These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility  

NASA Technical Reports Server (NTRS)

A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

Gartrell, L. R.; Rhodes, D. B.

1980-01-01

2

The development of methods for predicting and measuring distribution patterns of aerial sprays. [Langley Vortex Research Facility  

NASA Technical Reports Server (NTRS)

A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

1981-01-01

3

Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft  

NASA Technical Reports Server (NTRS)

As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

Jordan, F. L., Jr.

1980-01-01

4

Demonstration of rapid-scan two-dimensional laser velocimetry in the Langley Vortex Research Facility for research in aerial applications  

NASA Technical Reports Server (NTRS)

Tests were conducted to demonstrate a rapid scan two dimensional laser velocimeter (LV) measurement technique for aerial applications research. The LV system is capable of simultaneously measuring both vertical and axial flow velocity components in a near or far field vortex system. Velocity profiles were successfully measured in the wake vortex of a representative agricultural aircraft model, with the vortex system rapidly transporting in ground effect. Results indicate that the laser velocimetry technique can provide quantitative information of wake vortex characteristics in ground effect.

Gartrell, L. R.; Jordan, F. L., Jr.

1977-01-01

5

Langley airfoil-research program  

NASA Technical Reports Server (NTRS)

An overview of past, present, and future airfoil research activities at the Langley Research Center is given. The immediate past and future occupy most of the discussion; however, past accomplishments and milestones going back to the early NACA years are dealt with in a broad-brush way to give a better perspective of current developments and programs. In addition to the historical perspective, a short description of the facilities which are now being used in the airfoil program is given. This is followed by a discussion of airfoil developments, advances in airfoil design and analysis tools (mostly those that have taken place over the past 5 or 6 years), and tunnel-wall-interference predictive methods and measurements. Future research requirements are treated.

Bobbitt, P. J.

1979-01-01

6

Research and technology, 1989: Langley Research Center  

NASA Technical Reports Server (NTRS)

The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

1990-01-01

7

Research and technology, 1991. Langley Research Center  

NASA Technical Reports Server (NTRS)

The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

1992-01-01

8

Research and Technology 1990, Langley Research Center  

NASA Technical Reports Server (NTRS)

The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

1991-01-01

9

Research and technology of the Langley Research Center  

NASA Technical Reports Server (NTRS)

Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.

1980-01-01

10

NASA Langley Research Center tethered balloon systems  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

1987-01-01

11

Langley Research Center Strategic Plan for Education  

NASA Technical Reports Server (NTRS)

Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

Proctor, Sandra B.

1994-01-01

12

Langley Aerospace Research Summer Scholars. Part 2  

NASA Technical Reports Server (NTRS)

The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

Schwan, Rafaela (Compiler)

1995-01-01

13

Computational mechanics and physics at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.

South, Jerry C., Jr.

1987-01-01

14

NASA Wake Vortex Research for Aircraft Spacing  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

1996-01-01

15

22. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L6415) STUFFED SEAGULL ON CARRIAGE OF TOWING TANK - 1932; EXPERIMENT TO DETERMINE AERODYNAMIC QUALITIES OF BIRDS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

16

12. Photocopy of photograph (original in Langley Research Center Archives, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

17

15. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4933) VIEW NORTHWEST OF THE FULL-SCALE WIND TUNNEL, c. 1932. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

18

13. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 4655) VIEW LOOKING NORTH AT THE FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

19

14. Photocopy of photograph (original in the Langley Research Center ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4776) VIEW SOUTH THROUGH ENTRANCE CONE OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION, SEPTEMBER 12, 1930. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

20

Nasa Langley Research Center seventy-fifth anniversary publications, 1992  

NASA Technical Reports Server (NTRS)

The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

1992-01-01

21

Experimental Supersonic Combustion Research at NASA Langley  

NASA Technical Reports Server (NTRS)

Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

1998-01-01

22

The NASA Langley Isolator Dynamics Research Lab  

NASA Technical Reports Server (NTRS)

The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

2010-01-01

23

Activities in Aeroelasticity at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.

Perry, Boyd, III; Noll, Thomas E.

1997-01-01

24

Telerobotic research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

Sliwa, Nancy E.

1987-01-01

25

Production version of the extended NASA-Langley Vortex Lattice FORTRAN computer program. Volume 1: User's guide  

NASA Technical Reports Server (NTRS)

The latest production version, MARK IV, of the NASA-Langley vortex lattice computer program is summarized. All viable subcritical aerodynamic features of previous versions were retained. This version extends the previously documented program capabilities to four planforms, 400 panels, and enables the user to obtain vortex-flow aerodynamics on cambered planforms, flowfield properties off the configuration in attached flow, and planform longitudinal load distributions.

Lamar, J. E.; Herbert, H. E.

1982-01-01

26

Spaceflight revolution: NASA Langley Research Center from Sputnik to Apollo  

NASA Technical Reports Server (NTRS)

As part of the transition to the broad research scope of the National Aeronautics and Space Administration (NASA) starting in the late 1950's, the Langley Research Center underwent many changes in program content, organization and management, and areas of personnel expertise. This book describes and evaluates the evolution and activities of the Langley Research Center during the seventeen-year period from 1958 to 1975. The book was based on the analysis of hundreds of written records, both published and unpublished, as well as numerous personal interviews with many of the key individuals involved in the transition of Langley. Some of the projects and research areas covered include Project Echo, magnetoplasmadynamics research, Scout Rocket Program, lunar-orbit rendezvous research, manned space laboratory development, and Apollo and the Lunar Orbiter Project.

Hansen, James R.

1995-01-01

27

Survey of supersonic combustion ramjet research at Langley  

NASA Technical Reports Server (NTRS)

The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

Northam, G. B.; Anderson, G. Y.

1986-01-01

28

Composite Structures and Materials Research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

2003-01-01

29

Composite Structures and Materials Research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

2001-01-01

30

Scientific and technical information output of the Langley Research Center  

NASA Technical Reports Server (NTRS)

Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

1984-01-01

31

NASA. Langley Research Center CFD code validation program overview  

NASA Technical Reports Server (NTRS)

A presentation by Langley Research Center covered subjects of: LaRC approach to CFD code validation, experimental CFD perceptions, CFD code validation program experiment, and highlights of the experiment. The objective of the validation program and the approach taken are discussed.

Kjelgaard, Scott O.

1990-01-01

32

ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER  

EPA Science Inventory

This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

33

Research through simulation. [simulators and research applications at Langley  

NASA Technical Reports Server (NTRS)

The design of the computer operating system at Langley Research Center allows for concurrent support of time-critical simulations and background analytical computing on the same machine. Signal path interconnections between computing hardware and flight simulation hardware is provided to allow up to six simulation programs to be in operation at one time. Capabilities and research applications are discussed for the: (1) differential maneuvering simulator; (2) visual motion simulator; (3) terminal configured vehicle simulator; (4) general aviation aircraft simulator; (5) general purpose fixed based simulator; (6) transport simulator; (7) digital fly by wire simulator; (8) general purpose fighter simulator; and (9) the roll-up cockpit. The visual landing display system and graphics display system are described and their simulator support applications are listed.

Copeland, J. L. (compiler)

1982-01-01

34

MDO TEST SUITE AT NASA LANGLEY RESEARCH CENTER  

Microsoft Academic Search

The NASA Langley Research Center supports a wide variety of multidisciplinary designoptimization (MDO) research and requires a set of standard MDO test problems forevaluating and comparing the products of this research. This paper proposes a WorldWide-Web-based test suite for collecting, distributing, and maintaining the standard testproblems. A prototype suite of 10 test problems, including written problem descriptions,benchmark solution methods, sample

Sharon L. Padula; Natalia Alexandrov; Lawrence L. Green

1996-01-01

35

Dr. John Stack and other NASA Langley Research Center Visitors  

NASA Technical Reports Server (NTRS)

Front Row, left to right: Mrs. Elsa Hoare and Major Philip L. Teed - staff members, Vickers-Armstrongs, Ltd., Weybridge, England: Dr. Barnes Wallis - Chief of Aeronautical Research, Vicers-Armstrong, Ltd., Weybridge, England. Back Row, left to right: Norman W. Boorer and Cecil W. Hayes - Staff members, Vickers-Armstrongs, Ltd., Weybridge, England; John R. Christie - Ministry of Supply, London, England; Philip A. Hufton - Chief Supt., Royal Aircraft Establishment, Bedford, England; Lindsey I. Turner, Jr. - Langley Research Center. Photographed November 13, 1958.

2008-01-01

36

Snapshot of Active Flow Control Research at NASA Langley  

NASA Technical Reports Server (NTRS)

NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

2002-01-01

37

Recent Langley helicopter acoustics contributions  

NASA Technical Reports Server (NTRS)

The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

Morgan, Homer G.; Pao, S. P.; Powell, C. A.

1988-01-01

38

Microgravity science at Langley Research Center  

NASA Technical Reports Server (NTRS)

Although space research is still in an embryonic state, a combination of Earth based and space flight experiments are being coupled to yield a better understanding of the complex interaction of heat and fluid flow on the dynamics of crystal growth. Continued efforts on the ground as well as additional flight opportunities are needed to continue the drive to fully understand the advantages, both scientifically and economically, of microgravity crystal growth.

Fripp, Archibald L.; Debnam, William J., Jr.; Woodell, Glenn A.; Clark, Ivan O.; Crouch, Roger K.; Carlson, Frederick M.; Simchick, Richard T.

1988-01-01

39

Publications on acoustics research at the Langley Research Center, January 1987 - September 1992  

NASA Astrophysics Data System (ADS)

This report is a compilation of publications from acoustics research at the Langley Research Center. The reports listed are in chronological order and summarize the research output of the Acoustics Division for the period January 1987 - September 1992.

Sutherland, Linda W.

1992-09-01

40

Publications on acoustics research at the Langley Research Center, January 1987 - September 1992  

NASA Technical Reports Server (NTRS)

This report is a compilation of publications from acoustics research at the Langley Research Center. The reports listed are in chronological order and summarize the research output of the Acoustics Division for the period January 1987 - September 1992.

Sutherland, Linda W. (compiler)

1992-01-01

41

The Role of Computers in Research and Development at Langley Research Center  

NASA Technical Reports Server (NTRS)

This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

Wieseman, Carol D. (compiler)

1994-01-01

42

Infrared Detector Activities at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

2008-01-01

43

Langley Research Center Metrology Program status for fiscal year 1987  

NASA Technical Reports Server (NTRS)

The status of the Langley Research Center's metrology program for fiscal year 1987 is presented. The NASA Metrology Information System, which was operational for the entire year, provided the majority of performance data describing work analysis, turnaround time, out-of-tolerance instrument data, and other instrument service data. Calibration system development, equipment replacing and updating, status of last year's planned objectives, and Reference Standard certification requirements are described. The status of the LaRC voltage and resistance measurement assurance program and the agency-wide resistance program are reviewed. Progress on fiscal year 1987 objectives is discussed and fiscal year 1988 objectives are stated.

Kern, Frederick A.

1988-01-01

44

Publications on acoustics research at the Langley Research Center during 1980-1986  

NASA Technical Reports Server (NTRS)

This report is a compilation of publications from acoustics research at the Langley Research Center. The reports are listed in chronological order and summarize the written output of the Acoustics Division and its predecessor, The Acoustics and Noise Reduction Division, for the period 1980 through 1986. The information assembled has been extracted from the 1980 through 1986 issues for the Technical Memorandum entitled, Scientific and Technical Information Output of the Langley Research Center for the Calendar Year.

Sutherland, Linda W. (compiler)

1988-01-01

45

A compendium of computational fluid dynamics at the Langley Research Center  

NASA Technical Reports Server (NTRS)

Through numerous summary examples, the scope and general nature of the computational fluid dynamics (CFD) effort at Langley is identified. These summaries will help inform researchers in CFD and line management at Langley of the overall effort. In addition to the inhouse efforts, out of house CFD work supported by Langley through industrial contracts and university grants are included. Researchers were encouraged to include summaries of work in preliminary and tentative states of development as well as current research approaching definitive results.

1980-01-01

46

Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology  

NASA Technical Reports Server (NTRS)

In recent years, the development of aerodynamic technology for rotorcraft has continued successfully at NASA LaRC. Though the NASA Langley Research Center is not the lead NASA center in this area, the activity was continued due to facilities and individual capabilities which are recognized as contributing to helicopter research needs of industry and government. Noteworthy accomplishments which contribute to advancing the state of rotorcraft technology in the areas of rotor design, airfoil research, rotor aerodynamics, and rotor/fuselage interaction aerodynamics are described. Rotor designs were defined for current helicopters and evaluated in wind tunnel testing. These designs have incorporated advanced airfoils defined analytically and also proven in wind tunnel tests. A laser velocimetry system has become a productive tool for experimental definition of rotor inflow/wake and is providing data for rotorcraft aerodynamic code validation.

Wilson, John C.

1988-01-01

47

Technical Reports: Langley Aerospace Research Summer Scholars. Part 1  

NASA Technical Reports Server (NTRS)

The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

Schwan, Rafaela (Compiler)

1995-01-01

48

Matrix resin development at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The polymer program at NASA Langley Research Center involves exploratory studies in polymer science. These include the synthesis of novel polymers and their characterization. Polymer synthesis programs involve the development of novel thermoplastics, pseudothermoplastics, and thermosets. Recent investigations have led to the development of more easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate-temperature polymers. Characterization efforts have included high-pressure liquid chromatography methodology, the development of toughness tests for fiber-reinforced composites, a study of electrical properties of metal-ion-filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers has been studied by rheology, mechanical behavior, separation techniques and spectroscopy. Some of these programs have involved the degradation crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides.

St.clair, T. L.

1985-01-01

49

Langley Research Center Standard for the Evaluation of Socket Welds  

NASA Technical Reports Server (NTRS)

A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).

Berry, R. F., Jr.

1985-01-01

50

NASA Langley Research Center Force and Strain Measurement Capabilities  

NASA Technical Reports Server (NTRS)

Direct measurements of forces and moments are some of the most important data acquired during aerodynamic testing. This paper deals with the force and strain measurement capabilities at the Langley Research Center (LaRC). It begins with a progressive history of LaRC force measurement developments beginning in the 1940's and ends with the center's current capabilities. Various types of force and moment transducers used at LaRC are discussed including six-component sting mounted balances, semi-span balances, hinge moment balances, flow-through balances, rotor balances, and many other unique transducers. Also discussed are some unique strain-gage applications, such as those used in extreme environments. The final topics deal with the LaRC's ability to perform custom calibrations and our current levels of effort in the area of force and strain measurement.

Roberts, Paul W.

1999-01-01

51

Coherent Lidar Activities at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

2007-01-01

52

NASA Langley's Research and TechnologyTransfer Program in Formal Methods  

E-print Network

NASA Langley's Research and Technology­Transfer Program in Formal Methods Ricky W. Butler James L. Caldwell Victor A. Carre~no C. Michael Holloway Paul S. Miner Assessment Technology Branch NASA Langley presents an overview of NASA Lang­ ley's research program in formal methods. The ma­ jor goals of this work

Caldwell, James

53

NASA Langley's Research and Technology-Transfer Program in Formal Methods  

E-print Network

NASA Langley's Research and Technology-Transfer Program in Formal Methods Ricky W. Butler James L. Caldwell Victor A. Carre~no C. Michael Holloway Paul S. Miner Assessment Technology Branch NASA Langley presents an overview of NASA Lang- ley's research program in formal methods. The ma- jor goals of this work

Butler, Ricky W.

54

Upgrades at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

Paryz, Roman W.

2012-01-01

55

Computational fluid dynamics research and applications at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Information on computational fluid dynamics (CFD) research and applications carried out at the NASA Langley Research Center is given in viewgraph form. The Langley CFD strategy, the five-year plan in CFD and flow physics, 3-block grid topology, the effect of a patching algorithm, F-18 surface flow, entropy and vorticity effects that improve accuracy of unsteady transonic small disturbance theory, and the effects of reduced frequency on first harmonic components of unsteady pressures due to airfoil pitching are among the topics covered.

South, Jerry C., Jr.

1989-01-01

56

RESEARCH AND APPLICATIONS IN AEROELASTICITY AND STRUCTURAL DYNAMICS AT THE NASA LANGLEY RESEARCH CENTER  

Microsoft Academic Search

An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic

Irving Abel

57

Recent Cycle Time Reduction at Langley Research Center  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center (LaRC) has been engaged in an effort to reduce wind tunnel test cycle time in support of Agency goals and to satisfy the wind tunnel testing needs of the commercial and military aerospace communities. LaRC has established the Wind Tunnel Enterprise (WTE), with goals of reducing wind tunnel test cycle time by an order of magnitude by 2002, and by two orders of magnitude by 2010. The WTE also plans to meet customer expectations for schedule integrity, as well as data accuracy and quality assurance. The WTE has made progress towards these goals over the last year with a focused effort on technological developments balanced by attention to process improvements. This paper presents a summary of several of the WTE activities over the last year that are related to test cycle time reductions at the Center. Reducing wind tunnel test cycle time, defined here as the time between the freezing of loft lines and delivery of test data, requires that the relationship between high productivity and data quality assurance be considered. The efforts have focused on all of the drivers for test cycle time reduction, including process centered improvements, facility upgrades, technological improvements to enhance facility readiness and productivity, as well as advanced measurement techniques. The application of internet tools and computer modeling of facilities to allow a virtual presence of the customer team is also presented.

Kegelman, Jerome T.

2000-01-01

58

Sixty years of aeronautical research, 1917-1977. [Langley Research Center  

NASA Technical Reports Server (NTRS)

The history of Langley Research Center and its contributions to solving problems related to flight over the past six decades is recounted. Technical innovations described include those related to air craft construction materials, jet and rocket propulsion, flight testing and simulation, wind tunnel tests, noise reduction, supersonic flight, air traffic control, structural analysis, computational aerodynamics, and fuel efficiency.

Anderton, D. A.

1978-01-01

59

A historical perspective on hypersonic research at the NACA/NASA Langley Research Center (1944-1984)  

NASA Technical Reports Server (NTRS)

A survey of some of the highlights on hypersonic research and technology development conducted at NASA Langley Research Center are presented. Attention is given to the range of disciplines that are being and have been explored at Langley. This review is also intended to supplement previous surveys written around one particular discipline while this survey covers a range of disciplines.

Reubush, David E.

1992-01-01

60

Electronic Photography at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An electronic photography facility has been established in the Imaging & Photographic Technology Section, Visual Imaging Branch, at the NASA Langley Research Center (LaRC). The purpose of this facility is to provide the LaRC community with access to digital imaging technology. In particular, capabilities have been established for image scanning, direct image capture, optimized image processing for storage, image enhancement, and optimized device dependent image processing for output. Unique approaches include: evaluation and extraction of the entire film information content through scanning; standardization of image file tone reproduction characteristics for optimal bit utilization and viewing; education of digital imaging personnel on the effects of sampling and quantization to minimize image processing related information loss; investigation of the use of small kernel optimal filters for image restoration; characterization of a large array of output devices and development of image processing protocols for standardized output. Currently, the laboratory has a large collection of digital image files which contain essentially all the information present on the original films. These files are stored at 8-bits per color, but the initial image processing was done at higher bit depths and/or resolutions so that the full 8-bits are used in the stored files. The tone reproduction of these files has also been optimized so the available levels are distributed according to visual perceptibility. Look up tables are available which modify these files for standardized output on various devices, although color reproduction has been allowed to float to some extent to allow for full utilization of output device gamut.

Holm, Jack; Judge, Nancianne

1995-01-01

61

A Historical Perspective on Dynamics Testing at the Langley Research Center  

NASA Technical Reports Server (NTRS)

The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

Horta, Lucas G.; Kvaternik, Raymond G.

2000-01-01

62

Aeroservoelastic and structural dynamics research on smart structures conducted at NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

An overview of smart structures research currently underway a the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally validated finite element and aeroservoelastic modeling techniques; conducting bench experimental test to assess feasibility and understand system trade-offs; and conducting large-scale wind-tunnel of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

McGowan, Anna-Maria R.; Wilkie, William K.; Moses, Robert W.; Lake, Renee C.; Pinkerton-Florance, Jennifer L.; Weiseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

1998-06-01

63

Ride quality research activities at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Ride quality research to determine criteria to describe vehicle performance characteristics which will insure passenger comfort is discussed. The manner in which disciplines of vehicle environmental dynamics, structural dynamics, and electromechanical measurements are combined to define passenger environments is described. The activities of many governmental and private agencies in the field of passenger comfort are examined.

Connor, A. B.; Bergeron, H. P.; Schoonover, W. E., Jr.

1972-01-01

64

An historical perspective on hypersonic aerodynamic research at the Langley Research Center  

NASA Technical Reports Server (NTRS)

The 40-year history of hypersonic technology is reviewed from a technical perspective. A broad overview is first given of the major accomplishments of hypersonic flight projects and systems studies that have been conducted over the last 40-odd years. Then, the history of major supersonic and hypersonic ground facilities at the NASA Langley and Ames Research Centers is traced, and some of the research conducted in them over the past 40 years is reviewed.

Johnston, Patrick J.; Sawyer, Wallace C.

1988-01-01

65

High performance composites research at NASA-Langley  

NASA Technical Reports Server (NTRS)

Barriers to the more extensive use of advanced composites in heavily loaded structures on commercial transports are discussed from a materials viewpoint. NASA-Langley matrix development activities designed to overcome these barriers are presented. These include the synthesis of processible, tough, durable matrices, the development of resin property/composite property relationships which help guide the synthesis program, and the exploitation of new processing technology to effectively combine reinforcement filament with polymer matrices. Examples of five classes of polymers being investigated as matrix resins at NASA Langley are presented, including amorphous and semicrystalline thermoplastics, lightly crosslinked thermoplastics, semi-interpenetrating networks and toughened thermosets. Relationships between neat resin modulus, resin fracture energy, interlaminar fracture energy, composite compression strength, and post-impact compression strength are shown. Powder and slurry processing techniques are discussed.

Stclair, Terry L.; Johnston, Norman J.; Baucom, Robert M.

1988-01-01

66

Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach  

NASA Technical Reports Server (NTRS)

Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

1998-01-01

67

Overview of magnetic suspension research at Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of research in small- and large-gap magnetic suspension systems at LaRC is presented. The overview is limited to systems which have been built as laboratory models or engineering models. Small-gap systems applications include the Annular Momentum Control Device (AMCD), which is a momentum storage device for the stabilization and control of spacecraft, and the Annular Suspension and Pointing System (ASPS), which is a general purpose pointing mount designed to provide orientation, mechanical isolation, and fine pointing space experiments. These devices are described and control and linearization approaches for the magnetic suspension systems for these devices are discussed. Large-gap systems applications at LaRC have been almost exclusively wind tunnel magnetic suspension systems. A brief description of these efforts is also presented.

Groom, Nelson J.

1992-01-01

68

Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges  

NASA Technical Reports Server (NTRS)

Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

Hanson, P. W.

1985-01-01

69

Assessment team report on flight-critical systems research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

Siewiorek, Daniel P. (compiler); Dunham, Janet R. (compiler)

1989-01-01

70

NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM  

EPA Science Inventory

National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

71

Program of Research in Flight Dynamics, The George Washington University at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The program objectives are fully defined in the original proposal entitled Program of Research in Flight Dynamics in GW at NASA Langley Research Center, which was originated March 20, 1975, and in the renewals of the research program from January 1, 2003 to September 30, 2005. The program in its present form includes three major topics: 1. the improvement of existing methods and development of new methods for wind tunnel and flight data analysis, 2. the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3. the correlation of flight results with wind tunnel measurements, and theoretical predictions.

Murphy, Patrick C. (Technical Monitor); Klein, Vladislav

2005-01-01

72

Advanced Measurement Technology at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

Antcliff, Richard R.

1998-01-01

73

Scientific and technical information output of the Langley Research Center for calendar year 1980  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1980. Approximately 1400 citations are given. Formal reports, quick-release technical memorandums, contractor reports, journal articles, meeting/conference papers, computer programs, tech briefs, patents, and unpublished research are included.

1981-01-01

74

Military aircraft and missile technology at the Langley Research Center: A selected bibliography  

NASA Technical Reports Server (NTRS)

A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

Maddalon, D. V.

1980-01-01

75

Scientific and technical photography at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are incorporating ever greater imaging capabilities in their facilities. To some extent this could mean a reduced demand for traditional photographic services. (2) The photographic archive is seen as a Center resource. Archiving of images, as well as data, is a matter of concern to the investigators. The early holdings of the Photographic Archives are quickly deteriorating. The relative inaccessibility of the material held in the archives is problematic. (3) In certain cases delivery or preparation of digital image files instead of, or along with, hardcopy is already being perceived by the STPL's customers as desirable. The STPL should make this option available, and the fact that it has, or will have this capability widely known. (4) The STPL needs to continue to provide expert advice and technical imaging support in terms of application information to users of traditional photographic and new electronic imaging systems. Cooperative demo projects might be undertaken to maintain or improve the capabilities of the Lab. (5) STPL personnel do not yet have significant electronic imaging or electronic communication skills and improvements in this is an area could potentially have a positive impact on the Center. (6) High speed photographic or imaging services are often mentioned by the STPL as being of primary importance to their mission but the lab supports very few projects calling for high speed imaging services. Much high speed equipment is in poor state of repair. It is interesting to note that when the operation of lasers, digital imaging or quantitative techniques are requested these are directed to another NASA department. Could joint activities be initiated to solve problems? (7). The STPL could acquire more technical assignments if examples of the areas where they posses expertise would be circulated around the center. The fact that the STPL owns high speed video capability could be 'advertised' among its customer base if there truly was an interest in building up a customer base in this area. The STPL could participate in events like TOPS as an exhibitor, as well as

Davidhazy, Andrew

1994-01-01

76

A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

Jackson, K. E.; Fasanella, E. L.

2003-01-01

77

Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

1997-01-01

78

Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

1998-01-01

79

Review of fatigue and fracture research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.

Everett, Richard A., Jr.

1988-01-01

80

Scientific and technical information output of the Langley Research Center for calendar year 1984  

NASA Technical Reports Server (NTRS)

The scientific and technical information that the Langley Research Center produced during the calendar year 1984 is compiled. Approximately 1650 citations are included comprising formal reports, quick-release technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

1985-01-01

81

Strain Gauge Balance Calibration and Data Reduction at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper will cover the standard force balance calibration and data reduction techniques used at Langley Research Center. It will cover balance axes definition, balance type, calibration instrumentation, traceability of standards to NIST, calibration loading procedures, balance calibration mathematical model, calibration data reduction techniques, balance accuracy reporting, and calibration frequency.

Ferris, A. T. Judy

1999-01-01

82

Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies  

NASA Technical Reports Server (NTRS)

Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

Fryer, B. A. (compiler)

1980-01-01

83

Scientific and technical information output of the Langley Research Center for calendar year 1986  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1986. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Techncial Talks, Computer Programs, Tech Briefs, and Patents.

1987-01-01

84

Electromagnetic compatibility testing for the NASA Langley Research Center Boeing 757-200  

Microsoft Academic Search

This paper discusses aircraft-level and laboratory electromagnetic interference (EMI) testing that has been performed for the NASA Langley Research Center (LaRC) Boeing 757-200 aircraft, called Airborne Research Integrated Experiments System (ARIES). The purpose of the testing is to determine if the research equipment causes electromagnetic interference to communication receivers and\\/or navigation receivers on-board the aircraft. Due to the nature of

Courtney H. Rollins

2001-01-01

85

Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

Abel, Irving

1997-01-01

86

A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

2013-01-01

87

Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.

Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

1987-01-01

88

Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.

Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

1987-01-01

89

Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

Deere, Karen A.

2003-01-01

90

Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's  

NASA Technical Reports Server (NTRS)

Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

Chambers, Joseph R.

2000-01-01

91

The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft  

NASA Technical Reports Server (NTRS)

Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto-throttle was added in the next phase to provide ground station control of airspeed. Additional phases are in progress to add waypoint navigation and long range satellite voice and data communications. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aid in the process of air traffic detect-sense-and-avoid. These sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper describes the systems and design considerations that were incorporated in the development of the UAS Surrogate along with details of development problems encountered and the corresponding solutions.

Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

2010-01-01

92

Langley Research Highlights 1999: Advanced Aerospace Technology Clouds That Help Create the Ozone Hole Capturing Comet Dust  

NASA Technical Reports Server (NTRS)

This report contains highlights of some of the major accomplishments and applications made by NASA Langley Research Center and its university partners and industry colleagues during 1999. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. The Center's historic national role since 1917 continues in Aerospace Technology research with an additional major role in Earth Science research. Langley also partners closely with other NASA Centers and the Jet Propulsion Laboratory in Space Science and the Human Exploration and Development of Space. A color version is available at http://larcpubs.larc.nasa.gov/randt/1999/. For further information, contact Dennis Bushnell, Senior Scientist, Mail Stop 110, NASA Langley Research Center, Hampton, Virginia 23681-2199, (757)-864-8987, e-mail address: d.m.bushnell@larc.nasa.gov.

2000-01-01

93

Experimental research activities in dynamic response and sonic fatigue of hypersonic vehicle structures at NASA Langley Research Center  

Microsoft Academic Search

This paper presents an overview of experimental research activities being pursued at the NASA Langley Research Center for dynamic response and sonic fatigue of hypersonic vehicle structures. The capabilities of the principle test facility, the Thermal Acoustic Fatigue Apparatus, are first given. Results from recent dynamic response and sonic fatigue tests on candidate hypersonic vehicle structures are then presented.

Stephen A. Rizzi

1993-01-01

94

Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

Bartels, R. E.

2008-01-01

95

Structural Health Monitoring Sensor Development at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

2002-01-01

96

Topics in landing gear dynamics research at NASA Langley  

NASA Technical Reports Server (NTRS)

Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.

Mccomb, H. G., Jr.; Tanner, J. A.

1986-01-01

97

CSM activities at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The objective and goals of the Computational Structural Mechanics (CSM) Program as applied to airframe structures are given. It is recognized that the rapid evolution of computer hardware has opened up new opportunities for solving more complex and larger structural analysis problems than was hitherto imagined. To utilize these computers, new methods of computational structural mechanics are required. Methods are now being developed, assessed, and validated to meet the goals, and each of these goals is addressed. Plans and approaches are shown and highlights of results achieved in meeting these goals are given. Three research thrusts are shown in the five-year plan: advanced robust CSM methods, large-scale solutions, and validation/demonstration studies. The areas of research activity reflect the CSM goals. The mapping of developed methods onto high-performance and massively parallel computers is an integral part of the CSM five-year plan.

Housner, Jerrold M.

1992-01-01

98

Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

2003-01-01

99

NASA Langley Research Center's distributed mass storage system  

NASA Technical Reports Server (NTRS)

There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

Pao, Juliet Z.; Humes, D. Creig

1993-01-01

100

NASA Langley Research and Technology-Transfer Program in Formal Methods  

NASA Technical Reports Server (NTRS)

This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

1995-01-01

101

A brief overview of NASA Langley's research program in formal methods  

NASA Technical Reports Server (NTRS)

An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

1992-01-01

102

Winds of Change: Expanding the Frontiers of Flight. Langley Research Center's 75 Years of Accomplishment, 1917-1992  

NASA Technical Reports Server (NTRS)

This commemorative volume highlights in pictures and text seventy five years of accomplishments of the Langley Research Center. The introductory matter features wind tunnels and their contribution to the development of aeronautics. A chronological survey details four different periods in Langley's history. The first period, 1917-1939, is subtitled 'Perfecting the Plane' which details Langley's contribution to early aeronautics with examples from specific aircraft. The second period, 1940-1957, focuses on the development of military aircraft during and after World War II. The third period, 1958-1969, tells the story of Langley's involvement with NASA and the satellite and Apollo era. The fourth period, entitled 'Charting New Courses: 1970-1992 and Beyond', treats various new topics from aerospace planes to Mars landing, as well as older topics such as the Space Shuttle and research spinoffs.

Schultz, James

1992-01-01

103

Research in unsteady aerodynamics and computational aeroelasticity at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper presents recent results in the unsteady aerodynamics and computational aeroelasticity research programs at the NASA Langley Research Center. These programs include development of two types of computational methods: methods that use structured computational meshes and those that use unstructured meshes. Results show that an aeroelastic analysis method that uses unsteady transonic small disturbance (TSD) potential aerodynamics and structured, Cartesian meshes is capable of accurate analysis of complex aircraft configurations. The paper describes recent enhancements to the TSD method that allow analysis of vehicles with swept, flexible vertical surfaces and flexible fuselages and presents selected results that verify the accuracy of the new capabilities. Modifications to a structured-mesh Euler/Navier-Stokes method to allow aeroelastic analysis are described, and a wing flutter analysis using the resulting method is presented. Advantages of using unstructured meshes for the analysis of complex configurations are discussed. The paper presents development of unstructured-mesh Euler/Navier-Stokes methods for unsteady aerodynamics and aeroelastic analysis. Spatial and temporal adaption methods on unstructured meshes are described, and selected results are presented.

Whitlow, Woodrow, Jr.

1993-01-01

104

Increasing Access to Atmospheric Science Research at NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more than 100 papers published each year from the group. These papers are written by and for scientists, but they often contain information that is of wider interest. The SD communications team faces the challenge of distilling these 2,000+ word science papers into short and readable summaries that allow non-scientists access to that information (with the ability to obtain the full paper if they are interested). In this process, a key challenge is to find a balance between accuracy and understanding: how can a summary briefly convey the key points of a paper without explaining every detail? That challenge also requires a culture shift for researchers who are dedicated to accuracy and detail, and again the SD communications team is important to the success of this process. This paper will share several examples of SD visual presentation techniques and will discuss our revitalized effort to write lay research summaries that can provide an accessible on-ramp to our collection of research writings in the newly-mandated scientific publication repository. It will also discuss our interactions with the NASA Office of Public Affairs, including Legislative Affairs and Business Development, and how both visual presentations and lay summaries can be used in external promotion activities.

Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

2013-12-01

105

Automated Fabrication of High Performance Composites: An Overview of Research at the Langley Research Center  

NASA Technical Reports Server (NTRS)

Automated heated placement of consolidated fiber reinforced polymer ribbon/tape is a rapid, cost effective technique for net shape fabrication of high performance composites. Several research efforts in the United States are developing the heated head robotic hardware and associated software needed to bring this technology into widespread use for building aircraft parts. These efforts emphasize the use of pre-consolidated thermoplastic ribbon or tape which is thermally welded on-the-fly . The approach provides in-situ consolidation and obviates the need for autoclave processing and massive debulking, thereby reducing costs. Addressed in this paper are some key issues being pursued at NASA Langley related to this technology. These include: (a) preparation of high quality intermediate materials forms such as thermoplastic powders, powder-coated towpreg and consolidated ribbon/tape and (b) achievement of precise control of the following: robot head positioning on the tool; material placement; heat delivery to the lay-down zone; and cut/add, start/stop capability. Heated head development has dealt with the use of hot gases alone and in combination with focused infrared radiation as heat sources.

Johnston, N. J.; Towell, T. W.; Marchello, J. M.; Grenoble, R. W.

1997-01-01

106

A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

2004-01-01

107

Application of technology developed for flight simulation at NASA. Langley Research Center  

NASA Technical Reports Server (NTRS)

In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.

Cleveland, Jeff I., II

1991-01-01

108

Computerized structural sizing at NASA Langley Research Center. [low mass design for aerospace vehicles  

NASA Technical Reports Server (NTRS)

Programs at the NASA Langley Research Center associated with the development of computerized structural sizing technology are reviewed. Particular attention is given to (1) lightweight columns for space structure applications, (2) stiffened composite panels for aerospace structures, (3) thermal structures for high-speed aircraft and space vehicles, (4) structural sizing methodology for finite-element structural models, (5) the sizing of large complex structural systems in multidisciplinary environments. Improvements to computational efficiency are noted with reference to a reduced number of sizing variables, a reduced number of constraints, and improved sizing algorithms.

Stroud, W. J.; Sobieszczanski-Sobieski, J.; Walz, J. E.; Bush, H. G.

1978-01-01

109

Study of methods of improving the performance of the Langley Research Center Transonic Dynamics Tunnel (TDT)  

NASA Technical Reports Server (NTRS)

A study has been made of possible ways to improve the performance of the Langley Research Center's Transonic Dynamics Tunnel (TDT). The major effort was directed toward obtaining increased dynamic pressure in the Mach number range from 0.8 to 1.2, but methods to increase Mach number capability were also considered. Methods studied for increasing dynamic pressure capability were higher total pressure, auxiliary suction, reducing circuit losses, reduced test medium temperature, smaller test section and higher molecular weight test medium. Increased Mach number methods investigated were nozzle block inserts, variable geometry nozzle, changes in test section wall configuration, and auxiliary suction.

1973-01-01

110

Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center  

NASA Technical Reports Server (NTRS)

Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.

Dow, Marvin B.; Dexter, H. Benson

1997-01-01

111

Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s  

NASA Technical Reports Server (NTRS)

This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a more indepth discussion of the contributions.

Chambers, Joseph R.

2003-01-01

112

NASA Langley Highlights, 1997  

NASA Technical Reports Server (NTRS)

Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research.

1998-01-01

113

The World Wide Web and Technology Transfer at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

Nelson, Michael L.; Bianco, David J.

1994-01-01

114

Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III  

NASA Technical Reports Server (NTRS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

2014-01-01

115

Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II  

NASA Technical Reports Server (NTRS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

2014-01-01

116

Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part I  

NASA Astrophysics Data System (ADS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

2014-06-01

117

Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I  

NASA Technical Reports Server (NTRS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

2013-01-01

118

Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part II  

NASA Astrophysics Data System (ADS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

Crasner, Aaron I.; Scola, Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

2014-06-01

119

Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part III  

NASA Astrophysics Data System (ADS)

Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey Y.; Petway, Larry B.

2014-06-01

120

Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

2005-01-01

121

Public health assessment for USAF Langley Air Force Base and NASA-Langley Research Center, Hampton, York County, Virginia, Region 3. CERCLIS Number VA4570024477 and CERCLIS Number VA2800005033; Final report  

SciTech Connect

Langley Air Force Base (Langley AFB) and the National Aeronautics and Space Administration Langley Research Center (NASA LaRC) are located adjacent to each other on a small coastal basin of the Back River, a tidal estuary of the Chesapeake Bay. The Agency for Toxic Substances and Disease Registry (ATSDR) visited the sites in 1994 and 1997. During the 1994 visit, several potential public health concerns were raised. (1) the potential for contaminants to migrate to fish and shellfish (which might be ingested by local residents) in the adjoining estuary, (2) surface soil contamination at a former playground at Langley AFB Site OT-06, (3) surface soil contamination and physical hazards at Langley AFB Sites OT-25 and FT-41, where children or youths might trespass, (4) the use of Langley AFB Site LF-12 for storing fill material, and (5) lead-contaminated soil in the housing areas at Langley AFB. ATSDR made recommendations for several of these sites. During the 1997 visit, ATSDR identified one additional potential concern at NASA LaRC Site 4, an open storage site where surface soil has not been characterized.

NONE

1998-12-29

122

Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

2007-01-01

123

Selected topics in experimental aeroelasticity at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

Ricketts, R. H.

1985-01-01

124

Selected topics in experimental aeroelasticity at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

Ricketts, R. H.

1985-01-01

125

#NASATweetup @NASA_Langley  

NASA Video Gallery

NASA Langley Research Center's first tweet-up involved a diverse group of more than 40 that included an astronaut's daughter, a physics student from Wisconsin, one of NASA's newest space camp crew ...

126

A Historical Perspective on Dynamics Testing at the Langley Research Center  

NASA Technical Reports Server (NTRS)

The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

2000-01-01

127

Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

2014-01-01

128

Development and status of data quality assurance program at NASA Langley research center: Toward national standards  

NASA Technical Reports Server (NTRS)

As part of a continuing effort to re-engineer the wind tunnel testing process, a comprehensive data quality assurance program is being established at NASA Langley Research Center (LaRC). The ultimate goal of the program is routing provision of tunnel-to-tunnel reproducibility with total uncertainty levels acceptable for test and evaluation of civilian transports. The operational elements for reaching such levels of reproducibility are: (1) statistical control, which provides long term measurement uncertainty predictability and a base for continuous improvement, (2) measurement uncertainty prediction, which provides test designs that can meet data quality expectations with the system's predictable variation, and (3) national standards, which provide a means for resolving tunnel-to-tunnel differences. The paper presents the LaRC design for the program and discusses the process of implementation.

Hemsch, Michael J.

1996-01-01

129

Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar  

NASA Technical Reports Server (NTRS)

Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

2008-01-01

130

Advanced technology needs for a global change science program: Perspective of the Langley Research Center  

NASA Technical Reports Server (NTRS)

The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

Rowell, Lawrence F.; Swissler, Thomas J.

1991-01-01

131

Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities  

NASA Technical Reports Server (NTRS)

Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

2003-01-01

132

Journey in Aeronautical Research: A Career at NASA Langley Research Center. No. 12; Monographs in Aerospace History  

NASA Technical Reports Server (NTRS)

An autobiography, of a noted aeronautical engineer, W. Hewitt Phillips, whose career spanned 58 years (1940-1998) at NASA Langley is presented. This work covers his early years to the Sputnik launch. His interests have been in research in aeronautics and in the related problems of spaceflight. After an introduction, his early life through the college years is reviewed, and his early interest in model airplanes is described. The first assignment for the National Advisory Committee for Aeronautics (NACA), which would later become NASA, was with the Flight Research Division. His early work involved "Flying Qualities", i.e., the stability and control characteristics of an airplane. The next chapter describes his early analytical studies. His work during World War II in the design of military airplanes, and the other effects of the war on research activities, is covered in the next two chapters. This research was involved in such innovations and refinements as the swept wing, the flettner tabs, servo tabs, spring tabs and whirlerons. The rest of the work covers the research which Mr. Hewitt was involved in, after the war until the Sputnik launch. These areas include unsteady lift, measurements of turbulence in the atmosphere, gust alleviation, and lateral response to random turbulence. He was also involved in several investigations of airplane accidents. The last two chapters cover the administration of the Langley Research Center, and the dawn of the Space Age. A complete bibliography of reports written by Mr. Hewitt, is included.

Phillips, W. Hewitt

1998-01-01

133

Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission  

NASA Technical Reports Server (NTRS)

We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

2012-01-01

134

NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs  

NASA Technical Reports Server (NTRS)

Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

Moses, Robert W.

2000-01-01

135

Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory technology development activities. 1: Introduction  

NASA Technical Reports Server (NTRS)

The Jet Propulsion Laboratory and the Langley Research Center have been developing technology related to large space antennas (LSA) during the past several years. The need for a communication system research program became apparent during the recent studies for the Land Mobile Satellite System. This study indicated the need for additional research in (1) electromagnetic analysis methods, (2) design and development of multiple beam feed systems, and (3) the measurement methods for LSA reflectors.

Campbell, T. G.

1983-01-01

136

Program of Research in Flight Dynamics in The George Washington University at NASA Langley Research Center, Hampton, Virginia  

NASA Technical Reports Server (NTRS)

The program objectives were defined in the original proposal entitled 'Program of Research in Flight Dynamics in the JIAFS at NASA Langley Research Center' which was originated March 20, 1975, and yearly renewals of the research program dated December 1, 1998 to December 31, 2002. The program included three major topics: 1) Improvement of existing methods and development of new methods for flight and wind tunnel data analysis based on system identification methodology; 2) Application of these methods to flight and wind tunnel data obtained from advanced aircraft; 3) Modeling and control of aircraft. The principal investigator of the program was Dr. Vladislav Klein, Professor Emeritus at The George Washington University, DC. Seven Graduate Research Scholar Assistants (GRSA) participated in the program. The results of the research conducted during four years of the total co-operative period were published in 2 NASA Technical Reports, 3 thesis and 3 papers. The list of these publications is included.

Klein, Vladislav

2002-01-01

137

Mixed Layer Heights derived from the NASA Langley Research Center airborne High Spectral Resolution Lidar  

NASA Astrophysics Data System (ADS)

The first-generation NASA airborne High Spectral Resolution Lidar (HSRL-1), onboard the NASA Langley Research Center's B200 aircraft, has been deployed for nineteen field missions in North America from 2006 to 2012 to aid in characterizing aerosol properties. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as location and variability of the Mixing Layer (ML) height. As will be shown, the HSRL-1 data collected during these missions are used for computing ML heights and for determining the fraction of aerosol optical thickness within and above the ML, both of which are important for air quality assessments. Additionally, we describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. Lastly, we explain how the ML heights derived from HSRL-1 have been used to assess Planetary Boundary Layer (PBL) simulations produced using various models, including Weather Research and Forecasting - Chemistry (WRF-Chem), NASA Goddard Earth Observing System - version 5 (GEOS-5), and European Centre for Medium-Range Weather Forecasts - Monitoring Atmospheric Composition and Climate (ECMWF-MACC).

Scarino, A. J.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R.; Cook, A. L.; Harper, D. B.; Fast, J. D.; da Silva, A.; Benedetti, A.

2012-12-01

138

Climate Change and Vector Borne Diseases on NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

2014-01-01

139

Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar  

NASA Technical Reports Server (NTRS)

The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; Dasilva, Arlindo; Benedetti, Angela

2012-01-01

140

Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility  

NASA Technical Reports Server (NTRS)

The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

2014-01-01

141

Langley aerospace test highlights, 1985  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

1986-01-01

142

Employee Communication at the NASA Langley Research Center. M.S. Thesis - Coll. of William and Mary  

NASA Technical Reports Server (NTRS)

The means of employee communication at the NASA Langley Research Center are reported, and their effectiveness evaluated. The history, purpose, and structure of the organization as well as the employee educational background and salary status are discussed. Some of the approaches used by Langley Research Center management in communicating with their men are addressed and compared with recommendations of experts in employee communication. The results of personal interviews involving both employee and management assessment of management-employee communication are presented and evaluated. Employees need a great deal more recommunication from management providing rationale behind the cancellation of existing projects or the disapproval of proposed research projects. Also NASA management needs to establish a policy and guidelines for the rapid and simultaneous dissemination of all non-restricted information to employees during organizational activities having potential adverse effects on large numbers of personnel. Finally some improvements should be made in employee orientation procedures.

Bendura, R. J.

1972-01-01

143

Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

2008-01-01

144

Climate Change Predictions and Adaption Strategies for Coastal NASA Langley Research Center  

NASA Astrophysics Data System (ADS)

Climate change could significantly impact the personal and operations of federal coastal laboratories. The Goddard Institute for Space Studies has made downscaled climate projections for Hampton Roads, Virginia a coastal region which includes NASA Langley Research Center (LaRC). These projections are being used to formulate adaptation and mitigation strategies to reduce climate change impacts at the center. Sea level rise and hurricanes will have significant impacts on LaRC and strategies such as surge modeling and tide gauge measurements and now underway. A proposed windbreak will reduce the impact of hurricane winds on center infrastructure. Disease vectors such as mosquitoes and ticks are being monitored and studied for their response to climate change. LaRC has significant forest and ecosystems which will be impacted by climate change and these impacts are being quantified. Mitigation strategies are being proposed such as the design of a 3 MW solar photovoltaic array to protect the center from brownouts and loss of power to critical missions. These and other programs will be discussed to reduce climate change impacts and allow LaRC to accomplish its mission into the next century.

De Young, R.

2012-12-01

145

Acoustic Calibration of the Exterior Effects Room at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The Exterior Effects Room (EER) at the NASA Langley Research Center is a 39-seat auditorium built for psychoacoustic studies of aircraft community noise. The original reproduction system employed monaural playback and hence lacked sound localization capability. In an effort to more closely recreate field test conditions, a significant upgrade was undertaken to allow simulation of a three-dimensional audio and visual environment. The 3D audio system consists of 27 mid and high frequency satellite speakers and 4 subwoofers, driven by a real-time audio server running an implementation of Vector Base Amplitude Panning. The audio server is part of a larger simulation system, which controls the audio and visual presentation of recorded and synthesized aircraft flyovers. The focus of this work is on the calibration of the 3D audio system, including gains used in the amplitude panning algorithm, speaker equalization, and absolute gain control. Because the speakers are installed in an irregularly shaped room, the speaker equalization includes time delay and gain compensation due to different mounting distances from the focal point, filtering for color compensation due to different installations (half space, corner, baffled/unbaffled), and cross-over filtering.

Faller, Kenneth J., II; Rizzi, Stephen A.; Klos, Jacob; Chapin, William L.; Surucu, Fahri; Aumann, Aric R.

2010-01-01

146

Langley Research Center photogrammetric measurements of solar array dynamics: Preliminary results  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center participated in the Solar Array Experiment with two primary objectives: (1) to study the structural and control dynamics of a new class of large, lightweight, low-frequency space structures, and (2) to develop technology for remote video measurement of structural motions. The shuttle orbiter's closed circuit television (CCTV) system was used to provide recorded video images of the solar array from four locations in the payload bay, two on the forward bulkhead and two on the aft bulkhead. White reflective targets were placed on the array to provide discrete points at which to track array motion. A dynamic test consisted of a quiescent period in which orbiter operations were inhibited and crew motion restricted, an excitation period, and a free decay period. The orbiter was placed in free drift while in a gravity gradient orientation and dynamics tests were timed to occur at orbital noon so that the Sun would illuminate one side of the array and Earth albedo the other. The CCTV system was turned on during the quiescent period, approximately 3 minutes prior to excitation. Video from all four CCTV cameras was recorded continuously through the excitation and free-decay periods for a total test record of 8 to 10 minutes.

Brumfield, M. L.; Pappa, R. S.; Miller, J. B.; Adams, R. R.

1985-01-01

147

Langley aerospace test highlights, 1990  

NASA Technical Reports Server (NTRS)

The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

1991-01-01

148

Subsonic Transonic Applied Refinements By Using Key Strategies - STARBUKS In the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.

Paryz, Roman W.

2014-01-01

149

Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

Schultz, James

2003-01-01

150

Report on Recent Upgrades to the Curved Duct Test Rig at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The Curved Duct Test Rig (CDTR) is an experimental facility that is designed to assess the acoustic and aerodynamic performance of aircraft engine nacelle liners in close to full scale. The test section is between 25% and 100% of the scale of aft bypass ducts of aircraft engines ranging in size from business jet to large commercial passenger jet. The CDTR has been relocated and now shares space with the Grazing Flow Impedance Tube in the Liner Technology Facility at NASA Langley Research Center. As a result of the relocation, research air is supplied to the CDTR from a 50,000 cfm centrifugal fan. This new air supply enables testing of acoustic liner samples at up to Mach 0.500. This paper documents experiments and analysis on a baseline liner sample, which the authors had analyzed and reported on prior to the move to the new facility. In the present paper, the experimental results are compared to those obtained previously in order to ensure continuity of the experimental capability. Experiments that take advantage of the facility s expanded capabilities are also reported. Data analysis features that enhance understanding of the physical properties of liner performance are introduced. The liner attenuation is shown to depend on the mode that is incident on the liner test section. The relevant parameter is the mode cut-on ratio, which determines the angle at which the sound wave is incident on the liner surface. The scattering of energy from the incident mode into higher order, less attenuated modes is demonstrated. The configuration of the acoustic treatment, in this case lined on one surface and hard wall on the opposite surface, is shown to affect the mode energy redistribution.

Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

2011-01-01

151

Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap  

NASA Technical Reports Server (NTRS)

Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

1992-01-01

152

Biomimetics for NASA Langley Research Center: Year 2000 Report of Findings From a Six-Month Survey  

NASA Technical Reports Server (NTRS)

This report represents an attempt to see if some of the techniques biological systems use to maximize their efficiency can be applied to the problems NASA faces in aeronautics and space exploration. It includes an internal survey of resources available at NASA Langley Research Center for biomimetics research efforts, an external survey of state of the art in biomimetics covering the Materials, Structures, Aerodynamics, Guidance and Controls areas. The Biomimetics Planning team also included ideas for potential research areas, as well as recommendations on how to implement this new program. This six-month survey was conducted in the second half of 1999.

Siochi, Emilie J.; Anders, John B., Jr.; Cox, David E.; Jegley, Dawn C.; Fox, Robert L.; Katzberg, Stephen J.

2002-01-01

153

An overview of selected NASP aeroelastic studies at the NASA Langley Research Center  

Microsoft Academic Search

Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good,

Charles V. Spain; David L. Soistmann; Ellen C. Parker; Michael D. Gibbons; Michael G. Gilbert

1990-01-01

154

High Speed Vortex Flows  

NASA Technical Reports Server (NTRS)

A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

2000-01-01

155

Langley aerospace test highlights, 1987  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.

1988-01-01

156

Program of Research in Flight Dynamics in the JIAFS, George Washington University at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The program objectives are fully defined in the original proposal entitled 'Program of Research in Flight Dynamics in GW at NASA Langley Research Center,' which was originated March 20, 1975, and in the renewals of the research program from December 1, 2000 to November 30, 2001. The program in its present form includes three major topics: 1) the improvement of existing methods and development of new methods for wind tunnel and flight test data analysis, 2) the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3) the correlation of flight results with wind tunnel measurements, and theoretical predictions. The Principal Investigator of the program is Dr. Vladislav Klein. Three Graduate Research Scholar Assistants (K. G. Mas, M. M. Eissa and N. M. Szyba) also participated in the program. Specific developments in the program during the period Dec. 1, 2001 through Nov. 30, 2002 included: 1) Data analysis of highly swept delta wing aircraft from wind and water tunnel data, and 2) Aerodynamic characteristics of the radio control aircraft from flight test.

Klein, Vladislav

2002-01-01

157

NASA Langley Research Center Systems Analysis & Concepts Directorate Participation in the Exploration Systems Architecture Study  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.

Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel

2006-01-01

158

Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

2012-01-01

159

Fluidics research, including vortex and jet pipe valves  

NASA Technical Reports Server (NTRS)

The research at the Systems and Control Laboratory is reported. Topics discussed include: response characteristics of laminar fluidic amplifiers, power amplification with a vortex valve, pulse-supply-mode fluidics, speed control system employing a jet pipe valve, and the fluidics reference center.

1973-01-01

160

Evaluation of the NASA Langley Research Center airborne High Spectral Resolution Lidar extinction measurements during the Megacity Initiative: Local and Global Research Observations (MILAGRO) Campaign  

Microsoft Academic Search

The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA LaRC B-200 King Air aircraft and measured profiles of aerosol extinction, backscatter, and depolarization during the Megacity Initiative: Local and Global Research Observations (MILAGRO) Campaign in March 2006. The HSRL collected approximately 55 hours of data over 15 science flights, which were coordinated

R. R. Rogers; R. A. Ferrare; C. A. Hostetler; J. W. Hair; A. L. Cook; D. B. Harper; M. D. Obland; S. P. Burton; A. D. Clarke; P. B. Russell; J. Redemann; J. M. Livingston

2007-01-01

161

Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities  

NASA Technical Reports Server (NTRS)

A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

Hubbard, H. H.; Powell, C. A.

1981-01-01

162

The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

2002-01-01

163

Recent progress on new facilities at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A new fan-driven high Reynolds number transonic cryogenic tunnel the National Transonic Facility is being planned for the United States. This tunnel will provide an order of magnitude increase in Reynolds number capability over existing tunnels. Theoretical studies and experience with the Langley 1/3 Meter Transonic Cryogenic Tunnel indicate that the cryogenic concept allows the attainment of full-scale Reynolds number at reasonable levels of dynamic pressure. The unique modes of operation which are available only in a cryogenic tunnel make possible the separation of Mach number, Reynolds number possible the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, reduced total energy consumption.

Kilgore, R. A.; Kuhn, R. E.

1976-01-01

164

Langley Aircraft Landing Dynamics Facility  

NASA Technical Reports Server (NTRS)

The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

1987-01-01

165

The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

Jansen, B. J., Jr.

1998-01-01

166

Current Performance Characteristics of NASA Langley Research Center's Cockpit Motion Base and Standardized Test Procedure for Future Performance Characterization  

NASA Technical Reports Server (NTRS)

This report documents the updated performance characteristics of NASA Langley Research Center's (LaRC) Cockpit Motion Base (CMB) after recent revisions that were made to its inner-loop, feedback control law. The modifications to the control law will be briefly described. The performance of the Cockpit Motion Facility (CMF) will be presented. A short graphical comparison to the previous control law can be found in the appendix of this report. The revised controller will be shown to yield reduced parasitic accelerations with respect to the previous controller. Metrics based on the AGARD Advisory Report No. 144 are used to assess the overall system performance due to its recent control algorithm modification. This report also documents the standardized simulator test procedure which can be used in the future to evaluate potential updates to the control law.

Cowen, Brandon; Stringer, Mary T.; Hutchinson, Brian K.; Davidson, Paul C.; Gupton, Lawrence E.

2014-01-01

167

Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

2013-01-01

168

A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

2004-01-01

169

An overview of selected NASP aeroelastic studies at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

1990-01-01

170

Chemical climatology of the middle atmosphere simulated by the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model  

Microsoft Academic Search

The stratospheric chemical characteristics of the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport model are evaluated. We focus on species relevant to stratospheric ozone including the main constituents of the odd nitrogen and inorganic chlorine families. Model-derived chemical climatologies resulting from 20 years of integrations are compared with observations made primarily by the experiments aboard

Jassim A. Al-Saadi; R. Bradley Pierce; Murali Natarajan; T. Duncan Fairlie; William L. Grose

2004-01-01

171

Langley aerospace test highlights, 1988  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1989-01-01

172

A synopsis of Langley Research Center's lidar effort for the 1986 FIRE IFO  

NASA Technical Reports Server (NTRS)

The lidar data obtained by the Langley Aircraft Lidar in October 1986 in Wisconsin is being reduced in a transparent, simple fashion and will be published in its reduced form in a NASA Reference Publication (RP). This reduced data will also be submitted to the FIRE data archives. Some of this reduced data will be presented at the FIRE FSET Workshop to acquaint the science team with the data format to be used in the archive and the upcoming catalog contained in the RP. A new method was utilized in Wisconsin for obtain the depolarization ratio of aerosols. This method involves using a half-wave plate to calibrate the lidar under field conditions. The theory behind this technique will be presented at this workshop as well as some of the lidar calibration results. The lidar calibration will be utilized in interpreting some of the dual polarization lidar data obtained during the IFO in Wisconsin. Some of these data are also discussed. A continuous wave laser lab-type lidar simulator was constructed during the previous year. One of the primary reasons for the construction of the simulator was to attempt dual-polarization lidar-like calibrations under laboratory, rather than field conditions. The data collected by this system was used to experimentally check and thus, inspire confidence in the algorithms being used to interpret the lidar data obtained in the field. A computer program which simulates noisy lidar data was used as a part of this effort in order to obtain some feel for the noise in the inversion parameters as a function of noise in the actual measurements. The lidar simulation will be described in addition to presenting some of the lab-generated calibration data.

Alvarez, Jose M.; Mccormick, M. P.; Moore, J. D.; Hunt, W. H.; Rouse, B. R.; Poole, L. R.; Poole, B. D.

1990-01-01

173

Research on aircraft trailing vortex detection based on laser's multiplex information echo  

NASA Astrophysics Data System (ADS)

Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.

Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu

2010-10-01

174

Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case  

NASA Technical Reports Server (NTRS)

This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

Switzer, George F.

2008-01-01

175

Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

2001-01-01

176

Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop  

NASA Technical Reports Server (NTRS)

A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

Creduer, Leonard (Editor); Perry, R. Brad (Editor)

1997-01-01

177

An investigation of the increase in vortex induced rolling moment associated with landing gear wake  

NASA Technical Reports Server (NTRS)

Flight tests were conducted to verify the results found in ground base facilities of the effect of span lift load variation as well as the vortex attentuation of the high energy jet engine exhaust through proper thrust programming. During these flight tests a large increase in vortex strength was experienced as a result of extending the landing gear. Tests in the Langley Vortex Research Facility indicate that the wake produced by the landing gear may possibly form an aerodynamic endplate or reflection plane at the inboard edge of each inboard flap which increases the effective aspect ratio of the flap and thereby increases the strength of the flap outer edge vortex.

Patterson, J. C., Jr.; Jordan, F. L., Jr.

1975-01-01

178

Langley aeronautics and space test highlights, 1984  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1984-01-01

179

Measurement of Separated Flow Structures Using a Multiple-Camera DPIV System. [conducted in the Langley Subsonic Basic Research Tunnel  

NASA Technical Reports Server (NTRS)

A novel multiple-camera system for the recording of digital particle image velocimetry (DPIV) images acquired in a two-dimensional separating/reattaching flow is described. The measurements were performed in the NASA Langley Subsonic Basic Research Tunnel as part of an overall series of experiments involving the simultaneous acquisition of dynamic surface pressures and off-body velocities. The DPIV system utilized two frequency-doubled Nd:YAG lasers to generate two coplanar, orthogonally polarized light sheets directed upstream along the horizontal centerline of the test model. A recording system containing two pairs of matched high resolution, 8-bit cameras was used to separate and capture images of illuminated tracer particles embedded in the flow field. Background image subtraction was used to reduce undesirable flare light emanating from the surface of the model, and custom pixel alignment algorithms were employed to provide accurate registration among the various cameras. Spatial cross correlation analysis with median filter validation was used to determine the instantaneous velocity structure in the separating/reattaching flow region illuminated by the laser light sheets. In operation the DPIV system exhibited a good ability to resolve large-scale separated flow structures with acceptable accuracy over the extended field of view of the cameras. The recording system design provided enhanced performance versus traditional DPIV systems by allowing a variety of standard and non-standard cameras to be easily incorporated into the system.

Humphreys, William M., Jr.; Bartram, Scott M.

2001-01-01

180

NASA-Langley Research Center's participation in a round-robin comparison between some current crack-propagation prediction methods  

NASA Technical Reports Server (NTRS)

A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.

Hudson, C. M.; Lewis, P. E.

1979-01-01

181

Experiences at Langley Research Center in the application of optimization techniques to helicopter airframes for vibration reduction  

NASA Technical Reports Server (NTRS)

A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.

Murthy, T. Sreekanta; Kvaternik, Raymond G.

1991-01-01

182

Historical perspectives on thermostructural research at the NACA Langley Aeronautical Laboratory from 1948 to 1958  

NASA Technical Reports Server (NTRS)

Research on structural problems associated with aerodynamic heating, conducted by the National Advisory Committee for Aeronautics (NACA) during its last decade are described. The text of a special presentation given at the NASA Symposium on Computational Aspects of Heat Transfer in Structure is presented. Some early thermostructural research activities using charts is also discussed. The prinicipal message of the paper is that although vehicle oriented research programs speed development of new technology for specific missions, too much effort may be expended on developing technology which is never used because a vehicle is never built. A healthy research program must provide freedom to explore new ideas that have no obvious applications at the time to generate the technology that makes important, unanticipated flight or vehicle opportunities possible.

Heldenfels, R. R.

1982-01-01

183

Computational structural mechanics: A new activity at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Complex structures considered for the late 1980's and early 1990's include composite primary aircraft structures and the space station. These structures are much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. A major research activity in computational structural mechanics (CSM) was initiated. The objective of the CSM activity is develop advanced structural analysis technology that will exploit modern and emerging computers such as computers with vector and/or parallel processing capabilities. The three main research activities underway in CSM include: (1) structural analysis methods development; (2) a software testbed for evaluating the methods; and (3) numerical techniques for parallel processing computers. The motivation and objectives of the CSM activity are presented and CSM activity is described. The current CSM research thrusts, and near and long term CSM research thrusts are outlined.

Knight, N. F., Jr.; Stroud, W. J.

1985-01-01

184

Recent developments in polyimide adhesives at NASA-Langley Research Center  

NASA Technical Reports Server (NTRS)

Adhesive development is directed towards elevated temperature applications (200-300 C). Because of thermal stability considerations, the most attractive adhesives for this temperature range are linear and addition polyimides. The linear polymide adhesive research encompassed basic structure-property relationships, solvent studies and formulations to meet various requirements. The most recent research in linear polyimide systems was in the development of thermoplastic systems in an effort to eliminate the undesirable evolution of water classically associated with the cure going through an amide-acid intermediate step in the cure process. Addition polyimide adhesive research was undertaken in order to avoid water evolution during cure. Basic structure-property relationships for these materials led to an adhesive which was used extensively for high temperature adhesive needs. Since addition systems are of a highly crosslinked nature, they are not as resistant to impact as their linear counterparts. In order to overcome this problem, research was done in the area of elastomer-toughening these polymers.

St.clair, T. L.

1981-01-01

185

Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

1997-01-01

186

Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976  

NASA Technical Reports Server (NTRS)

Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

Fryer, B. A. (compiler)

1977-01-01

187

Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center  

NASA Technical Reports Server (NTRS)

Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

Block, P. J. W.

1982-01-01

188

Design and analysis of low boom concepts at Langley Research Center  

NASA Technical Reports Server (NTRS)

The objective of the sonic boom research in the current High Speed Research Program is to ultimately make possible overland supersonic flight by a high speed civil transport. To accomplish this objective, it is felt that results in four areas must demonstrate that such a vehicle would be acceptable by the general public, by the airframers, and by the airlines. It should be demonstrated: (1) that some waveform shape has the possibility of being acceptable to the general public; (2) that the atmosphere would not totally destroy such a waveform during propagation; (3) that a viable airplane could be built which produces such a waveform; and (4) that any performance penalty suffered by a low boom aircraft would be counteracted by the economic benefit of overland supersonic flight. The work being done at LaRC is in support of the third element listed above--the area of configuration design. The initial part of the paper will give a review of the theory being used for configuration designs and discuss two theory validation models which were built and tested within the past two years. Discussion of the wind tunnel and theoretical results (linear theory and higher order methods) and their implications for future designs will be included.

Darden, Christine M.; Mack, Robert J.; Needleman, Kathy E.; Baize, Daniel G.; Coen, Peter G.; Barger, Raymond L.; Melson, N. Duane; Adams, Mary S.; Shields, Elwood W.; Mcgraw, Marvin E.

1992-01-01

189

Combining analysis with optimization at Langley Research Center - An evolutionary process  

NASA Technical Reports Server (NTRS)

Analytical and computational advances, at Langely Research Center (La RC), contributing to the evolution of computer programs combining analysis and optimization are presented, namely, strength sizing, concurrent strength and flutter sizing, and general optimization. Current work on a software system which executes the analysis and optimization in a sequential rather than concurrent mode is then described, as a step toward the long-term goal at La RC of developing the methodology for such systems. The software system is designated Enginering Analysis Language (EAL)/Programming Structural Synthesis System (PR)SSS), and work is being done on the incorporation of PROSSS into EAL. EAL language can perform most FORTRAN operations, including testing, branching, and looping, and its data base system can easily be accessed by any processor using FORTRAN callable utility subroutines. Some numerical results showing the accuracy of EAL/PROSSS are given.

Rogers, J. L., Jr.

1982-01-01

190

Recent progress in NASA Langley Research Center textile reinforced composites program  

NASA Technical Reports Server (NTRS)

Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

1992-01-01

191

Current state and future direction of computer systems at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

Rogers, James L. (editor); Tucker, Jerry H. (editor)

1992-01-01

192

Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program  

NASA Technical Reports Server (NTRS)

An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final entry, NASA LaRC also performed three-dimensional unstructured Navier Stokes CFD analyses in an attempt to predict the potential aerodynamic impact of the smart control surface on overall model forces and moments. Eight different control surface shapes were selected for study at Mach = 0.6, Reynolds number = 3.25 x 10(exp 6), and + 2 deg., 3 deg., 8 deg., and 10 deg.model angles-of-attack. For the baseline, undeflected control surface geometry, the CFD predictions and wind-tunnel results matched well. The agreement was not as good for the more complex aero-loaded control surface shapes, though, because of the inability to accurately predict those shapes. Despite these results, the NASA CFD study served as an important step in studying advanced control effectors.

Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

2003-01-01

193

Aeroacoustic Measurements of a Wing/Slat Model. [Research conducted at the Quiet Flow Facility of the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper deals with detailed flow and acoustic measurements that have been made to understand, and to possibly predict and reduce, the noise from a wing leading edge slat configuration. The acoustic database is obtained by a moveable Small Aperture Directional Array (SADA) of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

Mendoza, Jeff M.; Brooks, Thomas F.; Humphreys, William M.

2002-01-01

194

Wake Vortex Advisory System (WakeVAS) Concept of Operations  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

2003-01-01

195

Vortex Flow Aerodynamics, volume 1  

SciTech Connect

Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

Campbell, J.F.; Osborn, R.F.; Foughner, J.T. Jr.

1986-07-01

196

History of Wake Vortex Research: Problems and Accomplishments  

NASA Technical Reports Server (NTRS)

Significant progress has been made in understanding vortex behavior but much remains to be done. The primary challenge is to bring "science" into operational use. Success will require cooperation from a diverse group of organizations.

Greene, George C.

1997-01-01

197

Entry heat transfer tests of the 0.006-scale space shuttle orbiter model (50-0) in Langley Research Center freon tunnel at Mach 6 (OH45)  

NASA Technical Reports Server (NTRS)

Results are presented of heat transfer tests of a 147B configuration orbiter model (50-0) conducted in the NASA Langley Research Center Freon Tunnel (LRC/CF4). These tests were conducted at a nominal Mach number of 6, and at Reynolds numbers of 0.3 and 0.5 x 1,000,000 per foot. The objectives of the tests were to determine the effects of the low freon specific heat ratio, gamma, on the heating distributions and to determine the impingement of the orbiter bow shock on the wing. The data presented include thin skin heat transfer data (tabulated data and plotted data).

Foust, J. W.

1975-01-01

198

Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion  

NASA Technical Reports Server (NTRS)

Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

Robotti, A. C.; Oggero, M.

1985-01-01

199

Formative and summative evaluation efforts for the Teacher Enhancement Institute conducted at the NASA Langley Research Center, summer 1994  

NASA Technical Reports Server (NTRS)

The Teacher Enhancement Institute (TEI) at NASA Langley Research Center was developed in response to Executive Order 12821 which mandates national laboratories to 'assist in the mathematics and science education of our Nation's students, teachers, parents, and the public by establishing programs at their agency to provide for training elementary and secondary school teachers to improve their knowledge of mathematics and science. Such programs, to the maximum extent possible, shall involve partnerships with universities, state and local elementary and secondary school authorities, corporations and community based organizations'. The faculty worked closely with one another and the invited speakers to insure that the sessions supported the objectives. Speakers were informed of the objectives and given guidance concerning form and function for the session. Faculty members monitored sessions to assist speakers and to provide a quality control function. Faculty provided feedback to speakers concerning general objective accomplishment. Participant comments were also provided when applicable. Post TEI surveys asked for specific comments about each TEI session. During the second of the two, two week institutes, daily critiques were provided to the participants for their reflection. This seemed to provide much improved feedback to speakers and faculty because the sessions were fresh in each participant's mind. Between sessions one and two, some changes were made to the program as a result of the formative evaluation process. Those changes, though, were minor in nature and comprised what may be called 'fine tuning' a well conceived and implemented program. After the objectives were written, an assessment instrument was developed to test the accomplishment of the objectives. This instrument was actually two surveys, one given before the TEI and one given after the TEI. In using such a series, it was expected that changes in the participants induced by attendance at TEI may be discovered. Because the institute was limited in time and depth of exposure, attitudinal changes (self-assessment of ability and confidence) were chosen to be surveyed. On the pre-survey, seven general categories of questions were asked. The post-survey repeated three of these categories, providing a pre and post evaluation of the same questions and added a fourth category which asked the participant to self-assess objective accomplishment. The assessment process for TEI was valuable when one looks at the final accomplishments of the TEI. A number of aspects stand out: (1) formative evaluation during project development allowed the goals and objectives to guide the development of the institute; (2) formative evaluation provided positive guidance to presenters in developing and implementing their session; (3) formative evaluation helped presenters to improve or focus their sessions; (4) summative evaluation provided managers a way to gauge the success of the institute; (5) summative evaluation provided a benchmark for future programs to be measured against.

Carlson, Randal D.

1994-01-01

200

Langley aeronautics and space test highlights, 1983  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1984-01-01

201

Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems  

NASA Technical Reports Server (NTRS)

A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

Kelly, H. N.; Wieting, A. R.

1984-01-01

202

Overview of military technology at NASA Langley  

NASA Technical Reports Server (NTRS)

The Langley Research Center began addressing major research topics pertinent to the design of military aircraft under the egis of The National Advisory Council on Aeronautics in 1917, until 1958, when it passed under the control of the newly-instituted NASA research facilities system. A historical account is presented of NASA-Langley's involvement in the experimental investigation of twin-engined jet aircraft nozzle interfairings, thrust reversers, high-efficiency supersonic cruise configurations, high-alpha aerodynamics, air-to-air combat handling qualities, wing/stores flutter suppression, and store carriage and separation characteristics.

Sawyer, Wallace C.; Jackson, Charlie M., Jr.

1989-01-01

203

Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel  

NASA Technical Reports Server (NTRS)

A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

Morgan, H. L., Jr.

1982-01-01

204

NASA Aircraft Vortex Spacing System Development Status  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

1999-01-01

205

Software engineering from a Langley perspective  

NASA Technical Reports Server (NTRS)

A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.

Voigt, Susan

1994-01-01

206

RESEARCH ARTICLE Drag and lift reduction of a 3D bluff-body using active vortex  

E-print Network

forces (drag and lift) induced on the bluff- body is investigated. The high sensitivity to many geoRESEARCH ARTICLE Drag and lift reduction of a 3D bluff-body using active vortex generators Jean demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduc- tion can reach more than

Wesfreid, José Eduardo

207

Flow field studies using holographic interferometry at Langley  

NASA Astrophysics Data System (ADS)

Some of the uses of holographic interferometry at Langley Research Center both for flow visualization and for density field determinations are described and tests in cryogenic flows at the Langley 0.3-Meter Transonic Cryogenic Tunnel are discussed. Experimental and theoretical fringe shift data are compared.

Burner, A. W.; Snow, W. L.; Goad, W. K.; Helms, V. T.; Gooderum, P. B.

1982-09-01

208

NASA Langley/CNU Distance Learning Programs.  

National Technical Information Service (NTIS)

NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and ...

R. Caton, T. E. Pinelli

2002-01-01

209

NASA Langley/CNU Distance Learning Programs.  

ERIC Educational Resources Information Center

NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and currently there are a suite of five distance-learning programs. This paper presents the major…

Caton, Randall; Pinelli, Thomas E.

210

Aerodynamics Research Revolutionizes Truck Design  

NASA Technical Reports Server (NTRS)

During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

2008-01-01

211

Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) Laser Absorption Spectrometer Conceptual Design Studies 1 NASA Langley Research Center 5 Old Dominion University  

NASA Astrophysics Data System (ADS)

ASCENDS is one of the National Research Council's recommended Decadal Survey Tier II missions. It will provide improved ability to predict/model long-term changes in the climate cycle based on the understanding of the natural processes driving the variability of carbon sources and sinks, and the transport of carbon through the atmosphere. NASA Langley Research Center has been studying the applicability of a suitably configured Continuous Wave Intensity Modulated Laser Absorption Spectrometer (CWIM-LAS) can meet the high precision measurement requirements of ASCENDS Mission. In this paper we will present the results of an initial instrument design and analysis work using the constraints flowing from the Mission Orbital and Platform Analyses and xCO2 Science Measurement Goals. The laser absorption spectrometer described here, simultaneously measures CO2 in the 1.57 um region and O2 in the 1.26 um region using the Differential Absorption LIDAR (DIAL) technique. The combination of the CWIM-LAS and DIAL techniques also allows simultaneous, both temporally and spatially, measurement at the "On/Off" line wavelengths which minimizes the effects of changing surface reflectivity and atmospheric scattering, resulting in a true differential measurement which meets the xCO2 measurement precision required for this mission in a configuration suitable for an orbiting platform.

Vanek, M. D.; Ismail, S.; Lin, B.; Chen, S.; DiJoseph, M.

2012-12-01

212

Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

Webster, T. J.

1982-01-01

213

Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel  

NASA Technical Reports Server (NTRS)

Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

Mineck, R. E.

1977-01-01

214

NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports  

NASA Technical Reports Server (NTRS)

The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

1996-01-01

215

NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports  

NASA Technical Reports Server (NTRS)

The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

1997-01-01

216

Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation  

NASA Technical Reports Server (NTRS)

An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.

Lin, John C.

2002-01-01

217

Active Flow Control Activities at NASA Langley  

NASA Technical Reports Server (NTRS)

NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

2004-01-01

218

Efficiency calculation and the vortex characteristics research of centrifugal pump  

NASA Astrophysics Data System (ADS)

Efficiency is an important performance indicator of the centrifugal pump, this paper establish three-dimensional model of one high head centrifugal pump in domestic with CFD software, though changing the operating conditions, statistics the calculation efficiency and energy loss under different operating conditions, compare the impact to efficiency and head calculation with steady and unsteady calculation methods, and research the affect when runner in different locations in the centrifugal pump, given and analysis the reasons of the flow field and pressure distribution of runner in different steps.

Ge, X. F.; Gao, Z. X.; Zheng, Y.; Shen, M. H.

2012-11-01

219

A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation  

NASA Technical Reports Server (NTRS)

A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

Patterson, J. C., Jr.; Jordan, F. L., Jr.

1975-01-01

220

F/A-18 and F-16 forebody vortex control, static and rotary-balance results  

NASA Technical Reports Server (NTRS)

The results from research on forebody vortex control on both the F/A-18 and the F-16 aircraft will be shown. Several methods of forebody vortex control, including mechanical and pneumatic schemes, will be discussed. The wind tunnel data includes both static and rotary balance data for forebody vortex control. Time lags between activation or deactivation of the pneumatic control and when the aircraft experiences the resultant forces are also discussed. The static (non-rotating) forces and pressures are then compared to similar configurations tested in the NASA Langley and DTRC Wind Tunnel, the NASA Ames 80'x120' Wind Tunnel, and in flight on the High Angle of Attack Research Vehicle (HARV).

Kramer, Brian; Smith, Brooke

1994-01-01

221

Heat transfer tests of a 0.006-scale thin skin space shuttle model (50-0, 41-T) in the Langley Research Center nitrogen tunnel at Mach 19 (IH19)  

NASA Technical Reports Server (NTRS)

Data are presented from heat transfer tests on an 0.0006-scale space shuttle vehicle in the Langley Research Center Nitrogen Tunnel. The purpose of this test was to obtain ascent heating data at a high hypersonic Mach number. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone. All configurations were tested with and without boundary layer transition. Testing was conducted at a Mach number of 19, a Reynolds number of 0.5 million per foot, and angles of attack of 0, + or - 5, and + or - 10 degrees. Heat transfer data was obtained from 77 orbiter and 90 external tank iron-constantan thermocouples.

Walstad, D. G.

1975-01-01

222

Flutter tests (IS4) of the 0.0125-scale shuttle reflection plane model 30-OTS in the Langley Research Center 26-inch transonic blowdown tunnel test no. 547  

NASA Technical Reports Server (NTRS)

A series of slab wing flutter models with rigid orbiter fuselage, external tank, and SRB models of the space shuttle were tested, in a reflection plane arrangement, in the NASA Langley Research Center's 26-inch Transonic Blowdown Tunnel. Model flutter boundaries were obtained for both a wing-alone configuration and a wing-with-orbiter, tank and SRB configuration. Additional test points were taken of the wing-with-orbiter configuration, as a correlation with the wing-alone condition. A description of the wind tunnel models and test procedures utilized in the experiment are provided.

Kotch, M. A.

1974-01-01

223

NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey  

NASA Technical Reports Server (NTRS)

The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

1995-01-01

224

Langley's Space Shuttle Technology: A bibliography  

NASA Technical Reports Server (NTRS)

This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.

Champine, G. R.

1981-01-01

225

Impingement of Boundary-Reflected Disturbances Originating at the Nose of a Body of Revolution in the Langley Research Center 16-Foot Transonic Tunnel  

NASA Technical Reports Server (NTRS)

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine boundary-reflected disturbance lengths at low supersonic Mach numbers in the octagonally shaped test section. A body of revolution that had a nose designed to produce a bow shock and flow field similar to that about the nose of a supersonic transport configuration was used. The impingement of reflected disturbances on the model was determined from static pressures measured on the surface of the model. Test variables included Mach number (0.90 to 1.25), model angle of attack (nominally -10, 0, and 10), and model roll angle.

Re, Richard, J.; Capone, Francis J.

1998-01-01

226

Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

1999-01-01

227

Langley test highlights, 1981  

NASA Technical Reports Server (NTRS)

Significant aircraft tests which were performed are highlighted. The broad range of the research and technology activities. The conributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

1982-01-01

228

Effects of Passive Porosity on Interacting Vortex Flows at Supersonic Speeds  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPW7) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS). These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

Erickson, Gary E.

2000-01-01

229

Final Environmental Impact Statement for Langley  

NASA Technical Reports Server (NTRS)

The Langley Research Center is described, together with the nature of its activities, from which it can be seen that the Center is basically not a major pollution source. Geographical, geological, and climatic charateristics of the site are also described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the Center are described. Where the intensities of these sources might exceed the recommended guide-lines, the corrective actions that have been taken or are being taken are described. The entire inventory of pollution sources and control methods is summarized in an appendix.

1971-01-01

230

The Langley Wind Tunnel Enterprise  

NASA Technical Reports Server (NTRS)

After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

1998-01-01

231

A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)  

NASA Technical Reports Server (NTRS)

A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

Hinton, David A.; Tatnall, Chris R.

1997-01-01

232

Low-subsonic stability and control characteristics of a 0.015-scale remotely controlled elevon model (44-0) of the space shuttle orbiter in the Langley Research Center low turbulence pressure tunnel (LA61B)  

NASA Technical Reports Server (NTRS)

A Langley-built 0.015-scale SSV orbiter configuration with remote independently operated left and right elevon surfaces was tested in the NASA/Langley Research Center Low Turbulence Pressure Tunnel. A detailed aerodynamic data base was obtained for the current shuttle orbiter configuration. Special attention was directed to definition of Reynolds number effects on nonlinear aerodynamic characteristics of the orbiter. Small increments in angle of attack, sideslip, and elevon/aileron position were studied in order to better define areas where nonlinearities may occur. Force and moment, and elevon position data were recorded over an angle of attack range -2 deg to 20 deg at angles of sideslip of 0 deg , + or - 2 deg, and + or - 4 deg. Tests were also made over an angle of sideslip range of -6 deg to 6 deg at selected angles of attack and elevon/aileron position. The test Mach numbers were from 0.15 to 0.30 at Reynolds numbers from 2.0 to 13.5 million per foot.

1976-01-01

233

Vannevar Bush Visits Langley, October 21, 1938  

NASA Technical Reports Server (NTRS)

Dr. H.J.E. Reid, Langley Director; Vannevar Bush, NACA Chairman; and George Lewis at Langley, 1938. Vannevar Bush, Henry Reid, George W. Lewis: Vannevar Bush (center) visited Langley on October 21, 1938, just months before becoming the NACA chairman. Henry Reid stands to Bush's right; George Lewis is to his left.

1938-01-01

234

Model Validation of Wake-Vortex/Aircraft Encounters  

NASA Technical Reports Server (NTRS)

Wake-vortex effects on an 10% scale model of the B737-100 aircraft are calculated using both strip theory and vortex-lattice methods. The results are then compared to data taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). The accuracy of the models for a reduced geometry, such with the horizontal stabilizer and the vertical tail removed, is also investigated. Using a 10% error in the circulation strength and comparing the model's results with the experiment illustrates the sensitivity of the models to the vortex circulation strength. It was determined that both strip theory and the vortex lattice method give accurate results when all the geometrical information is used. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be accurately modeled with either the full geometry or the reduced geometry.

Pete, Kimberly R.; Vicroy, Dan D.; Smith, Sonya T.

2000-01-01

235

Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters  

NASA Technical Reports Server (NTRS)

A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.

Lamar, John E.; Johnson, Thomas D., Jr.

1988-01-01

236

Heat transfer tests of an 0.006-scale thin-skin space shuttle thermocouple model (41-OTS) in the Langley Research Center unitary plan wind tunnel at M equals 3.7 (IH16)  

NASA Technical Reports Server (NTRS)

The results are presented of supersonic heat transfer tests performed on the .006 scale space shuttle vehicle model (41-OTS) in the Langley Research Center Unitary Plan Wind Tunnel. These tests were conducted to parametrically investigate ascent heating of the integrated vehicle and its components. The tests were conducted at a nominal Mach number of 3.7 and Reynolds numbers per foot of 2 and 5 million. The model configurations investigated were the integrated vehicle and each component alone (i.e. orbiter, tank and SRB). All the configurations were run with and without transition strips and through an angle of attack range of 0 deg to minus 5 deg with the exception of the SRB which was tested through an angle of attack range of minus 5 deg to 90 deg. The heat transfer data were obtained from 223 iron constantan thermocouples attached to stainless steel thin-skin areas of the model.

Walstad, D. G.

1975-01-01

237

NASA Langley Scientific and Technical Information Output: 1999  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1999. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

Stewart, Susan H. (Compiler); Machie, Harriet (Compiler)

2000-01-01

238

NASA Langley Scientific and Technical Information Output: 1996  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1996. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

1997-01-01

239

NASA Langley Scientific and Technical Information Output 2000  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2000. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandum, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

2001-01-01

240

The Nov.5, 1928 Visit of Amelia Earhart to Langley  

NASA Technical Reports Server (NTRS)

Group photo on steps of Langley Research Building in 1928. Front row, left to right: E.A. Meyers, Elton Miller, Amelia Earhart, Henry Reid, and Lt. Col. Jacob W.S. Wuest. Back row, Left to right: Carlton Kemper, Raymond Sharp, Thomas Carroll, (unknown person behind Amelia Earhart), and Fred Weick.

1928-01-01

241

ENHANCED CAPABILITIES OF THE NASA LANGLEY THERMAL ACOUSTIC FATIGUE APPARATUS  

Microsoft Academic Search

This paper presents newly enhanced acoustic capabilities of the Thermal Acoustic Fatigue Apparatus at the NASA Langley Research Center. The facility is a progressive wave tube used for sonic fatigue testing of aerospace structures. Acoustic measurements for each of the six facility configurations are shown and comparisons with projected performance are made.

Stephen A. Rizzi; Travis L. Turner

1997-01-01

242

Enhanced Capabilities of the NASA Langley Thermal Acoustic Fatigue Apparatus  

NASA Technical Reports Server (NTRS)

This paper presents newly enhanced acoustic capabilities of the Thermal Acoustic Fatigue Apparatus at the NASA Langley Research Center. The facility is a progressive wave tube used for sonic fatigue testing of aerospace structures. Acoustic measurements for each of the six facility configurations are shown and comparisons with projected performance are made.

Rizzi, Stephen A.; Turner, Travis L.

2004-01-01

243

NASA Langley Scientific and Technical Information Output: 1994. Volume 1  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

1995-01-01

244

NASA Langley Scientific and Technical Information Output?2003  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2003. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler)

2004-01-01

245

NASA Langley Scientific and Technical Information Output-2001  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the 2001 calendar year. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler)

2002-01-01

246

NASA Langley Scientific and Technical Information Output-2002  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2002. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler)

2003-01-01

247

NASA Langley Scientific and Technical Information Output, 1995. Volume 1  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1995. Included are citations for formal reports, high-numbered conference publications, high-numbered technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

1996-01-01

248

NASA Langley scientific and technical information output: 1994, volume 1  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

Phillips, Marilou S. (compiler); Stewart, Susan H. (compiler)

1995-01-01

249

NASA Langley Scientific and Technical Information Output: 1998  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1998. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

1999-01-01

250

NASA Langley Scientific and Technical Information Output: 1997  

NASA Technical Reports Server (NTRS)

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1997. Included are citations for Formal Reports, Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

Stewart, Susan H. (Compiler); Machie, Harriet B. (Compiler)

1998-01-01

251

Experimental study of vortex diffusers  

SciTech Connect

This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

Shakerin, S.; Miller, P.L. [National Renewable Energy Lab., Golden, CO (United States)

1995-11-01

252

Polymer research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

Polymer synthesis programs involve the development of Novel thermoplastics, pseudothermoplastics, and thermosets. These systems are prepared to elucidate structure-property relationships involving thermal capabilities, toughness, processability and environmental stability. Easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate temperature polymers were developed. Characterization efforts included high pressure liquid chromatography methodology, the development of toughness tests for fiber reinforced composites, a study of electrical properties of metal ion filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers was studied by rheology, mechanical behavior, separation techniques and spectroscopy. The degradative crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides were also studied.

St.clair, T. L.; Johnston, N. J.

1982-01-01

253

PARAMETRIC INVESTIGATION OF A HIGH-LIFT AIRFOIL AT HIGH REYNOLDS NUMBERS John C. Lin* NASA Langley Research Center, Hampton, VA 23681-0001 and Chet J. Dominik McDonnell Douglas Aerospace, Long Bea  

E-print Network

A new two-dimensional, three-element, advanced high-lift research airfoil has been tested in the NASA Langley Research CenterÕs Low-Turbulence Pressure Tunnel at a chord Reynolds number up to 1.6 x 10 7 . The components of this high-lift airfoil have been designed using a incompressible computational code (INS2D). The design was to provide high maximum-lift values while maintaining attached flow on the single-segment flap at landing conditions. The performance of the new NASA research airfoil is compared to a similar reference high-lift airfoil. On the new high-lift airfoil the effects of Reynolds number on slat and flap rigging have been studied experimentally, as well as the Mach number effects. The performance trend of the high-lift design is comparable to that predicted by INS2D over much of the angle-of-attack range. However, the code did not accurately predict the airfoil performance or the configuration-based trends near maximum lift where the compressibility effect could play ...

Ch Ca; John C. Lin; Chet J. Dominik

1997-01-01

254

Franklin D. Roosevelt at Langley 1940  

NASA Technical Reports Server (NTRS)

President Franklin D. Roosevelt visited Langley Field on 29 July 1940. View of President Franklin D. Roosevelt in a car inside a NACA hangar, two unidentified men stand behind the car, and the wing of a plane is visible in the background. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 147).

1940-01-01

255

Tensile, Compression, Open-Hole Compression and Double Cantilever Beam Fracture Toughness Testing of Multiple NASA Langley Research Center Composite Materials  

NASA Technical Reports Server (NTRS)

The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.

Adams, Donald F.

1999-01-01

256

Franklin D. Roosevelt at Langley 1940  

NASA Technical Reports Server (NTRS)

President Franklin D. Roosevelt visited Langley Field on July 29, 1940. View of President Roosevelt in a car inside a NACA hangar, two unidentified men stand behind the car, and the wing of a plane is visible in the background.

1940-01-01

257

Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation  

NASA Technical Reports Server (NTRS)

A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76o/40o double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

Erickson, Gary E.; Gonzalez, Hugo A.

2004-01-01

258

Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation  

NASA Technical Reports Server (NTRS)

A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76 deg/40 deg double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 30 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M = 0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

Erickson, Gary E.; Gonzalez, Hugo A.

2005-01-01

259

Hierarchical Skills and Cognitive Architectures Pat Langley (langley@csli.stanford.edu)  

E-print Network

are those which are embedded in theories of the human cognitive architecture, such as Soar (Laird et alHierarchical Skills and Cognitive Architectures Pat Langley (langley@csli.stanford.edu) Kirstin to representing and utilizing hierarchical skills within the context of a cognitive architecture. We review

Langley, Pat

260

Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2  

NASA Technical Reports Server (NTRS)

As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.

Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.

1992-01-01

261

Progress Towards the Investigation of Technical Issues Relevant to the Design of an Aircraft Wake Vortex Advisory System (WakeVAS)  

NASA Technical Reports Server (NTRS)

Wake vortex separations applied to aircraft during instrument operations have been shown to potentially introduce inefficiencies in air traffic operations during certain weather conditions conducive to short duration wake hazards between pairs of landing aircraft. NASA Langley Research Center (LaRC) demonstrated an integration of technologies that provided real-time observations and predictions of aircraft wake behavior, from which reduced wake spacing from the current criteria was derived. In order to take this proof of concept to an operational prototype system, NASA has been working in cooperation with the FAA and other government and industry members to design operational concepts for a Wake Vortex Advisory System (WakeVAS). In addition to concept development, open research issues are being addressed and activities to quantify system requirements and specifications are currently underway. This paper describes the technological issues relevant to WakeVAS development and current NASA efforts to address these issues.

Rutishauser, David K.

2003-01-01

262

Transport delays associated with NASA Langley Flight Simulation Facility  

NASA Technical Reports Server (NTRS)

This paper describes the transport delays associated with flight simulation programs currently operating at the NASA Langley Research Center (LaRC). Formulas are presented for calculating a rough estimate of the transport delay for a particular simulation. Various simulation programs that used the Flight Simulation Facility at LaRC, during the period of October 1993 to March 1994, were tested to determine the transport delays associated with the simulation program and any associated hardware. Several simulators were tested, including the Differential Maneuvering Simulator (DMS), the Visual Motion Simulator (VMS), and the Transport System Research Vehicle (TSRV).

Smith, R. Marshall; Chung, Victoria I.; Martinez, Debbie

1995-01-01

263

Compendium of NASA Langley reports on hypersonic aerodynamics  

NASA Technical Reports Server (NTRS)

Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

1987-01-01

264

NASA Langley Airborne High Spectral Resolution Lidar Instrument Description  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

2006-01-01

265

Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.

Erickson, Gary E.

2003-01-01

266

Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.

Erickson, Gary E.

2003-01-01

267

User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)  

NASA Technical Reports Server (NTRS)

This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.

Gnoffo, Peter A.; Cheatwood, F. McNeil

1996-01-01

268

Langley Symposium on Aerodynamics, volume 1  

SciTech Connect

The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

Not Available

1986-12-01

269

Langley Symposium on Aerodynamics, volume 1  

NASA Technical Reports Server (NTRS)

The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

Stack, Sharon H. (compiler)

1986-01-01

270

Vortex methods and vortex statistics  

SciTech Connect

Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.

Chorin, A.J.

1993-05-01

271

Wake Vortex Minimization  

NASA Technical Reports Server (NTRS)

A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

1977-01-01

272

Mated aerodynamic characteristics investigation for the 0.04 scale model TE 1065 (Boeing 747-100) of the 747 CAM and the 0.0405 scale model (43-0) of the space shuttle orbiter in the NASA Langley V/STOL transition research wind tunnel (CA8), volume 1  

NASA Technical Reports Server (NTRS)

Aerodynamic force data are presented in tables and graphs for the NASA Langley V/STOL Transition Research Wind Tunnel tests on a 0.04 scale model of the 747 with a 0.0405 scale Orbiter space shuttle. The investigation included the effects of flap setting, stabilizer angle, elevator angle, ground proximity, and Orbiter tailcone fairing. Data were obtained in the pitch plane only. The test was run at M = 0.15, with a dynamic pressure of 35 psf. Six static pressures were measured on each side of the 747 CAM nose to determine the effects of the Orbiter on the 747 airspeed and altitude indicators.

1976-01-01

273

Engineer in charge: A history of the Langley Aeronautical Laboratory, 1917-1958  

NASA Technical Reports Server (NTRS)

A history is presented by using the most technologically significant research programs associated with the Langley Aeronautical Laboratory from 1917 to 1958 and those programs that, after preliminary research, seemed best to illustrate how the laboratory was organized, how it works, and how it cooperated with industry and the military.

Hansen, James R.

1986-01-01

274

X-38 Model Tested In NASA Langley's 31-Inch Mach 10 Tunnel  

NASA Technical Reports Server (NTRS)

The X-38 model, shown here following testing in NASA Langley research Center's 31-Inch Mach 10 Tunnel, represents a 0.021 scale model of a proposed rescue vehicle. The vehicle will be used to return International Space Station crew members to Earth in the event of an emergency. A team of engineers from NASA Johnson Space Center and Langley Research Center designed the model based initially on the X-23 and the X-24A databases. The aerodynamic and aerothermodynamic databases are being refined across the speed range with the computational and experimental results. The Langley tunnels being used to acquire the data are the 20-Inch Mach 6 Air Tunnel, the 20-Inch Mach 6 CF4 Tunnel, the 22-Inch Mach 20 Helium Tunnel, the 31-Inch Mach 10 Tunnel, the Unitary Plan Wind Tunnel and the 16-Foot Transonic Tunnel.

1997-01-01

275

X-38 Model Tested In NASA Langley's 31-Inch Mach 10 Tunnel  

NASA Technical Reports Server (NTRS)

The X-38 model, shown here with William Adkins of the Aerothermodynamic Support Section prior to testing in NASA Langley Research Center's 31-Inch Mach 10 tunnel, represents a 0.021 scale model of a proposed rescue vehicle. The vehicle will be used to return International Space Station crew members to Earth in the event of an emergency. A team of engineers from NASA Johnson Space Center and Langley Research Center designed the model based initially on the X-23 and the X-24A databases. The aerodynamic and aerothermodynamic databases are being refined across the speed range with the computational and experimental results. The Langley tunnels being used to acquire the data are the 20-Inch Mach 6 Air Tunnel, the 20-Inch Mach 6 CF4 Tunnel, the 22-Inch Mach 20 Helium Tunnel, the 31-Inch Mach 10 Tunnel, the Unitary Plan Wind Tunnel and the 16-Foot Transonic Tunnel.

1997-01-01

276

Diabetes Research Vortex : a novel information management system for Type I diabetes  

E-print Network

Information management is becoming a necessary task for modem research laboratories. As scientific research within a particular domain progresses, the amount of data and publications in the domain increases drastically. ...

Javanmardian, Kia

2005-01-01

277

Vortex methods  

SciTech Connect

Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)

1993-06-01

278

Acoustic fatigue: Overview of activities at NASA Langley  

NASA Technical Reports Server (NTRS)

A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.

Mixson, John S.; Roussos, Louis A.

1987-01-01

279

Bathtub vortex induced by instability  

NASA Astrophysics Data System (ADS)

The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

2014-10-01

280

Prediction and measurement of blade-vortex interaction loading  

NASA Technical Reports Server (NTRS)

An extensive quantity of airload measurements was obtained for a pressure-instrumented model of the BO-105 main rotor for a large number of higher-harmonic control (HHC) settings at Duits-Nederlandse Wind Tunnel (DNW). The wake geometry, vortex strength, and vortex core size were also measured through a laser light sheet technique and LDV. These results are used to verify the BVI airload prediction methodologies developed by AFDD, DLR, NASA Langley, and ONERA. The comparisons show that an accurate prediction of the blade motion and the wake geometry is the most important aspect of the BVI airload predictions.

Tung, Chee; Gallman, Judith M.; Kube, Roland; Brooks, Thomas F.; Rahier, Gilles

1995-01-01

281

A description of the Langley wireframe geometry standard (LaWGS) format  

NASA Technical Reports Server (NTRS)

The background leading to the adoption of a Langley Research Center wireframe geometry format standard, a detailed description of the standard, and recommendations for use of the standard is given. The standard chosen is flexible enough to describe almost any complex shape.

Craidon, C. B.

1985-01-01

282

Vortex diode jet performance and theory  

SciTech Connect

Fluidics is the technology dealing with the use of a flowing liquid or gas in various devices for controls and fluid transfers. Existing fluidic technology transfers fluid at approximately the same rate as air lifts and jets. A vortex diode combined in parallel with a jet (vortex diode jet) produces significantly higher transfer rates` and retains the fluidic system advantages. This paper presents the proof of concept research and gives design parameters for the vortex diode jet. The goal of this research was to develop a vortex diode jet that would improve fluidic system transfer rates, and to develop and verify the,design equations. Proven design equations could then be used to design, and model vortex diode jet systems. This research has shown that vortex diode jets improve fluidic system transfer rate by up to 60 percent and can be modelled with the design equations.

Houck, E.D.

1993-12-01

283

The NASA Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

The Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) was placed in operation at NASA's Langley Research Center in 1973. This facility was the world's first cryogenic pressure tunnel. The 0.3-m TCT can operate from ambient to cryogenic temperatures at absolute pressures ranging from about 1 to 6 atmospheres. Three major test section concepts were developed and refined in this unique facility. The 0.3-m TCT was a leader in the evolution of cryogenic pressure wind tunnel test techniques, instrumentation, control strategy and model technology. An overview is presented of the evolution and 15 years of experience with the 0.3-m TCT. The historical background concentrates on the technical challenges and proof-of-concept validations during the establishment of the first cryogenic pressure wind tunnel. The various test section concepts are described. Highlights of operational experience and test results determined from these first time exploratory tests are presented. Operating costs and effective test techniques for the 0.3-m TCT are discussed. Finally, current and future plans for the facility are presented.

Ray, Edward J.

1989-01-01

284

Functionality of the Langley TRMM & Terra Information System (LATIS)  

NASA Astrophysics Data System (ADS)

The NASA Langley Research Center (LaRC) Atmospheric Sciences Data Center (LASDC) was established to process, archive, and distribute earth science data in the disciplines of radiation budget, clouds, aerosols, and tropospheric chemistry under the guidance of the Earth Sciences Data Information System (ESDIS) Project Office to support the Earth Observing System (EOS) Data and Information System (EOSDIS) Program. Current ASDC production systems include the Langley TRMM & Terra Information System (LATIS), which began operations in 1997, and the EOSDIS Core System (ECS), a product of Raytheon Systems, which became operational in 2000. The LATIS system was designed to support the ingest, processing, archival, quality assurance, and distribution of the Clouds and the Earth's Radiant Energy System (CERES) data products from the Tropical Rainfall Measurement Mission (TRMM), and was subsequently enhanced to support the CERES missions on both EOS Terra and Aqua missions. LATIS is currently being augmented to support data processing, archival and distribution data for non-EOS missions such as the Pathfinder Instruments for Clouds and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA), Geostationary Imaging Fourier Transform Spectrometer (GIFTS) New Millennium Project, and Triana. This poster will highlight the principal hardware components and features of LATIS

Sorlie, S.; Olson, J. O.

2001-05-01

285

Modeling of Wake-vortex Aircraft Encounters. Appendix B  

NASA Technical Reports Server (NTRS)

There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.

Smith, Sonya T.

1999-01-01

286

Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds  

NASA Technical Reports Server (NTRS)

A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

Erickson, Gary E.

2007-01-01

287

Characteristics of the ground vortex formed by a jet moving over a fixed ground plane  

NASA Technical Reports Server (NTRS)

This paper discusses an experimental study conducted in the Langley Vortex Facility to investigate the effects on the ground vortex of the jet passing over a fixed ground board. A jet impacting the ground can form a vortex which may materially affect the aerodynamic characteristics of a STOL airplane operating near the ground. Several studies have been done with a stationary jet exiting near and perpendicular to fixed ground board. The resulting ground effects have been documented in terms of ground vortex and aerodynamic characteristics. The ground boundary layer created in a wind tunnel facility, however is thought to affect the extent of the ground vortex. This paper reports on an investigation utilizing an isolated moving jet to eliminate the ground boundary layer. The results are compared to the existing data base and show a 30 percent decrease in the vortex penetration shown by the stationary jet conditions.

Kemmerly, G. T.; Stewart, V. R.

1989-01-01

288

Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel  

NASA Technical Reports Server (NTRS)

The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

Corliss, James M.; Cole, Stanley, R.

1998-01-01

289

Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions  

NASA Technical Reports Server (NTRS)

A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; Rufer, Shann J.; Schoenenberger, Mark

2014-01-01

290

Model-Based Systems Engineering Pilot Program at NASA Langley  

NASA Technical Reports Server (NTRS)

NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

2012-01-01

291

X-34 Ceramic Model Tested In NASA Langley Wind Tunnel  

NASA Technical Reports Server (NTRS)

A ceramic aerothermodynamic heat transfer model of the X-34 is being prepared for testing in the 31-Inch Mach 10 Wind Tunnel located at NASA Langley Research Center in Hampton, Va. The model is a 0.018-scale version of the X-34 advanced technology flight demonstration vehicle. The X-34 is an autonomous rocket-powered, air-launched winged concept that is smaller, lighter and much less expensive than other lifting body vehicles, for example, the X-33. The X-34 is intended for hypersonic flight up to speeds of Mach 8, and would be used to demonstrate technologies for future reusable space transportation vehicles. The first flight of the X-34 vehicle is currently scheduled for early 1999.

1997-01-01

292

X-34 Metallic Model Tested In Langley's UPWT  

NASA Technical Reports Server (NTRS)

A 1/30th-scale aluminum and steel force and moment model for the X-34 is shown in the Unitary Plan Wind Tunnel at NASA Langley Research Center in Hampton, Va. Testing was conducted throughout the month of June to determine the supersonic aerodynamic characteristic of the vehicle. The X-34 is an autonomous rocket-powered, air-launched winged concept that is smaller, lighter and much less expensive than other lifting body vehicles, for example, the X-33. The X-34 is intended for hypersonic flight up to speeds of Mach 8, and would be used to demonstrate technologies for future reusable space transportation vehicles. The first flight of the X-34 vehicle is currently scheduled for early 1999.

1997-01-01

293

The NASA Langley Scramjet Test Complex  

NASA Technical Reports Server (NTRS)

The NASA Langley Scramjet Test Complex consists of five propulsion facilities which cover a wide spectrum of supersonic combustion ramjet (scramjet) test capabilities. These facilities permit observation of the effects on scramjet performance of speed and dynamic pressure from Mach 3.5 to near-orbital speeds, engine size from Mach 4 to 7, and test gas composition from Mach 4 to 7. In the Mach 3.5 to 8 speed range, the complex includes a direct-connect combustor test facility, two small-scale complete engine test facilities, and a large-scale complete engine test facility. In the hypervelocity speed range, a shock-expansion tube is used for combustor tests from Mach 12 to Mach 17+. This facility has recently been operated in a tunnel mode, to explore the possibility of semi-free-jet testing of complete engine modules at hypervelocity conditions. This paper presents a description of the current configurations and capabilities of the facilities of the NASA Langley Scramjet Test Complex, reviews the most recent scramjet tests in the facilities, and discusses comparative engine tests designed to gain information about ground facility effects on scramjet performance.

Guy, R. Wayne; Rogers, R. Clayton; Rock, Kenneth E.; Diskin, Glenn S.; Puster, Richard L.

1996-01-01

294

Instability of spiral convective vortex  

NASA Astrophysics Data System (ADS)

Formation of large-scale vortices in atmosphere is one of the interesting problems of geophysical fluid dynamics. Tropical cyclones are examples of atmospheric spiral vortices for which convection plays an important role in their formation and evolution. Our study is focused on intensive cyclonic vortex produced by heating in the central part of the rotating layer. The previous studies made by Bogatyrev et al, showed that structure of such vortex is very similar to the structure of tropical cyclones. Qualitative observations described in (Bogatyrev, 2009) showed that the evolution of large-scale vortex in extreme regimes can be very complicated. Our main goal is the study of evolution of convective cyclonic vortex at high values of Grasshof number by PIV system. Experimental setup is a rotating cylindrical tank of fluid (radius 150 mm, depth 30 mm, free upper surface). Velocity fields for different values of heat flux were obtained and temporal and spatial structure of intensive convective vortex were studied in details. With the use of PIV data vorticity fields were reconstructed in different horizontal cross-sections. Physical interpretation of mechanisms that lead to the crucial change in the vortex structure with the growth of heat rate is described. Financial support from program of UD RAS, the International Research Group Program supported by Perm region Government is gratefully acknowledged.

Evgrafova, Anna; Andrey, Sukhanovsky; Elena, Popova

2014-05-01

295

Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

Petrozzi, M. T.; Milam, M. D.

1975-01-01

296

A user's guide to the Langley 16- by 24-inch water tunnel  

NASA Technical Reports Server (NTRS)

The Langley 16 x 24 inch Water Tunnel is described in detail, along with all the supporting equipment used in its operation as a flow visualization test facility. These include the laser and incandescent lighting systems; and the photographic, video, and laser fluorescence anemometer systems used to make permanent records of the test results. This facility is a closed return water tunnel capable of test section velocities from 0 to 0.75 feet per second with flow through the 16 x 24 inch test section in a downward (vertical) direction. The velocity normally used for testing is 0.25 feet per second where the most uniform flow occurs, and is slow enough to easily observe flow phenomena such as vortex flow with the unaided eye. An overview is given of the operational characteristics, procedures, and capabilities of the water tunnel to potential users of the facility so that they may determine if the facility meets their needs for a planned study.

Pendergraft, Odis C., Jr.; Neuhart, Dan H.; Kariya, Timmy T.

1992-01-01

297

Planetary Boundary Layer (PBL) Heights Derived From NASA Langley Airborne High Spectral Resolution Lidar (HSRL) Data Acquired During TexAQS\\/GoMACCS, CHAPS, and MILAGRO  

Microsoft Academic Search

The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B-200 King Air aircraft in the Mexico City metropolitan area during the Mega-city Initiative: Local and Global Research Observations (MILAGRO) campaign in March 2006; in the Houston metropolitan area during the Texas Air Quality Study (TexAQS)\\/Gulf of Mexico Atmospheric Composition and Climate Study

S. P. Burton; R. A. Ferrare; C. A. Hostetler; J. W. Hair; A. Cook; D. Harper; M. D. Obland; R. R. Rogers

2007-01-01

298

Experimental investigation of forebody and wing leading-edge vortex interactions at high angles of attack  

NASA Technical Reports Server (NTRS)

An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.

Erickson, G. E.; Gilbert, W. P.

1983-01-01

299

Electronic document distribution: Design of the anonymous FTP Langley Technical Report Server  

NASA Technical Reports Server (NTRS)

An experimental electronic dissemination project, the Langley Technical Report Server (LTRS), has been undertaken to determine the feasibility of delivering Langley technical reports directly to the desktops of researchers worldwide. During the first six months, over 4700 accesses occurred and over 2400 technical reports were distributed. This usage indicates the high level of interest that researchers have in performing literature searches and retrieving technical reports at their desktops. The initial system was developed with existing resources and technology. The reports are stored as files on an inexpensive UNIX workstation and are accessible over the Internet. This project will serve as a foundation for ongoing projects at other NASA centers that will allow for greater access to NASA technical reports.

Nelson, Michael L.; Gottlich, Gretchen L.

1994-01-01

300

Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer  

NASA Technical Reports Server (NTRS)

The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.

Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

1994-01-01

301

NASA--Langley building solar project and the supporting Lewis Solar Technology Program  

Microsoft Academic Search

The National Aeronautics and Space Administration will use solar energy to heat and cool a new office building that is now under construction at its Langley Research Center in Hampton, Virginia. Planned for completion in December 1975, the 53,000 ft², single story building will utilize 15,000 ft² of various types of solar collectors in a test bed to provide nearly

R. G. Ragsdale; D. Namkoong

1976-01-01

302

NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites  

NASA Technical Reports Server (NTRS)

At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.

Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.; Chang, Fu-Lung; Smith, William L, Jr.

2006-01-01

303

Fatigue and fracture basic research at the Langley Research Center.  

NASA Technical Reports Server (NTRS)

This paper gives some examples of projects underway. The projects are grouped according to the primary parameter being studied: loads, configuration, environment, or material. Significant topics include the effect of truncated loads, the effect of proof-tests, interference fasteners, accelerated and real-time tests for supersonic aircraft materials, crack-growth rates in built-up structures, and a model method by which material can be selected for a particular set of operating conditions.

Davidson, J. R.

1972-01-01

304

Description of an aeronautical geometry conversion package: Wave-drag to Langley Wireframe Geometry Standard (LaWGS) to Supersonic Implicit Marching Potential (SIMP)  

NASA Technical Reports Server (NTRS)

Documented is an aeronautical geometry conversion package which translates wave-drag geometry into the Langley Wireframe Geometry Standard (LaWGS) format and then into a format which is used by the Supersonic Implicit Marching Potential (SIMP) program. The programs described were developed by Computer Sciences Corporation for the Advanced Vehicles Division/Advanced Concepts Branch at NASA Langley Research Center. Included also are the input and output from a benchmark test case.

Wiese, Michael R.

1987-01-01

305

Prediction and control of vortex-dominated and vortex-wake flows  

NASA Technical Reports Server (NTRS)

This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

Kandil, Osama

1993-01-01

306

Vortex Wakes of Subsonic Transport Aircraft  

NASA Technical Reports Server (NTRS)

A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

Rossow, Vernon J.; Nixon, David (Technical Monitor)

1999-01-01

307

Magnetic Vortex Based Transistor Operations  

NASA Astrophysics Data System (ADS)

Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

Kumar, D.; Barman, S.; Barman, A.

2014-02-01

308

Magnetic vortex based transistor operations.  

PubMed

Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

Kumar, D; Barman, S; Barman, A

2014-01-01

309

Magnetic Vortex Based Transistor Operations  

PubMed Central

Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

Kumar, D.; Barman, S.; Barman, A.

2014-01-01

310

Holographic flow visualization at NASA Langley  

NASA Technical Reports Server (NTRS)

Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadowgraph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With double pulse capability of 20 to 1200 microseconds pulse separation, one pulse can occur before and one later after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

Burner, A. W.; Goad, W. K.

1979-01-01

311

Holographic Flow Visualization at NASA Langley  

NASA Technical Reports Server (NTRS)

Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadow-graph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With pulse separation, one pulse can occur before and one after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

Burner, A. W.; Goad, W. K.

2005-01-01

312

LDEF polymeric materials: A summary of Langley characterization  

NASA Technical Reports Server (NTRS)

The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

1995-01-01

313

Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory  

NASA Technical Reports Server (NTRS)

As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

Murphy, Kelly J.; Scallion, William I.

2005-01-01

314

Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications  

NASA Technical Reports Server (NTRS)

Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

Bryant, Robert G.

2007-01-01

315

Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster  

NASA Technical Reports Server (NTRS)

NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

2004-01-01

316

The Design of a High-Q, MACH-5 Nozzle for the Langley 8-Foot HTT  

NASA Technical Reports Server (NTRS)

A new nozzle has ben designed for the NASA Langley Research Center 8-Foot High Temperature Tunnel. The new nozzle was designed with a Mach-5 exit flow at a Mach-5 flight-enthalpy test condition and has a smaller throat area than the existing Mach-5 nozzle which significantly increases the range of dynamic pressures that can be achieved in the facility. The nozzle was designed using the NASA Langley IMOCND computer program which solves the potential equation using the classical method of characteristics. Several axisymmetric nozzle contours were generated and evaluated using viscous computational fluid dynamics. A number of items were considered in the evaluation, including flow uniformity, thermal and structural design, manufacturing schedule and cost. Once the final contour was selected, studies were done to determine the effects of manufacturing irregularities (steps and cavities at joints). These studies were done to develop manufacturing specifications and assembly tolerances.

Gaffey, Richard L., Jr.; Stewart, Brian K.; Harvin, Stephen F.

2006-01-01

317

Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields  

NASA Technical Reports Server (NTRS)

Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

Erickson, Gary E.

2008-01-01

318

Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields  

NASA Technical Reports Server (NTRS)

Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

Erickson, Gary E.

2010-01-01

319

Supersonic shock wave/vortex interaction  

NASA Technical Reports Server (NTRS)

Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

Settles, G. S.; Cattafesta, L.

1993-01-01

320

The NASA Langley 0.3-m transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

The Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) can operate from ambient to cryogenic temperatures at absolute pressures from 1 to 6 bars. Since the 0.3-m TCT began operation in 1973, it has been used to develop instrumentation and operating techniques for cryogenic tunnels as well as for aerodynamic tests where advantage can be taken of the extremely wide range of Reynolds number available. This paper describes the present capabilities of the 0.3-m TCT and gives an overview of recent research activities which include both steady and unsteady testing. Emphasis is given to safety and the development of testing techniques for cryogenic tunnels. Results of studies aimed at establishing the lower limits of operating temperature are presented and the impact of these studies on tunnel operation is discussed. Finally, the design features and operating characteristics of a new self-streamlining wall test section recently installed in the tunnel circuit are described.

Kilgore, R. A.

1985-01-01

321

STS-114: Discovery Return to Flight: Langley Engineers Analysis Briefing  

NASA Technical Reports Server (NTRS)

This video features a briefing on NASA Langley Research Center (LaRC) contributions to the Space Shuttle fleet's Return to Flight (RTF). The briefing is split into two sections, which LaRC Shuttle Project Manager Robert Barnes and Deputy Manager Harry Belvin deliver in the form of a viewgraph presentation. Barnes speaks about LaRC contributions to the STS-114 mission of Space Shuttle Discovery, and Belvin speaks about LaRC contributions to subsequent Shuttle missions. In both sections of the briefing, LaRC contributions are in the following areas: External Tank (ET), Orbiter, Systems Integration, and Corrosion/Aging. The managers discuss nondestructive and destructive tests performed on ET foam, wing leading edge reinforced carbon-carbon (RCC) composites, on-orbit tile repair, aerothermodynamic simulation of reentry effects, Mission Management Team (MMT) support, and landing gear tests. The managers briefly answer questions from reporters, and the video concludes with several short video segments about LaRC contributions to the RTF effort.

2005-01-01

322

Analysis and Design of the NASA Langley Cryogenic Pressure Box  

NASA Technical Reports Server (NTRS)

A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

1999-01-01

323

The effect of wing dihedral and section suction distribution on vortex bursting  

NASA Technical Reports Server (NTRS)

Eleven semi-span wing models were tested in the 1/8-scale model of the Langley V/STOL tunnel to qualitatively study vortex bursting. Flow visualization was achieved by using helium filled soap bubbles introduced upstream of the model. The angle of attack range was from 0 deg to 45 deg. The results show that the vortex is unstable, that is, the bursting point location is not fixed at a given angle of attack but moves within certain bounds. Upstream of the trailing edge, the bursting point location has a range of two inches; downstream, the range is about six inches. Anhedral and dihedral appear to have an insignificant effect on the vortex and its bursting point location. Altering the section suction distribution by improving the triangularity generally increases the angle of attack at which vortex bursting occurs at the trailing edge.

Washburn, K. E.; Gloss, B. B.

1975-01-01

324

Summary of STOL ground vortex investigation  

NASA Technical Reports Server (NTRS)

An experimental facility was developed in the 1.23 (48 inch) wind tunnel of the Applied Research Lab. at the Pennsylvania State Univ. to model the ground vortex. The purpose of the facility was to study the effect of various parameters on the location and characteristics of a ground vortex. An experimental investigation was conducted in the tunnel into the formation, stability and strength of the ground vortex for several flow parameters. The design of the facility, special instrumentation and results are summarized.

Billet, Michael L.; Walters, Marvin M.

1987-01-01

325

Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results  

NASA Technical Reports Server (NTRS)

The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

Hoad, Danny R.

1987-01-01

326

Effects of vortex flaps on the low-speed aerodynamic characteristics of an arrow wing  

NASA Technical Reports Server (NTRS)

Tests were conducted in the Langley 12-foot low-speed wind-tunnel to determine the longitudinal and lateral-directional aerodynamic effects of plain and tabbed vortex flaps on a flat-plate, highly swept arrow-wing model. Flow-visualization studies were made using a helium-bubble technique. Static forces and moments were measured over an angle-of-attack range from 0 deg to 50deg for sideslip angles of 0 deg and + or - 4 deg.

Yip, L. P.; Murri, D. G.

1981-01-01

327

Helicopter model scale results of blade-vortex interaction impulsive noise as affected by blade planform  

Microsoft Academic Search

An experimental investigation of the blade-vortex interaction impulsive noise characteristics of an advanced main rotor system for the UH-1 helicopter has been conducted. Models of both the advanced main rotor system and the standard UH-1 main rotor system were tested at one-quarter scale in the Langley 4- by 7-Meter (V\\/STOL) Tunnel using the General Rotor Model System (GRMS). Tests were

D. A. Conner; D. R. Hoad

1982-01-01

328

Dynamic response and sonic fatigue analysis at NASA Langley for hypersonic vehicle structures  

NASA Technical Reports Server (NTRS)

This paper presents an overview of three research topics being pursued at the NASA Langley Research Center for dynamic response prediction and sonic fatigue analysis of hypersonic vehicle structures. The first is the development of a numerical simulation procedure within the framework of a finite element analysis for the prediction of the large deflection random response of simple panels. The second topic is an implementation of the equivalent linearization technique in a commercial finite element code for the prediction of large deflection random response of complicated panels. The last area is the calculation of a dynamic stress intensity factor in the frequency domain for use in sonic fatigue crack growth prediction.

Rizzi, Stephen A.; Robinson, Jay H.; Chiang, C. K.

1992-01-01

329

Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces  

NASA Technical Reports Server (NTRS)

The importance of leading edge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.

Lamar, J. E.; Campbell, J. F.

1983-01-01

330

Expanded operational capabilities of the Langley Mach 7 Scramjet test facility  

NASA Technical Reports Server (NTRS)

An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.

Thomas, S. R.; Guy, R. W.

1983-01-01

331

Vortex meter designing: Simulation or laboratory investigations?  

NASA Astrophysics Data System (ADS)

Considerations concerned the problem pointed out in the title of the article are presented. Results of laboratory investigations of the vortex shedding phenomenon, with application of various research methods are described. During the tests the specific discoveries of the phenomenon properties were made. In the article the problems and threats related to the numerical simulation of von Karman vortex street phenomenon are discussed. Conditions of successful numerical simulation are specified.

Pankanin, Grzegorz L.

2013-10-01

332

Recent progress in NASA Langley textile reinforced composites program  

NASA Technical Reports Server (NTRS)

The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.

Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

1992-01-01

333

A user's guide to the Langley 16-foot transonic tunnel complex. Revision 1  

NASA Technical Reports Server (NTRS)

The operational characteristics and equipment associated with the Langley 16-foot transonic tunnel complex which is located in buildings 1146 and 1234 at the Langley Research Center are described in detail. This complex consists of the 16-foot transonic wind tunnel, the static test facility, and the 16- by 24-inch water tunnel research facilities. The 16-foot transonic tunnel is a single-return atmospheric wind tunnel with a 15.5 foot diameter test section and a Mach number capability from 0.20 to 1.30. The emphasis for research conducted in this research complex is on the integration of the propulsion system into advanced aircraft concepts. In the past, the primary focus has been on the integration of nozzles and empennage into the afterbody of fighter aircraft. During the last several years this experimental research has been expanded to include developing the fundamental data base necessary to verify new theoretical concepts, inlet integration into fighter aircraft, nozzle integration for supersonic and hypersonic transports, nacelle/pylon/wing integration for subsonic transport configurations, and the study of vortical flows (in the 16- by 24-inch water tunnel). The purpose here is to provide a comprehensive description of the operational characteristics of the research facilities of the 16-foot transonic tunnel complex and their associated systems and equipments.

1990-01-01

334

Propeller tip vortex interactions  

NASA Technical Reports Server (NTRS)

Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

Johnston, Robert T.; Sullivan, John P.

1990-01-01

335

Supersonic and hypersonic quiet tunnel technology at NASA Langley  

NASA Technical Reports Server (NTRS)

Quiet tunnel technology at NASA Langley is reviewed focusing on historical background, basic quiet tunnel concepts, design methodology, and significant results. Each of the NASA Langley quiet tunnels and recent flow quality results for a refurbished Mach 6 quiet nozzle are presented. It is concluded that high-speed quiet tunels should be viewed as a required adjunct to computational and experimental tools being developed to explore issues of instability and transition physics. The quiet tunnel technology can produce and maintain an adequately smooth nozzle finish, control settling chamber disturbances, and keep the facility clean and is capable of adequately measuring flow disturbances.

Wilkinson, S. P.; Anders, S. G.; Chen, F.-J.; Beckwith, I. E.

1992-01-01

336

High performance real-time flight simulation at NASA Langley  

NASA Technical Reports Server (NTRS)

In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

Cleveland, Jeff I., II

1994-01-01

337

HART-II: Prediction of Blade-Vortex Interaction Loading  

NASA Technical Reports Server (NTRS)

During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

2003-01-01

338

The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil - Drag equations  

NASA Technical Reports Server (NTRS)

The Langley Research Center has designed a swept, supercritical airfoil incorporating Laminar Flow Control for testing at transonic speeds. Analytical expressions have been developed and an evaluation made of the experimental section drag, composed of suction drag and wake drag, using theoretical design information and experimental data. The analysis shows that, although the sweep-induced boundary-layer crossflow influence on the wake drag is too large to be ignored and there is not a practical method for evaluating these crossflow effects on the experimental wake data, the conventional unswept 2-D wake-drag computation used in the reduction of the experimental data is at worst 10 percent too high.

Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.

1989-01-01

339

Lfm2000: Fifth NASA Langley Formal Methods Workshop  

NASA Technical Reports Server (NTRS)

This is the proceedings of Lfm2000: Fifth NASA Langley Formal Methods Workshop. The workshop was held June 13-15, 2000, in Williamsburg, Virginia. See the web site for complete information about the event.

Holloway, C. Michael (Compiler)

2000-01-01

340

Electrostatically Enhanced Vortex Separator  

NASA Technical Reports Server (NTRS)

Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.

Collins, Earl R.

1993-01-01

341

Microscopic Investigation of Vortex-Vortex Interaction in Conventional Superconductors  

NASA Astrophysics Data System (ADS)

Quasi-particle structures around a pair of vortices and its effect on the vortex-vortex interaction are investigated. For this purpose, a new numerical method is developed. This method uses the elliptic coordinate and (modified) Mathieu functions. Using this method and solving the Bogoliubov-de Gennes equation, we analyse how quasi-particle structures change with the vortex-vortex distance.

Kato, Masaru; Niwa, Yuhei

2012-12-01

342

Vortex control: Further encounters  

NASA Technical Reports Server (NTRS)

The progress of continuing investigations on vortex control techniques is updated. The following topics are briefly discussed: (1) vortex flaps adapted for high-alpha control; (2) alleviation of leading edge extension (LEX) vortex induced twin-tail buffet; (3) controlled decoupling of interactive forebody chine and wing vortices; (4) forebody vortex manipulation by mechanical and pneumatic techniques; and (5) stall-departure alleviation of high aspect-ratio wings. Salient results of exploratory low speed wind tunned experiments are presented. The investigations, primarily aimed at concept validation, were performed on generic configurations utilizing flow visualizations and pressure and balance measurements. Selected results illustrate the efficacy and potential for development of specific vortex control concepts for improved high-alpha configuration aerodynamics.

Rao, Dhanvada M.

1991-01-01

343

A Sample of NASA Langley Unsteady Pressure Experiments for Computational Aerodynamics Code Evaluation  

NASA Technical Reports Server (NTRS)

As computational fluid dynamics methods mature, code development is rapidly transitioning from prediction of steady flowfields to unsteady flows. This change in emphasis offers a number of new challenges to the research community, not the least of which is obtaining detailed, accurate unsteady experimental data with which to evaluate new methods. Researchers at NASA Langley Research Center (LaRC) have been actively measuring unsteady pressure distributions for nearly 40 years. Over the last 20 years, these measurements have focused on developing high-quality datasets for use in code evaluation. This paper provides a sample of unsteady pressure measurements obtained by LaRC and available for government, university, and industry researchers to evaluate new and existing unsteady aerodynamic analysis methods. A number of cases are highlighted and discussed with attention focused on the unique character of the individual datasets and their perceived usefulness for code evaluation. Ongoing LaRC research in this area is also presented.

Schuster, David M.; Scott, Robert C.; Bartels, Robert E.; Edwards, John W.; Bennett, Robert M.

2000-01-01

344

Helicopter model scale results of blade-vortex interaction impulsive noise as affected by blade planform  

NASA Astrophysics Data System (ADS)

An experimental investigation of the blade-vortex interaction impulsive noise characteristics of an advanced main rotor system for the UH-1 helicopter has been conducted. Models of both the advanced main rotor system and the standard UH-1 main rotor system were tested at one-quarter scale in the Langley 4- by 7-Meter (V/STOL) Tunnel using the General Rotor Model System (GRMS). Tests were conducted over a range of descent angles which bracketed the blade-vortex interaction phenomenon at a range of simulated flight speeds. The tunnel was operated in the open-throat configuration with acoustic treatment to improve the acoustic characteristics of the test chamber. The model data indicated that the advanced rotor system has increased the flight-scaled, LA noise produced by the UH-1 at all descent angles except where the blade-vortex interaction phenomenon was most intense for the standard UH-1 main rotor system.

Conner, D. A.; Hoad, D. R.

345

Investigation of Vortex Flaps and Other Flow Control Devices on Generic High-Speed Civil Transport Planforms  

NASA Technical Reports Server (NTRS)

A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.

Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.

1999-01-01

346

ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER  

EPA Science Inventory

Under the Chesapeake Bay Agreement, NASA-LaRC is a member of the Tidewater Interagency Pollution Prevention Program (TIPPP). t NASA-LaRC, a technique for producing advanced composite materials without the use of solvents has been developed. his assessment was focused on the produ...

347

LaRC/SMC/ACMB NASA Langley Research Center  

E-print Network

-off = more weight nacellefore aft drag weight Range max #12;National Taxation revenue collected incentive to earn · More tax/$ = more $ collected per "unit of economic activity" #12;National Taxation revenue reason to strive to earn · More tax/$ = more $ collected per "unit of economic activity" · What to do

de Weck, Olivier L.

348

Airbreathing Hypersonic Systems Focus at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

This paper presents the status of the airbreathing hypersonic airplane and space-access vehicle design matrix, reflects on the synergies and issues, and indicates the thrust of the effort to resolve the design matrix and to focus/advance systems technology maturation. Priority is given to the design of the vision operational vehicles followed by flow-down requirements to flight demonstrator vehicles and their design for eventual consideration in the Future-X Program.

Hunt, James L.; Rausch, Vincent L.

1998-01-01

349

Summary of NASA Langley's pilot scan behavior research  

NASA Technical Reports Server (NTRS)

The present investigation is concerned with the information acquired in a series of basic studies designed to obtain an understanding of the pilot's scanning behavior. In the studies, use was made of an oculometer system which operates by shining a beam of collimated infrared light at the subject's eyes. A number of oculometer software modifications have been made to make the oculometer user-friendly and versatile. Scanning is found to be a subconscious conditioned activity. The conditioned activity of scanning is different for each pilot. There are also slight variations between test runs for the same conditions for the same pilot. This indicates that scanning is situation dependent. Attention is given to the rate of information transfer, the possibility that scanning can be disrupted, the visual approach look-point, and workload sensitive measures.

Spady, A. A., Jr.; Harris, R. L., Sr.

1983-01-01

350

Langley 8-foot high-temperature tunnel oxygen measurement system  

NASA Technical Reports Server (NTRS)

In order to ensure that there is a proper amount of oxygen necessary for sustaining test engine operation for hypersonic propulsion systems testing at the NASA Langley 8-foot high-temperature tunnel, a quickly responding real-time measurement system of test section oxygen concentration has been designed and tested at Langley. It is built around a zirconium oxide-based sensor which develops a voltage proportional to the oxygen partial pressure of the test gas. The voltage signal is used to control the amount of oxygen being injected into the combustor air. The physical operation of the oxygen sensor is described, as well as the sampling system used to extract the test gas from the tunnel test section. Results of laboratory tests conducted to verify sensor accuracy and response time performance are discussed, as well as the final configuration of the system to be installed in the tunnel.

Sprinkle, Danny R.; Chen, Tony D.; Chaturvedi, Sushil K.

1991-01-01

351

Behavior of Vortex Systems  

NASA Technical Reports Server (NTRS)

Progressive application of the Kutta-Joukowsky theorem to the relationship between airfoil lift and circulation affords a number of formulas concerning the conduct of vortex systems. The application of this line of reasoning to several problems of airfoil theory yields an insight into many hitherto little observed relations. This report is confined to plane flow, hence all vortex filaments are straight and mutually parallel (perpendicular to the plane of flow).

Betz, A

1933-01-01

352

The Holographic Superconductor Vortex  

E-print Network

A gravity dual of a superconductor at finite temperature has been recently proposed. We present the vortex configuration of this model and study its properties. In particular, we calculate the free energy as a function of an external magnetic field, the magnetization and the superconducting density. We also find the two critical magnetic fields that define the region in which the vortex configurations are energetically favorable.

Marc Montull; Alex Pomarol; Pedro J. Silva

2009-06-12

353

X-33 Model Tested In Langley's 20-Inch Mach 6 Tunnel  

NASA Technical Reports Server (NTRS)

Thomas Horvath of Langley's Aerothermodynamics Branch uses digital instrumentation to set the angle of attack on a model of the X-33 prior to a wind tunnel test run in the 20-Inch Mach 6 Air Wind Tunnel at NASA Langley Research Center. The tests, held during the month of September 1997, were conducted to determine aeroheating characteristics of the X-33. The X-33 vehicle will consist of a lifting body airframe with two cryogenic propellant tanks (liquid hydrogen, LH2, and liquid oxygen, LOX) placed within the aeroshell. The vehicle will have two linear aerospike main engines. The X-33 Design and Flight Demonstration Program key objectives are to reduce business and technical risks to privately finance development and operation of a next-generation space transportation system through ground and flight tests of a spaceplane technology demonstrator, ensure that the X-33 design and major components are usable and scaleable to a full-scale, single-stage-orbit reusable launch vehicle (RLV), demonstrate autonomous capability from takeoff to landing, and verify operability and performance in 'real world' environments.

1997-01-01

354

X-33 Model Tested In Langley's 20-Inch Mach 6 Tunnel  

NASA Technical Reports Server (NTRS)

Thomas Horvath of Langley's Aerothermodynamics Branch examines the surface of a model of the X-33 prior to testing in the 20-Inch Mach 6 Air Wind Tunnel at NASA Langley Research Center. The tests, held during the month of September 1997, were conducted to determine aeroheating characteristics of the X-33. The X-33 vehicle will consist of a lifting body airframe with two cryogenic propellant tanks (liquid hydrogen, LH2, and liquid oxygen, LOX) placed within the aeroshell. The vehicle will have two linear aerospike main engines. The X-33 Design and Flight Demonstration Program key objectives are to reduce business and technical risks to privately finance development and operation of a next-generation space transportation system through ground and flight tests of a spaceplane technology demonstrator, ensure that the X-33 design and major components are usable and scaleable to a full-scale, single-stage-orbit reusable launch vehicle (RLV), demonstrate autonomous capability from takeoff to landing, and verify operability and performance in 'real world' environments.

1997-01-01

355

Vortex wake alleviation studies with a variable twist wing  

NASA Technical Reports Server (NTRS)

Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

1985-01-01

356

Controlling vortex motion and vortex kinetic friction  

NASA Astrophysics Data System (ADS)

We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel’ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel’ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel’ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

Nori, Franco; Savel'ev, Sergey

2006-05-01

357

Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel  

NASA Technical Reports Server (NTRS)

Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

Reed, W. H., III

1981-01-01

358

Vortex soliton motion and steering  

NASA Astrophysics Data System (ADS)

Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

Christou, Jason; Tikhonenko, Vladimir; Kivshar, Yuri S.; Luther-Davies, Barry

1996-10-01

359

Vortex Characterization for Engineering Applications  

SciTech Connect

Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

2008-01-30

360

The Acoustically Driven Vortex Cannon  

NASA Astrophysics Data System (ADS)

Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon"2 and "Airzooka."3 We will briefly discuss the uses of a vortex cannon in teaching and a new type of vortex cannon for teaching.

Perry, Spencer B.; Gee, Kent L.

2014-03-01

361

Model Test of Mars Entry Vehicles in Langley Spin Tunnel  

NASA Technical Reports Server (NTRS)

Model Test of Mars Entry Vehicles in Langley Spin Tunnel. Four models of Mars entry vehicles tested were a sphere with cg=35 percent (measured in percent of diameter from surface); Apollo with cg=16 percent (measured in percent of maximum diameter rearward of heat shield); a 103-degree cone with cg=20 percent (measured in percent of maximum diameter rearward of small end); and a tension structure: cg=25 percent (measured in percent of maximum diameter rearward of small end). [Entire movie available on DVD from CASI as Doc ID 20070030979. Contact help@sti.nasa.gov

1964-01-01

362

Electric vortex in MHD flow  

SciTech Connect

An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low {beta} flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion.

Garcia, M.

1995-05-01

363

Atom vortex beams  

NASA Astrophysics Data System (ADS)

The concept that all de Broglie particles can form vortex beams is analyzed for neutral atoms. It is shown how atoms diffracted from a suitably constructed optical mask configuration employing light of l units of orbital angular momentum and at far-off resonance with an atomic transition can lead to the generation of a discrete set of atom vortex beams each endowed with the property of quantized orbital angular momentum about the beam axis in units of ?l. Selection criteria of atom vortex beams are derived and the functioning of the mask configuration for angular dispersion of beams in terms of de Broglie wavelength is analyzed. Prospects of applications in the areas of atom interferometry and dispersion, and quantum information processing via atom vortices are pointed out.

Lembessis, V. E.; Ellinas, D.; Babiker, M.; Al-Dossary, O.

2014-05-01

364

Aircraft vortex marking program  

NASA Technical Reports Server (NTRS)

A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

Pompa, M. F.

1979-01-01

365

Overview of Selected Measurement Techniques for Aerodynamics Testing in the NASA Langley Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

An overview is given of selected measurement techniques used in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is. therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a around-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

Erickson, Gary E.

2000-01-01

366

Aerodynamic characteristics of a jet sheet vortex generator. [wind tunnel tests using thin, low aspect ratio wings  

NASA Technical Reports Server (NTRS)

A configuration concept for augmenting the lift capability of low aspect ratio, thin wings, typically used on fighter aircraft was investigated. The fluid strake concept uses a jet sheet formed by blowing from a series of small orifices located in the side of the fuselage ahead of the wing to generate a stable vortex flow over the wing at high angle of attack. The effect of the location of the fluid strake relative to the wing was investigated for three different designs of the in-line orifices using a half-span model tested in a 7 by 10 foot low speed tunnel. Based on the results of the low speed test, a jet sheet producing module was incorporated into a NASA general research fighter model and tested in the Langley 7 by 10 foot high speed tunnel to determine the effectiveness of the fluid strake as a lift-enhancement device in the high-speed maneuver regime. Tests were conducted over a Mach number range from 0.3 to 0.8, with a jet momentum coefficient range from 0 to 0.24. Significant lift increments resulted at the higher angles of attack and drag polars were improved.

Ziegler, H.; Wooler, P. T.

1978-01-01

367

Turbulent Vortex-Flow Simulation Over a 65 deg Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds  

NASA Technical Reports Server (NTRS)

Turbulent thin-layer, Reynolds-Averaged Navier-Stokes solutions, based on a multi-block structured grid, are presented for a 65 deg delta wing having either a sharp leading edge (SLE) or blunt leading edge (BLE) geometry. The primary objective of the study is to assess the prediction capability of the method for simulating the leading-edge flow separation and the ensuing vortex flow characteristics. Computational results are obtained for two angles of attack of approximately 13 and 20 deg, at free-stream Mach number of 0.40 and Reynolds number of 6 million based on the wing mean aerodynamic chord. The effects of two turbulence models of Baldwin-Lomax with Degani-Schiff (BL/DS) and the Spalart-Allmaras (SA) on the numerical results are also discussed. The computations also explore the effects of two numerical flux-splitting schemes, i.e., flux difference splitting (fds) and flux vector splitting (fvs), on the solution development and convergence characteristics. The resulting trends in solution sensitivity to grid resolution for the selected leading-edge geometries, angles of attack, turbulence models and flux splitting schemes are also presented. The validity of the numerical results is evaluated against a unique set of experimental wind-tunnel data that was obtained in the National Transonic Facility at the NASA Langley Research Center.

Ghaffari, Farhad

2005-01-01

368

Vortex dynamics in mesoscopic strips  

NASA Astrophysics Data System (ADS)

Flux penetration and vortex patterns in narrow superconducting strips are studied. The edge barrier, vortex-vortex interactions, and the position dependent effective flux are calculated assuming the high-? limit and strip width ??W??, where ? is the effective penetration depth and ? the coherence length. Vortex penetration and time-evolution inside the sample, as an external magnetic field is looped, are simulated by numerically solving the coupled Langevin equations of motion. The edge barrier shows to have an important role on the system dynamics, producing metastable vortex-chain states.

de Souza Silva, Clécio C.; Albino Aguiar, J.

2003-05-01

369

Magnetic vortex state stability, reversal and dynamics in restricted geometries.  

PubMed

Magnetic vortices are typically the ground states in geometrically confined ferromagnets with small magnetocrystalline anisotropy. In this article I review static and dynamic properties of the magnetic vortex state in small particles with nanoscale thickness and sub-micron and micron lateral sizes (magnetic dots). Magnetic dots made of soft magnetic material shaped as flat circular and elliptic cylinders are considered. Such mesoscopic dots undergo magnetization reversal through successive nucleation, displacement and annihilation of magnetic vortices. The reversal process depends on the stability of different possible zero-field magnetization configurations with respect to the dot geometrical parameters and application of an external magnetic field. The interdot magnetostatic interaction plays an important role in magnetization reversal for dot arrays with a small dot-to-dot distance, leading to decreases in the vortex nucleation and annihilation fields. Magnetic vortices reveal rich, non-trivial dynamical properties due to existance of the vortex core bearing topological charges. The vortex ground state magnetization distribution leads to a considerable modification of the nature of spin excitations in comparison to those in the uniformly magnetized state. A magnetic vortex confined in a magnetically soft ferromagnet with micron-sized lateral dimensions possesses a characteristic dynamic excitation known as a translational mode that corresponds to spiral-like precession of the vortex core around its equilibrium position. The translation motions of coupled vortices are considered. There are, above the vortex translation mode eigenfrequencies, several dynamic magnetization eigenmodes localized outside the vortex core whose frequencies are determined principally by dynamic demagnetizing fields appearing due to restricted dot geometry. The vortex excitation modes are classified as translation modes and radially or azimuthally symmetric spin waves over the vortex ground state. Studying the spin eigenmodes in such systems provides valuable information to relate the particle dynamical response to geometrical parameters. Unresolved problems are identified to attract attention of researchers working in the area of nanomagnetism. PMID:18681013

Guslienko, K Yu

2008-06-01

370

Experimental blade vortex interaction noise characteristics of a utility helicopter at 1/4 scale  

NASA Astrophysics Data System (ADS)

Models of both the advanced main rotor system and the standard or "baseline" UH-1 main rotor system were tested at one-quarter scale in the Langley 4- by 7-Meter (V/STOL) Tunnel using the general rotor model system. Tests were conducted over a range of descent angles which bracketed the blade-vortex interaction phenomenon for a range of simulated forward speeds. The tunnel was operated in the open-throat configuration with acoustic treatment to improve the semi-anechoic characteristics of the test chamber. Acoustical data obtained for these two rotor systems operating at similar flight conditions are presented without analysis or discussion.

Conner, D. A.; Hoad, D. R.

1984-01-01

371

Control of submersible vortex flows  

NASA Technical Reports Server (NTRS)

Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

Bushnell, D. M.; Donaldson, C. D.

1990-01-01

372

Rotor-vortex interaction noise  

NASA Technical Reports Server (NTRS)

A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

Schlinker, R. H.; Amiet, R. K.

1983-01-01

373

Vortex Apparatus and Demonstrations  

ERIC Educational Resources Information Center

Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

Shakerin, Said

2010-01-01

374

Behavior of Vortex Systems  

NASA Technical Reports Server (NTRS)

Application of the Kutta-Joukowski theorem to the relationship between airfoil lift and circulation is described. A number of formulas concerning the conduct of vortex systems derived from the theorem are presented. The application of this line of reasoning to several problems of airfoil theory and the observed relations are discussed.

Betz, A.

1979-01-01

375

Titan's Winter Polar Vortex  

NASA Technical Reports Server (NTRS)

Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not been identified in Titan's atmosphere, so the decay of its polar vortex may be more gradual than on Earth. Observations from an extended Cassini mission into late northern spring should provide critical data indicating whether the vortex goes away with a bang or just fades away.

Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

2008-01-01

376

Research and technology highlights, 1993  

NASA Technical Reports Server (NTRS)

This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of the research and technology activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. This report also describes some of the Center's most important research and testing facilities.

1994-01-01

377

Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown  

NASA Technical Reports Server (NTRS)

A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

Bossel, H. H.

1972-01-01

378

A review of steps taken to create an international virtual laboratory at NASA Langley for aerodynamic prediction and comparison  

NASA Astrophysics Data System (ADS)

A review of the steps taken to establish an international virtual laboratory (VL) at the NASA Langley Research Center for aerodynamic prediction and comparison of flight data in the post-09/11/2001 cyber-terrorist environment is detailed here. The key features of the VL include an intuitive, web-based user interface for ease of access, a secure high-speed Internet connection between browser and server, a relational database architecture for data and information search, and a secure file-storage system. The detailed planning and handling of such issues as security, computer firewall access and legal protection of data are provided.

Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

2004-04-01

379

Holographic flow visualization at the Langley Expansion Tube  

NASA Astrophysics Data System (ADS)

A holographic system used for flow visualization at the Langley Expansion Tube is described. A ruby laser which can be singly or doubly pulsed during the short run time of less than 300 microns is used as the light source. With holography, sensitivity adjustments can be optimized after a run instead of before a run as with conventional flow visualization techniques. This results in an increased reliability of the flow visualization available for the study of real-gas effects on flow about models. Holographic techniques such as single-plate schlieren and shadowgraph, two plate interferometry, double pulse interferometry for perfect infinite-fringe interferograms, and double-pulse interferometry used to examine changes in the flow over a short time period are described and examples presented.

Goad, W. K.; Burner, A. W.

1981-06-01

380

Holographic flow visualization at the Langley Expansion Tube  

NASA Technical Reports Server (NTRS)

A holographic system used for flow visualization at the Langley Expansion Tube is described. A ruby laser which can be singly or doubly pulsed during the short run time of less than 300 microns is used as the light source. With holography, sensitivity adjustments can be optimized after a run instead of before a run as with conventional flow visualization techniques. This results in an increased reliability of the flow visualization available for the study of real-gas effects on flow about models. Holographic techniques such as single-plate schlieren and shadowgraph, two plate interferometry, double pulse interferometry for perfect infinite-fringe interferograms, and double-pulse interferometry used to examine changes in the flow over a short time period are described and examples presented.

Goad, W. K.; Burner, A. W.

1981-01-01

381

Active Flexible Wing model mounted in the Langley TDT  

NASA Technical Reports Server (NTRS)

The Active Flexible Wing (AFW) program was initially a joint U.S. Air Force, NASA and Rockwell International effort to demonstrate the AFW concept. The AFW concept involves achieving vehicle weight savings through advantageous use of a flexible wing surface via active control applications. Under this initial program, two wind-tunnel tests were completed in the Langley TDT. A second AFW model program was undertaken by NASA and Rockwell Inter-national with the goal of demonstrating aeroelastic control through the use of digital active control technology. The multiple-exposure photograph shows the AFW model at several pitch positions during a TDT entry under this follow-on program. Key accomplishments of this second program included single and multiple- mode flutter suppression, load alleviation and load control during rapid roll maneuvers, and multi-input/multi-output multiple function active controls tests above the open loop flutter boundary.

1991-01-01

382

Description and calibration of the Langley unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.

Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.

1981-01-01

383

Correcting vortex splitting in higher order vortex beams.  

PubMed

We demonstrate a general method for the first order compensation of singularity splitting in a vortex beam at a single plane. By superimposing multiple forked holograms on the SLM used to generate the vortex beam, we are able to compensate vortex splitting and generate beams with desired phase singularities of order ? = 0, 1, 2, and 3 in one plane. We then extend this method by application of a radial phase, in order to simultaneously compensate the observed vortex splitting at two planes (near and far field) for an ? = 2 beam. PMID:24787874

Neo, Richard; Tan, Shiaw Juen; Zambrana-Puyalto, Xavier; Leon-Saval, Sergio; Bland-Hawthorn, Joss; Molina-Terriza, Gabriel

2014-04-21

384

Isolated optical vortex knots  

NASA Astrophysics Data System (ADS)

Natural and artificially created light fields in three-dimensional space contain lines of zero intensity, known as optical vortices. Here, we describe a scheme to create optical beams with isolated optical vortex loops in the forms of knots and links using algebraic topology. The required complex fields with fibred knots and links are constructed from abstract functions with braided zeros and the knot function is then embedded in a propagating light beam. We apply a numerical optimization algorithm to increase the contrast in light intensity, enabling us to observe several optical vortex knots. These knotted nodal lines, as singularities of the wave's phase, determine the topology of the wave field in space, and should have analogues in other three-dimensional wave systems such as superfluids and Bose-Einstein condensates.

Dennis, Mark R.; King, Robert P.; Jack, Barry; O'Holleran, Kevin; Padgett, Miles J.

2010-02-01

385

Supercritical Helical Vortex Flow  

NASA Astrophysics Data System (ADS)

The countercurrent flow driven by the rotation of a doubly helical screw within a stationary co-axial cylinder with fixed end walls is investigated experimentally using laser Doppler velocimetry and streak visualization. As the rotational Reynolds number increases, the flow undergoes a sequence of instabilities that are manifested by the appearance of coherent vortical structures within the screw flights and the gap. The primary transitions include the appearance of a single helical vortex that winds along the full length of the cylinder (90 < Re < 105) and a counter-rotating pair of vortices of unequal strength (Re > 105), and breakdown of the vortical structures and the onset of chaotic flow (Re > 130). The helical vortices are affected by a hierarchy of instabilities that are manifested by the appearance of spiral waves along their cores and localized merging. Vortex interactions result in localized breakdown and the appearance of turbulent spots.

Vukasinovic, Jelena; Glezer, Ari

2000-11-01

386

Vortex flow aerodynamics  

NASA Technical Reports Server (NTRS)

The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

Smith, J. H. B.; Campbell, J. F.; Young, A. D. (editor)

1992-01-01

387

Thrust-augmented vortex attenuation  

NASA Technical Reports Server (NTRS)

An experimental investigation was conducted to determine the vortex attenuating effect of engine thrust. Tests were made using a 0.03-scale model of the Boeing 747 transport aircraft as a vortex generating model. A Learjet-class probe model was used to measure the vortex induced rolling moment at a scale separation distance of 1.63 km. These tests were conducted at a lift coefficient of 1.4 at a model velocity of 30.48 m/s. The data presented indicate that engine thrust is effective as a vortex attenuating device when the engines are operated at high thrust levels and are positioned to direct the high energy engine wake into the core of the vortex. The greatest thrust vortex attenuation was obtained by operating the inboard engine thrust reversers at one-quarter thrust and the outboard engines at maximum forward thrust.

Patterson, J. C., Jr.; Jordan, F. L., Jr.

1977-01-01

388

Confined vortex scrubber  

SciTech Connect

The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

Not Available

1990-07-01

389

The vortex flap  

NASA Astrophysics Data System (ADS)

The Vortex Flap is a new type of mechanically driven high-lift device consisting of a rotating cylinder placed underneath and near the trailing edge of an airfoil. Wind tunnel tests were designed and conducted in the Washington University Low-Speed Wind Tunnel. Wind tunnel tests indicate that the Vortex Flap produces notable lift coefficient increments and increases maximum lift coefficients, particularly for the low Reynolds number range tested. The best configurations of the configurations investigated (not necessarily optimal) produce lift increments of 300-900% at low-to-moderate angles of attack, and increase the maximum lift coefficient on the order of 200%. The large lift increments found, particularly at low angles of attack, underscore the ability to drive the airfoil to high lift coefficients even at low angles of attack, a potentially useful characteristic for certain flight maneuvers. Regions of fairly high L/D (on the order of 10) as well as low L/D performance were identified. The nondimensional cylinder rotation speed was found to be the most important experimental parameter. Methods for correcting wind tunnel data were developed and outlined, and a Response Surface Method was applied to the corrected data for ease of interpretation. Performance comparisons between the Vortex Flap and other trailing-edge high-lift devices are included. To demonstrate the potential of the device, a Navy mission specification for a VTOL ship-borne UAV, currently filled by a rotary-wing aircraft, is analyzed using a hypothetical fixed wing aircraft and the Vortex Flap. It is demonstrated that, under certain reasonable wind-over-deck conditions, such an aircraft could hypothetically fill a VTOL mission.

Buerge, Brandon T.

390

Confined vortex scrubber  

SciTech Connect

The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards. This is to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS). The CVS consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via tangent slots in a central tube. Liquid is introduced into the chamber and is confined with the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. In effect, each of the sub-millimeter diameter gas bubbles in the liquid layer acts as a micro-cyclone, inertially separating particles into the surrounding liquid. The CVS thus obtains efficient particle removal by forcing intimate and vigorous interaction between the particle laden flue gas and the liquid scrubbing medium.

Not Available

1990-05-01

391

Rotor blade–vortex interaction noise  

Microsoft Academic Search

Blade–vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade

Young H. Yu

2000-01-01

392

Thin helical vortex dynamics in low-viscosity liquid  

NASA Astrophysics Data System (ADS)

The problem of helical vortices description has the significant interest as from fundamental point of view as well for practice. In some sense this problem is close to the vortex ring one which attracted much more attention in last decades. The reviews on the vortex rings investigations can be found in recent papers [1,2] or in book by Akhmetov [3]. In particular, in series of papers by Kaplanskii with co-authors [4-6] there was considered the viscosity influence on the vortex ring evolution. Separate attention was paid to the low Reynolds number case and to high Reynolds number one, initial stage of viscous evolution and final one. This paper presents first attempt for research on the diffusion and dynamics of a viscous helical vortex.

Agafontseva, M. V.; Kuibin, P. A.

2014-08-01

393

Vortex–Vortex Interactions in the Winter Stratosphere  

Microsoft Academic Search

This paper examines the interaction of oppositely signed vortices in the compressible (non-Boussinesq) quasigeostrophic system, with a view to understanding vortex interactions in the polar winter stratosphere. A series of simplifying approximations leads to a two-vortex system whose dynamical properties are de- termined principally by two parameters: the ratio of the circulation of the vortices and the vertical sepa- ration

R. K. Scott; D. G. Dritschel

2006-01-01

394

The Acoustically Driven Vortex Cannon  

ERIC Educational Resources Information Center

Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

Perry, Spencer B.; Gee, Kent L.

2014-01-01

395

Numerical Study of Tip Vortex Flows  

NASA Technical Reports Server (NTRS)

This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

Dacles-Mariani, Jennifer; Hafez, Mohamed

1998-01-01

396

An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code  

NASA Technical Reports Server (NTRS)

An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

Dudek, Julianne C.

2005-01-01

397

Vortex gas lens.  

PubMed

A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10(9)-10(10) w/cm(2). An experimental prototype was constructed and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small. PMID:20555805

Bogdanoff, D W; Berschauer, A; Parker, T W; Vickers, J E

1989-09-15

398

Excerpts from Test Films: Langley Impacting Structures Facility, Lunar Module  

NASA Technical Reports Server (NTRS)

Excerpts from Test Films: Langley Impacting Structures Facility, Lunar Module. The film includes excerpts from three studies: (1) Landing characteristics of a dynamic model of the HL-10 manned lifting entry vehicle, conducted by Sandy M. Stubbs, in which the vehicle landed on water at horizontal velocities of 240- and 250-feet per second (ft/sec). (2) Dynamic model investigation of water pressures and accelerations encountered during landings of the Apollo spacecraft conducted by Sandy M. Stubbs, in which horizontal velocity was 50 ft/sec. and pitch attitude was -12 and -28 degrees. (3) Comparative landing impact tests of a 1/6-scale model as a free body under earth gravity and a tethered full-scale lunar module on the Lunar Gravity Simulator. Landing 8 is shown, with a vertical velocity of 10 ft/sec. and a horizontal velocity of 8 ft/sec. Motion pictures were taken at 400 and 64 pps. [Entire movie available on DVD from CASI as Doc ID 20070030993. Contact help@sti.nasa.gov

1968-01-01

399

The NASA Langley 8-foot Transonic Pressure Tunnel calibration  

NASA Technical Reports Server (NTRS)

The NASA Langley 8-Foot Transonic Pressure Tunnel is a continuous-flow, variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation pressure, stagnation temperature, and humidity. The top and bottom walls of the test section are axially slotted to permit continuous variation of the test section Mach number from 0.2 to 1.2, the slot-width contour provides a gradient-free test section 50 in. long for Mach numbers equal to or greater than 1.0 and 100 in. long for Mach numbers less than 1.0. The stagnation pressure may be varied from 0.25 to 2.0 atm. The tunnel test section has been recalibrated to determine the relationship between the free-stream Mach number and the test chamber reference Mach number. The hardware was the same as that of an earlier calibration in 1972 but the pressure measurement instrumentation available for the recalibration was about an order of magnitude more precise. The principal result of the recalibration was a slightly different schedule of reentry flap settings for Mach numbers from 0.80 to 1.05 than that determined during the 1972 calibration. Detailed tunnel contraction geometry, test section geometry, and limited test section wall boundary layer data are presented.

Brooks, Cuyler W., Jr.; Harris, Charles D.; Reagon, Patricia G.

1994-01-01

400

Vortex age as a wake turbulence scaling parameter  

NASA Technical Reports Server (NTRS)

Research which was conducted to determine the significance of vortex age as a scaling parameter in wake turbulence development and dissipation is reported. Tests were conducted at three angles of attack, three free stream speeds, and seven downstream positions from 2 to 30 chordlengths using an NACA 0012 wing and a five hole yawhead pitot probe. The end surface of the wing tip was flat. Speeds were selected to give a predetermined range of vortex ages. The complete velocity structure of the vortex was measured at each station and speed. The resulting plots of maximum tangential velocity and vortex core diameter versus downstream distance and vortex age indicate that vortex age is not a self sufficient scaling parameter. In addition to the expected effect of lift coefficient there is also a definite free stream speed influence at high wing angles of attack. The exact cause and nature of this effect is not fully understood, but it does not appear to be explainable in terms of Mach number or Reynolds number; however, the influence of tip edge shape on spanwise flow separation appears to be an important factor.

Marshall, J. R.; Marchman, J. F., III

1973-01-01

401

Lift enhancement by trapped vortex  

NASA Technical Reports Server (NTRS)

The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

Rossow, Vernon J.

1992-01-01

402

Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack  

NASA Technical Reports Server (NTRS)

A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

Luckring, James M.

2003-01-01

403

Overview of the NASA Langley Chemistry and Physics of the Atmospheric Boundary Layer Experiment (CAPABLE)  

NASA Astrophysics Data System (ADS)

In support of NASA’s GEO-CAPE mission, the CAPABLE site at NASA Langley Research Center has been established to assess the relationship between geostationary high temporal resolution measurements from space and continuous in situ surface observations. During Aug 2009, NO2 column density measurements of high temporal (2 minutes) and high spectral (0.5 nm) resolution were made using a ground-based Pandora spectrometer system concurrently with a suite of in situ trace gas measurements provided by Penn State’s NATIVE (Nittany Atmospheric Trailer and Integrated Validation Experiment) mobile research laboratory. Continuous boundary layer measurements of temperature and humidity were provided using the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI). Wind profiles were provided by a Leosphere WLS70 wind lidar and rawindsonde observations. The use of this boundary layer information will provide valuable information relating spectrally retrieved NO2 column measurements to amounts observed at the surface by the in situ instruments. We present preliminary results of the correlation of co-located NO2 column density with in situ NO2 amounts throughout the diurnal evolution of the boundary layer, and compare with daily satellite NO2 column densities from OMI and GOME-2. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, and National Aeronautics and Space Administration, and approved for publication, it may not necessarily reflect official Agency policy.

Pippin, M. R.; Fishman, J.; Neil, D. O.; Cowen, L.; Geiger, J. K.; Murray, J.; Lucker, P.; Bedka, S.; Szykman, J. J.; Herman, J. R.; Cede, A.; Abuhassan, N.; Martins, D. K.; Jensen, A. A.; Doughty, D.; Thompson, A. M.; Deslover, D. H.; Feltz, W.; Olson, E.; Knuteson, R. O.; Kondragunta, S.; Beck, T.; Yesalusky, M. A.; Smith, W.

2009-12-01

404

NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis  

NASA Technical Reports Server (NTRS)

Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.

Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.

2006-01-01

405

The VOrtex Ring Transit EXperiment (VORTEX) GAS project  

NASA Technical Reports Server (NTRS)

Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

1995-01-01

406

CONTROL AND SUPPRESSION OF LAMINAR VORTEX SHEDDING OFF TWO-DIMENSIONAL BLUFF BODIES  

E-print Network

CONTROL AND SUPPRESSION OF LAMINAR VORTEX SHEDDING OFF TWO-DIMENSIONAL BLUFF BODIES A DISSERTATION #12;Abstract The focus of this research is on the control and suppression of vortex shedding of flow instabilities in the laminar shedding regime. Both bounded and unbounded flow conditions are examined

Stanford University

407

Reduction of helicopter blade-vortex interaction noise by active rotor control technology  

Microsoft Academic Search

Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently

Yung H. Yu; Bernd Gmelin; Wolf Splettstoesser; Jean J. Philippe; Jean Prieur; Thomas F. Brooks

1997-01-01

408

Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement  

NASA Technical Reports Server (NTRS)

A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8.

Huffman, J. K.; Fox, C. H., Jr.

1977-01-01

409

Riblet Research  

NASA Technical Reports Server (NTRS)

Research at Langley on skin friction drag was described in Tech Briefs. 3M engineers suggested to Langley that grooves molded into a lightweight plastic film with adhesive backing and pressed on an airplane would be simpler than cutting grooves directly onto the surface. Boeing became involved and tested the "riblet" on an olympic rowing shell; the US won a silver medal. Based on the riblet-like projections on shark's skins, the technology may provide a 5 percent fuel saving for airplanes. Product is no longer commercially available.

1985-01-01

410

Research and technology  

NASA Technical Reports Server (NTRS)

The role of the Langley Research Center is to engage in the basic and applied research necessary for the advancement of aeronautics and space flight, to enerate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Highlights of the major accomplishments and applications made during the past year are described. The highlights illustrate both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

1984-01-01

411

Vortex dynamics studies in supersonic flow  

NASA Astrophysics Data System (ADS)

This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

Vergine, Fabrizio

412

Jet-vortex Interaction: A Numerical Study  

NASA Astrophysics Data System (ADS)

The interaction of a vortex and a jet plays an important role for many industrial processes such as Carbon Black formation or combustion in diesel engines. The knowledge of physics of these phenomena is crucial for engineers, but also for scientists who wish to reveal many interesting and complex issues hidden there. In this research, we numerically investigate cases where a cylindrical reactor is charged with gas injected through five ports. The first one is located along the main axis of the cylinder and this leads to the formation of the main jet. The other four ports are situated along the side walls such that the gas entering the cylinder tangentially through them causes a vortex to be formed. The objective of this paper is to show the fundamental physical phenomena and also how the initial and boundary conditions influence the results. Our most important observation at this stage is that the mixing process is more intense if the vortex is inclined towards x-axis. The results are mainly shown as snapshots of gas velocity.

Ilea, Catalin G.; Kosinski, Pawel; Hoffmann, Alex C.

2009-09-01

413

NASA/Army supported noise source/noise reduction programs at Langley  

NASA Technical Reports Server (NTRS)

The helicopter noise research related to noise source mechanism identification and reduction includes many of the critical noise problems experienced by the helicopter. These include blade vortex interaction (BVI) noise, broadband turbulence ingestion noise, rotor blade self noise including trailing edge effects, model scale effects evaluations, and to some degree main rotor/tail rotor interaction noise. Issues that arise from this evaluation are; (1) Broadband noise can be a significant contribution to the overall noise problem. (2) Scale model investigations are an effective means of conducting helicopter noise research; however, more model/flight correlation studies are required to develop a high degree of confidence of the use of scale model results in the design process of helicopters. (3) More detailed investigations identifying critical factors affecting the main rotor/tail rotor noise mechanism are required.

Hoad, D. R.

1982-01-01

414

Measurement of Vortex Strength and Core Diameter in the Wake of a Hovering Rotor  

NASA Technical Reports Server (NTRS)

Detailed hot wire measurements have been acquired in the tip vortex of a three-bladed model tilt rotor in hover. Testing was conducted at a rotor tip speed of 752 ft/sec, a Reynolds number (based on blade tip chord) of 1.77 x 10(exp 6), for thrust coefficients up to 0.0160. A figure shows the hot wire mounted above the inverted rotor at the Outside Aerodynamic Rotor Facility (OARF) at NASA Ames Research Center. Strobed shadowgraph flow visualization was used to define the vortex trajectory as an aid in hot wire positioning. Considerable variations in tip vortex structure with time were observed, even from the same blade, under essentially uniform test conditions. The only velocity signatures analyzed were those corresponding to passage of the probe directly through the center of the vortex. These time histories were ensemble averaged after compensating for jitter in the vortex arrival time at the probe, thereby retaining the core structure with minimal smearing. An example of a mean velocity signature, after ensemble averaging, is shown. The mean velocity signature was analyzed under the assumption of constant (unknown) translation speed of the vortex filament past the fixed probe. The translation speed of the vortex is deduced and the vortex strength and core diameter inferred. The results were highly unexpected. The indicated vortex strength is seen to decrease rapidly after first blade passage. In addition, the core radius is seen to decrease with increasing wake age, not increase as might be expected from simple diffusion.

Wadcock, Alan J.

1997-01-01

415

Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

Erickson, G. E.; Burner, A. W.; DeLoach, R.

1999-01-01

416

Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

Erickson, Gary E.

2007-01-01

417

Remote Measurement of Pollution-A 40-Year Langley Retrospective. Part 2; Aerosols and Clouds  

NASA Technical Reports Server (NTRS)

A workshop was convened in 1971 by the National Aeronautics and Space Administration (NASA) on the Remote Measurement of Pollution (RMOP), and the findings and recommendations of its participants are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for regional to global-scale, remote measurements of the atmospheric parameters from Earth-orbiting satellites. In 2011 the author published a 40-year retrospective (or Part I) of the instrumental developments that were an outgrowth of the RMOP panel headed by Will Kellogg, i.e., on atmospheric temperature and gaseous species. The current report (or Part II) is an analogous retrospective of the vision of the panel led by Verner Suomi for the measurement of particulates (or aerosols) and clouds and for their effects on Earth s radiation budget. The class of measurement techniques includes laser radar or lidar, solar occultation, limb emission and scattering, nadir-viewing photometry or radiometry, and aerosol polarimetry. In addition, the retrospective refers to the scientific imperatives that led to those instrument developments of 1971-2010. Contributions of the atmospheric technologists at the Langley Research Center are emphasized, and their progress is placed in the context of the parallel and complementary work from within the larger atmospheric science community.

Remsberg, Ellis E.

2012-01-01

418

Remote Measurement of Pollution - A 40-Year Langley Retrospective. Part 1; Temperature and Gaseous Species  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) phased down its Apollo Moon Program after 1970 in favor of a partly reusable Space Shuttle vehicle that could be used to construct and supply a manned, Earth-orbiting Space Station. Applications programs were emphasized in response to the growing public concern about Earth's finite natural resources and the degradation of its environment. Shortly thereafter, a workshop was convened in Norfolk, Virginia, on Remote Measurement of Pollution (or RMOP), and its findings are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for the regional to global-scale, remote measurements from an Earth-orbiting satellite. The findings and recommendations of the RMOP Report represent the genesis of and a blueprint for the satellite, atmospheric sensing programs within NASA for nearly two decades. This paper is a brief, 40-year retrospective of those instrument developments that were an outgrowth of the RMOP activity. Its focus is on satellite measurement capabilities for temperature and gaseous species that were demonstrated by atmospheric technologists at the Langley Research Center. Limb absorption by solar occultation, limb infrared radiometry, and gas filter correlation radiometry techniques provided significant science data, so they are emphasized in this review.

Remsberg, Ellis E.

2011-01-01

419

Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel  

NASA Technical Reports Server (NTRS)

Airframe-integrated scramjet engine tests have been completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration, and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.

Huebner, Lawrence D.; Rock, Kenneth E.; Witte, David W.; Ruf, Edward G.; Andrews, Earl H., Jr.

2000-01-01

420

Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel  

NASA Technical Reports Server (NTRS)

Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.

Huebner, Lawrence D.; Rock, Kenneth E.; Witte, David W.; Ruf, Edward G.; Andrews, Earl H., Jr.

2000-01-01

421

NASA Langley Atmospheric Science Data Center (ASDC) Experience with Aircraft Data  

NASA Astrophysics Data System (ADS)

Over the past decade the NASA Langley ASDC has archived and distributed a variety of aircraft mission data sets. These datasets posed unique challenges for archiving from the rigidity of the archiving system and formats to the lack of metadata. The ASDC developed a state-of-the-art data archive and distribution system to serve the atmospheric sciences data provider and researcher communities. The system, called Archive - Next Generation (ANGe), is designed with a distributed, multi-tier, serviced-based, message oriented architecture enabling new methods for searching, accessing, and customizing data. The ANGe system provides the ease and flexibility to ingest and archive aircraft data through an ad hoc workflow or to develop a new workflow to suit the providers needs. The ASDC will describe the challenges encountered in preparing aircraft data for archiving and distribution. The ASDC is currently providing guidance to the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Earth Venture-1 project on developing collection, granule, and browse metadata as well as supporting the ADAM (Airborne Data For Assessing Models) site.

Perez, J.; Sorlie, S.; Parker, L.; Mason, K. L.; Rinsland, P.; Kusterer, J.

2011-12-01

422

Automatic control of NASA Langley's 0.3-meter cryogenic test facility  

NASA Technical Reports Server (NTRS)

Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.

Thibodeaux, J. J.; Balakrishna, S.

1980-01-01

423

Contributions of the NASA Langley Transonic Dynamics Tunnel to Launch Vehicle and Spacecraft Development  

NASA Technical Reports Server (NTRS)

The NASA Langley Transonic Dynamics Tunnel (TDT) has provided wind-tunnel experimental validation and research data for numerous launch vehicles and spacecraft throughout its forty year history. Most of these tests have dealt with some aspect of aeroelastic or unsteady-response testing, which is the primary purpose of the TDT facility. However, some space-related test programs that have not involved aeroelasticity have used the TDT to take advantage of specific characteristics of the wind-tunnel facility. In general. the heavy gas test medium, variable pressure, relatively high Reynolds number and large size of the TDT test section have made it the preferred facility for these tests. The space-related tests conducted in the TDT have been divided into five categories. These categories are ground wind loads, launch vehicle dynamics, atmospheric flight of space vehicles, atmospheric reentry. and planetary-probe testing. All known TDT tests of launch vehicles and spacecraft are discussed in this report. An attempt has been made to succinctly summarize each wind-tunnel test, or in the case of multiple. related tests, each wind-tunnel program. Most summaries include model program discussion, description of the physical wind-tunnel model, and some typical or significant test results. When available, references are presented to assist the reader in further pursuing information on the tests.

Cole, Stanley R.; Keller, Donald F.; Piatak, David J.

2000-01-01

424

Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities  

NASA Technical Reports Server (NTRS)

Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.

Hemsch, Michael J.; Houlden, Heather P.

2014-01-01

425

Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility  

NASA Technical Reports Server (NTRS)

In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

Grosveld, Ferdinand W.

2013-01-01

426

B-747 in Flight during Vortex Study  

NASA Technical Reports Server (NTRS)

In this 1974 NASA Flight Research Center photograph, a Boeing B-747 jetliner is shown taking part in the trailing wake vortex study. In the photograph, the two wing tip vortex trails, being the strongest, stay in tight cylindrical rolls. The 'strength' of the vortices decreases toward the midspan of each wing, and the trails become less defined. In 1974 the NASA Flight Research Center (later Dryden Flight Research Center, Edwards, California) used a Boeing 747 as part of the overall NASA study of trailing vortices. Trailing vortices are the invisible flow of spiraling air that trails from the wings of large aircraft and can 'upset' smaller aircraft flying behind them. The 747 that NASA used was on loan from the Johnson Space Center where it was part of the Space Shuttle Program. The data gathered in the 747 studies complemented data from the previous (1973-74) joint NASA Flight Research Center and Federal Aviation Administration (FAA) Boeing727 wake vortices study. Six smoke generators were installed under the wings of the 747 to provide a visual image of the trailing vortices. The object of the experiments was to test different configurations and mechanical devices on the747 that could be used to break up or lessen the strength of the vortices. The results of the tests could lead to shorter spacing between landings and takeoffs, which, in turn, could alleviate air-traffic congestion. For approximately 30 flights the 747 was flown using various combinations of wing air spoilers in an attempt to reduce wake vortices. To evaluate the effectiveness of the different configurations, chase aircraft were flown into the vortex sheets to probe their strengths and patterns at different times. Two of the chase planes used were the Flight Research Center's Cessna T-37 and the NASA Ames Research Center's Learjet. These aircraft represented the types of smaller business jets and other small aircraft that might encounter large passenger aircraft on approach or landings around major airports or in flight. Tests without the 747's wing spoilers deployed produced violent 'upset' problems for the T-37 aircraft at a distance of approximately 3 miles. From the magnitude of the problems found, distances of as much as ten miles might be required if spoilers were not used. With two spoilers on the outer wing panels, the T-37 could fly at a distance of three miles and not experience the 'upset' problem. The wake vortex study continued even after the 747 was returned to its primary mission of carrying the Space Shuttle.

1974-01-01

427

Vortex loops and Majoranas  

SciTech Connect

We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada) [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States) [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan) [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)] [Department of Physics, University of Basel, Basel (Switzerland)

2013-11-15

428

Vortex gas lens  

NASA Technical Reports Server (NTRS)

A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

1989-01-01

429

VORTEX MIGRATION IN PROTOPLANETARY DISKS  

SciTech Connect

We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a timescale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migration on planet formation scenarios.

Paardekooper, Sijme-Jan; Lesur, Geoffroy; Papaloizou, John C. B., E-mail: S.Paardekooper@damtp.cam.ac.u [DAMTP, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

2010-12-10

430

Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration  

NASA Technical Reports Server (NTRS)

An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

1999-01-01

431

Application of laser velocimetry to aircraft wake-vortex measurements  

NASA Technical Reports Server (NTRS)

The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

Ciffone, D. L.; Orloff, K. L.

1977-01-01

432

MLS CLO observations and arctic polar vortex temperatures  

NASA Technical Reports Server (NTRS)

Analysis of Upper Altmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) observations in early January 1992 shows a clear relationship between predicted polar stratospheric cloud formation along the back trajectory and elevated ClO amounts. These findings are in good agreement with aircraft observations. The MLS observed variation of ClO amounts within the vortex also fits the pattern of ClO change as a result of air parcel solar exposure and nitric acid photolysis. Outside the polar vortex, the occasional highly elevated ClO appear statistically consistent with MLS measurement noise.

Schoeberl, M. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.; Lait, L. R.; Waters, J. W.; Froidevaux, L.; Ready, W. G.

1993-01-01

433

Transitions in the vortex wake behind the plunging profile  

NASA Astrophysics Data System (ADS)

In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

Koz?owski, Tomasz; Kudela, Henryk

2014-12-01

434

VORTEX FORMATION BY SUCCESSIVE THERMALS: A NUMERICAL SIMULATION  

Microsoft Academic Search

The purpose of this research is to investigate, by means of numerical simulation experiments, the complex inter- actions between consecutive toroidally circulating buoyant elements (thermals) when these occur in either rotating or nonrotating environments. The study includes both the vortex formation process and the effect that this process has on the properties of the one or more buoyant elements involved

EUGENE M. WILKINS; YOSHIKAZU SASAKI; ROGER H. SCHAUSS

1971-01-01

435

Modifications to Langley 0.3-m TCT adaptive wall software for heavy gas test medium, phase 1 studies  

NASA Technical Reports Server (NTRS)

The scheme for two-dimensional wall adaptation with sulfur hexafluoride (SF6) as test gas in the NASA Langley Research Center 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) is presented. A unified version of the wall adaptation software has been developed to function in a dual gas operation mode (nitrogen or SF6). The feature of ideal gas calculations for nitrogen operation is retained. For SF6 operation, real gas properties have been computed using the departure function technique. Installation of the software on the 0.3-m TCT ModComp-A computer and preliminary validation with nitrogen operation were found to be satisfactory. Further validation and improvements to the software will be undertaken when the 0.3-m TCT is ready for operation with SF6 gas.

Murthy, A. V.

1992-01-01

436

An overview of the use of Open Source in the NASA Langley Atmospheric Science Data Center Archive Next Generation system  

NASA Astrophysics Data System (ADS)

The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the archive and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. Over the past several years the ASDC has developed and implemented the Archive Next Generation (ANGe) system, a state-of-the-art data ingest, archival, and distribution system to serve the atmospheric sciences data provider and user communities. ANGe employs Open Source technologies including the JBoss Application Server, a PostGIS-enabled PostgreSQL database system to store geospatial metadata, modules from the GeoTools Open Source Java GIS Toolkit including the Java Topology Suite (JTS) and GeoAPI libraries, and other libraries such as the Spring framework. ANGe was developed using a suite of several Open Source tools comprised of Eclipse, Ant, Subversion and Jenkins. ANGe is also deployed into an operational environment that leverages Open Source technologies from the Linux Operating system to tools such as Ganglia for monitoring. This presentation provides an overview of ANGe with a focus on the Open Source technologies employed in the implementation and deployment of the system. The ASDC is part of Langley's Science Directorate. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov.

Dye, R. A.; Perez, J.; Piatko, P. J.; Coogan, S. P.; Parker, L.

2012-12-01

437

Control of magnetic vortex chirality and polarization in indented and notched nanomagnetic disks  

NASA Astrophysics Data System (ADS)

Magnetic vortex dynamics in nanoscale structures is currently a topic of intensive research not only from a fundamental physics point of view but also for their potential use in future generation spintronics and magnetic random access memories. We propose a method, where one can independently control the magnetic vortex polarization and chirality states by a combination of fine-tuning the applied magnetic field and breaking the geometrical symmetry of the magnetic nanostructure. Numerical simulations corroborate our proposal of achieving vortex switchability for the two different geometries we investigate: the indented disk and notched disk structures. Our results suggest that the notched disk structure offers more robust vortex dynamics and better switching characteristics, which makes this geometry ideal for use as a vortex-based magnetic memory device.

El-Mezeini, Ahmed M.; Flack, Tim J.; Welland, Mark E.

2014-12-01

438

Operational experience in the Langley expansion tube with various test gases  

NASA Technical Reports Server (NTRS)

A resume' of operating experiences with the Langley Expansion Tube is presented. The driver gas was unheated helium at a nominal pressure of 5000 psi and the majority of the data presented are for air and carbon dioxide test gases. The primary purpose of these data is to illustrate the effects of various parameters on quasi-steady test flow duration, as well as free stream and post-normal shock flow conditions. The discussion shows that the Langley Expansion Tube is an operational facility capable of producing good quality, highly repeatable, quasi-steady flow for test times sufficient to establish flow about blunt axisymmetric and two-dimensional models.

Miller, C. G.

1977-01-01

439

Dynamic LES of Colliding Vortex Rings Using a 3D Vortex Method  

Microsoft Academic Search

A Lagrangian particle method is used to simulate the collision of coaxial vortex rings in three dimensions. The scheme combines a 3D, adaptive, viscous, vortex element method with a dynamic eddy viscosity model of the subfilter scale stresses. The vortex method is based on discretization of the vorticity field into Lagrangian vortex elements and transport of the elements along particle

John R. Mansfield; Omar M. Knio; Charles Meneveau