and Water Cycle Study (NEWS) global water and energy budget analyses, interpretations of hydrologic data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and forecast model initiation studies at NOAA and NASA. At the same time, the GLDAS team has continued improve results through the development of new modeling and data assimilation techniques. Here we describe several recent and ongoing innovations. These include global implementation of a runoff routing procedure, GRACE data assimilation, advanced snow cover assimilation, and irrigation modeling.

  16. Ongoing Development of NASA's Global Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Kato, Hiroko; Zaitchik, Ben

    2008-01-01

    NASA's Global Land Data Assimilation System (GLDAS) produces global fields of land surface states (e.g., soil moisture and temperature) and fluxes (e.g., latent heat flux and runoff) by driving offline land surface models with observation-based inputs, using the Land Information System (LIS) software. Since production began in 2001, GLDAS has supported more than 100 scientific investigations and applications. Some examples are GEWEX and NASA Energy and Water Cycle Study (NEWS) global water and energy budget analyses, interpretations of hydrologic data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and forecast model initiation studies at NOAA and NASA. At the same time, the GLDAS team has continued improve results through the development of new modeling and data assimilation techniques. Here we describe several recent and ongoing innovations. These include global implementation of a runoff routing procedure, GRACE data assimilation, advanced snow cover assimilation, and irrigation modeling.

  17. Space shuttle entry and landing navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Crawford, B. S.

    1974-01-01

    A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.

  18. Operational considerations in utilization of microwave landing system approach and landing guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L. V.

    1981-01-01

    The characteristics of microwave landing system (MLS) equipment are reviewed and the flight performance of the terminal configured vehicle B-737 airplane during nearly five years of flight experience with MLS is summarized. Most of these flights involved curved, descending flight paths with automatic landings and final approaches as short as 0.44 n. mi. Possible uses to solve noise abatement problems with MLS equipment of varying degrees of complexity are discussed. It is concluded that altitude derived from MLS is superior to other sources near the airport traffic pattern.

  19. Validation of a Flexible Aircraft TakeOff and Landing Analysis /FATOLA/ computer program using flight landing data

    NASA Technical Reports Server (NTRS)

    Carden, H. D.; Mcgehee, J. R.

    1977-01-01

    A multiple-degree-of-freedom takeoff and landing analysis, Flexible Aircraft TakeOff and Landing Analysis computer program (FATOLA), was used to predict the landing behavior of a rigid-body X-24B reentry research vehicle and of a flexible-body modified-delta-wing supersonic YF-12 research aircraft. The analytical predictions were compared with flight test data for both research vehicles. Predicted time histories of vehicle motion and attitude, landing-gear strut stroke, and axial force transmitted from the landing gear to the airframe during the landing impact and rollout compared well with the actual time histories. Based on the comparisons presented, the versatility and validity of the FATOLA program for predicting landing dynamics of aircraft has been demonstrated.

  20. [Urban ecological land in Changsha City: its quantitative analysis and optimization].

    PubMed

    Li, Xiao-Li; Zeng, Guang-Ming; Shi, Lin; Liang, Jie; Cai, Qing

    2010-02-01

    In this paper, a hierarchy index system suitable for catastrophe progression method was constructed to comprehensively analyze and evaluate the status of ecological land construction in Changsha City in 2007. Based on the evaluation results, the irrationalities of the distribution pattern of Changsha urban ecological land were discussed. With the support of geographic information system (GIS), the ecological corridors of the urban ecological land were constructed by using the 'least-cost' modeling, and, in combining with conflict analysis, the optimum project of the urban ecological land was put forward, forming an integrated evaluation system. The results indicated that the ecological efficiency of urban ecological land in Changsha in 2007 was at medium level, with an evaluation value being 0.9416, and the quantitative index being relatively high but the coordination index being relatively low. The analysis and verification with software Fragstats showed that the ecological efficiency of the urban ecological land after optimization was higher, with the evaluation value being 0.9618, and the SHDI, CONTAG, and other indices also enhanced. PMID:20462014

  1. Vegetation analysis for arid lands geobotany

    NASA Technical Reports Server (NTRS)

    Barbour, M. G.; Ustin, S. L.

    1985-01-01

    Three primary study sites were selected for measurement of plant phenological properties and spectral analysis. The sites selected represented typical sagebrush, creosote bush, and saltbush communities in Owens Valley, CA. Community composition was studied at these three sites plus five burned sites. Ten 50 m transects at each locality were measured for percent cover (over 10 cm) by a given species. On each transect two point quarter and five nearest neighbor analyses were conducted. These data provided percent cover, cover by area, plant size, tendency for association, and recolonization patterns after a disturbance. Plots representing percentage plant cover for six sites are included.

  2. Vancouver 2010 Winter Olympics Land Surface Forecast System

    NASA Astrophysics Data System (ADS)

    Bernier, N. B.; Belair, S.; Tong, L.; Abrahamowicz, M.; Mailhot, J.

    2009-04-01

    Environment Canada's land surface forecast system developed for the Vancouver 2010 Winter Olympics is presented together with an evaluation of its performance for winters 2007-2008 and 2008-2009. The motivation for this work is threefold: it is i) application driven for the 2010 Vancouver Olympics, ii) a testbed for the panCanadian operational land surface forecast model being developed, and iii) the precursor to the fully coupled land-surface model to come. The new high resolution (100m grid size), 2D, and novel imbedded point-based land surface forecast model used to predict hourly snow and surface temperature conditions at Olympic and Paralympic Competition Sites are described. The surface systems are driven by atmospheric forcing provided by the center's operational regional forecast model for the first 48 hours and by the operational global forecast model for hours 49 to 96. The forcing fields are corrected for elevation discrepancies over the rapidly changing and complex mountainous settings of the Vancouver Olympics that arise from resolution differences. Daily 96h land surface forecasts for 2 winters and snow depth and surface air temperature observations collected at several specially deployed competition sites are used to validate the land surface model. We show that the newly implemented surface forecast model refines and improves snow depth and surface temperature forecast issued by the operational weather forecast system throughout the forecast period.

  3. 76 FR 37826 - Public Land Order No. 7773; Emergency Withdrawal of Public and National Forest System Lands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Bureau of Land Management Public Land Order No. 7773; Emergency Withdrawal of Public and National Forest...,776 acres of public and National Forest System lands from location and entry under the 1872 Mining Law... preserve values that would otherwise be lost. It is therefore ordered as follows: 1. Subject to...

  4. Task Analysis of Shuttle Entry and Landing Activities

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.; Vanderark, Stephen T.

    1993-01-01

    The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.

  5. Modifications in Coverage Patterns and Land Use around the Huizache-Caimanero Lagoon System, Sinaloa, Mexico: A Multi-temporal Analysis using LANDSAT Images

    NASA Astrophysics Data System (ADS)

    Ruiz-Luna, A.; Berlanga-Robles, C. A.

    1999-07-01

    Human activities, such as agriculture and shrimp farming, have influenced the Huizache-Caimanero lagoon system, modifying the landscape and diminishing its natural productivity. Four Landsat MSS (multi-spectral scanner) and TM (thematic mapper) sub-images, taken between 1973 and 1997, were analysed to evaluate trends of changes in the lagoon, saltmarsh, mangrove, agriculture, secondary succession and dry forest classes. The scenes were enhanced by principal components analysis. A thematic map for each sub-image was produced using supervised classification with the extraction and classification of homogeneous objects algorithm (ECHO). Aerial photography and field verification of testing points were used to validate the classification and to assess its accuracy using the Kappa coefficient. The area covered by class and year was estimated and the temporal trends were defined by linear regression. The natural covers (lagoon, mangrove and dry forest) showed a significant reduction in 1997 when compared with 1973, whereas the agricultural areas, secondary succession and saltmarshes showed an increase in cover. The frequency distribution analysis of the normalized difference vegetation index (NDVI) confirmed the observed trends. The Huizache-Caimanero region is a highly disturbed landscape, mainly caused by agricultural practices, that must be rehabilitated to maintain its natural productivity.

  6. Study on passive momentum exchange landing gear using two-dimensional analysis

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsubasa; Hara, Susumu; Otsuki, Masatsugu

    2014-12-01

    This paper discusses a landing response control system based on the momentum exchange principle for planetary exploration spacecraft. In the past, landing gear systems with cantilever designs that incorporate honeycomb materials to dissipate shock energy through plastic deformation have been used, but once tested before launch, the system cannot be used in a real mission. The sky crane system used for the Mars Science Laboratory by NASA can achieve a safe and precise landing, but it is highly complex. This paper introduces a momentum exchange impact damper (MEID) that absorbs the controlled object's momentum with extra masses called damper masses. The MEID is reusable, which makes it easy to ensure the landing gear's reliability. In this system, only passive elements such as springs are needed. A single-axis (SA) model has already been used to verify the effectiveness of MEIDs through simulations and experiments measuring the rebound height of the spacecraft. However, the SA model cannot address the rotational motion and tipping of the spacecraft. This paper presents a two-landing-gear-system (TLGS) model in which multiple MEIDs are equipped for two-dimensional analysis. Unlike in the authors' previous studies, in this study each MEID is launched when the corresponding landing gear lands and the MEIDs do not contain active actuators. This mechanism can be used to realize advanced control specifications, and it is simply compared with previous mechanisms including actuators, in which all of the MEIDs are launched simultaneously. If each MEID works when the corresponding gear lands, the rebound height of each gear can be minimized, and tipping can be prevented, as demonstrated by the results of our simulations.

  7. Consistency of wind erosion assessments across land use and land cover types: A critical analysis

    NASA Astrophysics Data System (ADS)

    Li, Junran; Okin, Gregory S.; Tatarko, John; Webb, Nicholas P.; Herrick, Jeffrey E.

    2014-12-01

    In recent decades, large areas of rangeland have been converted to cropland or vice versa in the western United States and elsewhere in the world, driven largely by increased crop prices, loss of access to irrigation water, and agricultural expansion/contraction. Wind erosion and dust emissions are key processes that have not been well studied during land use and associated land cover changes. This assessment is challenging because currently no model is available that can provide field- to landscape-scale estimates of wind erosion on both rangeland and cropland, and account for soil, vegetation and management changes. In this paper, we compare aeolian sediment transport estimates from available cropland models and a number of mass flux equations developed for rangelands, for a bare soil surface with different levels of crust and surface roughness under different wind speeds. Our results show that the simulated horizontal sediment mass fluxes are similar for cropland and rangeland models at large surface crust coverage and aerodynamic roughness. In situations of small to moderate crust cover and soil roughness, horizontal mass fluxes varied by over three orders of magnitude among the tested models. A correlation analysis shows that horizontal mass fluxes simulated by cropland and rangeland models are correlated, with correlation R2 of 0.37-0.99 across different models. Finally, we propose an approach to estimate changes in aeolian transport with changes in land use. Although this approach may be limited to situations of unvegetated surfaces, it provides a preliminary method for land managers and policymakers to estimate potential wind erosion changes in response to land use change.

  8. Improved inflatable landing systems for low cost planetary landers

    NASA Astrophysics Data System (ADS)

    Northey, Dave; Morgan, Chris

    2003-11-01

    Inflatable landing systems have been traditionally perceived as a cost-effective solution to the problem of landing a spacecraft on a planetary surface. To date the systems used have all employed the approach of surrounding the lander with non-vented airbags where the lander bounces on impact a number of times until the impact energy is dissipated. However the reliability record of such systems is not at all good. This paper examines the problems involved in the use of non-vented airbags, and how these problems have been overcome by the use of vented airbags in terrestrial systems. Using a specific case study, it is shown that even the basic passive type of venting can give significant mass reductions. It is also shown that actively controlling the venting based on the landing scenario can further enhance the performance of vented airbags.

  9. Improved inflatable landing systems for low cost planetary landers

    NASA Astrophysics Data System (ADS)

    Northey, Dave; Morgan, Chris

    2006-10-01

    Inflatable landing systems have been traditionally perceived as a cost-effective solution to the problem of landing a spacecraft on a planetary surface. To date, the systems used have all employed the approach of surrounding the lander with non-vented airbags where the lander on impact bounces a number of times until the impact energy is dissipated. However, the reliability record of such systems is not at all good. This paper examines the problems involved in the use of non-vented airbags, and how these problems have been overcome by the use of vented airbags in terrestrial systems. Using a specific case study, it is shown that even the basic passive type of venting can give significant mass reductions. It is also shown that actively controlling the venting based on the landing scenario can further enhance the performance of vented airbags.

  10. Mars Science Laboratory Entry, Descent, and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Prakash, Ravi; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Devin, M. Kipp; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Steltzner, Adam D.; Way, David W.

    2008-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions.

  11. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  12. The auto-tuned land data assimilation system (ATLAS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems are tasked with the merging remotely-sensed soil moisture retrievals with information derived from a soil water balance model driven (principally) by observed rainfall. The performance of such systems is frequently degraded by the imprecise specification of parameters ...

  13. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type lander, with mass of 22kg, being VSOL = 5268 m/s. Using the basic pre-defined parameters for MetNet-type of lander in Earth atmosphere, we get the optimal angle of = -3.06 degrees for Earth re-entry. 3. Payload Mass for Earth Entry DV One of the key elements in Earth entry lander is the amount of available payload mass. The payload mass depends on, e.g., the lander size, landing type (soil or water), heat shield durability and additional landing gear. The payload mass will have an impact to the center of gravity of the lander. The payload with a “low” CoG (compared the the lander structure) has a larger tolerance than the payload with “high” CoG. In cases where payload CoG causes instability, the extra balance mass can be used to adjust CoG. This balance mass will reduce the available payload mass. A major limitation for payload mass is the heat shielding. Acknowledgements The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 263255. References [1] http://ritd.fmi.fi

  14. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being VSOL = 5268 m/s. Using the basic pre-defined parameters for MetNet-type of lander in Earth atmosphere, we get the optimal angle of Θ = -3.06 degrees for Earth re-entry. 3. Payload Mass for Earth Entry DV One of the key elements in Earth entry lander is the amount of available payload mass. The payload mass depends on, e.g., the lander size, landing type (soil or water), heat shield durability and additional landing gear. The payload mass will have an impact to the center of gravity of the lander. The payload with a 'low' CoG (compared the the lander structure) has a larger tolerance than the payload with 'high' CoG. In cases where payload CoG causes instability, the extra balance mass can be used to adjust CoG. This balance mass will reduce the available payload mass. A major limitation for payload mass is the heat shielding. Acknowledgements The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 263255. References [1] http://ritd.fmi.fi

  15. Helical automatic approaches of helicopters with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Foster, J. D.; Mcgee, L. A.; Dugan, D. C.

    1982-01-01

    A program is under way to develop a data base for establishing navigation and guidance concepts for all-weather operation of rotorcraft. One of the objectives is to examine the feasibility of conducting simultaneous rotorcraft and conventional fixed-wing, noninterfering, landing operations in instrument meteorological conditions at airports equipped with microwave landing systems (MLSs) for fixed-wing traffic. An initial test program to investigate the feasibility of conducting automatic helical approaches was completed, using the MLS at Crows Landing near Ames. These tests were flown on board a UH-1H helicopter equipped with a digital automatic landing system. A total of 48 automatic approaches and landings were flown along a two-turn helical descent, tangent to the centerline of the MLS-equipped runway to determine helical light performance and to provide a data base for comparison with future flights for which the helical approach path will be located near the edge of the MLS coverage. In addition, 13 straight-in approaches were conducted. The performance with varying levels of state-estimation system sophistication was evaluated as part of the flight tests. The results indicate that helical approaches to MLS-equipped runways are feasible for rotorcraft and that the best position accuracy was obtained using the Kalman-filter state-estimation with inertial navigation systems sensors.

  16. GNC system scheme for lunar soft landing spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, Dayi; Huang, Xiangyu; Guan, Yifeng

    2008-07-01

    A pinpoint autonomous GNC system scheme for lunar soft landing is proposed. First, the descriptions of the mission outline for lunar soft landing are provided. Second, the GNC system design of the spacecraft is proposed. The baseline is a 3-axis stabilized system during all the phases of the mission. Orbit maneuvers are achieved by an assembled constant thrust or a throttleable main engine. The attitude control actuators are thrusters. The attitude and orbit determination is performed by sun sensors, star sensors, Inertial Measurement Unit (IMU), altimeter, velocimeter and lunar imaging sensors. Third, some proposed autonomous navigation and guidance methods including hazard detection and avoidance for lunar soft landing are analyzed. Finally, we draw some conclusions.

  17. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    SciTech Connect

    Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef; Pongratz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

    2010-11-15

    This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improved collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).

  18. TOXIC ORGANIC VOLATILIZATION FROM LAND TREATMENT SYSTEMS

    EPA Science Inventory

    Methodology was evaluated for estimating volatilization of toxic organic chemicals from unsaturated soils. Projections were compared with laboratory data for simulated rapid infiltration wastewater treatment systems receiving primary municipal wastewater spiked with a suite of 18...

  19. Validation of an Active Gear, Flexible Aircraft Take-off and Landing analysis (AGFATL)

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1984-01-01

    The results of an analytical investigation using a computer program for active gear, flexible aircraft take off and landing analysis (AGFATL) are compared with experimental data from shaker tests, drop tests, and simulated landing tests to validate the AGFATL computer program. Comparison of experimental and analytical responses for both passive and active gears indicates good agreement for shaker tests and drop tests. For the simulated landing tests, the passive and active gears were influenced by large strut binding friction forces. The inclusion of these undefined forces in the analytical simulations was difficult, and consequently only fair to good agreement was obtained. An assessment of the results from the investigation indicates that the AGFATL computer program is a valid tool for the study and initial design of series hydraulic active control landing gear systems.

  20. An analysis of landing rates and separations at the Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Erzberger, Heinz

    1996-01-01

    Advanced air traffic management systems such as the Center/TRACON Automation System (CTAS) should yield a wide range of benefits, including reduced aircraft delays and controller workload. To determine the traffic-flow benefits achievable from future terminal airspace automation, live radar information was used to perform an analysis of current aircraft landing rates and separations at the Dallas/Fort Worth International Airport. Separation statistics that result when controllers balance complex control procedural constraints in order to maintain high landing rates are presented. In addition, the analysis estimates the potential for airport capacity improvements by determining the unused landing opportunities that occur during rush traffic periods. Results suggest a large potential for improving the accuracy and consistency of spacing between arrivals on final approach, and they support earlier simulation findings that improved air traffic management would increase capacity and reduce delays.

  1. Using Geo-informational System for determining land degradation processes

    NASA Astrophysics Data System (ADS)

    Mangul, I.; Mangul, S.

    The largest part of agricultural lands of the Republic of Moldova is concentrated in the arid zone Frequent droughts once in 2-4 years inflict vital causalities to agriculture of the Republic of Moldova However droughts influence doesn t only limit itself to forming production Drought after-effect is highly ruinous for water reserves industrial enterprises functioning rhythm and human health Droughts make for the drying up and crumbling of soil which is subject to excessive human influence and result in land degradation desertification Term desertification means land degradation in the droughty zones It is necessary to mention that the droughty ecosystems are extremely fragile and sensitive overexploitation Nowadays in the Republic of Moldova 33-37 of agricultural lands is eroded Republic of Moldova joined the United Nations Convention to Combat Desertification on December 24 1998 The Government of the Republic of Moldova ratified the National Action Plan to Combat Desertification in 2000 Within the framework of executing the National Action Plan by National Committee to Combat Desertification Geo-informational System on arid questions was organized In addition a lot of indexes corresponding to international standards were used for the evaluation of drought of the territory and land degradation processes Mostly this information is presented in maps erosion landslides aridity water resources A rich experience of using satellite information for determining land degradation demonstrates high effectiveness of this method Satellite

  2. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the assumption of a stationary system. This means that the assumption of a constant model structure is not adequate and largely underestimates uncertainty in the forecast. Non-stationarity in land use change projections is challenging to model, because it is difficult to determine when the system will change and how. We believe that, in sight of these findings, land use change modelers should be more aware, and communicate more clearly, that what they try to project is at the limits, and perhaps beyond the limits, of what is still projectable. References Bakker, M., Veldkamp, A., 2012. Changing relationships between land use and environmental characteristics and their consequences for spatially explicit land-use change prediction. Journal of Land Use Science 7, 407-424. Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A.P.C., 2012. Spatio-Temporal Uncertainty in Spatial Decision Support Systems: a Case Study of Changing Land Availability for Bioenergy Crops in Mozambique. Computers , Environment and Urban Systems 36, 30-42.

  3. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  4. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  5. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  6. Source analysis of spaceborne microwave radiometer interference over land

    NASA Astrophysics Data System (ADS)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  7. Visualization and Analysis of Multi-scale Land Surface Products via Giovanni Portals

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Kempler, Steven J.; Gerasimov, Irina V.

    2013-01-01

    Large volumes of MODIS land data products at multiple spatial resolutions have been integrated into the Giovanni online analysis system to support studies on land cover and land use changes,focused on the Northern Eurasia and Monsoon Asia regions through the LCLUC program. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data.Customized Giovanni Web portals (Giovanni-NEESPI andGiovanni-MAIRS) have been created to integrate land, atmospheric,cryospheric, and societal products, enabling researchers to do quick exploration and basic analyses of land surface changes, and their relationships to climate, at global and regional scales. This presentation shows a sample Giovanni portal page, lists selected data products in the system, and illustrates potential analyses with imagesand time-series at global and regional scales, focusing on climatology and anomaly analysis. More information is available at the GES DISCMAIRS data support project portal: http:disc.sci.gsfc.nasa.govmairs.

  8. An analysis of human-induced land transformations in the San Francisco Bay/Sacramento area

    SciTech Connect

    Kirtland, D.; DeCola, L. ); Gaydos, L.; Acevedo, W. ); Clarke, K. . Dept. of Geology and Geography); Bell, C. )

    1994-06-01

    Part of the US Geological Survey's Global Change Research Program involves studying the area from the Pacific Ocean to the Sierra foothills to enhance understanding of the role that human activities play in global change. The study investigates the ways that humans transform the land and the effects that changing the landscape may have on regional and global systems. To accomplish this research, scientists are compiling records of historical transformations in the region's land cover over the last 140 years, developing a simulation model to predict land cover change, and assembling a digital data set to analyze and describe land transformations. The historical data regarding urban growth focus attention on the significant change the region underwent from 1850 to 1990. The historical change is being used to calibrate a prototype cellular automata model, developed to predict changes in urban land cover 100 years into the future. These data aid in documenting and understanding human-induced land transformations from both historical and predictive perspectives. A descriptive analysis of the region is used to investigate the relationships among data characteristic of the region. These data consist of multilayer topography, climate, vegetation, and population data for a 256-km[sup 2] region of central California. A variety of multivariate analysis tools are used to integrate the data in raster format from map contours, interpolated climate observations, satellite observations, and population estimates.

  9. Estimation of Land Surface States and Fluxes using a Land Surface Model Considering Different Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Chun, J. A.; Zaitchik, B. F.; Evans, J. P.; Beaudoing, H. K.

    2012-12-01

    Food security can be improved by increasing the extent of agricultural land or by increasing agricultural productivity, including through intensive management such as irrigation. The objectives of this study were to incorporate practical irrigation schemes into land surface models of the NASA Land Information System (LIS) and to apply the tool to estimate the impact of irrigation on land surface states and fluxes—including evapotranspiration, soil moisture, and runoff—in the Murray-Darling basin in Australia. Here we present results obtained using Noah Land Surface Model v3.2 within LIS without simulated irrigation (IR0) and with three irrigation simulation routines: flood irrigation (IR1), drip irrigation (IR2), and sprinkler irrigation (IR3). Moderate Resolution Imaging Spectrometer (MODIS) vegetation index was used to define crop growing seasons. Simulations were performed for a full year (July 2002 to June 2003) and evaluated against hydrologic flux estimates obtained in previous studies. Irrigation amounts during the growing season (August 2002 to March 2003) were simulated as 104.6, 24.6, and 188.1 GL for IR1, IR2, and IR3, respectively. These preliminary results showed water use efficiency from a drip irrigation scheme would be highest and lowest from a sprinkler irrigation scheme, with a highly optimized version of flood irrigation falling in between. Irrigation water contributed to a combination of increased evapotranspiration, runoff, and soil moisture storage in the irrigation simulations relative to IR0. Implications for water management applications and for further model development will be discussed.

  10. Land-mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee (Inventor); Rafferty, William (Inventor); Dessouky, Khaled I. (Inventor); Wang, Charles C. (Inventor); Cheng, Unjeng (Inventor)

    1993-01-01

    A satellite communications system includes an orbiting communications satellite for relaying communications to and from a plurality of ground stations, and a network management center for making connections via the satellite between the ground stations in response to connection requests received via the satellite from the ground stations, the network management center being configured to provide both open-end service and closed-end service. The network management center of one embodiment is configured to provides both types of service according to a predefined channel access protocol that enables the ground stations to request the type of service desired. The channel access protocol may be configured to adaptively allocate channels to open-end service and closed-end service according to changes in the traffic pattern and include a free-access tree algorithm that coordinates collision resolution among the ground stations.

  11. Low cost airborne microwave landing system receiver, task 3

    NASA Technical Reports Server (NTRS)

    Hager, J. B.; Vancleave, J. R.

    1979-01-01

    Work performed on the low cost airborne Microwave Landing System (MLS) receiver is summarized. A detailed description of the prototype low cost MLS receiver is presented. This detail includes block diagrams, schematics, board assembly drawings, photographs of subassemblies, mechanical construction, parts lists, and microprocessor software. Test procedures are described and results are presented.

  12. TOXIC AND PRIORITY ORGANICS IN MUNICIPAL SLUDGE LAND TREATMENT SYSTEMS

    EPA Science Inventory

    The goal of the research reported herein was to begin a methodical investigation of organic priority pollutants applied to plant-soil systems at rates characteristic of municipal sludge land treatment. A single chemical was applied at rates of 0.1, 10, and 100-fold of the expecte...

  13. 78 FR 13316 - National Forest System Land Management Planning Directives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...The Forest Service has issued proposed directives to Forest Service Handbook (FSH 1909.12) and Manual (FSM 1920) establishing procedures and responsibilities for implementing the National Forest System (NFS) land management planning regulation. Issuance of these proposed directives will provide consistent overall guidance to Forest Service Line Officers and Agency employees in developing,......

  14. 78 FR 23491 - National Forest System Land Management Planning; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Forest Service 36 CFR Part 219 RIN 0596-AB86 National Forest System Land Management Planning; Correction... Register, on April 9, 2012 (77 FR 21162). DATES: These corrections are effective April 19, 2013. ADDRESSES... Register, page 21162, April 9, 2012, (77 FR 21162) the United States Department of Agriculture...

  15. Orion Landing and Recovery Systems Development - Government Contributions

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.

    2010-01-01

    This slide presentation reviews NASA's work in development of landing and recovery systems for the Orion space craft. It includes a review of the available tools and skills that assist in analyzing the aerodynamic decelerators. There is a description of the work that is being done on the Government Furnished Equipment (GFE) parachutes that will be used with the Orion Crew Exploration Vehicle (CEV)

  16. Fish farming in land-based closed-containment systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'An International Summit on Fish Farming in Land-Based Closed-Containment Systems' was hosted by the Conservation Fund's Freshwater Institute, the Gordon and Betty Moore Foundation (GBMF), the Atlantic Salmon Federation (ASF), and Tides Canada (TC) at the National Conservation Training Center in She...

  17. Facilities and capabilities catalog for landing and escape systems

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E. (Editor)

    1992-01-01

    This catalog serves as a single source reference for designers of landing and escape systems for spacecraft, aircraft, weapons, and airdrop system. It includes those facilities which may be required by a system designer in planning a development test program for many applications. The primary objective of this catalog is to provide a means for identifying critical facilities with the U.S. which can be used for the development of landing and escape systems. A secondary objective is to provide a useful tool to the system designer for picking and choosing facilities and capabilities. The six chapters in this volume include wind tunnels, drop zones, test aircraft, fabrication facilities, design tools, and other miscellaneous facilities. A different data sheet format is used for each of the chapters which provides information on performance, location, special capabilities, and a local point of contact. All inputs were solicited from the individual facilities and have not been independently verified for accuracy.

  18. Application of the Auto-Tuned Land Assimilation System (ATLAS) to ASCAT and SMOS soil moisture retrieval products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilations are typically based on highly uncertain assumptions regarding the statistical structure of observation and modeling errors. Left uncorrected, poor assumptions can degrade the quality of analysis products generated by land data assimilation systems. Recently, Crow and van de...

  19. Developing a Prototype ALHAT Human System Interface for Landing

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin

    2011-01-01

    The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the effect of terrain/lighting on the human pilot, and how they use windows and displays during landing activities. The Apollo missions were limited to about 28 possible launch days a year due to lighting and orbital constraints. In order to take advantage of more landing opportunities and venture to more challenging landing locations, future landers will need to utilize sensors besides human eyes for scanning the surface. The ALHAT HSI system must effectively convey ALHAT produced information to the operator, so that landings can occur during less "optimal" conditions (lighting, surface terrain, slopes, etc) than was possible during Apollo missions. By proving this capability, ALHAT will simultaneously provide more flexible access to the moon, and greater safety margins for future landers. This paper will specifically focus on the development of prototype displays (the Trajectory Profile Display (TPD), Landing Point Designation (LPD), and Crew Camera View (CCV) ), implementation of realistic planetary terrain, human modeling, and future HSI plans.

  20. Research on Decision-Making Support of Chineserural Land Tenure Information System

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Su, Hongyou

    Since 1949, the information of land tenure has a positive effect on defining the scope of collective land and state-owned land, implementing the system of cultivated land protection and land use control, designing general land use planning, etc. But as the economic and social development, the existing land tenure information is not appropriate anymore and results in many problems. The emphasis in the near future should be placed on establishing rural land tenure information system including cadastral management system, the uniform property registration system and cadastral management information system, defining the scope and content of various collective land ownership, securing peasants' land tenure rights, shortening the gap between urban and rural areas, all of which will guarantee the effective use of information of land tenure for the government's decision-making.

  1. Satellite Power System (SPS) resource requirements (critical materials, energy and land)

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    The resource impacts of the proposed satellite power system are evaluated. Three classes of resource impacts are considered separately: critical materials, energy, and land use. The analysis focuses on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.

  2. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  3. A robust signalling system for land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Irish, Dale; Shmith, Gary; Hart, Nick; Wines, Marie

    1989-01-01

    Presented here is a signalling system optimized to ensure expedient call set-up for satellite telephony services in a land mobile environment. In a land mobile environment, the satellite to mobile link is subject to impairments from multipath and shadowing phenomena, which result in signal amplitude and phase variations. Multipath, caused by signal scattering and reflections, results in sufficient link margin to compensate for these variations. Direct signal attenuation caused by shadowing due to buildings and vegetation may result in attenuation values in excess of 10 dB and commonly up to 20 dB. It is not practical to provide a link with sufficient margin to enable communication when the signal is blocked. When a moving vehicle passes these obstacles, the link will experience rapid changes in signal strength due to shadowing. Using statistical models of attenuation as a function of distance travelled, a communication strategy has been defined for the land mobile environment.

  4. Mars Science Laboratory Entry, Descent, and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Kipp, Devin M.; Lorenzoni, Leila V.; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Prakash, Ravi; Way, David W.

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.

  5. Development of a spatio-temporal data model based on events and objects in land reclamation information system

    NASA Astrophysics Data System (ADS)

    Hu, Jinshan; He, Zongyi; Kang, Jianrong; Liu, Pengcheng; Wei, Xiuqin

    2009-10-01

    The land resource in the mining area has been destroyed badly, therefore to establish a land reclamation information system of mining area based on GIS is of great significance. However, mining land reclamation is a complex systemic project, there are a lot of spatial data and spatial information during the whole reclamation procedure. The spatial information database of land reclamation is a temporal one due to the change of the land resource within the coal mining area. The damaged land is always above the corresponding underground working face of the mine, there are many pieces of destroyed land in the mining area. A piece of reclaiming land area can be acted as one object, On the basis of the analysis of the changing course of the land object in the subsidence region and the advantage of event-based spatio-temporal data model, a spatio-temporal data model based on objects and events was proposed in this paper, this model can be applied to administer land information in the mining area. Meanwhile, the spatial information query and the analytic method were also studied in this paper. The advantage of this model is to connect surface event and underground mining event which cause the land information change in the mining area.

  6. Analysis of land cover change and its driving forces in a desert oasis landscape of southern Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Amuti, T.; Luo, G.

    2014-07-01

    The combined effects of drought, warming and the changes in land cover have caused severe land degradation for several decades in the extremely arid desert oases of Southern Xinjiang, Northwest China. This study examined land cover changes during 1990-2008 to characterize and quantify the transformations in the typical oasis of Hotan. Land cover classifications of these images were performed based on the supervised classification scheme integrated with conventional vegetation and soil indexes. Change-detection techniques in remote sensing (RS) and a geographic information system (GIS) were applied to quantify temporal and spatial dynamics of land cover changes. The overall accuracies, Kappa coefficients, and average annual increase rate or decrease rate of land cover classes were calculated to assess classification results and changing rate of land cover. The analysis revealed that major trends of the land cover changes were the notable growth of the oasis and the reduction of the desert-oasis ecotone, which led to accelerated soil salinization and plant deterioration within the oasis. These changes were mainly attributed to the intensified human activities. The results indicated that the newly created agricultural land along the margins of the Hotan oasis could result in more potential areas of land degradation. If no effective measures are taken against the deterioration of the oasis environment, soil erosion caused by land cover change may proceed. The trend of desert moving further inward and the shrinking of the ecotone may lead to potential risks to the eco-environment of the Hotan oasis over the next decades.

  7. Load-limiting landing gear footpad energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Tsai, Ted

    1994-01-01

    As a precursor to future manned missions to the moon, an inexpensive, unmanned vehicle that could carry small, scientific payloads to the lunar surface was studied by NASA. The vehicle, called the Common Lunar Lander, required extremely optimized structural systems to increase the potential payload mass. A lightweight energy-absorbing system (LAGFEAS), which also acts as a landing load-limiter was designed to help achieve this optimized structure. Since the versatile and easily tailored system is a load-limiter, it allowed for the structure to be designed independently of the ever-changing landing energy predictions. This paper describes the LAGFEAS system and preliminary verification testing performed at NASA's Johnson Space Center for the Common Lunar Lander program.

  8. The KamLAND Full-Volume Calibration System

    SciTech Connect

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O'Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  9. Overview of the Phoenix Entry, Descent and Landing System Architecture

    NASA Technical Reports Server (NTRS)

    Grover, Myron R., III; Cichy, Benjamin D.; Desai, Prasun N.

    2008-01-01

    NASA s Phoenix Mars Lander began its journey to Mars from Cape Canaveral, Florida in August 2007, but its journey to the launch pad began many years earlier in 1997 as NASA s Mars Surveyor Program 2001 Lander. In the intervening years, the entry, descent and landing (EDL) system architecture went through a series of changes, resulting in the system flown to the surface of Mars on May 25th, 2008. Some changes, such as entry velocity and landing site elevation, were the result of differences in mission design. Other changes, including the removal of hypersonic guidance, the reformulation of the parachute deployment algorithm, and the addition of the backshell avoidance maneuver, were driven by constant efforts to augment system robustness. An overview of the Phoenix EDL system architecture is presented along with rationales driving these architectural changes.

  10. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy production and agriculture. These kinds of stresses often initiate innovated technological developments, such as dry cooling to reduce water demands in the U.S. Southwest for utility-scalesolar development, however, the need for large areas of land remain, and often, large land tracts in this region are under Federal ownership and used as conservation or wildlife refuges. Conflicting stakeholder views, institutional commitments, and international concerns can constrain options for reducing vulnerability to climate change, and interactions among water, energy, and land resource sectors can intensify such constraints. While management decisions may focus primarily on one of these resource sectors, where the three sectors are tightly coupled, options for mitigating or adapting to climate change may be limited more than expected. For example, the Columbia River Treaty between Canada and the U.S. emphasizes hydroelectric power and flood control, but with warmer temperatures and drier summers projected for the Northwest, diminishing water supplies will result in increased pumping for resource production (i.e., deeper groundwater) and transmission. Finally, coordinated water management for agriculture, ecosystem services, and hydropower will be an important aspect of adaptation not necessarily accommodated by the Treaty.

  11. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint.

  12. Commercialization of the land remote sensing system: An examination of mechanisms and issues

    NASA Technical Reports Server (NTRS)

    Cauley, J. K.; Gaelick, C.; Greenberg, J. S.; Logsdon, J.; Monk, T.

    1983-01-01

    In September 1982 the Secretary of Commerce was authorized (by Title II of H.R. 5890 of the 97th Congress) to plan and provide for the management and operation of the civil land remote sensing satellite systems, to provide for user fees, and to plan for the transfer of the ownership and operation of future civil operational land remote sensing satellite systems to the private sector. As part of the planning for transfer, a number of approaches were to be compared including wholly private ownership and operation of the system by an entity competitively selected, mixed government/private ownership and operation, and a legislatively-chartered privately-owned corporation. The results of an analysis and comparison of a limited number of financial and organizational approaches for either transfer of the ownership and operation of the civil operational land remote sensing program to the private sector or government retention are presented.

  13. Videometric terminal guidance method and system for UAV accurate landing

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Lei, Zhihui; Yu, Qifeng; Zhang, Hongliang; Shang, Yang; Du, Jing; Gui, Yang; Guo, Pengyu

    2012-06-01

    We present a videometric method and system to implement terminal guidance for Unmanned Aerial Vehicle(UAV) accurate landing. In the videometric system, two calibrated cameras attached to the ground are used, and a calibration method in which at least 5 control points are applied is developed to calibrate the inner and exterior parameters of the cameras. Cameras with 850nm spectral filter are used to recognize a 850nm LED target fixed on the UAV which can highlight itself in images with complicated background. NNLOG (normalized negative laplacian of gaussian) operator is developed for automatic target detection and tracking. Finally, 3-D position of the UAV with high accuracy can be calculated and transfered to control system to direct UAV accurate landing. The videometric system can work in the rate of 50Hz. Many real flight and static accuracy experiments demonstrate the correctness and veracity of the method proposed in this paper, and they also indicate the reliability and robustness of the system proposed in this paper. The static accuracy experiment results show that the deviation is less-than 10cm when target is far from the cameras and lessthan 2cm in 100m region. The real flight experiment results show that the deviation from DGPS is less-than 20cm. The system implement in this paper won the first prize in the AVIC Cup-International UAV Innovation Grand Prix, and it is the only one that achieved UAV accurate landing without GPS or DGPS.

  14. Development of the Arab Land Data Assimilation System (ALDAS)

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Rodell, M.; Zaitchik, B. F.; Toll, D. L.; Engman, E.; Habib, S.; Ozdogan, M.

    2009-12-01

    The Arab region of the Middle East and Northern Africa (MENA) suffers from arid conditions, dense population, and inefficient use of fresh water resources. These factors have nearly exhausted the existing water resources in the region and have led to a re-evaluation of water management plans and budgeting schemes between nations. In order to utilize the existing resources more efficiently, it is necessary that all nations within the MENA have access to optimal estimates of hydrological states and fluxes relevant to water resources. However, the region is poorly monitored due to trans-boundary issues and sparse in situ networks. This presentation will introduce a methodology and implementation strategy envisaged to achieve these goals through the development of a Land Data Assimilation System designed specifically for the Arab region (ALDAS). The ALDAS optimally merges available in situ data with satellite-based estimates of meteorological variables including data from the Gravity Recovery and Climate Experiment (GRACE), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Tropical Rainfall Measuring Mission (TRMM) within a land surface modeling framework. As a result of this effort, a platform for data sharing among MENA nations is being prepared to provide timely regional estimates of hydrological states and fluxes at 1/8th degree resolution. To be discussed will be development and status of the land data assimilation system, and preliminary results from land surface model simulations over the region.

  15. Propeller modulation effects on a scanning beam microwave landing system

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Staehle, W. H.

    1974-01-01

    An investigation to assess the modulation effects on microwave signals transmitted through rotating propeller blades. Interruption of the antenna line-of-sight signal by the rotating propeller causes a variation of path loss, which produces essentially an amplitude modulation of the received signal. This interruption or blockage effect is generally only partial because of edge diffraction around the particular interfering propeller blade. Signals reflected from the rotating propeller will also cause Doppler frequency shifts to be present in the received signals. A scanning beam microwave landing system (MLS) known as MODILS (modular instrument landing system) was used to process the received signals for display. The effects of propeller modulation were studied by varying the following parameters: (1) spacing between propeller and receiving antenna, (2) propeller dimensions, (3) propeller speed (rpm), (4) number of propeller blades, (5) system data rate, (6) receiver response time, and (7) receiver antenna aperture.

  16. Rapid prototyping of soil moisture estimates using the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.

    2007-12-01

    The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.

  17. GPS-based certification for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Young, L. E.; Wu, S. C.; Thomas, J. B.

    1984-01-01

    An MLS (microwave landing system) certification system based on the Global Positioning System (GPS) is described. To determine the position history of the flight inspection aircraft during runway approach, signals from the GPS satellites, together with on-board radar altimetry, are used. It is shown that the aircraft position relative to a fixed point on the runway at threshold can be determined to about 30 cm vertically and 1 m horizontally. A requirement of the system is that the GPS receivers be placed on each flight inspection aircraft and at selected ground sites. The effects of different error sources on the determination of aircraft instantaneous position and its dynamics are analyzed.

  18. CURENT LAND USE/LAND COVER ANALYSIS FOR COASTAL ALABAMA MX974176

    EPA Science Inventory

    The project entails land use/land cover and classification of current LandSat 7 satellite imagery. The final products will include digital files for the classified imagery, an attributed vector polygon GIS coverage of classified areas in Arcview export and Arcview shapefile form...

  19. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  20. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  1. Automated On-board Terrain Analysis for Precision Landings

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform-multi-scale Retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the VS produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the MSR has proven to be a very strong enhancement engine, the other elements of the approach, the VS, terrain map generation, and smoothness-based segmentation, are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  2. Automated, on-board terrain analysis for precision landings

    NASA Astrophysics Data System (ADS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform-multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the VS produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the MSR has proven to be a very strong enhancement engine, the other elements of the approach-the VS, terrain map generation, and smoothness-based segmentation-are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  3. Automated, on-board terrain analysis for precision landings

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  4. Observationally based analysis of land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Catalano, F.; Alessandri, A.; De Felice, M.; Zhu, Z.; Myneni, R. B.

    2015-10-01

    The variance of soil moisture, vegetation and evapotranspiration over land has been recognized to be strongly connected to the variance of precipitation. However, the feedbacks and couplings between these variables are still not well understood and quantified. Furthermore, soil moisture and vegetation processes are associated to a memory and therefore they may have important implications for predictability. In this study we apply a generalized linear method, specifically designed to assess the reciprocal forcing between connected fields, to the latest available observational datasets of global precipitation, evapotranspiration, vegetation and soil moisture content. For the first time a long global observational dataset is used to investigate the spatial and temporal land variability and to characterize the relationships and feedbacks between land and precipitation. The variables considered show a significant coupling among each other. The analysis of the response of precipitation to soil moisture evidences a robust coupling between these two variables. In particular, the first two modes of variability of the precipitation forced by soil moisture appear to have a strong link with volcanic eruptions and ENSO cycles, respectively, and these links are modulated by the effects of evapotranspiration and vegetation. It is suggested that vegetation state and soil moisture provide a biophysical memory of ENSO and major volcanic eruptions, revealed through delayed feedbacks on rainfall patterns. The third mode of variability reveals a trend very similar to the trend of the inter-hemispheric contrast in SST and appears to be connected to greening/browning trends of vegetation over the last three decades.

  5. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  6. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Martin, Susana

    2015-04-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface. Our development and assessments show clearly that this kind of inflatable technology originally developed for the Martian atmosphere, is feasible for use by Earth entry and descent applications. The preliminary results are highly promising indicating that the current Mars probe design could be used as it is for the Earth. According tp our analyses, the higher atmospheric pressure at an altitude of 12 km and less requires an additional pressurizing device for the in atable system increasing the entry mass by approximately 2 kg. These analyses involved the calculation of 120 different atmospheric entry and descent trajectories. The analysis of the existing technologies and current trends have indicated that the kind of inflatable technology pursued by RITD has high potential to enhance the European space technology expertise. This kind of technology is clearly feasible for utilization by Earth entry and descent applications.

  7. Olive production systems on sloping land: prospects and scenarios.

    PubMed

    de Graaff, Jan; Duran Zuazo, Victor-Hugo; Jones, Nádia; Fleskens, Luuk

    2008-11-01

    The ultimate objective of the EU Olivero project was to improve the quality of life of the rural population and to assure the sustainable use of the natural resources of land and water in the sloping and mountainous olive production systems (SMOPS) areas in Southern Europe. One specific objective was to develop, with end-users, alternative future scenarios for olive orchards in the five Olivero target areas. This paper discusses the development of these scenarios, and their socio-economic and environmental effects. After presenting the different production systems (SMOPS) and their strengths, weaknesses, opportunities and threats, a general overview is given of the medium- and long-term prospects. These have been validated by experts from the olive sector and foresee changes towards abandonment, intensification and organic production. On balance, the changes could lead to lower production of some target areas in future. An analysis of major external factors affecting the future development of SMOPS indicates there will be labour shortages and increased wage rates, reduced subsidies and constant or rising olive oil prices. On the basis of these assumptions, four future scenarios are developed for the five target areas, with the help of a Linear Programming simulation model. The results are presented for two target areas. For the Trás-os-Montes target area in Portugal, three of the four tested scenarios point to a high level of abandonment, while in the most positive scenario the areas under semi-intensive low input and organic SMOPS increase. In the Granada and Jaen target area in Spain, all scenarios hint at intensification, and only the orchards on the steepest slopes are likely to be abandoned. The direction and extent of environmental effects (erosion, fire risk, pollution, water use and biodiversity) differ per scenario, as do the extent of cross-compliance and agri-environmental measures. PMID:17913332

  8. Land Use Adaptation Strategies Analysis in Landslide Risk Region

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ching; Chang, Chin-Hsin; Chen, Ying-Tung

    2013-04-01

    In order to respond to the impact of climate and environmental change on Taiwanese mountain region, this study used GTZ (2004) Risk analysis guidelines to assess the landslide risk for 178 Taiwanese mountain towns. This study used 7 indicators to assess landslide risk, which are rainfall distribution, natural environment vulnerability (e.g., rainfall threshold criterion for debris flow, historical disaster frequency, landslide ratio, and road density), physicality vulnerability (e.g., population density) and socio-economic vulnerability (e.g., population with higher education, death rate and income). The landslide risk map can be obtained by multiplying 7 indicators together and ranking the product. The map had 5 risk ranges, and towns within the range of 4 to 5, which are high landslide risk regions, and have high priority in reducing risk. This study collected the regions with high landslide risk regions and analyzed the difference after Typhoon Morakot (2009). The spatial distribution showed that after significant environmental damage high landslide risk regions moved from central to south Taiwan. The changeable pattern of risk regions pointed out the necessity of updating the risk map periodically. Based on the landslide risk map and the land use investigation data which was provided by the National Land Surveying and Mapping Center in 2007, this study calculated the size of the land use area with landslide disaster risk. According to the above results and discussion, this study can be used to suggest appropriate land use adaptation strategies provided for reducing landslide risk under the impact of climate and environmental change.

  9. Pervasive transition of the Brazilian land-use system

    NASA Astrophysics Data System (ADS)

    Lapola, David M.; Martinelli, Luiz A.; Peres, Carlos A.; Ometto, Jean P. H. B.; Ferreira, Manuel E.; Nobre, Carlos A.; Aguiar, Ana Paula D.; Bustamante, Mercedes M. C.; Cardoso, Manoel F.; Costa, Marcos H.; Joly, Carlos A.; Leite, Christiane C.; Moutinho, Paulo; Sampaio, Gilvan; Strassburg, Bernardo B. N.; Vieira, Ima C. G.

    2014-01-01

    Agriculture, deforestation, greenhouse gas emissions and local/regional climate change have been closely intertwined in Brazil. Recent studies show that this relationship has been changing since the mid 2000s, with the burgeoning intensification and commoditization of Brazilian agriculture. On one hand, this accrues considerable environmental dividends including a pronounced reduction in deforestation (which is becoming decoupled from agricultural production), resulting in a decrease of ~40% in nationwide greenhouse gas emissions since 2005, and a potential cooling of the climate at the local scale. On the other hand, these changes in the land-use system further reinforce the long-established inequality in land ownership, contributing to rural-urban migration that ultimately fuels haphazard expansion of urban areas. We argue that strong enforcement of sector-oriented policies and solving long-standing land tenure problems, rather than simply waiting for market self-regulation, are key steps to buffer the detrimental effects of agricultural intensification at the forefront of a sustainable pathway for land use in Brazil.

  10. Systems-Dynamic Analysis for Neighborhood Study

    EPA Science Inventory

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  11. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  12. The development and application of a decision support system for land management in the Lake Tahoe Basin—The Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson; Crescenti, Neil

    2013-01-01

    This report describes and applies the Land Use Simulation Model (LUSM), the final modeling product for the long-term decision support project funded by the Southern Nevada Public Land Management Act and developed by the U.S. Geological Survey’s Western Geographic Science Center for the Lake Tahoe Basin. Within the context of the natural-resource management and anthropogenic issues of the basin and in an effort to advance land-use and land-cover change science, this report addresses the problem of developing the LUSM as a decision support system. It includes consideration of land-use modeling theory, fire modeling and disturbance in the wildland-urban interface, historical land-use change and its relation to active land management, hydrologic modeling and the impact of urbanization as related to the Lahontan Regional Water Quality Control Board’s recently developed Total Maximum Daily Load report for the basin, and biodiversity in urbanizing areas. The LUSM strives to inform land-management decisions in a complex regulatory environment by simulating parcel-based, land-use transitions with a stochastic, spatially constrained, agent-based model. The tool is intended to be useful for multiple purposes, including the multiagency Pathway 2007 regional planning effort, the Tahoe Regional Planning Agency (TRPA) Regional Plan Update, and complementary research endeavors and natural-resource-management efforts. The LUSM is an Internet-based, scenario-generation decision support tool for allocating retired and developed parcels over the next 20 years. Because USGS staff worked closely with TRPA staff and their “Code of Ordinances” and analyzed datasets of historical management and land-use practices, this report accomplishes the task of providing reasonable default values for a baseline scenario that can be used in the LUSM. One result from the baseline scenario for the model suggests that all vacant parcels could be allocated within 12 years. Results also include: assessment of model functionality, brief descriptions of the 7 basic output tables, assessment of the rate of change in land-use allocation pools over time, locations and amounts of the spatially explicit probabilities of land-use transitions by real estate commodity, and analysis of the state change from today’s existing land cover to potential land uses in the future. Assumptions and limitations of the model are presented. This report concludes with suggested next steps to support the continued utility of the LUSM and additional research avenues.

  13. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  14. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  15. High Performance Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System at NASA/GSFC

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Kumar, S. V.; Santanello, J. A.; Tian, Y.; Rodell, M.; Mocko, D.; Reichle, R.

    2008-12-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters-Lidard et al., 2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. The LIS software was the co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts - North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell et al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of these systems, now use specific configurations of the LIS software in their current implementations. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through 'plugins'. In addition to these capabilities, LIS has also been demonstrated for parameter estimation (Peters-Lidard et al., 2008; Santanello et al., 2007) and data assimilation (Kumar et al., 2008). Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, land data assimilation and parameter estimation will be presented.

  16. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LANDS HIGHWAYS FISH AND WILDLIFE SERVICE MANAGEMENT SYSTEMS Fish and Wildlife Service Management Systems § 972.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS)....

  17. 23 CFR 970.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS)....

  18. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LANDS HIGHWAYS FOREST SERVICE MANAGEMENT SYSTEMS Forest Highway Program Management Systems § 971.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS)....

  19. 23 CFR 970.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS)....

  20. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LANDS HIGHWAYS FOREST SERVICE MANAGEMENT SYSTEMS Forest Highway Program Management Systems § 971.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS)....

  1. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LANDS HIGHWAYS FISH AND WILDLIFE SERVICE MANAGEMENT SYSTEMS Fish and Wildlife Service Management Systems § 972.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS)....

  2. Assessing land-use impacts on biodiversity using an expert systems tool

    USGS Publications Warehouse

    Crist, P.J.; Kohley, T.W.; Oakleaf, J.

    2000-01-01

    Habitat alteration, in the form of land-use development, is a leading cause of biodiversity loss in the U.S. and elsewhere. Although statutes in the U.S. may require consideration of biodiversity in local land-use planning and regulation, local governments lack the data, resources, and expertise to routinely consider biotic impacts that result from permitted land uses. We hypothesized that decision support systems could aid solution of this problem. We developed a pilot biodiversity expert systems tool (BEST) to test that hypothesis and learn what additional scientific and technological advancements are required for broad implementation of such a system. BEST uses data from the U.S. Geological Survey's Gap Analysis Program (GAP) and other data in a desktop GIS environment. The system provides predictions of conflict between proposed land uses and biotic elements and is intended for use at the start of the development review process. Key challenges were the development of categorization systems that relate named land-use types to ecological impacts, and relate sensitivities of biota to ecological impact levels. Although the advent of GAP and sophisticated desktop GIS make such a system feasible for broad implementation, considerable ongoing research is required to make the results of such a system scientifically sound, informative, and reliable for the regulatory process. We define a role for local government involvement in biodiversity impact assessment, the need for a biodiversity decision support system, the development of a prototype system, and scientific needs for broad implementation of a robust and reliable system.

  3. Unmanned Aircraft Systems for Monitoring Department of the Interior Lands

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.; Quirk, B.

    2013-12-01

    Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.

  4. Using the Nordic Geodetic Observing System for Land Uplift Studies

    NASA Astrophysics Data System (ADS)

    Nordman, Maaria; Kairus, Antti; Poutanen, Markku

    2013-04-01

    Regional and global geodetic observing systems have been developed during the last decade. An ideal observing system consists of geodetic observing stations with several techniques at the same site, publicly accessible databases, and as products, data and combination of different observing techniques. Globally, there is the IAG GGOS (Global Geodetic Observing System) but there are also attempts to create regional observing systems, as an example the NGOS (Nordic Geodetic Observing System) organized by the NKG (Nordic Geodetic Commission). In this paper we describe creation of a database for NGOS, and to demonstrate use of such database, apply it for postglacial rebound studies in the Fennoscandian area. As a result, land uplift values from three techniques, GNSS, tide gauges and absolute gravimeter are compared to the NKG2005LU land uplift model. The purpose of this pilot work is to evaluate the results from different techniques and different sources and get the most reliable values for the uplift. We discuss on the use of a geodetic observing system in specific projects like DynaQlim, and needs to develop observing systems in the future to fulfill the requirements for such purposes.

  5. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General... flap position, using a normal landing procedure, if the landing gear is not fully extended and locked. There may not be a manual shutoff for this warning device. The flap position sensing unit may...

  6. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General... flap position, using a normal landing procedure, if the landing gear is not fully extended and locked. There may not be a manual shutoff for this warning device. The flap position sensing unit may...

  7. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General... flap position, using a normal landing procedure, if the landing gear is not fully extended and locked. There may not be a manual shutoff for this warning device. The flap position sensing unit may...

  8. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General... flap position, using a normal landing procedure, if the landing gear is not fully extended and locked. There may not be a manual shutoff for this warning device. The flap position sensing unit may...

  9. Human Planetary Landing System (HPLS) Capability Roadmap: Wrap Up

    NASA Technical Reports Server (NTRS)

    Manning, Rob

    2005-01-01

    When and how does the full scale system and subsystems need to be qualified & Human-rated for flight? Answer: No later than 29. Full scale AEDL Flight Tests can and should be done at Earth (need to get fast turn around between multiple tests). Do we need a Full Scale Validation Flight Test at Mars? Answer: Not, specifically, but the AEDL community is very uncomfortable with the notion of the very first full scale AEDL being piloted. The full scale unpiloted AEDL advance cargo mission that immediately precedes the human landing could do the trick. What kind of precursor AEDL Flight Tests are needed at Mars? Answer: We need to validate our performance & aerodynamic models by flying a scaled (1/10th?) version of the Full Scale Mission by 22. When and how do we decide on the AEDL system to fly? Answer: No later than 2015 (earlier is harder). We need to do multi-path full scale flight simulations and subscale / component development testing starting ASAP. If we find an AEDL for a landing mass of 40 MT, will this same architecture and technology paradigm extend to landing 80 MT? 120 MT? Is there another break point? Answer: We do not know yet.

  10. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  11. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  12. Optimum combination of leasing systems on public lands

    SciTech Connect

    McDonald, S.L.

    1984-12-01

    Bonus bidding for oil and gas leases on public lands has been a reasonably satisfactory system for capturing the average rent available while being neutral with respect to economic decisions such as abandonment. However, it places a heavy burden of risk and uncertainty on the lessee. There is some reason to believe that social gains are to be had from shifting some of the risk and uncertainty to the lessors (governmental units). Profit-share or royalty bidding tends to accomplish such a shift. However, optimality seems to call for a combination of bonus bidding and profit-share (or royalty) bidding, the latter on wildcat tracts and the former on drainage tracts. Profit-share bidding is somewhat superior to royalty bidding, and the best definition of ''profit'' for the purpose is profits in excess of a normal return on investment. The combination suggested above may be especially desirable in a program of accelerated leasing of public lands. 2 figs.

  13. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    NASA Astrophysics Data System (ADS)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.

  14. Improved Modeling of Land-Atmosphere Interactions using a Coupled Version of WRF with the Land Information System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.

    2007-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale impacts of the high-resolution MODIS datasets and optimized soil and surface initial conditions. Follow-on experiments will examine the utility of such an optimized WRF configuration for more complex weather scenarios such as convective initiation. This paper will provide an overview of the experiment design and present preliminary results from selected cases in May 2004.

  15. Evolution of INMARSAT systems and applications: The land mobile experience

    NASA Technical Reports Server (NTRS)

    Staffa, Eugene; Subramaniam, Ram

    1993-01-01

    Inmarsat has provided mobile satellite communication services for land mobile applications for well over a decade. Having started with the Inmarsat-A voice and telex system, Inmarsat is committed to the evolution of services towards a global personal, handheld satellite communicator. Over the years, users have benefitted from the evolution of technologies, increased user friendliness and portability of terminals and ever decreasing cost of operations. This paper describes the various present systems, their characteristics and applications, and outlines their contributions in the evolution towards the personal global communicator.

  16. Using the Nordic Geodetic Observing System for land uplift studies

    NASA Astrophysics Data System (ADS)

    Nordman, M.; Poutanen, M.; Kairus, A.; Virtanen, J.

    2014-01-01

    Geodetic observing systems have been planned and developed during the last decade. An ideal observing system consists of a network of geodetic observing stations with several techniques at the same site, publicly accessible databases, and as a product delivers data time series, combination of techniques or some other results obtained from the datasets. Globally, there is the IAG GGOS (Global Geodetic Observing System), and there are ongoing attempts to create also regional observing systems. In this paper we introduce one regional system, NGOS (Nordic Geodetic Observing System) hosted by the Nordic Geodetic Commission (NKG). Data availability and accessibility are one of the major issues today. We discuss on general data-related topics, and introduce a pilot database project of NGOS. As a demonstration of the use of such database, we apply it for postglacial rebound studies in the Fennoscandian area. We compare land uplift values from three techniques, GNSS, tide gauges and absolute gravimeter, with the Nordic NKG2005LU land uplift model. The purpose is to evaluate the data obtained from different techniques and different sources and get the most reliable values for the uplift using publicly available data. It is also important to consider the relation between geodetic observing systems and specific projects like DynaQlim (Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas) or EPOS (European Plate Observing System). The natural aim of observing systems will be to produce data and other products needed by such multidisciplinary projects, but their needs may currently exceed the scope of an observing system. We discuss what requirements the projects pose to observing systems and their development.

  17. Observationally based analysis of land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Catalano, Franco; Alessandri, Andrea; De Felice, Matteo; Zhu, Zaichun; Myneni, Ranga B.

    2016-03-01

    The temporal variance of soil moisture, vegetation and evapotranspiration over land has been recognized to be strongly connected to the temporal variance of precipitation. However, the feedbacks and couplings between these variables are still not well understood and quantified. Furthermore, soil moisture and vegetation processes are associated with a memory and therefore they may have important implications for predictability. In this study we apply a generalized linear method, specifically designed to assess the reciprocal forcing between connected fields, to the latest available observational data sets of global precipitation, evapotranspiration, vegetation and soil moisture content. For the first time a long global observational data set is used to investigate the spatial and temporal land variability and to characterize the relationships and feedbacks between land and precipitation. The variables considered show a significant coupling among each other. The analysis of the response of precipitation to soil moisture evidences a robust coupling between these two variables. In particular, the first two modes of variability in the precipitation forced by soil moisture appear to have a strong link with volcanic eruptions and El Niño-Southern Oscillation (ENSO) cycles, respectively, and these links are modulated by the effects of evapotranspiration and vegetation. It is suggested that vegetation state and soil moisture provide a biophysical memory of ENSO and major volcanic eruptions, revealed through delayed feedbacks on rainfall patterns. The third mode of variability reveals a trend very similar to the trend of the inter-hemispheric contrast in sea surface temperature (SST) and appears to be connected to greening/browning trends of vegetation over the last three decades.

  18. Analysis of continuous GPS measurements from southern Victoria Land, Antarctica

    USGS Publications Warehouse

    Willis, Michael J.

    2007-01-01

    Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.

  19. Inferring non-point pollution from land cover analysis

    NASA Astrophysics Data System (ADS)

    Hyde, Richard F.

    Best Management Practices (BMP's) in farming were found to significantly reduce agricultural non-point water pollution in Central Indiana. Through the implementation of systems of conservation tillage practices and structural measures at the farm level, reductions in runoff were achieved, thereby minimizing erosion and subsequent sedimentation and pollution of the surface water system. These conclusions resulted from a three and one-half year study entitled, ``The Indiana Heartland Model Implementation Project'' administered by the Indiana Heartland Coordinating Commission, involving cooperation and coordination of farmers, citizens, and a multi-agency, multi-disciplinary team comprised of four universities and numerous governmental agencies. The U.S. Environmental Protection Agency funded research, while the U.S. Department of Agriculture provided cost share monies for BMP implementation. A comprehensive geographically encoded computer-aided data base was constructed which included information on land cover, elevation, slope, aspect, soils, etc. Land cover map files were compiled through remote sensing including Landsat MSS digital data and low altitude color infrared aerial photography sources. This digital data base was suited for spatial and statistical analyses and transferred easily as input to Purdue University's ANSWERS Model for further watershed assessment. The ANSWERS Model is a distributed deterministic model which simulates the monitored reaction of subwatersheds to actual storm events. Through this model inferences were made as to the expected water quality improvements, given BMP's were implemented at critical areas for erosion throughout both watersheds.

  20. Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt.

    PubMed

    Kühling, Insa; Broll, Gabriele; Trautz, Dieter

    2016-02-15

    The Western Siberian grain belt covers 1millionkm² in Asiatic Russia and is of global importance for agriculture. Massive land-use changes took place in that region after the dissolution of the Soviet Union and the collapse of the state farm system. Decreasing land-use intensity (LUI) in post-Soviet Western Siberia was observed on grassland due to declining livestock whilst on cropland trends of land abandonment reversed in the early 2000s. Recultivation of abandoned cropland as well as increasing fertilizer inputs and narrowing crop rotations led to increasing LUI on cropland during the last two decades. Beyond that general trend, no information is available about spatial distribution and magnitude but a crucial precondition for the development of strategies for sustainable land management. To quantify changes and patterns in LUI, we developed an intensity index that reflects the impacts of land-based agricultural production. Based on subnational yearly statistical data, we calculated two separate input-orientated indices for cropland and grassland, respectively. The indices were applied on two spatial scale: at seven provinces covering the Western Siberian grain belt (Altay Kray, Chelyabinsk, Kurgan, Novosibirsk, Omsk, Sverdlovsk and Tyumen) and at all districts of the central province Tyumen. The spatio-temporal analysis clearly showed opposite trends for the two land-use types: decreasing intensity on grassland (-0.015 LUI units per year) and intensification on cropland (+0.014 LUI units per year). Furthermore, a spatial concentration towards intensity centres occurred during transition from a planned to a market economy. A principal component analysis enabled the individual calculations of both land-use types to be combined and revealed a strong link between biophysical conditions and LUI. The findings clearly showed the need for having a different strategy for future sustainable land management for grassland (predominantly used by livestock of households) and cropland (predominantly managed by large agricultural enterprises), which have to be addressed specifically by the different land users. As all input data are publicly available, the approach described is readily transferable to other regions or countries of the former Soviet Union. PMID:26657373

  1. Integrated Display System for Low Visibility Landing and Surface Operations

    NASA Technical Reports Server (NTRS)

    Beskenis, Sharon Otero; Green, David F., Jr.; Hyer, Paul V.; Johnson, Edward J., Jr.

    1998-01-01

    This report summarizes the software products and system architectures developed by Lockheed Martin in support of the Low Visibility Landing and Surface Operations (LVLASO) program at NASA Langley Research Center. It presents an overview of the technical aspects, capabilities, and system integration issues associated with an integrated display system (IDS) that collects, processes and presents information to an aircraft flight crew during all phases of landing, roll-out, turn-off, inbound taxi, outbound taxi and takeoff. Communications hardware, drivers, and software provide continuous real-time data at varying rates and from many different sources to the display programs for presentation on a head-down display (HDD) and/or a head-up display (HUD). An electronic moving map of the airport surface is implemented on the HDD which includes the taxi route assigned by air traffic control, a text messaging system, and surface traffic and runway status information. Typical HUD symbology for navigation and control of the aircraft is augmented to provide aircraft deceleration guidance after touchdown to a pilot selected exit and taxi guidance along the route assigned by ATC. HUD displays include scene-linked symbolic runways, runway exits and taxiways that are conformal with the actual locations on the airport surface. Display formats, system architectures, and the various IDS programs are discussed.

  2. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint. Previously announced in STAR as N82-25290

  3. 77 FR 34402 - Notice of Availability of the Final Land Use Analysis and Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Bureau of Land Management Notice of Availability of the Final Land Use Analysis and Final Environmental... and Management Act of 1976 (FLPMA), the Bureau of Land Management (BLM) has prepared a Final Land Use... conditions as described in the regulations may protest the BLM's Proposed Land Use Analysis. A person...

  4. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  5. Land-use planning of Volyn region (Ukraine) using Geographic Information Systems (GIS) technologies

    NASA Astrophysics Data System (ADS)

    Strielko, Irina; Pereira, Paulo

    2014-05-01

    Land-use development planning is carried out in order to create a favourable environment for human life, sustainable socioeconomic and spatial development. Landscape planning is an important part of land-use development that aims to meet the fundamental principles of sustainable development. Geographic Information Systems (GIS) is a fundamental tool to make a better landscape planning at different territorial levels, providing data and maps to support decision making. The objective of this work is to create spatio-temporal, territorial and ecological model of development of Volyn region (Ukraine). It is based on existing spatial raster and vector data and includes the analysis of territory dynamics as the aspects responsible for it. A spatial analyst tool was used to zone the areas according to their environmental components and economic activity. This analysis is fundamental to define the basic parameters of sustainability of Volyn region. To carry out this analysis, we determined the demographic capacity of districts and the analysis of spatial parameters of land use. On the basis of the existing natural resources, we observed that there is a need of landscape protection and integration of more are natural areas in the Pan-European Ecological Network. Using GIS technologies to landscape planning in Volyn region, allowed us to identify, natural areas of interest, contribute to a better resource management and conflict resolution. Geographic Information Systems will help to formulate and implement landscape policies, reform the existing administrative system of Volyn region and contribute to a better sustainable development.

  6. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    Recent studies indicate that changes in surface climate and carbon fluxes caused by land management (i.e., modifications of vegetation structure without changing the type of land cover) can be as large as those caused by land cover change. Further, such effects may occur on substantial areas: while about one quarter of the land surface has undergone land cover change, another fifty percent are managed. This calls for integration of management processes in Earth system models (ESMs). This integration increases the importance of awareness and agreement on how to diagnose effects of land use in ESMs to avoid additional model spread and thus unnecessary uncertainties in carbon budget estimates. Process understanding of management effects, their model implementation, as well as data availability on management type and extent pose challenges. In this respect, a significant step forward has been done in the framework of the current IPCC's CMIP5 simulations (Coupled Model Intercomparison Project Phase 5): The climate simulations were driven with the same harmonized land use dataset that, different from most datasets commonly used before, included information on two important types of management: wood harvest and shifting cultivation. However, these new aspects were employed by only part of the CMIP5 models, while most models continued to use the associated land cover maps. Here, we explore the consequences for the carbon cycle of including subgrid-scale land transformations ("gross transitions"), such as shifting cultivation, as example of the current state of implementation of land management in ESMs. Accounting for gross transitions is expected to increase land use emissions because it represents simultaneous clearing and regrowth of natural vegetation in different parts of the grid cell, reducing standing carbon stocks. This process cannot be captured by prescribing land cover maps ("net transitions"). Using the MPI-ESM we find that ignoring gross transitions underestimates emissions substantially, for historical times by about 40%. Implementation of land management such as gross transitions is a step forward in terms of comprehensiveness of simulated processes. However, it has increased model spread in carbon fluxes, because land management processes have been considered by only a subset of recent ESMs contributing to major projects such as IPCC or the Global Carbon Project. This model spread still causes the net land use flux to be the most uncertain component in the global carbon budget. Other causes have previously been identified as differences in land use datasets, differing types of vegetation model, accounting of nutrient limitation, the inclusion of land use feedbacks (increase in atmospheric CO2 due to land use emissions causing terrestrial carbon uptake), and a confusion of whether the net land use flux in ESMs should be reported as instantaneous emissions, or also account for delayed carbon responses and regrowth. These differences explain a factor 2-6 difference between model estimates and are expected to be further affected by interactions with land management. This highlights the importance of an accurate protocol for future model intercomparisons of carbon fluxes from land cover change and land management to ensure comparison of the same processes and fluxes.

  7. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; SanMartin, A. Miguel; Burkhart, P. Daniel; Mendeck, Gavin F.

    2007-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of Mars. This paper describes the current MSL EDL system performance as predicted by end-to-end EDL simulations, highlights the sensitivity of this baseline performance to several key environmental assumptions, and discusses some of the challenges faced in delivering such an unprecedented rover payload to the surface of Mars.

  8. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.; San Martin, Alejandro M.; Burkhart, Paul D.; mendeck, Gavin F.

    2006-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of Mars. This paper describes the current MSL EDL system performance as predicted by end-to-end EDL simulations, highlights the sensitivity of this baseline performance to several key environmental assumptions, and discusses some of the challenges faced in delivering such an unprecedented rover payload to the surface of Mars.

  9. Development of a microwave multilateration system for VTOL landing guidance

    NASA Technical Reports Server (NTRS)

    Britt, C. L., Jr.; Wheelock, S. L.

    1977-01-01

    An experimental microwave multilateration system has been developed by NASA to provide highly accurate position and velocity measurements during the approach and landing phase of VTOL aircraft. The system uses an angle modulated ranging signal to provide both range and range rate measurements between an aircraft transponder and multiple ground stations. Range and range rate measurements are converted to coordinate measurements, and the coordinate information is transmitted via an integral data link to the aircraft. This paper describes the development of the multilateration system and the associated digital signal processing techniques. Advantages and disadvantages of several processing techniques are discussed. The operation and accuracy of the system as determined from both analytical studies and flight experiments will be described.

  10. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  11. Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project

    NASA Astrophysics Data System (ADS)

    Lohmann, Dag; Mitchell, Kenneth E.; Houser, Paul R.; Wood, Eric F.; Schaake, John C.; Robock, Alan; Cosgrove, Brian A.; Sheffield, Justin; Duan, Qingyun; Luo, Lifeng; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan

    2004-04-01

    This paper is part of a series of papers about the multi-institutional North American Land Data Assimilation System (NLDAS) project. It compares and evaluates streamflow and water balance results from four different land surface models (LSMs) within the continental United States. These LSMs have been run for the retrospective period from 1 October 1996 to 30 September 1999 forced by atmospheric observations from the Eta Data Assimilation System (EDAS) analysis, measured precipitation, and satellite-derived downward solar radiation. These model runs were performed on a common 1/8° latitude-longitude grid and used the same database for soil and vegetation classifications. We have evaluated these simulations using U.S. Geological Survey (USGS) measured daily streamflow data for 9 large major basins and 1145 small- to medium-sized basins from 23 km2 to 10,000 km2 distributed over the NLDAS domain. Model runoff was routed with a common distributed and a lumped optimized linear routing model. The diagnosis of the model water balance results demonstrates strengths and weaknesses in the models, our insufficient knowledge of ad hoc parameters used for the model runs, the interdependence of model structure and model physics, and the lack of good forcing data in parts of the United States, especially in regions with extended snow cover. Overall, the differences between the LSM water balance terms are of the same magnitude as the mean water balance terms themselves. The modeled mean annual runoff shows large regional differences by a factor of up to 4 between models. The corresponding difference in mean annual evapotranspiration is about a factor of 2. The analysis of runoff timing for the LSMs demonstrates the importance of correct snowmelt timing, where the resulting differences in streamflow timing can be up to four months. Runoff is underestimated by all LSMs in areas with significant snowfall.

  12. Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Guerrero, H.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Arruego, I.; Martin, S.; Siili, T.

    2013-09-01

    In 2001 - 2011 an inflatable Entry, Descent and Landing System (EDLS) for Martian atmosphere was developed by FMI and the MetNet team. This MetNet Mars Lander EDLS is used in both the initial deceleration during atmospheric entry and in the final deceleration before the semi-hard impact of the penetrator to Martian surface. The EDLS design is ingenious and its applicability to Earth's atmosphere is studied in the on-going project. In particular, the behavior of the system in the critical transonic aerodynamic (from hypersonic to subsonic) regime will be investigated. This project targets to analyze and test the transonic behavior of this compact and light weight payload entry system to Earth's atmosphere [1]. Scaling and adaptation for terrestrial atmospheric conditions, instead of a completely new design, is a favorable approach for providing a new re-entry vehicle for terrestrial space applications.

  13. Simulated final approach path captures using the microwave landing system

    NASA Technical Reports Server (NTRS)

    Feather, J. B.

    1988-01-01

    Computer simulation results are presented for intercepting final approach paths using various Microwave Landing System (MLS) path capture concepts. This study, conducted under the Advanced Transport Operating System (ATOPS) program, simulated these captures using the MD-80 aircraft as the study model. Several different capture concepts were investigated. Systems that could be retrofitted into existing aircraft with minimum hardware and software changes were considered. An enhanced ILS look-alike capture provided improved tracking performance over conventional ILS without using a full-up path computer. The other concepts used waypoint databases and path computers to provide smart captures. These captures included lateral path intercepts as well as vertical path control. Winds, turbulence, and MLS noise were included in the simulation. In all cases, acceptable tracking errors were obtained during transition to the final approach path.

  14. Analysis of Renewable Energy Potential on U. S. National Forest Lands

    SciTech Connect

    Zvolanek, E.; Kuiper, J.; Carr, A.; Hlava, K.

    2013-12-13

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially different analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell-based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands were found potentially suitable for CSP development, potentially yielding as much as 13,603 megawatts (MW) of electricity, assuming 10 acres per MW. For photovoltaic solar power (PV), the top NFS units were more widely distributed than CSP. Notably, more than 150,000 acres in Comanche National Grassland in Colorado were found to be potentially suitable for PV development, accounting for more than 25% of the potentially suitable NFS lands combined. In total, about 564,698 acres of NFS lands were found potentially suitable for PV development, potentially yielding as much as 56,469 MW of electricity, assuming 10 acres per MW. NFS units most suitable for wind power are concentrated in the northern Great Plains. In total, about 3,357,792 acres of NFS lands were found potentially suitable for wind development, potentially yielding as much as 67,156 MW of electricity, assuming 50 acres per MW. Of that area, 571,431 acres (11,429 MW) are located within the Bankhead-Jones Farm Tenant Act Land in Montana. NFS lands in Alaska have considerable wind resources, but other siting factors eliminated almost the entire area. The southwest coast of Chugach National Forest, near Seward, Alaska, maintains the majority of the remaining acreage. NFS units with highly suitable biomass resources are located from Idaho to Louisiana. In total, about 13,967,077 acres of NFS lands are potentially highly suitable for biomass from logging and thinning residue development. Of that, 1,542,247 acres is located in Fremont-Winema National Forest in Oregon. Not surprisingly, most NFS units have at least some level of potentially suitable biomass resources. In general, biomass resources such as these could significantly offset consumption of coal and petroleum-based fuels. NFS units deemed potentially highly suitable for enhanced geothermal system (EGS) development were distributed widely from California to Virginia, accounting for some 6,475,459 acres. Mark Twain National Forest in Missouri has the largest area of all the NFS units, with 900,637 acres. While more rigorous studies are needed for siting geothermal plants, especially those regarding the geological characteristics of specific sites, current results suggest a significant potential for geothermal power generation within many NFS units. The first phase of analysis for solar and wind resources sought to replicate the 2005 NREL methodology using updated source data.1 The total acres meeting the criteria for all NFS lands were lower in the updated assessment compared to the 2005 NREL analysis because the earlier assessment included all land that fell within NFS administrative boundaries rather than only NFS-managed land within them. Acreages were again lower when refined screening factors were added, as would be expected. These remaining areas are of greater interest because they adhere to a broader set of criteria. As this study illustrates, GIS data availability for renewable energy resources and major screening factors has reached a point where national screening level studies can effectively assess the levels and spatial distributions for potentially renewable energy technology development. More detailed siting studies, land use planning, and environmental compliance assessments are essential before individual projects can be permitted and built. However, this study can serve to inform resource managers and planners of where these technologies are most likely to be investigated and proposed; help prioritize efforts to continue informed and sustainable development of renewable power generation within the United States; and help characterize the role of the USFS in this arena. The authors caution against using the areas reported in the results as a final and definitive estimate of suitability for these technologies. The analysis is most useful for determining locations that should be examined more fully, and for identifying regional and national trends.

  15. Propulsion systems analysis

    NASA Technical Reports Server (NTRS)

    Strack, Bill

    1990-01-01

    The following topics are discussed: major work elements; conceptual engineering system design/analysis; aircraft analysis procedure; traditional benefit determination procedure; current analysis system deficiency; current propulsion system analysis weaknesses; a vision for systems analysis; integrated propulsion-aircraft analysis system (IPAS); IPAS development roadmap; IPAS architecture; modular approach to heat engine simulation; turbomachine component performance; inlet design and analysis; supersonic propulsion-airframe integration; noise modeling capabilities; Mach 2.6 HSCT aircraft sizing; and expectations of AI/expert systems. The discussion is presented in viewgraph format.

  16. Advancing Our Understanding of the Impacts of Historic and Projected Land Use in the Earth System: The Land Use Model Intercomparison Project (LUMIP)

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Hurtt, G. C.; Brovkin, V.; Calvin, K. V.; de Noblet-Ducoudre, N.; Jones, C.; Pongratz, J.; Seneviratne, S. I.; Shevliakova, E.

    2014-12-01

    Earth System Models (ESMs) are including increasingly comprehensive treatments of land use and land management, representing not only land cover change, but also land use in the form of prognostic crop and pasture models, irrigation, fertilization, wood harvest, and urbanization. The Land Use Model Intercomparison Project (LUMIP) is a new (proposed) satellite-MIP within the Coupled Model Intercomparison Project (CMIP) that is designed to address the following main science questions: (1) What are the effects of land use and land-use change on climate (past-future)? (2) What are the effects of climate change on land-use and land-use change? (3) Are there regional land management strategies with promise to help mitigate and adapt to climate change? LUMIP will coordinate across existing land use change projects such as LUCID, AgMIP, GSWP3, Trendy, and LUC4C. LUMIP encompasses three major activities: (1) input and output data harmonization and standardization, (2) development of model metrics to assess ESM performance with respect to the impact of land use on climate and carbon cycling, and (3) design and execution of a concise set of land model and ESM experiments for assessment of the impacts of historic and projected land use on the climate system and to separate effects of fossil fuel vs. land use, biogeochemical vs biogeophysical processes, and land cover vs land management. Preliminary results from idealized model experiments will be presented.

  17. Development and application of a benchmarking system for land models (Invited)

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Randerson, J. T.; Mu, M.; Hoffman, F. M.; Riley, W. J.; Koven, C. D.; Todd-Brown, K. E.; Keppel-Aleks, G.

    2013-12-01

    There is a widely understood need for improved assessment of terrestrial system models that are utilized in climate, weather, and ecosystem modeling. A more comprehensive and more systematic land model ';benchmarking' process should help speed the development of new parameterizations, improve the design of new measurement campaigns, and reduce uncertainties associated with key land surface processes. However, the development of informative metrics is non-trivial. Past data-model intercomparisons have certainly strengthened the representation of key processes in land models, but often this information has not been easily accessible for use by other modeling teams or in future intercomparisons. Further, the development of sophisticated model diagnostics programs--that can fully exploit the richness of large Earth System data sets like satellite or Fluxnet measurements--are outside the scope of any single investigator. Here, we will describe progress in the development of a comprehensive (and extensible) land model analysis system that spans water, energy, carbon, and vegetation dynamics metrics. Several classes of metrics are employed including (1) large-scale state and flux estimates (e.g., soil C, atmospheric CO2 cycle, surface temperatures, GRACE water budget estimates, river discharge); (2) functional responses of explicitly modeled and emergent processes (e.g., stomatal responses to VPD, near-surface soil moisture responses to precipitation); and (3) experimental manipulation responses (e.g., N additions, FACE, warming). We will demonstrate the application of selected metrics to several versions of the Community Land Model (principally CLM4 and CLM4.5 and variants therein). Additionally, we will discuss how the analysis package, which is open source and modular, is designed to be extensible and improved by many different modeling and measurement teams.

  18. BAE systems brownout landing aid system technology (BLAST) system overview and flight test results

    NASA Astrophysics Data System (ADS)

    Sykora, Brian

    2012-06-01

    Rotary wing aircraft continue to experience mishaps caused by the loss of visual situational awareness and spatial disorientation due to brownout or whiteout in dusty, sandy or snowy conditions as the downwash of the rotor blades creates obscurant clouds that completely engulf the helicopter during approaches to land. BAE Systems has developed a "see-through" brownout landing aid system technology (BLAST) based on a small and light weight 94GHz radar with proven ability to penetrate dust, coupled with proprietary antenna tracking, signal processing and digital terrain morphing algorithms to produce a cognitive real-time 3D synthetic image of the ground and proximate surface hazards in and around the landing zone. A series of ground and flight tests have been conducted at the United States Army's Yuma Proving Ground in Arizona that reflect operational scenarios in relevant environments to progressively mature the technology. A description of the BLAST solution developed by BAE Systems and results from recent flight tests is provided.

  19. Quantitative analysis of agricultural land use change in China

    NASA Astrophysics Data System (ADS)

    Chou, Jieming; Dong, Wenjie; Wang, Shuyu; Fu, Yuqing

    This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal-spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following; During 1949-2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country's eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980. Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China. From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.

  20. Air traffic control using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gershzohn, G.

    1980-01-01

    The performance of air traffic controllers using a simulated microwave landing system to control the landing of STOL aircraft is investigated. In a series of two experiments, controllers were asked to achieve a 60-sec separation between targets at the missed approach point when only two targets were on the simulated radar scope, and in the presence of 25 targets, with up to 10 on the screen at any one time. In both experiments, the presence of a ground wind is found to degrade separation performance, and an increased work load results in even greater separation variability, as the controllers did not have time to convert aircraft distances into times. In addition, curved courses are found to have an effect on performance. It is thus recommended that in order to create a practical air traffic control system with separation standards based on time, as in the MLS, controller work loads should be reduced and aircraft positions should be displayed with respect to time rather than distance.

  1. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  2. A web-based system for supporting global land cover data production

    NASA Astrophysics Data System (ADS)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  3. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  4. A WebGIS system on the base of spatial data processing system for land application

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Wang, Qing; Wang, Huiqing; Wang, Zhijie

    2009-12-01

    Traditional land management system based on PC has some shortages, such as bad openness and bad timeliness. And, it is hard to unify the criteria of data norm and database construction, easy to result in data redundancy. As a new development stage of GIS, WebGIS has perfectly solved the above-mentioned problems, so it is greatly meaningful to study digital land WebGIS. The system adopts GeoBeans6.5 as the platform which is developed by institute of remote sensing applications, CAS (Chinese Academy of Sciences). In addition, using ncgmec.jar component supplied by GeoBeans6.5, the system which is called "A WebGIS system on the base of spatial data processing system for land application" is developed under the support of IIS5.1 and java virtual machine. In the end, the main function of this system is demoed.

  5. A land-potential knowledge system (LandPKS) based on local and scientific knowledge of land productivity and resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic assessment of land use change in drylands depends on understanding potential productivity, degradation resistance and resilience, all of which vary widely and are often ignored. Rapidly increasing demand, together with new technologies, migration and global capital mobility are driving dram...

  6. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Rui, H.; Vollmer, B.; Jasinski, M. F.; Mocko, D. M.; Kempler, S. J.

    2014-12-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. The resulting system, the NCA - Land Data Assimilation System (NCA-LDAS), is a NASA contribution to the NCA. The outputs of the NCA-LDAS contribute to the development and evaluation of a suite of water indicators. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and validation data, to other NCA-teams and the general public. Currently released data include NCA-LDAS outputs from the Noah Land Surface Model version 3.3 (Noah-3.3) and Catchment Land Surface Model version Fortuna-2.5 (CLSM-F2.5) and the post- processed data sets for the routing variables. The NCA-LDAS data have temporal and spatial resolutions, respectively, of daily and 0.125x0.125 degree, covering North America (25N ~ 53N; 125W ~ 67W) and the period January 1979 to December 2012. The data files are in self-describing, machine-independent netCDF-4 format. The data contain a set of water- and energy-related Essential Climate Variables (ECV). The NCA-LDAS data are archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp (ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/NCA_LDAS), THREDDS (http://hydro1.sci.gsfc.nasa.gov/thredds/catalog.html), and Mirador search and download (http://mirador.gsfc.nasa.gov/). This presentation describes the main characteristics of the NCA-LDAS data and data services (access, subsetting, visualization, and analysis). The major differences between the NCA-LDAS data and the North American Land Data Assimilation System (NLDAS) data are discussed as well. Data for the suite of water indicators will also be available from the GES DISC Hydrology Data Holdings (http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings).

  7. Seasonal-scale Observational Data Analysis and Atmospheric Phenomenology for the Cold Land Processes Experiment

    NASA Technical Reports Server (NTRS)

    Poulos, Gregory S.; Stamus, Peter A.; Snook, John S.

    2005-01-01

    The Cold Land Processes Experiment (CLPX) experiment emphasized the development of a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. Our work sought to investigate which topographically- generated atmospheric phenomena are most relevant to the CLPX MSA's for the purpose of evaluating their climatic importance to net local moisture fluxes and snow transport through the use of high-resolution data assimilation/atmospheric numerical modeling techniques. Our task was to create three long-term, scientific quality atmospheric datasets for quantitative analysis (for all CLPX researchers) and provide a summary of the meteorologically-relevant phenomena of the three MSAs (see Figure) over northern Colorado. Our efforts required the ingest of a variety of CLPX datasets and the execution an atmospheric and land surface data assimilation system based on the Navier-Stokes equations (the Local Analysis and Prediction System, LAPS, and an atmospheric numerical weather prediction model, as required) at topographically- relevant grid spacing (approx. 500 m). The resulting dataset will be analyzed by the CLPX community as a part of their larger research goals to determine the relative influence of various atmospheric phenomena on processes relevant to CLPX scientific goals.

  8. Land rigs benefit from portable top drive system

    SciTech Connect

    Not Available

    1994-03-14

    A small, portable topdrive system, which can be installed in as little as 4 hr with little or no derrick modification, can help land rigs drill difficult or extended reach wells, according to Tesco Drilling Technology in Calgary. The units are designed for rigs that must be dismantled and moved after each well. To reduce the amount of derrick modifications, the systems are designed to fit on any rig that can make a conventional kelly connection with a 42-ft kelly and a 31-ft single. The compact unit can operate in tapered area above the monkey board. The first portable skid package went into the field in 1992. In its first 6 months of operation, this unit was installed on six rigs, drilled seven horizontal wells, and operated for about 2,000 hr with only 12.5 hr total downtime.

  9. A mini/microcomputer-based land use information system

    NASA Technical Reports Server (NTRS)

    Seitz, R. N.; Keefer, R. L.; Britton, L. J.; Wilson, J. M.

    1977-01-01

    The paper describes the Multipurpose Interactive NASA Information System (MINIS), a data management system for land-use applications. MINIS is written nearly entirely in FORTRAN IV, and has a full range of conditional, Boolean and arithmetic commands, as well as extensive format control and the capability of interactive file creation and updating. It requires a mini or microcomputer with at least 64 K of core or semiconductor memory. MINIS has its own equation-oriented query language for retrieval from different kinds of data bases. It features a graphics output which permits output of overlay maps. Some experience of the U.S. Department of Agriculture and the Tennessee State Planning Office with MINIS is discussed.

  10. Analysing land cover change using time series analysis of Landsat data and geoinformation processing: a natural experiment in Northern Greece

    NASA Astrophysics Data System (ADS)

    Rder, Achim; Stellmes, Marion; Hill, Joachim; Kuemmerle, Tobias; Tsiourlis, Georgios M.

    2008-10-01

    Land use conversions or changes of land management practices are primary drivers of global environmental change. 'Natural experiment' situations, where some conditions vary, but other potential land use determinants remain relatively constant, offer unique opportunities to study land use change, its drivers and feedbacks on human-environment systems. The Chalkidiki peninsula in Northern Greece is an ideal test case to study recent land use transformations and socio-economic changes (e.g. resulting from accession to the EU) against a stable reference area. Of the three peninsular legs of Cassandra, Sithonia and Athos, the latter harbours the 'Autonomous Monastic State of the Holy Mountain', a sovereign and isolated monastic state. Apart from subsistence agriculture around the monasteries, it represents a Mediterranean ecosystem in a state virtually unaffected by modern human use. We have used a time series of 22 fully corrected Landsat-TM and ETM+ data to study land use/land cover change on the peninsula, and related the results to a similar study in the adjacent County of Lagadas. A diachronic land use change analysis based on SVM classification was conducted using two three image-pairs. Where natural and semi-natural vegetation formations remained stable, trends were calculated using a pixel-wise linear trend analysis of SMA-derived vegetation cover estimates. Results were interpreted using auxiliary data and in relation to the Athos area. Changes were found to result from discontinuation of extensive land use in Cassandra and Sithonia in favour of intensified agricultural use and the expansion of tourist activities, complemented by land abandonment in less attractive areas.

  11. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  12. Analysis of Links Positions in Landing Gear Mechanism

    NASA Astrophysics Data System (ADS)

    Brewczyński, D.; Tora, G.

    2014-08-01

    This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods

  13. a Study on the Improvement of Cadastral System in Mongolia - Focused on National Land Information System

    NASA Astrophysics Data System (ADS)

    Munkhbaatar, B.; Lee, J.

    2015-10-01

    National land information system (NLIS) is an essential part of the Mongolian land reform. NLIS is a web based and centralized system which covers administration of cadastral database all over the country among land departments. Current ongoing NLIS implementation is vital to improve the cadastral system in Mongolia. This study is intended to define existing problems in current Mongolian cadastral system and propose administrative institutional and systematic implementation through NLIS. Once NLIS launches with proposed model of comprehensive cadastral system it will lead to not only economic and sustainable development but also contribute to citizens' satisfaction and lessen the burdensomeness of bureaucracy. Moreover, prevention of land conflicts, especially in metropolitan area as well as gathering land tax and fees. Furthermore after establishment of NLIS, it is advisable that connecting NLIS to other relevant state administrational organizations or institutions that have relevant database system. Connections with other relevant organizations will facilitate not only smooth and productive workflow but also offer reliable and more valuable information by its systemic integration with NLIS.

  14. Land Data Assimilation of Satellite-Based Soil Moisture Products Using the Land Information System Over the NLDAS Domain

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Kumar, S. V.; Peters-Lidard, C. D.; Tian, Y.

    2011-01-01

    This presentation will include results from data assimilation simulations using the NASA-developed Land Information System (LIS). Using the ensemble Kalman filter in LIS, two satellite-based soil moisture products from the AMSR-E instrument were assimilated, one a NASA-based product and the other from the Land Parameter Retrieval Model (LPRM). The domain and land-surface forcing data from these simulations were from the North American Land Data Assimilation System Phase-2, over the period 2002-2008. The Noah land-surface model, version 3.2, was used during the simulations. Changes to estimates of land surface states, such as soil moisture, as well as changes to simulated runoff/streamflow will be presented. Comparisons over the NLDAS domain will also be made to two global reference evapotranspiration (ET) products, one an interpolated product based on FLUXNET tower data and the other a satellite- based algorithm from the MODIS instrument. Results of an improvement metric show that assimilating the LPRM product improved simulated ET estimates while the NASA-based soil moisture product did not.

  15. Orion Crew Module Landing System Simulation and Verification

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Stegall, David E.; Hardy, Robin C.; Boitnott, Richard L.; Reaves, Mercedes; Mark, Stephen D.; Annett, Martin S.

    2011-01-01

    NASA Langley Research Center (LaRC) has developed a comprehensive test and analysis program to evaluate the ability of LS-DYNA to model the materials and the phenomena involved in soil and water landing impacts of the Orion crew module. Elemental, scale boilerplate, and full-scale prototype testing is being conducted in support of the simulation verification and validation approach. Aspects of the simulations evaluated against test data include soil constitutive properties, water equations of state, and contact algorithms. Subsystems tested include airbags, crushable energy absorbing honeycomb materials, and energy absorbing seat support struts. The procedures, instrumentation, and general observations from each test series are presented. Plans for a series of swing tests of a full-scale boilerplate into a purpose-built water basin are described. Further plans for swing tests of flight-like prototypes into the water basin are noted.

  16. Application of Calspan pitch rate control system to the Space Shuttle for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1983-01-01

    A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended.

  17. Remotely sensed indicators or urban land use intensity: Comparison of sub-pixel analysis techniques

    NASA Astrophysics Data System (ADS)

    Lee, Sangbum

    The goal of this dissertation is to investigate novel methods of remote sensing/geographic information system (GIS) technologies to improve the accuracy of mapping urban land cover. Medium spatial resolution remotely sensed imagery is comparatively very cheap, but has a critical drawback "mixed" pixels (i.e., mixtures of impervious surface, lawn and tree cover with a single pixel) in the complex urban landscape. Accordingly, there are two major research areas that I propose to address: (1) Improving the specificity and accuracy of remotely sensed indicators of human land use, with a focus on impervious surface, lawn and urban tree cover; and (2) Testing the utility of newly available high (IKONOS) and medium (Landsat ETM) resolution remotely sensed image data for such purposes. While previous studies have focused on the estimation of impervious surface, this study is the first to thoroughly investigate the lawn and tree cover as separate urban green space components. I tested three different sub-pixel analysis methods: Linear Mixture Model (LMM), Fuzzy c-means Clustering (FCM), and Self-Organizing Map Neural Network (SOM). Overall, the SOM method provided the best estimates of the three land cover components: impervious surface estimated ranged from +/-4˜12%, lawn ranged from +/-8˜11%, and tree ranged from +/-11˜19% as compared to reference data. The linear mixture assumption of the endmember spectra of LMM is upheld to a large extent as evidenced by the rather high accuracy of impervious surface estimation, but the spectral reflectance of lawn and urban tree are not linearly mixed. LMM and FCM do not correctly estimate pure pixels of lawn and urban tree, while SOM_LVQ estimates these pure pixels quite accurately. Providing higher spatial resolution by the merging of higher spatial resolution panchromatic and lower spatial resolution multispectral Landsat ETM imagery did not improve the estimation of urban land cover components. The results of this study provide comprehensive information of the utility of sub-pixel analysis for the estimation of urban land cover components and suggest that the comparatively accurate land cover estimation of urban land cover components is attainable from medium resolution satellite imagery. These results are significant in that they demonstrate that medium resolution remotely sensed imagery such as Landsat ETM can provide a cost effective image data source for urban monitoring.

  18. Tool for Statistical Analysis and Display of Landing Sites

    NASA Technical Reports Server (NTRS)

    Wawrzyniak, Geoffrey; Kennedy, Brian; Knocke, Philip; Michel, John

    2006-01-01

    MarsLS is a software tool for analyzing statistical dispersion of spacecraft-landing sites and displaying the results of its analyses. Originally intended for the Mars Explorer Rover (MER) mission, MarsLS is also applicable to landing sites on Earth and non-MER sites on Mars. MarsLS is a collection of interdependent MATLAB scripts that utilize the MATLAB graphical-user-interface software environment to display landing-site data (see figure) on calibrated image-maps of the Martian or other terrain. The landing-site data comprise latitude/longitude pairs generated by Monte Carlo runs of other computer programs that simulate entry, descent, and landing. Using these data, MarsLS can compute a landing-site ellipse a standard means of depicting the area within which the spacecraft can be expected to land with a given probability. MarsLS incorporates several features for the user s convenience, including capabilities for drawing lines and ellipses, overlaying kilometer or latitude/longitude grids, drawing and/or specifying lines and/or points, entering notes, defining and/or displaying polygons to indicate hazards or areas of interest, and evaluating hazardous and/or scientifically interesting areas. As part of such an evaluation, MarsLS can compute the probability of landing in a specified polygonal area.

  19. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  20. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams.

    PubMed

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian; Valenzuela, Jose; Ebersbach, Paul; von Tuempling, Wolf; Palma, Rodrigo; Encina, Francisco; Figueroa, David; Kamjunke, Norbert; Graeber, Daniel

    2015-12-15

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide. PMID:26282747

  1. Use of South American Land Data Assimilation System (SALDAS) to Assess Impacts of Biofuel Expansion on Water Resources in Brazil

    NASA Astrophysics Data System (ADS)

    Goncalves, L.; De Mattos, J. Z.; Scarpare, F.; Galdos, M. V.; Scanlon, B.; Long, D.

    2013-12-01

    Large scale expansion of sugarcane production in Brazil is very positive in terms of biofuels and greenhouse gases; however, potential impacts on water resources are uncertain. The objective of this analysis is to assess potential impacts of biofuel expansion in Central South Brazil on water resources using the South American Land Data Assimilation System (SALDAS). SALDAS is driven by 3 hourly atmospheric forcing. Limited surface observations have resulted in use of remotely sensed data merged with surface observations to calculate precipitation and shortwave radiation fields. SALDAS simulates partitioning of water and energy in response to spatiotemporal variability in climate forcing and land use change related to biofuel expansion. The impacts of land use changes related to biofuel expansion will be examined by evaluating water and energy fluxes in areas of different land use and substituting space for time. Output from SALDAS will be compared with coarser resolution Global Land Data Assimilation System (GLDAS) and other more traditional modeling approaches, such as CROPWAT, to estimate changes in water use from biofuel expansion. Land surface models provide an excellent reconnaissance tool to better understand the hydrology of regional systems in response to climate and land use in data constrained regions.

  2. A Summary of the Development of a Nominal Land Landing Airbag Impact Attenuation System for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Tutt, Ben; Gill, Susannah; Wilson, Aaron; Johnson, Keith

    2009-01-01

    Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.

  3. Activities of the Pilot Land Data System project

    NASA Technical Reports Server (NTRS)

    Sircar, J. K. (Principal Investigator)

    1985-01-01

    The University of Maryland's Remote Sensing Systems Laboratory submitted to NASA/Goddard an interim progress report on the work being conducted within its Pilot Land Data System IPLDS project. The Remote Sensing Systems Laboratory addressed the following tasks: (1) identify data types and data sources needed to describe the selected test sites in collaboration with Goddard's Hydrological Sciences Branch; (2) define the procedures necessary to access/acquire this data; (3) conduct meetings with the PLDS Systems Engineering Group to identify functional specification priorities for PLDS development; (4) assemble documentation on historical remotely sensed imagery and transfer of such information to the PLDS Data Management Group; (5) collect data identified by Goodard's Hydrological Sciences Branch for data set inventory in PLD; (6) develop a Workstation-PLDS system interface over high speed lines, (7) develop and test through a Phase 1 demonstration of a micro workstation to access PLDS; and (8) establish interdepartmental agreement of development of computer link for electronic access of water resources data from USGS.

  4. REDUCING STORMWATER RUNOFF THROUGH LAND SUITABILITY ANALYSIS AND LOW-IMPACT SUBDIVISION DESIGN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We demonstrate an approach to reduce the anticipated increase in stormwater runoff from development under conventional subdivision design by incorporating hydrologic factors into a land suitability analysis and a low-impact subdivision design. A typical land suitability analysis assesses attributes ...

  5. The NASA-Goddard Multi-Scale Modeling Framework - Land Information System: Global Land/atmosphere Interaction with Resolved Convection

    NASA Technical Reports Server (NTRS)

    Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2013-01-01

    The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.

  6. Analysis of coastal change in Marie Byrd Land and Ellsworth Land, West Antarctica, using Landsat imagery

    USGS Publications Warehouse

    Ferrigno, J.G.; Williams, R.S., Jr.; Rosanova, C.E.; Lucchitta, B.K.; Swithinbank, C.

    1998-01-01

    The U.S. Geological Survey is using Landsat imagery from the early 1970s and mid- to late 1980s/early 1990s to analyze glaciological features, compile a glacier inventory, measure surface velocities of outlet glaciers, ice streams and ice shelves, determine coastline change and calculate the area and volume of iceberg calving in Antarctica. Ice-surface velocities in Marie Byrd and Ellsworth Lands, West Antarctica, range from the fast-moving Thwaites, Pine Island, Land and DeVicq Glaciers to the slower-moving ice shelves. The average ice-front velocity during the time interval of Landsat imagery, for the faster-moving outlet glaciers, was 2.9 km a-1 for Thwaites Glacier, 2.4 km a-1 for Pine Island Glacier, 2.0 km a-1 for Land Glacier and 1.4 km a-1 for DeVicq Glacier. Evaluation of coastal change from the early 1970s to the early 1990s shows advance of the floating ice front in some coastal areas and recession in others, with an overall small average advance in the entire coastal study area, but no major trend towards advance or retreat. Comparison of average ice-surface velocities with changes in the ice front has yielded estimates of iceberg calving. The total iceberg calving from the Marie Byrd Land and Ellsworth Land coasts during the study period was greater than 8500 km2 (estimated volume of about 2400 km3) or an average of about 550 km2 a-1 (more than 150 km3 a-1). Almost 70% of this discharge is contributed by Thwaites and Pine Island Glaciers.

  7. Land-use implications of wind-energy-conversion systems

    SciTech Connect

    Noun, R.J.

    1981-02-01

    An estimated 20 utilities in the United States are now investigating potential wind machine sites in their areas. Identifying sites for wind machine clusters (wind farms) involves more than just finding a location with a suitable wind resource. Consideration must also be given to the proximity of sites to existing transmission lines, environmental impacts, aesthetics, and legal concerns as well as the availability of and alternative uses for the land. These issues have made it increasingly difficult for utilities to bring conventional power plants on-line quickly. Utilities are now required, however, to give careful consideration to specific legal, social, and environmental questions raised by the siting of wind energy conversion systems (WECS).

  8. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  9. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2010-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The findings of the assessment are contained in this report.

  10. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2010-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The appendices to the original report are contained in this document.

  11. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  12. 23 CFR 973.210 - Indian lands bridge management system (BMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... “Guidelines for Bridge Management Systems,” AASHTO, 1993, is available for inspection as prescribed at 49 CFR... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands bridge management system (BMS). 973.210... PROGRAM Bureau of Indian Affairs Management Systems § 973.210 Indian lands bridge management system...

  13. 23 CFR 970.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970.212 Federal lands safety management system (SMS). In addition to the requirements provided in § 970.204, the... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands safety management system (SMS)....

  14. 23 CFR 970.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970.208 Federal lands pavement management system (PMS). In addition to the requirements provided in § 970.204, the... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands pavement management system (PMS)....

  15. 23 CFR 970.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970.208 Federal lands pavement management system (PMS). In addition to the requirements provided in § 970.204, the... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands pavement management system (PMS)....

  16. 23 CFR 970.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970.212 Federal lands safety management system (SMS). In addition to the requirements provided in § 970.204, the... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands safety management system (SMS)....

  17. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India

    PubMed Central

    Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

    2013-01-01

    Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

  18. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water quality benefits due to land use change were generally greater than the effects of climate change variability.

  19. Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes

    NASA Astrophysics Data System (ADS)

    Thober, S.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Mendoza, P. A.; Wulfmeyer, V. G.; Branch, O.; Attinger, S.; Kumar, R.; Cuntz, M.

    2014-12-01

    The land-atmosphere fluxes of water, energy and carbon, as computed by the Land Surface Model (LSM), are a critical component of Earth System Models and Numerical Weather Prediction models. Processes and parameters of LSMs are validated mostly against point measurements, for example from Eddy-covariance towers, with much attention given to biophysical processes and vegetation parameters. River discharge on the other hand is not considered very often although it provides an integrated signal of the hydrologic cycle over a catchment. Sensitivity analyses of hydrologic models have shown that soil parameters have then the largest impact on modeled river discharge. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP simultaneously for model outputs at different spatial resolutions. NOAH-MP is a state-of-the-art LSM, which is used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations (hence MP), yielding a considerable amount of parameters (> 500). Standard methods for sensitivity analysis such as Sobol indexes require too many model evaluations in case of many parameters. We therefore use first a recently developed inexpensive screening method based on Elementary Effects that has proven to identify the same informative parameters as the Sobol method but requires only 1% of model evaluations. This reduces the number of parameters to a feasible amount for a thorough sensitivity analysis. The study is conducted on twelve Model Parameter Estimation Experiment (MOPEX) catchments. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The river basins range in size from 1020 to 4421 km^2, allowing fast model evaluation. The screening and sensitivity analysis identifies the most informative parameters of NOAH-MP for different model output variables. These parameters can subsequently be used in model calibration and adaptation for better representation of land-atmosphere fluxes at different scales. The long-term objective is to establish flux preservation at multiple resolutions in NOAH-MP to allow assimilation of observations at their representative scale.

  20. Landing Characteristics of the Apollo Spacecraft with Deployed Heat Shield Impact Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Stubbs, Sandy M.

    1965-01-01

    An experimental investigation was made to determine the landing characteristics of a 1/4-scale dynamic model of the Apollo spacecraft command module using two different active (heat shield deployed prior to landing) landing systems for impact attenuation. One landing system (configuration 1) consisted of six hydraulic struts and eight crushable honeycomb struts. The other landing system (configuration 2), consisted of four hydraulic struts and six strain straps. Tests made on water and the hard clay-gravel composite landing surfaces simulated parachute letdown (vertical) velocities of 23 ft/sec (7.0 m/s) (full scale). Landings made on the sand landing surface simulated vertical velocities of 30 ft/sec (9.1 m/s). Horizontal velocities of from 0 to 50 ft/sec (15 m/s) were simulated. Landing attitudes ranged from -30'degrees to 20 degrees, and the roll attitudes were O degrees, 90 degrees, and 180 degrees. For configuration 1, maximum normal accelerations at the vehicle center of gravity for landings on water, sand, and the hard clay-gravel composite surface were 9g, 20g, and 18g, respectively. The maximum normal center-of-gravity acceleration for configuration 2 which was landed only on the hard clay-gravel landing surface was approximately 19g. Accelerations for configuration 2 were generally equal to or lower than accelerations for configuration 1 and normal.

  1. Method and Early Results of Applying the Global Land Data Assimilation System (GLDAS) in the Third Global Reanalysis of NCEP

    NASA Astrophysics Data System (ADS)

    Meng, J.; Mitchell, K.; Wei, H.; Yang, R.; Kumar, S.; Geiger, J.; Xie, P.

    2008-05-01

    Over the past several years, the Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) of the U.S. National Weather Service has developed a Global Land Data Assimilation System (GLDAS). For its computational infrastructure, the GLDAS applies the NASA Land Information System (LIS), developed by the Hydrological Science Branch of NASA Goddard Space Flight Center. The land model utilized in the NCEP GLDAS is the NCEP Noah Land Surface Model (Noah LSM). This presentation will 1) describe how the GLDAS component has been included in the development of NCEP's third global reanalysis (with special attention to the input sources of global precipitation), and 2) will present results from the GLDAS component of pilot tests of the new NCEP global reanalysis. Unlike NCEP's past two global reanalysis projects, this new NCEP global reanalysis includes both a global land data assimilation system (GLDAS) and a global ocean data assimilation system (GODAS). The new global reanalysis will span 30-years (1979-2008) and will include a companion realtime operational component. The atmospheric, ocean, and land states of this global reanalysis will provide the initial conditions for NCEP's 3rd- generation global coupled Climate Forecast System (CFS). NCEP is now preparing to launch a 28-year seasonal reforecast project with its new CFS, to provide the reforecast foundation for operational NCEP seasonal climate forecasts using the new CFS. Together, the new global reanalysis and companion CFS reforecasts constitute what NCEP calls the Climate Forecast System Reanalysis and Reforecast (CFSRR) project. Compared to the previous two generations of NCEP global reanalysis, the hallmark of the GLDAS component of CFSRR is GLDAS use of global analyses of observed precipitation to drive the land surface component of the reanalysis (rather than the typical reanalysis approach of using precipitation from the assimilating background atmospheric model). Specifically, the GLDAS merges two global analyses of observed precipitation produced by the Climate Prediction Center (CPC) of NCEP, as follows: 1) a new CPC daily gauge-only land-only global precipitation analysis at 0.5-degree resolution and 2) the well-known CPC CMAP global 2.0 x 2.5 degree 5-day precipitation analysis, which utilizes satellite estimates of precipitation, as well as some gauge observations. The presentation will describe how these two analyses are merged with latitude-dependent weights that favor the gauge-only analysis in mid-latitudes and the satellite-dominated CMAP analysis in tropical latitudes. Finally, we will show some impacts of using GLDAS to initialize the land states of seasonal CFS reforecasts, versus using the previous generation of NCEP global reanalysis as the source for CFS initial land states.

  2. Dust in the Earth system: the biogeochemical linking of land, air and sea

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy J.

    2002-12-01

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO2 lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback mechanisms are identified, recognition of whose operation could be crucial to our understanding of major climatic transitions over the past few million years.

  3. Assimilation of microwave brightness temperature in a land data assimilation system with multi-observation operators

    NASA Astrophysics Data System (ADS)

    Jia, Binghao; Tian, Xiangjun; Xie, Zhenghui; Liu, Jianguo; Shi, Chunxiang

    2013-05-01

    A radiative transfer model (RTM) that provides a link between model states and satellite observations (e.g., brightness temperature) can act as an observation operator in land data assimilation to directly assimilate brightness temperatures. In this study, a microwave Land Data Assimilation System (LDAS) was developed with three RTMs (The radiative transfer model for bare field (QH), land emissivity model (LandEM), and Community Microwave Emission Model (CMEM)) as its multi-observation operators (LDAS-MO). Assimilation experiments using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) satellite brightness temperature data from July 2005 to December 2008 were then conducted to investigate the impact of the RTMs on the assimilated results over China. It was found that the assimilated volumetric soil-water content using each of the three observation operators improved the estimation of soil moisture content in the top soil layer (0-10 cm), with reduced root mean square errors (RMSEs), and increased correlation coefficients with field observations (OBS) as compared to a control run with no assimilation for the absence of frozen or snow-covered conditions. The assimilated soil moisture for the QH model, which was more sensitive to dry soil than the other models, produced closer correlations with OBS in arid and semi-arid regions while smaller RMSEs were observed for LandEM. CMEM agreed most closely with OBS over the middle and lower reaches of the Yangtze River due to its better simulation of the brightness temperature over densely vegetated areas. To improve assimilation accuracy, a Bayesian model averaging (BMA) scheme for the LDAS-MO was developed. The BMA scheme was found to significantly enhance assimilation capability producing the soil moisture analysis, showing the lowest RMSEs and highest correlations with OBS over all areas. It was demonstrated that the BMA scheme with LDAS-MO has the potential to estimate soil moisture with high accuracy.

  4. Intruder dose pathway analysis code for onsite land disposal

    SciTech Connect

    Kennedy, W.E. Jr.; Peloquin, R.A.; Napier, B.A.

    1985-08-01

    The objective of the current project is to modify an existing pathway-to-man computer program, the MAXI1 computer program, for use by the US Nuclear Regulatory Commission (NRC) in reviewing proposed onsite burials of radioactive materials by its licensees. The policy of the NRC is to review proposed onsite burial of radioactive waste on a case-by-case basis. As part of our earlier work on this project, specific human intrusion scenarios were developed that consider various potential combinations of direct exposure to penetrating radiation, inhalation of airborne radionuclides, ingestion of agricultural products raised in contaminated soil, and ingestion of radionuclides in drinking water. As a continuation of our earlier efforts, enhancements to the ONSITE/MASI1 computer software package are being made that will account for additional optional shielding factors that could influence external exposure to penetrating radiation, provide options for alternative land-use conditions, and permit the user to select from a complete diet, meat diet, or vegetable diet. Additional modifications underway include (1) conversion to the ICRP 26/30 dosimetric system for assessing human exposure to radioactive materials and (2) inclusion of an optional 50-year effective committed dose equivalent calculation. The resulting computer software package will provide the necessary flexibility to conduct analyses of human-intrusion scenarios that are applicable to the terrestrial disposal of radioactive materials for a wide variety of conditions. 8 refs., 1 fig.

  5. Surface Temperature Assimilation in the Global Land Data Assimilation System (GLDAS)

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Houser, Paul R.; Atlas, Robert M. (Technical Monitor)

    2002-01-01

    The Global Land Data Assimilation System (GLDAS) is a global land parameterization that uses prescribed meteorology as forcing in order to determine regular gridded land surface states (temperature and moisture) and other properties (e.g. water and heat fluxes). In the present experiment, the assimilation of surface skin temperature is incorporated into the land parameterizations. The meteorological forcing was derived from the Goddard Earth Observing System (GEOS-3) Data Assimilation System (DAS) for the full year of 1998 GLDAS can use several land parameterizations, but here we use the Mosaic land surface model and the Common Land Model (CLM). TOVS surface temperature observations are assimilated into GLDAS. The TOVS observations are less frequent that observations used in previous experiments (ISCCP). The purpose of this presentation is to evaluate the impact of the TOVS assimilation on both Mosaic and CLM. We will especially consider the impact of coarse temporal observations on the assimilation and bias correction.

  6. Performance Measurement Analysis System

    Energy Science and Technology Software Center (ESTSC)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  7. Land use and land cover classification, changes and analysis in gum Arabic belt in North Kordofan, Sudan

    NASA Astrophysics Data System (ADS)

    Adam, Hassan E.; Csaplovics, Elmar; Elhaja, Mohamed E.; El Abbas, Mustafa M.

    2013-10-01

    The gum arabic belt in Sudan plays a significant role in environmental, social and economical aspects. This research was conducted in North Kordofan State, which is affected by modifications in conditions and composition of vegetation cover trends in the gum arabic belt as in the rest of the Sahelian Sudan zone. The objective of the paper is to study the classification, changes and analysis of the land use and land cover in the gum arabic belt in North Kordofan State in Sudan. The study used imageries from different satellites (Landsat and ASTER) and multi-temporal dates (MSS 1972, TM 1985, ETM+ 1999 and ASTER 2007) acquired in dry season. The imageries were geo-referenced and radiometrically corrected by using ENVI-FLAASH software. Image classification (pixel-based) and accuracy assessment were applied. Application of multi-temporal remote sensing data demonstrated successfully the identification and mapping of land use and land cover into five main classes. Forest dominated by Acacia senegal class was separated covering an area of 21% in the year 2007. The obvious changes and reciprocal conversions in the land use and land cover structure indicate the trends and conditions caused by the human interventions as well as ecological impacts on Acacia senegal trees. Also the study revealed that a drastic loss of forest resources occurred in the gum arabic belt in North Kordofan during 1972 to 2007 (25% for Acacia senegal trees). The study concluded that, using of traditional Acacia senegal-based agro-forestry as one of the most successful form in the gum belt.

  8. Application of Scenario Analysis and Multiagent Technique in Land-Use Planning: A Case Study on Sanjiang Wetlands

    PubMed Central

    Ni, Shi-Jun; He, Zheng-Wei; Zhang, Cheng-Jiang; Zhang, Shu-Qing; Pan, Xin; Xia, Chao-Xu; Li, Xuan-Qiong

    2013-01-01

    Land-use planning has triggered debates on social and environmental values, in which two key questions will be faced: one is how to see different planning simulation results instantaneously and apply the results back to interactively assist planning work; the other is how to ensure that the planning simulation result is scientific and accurate. To answer these questions, the objective of this paper is to analyze whether and how a bridge can be built between qualitative and quantitative approaches for land-use planning work and to find out a way to overcome the gap that exists between the ability to construct computer simulation models to aid integrated land-use plan making and the demand for them by planning professionals. The study presented a theoretical framework of land-use planning based on scenario analysis (SA) method and multiagent system (MAS) simulation integration and selected freshwater wetlands in the Sanjiang Plain of China as a case study area. Study results showed that MAS simulation technique emphasizing quantitative process effectively compensated for the SA method emphasizing qualitative process, which realized the organic combination of qualitative and quantitative land-use planning work, and then provided a new idea and method for the land-use planning and sustainable managements of land resources. PMID:23818816

  9. Object-oriented image analysis and change detection of land-use on Tenerife related to socio-economic conditions

    NASA Astrophysics Data System (ADS)

    Naumann, Simone; Siegmund, Alexander

    2004-10-01

    The island Tenerife is characterized by an increasing tourism, which causes an enormous change of the socio-economic situation and a rural exodus. This development leads - beside for example sociocultural issues - to fallow land, decreasing settlements, land wasting etc., as well as to an economic and ecological problem. This causes to a growing interest in geoecological aspects and to an increasing demand for an adequate monitoring database. In order to study the change of land use and land cover, the technology of remote sensing (LANDSAT 3 MSS and 7 ETM+, orthophotos) and geographical information systems were used to analyze the spatial pattern and its spatial temporal changes of land use from end of the 70s to the present in different scales. Because of the heterogeneous landscape and the unsatisfactory experience with pixel-based classification of the same area, object-oriented image analysis techniques have been applied to classify the remote sensed data. A post-classification application was implemented to detect spatial and categorical land use and land cover changes, which have been clipped with the socio-economic data within GIS to derive the driving forces of the changes and their variability in time and space.

  10. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  11. Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda

    PubMed Central

    de Ridder, Nico; de Jager, Andre; Delve, Robert J.; Bekunda, Mateete A.; Giller, Ken E.

    2010-01-01

    Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs. PMID:20628448

  12. An empirical analysis of land property lawsuits and rainfalls.

    PubMed

    Chou, Li-Chen; Fu, Chung-Yuan

    2016-01-01

    This article using the database of Taiwanese land property lawsuits studies the economic effects of rainfalls on land property lawsuits during the period of Japanese colonial rule (1920-1941). The results obtained from basic ordinary least squares indicate that it shows no significant influences. However, an interesting result is that, when we adopt the approach of two stage least squares and use the variables of temperature and evaporation as the instrument variables of rainfalls, we find that there are highly significant influences on the lawsuits of land property. If 1 year comes with low average rainfalls, it means that the costs of productive inputs increase, because the available natural resource will decrease, and brings the distorted using of land property. PMID:26759740

  13. Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop

    EPA Science Inventory

    Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

  14. The Environment Analysis in the CE-3 Landing Region

    NASA Astrophysics Data System (ADS)

    Mu, L.; Liu, J.; Zeng, X.; Gao, X.; Yan, W.; Zou, X.; Li, C.

    2014-12-01

    To understand the environment and select detecting objects for the Yutu Rover, NAOC used the DEM and DOM data obtained by CE-2, geological data released by USGS, and high resolution image captured by CE-3 and LRO-NAC to analyze the topographical characteristic, geologic age, Geomorphological feathers and new dust distribution in two scale levels. The first level is 45km×75km, and another one is 4km×4km. The center of the study region is the CE-3 landing site (19.51°W, 44.12°N). The following is the initial conclusions: (1) CE-3 landed on a relatively flat region in the Mare Imbrium with an elevation of -2615m. The geological age of the landing site belongs to young Eratoshenian. 10km to the north of the landing site is the older Mare Imbrium stratum, and the location of the landing site is just on the intersection area of these two stratums. (2) The landing site lies on the edge of a lunar mountain with a decline tendency from west to east, and the topographic slope and roughness of the landing region is low, which is the typical characteristic of lunar mare. There is a big crater with diameter of 430 meters in the west of the landing site, and lots of stones in different colors on the rim of this crater, shown in the Figure2. (3) By comparing the images captured by LRO-NAC before and after the landing, much lunar dust was blown away by the engine plume during the landing of CE-3. The change scope is about 60m with from east-west and 135m length from south-north. The direction of landing is from south-north, so the length is larger than the width, shown in the figure 3. (4) In the initial stage, the Yutu Rover was suggested to move in south direction and late in north direction, which would get more scientific data and result.

  15. Landing Site Dispersion Analysis and Statistical Assessment for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Bonfiglio, Eugene P.; Adams, Douglas; Craig, Lynn; Spencer, David A.; Strauss, William; Seelos, Frank P.; Seelos, Kimberly D.; Arvidson, Ray; Heet, Tabatha

    2008-01-01

    The Mars Phoenix Lander launched on August 4, 2007 and successfully landed on Mars 10 months later on May 25, 2008. Landing ellipse predicts and hazard maps were key in selecting safe surface targets for Phoenix. Hazard maps were based on terrain slopes, geomorphology maps and automated rock counts of MRO's High Resolution Imaging Science Experiment (HiRISE) images. The expected landing dispersion which led to the selection of Phoenix's surface target is discussed as well as the actual landing dispersion predicts determined during operations in the weeks, days, and hours before landing. A statistical assessment of these dispersions is performed, comparing the actual landing-safety probabilities to criteria levied by the project. Also discussed are applications for this statistical analysis which were used by the Phoenix project. These include using the statistical analysis used to verify the effectiveness of a pre-planned maneuver menu and calculating the probability of future maneuvers.

  16. Land disposal of water treatment plant sludge -- A feasibility analysis

    SciTech Connect

    Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

    1998-07-01

    In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

  17. Metallurgical analysis of fractured F-27 aircraft landing gear

    SciTech Connect

    Witherell, C.E.

    1987-12-15

    The Materials Division of LLNL's Chemistry and Materials Science Department was asked to conduct a study of a fractured component of the main (starboard) landing gear on the F-27 aircraft (N768RL). The purpose of the study was to determine from metallurgical evidence the probable failure mode, its cause, and contribution to the recent landing incident at Livermore. 21 refs., 15 figs., 1 tab.

  18. Identification and Analysis of Landing sites for the ESA ExoMars Rover (2018)

    NASA Astrophysics Data System (ADS)

    Balme, Matthew; Bridges, John; Fawdon, Peter; Grindrod, Peter; Gupta, Sanjeev; Michalski, Joe; Conway, Susan

    2014-05-01

    The exploration and search for life on Mars forms a cornerstone of international solar system exploration. In 2018, the European Space agency will launch the ExoMars Rover and Lander to further this exploration. The key science objectives of the ExoMars Rover are to: 1) search for signs of past and present life on Mars; 2) investigate the water/geochemical environment as a function of depth in the shallow subsurface; and 3) to characterise the surface environment. To meet these objectives ExoMars will drill into the sub-surface to look for indicators of past life using a range of complementary techniques, including assessment of morphology (potential fossil organisms), mineralogy (past environments) and a search for organic molecules and their chirality (biomarkers). The choice of landing site is vital if ExoMars' scientific objectives are to be met. The landing site must: (i) be ancient (≥3.6 Ga); (ii) show abundant morphological and mineral evidence for long-term, or frequently reoccurring, aqueous activity; (iii) include numerous sedimentary outcrops that (iv) are distributed over the landing region (the typical Rover traverse range is only a few km, but the uncertainty in the location of the landing site forms an elliptical of size ~ 100 by 15 km); and (v) have little dust coverage. In addition, in order to land and operate safely, various 'engineering constraints' apply, including: (i) latitude limited to 5º S to 25º N; (ii) maximum altitude of the landing site 2 km below Mars's datum, (iii) few steep slopes within the uncertainty ellipse. These constraints are onerous. In particular, the objective to drill into sediments, the requirement for distributed targets within the ellipse, and the ellipse size, make ExoMars site selection extremely challenging. To meet these challenges, we have begun an intensive study of the martian landscape to identify as many possible ExoMars landing sites as possible. We have converted the current engineering constraints into spatial filters in a GIS (Geographical Information systems) to define regions of Mars where landing could be possible. We have used published geological maps of Mars to define areas that are of the appropriate age and integrated published catalogues of morphological indicators of standing water (e.g. delta-like landforms) and of layered terrains, and of the locations and spectral characteristics of minerals indicative of the action of water. Using this GIS we identified ~25 study areas that held promise scientifically, and into which one or more landing 'uncertainty ellipses' could be fitted without breaching the engineering constraints. For each of these, we obtained and processed imaging data (from the NASA Mars Reconnaissance Orbiter 'CTX' instrument and the ESA Mars Express Orbiter 'HRSC' instrument), high resolution topographic data (again, from ESA's HRSC), and mineralogical data (based on infrared spectrometry data obtained by ESA's OMEGA instrument and NASA's CRISM instrument. Using these data we down-selected to five sites that had the highest potential and which, in some cases, had not been well-described previously in the peer-reviewed literature. At the time of writing, we are undertaking further geomorphological and mineralogical mapping of these sites, with the expectation of submitting 1-3 sites to ESA's ExoMars Landing Site Selection Working Group by the deadline set at end of February 2014. In this presentation we detail the GIS and terrain analysis element of the work we have done, and describe how the diverse data types and team abilities were harnessed to solve the challenging problem created by ExoMars' stringent scientific and engineering constraints.

  19. The comparative analysis of various classification models on land evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Jian; Hu, Yueming; Liu, Jianmin; Zhao, Yanling; Wang, Changwei

    2009-10-01

    Many methods of data mining model were widely applied for land evaluation, and they show different characteristics of the application for land evaluation. In order to analyze different classification model effect for land evaluation, this paper took land in Longchuan County as a case study, established three models using decision tree, back propagation neural network (BP) and logistic regression on land evaluation. The result of study shows that the accuracy of three models changes remarkably according to 6 groups of training samples. The accuracy of the decision tree and BP model can reach high level in support of 4000 training samples, but decision tree model is superior to BP model at intelligibility of model and consuming-time aspects. The overall performance of Logistic regression model is worse than other models at the massive samples. Moreover, three model have different the characteristic of error distribution by means of confusion matrix. The error of decision tree distributes evenly, and the error distribution of BP has opposite result of Logistic regression. Results indicate that the model of decision tree is the best model for evaluating Longchun County land at comprehensive thought, and it has a good effect on application.

  20. Detection of land use/land cover changes through the comparative analysis of NDVI-MODIS phenological clusters

    NASA Astrophysics Data System (ADS)

    Simoniello, Tiziana; Imbrenda, Vito; Lanfredi, Maria

    2013-04-01

    The use of satellite time series provides precious information to understand vegetation dynamics. In particular, they can be profitably used for studying magnitudo and spatial extent of the Earth's land cover alterations, which affect directly biodiversity, can contribute to land degradation, and are linked to climate change by feedback mechanisms. In the framework of PRO-LAND project (PO-FESR Basilicata 2007-2013), we used NDVI-MODIS satellite time series (250 m), available as 16-day composite from the NASA LPDAAC dataset, to analyze land cover changes occurred in Basilicata region (Southern Italy) during the period 2000-2010. We performed a phenological clustering for the years 2000 and 2010 by means of the unsupervised classification fuzzy k-means which is able to identify gradual differences among phenological patterns. The time domain considered is from April to October in order to reduce disturbances due to the presence of clouds, which can distort actual vegetation phenological profiles. The optimal number of clusters to capture the heterogeneity of the examined area was fixed at ten, because it seemed to be a good trade-off between the need of an efficient representation of ecosystems and the ability to detect local fragmentation effects. Results show that the temporal patterns of the ten clusters can be organised in a continuum of phenological curves. They can be sorted unambiguously according to increasing percentage of man-made areas (decreasing percentage of natural areas) and allow us to well discriminate different land cover compositions by looking not only at differences in mean NDVI values but also at differences in the seasonal timing. The cluster sequence for both the examined years mostly follows the spatial arrangement of the land cover classes, and the complex orography of the investigated region. In general, results show that a slight variability characterize the arrangement of cluster cores, particularly for the clusters with a dominance of natural or anthropic covers, whereas a slightly higher variability appears at the cluster borders (especially for clusters where anthropic and natural covers are mixed). Overall, this study puts into evidence a fair decrease in the number of patches (~ -10%) accompanied by the increase of the mean patch area (~ +10%), which means that there is a tendency to compaction of the areas that are classified in the same phenological cluster. This phenomenon is particularly interesting for mountainous natural areas. A coupled analysis of meteo-climatic conditions and implemented land cover management policies can enable to identify the causes behind the observed phenomena, allowing for a more complete picture and a better interpretation of the occurred land cover changes.

  1. 23 CFR 973.208 - Indian lands pavement management system (PMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands pavement management system (PMS). 973.208... PROGRAM Bureau of Indian Affairs Management Systems § 973.208 Indian lands pavement management system (PMS..., 2001, is available for inspection as prescribed at 49 CFR part 7. It is also available from...

  2. 23 CFR 973.212 - Indian lands safety management system (SMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands safety management system (SMS). 973.212... PROGRAM Bureau of Indian Affairs Management Systems § 973.212 Indian lands safety management system (SMS... inspection and copying as prescribed at 49 CFR part 7. (d) The BIA and ITGs shall utilize the SMSs to...

  3. 23 CFR 973.214 - Indian lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands congestion management system (CMS). 973.214... HIGHWAYS MANAGEMENT SYSTEMS PERTAINING TO THE BUREAU OF INDIAN AFFAIRS AND THE INDIAN RESERVATION ROADS PROGRAM Bureau of Indian Affairs Management Systems § 973.214 Indian lands congestion management...

  4. 23 CFR 970.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands safety management system (SMS). 970.212 Section 970.212 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems §...

  5. 23 CFR 970.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands safety management system (SMS). 970.212 Section 970.212 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems §...

  6. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  7. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  8. Analysis of RapidEye imagery for agricultural land mapping

    NASA Astrophysics Data System (ADS)

    Sang, Huiyong; Zhang, Jixian; Zhai, Liang; Xie, Wenhan; Sun, Xiaoxia

    2015-12-01

    With the improvement of remote sensing technology, the spatial, structural and texture information of land covers are present clearly in high resolution imagery, which enhances the ability of crop mapping. Since the satellite RapidEye was launched in 2009, high resolution multispectral imagery together with wide red edge band has been utilized in vegetation monitoring. Broad red edge band related vegetation indices improved land use classification and vegetation studies. RapidEye high resolution imagery was used in this study to evaluate the potential of red edge band in agricultural land cover/use mapping using an objected-oriented classification approach. A new object-oriented decision tree classifier was introduced in this study to map agricultural lands in the study area. Besides the five bands of RapidEye image, the vegetation indexes derived from spectral bands and the structural and texture features are utilized as inputs for agricultural land cover/use mapping in the study. The optimization of input features for classification by reducing redundant information improves the mapping precision about 18% for AdaTree. WL decision tree, and 5% for SVM, the accuracy is over 90% for both classifiers.

  9. Elemental analysis in environmental land samples by stand-off laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Xiao; Ahmad, S. R.

    2014-06-01

    The stand-off detection and analysis of environmental land samples have been demonstrated using laser-induced breakdown spectrometry. The samples of interest have included soils and vegetation powder. Elements Hg, As, Pb, Zn, Cd and Cr have been spectrally analysed with a focus on Hg as a trace contaminant in the samples. It is found that element Fe, usually contained in land samples, is a main source of spectral interference for Hg detection due to its ever present iron emission line at 253.68 nm that is closely adjacent to the strongest Hg emission line at 253.65 nm, and hence, a high resolution of spectral detection is necessary. The strong spectral signals from Bremsstrahlung emission in laser-induced plasma and atomic emission of Fe of high concentration caused a significant reduction in detection resolution in the use of image intensifier of an ICCD. The limit of detection at ~8 ppm for Hg detection in soil samples with iron as a minor constituent has been achieved, using an optical chopper and a CCD detector for laser-induced breakdown spectroscopy (LIBS) signal detection. Such detection method in LIBS system has shown a great advantage in determining trace elements from interfering elemental constituents in land sample matrixes.

  10. Lake Michigan Diversion Accounting land cover change estimation by use of the National Land Cover Dataset and raingage network partitioning analysis

    USGS Publications Warehouse

    Sharpe, Jennifer B.; Soong, David T.

    2015-01-01

    This study used the National Land Cover Dataset (NLCD) and developed an automated process for determining the area of the three land cover types, thereby allowing faster updating of future models, and for evaluating land cover changes by use of historical NLCD datasets. The study also carried out a raingage partitioning analysis so that the segmentation of land cover and rainfall in each modeled unit is directly applicable to the HSPF modeling. Historical and existing impervious, grass, and forest land acreages partitioned by percentages covered by two sets of raingages for the Lake Michigan diversion SCAs, gaged basins, and ungaged basins are presented.

  11. Complex Adaptive Systems, soil degradation and land sensitivity to desertification: A multivariate assessment of Italian agro-forest landscape.

    PubMed

    Salvati, Luca; Mavrakis, Anastasios; Colantoni, Andrea; Mancino, Giuseppe; Ferrara, Agostino

    2015-07-15

    Degradation of soils and sensitivity of land to desertification are intensified in last decades in the Mediterranean region producing heterogeneous spatial patterns determined by the interplay of factors such as climate, land-use changes, and human pressure. The present study hypothesizes that rising levels of soil degradation and land sensitivity to desertification are reflected into increasingly complex (and non-linear) relationships between environmental and socioeconomic variables. To verify this hypothesis, the Complex Adaptive Systems (CAS) framework was used to explore the spatiotemporal dynamics of eleven indicators derived from a standard assessment of soil degradation and land sensitivity to desertification in Italy. Indicators were made available on a detailed spatial scale (773 agricultural districts) for various years (1960, 1990, 2000 and 2010) and analyzed through a multi-dimensional exploratory data analysis. Our results indicate that the number of significant pair-wise correlations observed between indicators increased with the level of soil and land degradation, although with marked differences between northern and southern Italy. 'Fast' and 'slow' factors underlying soil and land degradation, and 'rapidly-evolving' or 'locked' agricultural districts were identified according to the rapidity of change estimated for each of the indicators studied. In southern Italy, 'rapidly-evolving' districts show a high level of soil degradation and land sensitivity to desertification during the whole period of investigation. On the contrary, those districts in northern Italy are those experiencing a moderate soil degradation and land sensitivity to desertification with the highest increase in the level of sensitivity over time. The study framework contributes to the assessment of complex local systems' dynamics in affluent but divided countries. Results may inform thematic strategies for the mitigation of land and soil degradation in the framework of action plans to combat desertification. PMID:25847168

  12. Architecture of the global land acquisition system: applying the tools of network science to identify key vulnerabilities

    NASA Astrophysics Data System (ADS)

    Seaquist, J. W.; Li Johansson, Emma; Nicholas, Kimberly A.

    2014-11-01

    Global land acquisitions, often dubbed ‘land grabbing’ are increasingly becoming drivers of land change. We use the tools of network science to describe the connectivity of the global acquisition system. We find that 126 countries participate in this form of global land trade. Importers are concentrated in the Global North, the emerging economies of Asia, and the Middle East, while exporters are confined to the Global South and Eastern Europe. A small handful of countries account for the majority of land acquisitions (particularly China, the UK, and the US), the cumulative distribution of which is best described by a power law. We also find that countries with many land trading partners play a disproportionately central role in providing connectivity across the network with the shortest trading path between any two countries traversing either China, the US, or the UK over a third of the time. The land acquisition network is characterized by very few trading cliques and therefore characterized by a low degree of preferential trading or regionalization. We also show that countries with many export partners trade land with countries with few import partners, and vice versa, meaning that less developed countries have a large array of export partnerships with developed countries, but very few import partnerships (dissassortative relationship). Finally, we find that the structure of the network is potentially prone to propagating crises (e.g., if importing countries become dependent on crops exported from their land trading partners). This network analysis approach can be used to quantitatively analyze and understand telecoupled systems as well as to anticipate and diagnose the potential effects of telecoupling.

  13. Manifesting Destiny: A Land Education Analysis of Settler Colonialism in Jamestown, Virginia, USA

    ERIC Educational Resources Information Center

    McCoy, Kate

    2014-01-01

    Globally, colonization has been and continues to be enacted in the take-over of Indigenous land and the subsequent conversion of agriculture from diverse food and useful crops to large-scale monoculture and cash crops. This article uses a land education analysis to map the rise of the ideology and practices of Manifest Destiny in Virginia.…

  14. Manifesting Destiny: A Land Education Analysis of Settler Colonialism in Jamestown, Virginia, USA

    ERIC Educational Resources Information Center

    McCoy, Kate

    2014-01-01

    Globally, colonization has been and continues to be enacted in the take-over of Indigenous land and the subsequent conversion of agriculture from diverse food and useful crops to large-scale monoculture and cash crops. This article uses a land education analysis to map the rise of the ideology and practices of Manifest Destiny in Virginia.

  15. Landing and Population Hazard Analysis for Stardust Entry in Operations and Entry Planning

    NASA Technical Reports Server (NTRS)

    Tooley, Jeffrey; Desai, Prasun N.; Lynos, Daniel T.; Hirst, Edward A.; Wahl, Tom E.; Wawrzyniak, Georffery G.

    2006-01-01

    Stardust is a comet sample return mission that successfully returned to Earth on January 15, 2006. Stardust's targeted landing area was the Utah Test and Training Range in the Northwest corner of Utah. Requirements for the risks associated with landing were levied on Stardust by the Utah Test and Training Range and NASA. This paper describes the analysis to verify that these requirements were met and and includes calculation of debris survivability, generation of landing site selection plots, and identification of keep-out zones, as well as appropriate selection of the landing site. Operationally the risk requirements were all met for both of the GOMO-GO polls, so entry was authorized.

  16. Land cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin)

    NASA Astrophysics Data System (ADS)

    Badjana, Hèou Maléki; Helmschrot, Jörg; Selsam, Peter; Wala, Kpérkouma; Flügel, Wolfgang-Albert; Afouda, Abel; Akpagana, Koffi

    2015-10-01

    In this study, land cover changes between 1972 and 2013 were investigated in the Binah River watershed (North of Togo and Benin) using remote sensing and geographic information system technologies. Multitemporal satellite images—Landsat MSS (1972), TM (1987), and OLI-TIRS (2013)—were processed using object-based image analysis and post-classification comparison methods including landscape metrics and changes trajectories analysis. Land cover maps referring to five main land cover classes, namely, agricultural land, forest land, savannah, settlements, and water bodies, were produced for each acquisition date. The overall accuracies were 76.64% (1972), 83.52% (1987), and 88.84% (2013) with respective Kappa statistics of 0.69, 0.78, and 0.86. The assessment of the spatiotemporal pattern of land cover changes indicates that savannah, the main vegetation type, has undergone the most dominant change, decreasing from 67% of the basin area in 1972 to 56% in 1987 and 33% in 2013. At the same time, agricultural land has significantly increased from 15% in 1972 to 24% in 1987 and 43% in 2013, while some proportions of agricultural land were converted to savannah relating to fallow agriculture. In total, more than 55% of the landscape experienced changes between 1972 and 2013. These changes are primarily due to human activities and population growth. In addition, agricultural activities significantly contributed to the increase in the number of patches, degree of division, and splitting index of forest and savannah vegetations and the decrease in their effective mesh sizes. These results indicate further fragmentation of forest and savannah vegetations between 1972 and 2013. Further research is needed to quantitatively evaluate the influences of individual factors of human activities and to separate these from the impacts of climate change-driven disturbances.

  17. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  18. Redundant system reliability analysis

    NASA Technical Reports Server (NTRS)

    Masreliez, C. J.

    1979-01-01

    Computer Aided Redundant System Reliability Analysis (CARSARA) program facilitates reliability assessment of fault-tolerance reconfigurable systems. CARSRA accounts for influences from transient faults and is used to model wide range of redundancy management strategies.

  19. Comparative analysis of algorithms for lunar landing control

    NASA Astrophysics Data System (ADS)

    Zhukov, B. I.; Likhachev, V. N.; Sazonov, V. V.; Sikharulidze, Yu. G.; Tuchin, A. G.; Tuchin, D. A.; Fedotov, V. P.; Yaroshevskii, V. S.

    2015-11-01

    For the descent from the pericenter of a prelanding circumlunar orbit a comparison of three algorithms for the control of lander motion is performed. These algorithms use various combinations of terminal and programmed control in a trajectory including three parts: main braking, precision braking, and descent with constant velocity. In the first approximation, autonomous navigational measurements are taken into account and an estimate of the disturbances generated by movement of the fuel in the tanks was obtained. Estimates of the accuracy for landing placement, fuel consumption, and performance of the conditions for safe lunar landing are obtained.

  20. An automated land-use mapping comparison of the Bayesian maximum likelihood and linear discriminant analysis algorithms

    NASA Technical Reports Server (NTRS)

    Tom, C. H.; Miller, L. D.

    1984-01-01

    The Bayesian maximum likelihood parametric classifier has been tested against the data-based formulation designated 'linear discrimination analysis', using the 'GLIKE' decision and "CLASSIFY' classification algorithms in the Landsat Mapping System. Identical supervised training sets, USGS land use/land cover classes, and various combinations of Landsat image and ancilliary geodata variables, were used to compare the algorithms' thematic mapping accuracy on a single-date summer subscene, with a cellularized USGS land use map of the same time frame furnishing the ground truth reference. CLASSIFY, which accepts a priori class probabilities, is found to be more accurate than GLIKE, which assumes equal class occurrences, for all three mapping variable sets and both levels of detail. These results may be generalized to direct accuracy, time, cost, and flexibility advantages of linear discriminant analysis over Bayesian methods.

  1. Land Cover and Landscape Diversity Analysis in the West Polesie Biosphere Reserve

    NASA Astrophysics Data System (ADS)

    Chmielewski, Szymon; Chmielewski, Tadeusz J.; Tompalski, Piotr

    2014-04-01

    The aim of this research was to present the land cover structure and landscape diversity in the West Polesie Biosphere Reserve. The land cover classification was performed using Object Based Image Analysis in Trimble eCognition Developer 8 software. The retrospective land cover changes analysis in 3 lake catchments (Kleszczów, Moszne, Bia³eW³odawskie Lakes)was performed on the basis of archival aerial photos taken in 1952, 1971, 1984, 1992, 2007 and one satellite scene from 2003 (IKONOS).On the basis of land cover map structure, Shannon diversity index was estimated with the moving window approach enabled in Fragstats software. The conducted research has shown that the land cover structure of the West Polesie Biosphere Reserve is diverse and can be simply described by selected landscape metrics. The highest level of land cover diversity, as showed by Shannon Diversity Index, was identified in the western part of the West Polesie Biosphere Reserve, which is closely related to the agricultural character of land cover structure in those regions. The examples of three regional retrospective land cover analyses demonstrated that the character of land cover structure has changed dramatically over the last 40 years.

  2. A research on analysis method of land environment big data storage based on air-earth-life

    NASA Astrophysics Data System (ADS)

    Lu, Yanling; Li, Jingwen

    2015-12-01

    Many problems of land environment in urban development, with the support of 3S technology, the research of land environment evolved into the stage of spatial-temporal scales. This paper combining space, time and attribute features in land environmental change, with elements of "air-earth-life" framework for the study of pattern, researching the analysis method of land environment big data storage due to the limitations of traditional processing method in land environment spatial-temporal data, to reflect the organic couping relationship among the multi-dimensional elements in land environment and provide the theory basis of data storage for implementing big data analysis application platform in land environment.

  3. Braking and cornering studies on an air cushion landing system

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.

    1983-01-01

    An experimental investigation was conducted to evaluate several concepts for braking and steering a vehicle equipped with an air cushion landing system (ACLS). The investigation made use of a modified airboat equipped with an ACLS. Braking concepts were characterized by the average deceleration of the vehicle. Reduced lobe flow and cavity venting braking concepts were evaluated in this program. The cavity venting braking concept demonstrated the best performance, producing decelerations on the test vehicle on the same order as moderate braking with conventional wheel brakes. Steering concepts were evaluated by recording the path taken while attempting to follow a prescribed maneuver. The steering concepts evaluated included using rudders only, using differential lobe flow, and using rudders combined with a lightly loaded, nonsteering center wheel. The latter concept proved to be the most accurate means of steering the vehicle on the ACLS, producing translational deviations two to three times higher than those from conventional nose-gear steering. However, this concept was still felt to provide reasonably precise steering control for the ACLS-equipped vehicle.

  4. Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.

    SciTech Connect

    Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  5. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  6. The application of seismic risk-benefit analysis to land use planning in Taipei City.

    PubMed

    Hung, Hung-Chih; Chen, Liang-Chun

    2007-09-01

    In the developing countries of Asia local authorities rarely use risk analysis instruments as a decision-making support mechanism during planning and development procedures. The main purpose of this paper is to provide a methodology to enable planners to undertake such analyses. We illustrate a case study of seismic risk-benefit analysis for the city of Taipei, Taiwan, using available land use maps and surveys as well as a new tool developed by the National Science Council in Taiwan--the HAZ-Taiwan earthquake loss estimation system. We use three hypothetical earthquakes to estimate casualties and total and annualised direct economic losses, and to show their spatial distribution. We also characterise the distribution of vulnerability over the study area using cluster analysis. A risk-benefit ratio is calculated to express the levels of seismic risk attached to alternative land use plans. This paper suggests ways to perform earthquake risk evaluations and the authors intend to assist city planners to evaluate the appropriateness of their planning decisions. PMID:17714167

  7. [GIS-based analysis of the land suitability for manure application in the northeastern provinces].

    PubMed

    Li, Yan-xia; Li, Wei; Han, Wei; Yang, Ming; Dong, Yun-she; Lin, Chun-ye; Zhang, Feng-song; Xiong, Xiong

    2010-04-01

    As an important industrial and grain production base of China, livestock and poultry industry have been rapidly developed in the northeastern provinces. With the rapid increasing amount of animal production, how to handle the huge amount of animal manure has become a critical issue for local government. A quantitative analysis based on geographic information system (GIS) combining the biophysical, environmental, social and economic factors was applied to determine the land suitability for manure application in the northeastern provinces. The results show that a farmland area of 211942.7 km2, accounting for 78.9% of the cultivated land in three northeastern provinces, is estimated to be suitable for manure application. The suitable farmlands are mostly distributed in Heilongjiang and Jilin provinces. Proximity to residential area, water body and roads are identified as the primary factors influencing the manure application, while rainfall is the main factor to generate discrepancies in different areas. Furthermore, the future potential capacity for animal production in three provinces was forecasted based on the areas of suitable land and the population of existing livestock production. Among 36 cities of three provinces, the big variation is observed, Siping City is overproducing 1.813 million heads of pig unit at present, but Qiqihaer City still has the potential to rear 11.203 million heads of pig unit. Overall, eastern region of the study area holds the high potential for animal production with a surplus capacity of 2.842 million heads of pig unit, the potential of the typical mountain and forest areas is only 10% of eastern region, however. In contrast, in half of western region (central Liaoning province and central Jilin Province), their animal populations have exceeded the land carrying capacity. Therefore, we strongly suggest a site-specific animal production and manure application guide to achieve a sustainable development of livestock production in the northeastern provinces. PMID:20527197

  8. An equilibrium analysis of the land use structure in the Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Luo, Jiao; Zhan, Jinyan; Lin, Yingzhi; Zhao, Chunhong

    2014-09-01

    Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.

  9. An equilibrium analysis of the land use structure in the Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    van Aken, H. M.; van Veldhoven, A. K.; Veth, C.; de Ruijter, W. P. M.; van Leeuwen, P. J.; Drijfhout, S. S.; Whittle, C. P.; Rouault, M.

    2014-06-01

    Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.

  10. Landing Characteristics of the Apollo Spacecraft with Deployed Heat Shield Impact Attenuation System

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Landing Characteristics of the Apollo Spacecraft with Deployed Heat Shield Impact Attenuation Systems. An experimental investigation was made to determine the landing characteristics of a 1/4-scale dynamic model of the Apollo spacecraft command module using two different active (heat shield deployed prior to landing) landing systems for impact attenuation. One landing system (configuration 1) consisted of six hydraulic struts and eight crushable honeycomb struts. The other landing system (configuration 2), consisted of four hydraulic struts and six strain straps. Tests made on water and the hard clay-gravel composite landing surfaces simulated parachute letdown (vertical) velocities of 23 ft/sec (7.0 m/s) (full scale). Landings made on the sand landing surface simulated vertical velocities of 30 ft/sec (9.1 m/s). Horizontal velocities of from 0 to 50 ft/sec (15 m/s) were simulated. Landing attitudes ranged from -30'degrees to 20 degrees, and the roll attitudes were O degrees, 90 degrees, and 180 degrees. For configuration 1, maximum normal accelerations at the vehicle center of gravity for landings on water, sand, and the hard clay-gravel composite surface were 9g, 20g, and 18g, respectively. The maximum normal center-of-gravity acceleration for configuration 2 which was landed only on the hard clay-gravel landing surface was approximately 19g. Accelerations for configuration 2 were generally equal to or lower than accelerations for configuration 1 and normal. [Entire movie available on DVD from CASI as Doc ID 20070030975. Contact help@sti.nasa.gov

  11. Flight test evaluation of the Stanford University/United Airlines differential GPS Category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Ncnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) 3 precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT 3 precision approach and landing applications. A United Airlines Boeing 737-300 (N304UA) was equipped with DGPS receiving equipment and additional computing capability provided by Stanford University. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and autolandings; 90 touch and go, and 10 terminating with a full stop. Two types of accuracy requirements were evaluated: 1) Total system error, based on the Required Navigation Performance (RNP), and 2) Navigation sensor error, based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and autolandings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and autolandings shows that the Stanford University/United Airlines system met the requirements for a successful approach and autolanding 98 out of 100 approaches and autolandings, based on the total system error requirements as specified in the FAA CAT 3 Level 2 Flight Test Plan.

  12. A Generic, Interoperable, Hydrologic Data Assimilation Framework using the Land Information System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land Information System (LIS; http://lis.gsfc.nasa.gov) is a hydrologic modeling system that integrates the use of various community land surface models, use of ground and satellite-based observations, and high performance computing and data management tools to enable hydrologic prediction at variou...

  13. IMPLEMENTATION AND APPLICATION OF THE KALMAN FILTER DATA ASSIMILATION APPROACHES IN NASA'S LAND INFORMATION SYSTEM INFRASTRUCTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building on the North-American and Global Land Data Assimilation Systems (LDAS), a Land Information System (LIS) infrastructure has been developed at NASA Goddard Space Flight Center jointly with NOAA-NCEP, NWS and university collaborators. In the context of numerical weather prediction applications...

  14. Using scatterometer-based surface soil moisture products to optimally calibrate land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems are designed to merge uncertain land surface model predictions with error-prone observations. Ingestion into a data assimilation systems represents a critical pathway towards key applications goals for remotely-sensed surface soil moisture products. However, the effe...

  15. 77 FR 50985 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...The National Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet in Washington, DC. The committee operates in compliance with the Federal Advisory Committee Act. The purpose of the committee is to provide advice and recommendations on the implementation of the National Forest System Land Management Rule. The meeting is open to the public.......

  16. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Forest Service Nationwide Aerial Application of Fire Retardant on National Forest System Lands AGENCY... aerial application of fire retardant on National Forest System lands. The responsible official for this.... Comments may also be sent via e- mail to FireRetardantEIS@fs.fed.us . FOR FURTHER INFORMATION CONTACT:...

  17. 78 FR 34034 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet... on formulating advice for the Secretary on the Proposed Land Management Planning Directives, (2... Forest Service National Advisory Committee for Implementation of the National Forest System...

  18. AGROFORESTRY SYSTEMS: INTEGRATED LAND USE TO STORE AND CONSERVE CARBON

    EPA Science Inventory

    Agroforestry is a promising land use practice to maintain or increase agricultural productivity while preserving or improving fertility. n extensive literature survey was conducted to evaluate the carbon dynamics of agroforestry practices and to assess their potential to store ca...

  19. System architecture and market aspects of an European Land Mobile Satellite System via EMS

    NASA Astrophysics Data System (ADS)

    Ananasso, F.; Mistretta, I.

    1992-03-01

    The paper describes an implementation scenario of a Land Mobile Satellite System via the EMS (European Mobile System) payload embarked on Italsat F-2. Some emphasis is given on market issues aiming at singling out business niches of Land Mobile Satellite Services (LMSS) in Europe. Other crucial issues exist such as: the alternate/competitive systems, the problems of interworking with other existing and/or planned systems, the definition of network architecture that better fits the user requirements, the marketing strategy and, last but not least, the financial evaluation of the project. The paper, on the basis of a study performed by Telespazio on behalf of ESA, discusses some of these issues with emphasis on competitive market aspects.

  20. BATSE spectroscopy analysis system

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Bansal, Sandhia; Basu, Anju; Brisco, Phil; Cline, Thomas L.; Friend, Elliott; Laubenthal, Nancy; Panduranga, E. S.; Parkar, Nuru; Rust, Brad

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) Spectroscopy Analysis System (BSAS) is the software system which is the primary tool for the analysis of spectral data from BATSE. As such, Guest Investigators and the community as a whole need to know its basic properties and characteristics. Described here are the characteristics of the BATSE spectroscopy detectors and the BSAS.

  1. Inertial navigation systems analysis.

    NASA Technical Reports Server (NTRS)

    Britting, K. R.

    1971-01-01

    This volume offers the avionic systems engineer a fundamental exposition of the mechanization and error analysis of inertial navigation systems. While the material is applicable to spacecraft and undersea navigation, emphasis is placed upon terrestrial applications on or slightly above the earth's surface. As a result, practical considerations are geared toward those aircraft navigation systems of particular current interest. Extensive use is made of perturbation techniques to develop linearized system equations, whose solutions closely approximate those obtained by nonlinear differential equations. A unified error analysis technique is developed that is applicable to virtually all system configurations. The technique provides a greatly simplified method for comparing the performance of competing system configurations.

  2. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya.

    PubMed

    Rather, Mohmmad Irshad; Rashid, Irfan; Shahi, Nuzhat; Murtaza, Khalid Omar; Hassan, Khalida; Yousuf, Abdul Rehman; Romshoo, Shakil Ahmad; Shah, Irfan Yousuf

    2016-03-01

    The pristine aquatic ecosystems in the Himalayas are facing an ever increasing threat from various anthropogenic pressures which necessitate better understanding of the spatial and temporal variability of pollutants, their sources, and possible remedies. This study demonstrates the multi-disciplinary approach utilizing the multivariate statistical techniques, data from remote sensing, lab, and field-based observations for assessing the impact of massive land system changes on water quality of the river Jhelum. Land system changes over a period of 38 years have been quantified using multi-spectral satellite data to delineate the extent of different anthropogenically driven land use types that are the main non-point sources of pollution. Fifteen water quality parameters, at 12 sampling sites distributed uniformly along the length of the Jhelum, have been assessed to identify the possible sources of pollution. Our analysis indicated that 18 % of the forested area has degraded into sparse forest or scrublands from 1972 to 2010, and the areas under croplands have decreased by 24 % as people shifted from irrigation-intensive agriculture to orchard farming while as settlements showed a 397 % increase during the observation period. One-way ANOVA revealed that all the water quality parameters had significant spatio-temporal differences (p < 0.01). Cluster analysis (CA) helped us to classify all the sampling sites into three groups. Factor analysis revealed that 91.84 % of the total variance was mainly explained by five factors. Drastic changes in water quality of the Jhelum since the past three decades are manifested by increases in nitrate-nitrogen, TDS, and electric conductivity. The especially high levels of nitrogen (858 ± 405 μgL(-1)) and phosphorus (273 ± 18 μgL(-1)) in the Jhelum could be attributed to the reckless application of fertilizers, pesticides, and unplanned urbanization in the area. PMID:26903209

  3. Bioenergy costs and potentials with special attention to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for bioenergy, taking into account the direct competition with other energy technology options for GHG mitigation, based on economic costs of bioenergy production. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium run, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by higher rates of technological change in agriculture; however, bioenergy crops will occupy large shares of available cropland in both scenarios. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity.

  4. Global Analysis of Multi-Mission Echoes Over the Earth's Land Surface from 15 Years of Altimeter Missions

    NASA Astrophysics Data System (ADS)

    Dowson, M.; Berry, P. A. M.

    2006-07-01

    A vast quantity of radar altimeter echoes has been collected over the earth's land surfaces by the series of missions flown over the past fifteen years. The totality of these missions has resulted in a unique global database of echoes, containing information not only on the elevation but also on the surface characteristics. This paper presents the results of a global analysis of echoes from all these missions, interpreted using a rule- based expert system, and discusses the information which can be extracted, both from the spatial distribution and from the temporal changes. The results demonstrate the unique contribution of this global dataset to measurement and monitoring of the earth's land surfaces.

  5. Management of land use land cover through the application of remote sensing, geographic information systems and simulation

    NASA Astrophysics Data System (ADS)

    Jha, Praveen

    Deforestation and degradation of forest areas, including those in the Protected Areas (PAs), are major concerns in India. There were 2 broad objectives of the study: the technological objective pertained to the development of state-of-art programs that could serve as Decision Support Systems while finalizing plans and policy interventions, while the other objective aimed at generating geo-spatial data in 2 PAs. A part of the Eastern Himalaya biodiversity hotspot, Manas Tiger Reserve (MTR), Assam, India having an area of 2837.12 sq km and an important part of Rajaji-Corbett Tiger Conservation Unit, Rajaji National Park (RNP), Uttarakhand, India, having an area of 820.42 sq km, were taken for the assessment of land use and land cover (LULC) change during 1990--2004. Simulation was undertaken in a smaller area of 1.2 km * 1.2 km right on the fringe of RNP. Three advanced geo-spatial programs---Multi-Algorithm Automation Program (MAAP), Data Automatic Modification Program (DAMP) and Multi-Stage Simulation Program (MUSSIP)---developed by the author were used extensively. Based on the satellite data, MAAP was used for the rapid assessments of LULC of 2004 and 1990; DAMP was used for the spectral modification of the satellite data of the adjacent scenes of 2004 and of 1990; and MUSSIP was used to simulate LULC maps for the future periods (till 2018). These programs produced very high accuracy levels: 91.12% in 2004 and 89.67% in 1990 were obtained for MTR; and 94.87% in 2004 and 94.10% in 1990 were obtained for RNP; 93.40% pixel-to-pixel accuracy and 0.7904 for kappa were achieved for simulation. The annual rate of loss of forests (0.41% in MTR and 1.20% in RNP) and loss of water (1.79% in MTR and 1.69% in RNP) during 1990-2004 is a matter of serious concern. The scenario analysis in the study area for simulation revealed that the deforestation rate of 1.27% per year during 2004--2018 would increase to 2.04% if the human population growth rate is enhanced by 10%. Hence these PAs need urgent restoration measures and effective conservation planning to address the problems of deforestation, severe degradation and immense loss of water.

  6. Exploitation of GeoEye-1 Data for Land Use/Land Cover Analysis Using Object-Based Image Analysis in the Eastern Nile Basin of Sudan

    NASA Astrophysics Data System (ADS)

    Guma Biro Turk, Khalid; Pradhan, Biswajeet

    Recently, object-oriented classification techniques based on image segmentation approaches are being studied using high-resolution satellite images to extract various thematic information. In this study different types of land use/land cover (LULC) types were analysed by employing object-based image analysis approach to GeoEye-1 data at the Eastern Nile Basin of Sudan. For that purpose, multi-resolution segmentation (MRS) of the Definiens software was used for creating the image objects. Using the feature space optimisation (FSO) tool the attributes of the GeoEye-1 image were optimised in order to obtain the best separability among classes for the LULC mapping. The best separation distance of the tested spectral, shape and textural features showed different variations among the discriminated LULC classes. An overall accuracy of 94 % with a kappa value 0.92 was resulted from the classification scheme, while accuracy differences among the classes were kept minimal. Finally, the results highlighted the importance of using very high-resolution satellite images for delineating the complex land use cover in the dry lands of the Eastern Nile Basin. Key Words: Multi-resolution segmentation; feature space optimisation; land use/land cover mapping; Eastern Nile Basin

  7. Cross-Site Comparison of Land-Use Decision-Making and Its Consequences across Land Systems with a Generalized Agent-Based Model

    PubMed Central

    Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.

    2014-01-01

    Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement. PMID:24489696

  8. Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model.

    PubMed

    Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C

    2014-01-01

    Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement. PMID:24489696

  9. Infrared Imaging System for Orbital Reconnaissance of Martian Landing Sites

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.; Mehall, G.; Silverman, S.; Blasius, K. R.

    2000-07-01

    One of the objectives of a landing site reconnaissance orbiter would be to determine and map the rock distribution and surface properties of extensive areas of the Martian surface for hazard characterization. We propose using an infrared imaging system to: (1) map the thermal inertia of the surface at high spatial resolution; and (2) determine surface rock abundance using multi-wavelength measurements. The rock abundance would be determined using a model of thermal emission from a surface composed of rocks and soil at different temperatures. These models use the predicted temperature difference between rocks and fines to model and match the observed non-blackbody spectral properties. Spectral data from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the 2001 Surveyor Orbiter Thermal Emission Imaging System (THEMIS) instruments will be used to determine the surface emissivity and refine the rock abundance modeling. The thermal inertia would be derived using pre-dawn measurements; these data would be used to characterize the average surface properties and map dust distribution, which can not be determined from visible images. The IR sensor concept, first presented in a White Paper, would provide rock and thermal inertia maps at significantly higher spatial resolution (10 m) than either TES (3 km) or THEMIS (100 m), with higher performance and complete equatorial coverage. This instrument would be complementary to the visible sensor on a Large Aperture Reconnaissance Orbiter. The primary contributions from the infrared sensor would be: (1) determination of rock abundance and soil grain size with significantly increased spatial coverage than obtained from the high-resolution visible imager; (2) validation of existing global rock abundance maps derived from thermal IR remote sensing data by direct comparison with simultaneous observation of rocks using the visible system; and (3) determination of the soil grain size. The performance estimates made below are based on our experience with previous instruments, including the Mars Observer TES, the Mars Global Surveyor TES, the '01 Orbiter THEMIS, and the Lander Mini-TES which may be launched in '03 or '05. Data and performance models from the SBRS Landsat Thematic Mapper, TRMM/VIRS, and MODIS visible and infrared imaging systems have also been incorporated.q

  10. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  11. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  12. Recent data and information system initiatives for remotely sensed measurements of the land surface

    SciTech Connect

    Justice, C.O.; Maiden, M.E.; Rasool, S.I.; Bailey, G.B.; Strebel, D.E.; Tarpley, J.D.

    1995-01-01

    As part of the International Satellite Land Satellite Climatology Program (ISLSCP) Workshop on Remote Sensing of the Land Surface for Studies of Global Change, five invited presentations were given on recent data initiatives relevant to the ISLSCP community. The presentations are summarized in this paper along with some observations by the authors on data systems for the land sciences community. The invited presentations are by no means all inclusive but were selected as examples of current data activities, representing a range of topics associated with data for land sciences including: the generation of global and local scale data sets, the reworking of historical data sets, new data initiatives and some programmatic aspects of land data base development. This paper serves to provide information on these data initiatives and to air some of the issues concerning land science data systems that were raised at the meeting.

  13. Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2003-01-01

    Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.

  14. A land use and environmental impact analysis of the Norfolk-Portsmouth SMSA

    NASA Technical Reports Server (NTRS)

    Mitchel, W. B.; Berlin, G. L.

    1973-01-01

    The feasibility of using remote sensing techniques for land use and environmental assessment in the Norfolk-Portsmouth area is discussed. Data cover the use of high altitude aircraft and satellite remote sensing data for: (1) identifying various heirarchial levels of land use, (2) monitoring land use changes for repetitive basis, (3) assessing the impact of competing land uses, and (4) identifying areas of potential environmental deterioration. High altitude aircraft photographs (scale 1:120,000) acquired in 1959, 1970, and 1972, plus Earth Resources Technology Satellite (ERTS-1) color composite images acquired in 1972 were used for the land use and environmental assessments. The high altitude aircraft photography, as expected, was successfully used to map Level 1, Level 2, as well as some urban Level 3 land use categories. However, the detail of land use analysis obtainable from the ERTS imagery exceeded the expectations for the U.S. Geological Survey's land use classification scheme. Study results are consistent with the initial investigation which determined Level 1 land use change to be 16.7 square km per year.

  15. Development of automatic and manual flight director landing systems for the XV-15 tilt rotor aircraft in helicopter mode

    NASA Technical Reports Server (NTRS)

    Hofmann, L. G.; Hoh, R. H.; Jewell, W. F.; Teper, G. L.; Patel, P. D.

    1978-01-01

    The objective of this effort is to determine IFR approach path and touchdown dispersions for manual and automatic XV-15 tilt rotor landings, and to develop missed approach criteria. Only helicopter mode XV-15 operation is considered. The analysis and design sections develop the automatic and flight director guidance equations for decelerating curved and straight-in approaches into a typical VTOL landing site equipped with an MLS navigation aid. These system designs satisfy all known pilot-centered, guidance and control requirements for this flying task. Performance data, obtained from nonstationary covariance propagation dispersion analysis for the system, are used to develop the approach monitoring criteria. The autoland and flight director guidance equations are programmed for the VSTOLAND 1819B digital computer. The system design dispersion data developed through analysis and the 1819B digital computer program are verified and refined using the fixed-base, man-in-the-loop XV-15 VSTOLAND simulation.

  16. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  17. The Use of Urban Land

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Techniques for analyzing scientific information from the lunar and planetary missions now are being applied to land-resource management in and around cities. Two systems have been formalized by Jet Propulsion Laboratory and are being applied in the Los Angeles area. The first, called the 'Land Use Management Information System' incorporates maps, aerial photos, and other land data into routine city and county census records. The second system, 'multiple-input land use' combines satellite imagery with other data sources. Essentially a city street map in computer readable form, the system will help planners in traffic accident analysis, mapping, and land-record.

  18. Lander Vision System for Safe and Precise Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Johnson, A. E.; Golombek, M. P.

    2012-06-01

    The Lander Vision System is a tightly integrated bolt-on smart sensor system that provides real-time terrain relative position, velocity, attitude and altitude while also detecting landing hazards. A prototype is in development.

  19. Towards decision-based global land use models for improved understanding of the Earth system

    NASA Astrophysics Data System (ADS)

    Rounsevell, M. D. A.; Arneth, A.; Alexander, P.; Brown, D. G.; de Noblet-Ducoudré, N.; Ellis, E.; Finnigan, J.; Galvin, K.; Grigg, N.; Harman, I.; Lennox, J.; Magliocca, N.; Parker, D.; O'Neill, B. C.; Verburg, P. H.; Young, O.

    2014-02-01

    A primary goal of Earth system modelling is to improve understanding of the interactions and feedbacks between human decision making and biophysical processes. The nexus of land use and land cover change (LULCC) and the climate system is an important example. LULCC contributes to global and regional climate change, while climate affects the functioning of terrestrial ecosystems and LULCC. However, at present, LULCC is poorly represented in global circulation models (GCMs). LULCC models that are explicit about human behaviour and decision-making processes have been developed at local to regional scales, but the principles of these approaches have not yet been applied to the global scale level in ways that deal adequately with both direct and indirect feedbacks from the climate system. In this article, we explore current knowledge about LULCC modelling and the interactions between LULCC, GCMs and dynamic global vegetation models (DGVMs). In doing so, we propose new ways forward for improving LULCC representations in Earth system models. We conclude that LULCC models need to better conceptualise the alternatives for upscaling from the local to global scale. This involves better representation of human agency, including processes such as learning, adaptation and agent evolution, formalising the role and emergence of governance structures, institutional arrangements and policy as endogenous processes and better theorising about the role of teleconnections and connectivity across global networks. Our analysis underlines the importance of observational data in global-scale assessments and the need for coordination in synthesising and assimilating available data.

  20. Analysis of the geomorphology surrounding the Chang'e-3 landing site

    NASA Astrophysics Data System (ADS)

    Li, Chun-Lai; Mu, Ling-Li; Zou, Xiao-Duan; Liu, Jian-Jun; Ren, Xin; Zeng, Xing-Guo; Yang, Yi-Man; Zhang, Zhou-Bin; Liu, Yu-Xuan; Zuo, Wei; Li, Han

    2014-12-01

    Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.

  1. Change Detection and Land Use / Land Cover Database Updating Using Image Segmentation, GIS Analysis and Visual Interpretation

    NASA Astrophysics Data System (ADS)

    Mas, J.-F.; González, R.

    2015-08-01

    This article presents a hybrid method that combines image segmentation, GIS analysis, and visual interpretation in order to detect discrepancies between an existing land use/cover map and satellite images, and assess land use/cover changes. It was applied to the elaboration of a multidate land use/cover database of the State of Michoacán, Mexico using SPOT and Landsat imagery. The method was first applied to improve the resolution of an existing 1:250,000 land use/cover map produced through the visual interpretation of 2007 SPOT images. A segmentation of the 2007 SPOT images was carried out to create spectrally homogeneous objects with a minimum area of two hectares. Through an overlay operation with the outdated map, each segment receives the "majority" category from the map. Furthermore, spectral indices of the SPOT image were calculated for each band and each segment; therefore, each segment was characterized from the images (spectral indices) and the map (class label). In order to detect uncertain areas which present discrepancy between spectral response and class label, a multivariate trimming, which consists in truncating a distribution from its least likely values, was applied. The segments that behave like outliers were detected and labeled as "uncertain" and a probable alternative category was determined by means of a digital classification using a decision tree classification algorithm. Then, the segments were visually inspected in the SPOT image and high resolution imagery to assign a final category. The same procedure was applied to update the map to 2014 using Landsat imagery. As a final step, an accuracy assessment was carried out using verification sites selected from a stratified random sampling and visually interpreted using high resolution imagery and ground truth.

  2. Anticipating Forest and Range Land Development in Central Oregon (USA) for Landscape Analysis, with an Example Application Involving Mule Deer

    NASA Astrophysics Data System (ADS)

    Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa

    2010-05-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.

  3. Anticipating forest and range land development in central Oregon (USA) for landscape analysis, with an example application involving mule deer.

    PubMed

    Kline, Jeffrey D; Moses, Alissa; Burcsu, Theresa

    2010-05-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer (Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions. PMID:20300934

  4. Message handling system concepts and services in a land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Barberis, S.; Settimo, F.; Giralda, A.; Mistretta, I.; Loisy, C.; Parmentier, J. L.

    1990-01-01

    A network architecture containing the capabilities offered by the Message Handling System (MHS) to the PRODAT Land Mobile Satellite System (LMSS) is described taking into account the constraints of a preexisting satellite system which is going to become operational. The mapping between MHS services and PRODAT requirements is also reported and shows that the supplied performance can be significantly enhanced to both fixed and mobile users. The impact of the insertion of additional features on the system structure, especially on the centralized control unit, are also addressed.

  5. A digital head-up display system as part of an integrated autonomous landing system concept

    NASA Astrophysics Data System (ADS)

    Wisely, Paul L.

    2008-04-01

    Considerable interest continues both in the aerospace industry and the military in the concept of autonomous landing guidance, and as previously reported, BAE Systems has been engaged for some time on an internally funded program to replace the high voltage power supply, tube and deflection amplifiers of its head up displays with an all digital solid state illuminated image system, based on research into the requirements for such a display as part of an integrated Enhanced Vision System. This paper describes the progress made to date in realising and testing a weather penetrating system incorporating an all digital head up display as its pilot-machine interface.

  6. [Regional ecosecurity pattern in urban area based on land use analysis: a case study in Lanzhou].

    PubMed

    Fang, Shubo; Xiao, Dunin; An, Shuqing

    2005-12-01

    Mid-scale regional ecosecurity, which takes practical ecosecurity issues as its priority, should be viewed as the core of the multi-scale concept of ecosecurity. For urban area, a special region taking ecological infrastructure as its core mission, the construction of regional ecosecurity pattern may provide a good chance to realize its sustainable development. Based on land use analysis, a qualitative and quantitative research on the landscape pattern, ecovalue evaluation, and driving force analysis of social economy could provide an effective approach to construct the ecosecurity pattern in urban area. This study showed that in Lanzhou, the ecosecurity pattern consisted of three parts, i.e., eco-safeguarding system, eco-buffering system and eco-percolating system, among which, eco-buffering system was the decisive part determining ecosecurity pattern construction. The quantitative analysis of urban spatial expansion pattern was taken as the decisive function to determine the security level of the ecosecurity pattern, which was divided into low, middle and high levels. PMID:16515173

  7. A regional analysis of drivers and impacts of land cover change and long-term land cover trends in the Great Basin, United States

    NASA Astrophysics Data System (ADS)

    Bradley, Bethany Adella

    An improved understanding of land use/land cover change at local and regional scales is important in an increasingly human-dominated biosphere. The land surface provides resources necessary for human survival (e.g., cropland, water, raw materials) as well as providing other services such as habitat for native species, carbon storage, and nutrient cycling. A goal of land change science is to identify where land cover change is taking place, understand how land use may affect that change, and determine what the consequences of change may be. In the Great Basin Desert of the Western U.S., an important form of land cover change is invasion by non-native cheatgrass (Bromus tectorum). Cheatgrass invasion destroys native shrub ecosystems, leading to a loss of biodiversity, loss of viable rangeland and increased fire frequency. In this work, I show how remote sensing can be used to detect the regional and local extents of cheatgrass invasion. Remote sensing results are then used to assess the spatial patterns of cheatgrass invasion over time to determine how land use might have affected invasion. Further, I consider the long-term impacts of cheatgrass invasion on biodiversity and carbon storage in the Great Basin. In addition to an analysis of cheatgrass, this thesis presents a new methodology for time series modeling, which can be used to better interpret annual and inter-annual vegetation community phenology. I apply this modeling methodology to all land cover in the Great Basin to assess long-term land cover trends and localized anomalous response within the range of land cover classes present. By investigating regional land cover change I am able to provide more detailed analysis of the drivers of change for land managers while working at a scale relevant to studies of global environmental change.

  8. Analysis of land use changes near large water bodies in Ukraine using GIS.

    PubMed

    Bogdanets, Vyacheslav; Vlaev, Anatoliy

    2015-01-01

    Analysis of land use and land cover changes in Ukraine were evaluated with special attention given to the interaction of land and water resources. The rational fresh water management in agriculture under future climate change conditions is of great importance. The hydrological regime of a river has huge impact on the environment of the surrounding area. Creating reservoirs, changes the landscape of river valleys and lake basins. Changes in the hydrological regime of the river and the process taking place in the coastal zone are reflected in land cover, wildlife and micro-climatic conditions. In the area closer to the shore line of the reservoir, there is greater amplitude of fluctuations in the level of ground water due to low rate of filtration behind fluctuations in the level of the reservoir. The interaction of water reservoirs with the environment, especially with the nature of the catchment area is substantially different from the natural water bodies. Analysis was done using GIS and remotely sensed data of land use near large water reservoirs and processed statistically. The ratio of arable lands and forested territories and future analysis of land use has been discussed. PMID:26591880

  9. Preliminary Analysis of the efficacy of Artificial neural Network (ANN) and Cellular Automaton (CA) based Land Use Models in Urban Land-Use Planning

    NASA Astrophysics Data System (ADS)

    Harun, R.

    2013-05-01

    This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the relative effectiveness of the two models, ANN and CA, in urban planning. The questions that are addressed in this research are: a) What makes ANN models different from CA models?; b) Which model has higher accuracy in predicting future urban land use change?; and c) Are the models effective enough in guiding urban land use policies and strategies? The models that are used for this research are Multilayer Perceptron (MLP) and CA model, available in IDRISI Taiga. Since, the objective is to perform a comparative analysis and draw general inferences irrespective of specific urban policies, the availability of data was given more emphasis over the selection of particular location. Urban area in Massachusetts was chosen to conduct the study due to data availability. Extensive literature review was performed to understand the functionality of the two models. The models were applied to predict future changes and the accuracy assessment was performed using standard matrix. Inferences were drawn about the applicability of the models in urban planning context along with recommendations. This research will not only develop understanding of land use models among urban planners, but also will create an environment of coupled research between planners and modellers.

  10. Synergistic Analysis of Coarse Resolution Vegetation and Land Cover Data for Permafrost Monitoring

    NASA Astrophysics Data System (ADS)

    Urban, M.; Herold, M.; Hese, S.; Pocking, S.; Schmullius, C.

    2010-12-01

    The boreal-tundra ecosystems in the northern hemisphere are highly affected by global climate change including a measureable impact on the permafrost dynamics. Coarse-scale vegetation data sets from Earth observations are suitable for the analysis of land cover and vegetation dynamics with respect to changing climatic pattern affecting the land surface and permafrost. This study represents preliminary results on the parameter land cover and disturbances for the contribution to the ESA Data User Element Permafrost. Based on requirements defined by the user community (1) global land cover products are synergetic combined to extract cover percentage information for vegetation physiognomy and barren areas and (2) burned area products are analyzed according similarities and inconsistencies. Future work will concentrate on the expansion of the synergy land cover product and the fire affected area database to the pan-arctic region as it is only available for Russia.

  11. Entry, Descent, and Landing Operations Analysis for the Genesis Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Lyons, Dan T.

    2005-01-01

    On September 8, 2004, the Genesis spacecraft returned to Earth after spending 29 months about the sun-Earth libration point collecting solar wind particles. Four hours prior to Earth arrival, the entry capsule containing the samples was released for entry and subsequent landing at the Utah Test and Training Range. This paper provides an overview of the entry, descent, and landing trajectory analysis that was performed during the Mission Operations Phase leading up to final approach to Earth. The operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.3 km from the target, and was well within the allowable landing area. Preliminary reconstruction analyses indicate that the actual entry trajectory was very close to the pre-entry prediction.

  12. Systems Analysis Sub site

    SciTech Connect

    EERE

    2012-03-16

    Systems analysis provides direction, focus, and support for the development and introduction of hydrogen production, storage, and end-use technologies, and provides a basis for recommendations on a balanced portfolio of activities.

  13. Re-engineering land administration systems for sustainable development — from rhetoric to reality

    NASA Astrophysics Data System (ADS)

    Williamson, Ian P.

    Current land administration systems are the product of 19th century economic and land market paradigms and have failed to properly support sustainable development. The need for urgent reform is accepted, but the way forward unclear in many jurisdictions. This paper will discuss current international initiatives and research to develop a new land administration vision to promote sustainable development. Within this context, this paper describes the changing humankind to land relationship, identifies some of the growing environmental pressures facing modern society and the need for sustainable development, explores the evolving role of land administration in society and highlights the need for land administration systems to play a more proactive role in supporting sustainable development objectives. The process to re-engineer land administrations is briefly reviewed. The paper then highlights the development of a national land administration vision and strategy. In proposing strategies the paper draws on international trends and experiences such as highlighted in the recent United Nations — International Federation of Surveyors Declaration on Land Administration for Sustainable Development.

  14. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Landing gear extension and retraction system. 23.729 Section 23.729 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Landing Gear §...

  15. Land use planning and early warning systems for limiting drought impacts and promoting recovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use planning and drought early warning systems both require an understanding of ecological potential and resilience, and how they vary across space and through time. A large body of literature and local knowledge has documented the importance of considering soil variability for land use plannin...

  16. Impact of agricultural land management systems on soil microbial diversity and plant disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased diversity of fungal rDNA ITS-1 amplicons, as measured by the Shannon-Weiner index, was associated with land management practices that minimise soil disturbance (bahiagrass pasture and undisturbed weed fallow) when compared with organic or conventional land management systems. Diversity de...

  17. Cartography and Information Systems for the Luna-Glob Landing Sites

    NASA Astrophysics Data System (ADS)

    Kokhanov, A.; Karachevtseva, I.; Oberst, J.; Zubarev, A.; Robinson, M. S.

    2012-09-01

    We provide cartography and information system support to the LUNA-GLOB mission and assess candidate landing sites [1] on the basis of different available remote sensing data sets. The main goal of our work is to identify science opportunities in the sub-polar areas and to detect possible hazards for any landing spacecraft.

  18. Decision Support Systems (DSSs) For Contaminated Land Management - Gaps And Challenges

    EPA Science Inventory

    A plethora of information is available when considering decision support systems for risk-based management of contaminated land. Broad issues of what is contaminated land, what is a brownfield, and what is remediation are discussed in EU countries and the U.S. Making decisions ...

  19. Towards the development of an on-line model error identification system for land surface models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the complexity of potential error sources in land surface models, the accurate specification of model error parameters has emerged as a major challenge in the development of effective land data assimilation systems for hydrologic and hydro-climatic applications. While several on-line procedur...

  20. Energy and resource consumption of land-based hatchery systems for finfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early rearing of most marine species will be land-based because of the need for precise control of the rearing environment. This chapter evaluates the resource and energy requirements of six different types of land-based, hatchery production systems: flow-through with a gravity water supply, flo...

  1. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  2. A Virtual Sensor Web Study Based on the Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2008-05-01

    Land Surface Models (LSMs) are being developed within frameworks such as the Land Information System (LIS) to enable them to assimilate currently-available observations. With the development of intelligent sensors and communication in the next generation satellite constellations that provides an opportunity to enhance information retrieval via 2-way information flow between the LSMs and the sensors. In this presentation, recent progress on developing a prototype Land Information Sensor Web (LISW), which integrates the Land Information System (LIS) and a sensor web framework, will be presented. The overall goal is to minimize the system uncertainty through sensor web reconfiguration. All the experiments were done synthetically. These synthetic experiments provide a controlled environment in which to examine the end-to-end system performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support objective. The Common Land Model (CLM2.0) was used to produce a "virtual land truth". The Noah land model was employed to simulate the "virtual land truth" by assimilating observations from the reconfigurable sensor web which observes the "virtual land truth". The LISW is composed of three central components: the Sensor Web Framework, the Sensor Web Simulator and the Land Information System. The first layer soil moisture is studied in our experiment. Seasonal variation of the data assimilation performance is found, which may be caused by the different physics of the CLM and Noah in a particular season. That suggests a constant frequency or accuracy of observations is not optimal to minimize the overall system uncertainty. A dynamical adjustment of the observing frequency or accuracy is necessary. The study area is the conterminous US and the period is from 2003 through 2005. Because of the intensive computation required by different configurations of the data assimilation, the experiment was done on the Columbia NASA supercomputer.

  3. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  4. Real options analysis for land use management: Methods, application, and implications for policy.

    PubMed

    Regan, Courtney M; Bryan, Brett A; Connor, Jeffery D; Meyer, Wayne S; Ostendorf, Bertram; Zhu, Zili; Bao, Chenming

    2015-09-15

    Discounted cash flow analysis, including net present value is an established way to value land use and management investments which accounts for the time-value of money. However, it provides a static view and assumes passive commitment to an investment strategy when real world land use and management investment decisions are characterised by uncertainty, irreversibility, change, and adaptation. Real options analysis has been proposed as a better valuation method under uncertainty and where the opportunity exists to delay investment decisions, pending more information. We briefly review the use of discounted cash flow methods in land use and management and discuss their benefits and limitations. We then provide an overview of real options analysis, describe the main analytical methods, and summarize its application to land use investment decisions. Real options analysis is largely underutilized in evaluating land use decisions, despite uncertainty in policy and economic drivers, the irreversibility and sunk costs involved. New simulation methods offer the potential for overcoming current technical challenges to implementation as demonstrated with a real options simulation model used to evaluate an agricultural land use decision in South Australia. We conclude that considering option values in future policy design will provide a more realistic assessment of landholder investment decision making and provide insights for improved policy performance. PMID:26164637

  5. Next-Generation Entry/Descent/Landing System for Mars Landers

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.

    2000-01-01

    Many important scientific objectives for Mars exploration require the ability to land safely at select sites. The 'first-generation' entry, descent, and landing (EDL) systems used in previous missions imposed limitations on target site selection due to the delivery accuracy achievable and those systems' inability to recognize and avoid hazardous terrain. This abstract outlines key capabilities of a proposed second-generation EDL system, currently under development by a consortium of NASA centers, Industry, and academic institutions.

  6. MOUSE UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cost or risk analysis equations. t was especially intended for use by individuals with li...

  7. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Rives, T. B.; Ingels, F. M.

    1988-01-01

    An analysis of the Automated Booster Assembly Checkout System (ABACS) has been conducted. A computer simulation of the ETHERNET LAN has been written. The simulation allows one to investigate different structures of the ABACS system. The simulation code is in PASCAL and is VAX compatible.

  8. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  9. A Monte Carlo analysis of the Viking lander dynamics at touchdown. [soft landing simulation

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Campbell, J. W.; King, C. A.

    1975-01-01

    The performance of the Viking lander has been evaluated by using a Monte Carlo simulation, and all results are presented in statistical form. The primary objectives of this analysis were as follows: (1) to determine the three sigma design values of maximum rigid body accelerations and the minimum clearance of the lander body during landing; (2) to determine the probability of an unstable landing; and (3) to determine the probability of the lander body striking a rock. Two configurations were analyzed with the only difference being in the ability of the primary landing gear struts to carry tension loads.

  10. CONVEYOR SYSTEM SAFETY ANALYSIS

    SciTech Connect

    M. Salem

    1995-06-23

    The purpose and objective of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) surface and subsurface conveyor system (for a list of conveyor subsystems see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the conveyor structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the hazards related to the design of conveyor structures/systems/components (S/S/Cs) that occur during normal operation. Hazards occurring during assembly, test and maintenance or ''off normal'' operations have not been included in this analysis. Construction related work activities are specifically excluded per DOE Order 5481.1B section 4. c.

  11. Editing ERTS-1 data to exclude land aids cluster analysis of water targets

    NASA Technical Reports Server (NTRS)

    Erb, R. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. It has been determined that an increase in the number of spectrally distinct coastal water types is achieved when data values over the adjacent land areas are excluded from the processing routine. This finding resulted from an automatic clustering analysis of ERTS-1 system corrected MSS scene 1002-18134 of 25 July 1972 over Monterey Bay, California. When the entire study area data set was submitted to the clustering only two distinct water classes were extracted. However, when the land area data points were removed from the data set and resubmitted to the clustering routine, four distinct groupings of water features were identified. Additionally, unlike the previous separation, the four types could be correlated to features observable in the associated ERTS-1 imagery. This exercise demonstrates that by proper selection of data submitted to the processing routine, based upon the specific application of study, additional information may be extracted from the ERTS-1 MSS data.

  12. Rock size-frequency distribution analysis at the Chang'E-3 landing site

    NASA Astrophysics Data System (ADS)

    Di, Kaichang; Xu, Bin; Peng, Man; Yue, Zongyu; Liu, Zhaoqin; Wan, Wenhui; Li, Lichun; Zhou, Jianliang

    2016-01-01

    This paper presents a comprehensive analysis of the rock size-frequency distribution at the Chang'E-3 landing site. Using 84 Navcam stereo images acquired at 7 waypoints by the Yutu rover and an interactive stereo image processing system, a total of 582 rocks larger than 0.05 m in diameter were identified and measured. The statistical results of the size-frequency distribution show that the cumulative fractional area covered by rocks versus their diameter follows a simple exponential function and has a convex-up shape on log-log graphs with the slope increasing with diameter. The cumulative number of rocks versus diameter derived by numerically integrating the cumulative fractional area also shows a good fit with the data. A diameter-height relationship was also determined from height and diameter ratios. The observed rock statistics were also compared with those from other lunar missions, including the Surveyor, Apollo, and Lunokhod missions; results suggest that the rock distribution at the Chang'E-3 landing site is similar to that found by Surveyor III.

  13. Coal systems analysis

    SciTech Connect

    Warwick, P.D.

    2005-07-01

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

  14. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2007-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  15. Marine algae and land plants share conserved phytochrome signaling systems

    PubMed Central

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-01-01

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae. PMID:25267653

  16. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGESBeta

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  17. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  18. Marine algae and land plants share conserved phytochrome signaling systems.

    PubMed

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C; Martin, Shelley S; Ngan, Chew Yee; Reistetter, Emily N; van Baren, Marijke J; Price, Dana C; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J Clark; Worden, Alexandra Z

    2014-11-01

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae. PMID:25267653

  19. Spatio-temporal analysis on land transformation in a forested tropical landscape in Jambi Province, Sumatra

    NASA Astrophysics Data System (ADS)

    Melati, Dian N.; Nengah Surati Jaya, I.; Pérez-Cruzado, César; Zuhdi, Muhammad; Fehrmann, Lutz; Magdon, Paul; Kleinn, Christoph

    2015-04-01

    Land use/land cover (LULC) in forested tropical landscapes is very dynamically developing. In particular, the pace of forest conversion in the tropics is a global concern as it directly impacts the global carbon cycle and biodiversity conservation. Expansion of agriculture is known to be among the major drivers of forest loss especially in the tropics. This is also the case in Jambi Province, Sumatra, Indonesia where it is the mainly expansion of tree crops that triggers deforestation: oil palm and rubber trees. Another transformation system in Jambi is the one from natural forest into jungle rubber, which is an agroforestry system where a certain density of forest trees accompanies the rubber tree crop, also for production of wood and non-wood forest products. The spatial distribution and the dynamics of these transformation systems and of the remaining forests are essential information for example for further research on ecosystem services and on the drivers of land transformation. In order to study land transformation, maps from the years 1990, 2000, 2011, and 2013 were utilized, derived from visual interpretation of Landsat images. From these maps, we analyze the land use/land cover change (LULCC) in the study region. It is found that secondary dryland forest (on mineral soils) and secondary swamp forest have been transformed largely into (temporary) shrub land, plantation forests, mixed dryland agriculture, bare lands and estate crops where the latter include the oil palm and rubber plantations. In addition, we present some analyses of the spatial pattern of land transformation to better understand the process of LULC fragmentation within the studied periods. Furthermore, the driving forces are analyzed.

  20. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan.

    PubMed

    Chiang, Kai-Wei; Lin, Cheng-An; Kuo, Chung-Yen

    2015-01-01

    The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources. PMID:26426019

  1. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan

    PubMed Central

    Chiang, Kai-Wei; Lin, Cheng-An; Kuo, Chung-Yen

    2015-01-01

    The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources. PMID:26426019

  2. A low-cost inertial smoothing system for landing approach guidance

    NASA Technical Reports Server (NTRS)

    Niessen, F. R.

    1973-01-01

    Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.

  3. Estimating model and observation error covariance information for land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to operate efficiently, data assimilation systems require accurate assumptions concerning the statistical magnitude and cross-correlation structure of error in model forecasts and assimilated observations. Such information is seldom available for the operational implementation of land data ...

  4. Requirements for ongoing development of the Pilot Land Data System (PLDS)

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Newcomer, J. A.

    1988-01-01

    The Pilot Land Data System being developed to address the information processing needs of the NASA land sciences research community is presented. The objective of the pilot program is to establish a limited-scale, distributed information system for the archival, location, transfer, integration, and manipulation of data across multiple sites connected by a high-speed communications network. Functional capabilities required for users to create, access, and maintain local and distributed data bases containing various types of data in support of land sciences research are summarized.

  5. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  6. Biomedical systems analysis program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Biomedical monitoring programs which were developed to provide a system analysis context for a unified hypothesis for adaptation to space flight are presented and discussed. A real-time system of data analysis and decision making to assure the greatest possible crew safety and mission success is described. Information about man's abilities, limitations, and characteristic reactions to weightless space flight was analyzed and simulation models were developed. The predictive capabilities of simulation models for fluid-electrolyte regulation, erythropoiesis regulation, and calcium regulation are discussed.

  7. Landing performance of an air cushion landing system installed on a 1/10-scale dynamic model on the C-8 Buffalo airplane

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.

    1973-01-01

    An experimental study was conducted to evaluate the landing behavior of a 1/10-scale dynamic model of the C-8 Buffalo airplane equipped with an air-cushion landing system (ACLS) on a variety of surfaces including both calm and rough water and a smooth hard surface. Taxi runs were made on the hard surface over several obstacles. Landings were made with the model at various pitch and roll attitudes and vertical velocities and at one nominal horizontal velocity. Data from the landings include time histories of the trunk and air-cushion pressures and accelerations at selected locations on the model.

  8. 23 CFR 971.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for... 23 Highways 1 2012-04-01 2012-04-01 false Federal lands safety management system (SMS). 971.212... HIGHWAYS FOREST SERVICE MANAGEMENT SYSTEMS Forest Highway Program Management Systems § 971.212...

  9. 23 CFR 971.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands safety management system (SMS). 971.212... HIGHWAYS FOREST SERVICE MANAGEMENT SYSTEMS Forest Highway Program Management Systems § 971.212...

  10. 23 CFR 971.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands safety management system (SMS). 971.212... HIGHWAYS FOREST SERVICE MANAGEMENT SYSTEMS Forest Highway Program Management Systems § 971.212...

  11. Miltipath measurements for land mobile satellite service using global positioning system signals

    NASA Technical Reports Server (NTRS)

    Lemmon, John J.

    1988-01-01

    A proposed multipath system for the land mobile satellite radio channel using the Global Positioning System (GPS) is presented. The measurement technique and equipment used to make multipath measurements on communications links are briefly described. The system configuration and performance specifications of the proposed measurement system are discussed.

  12. Relations Among Geology, Physiography, Land Use, and Stream Habitat Conditions in the Buffalo and Current River Systems, Missouri and Arkansas

    USGS Publications Warehouse

    Panfil, Maria S.; Jacobson, Robert B.

    2001-01-01

    This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more streamside bluffs than the Current River tributaries. Land use patterns in both river systems correlate with physiography - cleared land area is negatively associated with drainage-basin average slope. Both river systems are dominantly forested (0-35 per-cent cleared land), however, the potential for landscape disturbance may be greater in the Buffalo River system where a larger proportion of cleared land occurs on steep slopes (>15 degrees). When all drainage basins are grouped together, reach-scale channel characteristics show the strongest relations with drainage-basin physiography. Bankfull channel geometry and residual pool dimensions are positively correlated with drainage area and topographic relief variables. After accounting for differences in drainage area, channel dimensions in Buffalo River tributaries tend to be larger than in Current River tributaries. This trend is consistent with the flashy runoff and large storm flows that can be generated in rugged, sandstone-dominate terrain. Substrate particle size is also most strongly associated with physiography; particle size is positively correlated with topographic relief variables. When tributaries are subset by river system, relations with geology and land use variables become apparent. Buffalo River tributaries with larger proportions of carbonate bedrock and cleared land area have shallower channels, better-sorted, gravel-rich substrate, and more eroding banks than those with little cleared land and abundant sandstone bedrock. Gravel-bar area on the Buffalo River main stem was also larger within 1-km of carbonate-rich tributary junctions. Because geology and cleared land are themselves correlated, relations with anthropogenic and natural factors could often not be separated. Channel characteristics in the Current River system show stronger associations with physiography than with land use. Channels are shallower and have finer substrates in the less rugged, karst-rich, western basins than in the

  13. A fuzzy intelligent system for land consolidation - a case study in Shunde, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, A.; Hu, Y.; Li, C.; Wang, L.

    2015-08-01

    Traditionally, potential evaluation methods for farmland consolidation have depended mainly on the experts' experiences, statistical computations or subjective adjustments. Some biases usually exist in the results. Thus, computer-aided technology has become essential. In this study, an intelligent evaluation system based on a fuzzy decision tree was established, and this system can deal with numerical data, discrete data and symbolic data. When the original land data are input, the level of potential of the agricultural land for development will be output by this new model. The provision of objective proof for decision-making by authorities in rural management is helpful. Agricultural land data characteristically comprise large volumes, complex varieties and more indexes. In land consolidation, it is very important to construct an effective index system. A group of indexes need to be selected for land consolidation. In this article, a fuzzy measure was adopted to accomplish the selection of specific features. A fuzzy integral based on a fuzzy measure is a type of fusion tool. The optimal solution with the fewest non-zero elements was obtained for the fuzzy measure by solving a fuzzy integral. This algorithm provides a quick and optimal way to identify the land-index system when preparing to conduct land consolidation. This new research was applied to Shunde's "Three Old" consolidation project which provides the data. Our estimation system was compared with a conventional evaluation system that is still accepted by the public. Our results prove to be consistent, and the new model is more automatic and intelligent. The results of this estimation system are significant for informing decision-making in land consolidation.

  14. Land degradation and Poverty in maize producing areas of Kenya - Development of an interdisciplinary analysis framework using GIS and remote sensing

    NASA Astrophysics Data System (ADS)

    Graw, Valerie; Nkonya, Ephraim; Menz, Gunter

    2014-05-01

    Land degradation causes poverty and vice versa. But both processes are highly complex, hard to predict and to mitigate, and need insights from different perspectives. Therefore an interdisciplinary framework for the understanding of land degradation processes by linking biophysical data with socio-economic trends is necessary. Agricultural systems in Kenya are affected by land degradation and especially recent developments such as agricultural innovations including the use of hybrid seeds and chemical fertilizer have an impact on the environment. Vegetation analysis, used as a proxy indicator for the status of land is carried out to monitor environmental changes in maize producing areas of western Kenya. One of the methods used in this study includes time series analysis of vegetation data from 2001 to 2010 based on MODIS NDVI data with 250m and 500m resolution. Occurring trends are linked to rainfall estimation data and annually classified land use cover data with 500m resolution based on MODIS within the same time period. Analysis of significant trends in combination with land cover information show recent land change dynamics. As these changes are not solely biophysically driven, socio-economic variables representing marginality - defined as the root cause of poverty- are also considered. The most poor are primarily facing the most vulnerable and thereby less fertile soils. Moreover they are lacking access to information to eventually use existing potential. This makes the analysis of changing environmental processes and household characteristics in the interplay important to understand in order to highlight the most influencing variables. Within the new interdisciplinary analysis framework the concept of marginality includes different dimensions referring to certain livelihood characteristics such as health and education which describe a more diverse picture of poverty than the known economic perspective. Household surveys and census data from different time periods allow the analysis of socio-economic trends and link this information to biophysical factors. If relationships between certain variables are understood, adapted land management strategies can be developed. This study aims at linking pixel-level information with established remote sensing methods to the socio-economic concept of marginality based on household surveys and census data on administrative levels. Besides remote sensing and statistical analysis of socio-economic data a GIS is used for geospatial analysis. As most studies on land degradation focus on biophysical aspects such as vegetation or soil degradation this study uses an innovative approach by integrating biophysical analysis without neglecting a human oriented approach which plays a key role in environmental systems nowadays. This interdisciplinary research helps to get closer to the right and adapted policies and land management strategies as land degradation processes do not stick to administrative boundaries but policy advice does.

  15. INTEGRATED LAND-USE SYSTEMS: ASSESSMENT OF PROMISING AGROFOREST AND ALTERNATIVE LAND-USE PRACTICES TO ENHANCE CARBON CONSERVATION AND SEQUESTRATION

    EPA Science Inventory

    Degraded or sub-standard soils and marginal lands occupy a significant proportion of boreal, temperate and tropical biomes. anagement of these lands with a wide range of existing, site-specific, integrated, agroforest systems represents a significant global opportunity to reduce ...

  16. Investigating the impact of land use change on hydrological response through a dynamical parameter identifiability analysis

    NASA Astrophysics Data System (ADS)

    Fenicia, F.; Savenije, H. H. G.; Clemenzi, I.

    2010-05-01

    The impact of land use change under varying climatic conditions is often difficult to identify. This is particularly true when real data are used, as several sources of uncertainty often hide the variability in catchment response. We here use a dynamic identifiability analysis to extract trends in model parameters that can be possibly interpreted as effects of land use change. The analysis is applied to two different catchments: the Meuse catchment, and a small sub-arctic catchment in the north of Sweden. In the Meuse catchment, the analysis is useful to interpret an anomaly in the rainfall-runoff behaviour, which we attribute to forest management. Moreover, it shows how the time to peak of the catchment has sensibly decreased with time, which can be an effect of progressive urbanization. In the Swedish catchment, it shows how climate variability has induced a progressive change in land use that has strongly influenced catchment response.

  17. Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.

    1983-01-01

    The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

  18. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): progress, activities, and prospects

    USGS Publications Warehouse

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; comm