These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

NASA Langley Research Center Wake Vortex Research Supporting VAMS  

NASA Technical Reports Server (NTRS)

NASA researchers have designed a system to predict aircraft wake turbulence on final approach, so airliners can be spaced more safely and efficiently. This technology, known as the Aircraft VOrtex Spacing System (AVOSS), demonstrates an integration of technologies that provides weather-dependent dynamic aircraft spacing for wake avoidance in a real-time relevant environment. AVOSS was successfully demonstrated at Dallas Fort-Worth Airport in July 2000. The demonstration represented the culmination of 6 years of field-testing, data collection, and development.

Rutishauser, David

2002-01-01

2

A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility  

NASA Technical Reports Server (NTRS)

A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

Gartrell, L. R.; Rhodes, D. B.

1980-01-01

3

The development of methods for predicting and measuring distribution patterns of aerial sprays. [Langley Vortex Research Facility  

NASA Technical Reports Server (NTRS)

A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

1981-01-01

4

Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft  

NASA Technical Reports Server (NTRS)

As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

Jordan, F. L., Jr.

1980-01-01

5

Computer Science Research at Langley  

NASA Technical Reports Server (NTRS)

A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

Voigt, S. J. (editor)

1982-01-01

6

Research and technology, 1989: Langley Research Center  

NASA Technical Reports Server (NTRS)

The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

1990-01-01

7

Research and Technology 1990, Langley Research Center  

NASA Technical Reports Server (NTRS)

The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

1991-01-01

8

ARIES: NASA Langley's Airborne Research Facility  

NASA Technical Reports Server (NTRS)

In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

Wusk, Michael S.

2002-01-01

9

NASA Langley Research Center tethered balloon systems  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

1987-01-01

10

Langley Aerospace Research Summer Scholars. Part 2  

NASA Technical Reports Server (NTRS)

The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

Schwan, Rafaela (Compiler)

1995-01-01

11

Aerothermodynamics at NASA-Langley Research Center  

NASA Technical Reports Server (NTRS)

The Aerothermodynamics Branch at NASA - Langley Research Center is tasked with developing, assessing and applying aerothermodynamic technologies to enable the development of hypersonic aircraft, launch vehicles, and planetary/earth entry systems. To accomplish this mission, the Branch capitalizes on the synergism between the experimental and computational facilities/tools which reside in the branch and a staff that can draw on five decades of experience in aerothermodynamics. The Aerothermodynamics Branch is staffed by 30 scientists/engineers. The staff, of which two-thirds are less than 40 years old, is split evenly between experimentalists and computationalists. Approximately 90 percent of the staff work on space transportation systems while the remainder work on planetary missions. The Branch manages 5 hypersonic wind tunnels which are staffed by 14 technicians, numerous high end work stations and a SGI Origin 2000 system. The Branch also utilizes other test facilities located at Langley as well as other national and international test sites. Large scale computational requirements are met by access to Agency resources.

Weilmuenster, K. James

2001-01-01

12

26. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

26. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64792) ALBACORE SUBMARINE DRAG TESTS IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

13

18. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L83-8341) VIEW OF FANS IN FULL-SCALE WIND TUNNEL, c. 1960s. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

14

14. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-90-2684) AERIAL VIEW OF THE 8-FOOT HIGH SPEED TUNNEL (FOREGROUND) AND THE 8-FOOT TRANSONIC PRESSURE TUNNEL (REAR). - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

15

22. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

16

14. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4776) VIEW SOUTH THROUGH ENTRANCE CONE OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION, SEPTEMBER 12, 1930. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

17

15. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4933) VIEW NORTHWEST OF THE FULL-SCALE WIND TUNNEL, c. 1932. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

18

12. Photocopy of photograph (original in Langley Research Center Archives, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

19

25. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

25. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-7333) RUTAN'S VARI-EZE ADVANCED CONCEPTS AIRCRAFT IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

20

24. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L75-734) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL FROM ENTRANCE CONE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

21

22. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64110) DIVING SUIT REQUIRED FOR WORKING IN 8- FOOT HIGH SPEED WIND TUNNEL; ROY H. WRIGHT, DESIGNER OF THE INNOVATIVE SLOTTED SECTION OF TUNNEL IS IN THE SUIT. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

22

19. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L5925) LOENING SCL-1 SEAPLANE IN THE FULL-SCALE WIND TUNNEL, OCTOBER 1931. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

23

21. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-9850) ANNUAL AIRCRAFT ENGINEERING CONFERENCE IN FULL-SCALE WIND TUNNEL; GROUP PHOTOGRAPH OF PARTICIPANTS, mAY 23, 1934. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

24

13. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 4655) VIEW LOOKING NORTH AT THE FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

25

18. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10235) INTERIOR VIEW SHOWING TURNING VANES IN 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

26

20. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L15337) DRAG-CLEANUP STUDIES OF THE BREWSTER BUFFALO IN THE FULL SCALE WIND TUNNEL, 1938. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

27

16. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL-12470) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

28

15. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L12000.1) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL, c. 1935. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

29

13. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) AERIAL VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL IN FOREGROUND. NOTE COOLING TOWER AT LEFT CENTER. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

30

17. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10,257) DETAIL VIEW OF EXTERIOR OF COOLING TOWER FOR 8- FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

31

23. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

23. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L73-5028) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

32

21. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 16900) DETAIL VIEW OF CONTROL/MONITORING STATION IN 8-FOOT HIGH SPEED WIND TUNNEL, c. 1930s. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

33

16. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L89-07075) AERIAL VIEW LOOKING NORTHWEST AT THE FULL-SCALE WIND TUNNEL, 1989. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

34

17. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79-7343) AERIAL VIEW OF THE FULL-SCALE WIND TUNNEL, 1979. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

35

20. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

36

19. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79758) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

37

24. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA CARRIAGE IN SEAPLANE TOWING CHANNEL SHOWING OGIVE SHAPE READY FOR TEST. TANK HAS BEEN DRAINED AND THE OGIVE WOULD BE SUBMERGED UNDER NORMAL TEST CONDITIONS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

38

Experimental Supersonic Combustion Research at NASA Langley  

NASA Technical Reports Server (NTRS)

Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

1998-01-01

39

NASA Wake Vortex Research for Aircraft Spacing  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

1996-01-01

40

The NASA Langley Isolator Dynamics Research Lab  

NASA Technical Reports Server (NTRS)

The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

2010-01-01

41

NASA wake vortex research  

NASA Technical Reports Server (NTRS)

NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

1993-01-01

42

Telerobotic research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

Sliwa, Nancy E.

1987-01-01

43

Current research in composite structures at NASA's Langley Research Center  

NASA Technical Reports Server (NTRS)

Research on the mechanics of composite structures at NASA's Langley Research Center is discussed. The advantages and limitations of special purpose and general purpose analysis tools used in research are reviewed. Future directions in computational structural mechanics are described to address analysis short-comings. Research results on the buckling and postbuckling of unstiffened and stiffened composite structures are presented. Recent investigations of the mechanics of failure in compression and shear are reviewed. Preliminary studies of the dynamic response of composite structures due to impacts encountered during crash-landings are presented. Needs for future research are discussed.

Card, Michael F.; Starnes, James H., Jr.

1988-01-01

44

Active Control Technology at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

Antcliff, Richard R.; McGowan, Anna-Marie R.

2000-01-01

45

ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER  

EPA Science Inventory

This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

46

Scientific and technical information output of the Langley Research Center  

NASA Technical Reports Server (NTRS)

Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

1984-01-01

47

Research through simulation. [simulators and research applications at Langley  

NASA Technical Reports Server (NTRS)

The design of the computer operating system at Langley Research Center allows for concurrent support of time-critical simulations and background analytical computing on the same machine. Signal path interconnections between computing hardware and flight simulation hardware is provided to allow up to six simulation programs to be in operation at one time. Capabilities and research applications are discussed for the: (1) differential maneuvering simulator; (2) visual motion simulator; (3) terminal configured vehicle simulator; (4) general aviation aircraft simulator; (5) general purpose fixed based simulator; (6) transport simulator; (7) digital fly by wire simulator; (8) general purpose fighter simulator; and (9) the roll-up cockpit. The visual landing display system and graphics display system are described and their simulator support applications are listed.

Copeland, J. L. (compiler)

1982-01-01

48

MDO TEST SUITE AT NASA LANGLEY RESEARCH CENTER  

Microsoft Academic Search

The NASA Langley Research Center supports a wide variety of multidisciplinary designoptimization (MDO) research and requires a set of standard MDO test problems forevaluating and comparing the products of this research. This paper proposes a WorldWide-Web-based test suite for collecting, distributing, and maintaining the standard testproblems. A prototype suite of 10 test problems, including written problem descriptions,benchmark solution methods, sample

Sharon L. Padula; Natalia Alexandrov; Lawrence L. Green

1996-01-01

49

Dr. John Stack and other NASA Langley Research Center Visitors  

NASA Technical Reports Server (NTRS)

Front Row, left to right: Mrs. Elsa Hoare and Major Philip L. Teed - staff members, Vickers-Armstrongs, Ltd., Weybridge, England: Dr. Barnes Wallis - Chief of Aeronautical Research, Vicers-Armstrong, Ltd., Weybridge, England. Back Row, left to right: Norman W. Boorer and Cecil W. Hayes - Staff members, Vickers-Armstrongs, Ltd., Weybridge, England; John R. Christie - Ministry of Supply, London, England; Philip A. Hufton - Chief Supt., Royal Aircraft Establishment, Bedford, England; Lindsey I. Turner, Jr. - Langley Research Center. Photographed November 13, 1958.

2008-01-01

50

Snapshot of Active Flow Control Research at NASA Langley  

NASA Technical Reports Server (NTRS)

NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

2002-01-01

51

Contribution of the National Aeronautics and Space Administration Langley Research Center  

Microsoft Academic Search

As part of a special international effort, three nozzles were designed and tested on single nacelle models in wind tunnels of several nations belonging to the North Atlantic Treaty Organization. All three of these nozzles were investigated in the Langley 16-foot transonic wind tunnel at the National Aeronautics and Space Administration's Langley Research Center. Langley Research Center also contributed theoretical

W. B. Compton III; J. F. Runckel

1975-01-01

52

Recent Langley helicopter acoustics contributions  

NASA Technical Reports Server (NTRS)

The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

Morgan, Homer G.; Pao, S. P.; Powell, C. A.

1988-01-01

53

Collaborative Mission Design at NASA Langley Research Center  

Microsoft Academic Search

NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the- art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative

Kerry M. Gough; B. Danette Allen; Ruth M. Amundsen

54

The Langley Research Center's Low-Turbulence Pressure Tunnel  

NASA Technical Reports Server (NTRS)

The Low-Turbulence Pressure Tunnel (LTPT), located at the Langley Research Center, is a relatively old wind tunnel which was recently rehabilitated and which has several unique capabilities. A brief history of the LTPT will be presented along with its present operating characteristics. Its unique capabilities will be described and data will be presented to demonstrate these capabilities. Finally, a suggestion will be made for the construction of a new improved facility incorporating and extending the capabilities of the present LTPT.

Stainback, P. C.; Mcghee, R. J.; Beasley, W. D.; Morgan, H. L., Jr.

1986-01-01

55

Overview of Langley activities in active controls research  

NASA Technical Reports Server (NTRS)

The application of active controls technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. The activities of the Langley Research Center (laRC) in advancing active controls technology. Activities are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

Abel, I.; Newsom, J. R.

1981-01-01

56

Microgravity science at Langley Research Center  

NASA Technical Reports Server (NTRS)

Although space research is still in an embryonic state, a combination of Earth based and space flight experiments are being coupled to yield a better understanding of the complex interaction of heat and fluid flow on the dynamics of crystal growth. Continued efforts on the ground as well as additional flight opportunities are needed to continue the drive to fully understand the advantages, both scientifically and economically, of microgravity crystal growth.

Fripp, Archibald L.; Debnam, William J., Jr.; Woodell, Glenn A.; Clark, Ivan O.; Crouch, Roger K.; Carlson, Frederick M.; Simchick, Richard T.

1988-01-01

57

Earth Radiation Budget Research at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

2014-01-01

58

Electronic photography at NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

The field of photography began a metamorphosis several years ago which promises to fundamentally change how images are captured, transmitted, and output. At this time the metamorphosis is still in the early stages, but already new processes, hardware, and software are allowing many individuals and organizations to explore the entry of imaging into the information revolution. Exploration at this time is prerequisite to leading expertise in the future, and a number of branches at LaRC have ventured into electronic and digital imaging. Their progress until recently has been limited by two factors: the lack of an integrated approach and the lack of an electronic photographic capability. The purpose of the research conducted was to address these two items. In some respects, the lack of electronic photographs has prevented application of an integrated imaging approach. Since everything could not be electronic, the tendency was to work with hard copy. Over the summer, the Photographics Section has set up an Electronic Photography Laboratory. This laboratory now has the capability to scan film images, process the images, and output the images in a variety of forms. Future plans also include electronic capture capability. The current forms of image processing available include sharpening, noise reduction, dust removal, tone correction, color balancing, image editing, cropping, electronic separations, and halftoning. Output choices include customer specified electronic file formats which can be output on magnetic or optical disks or over the network, 4400 line photographic quality prints and transparencies to 8.5 by 11 inches, and 8000 line film negatives and transparencies to 4 by 5 inches. The problem of integrated imaging involves a number of branches at LaRC including Visual Imaging, Research Printing and Publishing, Data Visualization and Animation, Advanced Computing, and various research groups. These units must work together to develop common approaches to image processing and archiving. The ultimate goal is to be able to search for images using an on-line database and image catalog. These images could then be retrieved over the network as needed, along with information on the acquisition and processing prior to storage. For this goal to be realized, a number of standard processing protocols must be developed to allow the classification of images into categories. Standard series of processing algorithms can then be applied to each category (although many of these may be adaptive between images). research effort begun this summer, it may be one of the first organizations to develop an integrated approach to imaging. As such, it could serve as a model for other organizations in government and the private sector.

Holm, Jack M.

1994-12-01

59

Electronic photography at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The field of photography began a metamorphosis several years ago which promises to fundamentally change how images are captured, transmitted, and output. At this time the metamorphosis is still in the early stages, but already new processes, hardware, and software are allowing many individuals and organizations to explore the entry of imaging into the information revolution. Exploration at this time is prerequisite to leading expertise in the future, and a number of branches at LaRC have ventured into electronic and digital imaging. Their progress until recently has been limited by two factors: the lack of an integrated approach and the lack of an electronic photographic capability. The purpose of the research conducted was to address these two items. In some respects, the lack of electronic photographs has prevented application of an integrated imaging approach. Since everything could not be electronic, the tendency was to work with hard copy. Over the summer, the Photographics Section has set up an Electronic Photography Laboratory. This laboratory now has the capability to scan film images, process the images, and output the images in a variety of forms. Future plans also include electronic capture capability. The current forms of image processing available include sharpening, noise reduction, dust removal, tone correction, color balancing, image editing, cropping, electronic separations, and halftoning. Output choices include customer specified electronic file formats which can be output on magnetic or optical disks or over the network, 4400 line photographic quality prints and transparencies to 8.5 by 11 inches, and 8000 line film negatives and transparencies to 4 by 5 inches. The problem of integrated imaging involves a number of branches at LaRC including Visual Imaging, Research Printing and Publishing, Data Visualization and Animation, Advanced Computing, and various research groups. These units must work together to develop common approaches to image processing and archiving. The ultimate goal is to be able to search for images using an on-line database and image catalog. These images could then be retrieved over the network as needed, along with information on the acquisition and processing prior to storage. For this goal to be realized, a number of standard processing protocols must be developed to allow the classification of images into categories. Standard series of processing algorithms can then be applied to each category (although many of these may be adaptive between images). Since the archived image files would be standardized, it should also be possible to develop standard output processing protocols for a number of output devices. If LaRC continues the research effort begun this summer, it may be one of the first organizations to develop an integrated approach to imaging. As such, it could serve as a model for other organizations in government and the private sector.

Holm, Jack M.

1994-01-01

60

Publications on acoustics research at the Langley Research Center, January 1987 - September 1992  

NASA Technical Reports Server (NTRS)

This report is a compilation of publications from acoustics research at the Langley Research Center. The reports listed are in chronological order and summarize the research output of the Acoustics Division for the period January 1987 - September 1992.

Sutherland, Linda W. (compiler)

1992-01-01

61

A future perspective on technological obsolescenceat NASA, Langley Research Center  

NASA Technical Reports Server (NTRS)

The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

Mcintyre, Robert M.

1990-01-01

62

Langley Research Center Metrology Program status for fiscal year 1987  

NASA Technical Reports Server (NTRS)

The status of the Langley Research Center's metrology program for fiscal year 1987 is presented. The NASA Metrology Information System, which was operational for the entire year, provided the majority of performance data describing work analysis, turnaround time, out-of-tolerance instrument data, and other instrument service data. Calibration system development, equipment replacing and updating, status of last year's planned objectives, and Reference Standard certification requirements are described. The status of the LaRC voltage and resistance measurement assurance program and the agency-wide resistance program are reviewed. Progress on fiscal year 1987 objectives is discussed and fiscal year 1988 objectives are stated.

Kern, Frederick A.

1988-01-01

63

Publications on acoustics research at the Langley Research Center during 1980-1986  

NASA Technical Reports Server (NTRS)

This report is a compilation of publications from acoustics research at the Langley Research Center. The reports are listed in chronological order and summarize the written output of the Acoustics Division and its predecessor, The Acoustics and Noise Reduction Division, for the period 1980 through 1986. The information assembled has been extracted from the 1980 through 1986 issues for the Technical Memorandum entitled, Scientific and Technical Information Output of the Langley Research Center for the Calendar Year.

Sutherland, Linda W. (compiler)

1988-01-01

64

Technical Reports: Langley Aerospace Research Summer Scholars. Part 1  

NASA Technical Reports Server (NTRS)

The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

Schwan, Rafaela (Compiler)

1995-01-01

65

Two Micron Laser Technology Advancements at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

Singh, Upendra N.

2010-01-01

66

Matrix resin development at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The polymer program at NASA Langley Research Center involves exploratory studies in polymer science. These include the synthesis of novel polymers and their characterization. Polymer synthesis programs involve the development of novel thermoplastics, pseudothermoplastics, and thermosets. Recent investigations have led to the development of more easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate-temperature polymers. Characterization efforts have included high-pressure liquid chromatography methodology, the development of toughness tests for fiber-reinforced composites, a study of electrical properties of metal-ion-filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers has been studied by rheology, mechanical behavior, separation techniques and spectroscopy. Some of these programs have involved the degradation crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides.

St.clair, T. L.

1985-01-01

67

Coherent Lidar Activities at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

2007-01-01

68

NASA Langley Research Center Force and Strain Measurement Capabilities  

NASA Technical Reports Server (NTRS)

Direct measurements of forces and moments are some of the most important data acquired during aerodynamic testing. This paper deals with the force and strain measurement capabilities at the Langley Research Center (LaRC). It begins with a progressive history of LaRC force measurement developments beginning in the 1940's and ends with the center's current capabilities. Various types of force and moment transducers used at LaRC are discussed including six-component sting mounted balances, semi-span balances, hinge moment balances, flow-through balances, rotor balances, and many other unique transducers. Also discussed are some unique strain-gage applications, such as those used in extreme environments. The final topics deal with the LaRC's ability to perform custom calibrations and our current levels of effort in the area of force and strain measurement.

Roberts, Paul W.

1999-01-01

69

Vibro-Acoustics Modal Testing at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper summarizes on-going modal testing activities at the NASA Langley Research Center for two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by exterior mechanical and acoustic sources. These test results will provide validation databases for interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all-aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. To date, two of seven test configurations of the ATC and all three test configurations of the BSF have been completed. The paper briefly describes the various test configurations, testing procedure, and typical results for frequencies up to 250 Hz.

Pappa, Richard S.; Pritchard, Jocelyn I.; Buehrle, Ralph D.

1999-01-01

70

OAI-PMH Repository Enhancement for the NASA Langley Research Center Atmospheric Sciences Data Center  

E-print Network

OAI-PMH Repository Enhancement for the NASA Langley Research Center Atmospheric Sciences Data Keywords Digital Libraries, Search Engine API 1. INTRODUCTION The NASA Atmospheric Science Data Center@cs.odu.edu Juliet Z. Pao NASA Langley Research Center Hampton, VA 23681 juliet.z.pao@nasa.gov ABSTRACT The NASA

Nelson, Michael L.

71

Upgrades at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

Paryz, Roman W.

2012-01-01

72

Overview of Active Flow Control at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

Pack, L. G.; Joslin, R. D.

1998-01-01

73

The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System  

NASA Technical Reports Server (NTRS)

Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

Proctor, Fred H.

1998-01-01

74

A Program of Research and Education in Astronautics at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

Tolson, Robert H.

2000-01-01

75

Joint Langley Research Center/Jet Propulsion Laboratory CSI experiment  

NASA Technical Reports Server (NTRS)

This paper describes a joint Control Structure Interaction (CSI) experiment in which Jet Propulsion Laboratory (JPL) damping devices were incorporated into the Langley Research Center (LaRC) Phase 0 Testbed. The goals of the effort were twofold: (1) test the effectiveness of the JPL structural damping methods in a new structure and (2) assess the feasibility of combining JPL local control methods with the LaRC multiple input multiple output global control methods. Six dampers (2 piezoelectric active members, 4 viscous dampers), placed in three different regions of the structure, produced up to 26 dB attenuation in target modes. The combined control strategy in which the JPL damping methods contributed local control action and the LaRC control scheme provided global control action, produced and overall control scheme with increased stability margins and improved performance. This paper presents an overview of the technologies contributed from the two centers, the strategies used to combine them, and results demonstrating the success of the damping and cooperative control efforts.

Neat, Gregory W.; O'Brien, John F.; Lurie, Boris J.; Garnica, Angel; Belvin, W. K.; Sulla, Jeff; Won, John

1992-01-01

76

Electronic Photography at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An electronic photography facility has been established in the Imaging & Photographic Technology Section, Visual Imaging Branch, at the NASA Langley Research Center (LaRC). The purpose of this facility is to provide the LaRC community with access to digital imaging technology. In particular, capabilities have been established for image scanning, direct image capture, optimized image processing for storage, image enhancement, and optimized device dependent image processing for output. Unique approaches include: evaluation and extraction of the entire film information content through scanning; standardization of image file tone reproduction characteristics for optimal bit utilization and viewing; education of digital imaging personnel on the effects of sampling and quantization to minimize image processing related information loss; investigation of the use of small kernel optimal filters for image restoration; characterization of a large array of output devices and development of image processing protocols for standardized output. Currently, the laboratory has a large collection of digital image files which contain essentially all the information present on the original films. These files are stored at 8-bits per color, but the initial image processing was done at higher bit depths and/or resolutions so that the full 8-bits are used in the stored files. The tone reproduction of these files has also been optimized so the available levels are distributed according to visual perceptibility. Look up tables are available which modify these files for standardized output on various devices, although color reproduction has been allowed to float to some extent to allow for full utilization of output device gamut.

Holm, Jack; Judge, Nancianne

1995-01-01

77

Smart Materials and Structures Applications at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This overview of the presentation covers Langley's smart materials infrastructure, materials research, applications, and summary. Langley's infrastructure consists of fabrication and characterization of smart structures. Materials researched include ceramics, polymers, and polymer-ceramic composites. Applications include interior aircraft noise suppression, aircraft engine noise reduction, active flutter damping of aircraft wings for better performance, active shape control of polymeric reflectors, and aircraft wing distortion to eliminate control surfaces.

Horner, Garnett

1996-01-01

78

A Historical Perspective on Dynamics Testing at the Langley Research Center  

NASA Technical Reports Server (NTRS)

The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

Horta, Lucas G.; Kvaternik, Raymond G.

2000-01-01

79

Teams and teamwork at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The recent reorganization and shift to managing total quality at the NASA Langley Research Center (LaRC) has placed an increasing emphasis on teams and teamwork in accomplishing day-to-day work activities and long-term projects. The purpose of this research was to review the nature of teams and teamwork at LaRC. Models of team performance and teamwork guided the gathering of information. Current and former team members served as participants; their collective experience reflected membership in over 200 teams at LaRC. The participants responded to a survey of open-ended questions which assessed various aspects of teams and teamwork. The participants also met in a workshop to clarify and elaborate on their responses. The work accomplished by the teams ranged from high-level managerial decision making (e.g., developing plans for LaRC reorganization) to creating scientific proposals (e.g., describing spaceflight projects to be designed, sold, and built). Teams typically had nine members who remained together for six months. Member turnover was around 20 percent; this turnover was attributed to heavy loads of other work assignments and little formal recognition and reward for team membership. Team members usually shared a common and valued goal, but there was not a clear standard (except delivery of a document) for knowing when the goal was achieved. However, members viewed their teams as successful. A major factor in team success was the setting of explicit a priori rules for communication. Task interdependencies between members were not complex (e.g., sharing of meeting notes and ideas about issues), except between members of scientific teams (i.e., reliance on the expertise of others). Thus, coordination of activities usually involved scheduling and attendance of team meetings. The team leader was designated by the team's sponsor. This leader usually shared power and responsibilities with other members, such that team members established their own operating procedures for decision making. Sponsors followed a hands-off policy during team operations, but they approved and reviewed team products. Most teams, particularly high-level decision-making teams, had little or no authority to carry out their decisions. Team members had few interpersonal conflicts. They monitored each other respectfully about meeting deadlines. Feedback and backup behaviors were seen as desirable aspects of teamwork, wanted by the members, and done appropriately.

Dickinson, Terry L.

1994-01-01

80

Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.

Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.

2001-01-01

81

Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach  

NASA Technical Reports Server (NTRS)

Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

1998-01-01

82

Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges  

NASA Technical Reports Server (NTRS)

Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

Hanson, P. W.

1985-01-01

83

Scientific and technical photography at NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are incorporating ever greater imaging capabilities in their facilities. To some extent this could mean a reduced demand for traditional photographic services. (2) The photographic archive is seen as a Center resource. Archiving of images, as well as data, is a matter of concern to the investigators. The early holdings of the Photographic Archives are quickly deteriorating. The relative inaccessibility of the material held in the archives is problematic. (3) In certain cases delivery or preparation of digital image files instead of, or along with, hardcopy is already being perceived by the STPL's customers as desirable. The STPL should make this option available, and the fact that it has, or will have this capability widely known. (4) The STPL needs to continue to provide expert advice and technical imaging support in terms of application information to users of traditional photographic and new electronic imaging systems. Cooperative demo projects might be undertaken to maintain or improve the capabilities of the Lab. (5) STPL personnel do not yet have significant electronic imaging or electronic communication skills and improvements in this is an area could potentially have a positive impact on the Center. (6) High speed photographic or imaging services are often mentioned by the STPL as being of primary importance to their mission but the lab supports very few projects calling for high speed imaging services. Much high speed equipment is in poor state of repair. It is interesting to note that when the operation of lasers, digital imaging or quantitative techniques are requested these are directed to another NASA department. Could joint activities be initiated to solve problems? (7).

Davidhazy, Andrew

1994-12-01

84

NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM  

EPA Science Inventory

National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

85

Model Deformation Measurements at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

Burner, A. W.

1998-01-01

86

Program of Research in Flight Dynamics, The George Washington University at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The program objectives are fully defined in the original proposal entitled Program of Research in Flight Dynamics in GW at NASA Langley Research Center, which was originated March 20, 1975, and in the renewals of the research program from January 1, 2003 to September 30, 2005. The program in its present form includes three major topics: 1. the improvement of existing methods and development of new methods for wind tunnel and flight data analysis, 2. the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3. the correlation of flight results with wind tunnel measurements, and theoretical predictions.

Murphy, Patrick C. (Technical Monitor); Klein, Vladislav

2005-01-01

87

Advanced Measurement Technology at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

Antcliff, Richard R.

1998-01-01

88

Scientific and technical information output of the Langley Research Center for calendar year 1980  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1980. Approximately 1400 citations are given. Formal reports, quick-release technical memorandums, contractor reports, journal articles, meeting/conference papers, computer programs, tech briefs, patents, and unpublished research are included.

1981-01-01

89

Military aircraft and missile technology at the Langley Research Center: A selected bibliography  

NASA Technical Reports Server (NTRS)

A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

Maddalon, D. V.

1980-01-01

90

Scientific and technical photography at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are incorporating ever greater imaging capabilities in their facilities. To some extent this could mean a reduced demand for traditional photographic services. (2) The photographic archive is seen as a Center resource. Archiving of images, as well as data, is a matter of concern to the investigators. The early holdings of the Photographic Archives are quickly deteriorating. The relative inaccessibility of the material held in the archives is problematic. (3) In certain cases delivery or preparation of digital image files instead of, or along with, hardcopy is already being perceived by the STPL's customers as desirable. The STPL should make this option available, and the fact that it has, or will have this capability widely known. (4) The STPL needs to continue to provide expert advice and technical imaging support in terms of application information to users of traditional photographic and new electronic imaging systems. Cooperative demo projects might be undertaken to maintain or improve the capabilities of the Lab. (5) STPL personnel do not yet have significant electronic imaging or electronic communication skills and improvements in this is an area could potentially have a positive impact on the Center. (6) High speed photographic or imaging services are often mentioned by the STPL as being of primary importance to their mission but the lab supports very few projects calling for high speed imaging services. Much high speed equipment is in poor state of repair. It is interesting to note that when the operation of lasers, digital imaging or quantitative techniques are requested these are directed to another NASA department. Could joint activities be initiated to solve problems? (7). The STPL could acquire more technical assignments if examples of the areas where they posses expertise would be circulated around the center. The fact that the STPL owns high speed video capability could be 'advertised' among its customer base if there truly was an interest in building up a customer base in this area. The STPL could participate in events like TOPS as an exhibitor, as well as

Davidhazy, Andrew

1994-01-01

91

A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

Jackson, K. E.; Fasanella, E. L.

2003-01-01

92

Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

1997-01-01

93

Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

1998-01-01

94

Review of fatigue and fracture research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.

Everett, Richard A., Jr.

1988-01-01

95

A Selection of Composites Simulation Practices at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.

Ratcliffe, James G.

2007-01-01

96

Educator Resource Center for NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The goal of the ERCN is to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA s unique mission and results. The NASA Langley s Office of Education has established the service area for this ERC to be the five states of Kentucky, North Carolina, South Carolina, Virginia and West Virginia. This educational grant activity is associated with NASA s Mission to inspire the next generation of explorers.. .as only NASA can. The communication of NASA s knowledge is the prime role of this ERC. Functioning as a dissemination system of instructional materials and support for pre-college education programs we have met the NASA Education ERCN Program's goal. The following ERCN objectives have been accomplished: Demonstrate and facilitate the use of NASA educational products and technologies in print, video and web based formats. Examples include but are not limited to NASA approved Educator s Guides with Activities based on national standards for appropriate subjects and grade levels. We have demonstrated the use videotape series in analogue format and the new digital video instructional systems along with the use of NASA TV. The promotion of web page based resources such as the new NASA Portal web and the ability to download print resources is continuously facilitated in workshops. This objective has been completed by educator contacts that include on-site visits, phone requests, postal mail requests, e-mail requests, fax requests and workshops offered.

Bridgford, Todd; Koltun, Nick R.

2003-01-01

97

Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies  

NASA Technical Reports Server (NTRS)

Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

Fryer, B. A. (compiler)

1980-01-01

98

The langley research center remote computing terminal system: Implementation and first year's operation  

Microsoft Academic Search

In April 1965 a remote computing terminal system was installed at the Langley Research Center in support of open shop programming. This paper describes the system and relates some of the experience gained in using and managing it. Because this system grew out of the needs of the open shop programmers, I will begin by reviewing the development of our

Roger V. Butler

1966-01-01

99

Scientific and technical information output of the Langley Research Center for calendar year 1986  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1986. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Techncial Talks, Computer Programs, Tech Briefs, and Patents.

1987-01-01

100

Scientific and technical information output of the Langley Research Center for calendar year 1984  

NASA Technical Reports Server (NTRS)

The scientific and technical information that the Langley Research Center produced during the calendar year 1984 is compiled. Approximately 1650 citations are included comprising formal reports, quick-release technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

1985-01-01

101

Scientific and technical information output of the Langley Research Center for Calendar Year 1985  

NASA Technical Reports Server (NTRS)

A compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1985 is presented. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

1986-01-01

102

Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

Abel, Irving

1997-01-01

103

A review and evaluation of the Langley Research Center's scientific and technical information program. Results of phase 1: Knowledge and attitudes survey, LaRC research personnel  

NASA Technical Reports Server (NTRS)

The effectiveness of the Langley STI program was assessed using feedback obtained from Langley engineers and scientists. A survey research procedure was conducted in two stages. Personal interviews with 64 randomly selected Langley engineers and scientists were used to obtain information for questionnaire development. Data were then collected by means of the questionnaire which covered various aspects of the Langley STI program, utilized both open and closed ended questions and was pretested for finalization. The questions were organized around the six objectives for Phase 1. The completed questionnaires were analyzed. From the analysis of the data, recommendations were made for improving the Langley STI program.

Pinelli, T. E.; Glassman, M.; Cross, E. M.

1980-01-01

104

A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

2013-01-01

105

The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft  

NASA Technical Reports Server (NTRS)

Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto-throttle was added in the next phase to provide ground station control of airspeed. Additional phases are in progress to add waypoint navigation and long range satellite voice and data communications. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aid in the process of air traffic detect-sense-and-avoid. These sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper describes the systems and design considerations that were incorporated in the development of the UAS Surrogate along with details of development problems encountered and the corresponding solutions.

Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

2010-01-01

106

Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's  

NASA Technical Reports Server (NTRS)

Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

Chambers, Joseph R.

2000-01-01

107

Experimental research activities in dynamic response and sonic fatigue of hypersonic vehicle structures at NASA Langley Research Center  

Microsoft Academic Search

This paper presents an overview of experimental research activities being pursued at the NASA Langley Research Center for dynamic response and sonic fatigue of hypersonic vehicle structures. The capabilities of the principle test facility, the Thermal Acoustic Fatigue Apparatus, are first given. Results from recent dynamic response and sonic fatigue tests on candidate hypersonic vehicle structures are then presented.

Stephen A. Rizzi

1993-01-01

108

Structural Health Monitoring Sensor Development at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

2002-01-01

109

OAI-PMH Architecture for the NASA Langley Research Center Atmospheric Science Data Center  

Microsoft Academic Search

We present the architectural decisions involved in adding an Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) interface to the NASA Langley Research Center Atmospheric Science Data Center (ASDC). We review four possible implementation strategies and discuss the implications of our choice. The ASDC differs from most OAI-PMH implementations because of its complex data model, large size (1.3 petabytes) of

Churngwei Chu; Walter E. Baskin; Juliet Z. Pao; Michael L. Nelson

2006-01-01

110

Equipment for Thermal-Balance Studies in the Langley Instrument Research Division  

NASA Technical Reports Server (NTRS)

The Langley Research Center is in the process of obtaining emissivity measuring apparatus. This apparatus will be used to measure the solar absorptance and low-temperature emittance of space-vehicle materials. Two types of instrumentation will be used. One type will be the total hemispherical emissivity apparatus being constructed at this Center. The other will be double-beam photoelectric ratio-recording spectrophotometer apparatus which is being purchased.

Spiers, Robert B., Jr.

1960-01-01

111

Recent Developments at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

Paryz, Roman W.

2011-01-01

112

Topics in landing gear dynamics research at NASA Langley  

NASA Technical Reports Server (NTRS)

Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.

Mccomb, H. G., Jr.; Tanner, J. A.

1986-01-01

113

CSM activities at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The objective and goals of the Computational Structural Mechanics (CSM) Program as applied to airframe structures are given. It is recognized that the rapid evolution of computer hardware has opened up new opportunities for solving more complex and larger structural analysis problems than was hitherto imagined. To utilize these computers, new methods of computational structural mechanics are required. Methods are now being developed, assessed, and validated to meet the goals, and each of these goals is addressed. Plans and approaches are shown and highlights of results achieved in meeting these goals are given. Three research thrusts are shown in the five-year plan: advanced robust CSM methods, large-scale solutions, and validation/demonstration studies. The areas of research activity reflect the CSM goals. The mapping of developed methods onto high-performance and massively parallel computers is an integral part of the CSM five-year plan.

Housner, Jerrold M.

1992-01-01

114

The 1992 Langley Aerospace Research Summer Scholars (LARSS) program  

NASA Technical Reports Server (NTRS)

The overwhelming majority of the LARSS participants rated their overall summer research experience as good or excellent. Even though the 1992 LARSS Program has met its goals, all areas of the program need to be considered for continuous improvement. Of the various recommendations provided by the participants, the following will be implemented in the 1993 LARSS Program: (1) LARSS participants will be housed in two or three apartment complexes; (2) mentors will be encouraged to contact their student before the beginning of the LARSS Program; (3) LARSS participants will be notified of a tentative payroll schedule before the Program begins; (4) LARSS participants will be strongly encouraged to give an oral presentation on their research project in their respective Divisions; and (5) a Career Conference, in conjunction with a forum where the participants can share their individual research projects will be held. The participant recommendations made in the 1992 LARSS Student Exit Survey will ensure a more successful and improved LARSS Program in 1993.

1993-01-01

115

Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

2003-01-01

116

NASA Langley Research Center's distributed mass storage system  

NASA Technical Reports Server (NTRS)

There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

Pao, Juliet Z.; Humes, D. Creig

1993-01-01

117

A brief overview of NASA Langley's research program in formal methods  

NASA Technical Reports Server (NTRS)

An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

1992-01-01

118

Status of integrated multidisciplinary rotorcraft optimization research at the Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper describes a joint NASA/Army research activity at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and the interdisciplinary interactions are defined in terms of the information that must be transferred among disciplinary analyses as well as the trade-offs between disciplines in determining the details of the design. At this writing, some significant progress has been made. Results given in the paper represent accomplishments in rotor aerodynamic performance optimization for minimum horsepower, rotor dynamic optimization for vibration reduction, approximate analysis of frequencies and mode shapes, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

Mantay, Wayne R.; Adelman, Howard M.

1990-01-01

119

Winds of Change: Expanding the Frontiers of Flight. Langley Research Center's 75 Years of Accomplishment, 1917-1992  

NASA Technical Reports Server (NTRS)

This commemorative volume highlights in pictures and text seventy five years of accomplishments of the Langley Research Center. The introductory matter features wind tunnels and their contribution to the development of aeronautics. A chronological survey details four different periods in Langley's history. The first period, 1917-1939, is subtitled 'Perfecting the Plane' which details Langley's contribution to early aeronautics with examples from specific aircraft. The second period, 1940-1957, focuses on the development of military aircraft during and after World War II. The third period, 1958-1969, tells the story of Langley's involvement with NASA and the satellite and Apollo era. The fourth period, entitled 'Charting New Courses: 1970-1992 and Beyond', treats various new topics from aerospace planes to Mars landing, as well as older topics such as the Space Shuttle and research spinoffs.

Schultz, James

1992-01-01

120

Reference manual for the Langley Research Center flight simulation computing system  

NASA Technical Reports Server (NTRS)

The researchers at the Langley Research Center Flight Simulation Computing System are provided with an advanced real-time digital simulation capability. This capability is controlled at the user interface level by the Real Time Simulation Supervisor. The Supervisor is a group of subprograms loaded with a simulation application program. The Supervisor provides the interface between the application program and the operating system, and coordinates input and output to and from the simulation hardware. The Supervisor also performs various utility functions as required by a simulation application program.

Cleveland, J. I., II; Crawford, D. J.; Rowell, L. F.

1978-01-01

121

NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation  

NASA Technical Reports Server (NTRS)

This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

2004-01-01

122

Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974  

NASA Technical Reports Server (NTRS)

This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

Smith, G. C. (compiler); Laneave, J. N. (compiler)

1975-01-01

123

Increasing Access to Atmospheric Science Research at NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more than 100 papers published each year from the group. These papers are written by and for scientists, but they often contain information that is of wider interest. The SD communications team faces the challenge of distilling these 2,000+ word science papers into short and readable summaries that allow non-scientists access to that information (with the ability to obtain the full paper if they are interested). In this process, a key challenge is to find a balance between accuracy and understanding: how can a summary briefly convey the key points of a paper without explaining every detail? That challenge also requires a culture shift for researchers who are dedicated to accuracy and detail, and again the SD communications team is important to the success of this process. This paper will share several examples of SD visual presentation techniques and will discuss our revitalized effort to write lay research summaries that can provide an accessible on-ramp to our collection of research writings in the newly-mandated scientific publication repository. It will also discuss our interactions with the NASA Office of Public Affairs, including Legislative Affairs and Business Development, and how both visual presentations and lay summaries can be used in external promotion activities.

Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

2013-12-01

124

Automated Fabrication of High Performance Composites: An Overview of Research at the Langley Research Center  

NASA Technical Reports Server (NTRS)

Automated heated placement of consolidated fiber reinforced polymer ribbon/tape is a rapid, cost effective technique for net shape fabrication of high performance composites. Several research efforts in the United States are developing the heated head robotic hardware and associated software needed to bring this technology into widespread use for building aircraft parts. These efforts emphasize the use of pre-consolidated thermoplastic ribbon or tape which is thermally welded on-the-fly . The approach provides in-situ consolidation and obviates the need for autoclave processing and massive debulking, thereby reducing costs. Addressed in this paper are some key issues being pursued at NASA Langley related to this technology. These include: (a) preparation of high quality intermediate materials forms such as thermoplastic powders, powder-coated towpreg and consolidated ribbon/tape and (b) achievement of precise control of the following: robot head positioning on the tool; material placement; heat delivery to the lay-down zone; and cut/add, start/stop capability. Heated head development has dealt with the use of hot gases alone and in combination with focused infrared radiation as heat sources.

Johnston, N. J.; Towell, T. W.; Marchello, J. M.; Grenoble, R. W.

1997-01-01

125

Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

2008-01-01

126

Wind tunnel productivity status and improvement activities at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

Putnam, Lawrence E.

1996-01-01

127

Hypersonic airbreathing missile concepts under study at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The design and performance of several tactical and strategic hypersonic airbreathing missile concepts under study at the NASA Langley Research Center are discussed from an evolutionary perspective. A mid- and chin inlet missile design, constrained to the Navy's vertical box launcher, was investigated; a performance comparison is presented that is favorable to the mid-inlet approach. Parasol wing, confined flow field, and spatula-like cruise missile configurations were examined with strategic applications in mind. The preliminary results are encouraging with respect to aerodynamic and volumetric efficiency and choice of engine integration schemes.

Hunt, J. L.; Johnston, P. J.; Cubbage, J. M.; Dillon, J. L.; Richie, C. B.; Marcum, D. C., Jr.; Carlson, C. H.

1982-01-01

128

Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center  

NASA Technical Reports Server (NTRS)

Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.

Dow, Marvin B.; Dexter, H. Benson

1997-01-01

129

Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s  

NASA Technical Reports Server (NTRS)

This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a more indepth discussion of the contributions.

Chambers, Joseph R.

2003-01-01

130

Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

2011-01-01

131

The World Wide Web and Technology Transfer at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

Nelson, Michael L.; Bianco, David J.

1994-01-01

132

Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part II  

NASA Astrophysics Data System (ADS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

Crasner, Aaron I.; Scola, Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

2014-06-01

133

Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part I  

NASA Astrophysics Data System (ADS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

2014-06-01

134

Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part III  

NASA Astrophysics Data System (ADS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey Y.; Petway, Larry B.

2014-06-01

135

The 48-inch lidar aerosol measurements taken at the Langley Research Center  

NASA Technical Reports Server (NTRS)

This report presents lidar data taken between July 1991 and December 1992 using a ground-based 48-inch lidar instrument at the Langley Research Center in Hampton, Virginia. Seventy lidar profiles (approximately one per week) were obtained during this period, which began less than 1 month after the eruption of the Mount Pinatubo volcano in the Philippines. Plots of backscattering ratio as a function of altitude are presented for each data set along with tables containing numerical values of the backscattering ratio and backscattering coefficient versus altitude. The enhanced aerosol backscattering seen in the profiles highlights the influence of the Mount Pinatubo eruption on the stratospheric aerosol loading over Hampton. The long-term record of the profiles gives a picture of the evolution of the aerosol cloud, which reached maximum loading approximately 8 months after the eruption and then started to decrease gradually. NASA RP-1209 discusses 48-inch lidar aerosol measurements taken at the Langley Research Center from May 1974 to December 1987.

Woods, David C.; Osborn, M. T.; Winker, D. M.; Decoursey, R. J.; Youngbluth, Otto, Jr.

1994-01-01

136

Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

2005-01-01

137

Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

2007-01-01

138

Selected topics in experimental aeroelasticity at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

Ricketts, R. H.

1985-01-01

139

Selected topics in experimental aeroelasticity at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

Ricketts, R. H.

1985-01-01

140

A summary of current research in rotor unsteady aerodynamics with emphasis on work at Langley Research Center  

NASA Technical Reports Server (NTRS)

The basic unsteady aerodynamic environment of the rotary wing is summarized. Some of the observed trends in the state of the art are discussed. Some of the research needs that will require attention are reported. A review of a number of research investigations as a part of a joint NASA/Army rotorcraft project is presented. The research is directed toward achieving a better understanding of rotor unsteady airfoils. The investigations include: (1) rotor maneuver loads; (2) level flight and maneuver wake prediction; (3) tip-vortex flow; (4) blade-vortex interactions; (5) dynamic stall; (6) transient Mach number air loads; and (7) development of variable geometry rotors.

Ward, J. F.; Young, W. H., Jr.

1973-01-01

141

Development and status of data quality assurance program at NASA Langley research center: Toward national standards  

NASA Technical Reports Server (NTRS)

As part of a continuing effort to re-engineer the wind tunnel testing process, a comprehensive data quality assurance program is being established at NASA Langley Research Center (LaRC). The ultimate goal of the program is routing provision of tunnel-to-tunnel reproducibility with total uncertainty levels acceptable for test and evaluation of civilian transports. The operational elements for reaching such levels of reproducibility are: (1) statistical control, which provides long term measurement uncertainty predictability and a base for continuous improvement, (2) measurement uncertainty prediction, which provides test designs that can meet data quality expectations with the system's predictable variation, and (3) national standards, which provide a means for resolving tunnel-to-tunnel differences. The paper presents the LaRC design for the program and discusses the process of implementation.

Hemsch, Michael J.

1996-01-01

142

The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results  

NASA Technical Reports Server (NTRS)

A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

1991-01-01

143

Description of a 2-Foot Hypersonic Facility at the Langley Research Center  

NASA Technical Reports Server (NTRS)

This report describes the mechanical and aerodynamic features of a two-foot hypersonic facility at the Langley Research Center. The facility provides for the testing of aerodynamic models in the Mach number range between 3 and 7 at approximate Reynolds numbers between 0.5 x 10(exp 6) and 1.0 x 10(exp 6). The facility was designed to obtain the needed pressure ratio through the use of ejector nozzles. Compressors driving the ejectors operate continuously at a pressure ratio of 4 and thus give the facility a continuous running capability. Curves are presented to show the ranges of total temperature, total pressure, Reynolds number dynamic pressure, and static pressure available in the tunnel. The flow in the test section is suitable for model tests at all Mach numbers between 3 and 7, although the nozzle blocks were contoured for a Mach number of 6.

Stokes, George M.

1961-01-01

144

Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities  

NASA Technical Reports Server (NTRS)

Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

2003-01-01

145

Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

2014-01-01

146

A Historical Perspective on Dynamics Testing at the Langley Research Center  

NASA Technical Reports Server (NTRS)

The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

2000-01-01

147

Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar  

NASA Technical Reports Server (NTRS)

Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

2008-01-01

148

Advanced technology needs for a global change science program: Perspective of the Langley Research Center  

NASA Technical Reports Server (NTRS)

The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

Rowell, Lawrence F.; Swissler, Thomas J.

1991-01-01

149

Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels  

NASA Technical Reports Server (NTRS)

A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

Hollis, Brian R.

1996-01-01

150

Langley high-lift research on a high-aspect-ratio supercritical wing configuration  

NASA Technical Reports Server (NTRS)

To determine the low speed performance characteristics of a representative high aspect ratio supercritical wing, two low speed jet transport models were fabricated. A 12-ft. span model was used for low Reynolds number tests in the Langley 4- by 7-Meter Tunnel and the second, a 7.5-ft. span model, was used for high Reynolds number tests in the Ames 12-foot Pressure Tunnel. A brief summary of the results of the tests of these two models is presented and comparisons are made between the data obtained on these two models and other similar models. Follow-on two and three dimensional research efforts related to the EET high-lift configurations are also presented and discussed.

Morgan, H. L., Jr.; Kjelgaard, S. O.

1981-01-01

151

Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.

Klos, Jacob

2012-01-01

152

Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission  

NASA Technical Reports Server (NTRS)

We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

2012-01-01

153

NASA Langley and NLR Research of Distributed Air/Ground Traffic Management  

NASA Technical Reports Server (NTRS)

Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

2002-01-01

154

Contributions to Active Buffeting Alleviation Programs by the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

Moses, Robert W.

1999-01-01

155

NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs  

NASA Technical Reports Server (NTRS)

Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

Moses, Robert W.

2000-01-01

156

Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar  

NASA Technical Reports Server (NTRS)

The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; Dasilva, Arlindo; Benedetti, Angela

2012-01-01

157

NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility  

NASA Technical Reports Server (NTRS)

The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

2004-01-01

158

Procedures and requirements for testing in the Langley Research Center unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

Information is presented to assist those interested in conducting wind-tunnel testing within the Langley Unitary Plan Wind Tunnel. Procedures, requirements, forms and examples necessary for tunnel entry are included.

Wassum, Donald L.; Hyman, Curtis E., Jr.

1988-01-01

159

Langley aerospace test highlights, 1989  

NASA Technical Reports Server (NTRS)

The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.

1990-01-01

160

Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility  

NASA Technical Reports Server (NTRS)

The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

2014-01-01

161

Langley aerospace test highlights, 1985  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

1986-01-01

162

Employee Communication at the NASA Langley Research Center. M.S. Thesis - Coll. of William and Mary  

NASA Technical Reports Server (NTRS)

The means of employee communication at the NASA Langley Research Center are reported, and their effectiveness evaluated. The history, purpose, and structure of the organization as well as the employee educational background and salary status are discussed. Some of the approaches used by Langley Research Center management in communicating with their men are addressed and compared with recommendations of experts in employee communication. The results of personal interviews involving both employee and management assessment of management-employee communication are presented and evaluated. Employees need a great deal more recommunication from management providing rationale behind the cancellation of existing projects or the disapproval of proposed research projects. Also NASA management needs to establish a policy and guidelines for the rapid and simultaneous dissemination of all non-restricted information to employees during organizational activities having potential adverse effects on large numbers of personnel. Finally some improvements should be made in employee orientation procedures.

Bendura, R. J.

1972-01-01

163

NASA Langley Highlights, 1998  

NASA Technical Reports Server (NTRS)

Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. A color electronic version of this report is available at URL http://larcpubs.larc.nasa.gov/randt/1998/.

1999-01-01

164

Climate Change Predictions and Adaption Strategies for Coastal NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

Climate change could significantly impact the personal and operations of federal coastal laboratories. The Goddard Institute for Space Studies has made downscaled climate projections for Hampton Roads, Virginia a coastal region which includes NASA Langley Research Center (LaRC). These projections are being used to formulate adaptation and mitigation strategies to reduce climate change impacts at the center. Sea level rise and hurricanes will have significant impacts on LaRC and strategies such as surge modeling and tide gauge measurements and now underway. A proposed windbreak will reduce the impact of hurricane winds on center infrastructure. Disease vectors such as mosquitoes and ticks are being monitored and studied for their response to climate change. LaRC has significant forest and ecosystems which will be impacted by climate change and these impacts are being quantified. Mitigation strategies are being proposed such as the design of a 3 MW solar photovoltaic array to protect the center from brownouts and loss of power to critical missions. These and other programs will be discussed to reduce climate change impacts and allow LaRC to accomplish its mission into the next century.

De Young, R.

2012-12-01

165

Validation of Force Limited Vibration Testing at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

Rice, Chad; Buehrle, Ralph D.

2003-01-01

166

Acoustic Calibration of the Exterior Effects Room at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The Exterior Effects Room (EER) at the NASA Langley Research Center is a 39-seat auditorium built for psychoacoustic studies of aircraft community noise. The original reproduction system employed monaural playback and hence lacked sound localization capability. In an effort to more closely recreate field test conditions, a significant upgrade was undertaken to allow simulation of a three-dimensional audio and visual environment. The 3D audio system consists of 27 mid and high frequency satellite speakers and 4 subwoofers, driven by a real-time audio server running an implementation of Vector Base Amplitude Panning. The audio server is part of a larger simulation system, which controls the audio and visual presentation of recorded and synthesized aircraft flyovers. The focus of this work is on the calibration of the 3D audio system, including gains used in the amplitude panning algorithm, speaker equalization, and absolute gain control. Because the speakers are installed in an irregularly shaped room, the speaker equalization includes time delay and gain compensation due to different mounting distances from the focal point, filtering for color compensation due to different installations (half space, corner, baffled/unbaffled), and cross-over filtering.

Faller, Kenneth J., II; Rizzi, Stephen A.; Klos, Jacob; Chapin, William L.; Surucu, Fahri; Aumann, Aric R.

2010-01-01

167

Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

2008-01-01

168

Langley aerospace test highlights, 1990  

NASA Technical Reports Server (NTRS)

The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

1991-01-01

169

Subsonic Transonic Applied Refinements By Using Key Strategies - STARBUKS In the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.

Paryz, Roman W.

2014-01-01

170

Recent research results in stereo 3-D pictorial displays at Langley Research Center  

NASA Technical Reports Server (NTRS)

Recent results from a NASA-Langley program which addressed stereo 3D pictorial displays from a comprehensive standpoint are reviewed. The program dealt with human factors issues and display technology aspects, as well as flight display applications. The human factors findings include addressing a fundamental issue challenging the application of stereoscopic displays in head-down flight applications, with the determination that stereoacuity is unaffected by the short-term use of stereo 3D displays. While stereoacuity has been a traditional measurement of depth perception abilities, it is a measure of relative depth, rather than actual depth (absolute depth). Therefore, depth perception effects based on size and distance judgments and long-term stereo exposure remain issues to be investigated. The applications of stereo 3D to pictorial flight displays within the program have repeatedly demonstrated increases in pilot situational awareness and task performance improvements. Moreover, these improvements have been obtained within the constraints of the limited viewing volume available with conventional stereo displays. A number of stereo 3D pictorial display applications are described, including recovery from flight-path offset, helicopter hover, and emulated helmet-mounted display.

Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.

1990-01-01

171

Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

Schultz, James

2003-01-01

172

Report on Recent Upgrades to the Curved Duct Test Rig at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The Curved Duct Test Rig (CDTR) is an experimental facility that is designed to assess the acoustic and aerodynamic performance of aircraft engine nacelle liners in close to full scale. The test section is between 25% and 100% of the scale of aft bypass ducts of aircraft engines ranging in size from business jet to large commercial passenger jet. The CDTR has been relocated and now shares space with the Grazing Flow Impedance Tube in the Liner Technology Facility at NASA Langley Research Center. As a result of the relocation, research air is supplied to the CDTR from a 50,000 cfm centrifugal fan. This new air supply enables testing of acoustic liner samples at up to Mach 0.500. This paper documents experiments and analysis on a baseline liner sample, which the authors had analyzed and reported on prior to the move to the new facility. In the present paper, the experimental results are compared to those obtained previously in order to ensure continuity of the experimental capability. Experiments that take advantage of the facility s expanded capabilities are also reported. Data analysis features that enhance understanding of the physical properties of liner performance are introduced. The liner attenuation is shown to depend on the mode that is incident on the liner test section. The relevant parameter is the mode cut-on ratio, which determines the angle at which the sound wave is incident on the liner surface. The scattering of energy from the incident mode into higher order, less attenuated modes is demonstrated. The configuration of the acoustic treatment, in this case lined on one surface and hard wall on the opposite surface, is shown to affect the mode energy redistribution.

Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

2011-01-01

173

Langley aerospace test highlights, 1987  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.

1988-01-01

174

Program of Research in Flight Dynamics in the JIAFS, George Washington University at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The program objectives are fully defined in the original proposal entitled 'Program of Research in Flight Dynamics in GW at NASA Langley Research Center,' which was originated March 20, 1975, and in the renewals of the research program from December 1, 2000 to November 30, 2001. The program in its present form includes three major topics: 1) the improvement of existing methods and development of new methods for wind tunnel and flight test data analysis, 2) the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3) the correlation of flight results with wind tunnel measurements, and theoretical predictions. The Principal Investigator of the program is Dr. Vladislav Klein. Three Graduate Research Scholar Assistants (K. G. Mas, M. M. Eissa and N. M. Szyba) also participated in the program. Specific developments in the program during the period Dec. 1, 2001 through Nov. 30, 2002 included: 1) Data analysis of highly swept delta wing aircraft from wind and water tunnel data, and 2) Aerodynamic characteristics of the radio control aircraft from flight test.

Klein, Vladislav

2002-01-01

175

A review and evaluation of the Langley Research Center's Scientific and Technical Information Program. Results of phase 4: Knowledge and attitudes survey, academic and industrial personnel  

NASA Technical Reports Server (NTRS)

Feedback from engineers and scientists in the academic and industrial community provided an assessment of the usage and perceived quality of NASA Langley generated STI and the familiarity and usage of selected NASA publications and services and identified ways to increase the accessibility of Langley STI. The questionnaire utilized both open and closed ended questions and was pretested for finalization. The questions were organized around the seven objectives for Phase IV. From a contact list of nearly 1,200 active industrial and academic researchers, approximately 600 addresses were verified. The 497 persons who agreed to participate were mailed questionnaires. The 381 completed questionnaires received by the cutoff date were analyzed. Based on the survey findings, recommendations were made for increasing the familiarity with and use of NASA and Langley STI and selected NASA publications and services. In addition, recommendations were made for increasing the accessibility of Langley STI.

Pinelli, T. E.; Glassman, M.; Glassman, N. A.

1981-01-01

176

Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

2012-01-01

177

Computations for the 16-foot transonic tunnel, NASA, Langley Research Center, revision 1  

NASA Technical Reports Server (NTRS)

The equations used by the 16 foot transonic tunnel in the data reduction programs are presented in eight modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: tunnel parameters; jet exhaust measurements; skin friction drag; balance loads and model attitudes calculations; internal drag (or exit-flow distributions); pressure coefficients and integrated forces; thrust removal options; and turboprop options. This document is a companion document to NASA TM-83186, A User's Guide to the Langley 16 Foot Transonic Tunnel, August 1981.

Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.; Sherman, C. D.

1987-01-01

178

Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities  

NASA Technical Reports Server (NTRS)

A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

Hubbard, H. H.; Powell, C. A.

1981-01-01

179

The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

Jansen, B. J., Jr.

1998-01-01

180

Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

2013-01-01

181

Vortex  

NSDL National Science Digital Library

In this activity, learners create a tornado in a bottle to observe a spiraling, funnel-shaped vortex. A simple connector device allows water to drain from a 2-liter bottle into a second bottle. Learners can observe the whirling water and then repeat the process by inverting the bottle. Use this activity to talk about surface tension, pressure, gravity, friction, angular momentum, and centripetal force.

Exploratorium, The

2012-06-26

182

A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

2004-01-01

183

High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center  

NASA Technical Reports Server (NTRS)

Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

1991-01-01

184

Langley aerospace test highlights - 1986  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

1987-01-01

185

Langley aerospace test highlights, 1988  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1989-01-01

186

Chemical climatology of the middle atmosphere simulated by the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model  

Microsoft Academic Search

The stratospheric chemical characteristics of the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport model are evaluated. We focus on species relevant to stratospheric ozone including the main constituents of the odd nitrogen and inorganic chlorine families. Model-derived chemical climatologies resulting from 20 years of integrations are compared with observations made primarily by the experiments aboard

Jassim A. Al-Saadi; R. Bradley Pierce; Murali Natarajan; T. Duncan Fairlie; William L. Grose

2004-01-01

187

Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

2001-01-01

188

Research on aircraft trailing vortex detection based on laser's multiplex information echo  

NASA Astrophysics Data System (ADS)

Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.

Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu

2010-10-01

189

Langley aeronautics and space test highlights, 1984  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1984-01-01

190

NASA-Langley Research Center's participation in a round-robin comparison between some current crack-propagation prediction methods  

NASA Technical Reports Server (NTRS)

A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.

Hudson, C. M.; Lewis, P. E.

1979-01-01

191

Measurement of Separated Flow Structures Using a Multiple-Camera DPIV System. [conducted in the Langley Subsonic Basic Research Tunnel  

NASA Technical Reports Server (NTRS)

A novel multiple-camera system for the recording of digital particle image velocimetry (DPIV) images acquired in a two-dimensional separating/reattaching flow is described. The measurements were performed in the NASA Langley Subsonic Basic Research Tunnel as part of an overall series of experiments involving the simultaneous acquisition of dynamic surface pressures and off-body velocities. The DPIV system utilized two frequency-doubled Nd:YAG lasers to generate two coplanar, orthogonally polarized light sheets directed upstream along the horizontal centerline of the test model. A recording system containing two pairs of matched high resolution, 8-bit cameras was used to separate and capture images of illuminated tracer particles embedded in the flow field. Background image subtraction was used to reduce undesirable flare light emanating from the surface of the model, and custom pixel alignment algorithms were employed to provide accurate registration among the various cameras. Spatial cross correlation analysis with median filter validation was used to determine the instantaneous velocity structure in the separating/reattaching flow region illuminated by the laser light sheets. In operation the DPIV system exhibited a good ability to resolve large-scale separated flow structures with acceptable accuracy over the extended field of view of the cameras. The recording system design provided enhanced performance versus traditional DPIV systems by allowing a variety of standard and non-standard cameras to be easily incorporated into the system.

Humphreys, William M., Jr.; Bartram, Scott M.

2001-01-01

192

Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case  

NASA Technical Reports Server (NTRS)

This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

Switzer, George F.

2008-01-01

193

NASA Langley's Research and TechnologyTransfer Program in Formal Methods  

E-print Network

companies engaged in the research, development and manufacture of aircraft, missiles and space systems to be the rule---rather than the isolated, aberrant exceptions---as new generations of complex hardware

Caldwell, James

194

NASA Langley's Research and Technology-Transfer Program in Formal Methods  

E-print Network

in the research, development and manufacture of aircraft, missiles and space systems, and related propulsion.... In a recent Washington Post article, Michael Schrage wrote: Pentium type problems will prove to be the rule

Butler, Ricky W.

195

Wind shear and vortex wake research in UK, 1982  

NASA Technical Reports Server (NTRS)

A wind shear and vortex wake and their impact on aircraft were investigated. The systems and advice to help pilots, and rational scientific methods to assist in advising certification authorities and those interested in improving flight safety were developed. Wind Shear and Vortex Wakes are related, they are both invisible enemies of aircraft in the form of large disturbances in the atmosphere, both cause major accidents. Problems of building wakes at airports are is considered. Research on wind shear was initiated by the American FAA following the Boston, New York and Denver accidents to civil airliners. This resulted in: useful advice to pilots about wind shear; better attempts by the meteorologists at forecasting wind shear conditions; and useful ideas for wind shear measurement and warning systems. Three major research tasks are outstanding: (1) Worldwide measurements to give reliable estimates of probability and details of the forms of large wind shears; (2) Developments of real time wind shear measuring systems for ground or airborne use; and (3) Establishing relationships between measured wind shear and the potential hazard to an aircraft, or class of aircraft.

Woodfield, A. A.

1983-01-01

196

User guide for the digital control system of the NASA/Langley Research Center's 13-inch Magnetic Suspension and Balance System  

NASA Technical Reports Server (NTRS)

The technical background to the development of the digital control system of the NASA/Langley Research Center's 13 inch Magnetic Supension and Balance Systen (MSBS) is reviewed. The implementation of traditional MSBS control algorithms in digital form is examined. Extensive details of the 13-inch MSBS digital controller and related hardware are given, together with the introductory instructions for systems operators. Full listings of software are included in the Appendices.

Britcher, Colin P.

1987-01-01

197

Recent developments in polyimide adhesives at NASA-Langley Research Center  

NASA Technical Reports Server (NTRS)

Adhesive development is directed towards elevated temperature applications (200-300 C). Because of thermal stability considerations, the most attractive adhesives for this temperature range are linear and addition polyimides. The linear polymide adhesive research encompassed basic structure-property relationships, solvent studies and formulations to meet various requirements. The most recent research in linear polyimide systems was in the development of thermoplastic systems in an effort to eliminate the undesirable evolution of water classically associated with the cure going through an amide-acid intermediate step in the cure process. Addition polyimide adhesive research was undertaken in order to avoid water evolution during cure. Basic structure-property relationships for these materials led to an adhesive which was used extensively for high temperature adhesive needs. Since addition systems are of a highly crosslinked nature, they are not as resistant to impact as their linear counterparts. In order to overcome this problem, research was done in the area of elastomer-toughening these polymers.

St.clair, T. L.

1981-01-01

198

Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976  

NASA Technical Reports Server (NTRS)

Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

Fryer, B. A. (compiler)

1977-01-01

199

Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center  

NASA Technical Reports Server (NTRS)

Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

Block, P. J. W.

1982-01-01

200

NASA Langley flight test program  

NASA Technical Reports Server (NTRS)

General overview of NASA/Langley Research Center wind shear flight project is presented in the form of view-graphs. The following subject areas are covered: program elements (hazard characterization, sensor technology, and flight management systems); flight test objective; facility; flight requirements; flight operations; and status/schedule.

Lewis, Mike

1991-01-01

201

Combining analysis with optimization at Langley Research Center - An evolutionary process  

NASA Technical Reports Server (NTRS)

Analytical and computational advances, at Langely Research Center (La RC), contributing to the evolution of computer programs combining analysis and optimization are presented, namely, strength sizing, concurrent strength and flutter sizing, and general optimization. Current work on a software system which executes the analysis and optimization in a sequential rather than concurrent mode is then described, as a step toward the long-term goal at La RC of developing the methodology for such systems. The software system is designated Enginering Analysis Language (EAL)/Programming Structural Synthesis System (PR)SSS), and work is being done on the incorporation of PROSSS into EAL. EAL language can perform most FORTRAN operations, including testing, branching, and looping, and its data base system can easily be accessed by any processor using FORTRAN callable utility subroutines. Some numerical results showing the accuracy of EAL/PROSSS are given.

Rogers, J. L., Jr.

1982-01-01

202

Use of World Wide Web and NCSA Mcsaic at Langley  

NASA Technical Reports Server (NTRS)

A brief history of the use of the World Wide Web at Langley Research Center is presented along with architecture of the Langley Web. Benefits derived from the Web and some Langley projects that have employed the World Wide Web are discussed.

Nelson, Michael

1994-01-01

203

Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

1997-01-01

204

Aeroacoustic Measurements of a Wing/Slat Model. [Research conducted at the Quiet Flow Facility of the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper deals with detailed flow and acoustic measurements that have been made to understand, and to possibly predict and reduce, the noise from a wing leading edge slat configuration. The acoustic database is obtained by a moveable Small Aperture Directional Array (SADA) of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

Mendoza, Jeff M.; Brooks, Thomas F.; Humphreys, William M.

2002-01-01

205

Vortex Flows at Supersonic Speeds  

NASA Technical Reports Server (NTRS)

A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

2003-01-01

206

Wake Vortex Advisory System (WakeVAS) Concept of Operations  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

2003-01-01

207

Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide  

NASA Technical Reports Server (NTRS)

Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

1997-01-01

208

NASA Research on the Hydrodynamics of the Gaseous Vortex Reactor  

NASA Technical Reports Server (NTRS)

The experimental and analytical results to date of a study of a two-component gaseous vortex system are presented in this paper. Analytical expressions for tangential velocity and static-pressure profiles in a turbulent vortex show good agreement with experimental data. Airflow rates from 0.075 to 0.14 pound per second and corresponding tangential velocities from 160 to 440 feet per second are correlated by turbulent Reynolds numbers from 1.95 to 2.4. An analysis of an air-bromine gas mixture in a turbulent vortex indicates that a boundary value of bromine-to-air radial velocity ratio (u(2)/u(1)) of 0.999 gives essentially no bromine buildup, while a value of 0.833 results in considerable separation. For a constant value of (u(2)/u(1))(0) the bromine buildup increases as (1) the tangential velocity increases, (2) the air-to-bromine weight-flow ratio decreases, (3) the airflow rate decreases, (4) the temperature decreases, and (5) the turbulence decreases. Analytical temperature, pressure, and tangential-velocity profiles are also presented. Preliminary experimental results indicate that the flow of an air-bromine mixture through a vortex field results in a bromine density increase to a maximum value; followed by a decrease; the air density exhibits a uniform decrease from the outer vortex radius to the exhaust-nozzle radius.

Ragsdale, Robert G.

1960-01-01

209

Langley aeronautics and space test highlights, 1983  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1984-01-01

210

Collaborative Study for Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver  

NASA Technical Reports Server (NTRS)

The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

Goldman, A.

2002-01-01

211

Collaborative Study of Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver  

NASA Technical Reports Server (NTRS)

The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

Goldman, Aaron

1999-01-01

212

Micro Vortex Generators  

NASA Technical Reports Server (NTRS)

An in house video made to show how NASA Langley scientists have found ways to improve airplane performance. Micro Vortex Generators placed on airplane wings can reduce drag, increase lift, and reduce fuel consumption. Nice animation and real footage of planes with this technology.

2000-01-01

213

Overview of military technology at NASA Langley  

NASA Technical Reports Server (NTRS)

The Langley Research Center began addressing major research topics pertinent to the design of military aircraft under the egis of The National Advisory Council on Aeronautics in 1917, until 1958, when it passed under the control of the newly-instituted NASA research facilities system. A historical account is presented of NASA-Langley's involvement in the experimental investigation of twin-engined jet aircraft nozzle interfairings, thrust reversers, high-efficiency supersonic cruise configurations, high-alpha aerodynamics, air-to-air combat handling qualities, wing/stores flutter suppression, and store carriage and separation characteristics.

Sawyer, Wallace C.; Jackson, Charlie M., Jr.

1989-01-01

214

Software engineering from a Langley perspective  

NASA Technical Reports Server (NTRS)

A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.

Voigt, Susan

1994-01-01

215

Third NASA Langley Formal Methods Workshop  

NASA Technical Reports Server (NTRS)

This publication constitutes the proceedings of NASA Langley Research Center's third workshop on the application of formal methods to the design and verification of life-critical systems. This workshop brought together formal methods researchers, industry engineers, and academicians to discuss the potential of NASA-sponsored formal methods and to investigate new opportunities for applying these methods to industry problems. contained herein are copies of the material presented at the workshop, summaries of many of the presentations, a complete list of attendees, and a detailed summary of the Langley formal methods program. Much of this material is available electronically through the World-Wide Web via the following URL.

Holloway, C. Michael (compiler)

1995-01-01

216

NASA Aircraft Vortex Spacing System Development Status  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

1999-01-01

217

RESEARCH ARTICLE Drag and lift reduction of a 3D bluff-body using active vortex  

E-print Network

RESEARCH ARTICLE Drag and lift reduction of a 3D bluff-body using active vortex generators Jean forces (drag and lift) induced on the bluff- body is investigated. The high sensitivity to many geo demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduc- tion can reach more than

Wesfreid, José Eduardo

218

The Langley Atmospheric Sciences Data Center  

NSDL National Science Digital Library

This collection of radiation budget, cloud, aerosol, and tropospheric data from the Langley Research Center of the National Aeronautics and Space Administration (NASA) contains recent and archival data sets. The data are free, but users must register and log in for access. Downloads from the NASA Water Vapor Project, the Clouds and Earth's Radiant Energy System (CERES) Pathfinder, and the Airborne Multi-angle Imaging SpectroRadiometer (AirMISR) are among the offerings (Java, HTML, FTP). The site also features pages on software, Langley Center activities, news, and a FAQ page.

219

NASA Langley/CNU Distance Learning Programs.  

ERIC Educational Resources Information Center

NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and currently there are a suite of five distance-learning programs. This paper presents the major…

Caton, Randall; Pinelli, Thomas E.

220

Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

Webster, T. J.

1982-01-01

221

NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports  

NASA Technical Reports Server (NTRS)

The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

1996-01-01

222

NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports  

NASA Technical Reports Server (NTRS)

The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

1997-01-01

223

Study of highly sweptback wings by the free vortex sheet method  

NASA Technical Reports Server (NTRS)

The aerodynamic characteristics of highly sweptback wings with separations induced vortex flows have been numerically investigated using the free vortex sheet method, developed by Boeing Company, under a contract with NASA/Langley Research Center. The models studied included delta and straked wings, and wings with leading edge extensions. Also, PAN-AIR code has been used to design a fixed leading edge extension into a thick delta wing. The theoretical results predicted have been compared with the experimental data wherever available, and the code capabilities and limitations explored. New fuselage effects also have been considered in some cases.

Chaturvedi, S. K.; Ghaffari, F.

1982-01-01

224

#NASATweetup @NASA_Langley - Duration: 1:43.  

NASA Video Gallery

NASA Langley Research Center's first tweet-up involved a diverse group of more than 40 that included an astronaut's daughter, a physics student from Wisconsin, one of NASA's newest space camp crew ...

225

Review of research on low-profile vortex generators to control boundary-layer separation  

NASA Astrophysics Data System (ADS)

An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary-layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall protuberances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.

Lin, John C.

2002-05-01

226

Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation  

NASA Technical Reports Server (NTRS)

An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.

Lin, John C.

2002-01-01

227

Review of research on low-profile vortex generators to control boundary-layer separation  

Microsoft Academic Search

An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary-layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these

John C Lin

2002-01-01

228

Active Flow Control Activities at NASA Langley  

NASA Technical Reports Server (NTRS)

NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

2004-01-01

229

Fourth NASA Langley Formal Methods Workshop  

NASA Technical Reports Server (NTRS)

This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS.

Holloway, C. Michael (Compiler); Hayhurst, Kelly J. (Compiler)

1997-01-01

230

A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation  

NASA Technical Reports Server (NTRS)

A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

Patterson, J. C., Jr.; Jordan, F. L., Jr.

1975-01-01

231

F/A-18 and F-16 forebody vortex control, static and rotary-balance results  

NASA Technical Reports Server (NTRS)

The results from research on forebody vortex control on both the F/A-18 and the F-16 aircraft will be shown. Several methods of forebody vortex control, including mechanical and pneumatic schemes, will be discussed. The wind tunnel data includes both static and rotary balance data for forebody vortex control. Time lags between activation or deactivation of the pneumatic control and when the aircraft experiences the resultant forces are also discussed. The static (non-rotating) forces and pressures are then compared to similar configurations tested in the NASA Langley and DTRC Wind Tunnel, the NASA Ames 80'x120' Wind Tunnel, and in flight on the High Angle of Attack Research Vehicle (HARV).

Kramer, Brian; Smith, Brooke

1994-01-01

232

NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey  

NASA Technical Reports Server (NTRS)

The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

1995-01-01

233

Impingement of Boundary-Reflected Disturbances Originating at the Nose of a Body of Revolution in the Langley Research Center 16-Foot Transonic Tunnel  

NASA Technical Reports Server (NTRS)

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine boundary-reflected disturbance lengths at low supersonic Mach numbers in the octagonally shaped test section. A body of revolution that had a nose designed to produce a bow shock and flow field similar to that about the nose of a supersonic transport configuration was used. The impingement of reflected disturbances on the model was determined from static pressures measured on the surface of the model. Test variables included Mach number (0.90 to 1.25), model angle of attack (nominally -10, 0, and 10), and model roll angle.

Re, Richard, J.; Capone, Francis J.

1998-01-01

234

Langley test highlights, 1981  

NASA Technical Reports Server (NTRS)

Significant aircraft tests which were performed are highlighted. The broad range of the research and technology activities. The conributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1982-01-01

235

Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

1999-01-01

236

Final Environmental Impact Statement for Langley  

NASA Technical Reports Server (NTRS)

The Langley Research Center is described, together with the nature of its activities, from which it can be seen that the Center is basically not a major pollution source. Geographical, geological, and climatic charateristics of the site are also described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the Center are described. Where the intensities of these sources might exceed the recommended guide-lines, the corrective actions that have been taken or are being taken are described. The entire inventory of pollution sources and control methods is summarized in an appendix.

1971-01-01

237

Low-subsonic stability and control characteristics of a 0.015-scale remotely controlled elevon model (44-0) of the space shuttle orbiter in the Langley Research Center low turbulence pressure tunnel (LA61B)  

NASA Technical Reports Server (NTRS)

A Langley-built 0.015-scale SSV orbiter configuration with remote independently operated left and right elevon surfaces was tested in the NASA/Langley Research Center Low Turbulence Pressure Tunnel. A detailed aerodynamic data base was obtained for the current shuttle orbiter configuration. Special attention was directed to definition of Reynolds number effects on nonlinear aerodynamic characteristics of the orbiter. Small increments in angle of attack, sideslip, and elevon/aileron position were studied in order to better define areas where nonlinearities may occur. Force and moment, and elevon position data were recorded over an angle of attack range -2 deg to 20 deg at angles of sideslip of 0 deg , + or - 2 deg, and + or - 4 deg. Tests were also made over an angle of sideslip range of -6 deg to 6 deg at selected angles of attack and elevon/aileron position. The test Mach numbers were from 0.15 to 0.30 at Reynolds numbers from 2.0 to 13.5 million per foot.

1976-01-01

238

Langley's 14x22 Foot Wind Tunnel Fan Section  

NASA Technical Reports Server (NTRS)

During annual maintenance of its 12,000 horsepower drive motor, the 40-foot fan section of NASA Langley Research Center's 14- by 22-Foot Wind Tunnel is still. When the facility is under operation, the spinning of the nearly 16-foot long fan blades produces wind speeds of 230 miles per hour at the test section. The 14- by 22-foot Wind Tunnel, which is used to study low-speed aerodynamics, is one of over 40 research facilities at Langley, in Hampton, Virginia.

1992-01-01

239

Structures and Materials Competency Vision and Purpose at NASA Langley  

NASA Technical Reports Server (NTRS)

Vision: The revolutionary materials and structures technologies developed at NASA Langley Research Center meet the needs of the Aerospace Community and benefit the quality of life on Earth Purpose: Develop and deliver useable research and technology results to meet Agency program objectives and to enable the Agency to develop future aerospace materials and structures

Shuart, Mark J.

2004-01-01

240

NARSTO Data Available from NASA Langley Atmospheric Sciences Data Center  

Microsoft Academic Search

North American Research Strategy for Tropospheric Ozone (NARSTO) data are available from the NASA Langley Atmospheric Sciences Data Center (ASDC). The NARSTO data products contain ground-based and laboratory aerosol and gases measurements from select urban and regional environments. The primary mission of NARSTO is to coordinate and enhance scientific research and the assessment of tropospheric ozone behavior, with the central

K. L. Morris

2004-01-01

241

Effects of Passive Porosity on Interacting Vortex Flows at Supersonic Speeds  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPW7) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS). These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

Erickson, Gary E.

2000-01-01

242

Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

Erickson, Gary E.

2000-01-01

243

Vortex wake research. [inflight investigation of turbulent wake generated by C-5 aircraft  

NASA Technical Reports Server (NTRS)

NASA investigations of aircraft trailing vortices are reviewed. Results obtained in flight on vortex characteristics, such as decay of maximum velocity and vortex drift, are presented for distances behind a generating C-5 aircraft from 0.6 to 13.0 nautical miles. The lateral control activity of a CV-990 aircraft probing the vortices generated by the C-5 aircraft is illustrated and the effect of the C-5 aircraft configuration on this activity is indicated. Results are presented from near-field and far-field studies of accelerated vortex dissipation through the use of various devices such as mass ejection, spoilers, vortex generators, and trailing drag devices.

Zalovcik, J. A.; Dunham, R. E., Jr.

1973-01-01

244

Langley test highlights, 1982  

NASA Technical Reports Server (NTRS)

A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.

1983-01-01

245

A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)  

NASA Technical Reports Server (NTRS)

A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

Hinton, David A.; Tatnall, Chris R.

1997-01-01

246

Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015 scale space shuttle orbiter model tested in the Langley Research Center unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

An experimental investigation was performed in the Langley Research Center Unitary Plan Wind Tunnel (Test 0A70) to obtain the detailed effects that RCS jet flow interactions with local orbiter flow field have on supersonic stability and control characteristics of the space shuttle orbiter. Six-component force data were obtained through an angle-of-attack range from 15 to 35 degrees at angles of sideslip of 0, +5, and -5 degrees. The test was conducted with yaw jet simulation at free-stream Mach numbers of 2.5 and 4.6, simulating SSV re-entry flight conditions at these Mach numbers. In addition to the basic force measurements, fuselage base pressures and pressures on the non-metric RCS pods were obtained.

Daileda, J. J.; Marroquin, J.

1974-01-01

247

Aeroheating (pressure) characteristics on a 0.10-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4)  

NASA Technical Reports Server (NTRS)

Results of wind tunnel tests, conducted at the Langley Research Center Unitary Plan Wind Tunnel, are presented. The model tested was an 0.010-scale version of the Vehicle 3 Space Shuttle Configuration. Pressure measurements were made on the launch configuration, Orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 to 20 deg for a sideslip angle range from -5 to +5 deg, and at sideslip angles from -5 to 48 deg for 0 deg angle of attack. Tabulated data are given and photographs of the test configuration are shown.

Kingsland, R. B.

1976-01-01

248

NASA Langley Scientific and Technical Information Output: 1996  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1996. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

1997-01-01

249

NASA Langley scientific and technical information output: 1994, volume 1  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

Phillips, Marilou S. (compiler); Stewart, Susan H. (compiler)

1995-01-01

250

NASA Langley Scientific and Technical Information Output-2001  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the 2001 calendar year. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler)

2002-01-01

251

NASA Langley Scientific and Technical Information Output 2000  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2000. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandum, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

2001-01-01

252

NASA Langley Scientific and Technical Information Output-2002  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2002. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler)

2003-01-01

253

NASA Langley Scientific and Technical Information Output: 1997  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1997. Included are citations for Formal Reports, Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler); Machie, Harriet B. (Compiler)

1998-01-01

254

ENHANCED CAPABILITIES OF THE NASA LANGLEY THERMAL ACOUSTIC FATIGUE APPARATUS  

Microsoft Academic Search

This paper presents newly enhanced acoustic capabilities of the Thermal Acoustic Fatigue Apparatus at the NASA Langley Research Center. The facility is a progressive wave tube used for sonic fatigue testing of aerospace structures. Acoustic measurements for each of the six facility configurations are shown and comparisons with projected performance are made.

Stephen A. Rizzi; Travis L. Turner

1997-01-01

255

Enhanced Capabilities of the NASA Langley Thermal Acoustic Fatigue Apparatus  

NASA Technical Reports Server (NTRS)

This paper presents newly enhanced acoustic capabilities of the Thermal Acoustic Fatigue Apparatus at the NASA Langley Research Center. The facility is a progressive wave tube used for sonic fatigue testing of aerospace structures. Acoustic measurements for each of the six facility configurations are shown and comparisons with projected performance are made.

Rizzi, Stephen A.; Turner, Travis L.

2004-01-01

256

NASA Langley Scientific and Technical Information Output, 1995. Volume 1  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1995. Included are citations for formal reports, high-numbered conference publications, high-numbered technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

1996-01-01

257

NASA Langley Scientific and Technical Information Output: 1994. Volume 1  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

1995-01-01

258

NASA Langley Scientific and Technical Information Output: 1998  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1998. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

1999-01-01

259

Polymer research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Polymer synthesis programs involve the development of Novel thermoplastics, pseudothermoplastics, and thermosets. These systems are prepared to elucidate structure-property relationships involving thermal capabilities, toughness, processability and environmental stability. Easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate temperature polymers were developed. Characterization efforts included high pressure liquid chromatography methodology, the development of toughness tests for fiber reinforced composites, a study of electrical properties of metal ion filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers was studied by rheology, mechanical behavior, separation techniques and spectroscopy. The degradative crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides were also studied.

St.clair, T. L.; Johnston, N. J.

1982-01-01

260

Experimental study of vortex diffusers  

SciTech Connect

This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

Shakerin, S.; Miller, P.L. [National Renewable Energy Lab., Golden, CO (United States)

1995-11-01

261

Langley's CSI evolutionary model: Phase 2  

NASA Technical Reports Server (NTRS)

Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.

Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.

1995-01-01

262

The NASA Langley Mars Tumbleweed Rover Prototype  

NASA Technical Reports Server (NTRS)

Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

2005-01-01

263

A strategy for electronic dissemination of NASA Langley technical publications  

NASA Technical Reports Server (NTRS)

To demonstrate NASA Langley Research Center's relevance and to transfer technology to external customers in a timely and efficient manner, Langley has formed a working group to study and recommend a course of action for the electronic dissemination of technical reports (EDTR). The working group identified electronic report requirements (e.g., accessibility, file format, search requirements) of customers in U.S. industry through numerous site visits and personal contacts. Internal surveys were also used to determine commonalities in document preparation methods. From these surveys, a set of requirements for an electronic dissemination system was developed. Two candidate systems were identified and evaluated against the set of requirements: the Full-Text Electronic Documents System (FEDS), which is a full-text retrieval system based on the commercial document management package Interleaf, and the Langley Technical Report Server (LTRS), which is a Langley-developed system based on the publicly available World Wide Web (WWW) software system. Factors that led to the selection of LTRS as the vehicle for electronic dissemination included searching and viewing capability, current system operability, and client software availability for multiple platforms at no cost to industry. This report includes the survey results, evaluations, a description of the LTRS architecture, recommended policy statement, and suggestions for future implementations.

Roper, Donna G.; Mccaskill, Mary K.; Holland, Scott D.; Walsh, Joanne L.; Nelson, Michael L.; Adkins, Susan L.; Ambur, Manjula Y.; Campbell, Bryan A.

1994-01-01

264

User input and program assessment - An evaluation of the NASA Langley Scientific and Technical Information Program  

NASA Technical Reports Server (NTRS)

An evaluation of the scientific and technical information (STI) program of the Langley Research Center has been conducted, including surveys of both internal and external patrons. Questions included the perceived prestige of the Center's publications, the adequacy of Langley technical reports, and the use of selected NASA STI products and services. The internal and external profiles proved to be very similar, and the results indicated that the Langley STI program is meeting the information needs of both populations. A number of areas for increasing user satisfaction were identified.

Pinelli, T. E.; Cross, E. M.; Hinnebusch, P. A.; Glassman, M.

1981-01-01

265

Arctic Vortex  

Atmospheric Science Data Center

... within the cloud layer downwind of the obstacle. These turbulence patterns are known as von Karman vortex streets. In these images from NASA's Multi-angle Imaging SpectroRadiometer (MISR), an impressive vortex pattern continues for ...

2013-06-26

266

Langley Research Center (LaRC) Agency Introduction: The FY 2012 budget request for NASA is $18.7 billion, the FY 2010 enacted  

E-print Network

. · $181 million for Aeronautics Research to support contributions to NextGen, aviation safety as the first civil aeronautics research laboratory, the Center also has a rich heritage in innovative space of aerosciences, structures and materials, atmospheric characterization, systems analysis, and entry, descent

267

Vortex rings  

Microsoft Academic Search

The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how

Karim Shariff; Anthony Leonard

1992-01-01

268

World wide web implementation of the Langley technical report server  

NASA Technical Reports Server (NTRS)

On January 14, 1993, NASA Langley Research Center (LaRC) made approximately 130 formal, 'unclassified, unlimited' technical reports available via the anonymous FTP Langley Technical Report Server (LTRS). LaRC was the first organization to provide a significant number of aerospace technical reports for open electronic dissemination. LTRS has been successful in its first 18 months of operation, with over 11,000 reports distributed and has helped lay the foundation for electronic document distribution for NASA. The availability of World Wide Web (WWW) technology has revolutionized the Internet-based information community. This paper describes the transition of LTRS from a centralized FTP site to a distributed data model using the WWW, and suggests how the general model for LTRS can be applied to other similar systems.

Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.

1994-01-01

269

Vulcanized vortex  

NASA Astrophysics Data System (ADS)

We investigate vortex configurations with the “vulcanization” term inspired by the renormalization of ??4 theory in the canonical ?-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

Cho, Inyong; Lee, Youngone

2009-01-01

270

Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation  

NASA Technical Reports Server (NTRS)

A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76 deg/40 deg double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 30 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M = 0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

Erickson, Gary E.; Gonzalez, Hugo A.

2005-01-01

271

Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation  

NASA Technical Reports Server (NTRS)

A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76o/40o double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

Erickson, Gary E.; Gonzalez, Hugo A.

2004-01-01

272

Transport delays associated with NASA Langley Flight Simulation Facility  

NASA Technical Reports Server (NTRS)

This paper describes the transport delays associated with flight simulation programs currently operating at the NASA Langley Research Center (LaRC). Formulas are presented for calculating a rough estimate of the transport delay for a particular simulation. Various simulation programs that used the Flight Simulation Facility at LaRC, during the period of October 1993 to March 1994, were tested to determine the transport delays associated with the simulation program and any associated hardware. Several simulators were tested, including the Differential Maneuvering Simulator (DMS), the Visual Motion Simulator (VMS), and the Transport System Research Vehicle (TSRV).

Smith, R. Marshall; Chung, Victoria I.; Martinez, Debbie

1995-01-01

273

Compendium of NASA Langley reports on hypersonic aerodynamics  

NASA Technical Reports Server (NTRS)

Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

1987-01-01

274

Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2  

NASA Technical Reports Server (NTRS)

As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.

Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.

1992-01-01

275

Progress Towards the Investigation of Technical Issues Relevant to the Design of an Aircraft Wake Vortex Advisory System (WakeVAS)  

NASA Technical Reports Server (NTRS)

Wake vortex separations applied to aircraft during instrument operations have been shown to potentially introduce inefficiencies in air traffic operations during certain weather conditions conducive to short duration wake hazards between pairs of landing aircraft. NASA Langley Research Center (LaRC) demonstrated an integration of technologies that provided real-time observations and predictions of aircraft wake behavior, from which reduced wake spacing from the current criteria was derived. In order to take this proof of concept to an operational prototype system, NASA has been working in cooperation with the FAA and other government and industry members to design operational concepts for a Wake Vortex Advisory System (WakeVAS). In addition to concept development, open research issues are being addressed and activities to quantify system requirements and specifications are currently underway. This paper describes the technological issues relevant to WakeVAS development and current NASA efforts to address these issues.

Rutishauser, David K.

2003-01-01

276

Experiences From NASA/Langley's DMSS Project  

NASA Technical Reports Server (NTRS)

There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

1996-01-01

277

Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.

Erickson, Gary E.

2003-01-01

278

Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.

Erickson, Gary E.

2003-01-01

279

Prediction and Control of Vortex Dominated and Vortex-wake Flows  

NASA Technical Reports Server (NTRS)

This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

Kandil, Osama

1996-01-01

280

User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)  

NASA Technical Reports Server (NTRS)

This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.

Gnoffo, Peter A.; Cheatwood, F. McNeil

1996-01-01

281

Engineer in charge: A history of the Langley Aeronautical Laboratory, 1917-1958  

NASA Technical Reports Server (NTRS)

A history is presented by using the most technologically significant research programs associated with the Langley Aeronautical Laboratory from 1917 to 1958 and those programs that, after preliminary research, seemed best to illustrate how the laboratory was organized, how it works, and how it cooperated with industry and the military.

Hansen, James R.

1986-01-01

282

NASA Langley/CNU Distance Learning Programs  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and we currently have a suite of five distance-learning programs. We have around 450,000 registered educators and 12.5 million registered students in 60 countries. Partners and affiliates include the American Institute of Aeronautics and Astronautics (AIAA), the Aerospace Education Coordinating Committee (AECC), the Alliance for Community Media, the National Educational Telecommunications Association, Public Broadcasting System (PBS) affiliates, the NASA Learning Technologies Channel, the National Council of Teachers of Mathematics (NCTM), the Council of the Great City Schools, Hampton City Public Schools, Sea World Adventure Parks, Busch Gardens, ePALS.com, and Riverdeep. Our mission is based on the "Horizon of Learning," a vision for inspiring learning across a continuum of educational experiences. The programs form a continuum of educational experiences for elementary youth through adult learners. The strategic plan for the programs will evolve to reflect evolving national educational needs, changes within NASA, and emerging system initiatives. Plans for each program component include goals, objectives, learning outcomes, and rely on sound business models. It is well documented that if technology is used properly it can be a powerful partner in education. Our programs employ both advances in information technology and in effective pedagogy to produce a broad range of materials to complement and enhance other educational efforts. Collectively, the goals of the five programs are to increase educational excellence; enhance and enrich the teaching of mathematics, science, and technology; increase scientific and technological literacy; and communicate the results of NASA discovery, exploration, innovation and research. All pre-college distance learning programs support the national mathematics, science, and technology standards; support K-12 systemic change; involve educators in their development, implementation, and evaluation; and are based on alliances and partnerships. In addition the programs seek to invoke a sense of geographic, ethnic and cultural diversity by featuring schools from all over the U.S.; schools from urban, suburban, and rural areas; public, private, and religious schools; and schools with large populations of African-American, Asian and Hispanic students.

Caton, Randall; Pinelli, Thomas E.

2002-01-01

283

Diabetes Research Vortex : a novel information management system for Type I diabetes  

E-print Network

Information management is becoming a necessary task for modem research laboratories. As scientific research within a particular domain progresses, the amount of data and publications in the domain increases drastically. ...

Javanmardian, Kia

2005-01-01

284

Acoustic fatigue: Overview of activities at NASA Langley  

NASA Technical Reports Server (NTRS)

A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.

Mixson, John S.; Roussos, Louis A.

1987-01-01

285

Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results  

NASA Technical Reports Server (NTRS)

The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

Farassat, F.; Dunn, M. H.; Padula, S. L.

1986-01-01

286

Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Aircraft During Wake Vortex Encounters  

NASA Technical Reports Server (NTRS)

Several of our major airports are operating at or near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity and safety. As more and more airplanes are placed into the terminal area the probability of encountering wake turbulence is increased. The NASA Langley Research Center conducted a series of flight tests from 1995 through 1997 to develop a wake encounter and wake-measurement data set with the accompanying atmospheric state information. The purpose of this research is to use the data from those flights to compute the wake-induced forced and moments exerted on the aircraft The calculated forces and moments will then be compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results.

Roberts, Christopher L.; Smith, Sonya T.; Vicroy, Dan D.

2000-01-01

287

The Orbit-on-Demand and Shuttle II Studies at NASA Langley  

NASA Technical Reports Server (NTRS)

This paper reviews advanced space transportation studies that have been conducted at the Langley Research Center recently. The Orbit-on-Demand Vehicle Study focused on concepts capable of rapid launch. The Shuttle II Study considered concepts with the potential to reduce the cost of transportation to orbit for payloads in the Shuttle class or less.

Martin, James A.; Eldred, Charles H.

1987-01-01

288

A description of the Langley wireframe geometry standard (LaWGS) format  

NASA Technical Reports Server (NTRS)

The background leading to the adoption of a Langley Research Center wireframe geometry format standard, a detailed description of the standard, and recommendations for use of the standard is given. The standard chosen is flexible enough to describe almost any complex shape.

Craidon, C. B.

1985-01-01

289

The NASA Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

The Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) was placed in operation at NASA's Langley Research Center in 1973. This facility was the world's first cryogenic pressure tunnel. The 0.3-m TCT can operate from ambient to cryogenic temperatures at absolute pressures ranging from about 1 to 6 atmospheres. Three major test section concepts were developed and refined in this unique facility. The 0.3-m TCT was a leader in the evolution of cryogenic pressure wind tunnel test techniques, instrumentation, control strategy and model technology. An overview is presented of the evolution and 15 years of experience with the 0.3-m TCT. The historical background concentrates on the technical challenges and proof-of-concept validations during the establishment of the first cryogenic pressure wind tunnel. The various test section concepts are described. Highlights of operational experience and test results determined from these first time exploratory tests are presented. Operating costs and effective test techniques for the 0.3-m TCT are discussed. Finally, current and future plans for the facility are presented.

Ray, Edward J.

1989-01-01

290

Bathtub vortex induced by instability.  

PubMed

The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic. PMID:25375427

Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

2014-10-01

291

Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

Erickson, Gary E.

2007-01-01

292

Model-Based Systems Engineering Pilot Program at NASA Langley  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

2012-01-01

293

Aeroelastic model helicopter rotor testing in the Langley TDT  

NASA Technical Reports Server (NTRS)

Wind-tunnel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design development of new or existing rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the NASA Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of Freon as a test medium. A description of the TDT and a discussion of the benefits of using Freon as a test medium are presented. A description of the model test bed used, the Aeroelastic Rotor Experimental System (ARES), is also provided and examples of recent rotor tests are cited to illustrate the advantages and capabilities of aeroelastic model rotor testing in the TDT. The importance of proper dynamic scaling in identifying and solving rotorcraft aeroelastic problems, and the importance of aeroelastic testing of model rotor systems in the design of advanced rotor systems are demonstrated.

Mantay, W. R.; Yeager, W. T., Jr.; Hamouda, M. N.; Cramer, R. G., Jr.; Langston, C. W.

1985-01-01

294

NASA Langley Trajectory Simulation Capabilities for Mars Reconnaissance Orbiter  

NASA Technical Reports Server (NTRS)

Mars Reconnaissance Orbiter will launch in August 2005 and will achieve Mars Orbit Insertion in March of 2006. It will then take approximately six months to use the process of aerobraking to shape its orbit into the desired science mapping orbit. This six-month period is arguably the phase of the Mars Reconnaissance Orbiter mission with the highest risk to the spacecraft, dipping to within 100 km of the planet. This process requires enough atmospheric drag to slow the spacecraft and circularize the orbit while remaining high enough in the Mars atmosphere as to not risk thermal degradation of spacecraft components. This paper will discuss the trajectory simulation and several analyses performed at NASA Langley Research Center to support a successful aerobraking phase of the Mars Reconnaissance Orbiter mission.

Prince, Jill L. Hanna; Striepe, Scott A.

2005-01-01

295

Passive Wake Vortex Control  

SciTech Connect

The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept works by placing shape memory alloy (SMA) control surfaces on the submarine's diving planes and periodically oscillating them. The modulated control vortices generated by these surfaces interact with the tip vortices on the diving planes, causing an instability to rapidly occur. Though several numerical simulations have been presented, experimental verification does not appear to be available in the open literature. The authors address this problem through a concept called passive wake vortex control (PWVC), which has been demonstrated to rapidly break apart a trailing vortex wake and render it incoherent. PWVC functions by introducing unequal strength, counter-rotating control vortices next to the tip vortices. The presence of these control vortices destabilizes the vortex wake and produces a rapidly growing wake instability.

Ortega, J M

2001-10-18

296

A user's guide to the Langley 16- by 24-inch water tunnel  

NASA Technical Reports Server (NTRS)

The Langley 16 x 24 inch Water Tunnel is described in detail, along with all the supporting equipment used in its operation as a flow visualization test facility. These include the laser and incandescent lighting systems; and the photographic, video, and laser fluorescence anemometer systems used to make permanent records of the test results. This facility is a closed return water tunnel capable of test section velocities from 0 to 0.75 feet per second with flow through the 16 x 24 inch test section in a downward (vertical) direction. The velocity normally used for testing is 0.25 feet per second where the most uniform flow occurs, and is slow enough to easily observe flow phenomena such as vortex flow with the unaided eye. An overview is given of the operational characteristics, procedures, and capabilities of the water tunnel to potential users of the facility so that they may determine if the facility meets their needs for a planned study.

Pendergraft, Odis C., Jr.; Neuhart, Dan H.; Kariya, Timmy T.

1992-01-01

297

Vortex transmutation.  

PubMed

Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials. PMID:16197074

Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

2005-09-16

298

Vortex centrifugal bubbling reactor  

Microsoft Academic Search

The vortex centrifugal bubbling apparatus is considered as a basis for a new type of multiphase vortex centrifugal bubbling reactor. In this device, a highly dispersed gas–liquid mixture is produced in the field of centrifugal forces inside the vortex chamber. The operation of the vortex centrifugal bubbling apparatus is based on the rotation of liquid by the tangential entry of

A. O. Kuzmin; M. Kh. Pravdina; A. I. Yavorsky; N. I. Yavorsky; V. N. Parmon

2005-01-01

299

Practical Application of NASA-Langley Advanced Satellite Products to In-Flight Icing Nowcasts  

NASA Technical Reports Server (NTRS)

Experimental satellite-based icing products developed by the NASA Langley Research Center provide new tools to identify the locations of icing and its intensity. Since 1997, research forecasters at the National Center for Atmospheric Research (NCAR) have been helping to guide the NASA Glenn Research Center's Twin Otter aircraft into and out of clouds and precipitation for the purpose of characterizing in-flight icing conditions, including supercooled large drops, the accretions that result from such encounters and their effect on aircraft performance. Since the winter of 2003-04, the NASA Langley satellite products have been evaluated as part of this process, and are being considered as an input to NCAR s automated Current Icing Potential (CIP) products. This has already been accomplished for a relatively straightforward icing event, but many icing events have much more complex characteristics, providing additional challenges to all icing diagnosis tools. In this paper, four icing events with a variety of characteristics will be examined, with a focus on the NASA Langley satellite retrievals that were available in real time and their implications for icing nowcasting and potential applications in CIP.

Bernstein, Ben C.; Wolff, Cory A.; Minnis, Patrick

2006-01-01

300

Reverberation Time Measurements in the NASA Langley Exterior Effects Room (EER)  

NASA Technical Reports Server (NTRS)

One-third octave band background noise and reverberation time measurements were conducted in the Exterior Effect Room (EER) at the NASA Langley Research Center. The related overall acoustic absorption of the room was calculated. The acoustic field in the room was characterized. Reverberation time measurements were performed using the integrated impulse response method. The results were compared with independent measurements using the interrupted noise reverberation time method and different instrumentation. Reasonable agreement was obtained between the reverberation times of the two methods.

Grosveld, Ferdinand W.

2006-01-01

301

NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites  

NASA Technical Reports Server (NTRS)

At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.

Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.; Chang, Fu-Lung; Smith, William L, Jr.

2006-01-01

302

Airflow Research  

NASA Technical Reports Server (NTRS)

This is an overview of research being done in laminar flow at Ames Dryden Flight Research Center and Langley Research Center. Airflow research at Ames Dryden has resulted in a special wing covering that will artificially induce laminar flow on the wing surface; this specially adapted wing is shown being tested in different flying conditions. This video also features research done at Langley in producing a chemical covering for wings that will make visible natural laminar flow and turbulent airflow patterns as they occur. Langley researchers explain possible use of this technology in supersonic flight.

1985-01-01

303

Holographic Flow Visualization at NASA Langley  

NASA Technical Reports Server (NTRS)

Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadow-graph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With pulse separation, one pulse can occur before and one after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

Burner, A. W.; Goad, W. K.

2005-01-01

304

Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer  

NASA Technical Reports Server (NTRS)

The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.

Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

1994-01-01

305

Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications  

NASA Technical Reports Server (NTRS)

Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

Bryant, Robert G.

2007-01-01

306

LDEF polymeric materials: A summary of Langley characterization  

NASA Technical Reports Server (NTRS)

The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

1995-01-01

307

Microscopic theory of vortex dynamics  

NASA Astrophysics Data System (ADS)

An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.

Gaitonde, D. M.; Ramakrishnan, T. V.

1994-12-01

308

Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster  

NASA Technical Reports Server (NTRS)

NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

2004-01-01

309

The Design of a High-Q, MACH-5 Nozzle for the Langley 8-Foot HTT  

NASA Technical Reports Server (NTRS)

A new nozzle has ben designed for the NASA Langley Research Center 8-Foot High Temperature Tunnel. The new nozzle was designed with a Mach-5 exit flow at a Mach-5 flight-enthalpy test condition and has a smaller throat area than the existing Mach-5 nozzle which significantly increases the range of dynamic pressures that can be achieved in the facility. The nozzle was designed using the NASA Langley IMOCND computer program which solves the potential equation using the classical method of characteristics. Several axisymmetric nozzle contours were generated and evaluated using viscous computational fluid dynamics. A number of items were considered in the evaluation, including flow uniformity, thermal and structural design, manufacturing schedule and cost. Once the final contour was selected, studies were done to determine the effects of manufacturing irregularities (steps and cavities at joints). These studies were done to develop manufacturing specifications and assembly tolerances.

Gaffey, Richard L., Jr.; Stewart, Brian K.; Harvin, Stephen F.

2006-01-01

310

Prediction and control of vortex-dominated and vortex-wake flows  

NASA Technical Reports Server (NTRS)

This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

Kandil, Osama

1993-01-01

311

The 1987 Ground Vortex Workshop  

NASA Technical Reports Server (NTRS)

The purpose of this workshop was to discuss the current understanding of the ground vortex phenomena and their effects on aircraft, and to establish directions for further research on advanced, high-performance aircraft designs, particularly those concepts utilizing powered-lift systems; e.g., V/STOL. ASTOVL, and STOL aircraft.

Margason, Richard J. (editor)

1988-01-01

312

Magnetic Vortex Based Transistor Operations  

PubMed Central

Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

Kumar, D.; Barman, S.; Barman, A.

2014-01-01

313

PREFACE: Special section on vortex rings Special section on vortex rings  

NASA Astrophysics Data System (ADS)

This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)

Fukumoto, Yasuhide

2009-10-01

314

The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection  

NASA Technical Reports Server (NTRS)

This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be considered. It is concluded that a RASS system, developed for the specific application of wake vortex detection, could become part of a robust Aircraft Vortex Spacing System (AVOSS). This system, in turn, could contribute to Reduced Spacing Operations (RSO) in US airports and improvements in Terminal Area productivity (TAP).

Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

2004-01-01

315

Lunar Lander Structural Design Studies at NASA Langley  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration is currently developing mission architectures, vehicle concepts and flight hardware to support the planned human return to the Moon. During Phase II of the 2006 Lunar Lander Preparatory Study, a team from the Langley Research Center was tasked with developing and refining two proposed Lander concepts. The Descent-Assisted, Split Habitat Lander concept uses a disposable braking stage to perform the lunar orbit insertion maneuver and most of the descent from lunar orbit to the surface. The second concept, the Cargo Star Horizontal Lander, carries ascent loads along its longitudinal axis, and is then rotated in flight so that its main engines (mounted perpendicular to the vehicle longitudinal axis) are correctly oriented for lunar orbit insertion and a horizontal landing. Both Landers have separate crew transport volumes and habitats for surface operations, and allow placement of large cargo elements very close to the lunar surface. As part of this study, lightweight, efficient structural configurations for these spacecraft were proposed and evaluated. Vehicle structural configurations were first developed, and preliminary structural sizing was then performed using finite element-based methods. Results of selected structural design and trade studies performed during this activity are presented and discussed.

Wu, K. Chauncey; Antol, Jeffrey; Watson, Judith J.; Flick, John J.; Saucillo, Rudolph J.; Mazanek, Daniel D.; North, David D.

2007-01-01

316

Analysis and Design of the NASA Langley Cryogenic Pressure Box  

NASA Technical Reports Server (NTRS)

A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

1999-01-01

317

The Fight Deck Perspective of the NASA Langley AILS Concept  

NASA Technical Reports Server (NTRS)

Many US airports depend on parallel runway operations to meet the growing demand for day to day operations. In the current airspace system, Instrument Meteorological Conditions (IMC) reduce the capacity of close parallel runway operations; that is, runways spaced closer than 4300 ft. These capacity losses can result in landing delays causing inconveniences to the traveling public, interruptions in commerce, and increased operating costs to the airlines. This document presents the flight deck perspective component of the Airborne Information for Lateral Spacing (AILS) approaches to close parallel runways in IMC. It represents the ideas the NASA Langley Research Center (LaRC) AILS Development Team envisions to integrate a number of components and procedures into a workable system for conducting close parallel runway approaches. An initial documentation of the aspects of this concept was sponsored by LaRC and completed in 1996. Since that time a number of the aspects have evolved to a more mature state. This paper is an update of the earlier documentation.

Rine, Laura L.; Abbott, Terence S.; Lohr, Gary W.; Elliott, Dawn M.; Waller, Marvin C.; Perry, R. Brad

2000-01-01

318

The atmospheric vortex engine  

Microsoft Academic Search

Mechanical energy is produced when heat is carried upward by convection in the atmosphere. An atmospheric vortex engine (AVE) uses an artificially created anchored tornado like vortex to capture the mechanical energy produced during upward heat convection. The vortex is created by admitting warm or humid air tangentially into the base of a circular wall. The heat source can be

Louis M. Michaud

2009-01-01

319

Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields  

NASA Technical Reports Server (NTRS)

Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

Erickson, Gary E.

2010-01-01

320

Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields  

NASA Technical Reports Server (NTRS)

Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

Erickson, Gary E.

2008-01-01

321

Superfluid Vortex Cooler  

NASA Astrophysics Data System (ADS)

A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

2004-06-01

322

Aircraft control in wake vortex wind shear  

NASA Technical Reports Server (NTRS)

In the past, there have been a number of fatal incidents attributable to wake vortex encounters, involving both general aviation and commercial aircraft. In fact, the wake vortex hazard is considered to be the single dominant safety issue determining the aircraft spacing requirements at airports. As the amount of air traffic increases, the number of dangerous encounters is likely only to increase. It is therefore imperative that a means be found to reduce the danger. That is the purpose of this research: to use nonlinear inverse dynamic (NID) control methods in the design of an aircraft control system which can improve the safety margin in a wake vortex encounter.

Wold, Gregory R.

1995-01-01

323

Vortex meter designing: Simulation or laboratory investigations?  

NASA Astrophysics Data System (ADS)

Considerations concerned the problem pointed out in the title of the article are presented. Results of laboratory investigations of the vortex shedding phenomenon, with application of various research methods are described. During the tests the specific discoveries of the phenomenon properties were made. In the article the problems and threats related to the numerical simulation of von Karman vortex street phenomenon are discussed. Conditions of successful numerical simulation are specified.

Pankanin, Grzegorz L.

2013-10-01

324

Wake vortex characteristics of transport aircraft  

NASA Astrophysics Data System (ADS)

The flow and flight physics of wake vortex systems has been intensively investigated concentrating on a large variety of aspects. This paper gives a brief overview on past and present wake vortex research activities such as early studies, integrated programs, model and flight tests, numerical investigations, fundamental physical aspects and alleviation strategies. Then, detailed results of the properties of the wake near field and extended near field are presented addressing typical length and time scales and especially turbulence quantities. Progressing from the near field to the far field wake instability mechanisms are explained along with their relevance for wake vortex decay. Characteristic quantities are given for the short and long wave instabilities associated with vortex merging and wakes consisting of two and four trailing vortices. A non-dimensional frequency parameter is introduced to classify the main instability types. Means for wake vortex alleviation are described aimed at influencing the wake vortex turbulence field or triggering and amplifying the inherent instabilities. The methods discussed include passive means such as the effects of spoilers, differential flap setting and four-vortex systems and active means using oscillating flaps or auxiliary devices.

Breitsamter, C.

2011-02-01

325

Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities  

NASA Technical Reports Server (NTRS)

Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

Micol, J. R.

1998-01-01

326

Research and technology  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to engage in the basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This Langley Research Center 1985 Annual Report on Research and Technology contains highlights of major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

1985-01-01

327

Propeller tip vortex interactions  

NASA Technical Reports Server (NTRS)

Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

Johnston, Robert T.; Sullivan, John P.

1990-01-01

328

Experimental Investigation of the Flow about a 65 deg Delta Wing in the NASA Langley National Transonic Facility. Chapter 4  

NASA Technical Reports Server (NTRS)

An experimental investigation for the flow about a 65 deg. delta wing has been conducted in the NASA Langley National Transonic Facility (NTF). The tests were conducted at Reynolds numbers, based on the mean aerodynamic chord, ranging from 6 million to 120 million and at Mach numbers ranging from 0.4 to 0.9. The model incorporated four different leading-edge bluntness values. The data include detailed static surfacepressure distributions as well as normal-force and pitching-moment coefficients. The test program was designed to quantify the effects of Mach number, Reynolds number, and leading-edge bluntness on the onset and progression of leading-edge vortex separation.

Luckring, James M.

2009-01-01

329

On the Genealogy of Asexual Diploids , Charles H. Langley2  

E-print Network

. 1 Introduction Reproduction in asexual organisms usually is less costly than that in sexualOn the Genealogy of Asexual Diploids Fumei Lam1 , Charles H. Langley2 , and Yun S. Song3,4 1 genetic data from diploid individuals that, at present, reproduce mostly or exclusively asexually without

Slatkin, Montgomery

330

Lfm2000: Fifth NASA Langley Formal Methods Workshop  

NASA Technical Reports Server (NTRS)

This is the proceedings of Lfm2000: Fifth NASA Langley Formal Methods Workshop. The workshop was held June 13-15, 2000, in Williamsburg, Virginia. See the web site for complete information about the event.

Holloway, C. Michael (Compiler)

2000-01-01

331

Submarine in Full Scale Tunnel at NACA Langley  

NASA Technical Reports Server (NTRS)

In 1950 Langley tested the drag characteristics of what was then the world's fastest submarine, the Albacore, in the 30 x 60 Full Scale Tunnel. Water and air are both essentially fluids of different densities. Air traveling at high speed can simulate water traveling at lower speed for many purposes.

1958-01-01

332

A description and some measured acoustic characteristics of the Langley 220 cubic meter reverberation chamber  

NASA Technical Reports Server (NTRS)

An initial acoustic calibration was performed for the NASA Langley Research Center reverberation chamber located on the aircraft Noise Reduction Laboratory. The physical characteristics of the chamber and measured data for the ambient acoustic levels, reverberation times, reflection coefficients, the spatial uniformity of acoustic energy as measured in the 1/3-octave bands from 40 Hz to 10 KHz and acoustic power levels of a standard source are described. Measured power levels compared very well with those published for the ILG standard source. The measured data indicate that for broadband noise fields, the reverberation room has acceptable acoustic performance in the frequency range from 100 Hz to 8 KHz.

Mueller, A. W.

1975-01-01

333

Wake vortex technology  

NASA Technical Reports Server (NTRS)

A brief overview of the highlights of NASA's wake vortex minimization program is presented. The significant results of this program are summarized as follows: (1) it is technically feasible to reduce significantly the rolling upset created on a trailing aircraft; (2) the basic principles or methods by which reduction in the vortex strength can be achieved have been identified; and (3) an analytical capability for investigating aircraft vortex wakes has been developed.

Dunham, R. E., Jr.; Barber, M. R.; Croom, D. R.

1978-01-01

334

Rotor blade vortex interaction noise  

NASA Astrophysics Data System (ADS)

Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

Yu, Yung H.

2000-02-01

335

Vortex ring impingement and particle suspension  

NASA Astrophysics Data System (ADS)

Previous research has shown that the impact of a vortex ring with a solid surface can dislodge particles attached to that surface and suspend them in the surrounding fluid. A possible use for this phenomenon arises in the detection of trace explosives on clothing and belongings: Once liberated from the surface, suspended particles can be collected and interrogated. The current technology successfully uses round turbulent jets for this purpose, but also generates a large concomitant airflow due to entrainment. Here we present the results of initial experiments to construct vortex-ring generators producing a similar particle release from surfaces with much less entrainment than jets. A discussion of vortex-ring-generator design issues and semi-quantitative flow visualization results will be presented. Both normal and oblique vortex-ring impacts are considered.

Staymates, Matthew

2005-11-01

336

HART-II: Prediction of Blade-Vortex Interaction Loading  

NASA Technical Reports Server (NTRS)

During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

2003-01-01

337

Scientist Examines Tornado Vortex  

NASA Technical Reports Server (NTRS)

In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

1999-01-01

338

A review of steps taken to create an international virtual laboratory at NASA Langley for aerodynamic prediction and comparison  

Microsoft Academic Search

A review of the steps taken to establish an international virtual laboratory (VL) at the NASA Langley Research Center for aerodynamic prediction and comparison of flight data in the post-09\\/11\\/2001 cyber-terrorist environment is detailed here. The key features of the VL include an intuitive, web-based user interface for ease of access, a secure high-speed Internet connection between browser and server,

John E Lamar; Catherine K Cronin; Laura E Scott

2004-01-01

339

NASA. Langley Research Center dry powder towpreg system  

NASA Technical Reports Server (NTRS)

Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.

Baucom, Robert M.; Marchello, Joseph M.

1990-01-01

340

Evaluating of NASA-Langley Research Center explosion seam welding  

NASA Technical Reports Server (NTRS)

An explosion bonding technique to meet current fabrication requirements was demonstrated. A test program was conducted on explosion bonded joints, compared to fusion joints in 6061-T6 aluminum. The comparison was made in required fixtures, non-destructive testing, static strength and fatigue strength.

Otto, H. E.; Wittman, R.

1977-01-01

341

Vortex control: Further encounters  

NASA Technical Reports Server (NTRS)

The progress of continuing investigations on vortex control techniques is updated. The following topics are briefly discussed: (1) vortex flaps adapted for high-alpha control; (2) alleviation of leading edge extension (LEX) vortex induced twin-tail buffet; (3) controlled decoupling of interactive forebody chine and wing vortices; (4) forebody vortex manipulation by mechanical and pneumatic techniques; and (5) stall-departure alleviation of high aspect-ratio wings. Salient results of exploratory low speed wind tunned experiments are presented. The investigations, primarily aimed at concept validation, were performed on generic configurations utilizing flow visualizations and pressure and balance measurements. Selected results illustrate the efficacy and potential for development of specific vortex control concepts for improved high-alpha configuration aerodynamics.

Rao, Dhanvada M.

1991-01-01

342

Microscopic Investigation of Vortex-Vortex Interaction in Conventional Superconductors  

NASA Astrophysics Data System (ADS)

Quasi-particle structures around a pair of vortices and its effect on the vortex-vortex interaction are investigated. For this purpose, a new numerical method is developed. This method uses the elliptic coordinate and (modified) Mathieu functions. Using this method and solving the Bogoliubov-de Gennes equation, we analyse how quasi-particle structures change with the vortex-vortex distance.

Kato, Masaru; Niwa, Yuhei

2012-12-01

343

Microscopic theory of vortex dynamics  

Microsoft Academic Search

An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed. Partly supported by IFCPAR

D. M. Gaitonde; T. V. Ramakrishnan

1994-01-01

344

Acoustic emissions by vortex motions  

Microsoft Academic Search

Consideration is given to acoustic emission by vortex motions. The following cases are presented as illustrative examples: (1) the head-on collision of two vortex rings, (2) a vortex ring moving near a circular cylinder, and (3) a vortex ring moving near a sharp edge of a semiinfinite plate. Experimental power laws of the acoustic pressure amplitude versus the translation speed

T. Kambe

1986-01-01

345

Holographic flow visualization at the Langley CF4 tunnel  

NASA Technical Reports Server (NTRS)

A holographic flow visualization system was used to obtain shadowgraph, schlieren, and interferograms of the flow field at Langley's hypersonic (Mach 6) CF4 tunnel. The dual hologram technique which was used makes it possible to vary focusing, knife-edge position, and the orientation and spacing of the interference fringes after a tunnel run. The experimental arrangement necessary to produce high quality interferograms is discussed. Typical shadowgraphs, schlieren pictures, and interferograms are presented.

Burner, A. W.; Midden, R. E.

1977-01-01

346

CALIPSO Data at the NASA Langley Atmospheric Science Data Center  

Microsoft Academic Search

The NASA Langley Atmospheric Science Data Center (ASDC) is the archive and distribution center for data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument. CALIPSO was launched into a sun-synchronous orbit on April 28, 2006, where it joined the A-Train constellation of four other Earth-orbiting satellites: Aqua, Aura, CloudSat and PARASOL. The primary objective of CALIPSO's three-year

L. A. Hunt; C. R. Trepte; M. T. Ferebee

2006-01-01

347

LDA seeding system for the Langley Low Turbulence Pressure Tunnel  

Microsoft Academic Search

A Laser Velocimetry (LV) seeding system was specifically developed for the Langley Low Turbulence Wind Tunnel (LTPT), and it has been successfully used for LV measurements in two major tests (Juncture Flow Experiment and Gortler Experiment). The LTPT is capable of operating at Mach numbers from 0.05 to 0.50 and unit Reynolds numbers from 100,000 to 15,000,000 per foot. The

J. Scheiman; L. R. Kubendran

1985-01-01

348

Evaluation of uncertainty in a vortex flowmeter measurement  

Microsoft Academic Search

Measurement results of all quantities are inevitably subject to uncertainties. Proper estimation and expression of uncertainties are important to every domain of scientific and engineering researches. In this paper, the uncertainty of a vortex flowmeter was evaluated based on a novel mathematical measurement model and airflow experiment results. The proposed model was featured by regarding the vortex flowmeter and its

Zhiqiang Sun; Hongjian Zhang; Jiemin Zhou

2008-01-01

349

Heat Transfer Enhancement in Separated and Vortex Flows  

Microsoft Academic Search

This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer

Richard J. Goldstein

2004-01-01

350

Langley Ground Facilities and Testing in the 21st Century  

NASA Technical Reports Server (NTRS)

A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.

Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.

2010-01-01

351

Development of a nonlinear vortex method. [steady and unsteady aerodynamic loads of highly sweptback wings  

NASA Technical Reports Server (NTRS)

Progress is reported in the development of reliable nonlinear vortex methods for predicting the steady and unsteady aerodynamic loads of highly sweptback wings at large angles of attack. Abstracts of the papers, talks, and theses produced through this research are included. The modified nonlinear discrete vortex method and the nonlinear hybrid vortex method are highlighted.

Kandil, O. A.

1981-01-01

352

Investigation of Vortex Flaps and Other Flow Control Devices on Generic High-Speed Civil Transport Planforms  

NASA Technical Reports Server (NTRS)

A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.

Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.

1999-01-01

353

Vortex crystals in fluids  

NASA Astrophysics Data System (ADS)

It is common in geophysical flows to observe localized regions of enhanced vorticity. This observation can be used to derive model equations to describe the motion and interaction of these localized regions, or vortices, and which are simpler than the original PDEs. The best known vortex model is derived from the incompressible Euler equations, and treats vortices as points in the plane. A large part of this dissertation utilizes this particular model, but we also survey other point vortex and weakly viscous models. The main focus of this thesis is an object known as the vortex crystal. These remarkable configurations of vortices maintain their basic shapes for long times, while perhaps rotating or translating rigidly in space. We study existence and stability of families of vortex crystals in the special case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stability. Whenever a critical point of this function is nondegenerate, we prove that the orbit can be continued via the Implicit Function Theorem, and its linear stability is determined by the eigenvalues of the Hessian matrix of the potential. For general N, we find at least three distinct families of critical points, one of which continues to a linearly stable class of vortex crystals. Because the stable family is most likely to be observed in nature, we study it extensively. Continuation methods allow us to follow these critical points to nonzero weak vortex strength and investigate stability and bifurcations. In the large N limit of this family, we prove that there is a unique one parameter family of distributions which minimize a "generalized" potential. Finally, we use point vortex and weakly viscous vortex models to analyze vortex crystal configurations observed in hurricane eyes and related numerical simulations. We find striking numerical and analytical agreement, thus validating the use of simplified vortex models to describe geophysical phenomena.

Barry, Anna M.

354

X-33 Model Tested In Langley's 20-Inch Mach 6 Tunnel  

NASA Technical Reports Server (NTRS)

Thomas Horvath of Langley's Aerothermodynamics Branch examines the surface of a model of the X-33 prior to testing in the 20-Inch Mach 6 Air Wind Tunnel at NASA Langley Research Center. The tests, held during the month of September 1997, were conducted to determine aeroheating characteristics of the X-33. The X-33 vehicle will consist of a lifting body airframe with two cryogenic propellant tanks (liquid hydrogen, LH2, and liquid oxygen, LOX) placed within the aeroshell. The vehicle will have two linear aerospike main engines. The X-33 Design and Flight Demonstration Program key objectives are to reduce business and technical risks to privately finance development and operation of a next-generation space transportation system through ground and flight tests of a spaceplane technology demonstrator, ensure that the X-33 design and major components are usable and scaleable to a full-scale, single-stage-orbit reusable launch vehicle (RLV), demonstrate autonomous capability from takeoff to landing, and verify operability and performance in 'real world' environments.

1997-01-01

355

X-33 Model Tested In Langley's 20-Inch Mach 6 Tunnel  

NASA Technical Reports Server (NTRS)

Thomas Horvath of Langley's Aerothermodynamics Branch uses digital instrumentation to set the angle of attack on a model of the X-33 prior to a wind tunnel test run in the 20-Inch Mach 6 Air Wind Tunnel at NASA Langley Research Center. The tests, held during the month of September 1997, were conducted to determine aeroheating characteristics of the X-33. The X-33 vehicle will consist of a lifting body airframe with two cryogenic propellant tanks (liquid hydrogen, LH2, and liquid oxygen, LOX) placed within the aeroshell. The vehicle will have two linear aerospike main engines. The X-33 Design and Flight Demonstration Program key objectives are to reduce business and technical risks to privately finance development and operation of a next-generation space transportation system through ground and flight tests of a spaceplane technology demonstrator, ensure that the X-33 design and major components are usable and scaleable to a full-scale, single-stage-orbit reusable launch vehicle (RLV), demonstrate autonomous capability from takeoff to landing, and verify operability and performance in 'real world' environments.

1997-01-01

356

Wave-vortex interaction.  

PubMed

We present an experimental study of the effect of an electromagnetically generated vortex flow on parametrically amplified waves at the surface of a vertically vibrated fluid layer. The underlying vortex flow, generated by a periodic Lorentz force, creates spatiotemporal fluctuations that nonlinearly interact with the standing surface waves. We measure the power spectral density of the surface wave amplitude and we characterize the bifurcation diagram by recording the subharmonic response of the surface to the external vibration. We show that the parametric instability is delayed in the presence of spatiotemporal fluctuations due to the vortex flow. In addition, the dependence of the amplitude of the subharmonic response on the distance to the instability threshold is modified. This shows that the nonlinear saturation mechanism of the waves is modified by the vortex flow. PMID:20365066

Falcón, Claudio; Fauve, Stéphan

2009-11-01

357

Wingtip vortex turbine  

NASA Technical Reports Server (NTRS)

A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.

Patterson, James C., Jr. (inventor)

1990-01-01

358

Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel  

NASA Technical Reports Server (NTRS)

Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

Reed, W. H., III

1981-01-01

359

Acoustic reflection contamination measurements in the 16-foot NASA Langley Transonic Wind Tunnel  

NASA Technical Reports Server (NTRS)

The Propfan Test Assessment (PTA) contract, awarded recently to Lockheed by the NASA-Lewis Research Center, required a comprehesive series of near field acoustic measurements. These were to use transducers mounted on the surfaces on a one-ninth scale model of the Gulfstream G-II aircraft, modified to the PTA single propfan testbed configuration. The 16-foot Transonic Wind Tunnel at the NASA Langley Research Center was chosen as the facility to be used for these model acoustic tests. Since the tunnel was hard-walled, it is not clear to what extent the propfan noise signals, reaching the various transducers, might be contaminated by reflections from the walls. A Multidriver Acoustic Source was built, and using an impulse and time domain averaging technique, the reflection contaminations in the wind tunnel were measured at selected microphone locations. Results of the investigations of near field measurements exists, due to reflections from the hard walls of the wind tunnnel.

Burrin, R. H.; Salikuddin, M.; Ahuja, K. K.; Bartel, H. W.

1986-01-01

360

Atmospheric-wake vortex interactions  

NASA Technical Reports Server (NTRS)

The interactions of a vortex wake with a turbulent stratified atmosphere are investigated with the computer code WAKE. It is shown that atmospheric shear, turbulence, and stratification can provide the dominant mechanisms by which vortex wakes decay. Computations included the interaction of a vortex wake with a viscous ground plane. The observed phenomenon of vortex bounce is explained in terms of secondary vorticity produced on the ground. This vorticity is swept off the ground and advected about the vortex pair, thereby altering the classic hyperbolic trajectory. The phenomenon of the solitary vortex is explained as an interaction of a vortex with crosswind shear. Here, the vortex having the sign opposite that of the sign of the vorticity in the shear is dispersed by a convective instability. This instability results in the rapid production of turbulence which in turn disperses the smoke marking the vortex.

Bilanin, A. J.; Hirsh, J. E.; Teske, M. E.; Hecht, A. M.

1978-01-01

361

Updated Results for the Wake Vortex Inverse Model  

NASA Technical Reports Server (NTRS)

NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

2008-01-01

362

Vortex wake alleviation studies with a variable twist wing  

NASA Technical Reports Server (NTRS)

Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

1985-01-01

363

Langley 16- Ft. Transonic Tunnel Pressure Sensitive Paint System  

NASA Technical Reports Server (NTRS)

This report describes the NASA Langley 16-Ft. Transonic Tunnel Pressure Sensitive Paint (PSP) System and presents results of a test conducted June 22-23, 2000 in the tunnel to validate the PSP system. The PSP system provides global surface pressure measurements on wind tunnel models. The system was developed and installed by PSP Team personnel of the Instrumentation Systems Development Branch and the Advanced Measurement and Diagnostics Branch. A discussion of the results of the validation test follows a description of the system and a description of the test.

Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Leighty, Bradley D.; Carmine, Michael T.; Sealey, Bradley S.; Burkett, Cecil G.

2001-01-01

364

Operating characteristics of the Langley Mach 7 Scramjet Test Facility  

NASA Technical Reports Server (NTRS)

Operating characteristics of the Langley Mach 7 Scramjet Test Facility are described. The facility is designed for testing airframe integrated scramjet (supersonic combustion ramjet) engine models. Features include duplication of the flight Mach number total enthalpy, flight altitude simulation, and simulation of engine airframe integration effects such a bow shock wave precompression and boundary layer ingestion by the engine. Data obtained from facility calibration and from tests of a hydrogen burning, airframe integrated scramjet are discussed. An adverse interaction between the facility flow and the scramjet engine flow during combustion of the fuel is described.

Guy, R. W.; Torrence, M. G.; Sabol, A. P.; Mueller, J. N.

1981-01-01

365

Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Airplane During Wake Vortex Encounters  

NASA Technical Reports Server (NTRS)

Aircraft travel has become a major form of transportation. Several of our major airports are operating near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity without sacrificing public safety. One solution to the problem is to increase the number of airports and build new. runways; yet, this solution is becoming increasingly difficult due to limited space. A better solution is to increase the production per runway. This solution increases the possibility that one aircraft will encounter the trailing wake of another aircraft. Hazardous wake vortex encounters occur when an aircraft encounters the wake produced by a heavier aircraft. This heavy-load aircraft produces high-intensity wake turbulence that redistributes the aerodynamic loads of trailing smaller aircraft. This situation is particularly hazardous for smaller aircraft during takeoffs and landings. In order to gain a better understanding of the wake-vortex/aircraft encounter phenomena, NASA Langley Research Center conducted a series of flight tests from 1995 through 1997. These tests were designed to gather data for the development a wake encounter and wake-measurement data set with the accompanying atmospheric state information. This data set is being compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results. The purpose of this research is to derive and implement a procedure for calculating the wake-vortex/aircraft interaction portion of that database by using the data recorded during those flight tests. There were three objectives to this research. Initially, the wake-induced forces and moments from each flight were analyzed based on varying flap deflection angles. The flap setting alternated between 15 and 30 degrees while the separation distance remained constant. This examination was performed to determine if increases in flap deflection would increase or decrease the effects of the wake-induced forces and moments. Next, the wake-induced forces and moments from each flight were analyzed based on separation distances of 1-3 nautical miles. In this comparison, flap deflection was held constant at 30 degrees. The purpose of this study was to determine if increased separation distances reduced the effects of the wake vortex on the aircraft. The last objective compared the wake-induced forces and moments of each flight as it executed a series of maneuvers through the wake-vortex. This analysis was conducted to examine the impact of the wake on the B737 as it traversed the wake horizontally and vertically. Results from the first analysis indicated that there was no difference in wake effect at flap deflections of 15 and 30 degrees. This conclusion is evidenced in the cases of the wake-induced sideforce, rolling moment, and yawing moment. The wake-induced lift, drag, and pitching moment cases yielded less conclusive results. The second analysis compared the wake-induced forces and moments at separation distances of 1-3 nautical miles. Results indicated that there was no significant difference in the wake-induced lift, drag, sideforce, or yawing moment coefficients. The analysis compared the wake-induced forces and moments based on different flight maneuvers. It was found that the wake-induced forces and moments had the greatest impact on out-to-in and in-to-out maneuvers.

Roberts, Chistopher L.

2001-01-01

366

Vortex soliton motion and steering  

NASA Astrophysics Data System (ADS)

Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

Christou, Jason; Tikhonenko, Vladimir; Kivshar, Yuri S.; Luther-Davies, Barry

1996-10-01

367

Failure detection and isolation experiments with the Langley Mini-Mast  

NASA Technical Reports Server (NTRS)

A report is presented on experiments to demonstrate failure detection and isolation (FDI) using the flexible truss facility Mini-Mast at the NASA Langley Research Center. Two techniques are selected for study because they are applicable both to sensor and actuator failures and because they do not depend on hypotheses about the forms of possible failures. These two are the method of generalized parity relations and the failure detection filter. These methods utilize the concept of analytical redundancy and therefore their performance depends on the fidelity of the model of the dynamics of the system being monitored. Results are given for sensor FDI using generalized parity relations and input-output data collected during operation of the Mini-Mast. component failures are simulated in the data. The dependence of the performance of the methods on choices of the parameters in their implementation is explored.

Vander Velde, Wallace E.; Van Schalkwyk, Christiaan M.

1990-01-01

368

Acoustical characteristics of the NASA Langley full scale wind tunnel test section  

NASA Technical Reports Server (NTRS)

The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

1975-01-01

369

Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing  

NASA Technical Reports Server (NTRS)

Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained.

Reubush, D. E.; Puster, R. L.; Kelly, H. N.

1987-01-01

370

Contributions of the Langley Transonic Dynamics Tunnel to Rotorcraft Technology and Development  

NASA Technical Reports Server (NTRS)

A historical account of the contributions of the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in the TDT are then described in separate sections. The discussions include a description of the various models employed, the specific objectives of the tests, and illustrative results.

Yeager, William T., Jr.; Kvaternik, Raymond G.

2000-01-01

371

Design requirements for the NASA Langley supersonic low-disturbance wind tunnel  

NASA Technical Reports Server (NTRS)

The high intensity, high frequency acoustic disturbances that cause large adverse boundary layer transition effects on test models in conventional supersonic wind tunnels consist of finite length wavelets radiating from eddies in the turbulent boundary layers of the wind tunnel walls. NASA Langley has undertaken 'quiet' supersonic tunnel research that demonstrates the ability to maintain laminarity at high unit Reynolds numbers on limited upstream regions of the nozzle wall boundary layers in small, Mach 3.0, 3.5, and 5.0 pilot tunnels. The high level acoustic disturbances are then eliminated, and the transition Reynolds numbers measured on cones approach those for atmospheric flight. Attention is presently given to the design requirements that can be extrapolated from these results for a large wind tunnel facility; high quality air filtering, noise attenuation, nozzle coordinate accuracy, and surface finish, are quantified with pilot tunnel data.

Beckwith, I. E.; Chen, F.-J.; Creel, T. R., Jr.

1986-01-01

372

Aeroelastic model helicopter rotor testing in the Langley TDT. [Transonic Dynamics Tunnel  

NASA Technical Reports Server (NTRS)

Wind-tunel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design development of new or existing rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the NASA Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of Freon as a test medium. A description of the TDT and a discussion of the benefits of using Freon as a test medium are presented. A description of the model test bed used, the Aeroelastic Rotor Experimental System (ARES), is also provided and examples of recent rotor tests are cited to illustrate the advantages and capabilities of aeroelastic model rotor testing in the TDT. The importance of proper dynamic scaling in identifying and solving rotorcraft aeroelastic problems, and the importance of aeroelastic testing of model rotor systems in the design of advanced rotor systems are demonstrated.

Mantay, W. R.; Yeager, W. T., Jr.; Hamouda, M.-N. H.; Cramer, R. G., Jr.; Langston, C. W.

1984-01-01

373

Summary of nonaxisymmetric nozzle internal performance from the NASA Langley Static Test Facility  

NASA Technical Reports Server (NTRS)

Early experimental work on multifunction nozzles (prior to 1978) concentrated on quantifying the isolated and installed performance of specific nozzle designs at various power settings during cruise, vectored thrust, and reverse thrust operating modes. Since 1978, however, significant effort has been expended on developing a parametric data base on nozzle internal design variables which could lead to improved internal performance and/or lower structural weight. Much of this work has been conducted in the Static Test Facility of the NASA/Langley 16-Foot Transonic Tunnel using subscale models and high pressure air to simulate jet exhaust. A review of the research effort on nonaxisymmetric multifunction nozzles along with a summary of many of the results is presented. In addition, internal performance results from subscale models tested in the Static Test Facility and from full-scale engine/nozzle tests are compared.

Leavitt, L. D.

1985-01-01

374

The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview  

NASA Technical Reports Server (NTRS)

A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

1988-01-01

375

The Acoustically Driven Vortex Cannon  

NASA Astrophysics Data System (ADS)

Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon"2 and "Airzooka."3 We will briefly discuss the uses of a vortex cannon in teaching and a new type of vortex cannon for teaching.

Perry, Spencer B.; Gee, Kent L.

2014-03-01

376

Aircraft vortex marking program  

NASA Technical Reports Server (NTRS)

A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

Pompa, M. F.

1979-01-01

377

Vortex attenuation flight experiments  

NASA Technical Reports Server (NTRS)

Flight tests evaluating the effects of altered span loading, turbulence ingestion, combinations of mass and turbulence ingestion, and combinations of altered span loading turbulance ingestion on trailed wake vortex attenuation were conducted. Span loadings were altered in flight by varying the deflections of the inboard and outboard flaps on a B-747 aircraft. Turbulence ingestion was achieved in flight by mounting splines on a C-54G aircraft. Mass and turbulence ingestion was achieved in flight by varying the thrust on the B-747 aircraft. Combinations of altered span loading and turbulence ingestion were achieved in flight by installing a spoiler on a CV-990 aircraft and by deflecting the existing spoilers on a B-747 aircraft. The characteristics of the attenuated and unattenuated vortexes were determined by probing them with smaller aircraft. Acceptable separation distances for encounters with the attenuated and unattenuated vortexes are presented.

Barber, M. R.; Hastings, E. C., Jr.; Champine, R. A.; Tymczyszyn, J. J.

1977-01-01

378

Vortex sensing - An operational review  

Microsoft Academic Search

The vortex anemometer systems considered use a vortex sensing technique to determine windspeed. An ultrasonic beam, at a frequency of approximately 150 kHz, is utilized to detect the passage of vortices created by an obstruction. The frequency of vortex formation is directly proportional to the windspeed, independent of temperature, pressure, or humidity. This frequency output is converted to an analog

D. W. Beadle

1978-01-01

379

Simulations of Active Vortex Generators  

NASA Technical Reports Server (NTRS)

We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise voracity is generated and ejected due to the oscillatory motion of the lid. The present simulations c Implement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University. Jacobson and Reynolds used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. More recently, Lachowiez and Wlezien are investigating the flow generated by an electro-mechanically driven lid to be used for assertion control in aerodynamic applications. We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin. The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands ol'particle's allow for high resolution simulations. We shall present simulation results of an oscillating plate at various Reynolds numbers and Strouhal frequencies. Estimates of the forces needed to drive the devices will also be presented.

Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)

1996-01-01

380

Simulations of Active Vortex Generators  

NASA Technical Reports Server (NTRS)

We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. we consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength Of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. We shall present simulation results of an oscillating plate at various Reynolds numbers and Strouhal frequencies.

Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)

1996-01-01

381

Entangled transverse optical vortex.  

PubMed

We discuss a new kind of optical vortex with the angular momentum perpendicular to the flow direction and entangled in that it is a coherent combination of different orbital angular momentum states of the same sign. This entangled state exhibits many unexpected physical properties. The transverse optical vortex can be generated from the reflection of an electromagnetic wave off an array of ferrite rods. Its vorticity can be reversed by switching the direction of the magnetization of the rods, which usually takes only a nanosecond. PMID:25360971

Chui, S T; Lin, Zhifang

2014-10-01

382

Vortex pairs on surfaces  

SciTech Connect

A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

Koiller, Jair [Centro de Matematica Aplicada, FGV/RJ, Praia de Botafogo 190 Rio de Janeiro, RJ, 22250-40 (Brazil); Boatto, Stefanella [Instituto de Matematica da UFRJ, C.P. 68530, Cidade Universitaria Rio de Janeiro, RJ 21945-970 (Brazil)

2009-05-06

383

Turbulent Vortex-Flow Simulation Over a 65 deg Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds  

NASA Technical Reports Server (NTRS)

Turbulent thin-layer, Reynolds-Averaged Navier-Stokes solutions, based on a multi-block structured grid, are presented for a 65 deg delta wing having either a sharp leading edge (SLE) or blunt leading edge (BLE) geometry. The primary objective of the study is to assess the prediction capability of the method for simulating the leading-edge flow separation and the ensuing vortex flow characteristics. Computational results are obtained for two angles of attack of approximately 13 and 20 deg, at free-stream Mach number of 0.40 and Reynolds number of 6 million based on the wing mean aerodynamic chord. The effects of two turbulence models of Baldwin-Lomax with Degani-Schiff (BL/DS) and the Spalart-Allmaras (SA) on the numerical results are also discussed. The computations also explore the effects of two numerical flux-splitting schemes, i.e., flux difference splitting (fds) and flux vector splitting (fvs), on the solution development and convergence characteristics. The resulting trends in solution sensitivity to grid resolution for the selected leading-edge geometries, angles of attack, turbulence models and flux splitting schemes are also presented. The validity of the numerical results is evaluated against a unique set of experimental wind-tunnel data that was obtained in the National Transonic Facility at the NASA Langley Research Center.

Ghaffari, Farhad

2005-01-01

384

Superconducting vortex pinning with artificial magnetic nanostructures.  

SciTech Connect

This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS /Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

2008-11-01

385

An experimental investigation of shock wave/vortex interaction  

NASA Astrophysics Data System (ADS)

Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave has been carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using Laser Doppler Velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e. a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self-similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, Planar Laser Scattering, and Laser Doppler Velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach-disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e. a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

Cattafesta, Louis Nicholas, III

386

Vortex Dynamics in Cerebral Aneurysms  

E-print Network

We use an autonomous three-dimensional dynamical system to study embedded vortex structures that are observed to form in computational fluid dynamic simulations of patient-specific cerebral aneurysm geometries. These structures, described by a vortex which is enclosed within a larger vortex flowing in the opposite direction, are created and destroyed in phase space as fixed points undergo saddle-node bifurcations along vortex core lines. We illustrate how saddle-node bifurcations along vortex core lines also govern the formation and evolution of embedded vortices in cerebral aneurysms under variable inflow rates during the cardiac cycle.

Byrne, Greg

2013-01-01

387

Research and technology highlights, 1993  

NASA Technical Reports Server (NTRS)

This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of the research and technology activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. This report also describes some of the Center's most important research and testing facilities.

1994-01-01

388

Experimental blade vortex interaction noise characteristics of a utility helicopter at 1/4 scale  

NASA Technical Reports Server (NTRS)

Models of both the advanced main rotor system and the standard or "baseline" UH-1 main rotor system were tested at one-quarter scale in the Langley 4- by 7-Meter (V/STOL) Tunnel using the general rotor model system. Tests were conducted over a range of descent angles which bracketed the blade-vortex interaction phenomenon for a range of simulated forward speeds. The tunnel was operated in the open-throat configuration with acoustic treatment to improve the semi-anechoic characteristics of the test chamber. Acoustical data obtained for these two rotor systems operating at similar flight conditions are presented without analysis or discussion.

Conner, D. A.; Hoad, D. R.

1984-01-01

389

Control of submersible vortex flows  

NASA Technical Reports Server (NTRS)

Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

Bushnell, D. M.; Donaldson, C. D.

1990-01-01

390

Investigation of Liner Characteristics in the NASA Langley Curved Duct Test Rig  

NASA Technical Reports Server (NTRS)

The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics facilities. An experiment is described in which the facility performance is evaluated by measuring the sound attenuation by a sample duct liner. The liner sample comprises one wall of the liner test section. Sound in tones from 500 to 2400 Hz, with modes that are parallel to the liner surface of order 0 to 5, and that are normal to the liner surface of order 0 to 2, can be generated incident on the liner test section. Tests are performed in which sound is generated without axial flow in the duct and with flow at a Mach number of 0.275. The attenuation of the liner is determined by comparing the sound power in a hard wall section downstream of the liner test section to the sound power in a hard wall section upstream of the liner test section. These experimentally determined attenuations are compared to numerically determined attenuations calculated by means of a finite element analysis code. The code incorporates liner impedance values educed from measured data from the NASA Langley Grazing Incidence Tube, a test rig that is used for investigating liner performance with flow and with (0,0) mode incident grazing. The analytical and experimental results compare favorably, indicating the validity of the finite element method and demonstrating that finite element prediction tools can be used together with experiment to characterize the liner attenuation.

Gerhold, Carl H.; Brown, Martha C.; Watson, Willie R.; Jones, Michael G.

2007-01-01

391

Vortex Apparatus and Demonstrations  

ERIC Educational Resources Information Center

Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

Shakerin, Said

2010-01-01

392

LDA seeding system for the Langley Low Turbulence Pressure Tunnel  

NASA Astrophysics Data System (ADS)

A Laser Velocimetry (LV) seeding system was specifically developed for the Langley Low Turbulence Wind Tunnel (LTPT), and it has been successfully used for LV measurements in two major tests (Juncture Flow Experiment and Gortler Experiment). The LTPT is capable of operating at Mach numbers from 0.05 to 0.50 and unit Reynolds numbers from 100,000 to 15,000,000 per foot. The test section is 3 feet wide and 7.5 feet high. The turbulence level in the test section is relatively low because of the high contraction ratio and because of the nine turbulence reduction screens in the settling chamber. A primary requirement of the seeding system was that the seeding material not contaminate or damage in any way these screens. Both solid and liquid seeding systems were evaluated, and the results are presented. They can provide some guidelines for setting up seeding systems in other similar tunnels.

Scheiman, J.; Kubendran, L. R.

1985-10-01

393

Titan's Winter Polar Vortex  

NASA Technical Reports Server (NTRS)

Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not been identified in Titan's atmosphere, so the decay of its polar vortex may be more gradual than on Earth. Observations from an extended Cassini mission into late northern spring should provide critical data indicating whether the vortex goes away with a bang or just fades away.

Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

2008-01-01

394

Analysis of the performance of the drive system and diffuser of the Langley unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

A broad program was initiated at the Langley Research Center in 1973 to reduce the energy consumption of the laboratory. As a part of this program, the performance characteristics of the Unitary Plan Wind Tunnel were reexamined to determine if potential methods for incresing the operating efficiencies of the tunnel could be formulated. The results of that study are summarized. The performance characteristics of the drive system components and the variable-geometry diffuser system of the tunnel are documented and analyzed. Several potential methods for reducing the energy requirements of the facility are discussed.

Hasel, L. E.; Stallings, R. L.

1981-01-01

395

Computing Vortex Sheet Motion Robert Krasny  

E-print Network

Computing Vortex Sheet Motion Robert Krasny Department of Mathematics, University of Michigan, Ann discontinuity. Vortex sheet motion belongs to thefieldof vortex dynamics, one of the main approaches of vortex sheets. Difficulties arise in computing vortex sheet motion due to short wavelength instability

Krasny, Robert

396

Evolution of a curved vortex filament into a vortex ring  

NASA Technical Reports Server (NTRS)

The deformation of a hairpin-shaped vortex filament under self-induction and in the presence of shear is studied numerically using the Biot-Savart law. It is shown that the tip region of an elongated hairpin vortex evolves into a vortex ring and that the presence of mean shear impedes the process. Evolution of a finite-thickness vortex sheet under self-induction is also investigated using the Navier-Stokes equations. The layer evolves into a hairpin vortex which in turn produces a vortex ring of high Reynolds stress content. These results indicate a mechanism for the generation of ring vortices in turbulent shear flows, and a link between the experimental and numerical observation of hairpin vortices and the observation of ring vortices in the outer regions of turbulent boundary layers.

Moin, P.; Leonard, A.; Kim, J.

1985-01-01

397

Vortex flow aerodynamics  

NASA Technical Reports Server (NTRS)

The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

Smith, J. H. B.; Campbell, J. F.; Young, A. D. (editor)

1992-01-01

398

Segmented trapped vortex cavity  

NASA Technical Reports Server (NTRS)

An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

2010-01-01

399

Vortex perturbation dynamics  

NASA Technical Reports Server (NTRS)

An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

1995-01-01

400

Strings and vortex rings  

E-print Network

We treat string propagation and interaction in the presence of a background Neveu-Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross-Pitaevskii lagrangian, and also how it compares to the action for giant gravitons.

Steven S. Gubser; Revant Nayar; Sarthak Parikh

2014-08-10

401

Strings and vortex rings  

E-print Network

We treat string propagation and interaction in the presence of a background Neveu-Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross-Pitaevskii lagrangian, and also how it compares to the action for giant gravitons.

Gubser, Steven S; Parikh, Sarthak

2014-01-01

402

Simulations of vortex generators  

NASA Technical Reports Server (NTRS)

We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role of two-dimensional vortex generation due to an oscillating lid.

Koumoutsakos, P.

1995-01-01

403

Rotor blade–vortex interaction noise  

Microsoft Academic Search

Blade–vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade

Young H. Yu

2000-01-01

404

Rotor blade-vortex interaction  

NASA Technical Reports Server (NTRS)

The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. Using conformal transformation methods an exact analysis of the effects of thickness on the lift due to a two dimensional wing vortex interaction is presented.

Mccormick, B. W.

1973-01-01

405

On the viscosity influence on a helical vortex flament evolution  

NASA Astrophysics Data System (ADS)

Helical vortices whose parameters have a strong influence on the efficiency of the apparatus is often occur in technical devices using swirling flow (cyclones, separators, etc.). To date the internal structure of such vortices is poorly understood. In [1] a model of helical vortex with uniform vorticity distribution in the core is proposed. Vortices arising in real flow always have a smooth vorticity distribution due to the viscosity action. The problem on steady moving helical vortices with the vortex core of small size in an inviscid fluid was solved in [2]. The non-orthogonal `helical' coordinate system was introduced that allowed author to reduce the problem to two dimensional one. However, the velocity of the vortex motion was written only in the form of a quadratures computation of which is difficult. This paper presents first attempt for research on the diffusion and dynamics of a viscous helical vortex.

Agafontseva, M. V.; Kuibin, P. A.

2015-01-01

406

Thin helical vortex dynamics in low-viscosity liquid  

NASA Astrophysics Data System (ADS)

The problem of helical vortices description has the significant interest as from fundamental point of view as well for practice. In some sense this problem is close to the vortex ring one which attracted much more attention in last decades. The reviews on the vortex rings investigations can be found in recent papers [1,2] or in book by Akhmetov [3]. In particular, in series of papers by Kaplanskii with co-authors [4-6] there was considered the viscosity influence on the vortex ring evolution. Separate attention was paid to the low Reynolds number case and to high Reynolds number one, initial stage of viscous evolution and final one. This paper presents first attempt for research on the diffusion and dynamics of a viscous helical vortex.

Agafontseva, M. V.; Kuibin, P. A.

2014-08-01

407

Motion of vortex lines in quantum mechanics  

E-print Network

Exact analytic solutions of the time dependent Schrodinger equation are produced that exhibit a variety of vortex structures. The qualitative analysis of the motion of vortex lines is presented and various types of vortex behavior are identified. Vortex creation and annihilation and vortex interactions are illustrated in the special cases of the free motion, the motion in the harmonic potential, and in the constant magnetic field. Similar analysis of the vortex motions is carried out also for a relativistic wave equation.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula; Cezary Sliwa

1999-11-03

408

Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop  

NASA Technical Reports Server (NTRS)

Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis.

Rozier, Kristin Yvonne (Editor)

2008-01-01

409

NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis  

NASA Technical Reports Server (NTRS)

Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.

Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.

2006-01-01

410

Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

Ivanco, Thomas G.

2013-01-01

411

The Acoustically Driven Vortex Cannon  

ERIC Educational Resources Information Center

Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

Perry, Spencer B.; Gee, Kent L.

2014-01-01

412

VORTEX BREAKDOWN INCIPIENCE: THEORETICAL CONSIDERATIONS  

E-print Network

or momentum or heat exchange; or destructive, as in degradation of aerodynamic performance. Vortex breakdown interest, vortex breakdown has important technological applications, both aerodynamic and non­ aerodynamic. There is a tendency for the breakdown to migrate back and forth in the test section or on the aerodynamic surface

Erlebacher, Gordon

413

Vortex motion on a sphere  

Microsoft Academic Search

The theory of the vortex motion of two-dimensional incompressible inviscid flow on a sphere is presented. Vorticity and stream function, which are related by the Laplace-Beltrami operator, are initially outlined. Green's function of the equation is obtained in which the stream function is expressed as integral form. The equations of motion for two vortex models on a sphere are derived.

Yoshifumi Kimura; Hisashi Okamoto

1987-01-01

414

Numerical Study of Tip Vortex Flows  

NASA Technical Reports Server (NTRS)

This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

Dacles-Mariani, Jennifer; Hafez, Mohamed

1998-01-01

415

Magnetic vortex filament flows  

SciTech Connect

We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those.

Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso [Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, 18071-Granada (Spain); Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad de Sevilla, 41012-Sevilla (Spain); Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, 18071-Granada (Spain)

2007-08-15

416

Desingularized propagating vortex equilibria  

NASA Astrophysics Data System (ADS)

The correction to the propagation velocity of point vortex equilibria caused by allowing the vortices to have finite core size is calculated. A matched asymptotic expansion in the small parameter ?, given by the ratio of the core size to the dimension of the equilibrium configuration, is carried out. The resulting velocity correction is found to be of order {{? }4} and arises from the interaction of second- and third-order terms in the inner expansion, which are themselves forced by the strain and strain derivatives of the outer field.

Smith, Stefan G. Llewellyn

2014-12-01

417

On vortex bursting  

NASA Technical Reports Server (NTRS)

Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

Werle, H.

1984-01-01

418

Recertification of the air and methane storage vessels at the Langley 8-foot high-temperature structures tunnel  

NASA Technical Reports Server (NTRS)

This center operates a number of sophisticated wind tunnels in order to fulfill the needs of its researchers. Compressed air, which is kept in steel storage vessels, is used to power many of these tunnels. Some of these vessels have been in use for many years, and Langley is currently recertifying these vessels to insure their continued structural integrity. One of the first facilities to be recertified under this program was the Langley 8-foot high-temperature structures tunnel. This recertification involved (1) modification, hydrotesting, and inspection of the vessels; (2) repair of all relevant defects; (3) comparison of the original design of the vessel with the current design criteria of Section 8, Division 2, of the 1974 ASME Boiler and Pressure Vessel Code; (4) fracture-mechanics, thermal, and wind-induced vibration analyses of the vessels; and (5) development of operating envelopes and a future inspection plan for the vessels. Following these modifications, analyses, and tests, the vessels were recertified for operation at full design pressure (41.4 MPa (6000 psi)) within the operating envelope developed.

Hudson, C. M.; Girouard, R. L.; Young, C. P., Jr.; Petley, D. H.; Hudson, J. L., Jr.; Hudgins, J. L.

1977-01-01

419

An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code  

NASA Technical Reports Server (NTRS)

An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

Dudek, Julianne C.

2005-01-01

420

Vortex age as a wake turbulence scaling parameter  

NASA Technical Reports Server (NTRS)

Research which was conducted to determine the significance of vortex age as a scaling parameter in wake turbulence development and dissipation is reported. Tests were conducted at three angles of attack, three free stream speeds, and seven downstream positions from 2 to 30 chordlengths using an NACA 0012 wing and a five hole yawhead pitot probe. The end surface of the wing tip was flat. Speeds were selected to give a predetermined range of vortex ages. The complete velocity structure of the vortex was measured at each station and speed. The resulting plots of maximum tangential velocity and vortex core diameter versus downstream distance and vortex age indicate that vortex age is not a self sufficient scaling parameter. In addition to the expected effect of lift coefficient there is also a definite free stream speed influence at high wing angles of attack. The exact cause and nature of this effect is not fully understood, but it does not appear to be explainable in terms of Mach number or Reynolds number; however, the influence of tip edge shape on spanwise flow separation appears to be an important factor.

Marshall, J. R.; Marchman, J. F., III

1973-01-01

421

Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack  

NASA Technical Reports Server (NTRS)

A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

Luckring, James M.

2003-01-01

422

Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube  

NASA Technical Reports Server (NTRS)

The need to minimize fan noise radiation from commercial aircraft engine nacelles continues to provide an impetus for developing new acoustic liner concepts. If the full value of such concepts is to be attained, an understanding of grazing flow effects is crucial. Because of this need for improved understanding of grazing flow effects, the NASA Langley Research Center Liner Physics Group has invested a large effort over the past decade into the development of a 2-D finite element method that characterizes wave propagation through a lined duct. The original test section in the Langley Grazing IncidenceTube was used to acquire data needed for implementation of this finite element method. This test section employed a stepper motor-driven axial-traversing bar, embedded in the wall opposite the test liner, to position a flush-mounted microphone at pre-selected locations. Complex acoustic pressure data acquired with this traversing microphone were used to educe the acoustic impedance of test liners using this 2-D finite element method and a local optimization technique. Results acquired in this facility have been extensively reported, and were compared with corresponding results from various U.S. aeroacoustics laboratories in the late 1990 s. Impedance data comparisons acquired from this multi-laboratory study suggested that it would be valuable to incorporate more realistic 3-D aeroacoustic effects into the impedance eduction methodology. This paper provides a description of modifications that have been implemented to facilitate studies of 3-D effects. The two key features of the modified test section are (1) the replacement of the traversing bar and its flush-mounted microphone with an array of 95 fixed-location microphones that are flush-mounted in all four walls of the duct, and (2) the inclusion of a suction device to modify the boundary layer upstream of the lined portion of the duct. The initial results achieved with the modified test section are provided in this report, and a comparison of these results with those achieved using the original test section is used to demonstrate that the data acquisition and analysis with the new test section can be confidently used for impedance eduction.

Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.; Smith, Charles D.

2004-01-01

423

The VOrtex Ring Transit EXperiment (VORTEX) GAS project  

NASA Technical Reports Server (NTRS)

Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

1995-01-01

424

Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

Erickson, G. E.; Burner, A. W.; DeLoach, R.

1999-01-01

425

Supersonic Retropropulsion Experimental Results from the NASA Langley Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

A new supersonic retropropulsion experimental effort, intended to provide code validation data, was recently completed in the Langley Research Center Unitary Plan Wind Tunnel Test Section 2 over the Mach number range from 2.4 to 4.6. The experimental model was designed using insights gained from pre-test computations, which were instrumental for sizing and refining the model to minimize tunnel wall interference and internal flow separation concerns. A 5-in diameter 70-deg sphere-cone forebody with a roughly 10-in long cylindrical aftbody was the baseline configuration selected for this study. The forebody was designed to accommodate up to four 4:1 area ratio supersonic nozzles. Primary measurements for this model were a large number of surface pressures on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Preliminary results and observations from the test are presented, while detailed data and uncertainty analyses are ongoing.

Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.; Player, Charles J.

2011-01-01

426

Analysis of Dynamic Data from Supersonic Retropropulsion Experiments in NASA Langley's Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

Recent experimental supersonic retropropulsion tests were conducted at the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 2 for a range of Mach numbers from 2.4 to 4.6. A 5-inch 70-degree sphere-cone forebody model with a 10-inch cylindrical aftbody experimental model was used which is capable of multiple retrorocket configurations. These configurations include a single central nozzle on the center point of the forebody, three nozzles at the forebody half-radius, and a combination of the first two configurations with no jets being plugged. A series of measurements were achieved through various instrumentation including forebody and aftbody pressure, internal pressures and temperatures, and high speed Schlieren visualization. Specifically, several high speed pressure transducers on the forebody and in the plenum were implemented to look at unsteady flow effects. The following work focuses on analyzing frequency traits due to the unsteady flow for a range of thrust coefficients for single, tri, and quad-nozzle test cases at freestream Mach 4.6 and angle of attack ranging from -8 degrees to +20 degrees. This analysis uses Matlab s fast Fourier transform, Welch's method (modified average of a periodogram), to create a power spectral density and analyze any high speed pressure transducer frequency traits due to the unsteady flow.

Codoni, Joshua R.; Berry, Scott A.

2012-01-01

427

Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel  

NASA Technical Reports Server (NTRS)

Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.

Schuster, David M.

2001-01-01

428

Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities  

NASA Technical Reports Server (NTRS)

Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.

Hemsch, Michael J.; Houlden, Heather P.

2014-01-01

429

Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility  

NASA Technical Reports Server (NTRS)

The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

2013-01-01

430

Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel  

NASA Technical Reports Server (NTRS)

Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.

Huebner, Lawrence D.; Rock, Kenneth E.; Witte, David W.; Ruf, Edward G.; Andrews, Earl H., Jr.

2000-01-01

431

Contributions of the NASA Langley Transonic Dynamics Tunnel to Launch Vehicle and Spacecraft Development  

NASA Technical Reports Server (NTRS)

The NASA Langley Transonic Dynamics Tunnel (TDT) has provided wind-tunnel experimental validation and research data for numerous launch vehicles and spacecraft throughout its forty year history. Most of these tests have dealt with some aspect of aeroelastic or unsteady-response testing, which is the primary purpose of the TDT facility. However, some space-related test programs that have not involved aeroelasticity have used the TDT to take advantage of specific characteristics of the wind-tunnel facility. In general. the heavy gas test medium, variable pressure, relatively high Reynolds number and large size of the TDT test section have made it the preferred facility for these tests. The space-related tests conducted in the TDT have been divided into five categories. These categories are ground wind loads, launch vehicle dynamics, atmospheric flight of space vehicles, atmospheric reentry. and planetary-probe testing. All known TDT tests of launch vehicles and spacecraft are discussed in this report. An attempt has been made to succinctly summarize each wind-tunnel test, or in the case of multiple. related tests, each wind-tunnel program. Most summaries include model program discussion, description of the physical wind-tunnel model, and some typical or significant test results. When available, references are presented to assist the reader in further pursuing information on the tests.

Cole, Stanley R.; Keller, Donald F.; Piatak, David J.

2000-01-01

432

The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel  

NASA Technical Reports Server (NTRS)

The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.

Cole, Stanley R.; Rivera, Jose A., Jr.

1997-01-01

433

The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0  

NASA Technical Reports Server (NTRS)

An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).

Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.

2001-01-01

434

Remote Measurement of Pollution-A 40-Year Langley Retrospective. Part 2; Aerosols and Clouds  

NASA Technical Reports Server (NTRS)

A workshop was convened in 1971 by the National Aeronautics and Space Administration (NASA) on the Remote Measurement of Pollution (RMOP), and the findings and recommendations of its participants are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for regional to global-scale, remote measurements of the atmospheric parameters from Earth-orbiting satellites. In 2011 the author published a 40-year retrospective (or Part I) of the instrumental developments that were an outgrowth of the RMOP panel headed by Will Kellogg, i.e., on atmospheric temperature and gaseous species. The current report (or Part II) is an analogous retrospective of the vision of the panel led by Verner Suomi for the measurement of particulates (or aerosols) and clouds and for their effects on Earth s radiation budget. The class of measurement techniques includes laser radar or lidar, solar occultation, limb emission and scattering, nadir-viewing photometry or radiometry, and aerosol polarimetry. In addition, the retrospective refers to the scientific imperatives that led to those instrument developments of 1971-2010. Contributions of the atmospheric technologists at the Langley Research Center are emphasized, and their progress is placed in the context of the parallel and complementary work from within the larger atmospheric science community.

Remsberg, Ellis E.

2012-01-01

435

All-optical discrete vortex switch  

SciTech Connect

We introduce discrete vortex solitons and vortex breathers in circular arrays of nonlinear waveguides. The simplest vortex breather in a four-waveguide coupler is a nonlinear dynamic state changing its topological charge between +1 and -1 periodically during propagation. We find the stability domain for this solution and suggest an all-optical vortex switching scheme.

Desyatnikov, Anton S. [Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Dennis, Mark R. [H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ferrando, Albert [Interdisciplinary Modeling Group, InterTech and Departament d'Optica, Universitat de Valencia, E-46100 Burjassot (Spain)

2011-06-15

436

FAST VORTEX METHODS John A. Strain  

E-print Network

. Vortex methods involve several components; velocity eval- uation, vortex motion, di usion, boundary and obtaining e cient new parameter balances. We employ standard techniques for the vortex motion and considerFAST VORTEX METHODS John A. Strain Mathematics Department and Lawrence Berkeley National Laboratory

Strain, John A.

437

Sound radiation by vortex-body interaction  

Microsoft Academic Search

The effect of rigid boundary in the vicinity of vortex on the acoustic radiation was investigated experimentally. Two kinds of geometry of the vortex body system are examined. In the first case a vortex ring either impinges on or passes by an edge of a flat plate which is set at right angles to the vortex motion. In the second

T. Minota; Y. Murata; T. Kambe

1983-01-01

438

Reduction of helicopter blade-vortex interaction noise by active rotor control technology  

Microsoft Academic Search

Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently

Yung H. Yu; Bernd Gmelin; Wolf Splettstoesser; Jean J. Philippe; Jean Prieur; Thomas F. Brooks

1997-01-01

439

Vortex dynamics studies in supersonic flow  

NASA Astrophysics Data System (ADS)

This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

Vergine, Fabrizio

440

Dynamic signatures of driven vortex motion.  

SciTech Connect

We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

1999-09-16