Science.gov

Sample records for langmuir probe system

  1. Design of a multi-needle Langmuir probe system

    NASA Astrophysics Data System (ADS)

    Bekkeng, T. A.; Jacobsen, K. S.; Bekkeng, J. K.; Pedersen, A.; Lindem, T.; Lebreton, J.-P.; Moen, J. I.

    2010-08-01

    The main goal of this work was to develop a Langmuir probe instrument for sounding rockets capable of performing high-speed absolute electron density measurements, and thereby be able to detect sub-meter ionospheric plasma density structures. The system comprises four cylindrical probes with a diameter of 0.51 mm and a length of 25 mm, each operated at a different fixed bias voltage in the electron saturation region. The probe diameter was chosen significantly less than the Debye shielding length to avoid complex sheath effects but large enough to ensure a probe area sufficiently large to accurately measure the electron currents drawn by the probes (in the range 1 nA to 1 µA). The crucial feature of the University of Oslo's multi-needle Langmuir probe (m-NLP) is that it is possible to determine the electron density without the need to know the spacecraft potential and the electron temperature Te. The m-NLP instrument covers a density range from ne = 109 m-3 to 1012 m-3, with sampling rates up to 9 kHz. The m-NLP instrument was successfully tested on the ICI-2 (Investigation of Cusp Irregularities) sounding rocket flight from Svalbard on 5 December 2008.

  2. Advanced Langmuir Probe (LP)

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1991-01-01

    The dynamic response of the MK-2 version of the Langmuir probe amplifier was studied. The settling time of the step response is increased by: (1) stray node-to-ground capacitance at series connections between high value feedback resistors; and (2) input capacitance due to the input cable, FET switches, and input source follower. The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printing board. A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the effect of stray capacitances. Faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product.

  3. A compact and portable PC-based Gundestrup-Langmuir probe diagnostic system

    SciTech Connect

    Sicard, P.; Boucher, C.; Litnovsky, A.; St-Germain, J.-P.

    2005-01-01

    A compact Gundestrup-Langmuir probe diagnostics system capable of data acquisition as well as data analysis was conceived at INRS-EMT, Canada, and used at IPP-FZJ, Germany. Data acquisition and analysis can be done with this system using several types of probes (Langmuir, double-Langmuir, Mach, Gundestrup,...). The versatility as to the different types of probe that one can use and the relative small size of the whole system makes it advantageous. Using a laptop computer makes the system small size and highly portable. The system acquires data at 1000 scans/s at 12 bit resolution on two probe systems simultaneously, using a total of 12 input channels. Bias is done by a DAC-ADC card and is amplified to give a {+-}100 V sweeping range. Measured temperatures ranged from 0.75 eV to 6.0 eV with densities observed as low as 1x10{sup 10} cm{sup -3} up to 5x10{sup 11} cm{sup -3}, which are the range of conditions to be found in our experimental device. This system is also easy to reproduce since the hardware is commercially available and the scripts can be duplicated and modified according to the specifics of the hardware.

  4. A compact and portable PC-based Gundestrup-Langmuir probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Sicard, P.; Boucher, C.; Litnovsky, A.; St-Germain, J.-P.

    2005-01-01

    A compact Gundestrup-Langmuir probe diagnostics system capable of data acquisition as well as data analysis was conceived at INRS-EMT, Canada, and used at IPP-FZJ, Germany. Data acquisition and analysis can be done with this system using several types of probes (Langmuir, double-Langmuir, Mach, Gundestrup,…). The versatility as to the different types of probe that one can use and the relative small size of the whole system makes it advantageous. Using a laptop computer makes the system small size and highly portable. The system acquires data at 1000scans/s at 12bit resolution on two probe systems simultaneously, using a total of 12 input channels. Bias is done by a DAC-ADC card and is amplified to give a ±100V sweeping range. Measured temperatures ranged from 0.75eVto6.0eV with densities observed as low as 1×1010cm-3 up to 5×1011cm-3, which are the range of conditions to be found in our experimental device. This system is also easy to reproduce since the hardware is commercially available and the scripts can be duplicated and modified according to the specifics of the hardware.

  5. Fast Langmuir probe sweeping circuit

    SciTech Connect

    Milnes, K.A.; Ehlers, K.W.; Leung, K.N.; Owren, H.M.; Williams, M.D.

    1980-06-01

    An inexpensive, simple, and fast Langmuir probe sweeping circuit is presented. This sweeper completes a probe trace in 1.4 ms and has a maximum probe current capability of 5 A. It is suitable for pulsemode plasma operation with density greater than 10/sup 12/ ions/cm/sup 3/.

  6. Radio frequency-compensated Langmuir probe with auxiliary double probes

    SciTech Connect

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-15

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  7. Radio frequency-compensated Langmuir probe with auxiliary double probes.

    PubMed

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-01

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas. PMID:20886976

  8. High-speed dual Langmuir probe

    SciTech Connect

    Lobbia, Robert B.; Gallimore, Alec D.

    2010-07-15

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz--near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100 000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n{sub e} from (1x10{sup 15})-(5x10{sup 16}) m{sup -3}, electron temperature T{sub e} from 1 to 3.5 eV, and plasma potential V{sub p} from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster ''breathing mode'' ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n{sub e}(t), T{sub e}(t), and V{sub p}(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current

  9. High-speed dual Langmuir probe.

    PubMed

    Lobbia, Robert B; Gallimore, Alec D

    2010-07-01

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz-near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100,000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n(e) from (1x10(15))-(5x10(16)) m(-3), electron temperature T(e) from 1 to 3.5 eV, and plasma potential V(p) from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster "breathing mode" ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n(e)(t), T(e)(t), and V(p)(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current fluctuations and the corresponding plasma

  10. Surface morphology implications on Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Suresh, Padmashri

    2011-12-01

    Langmuir probes are extensively employed to study the plasmas in space and laboratory environments. Successful measurements require a comprehensive modeling of both the plasma environment and the probe conditions in the form of current collection models. In this thesis, the surface morphology implications on the probe current collection are investigated. This problem is applied and solved in the context of a CubeSat regime. The first problem that is investigated is the consequence of surface structural variability on the current measurements. A new model for dealing with non-uniformity of the probe surface structure is developed in this paper. This model is applied to analyze the Langmuir probe data from a sounding rocket mission that was subjected to surface structural non-homogeneities. This model would be particularly useful for CubeSat platforms where elaborate probe design procedures are not feasible. The second problem that is investigated is the surface area implications on Langmuir probe measurements. It has been established that surface area ratio of the spacecraft to that of the probe needs to be sufficiently large to make successful plasma measurements. CubeSats would therefore pose a challenge for employing Langmuir-type instruments to study the space plasma. We inspect the feasibility of making plasma measurements using Langmuir probes subjected to CubeSat area constraints. This analysis is done for a forthcoming Utah State University (USU)/Space Dynamics Lab (SDL) CubeSat mission.

  11. The Fixed-bias Langmuir Probe on the Communication-navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, Jeffrey H.; Rowland, Douglas E.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  12. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  13. A new compact and low cost Langmuir Probe and associated onboard data handling system for CubeSat

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Polinaya; Domingos, Sinval; Paredes, Andres; Abrahão Dos Santos, Walter

    2016-07-01

    A new compact and low cost Langmuir Probe and associated onboard data handling system are being developed at Instituto Nacional de Pesquisas Espaciais for launching on board one of the future 2U CubeSat missions. The system is a simplified and compacted version of the Langmuir Probe payloads launched on board several Brazilian SONDA III rockets and also developed for the Brazilian scientific satellites SACI-1 and SACI-2. The onboard data handling system will have the dual functions of preprocessing the data collected by the Langmuir Probe and acting as the interface between the experiment and the on board computer. The Langmuir Probe sensor in the form of two rectangular stainless steel strips of total surface area of approximately 80cm2 will be deployed soon after the injection of the CubeSat into orbit. A sweep voltage varying linearly from 0V to 3.0V in about 1.5 seconds and then remaining fixed at 3.0V for 1 second will be applied to the LP sensor to obtain both the electron density and electron temperature. A high sensitivity preamplifier will be used to convert the sensor current expected to be in the range of a few nano amperes to a few micro amperes into a varying potential. In order to cover the large dynamic range of the expected sensor current the preamplifier output will be further amplified by a logarithmic amplifier before being sampled and sent to the data handling system. The data handling system is projected to handle 8 analog channels and 4 digital words of 8 bits each. The incoming data will be stored in a RAM and later sent to the on board computer using a serial RS422 communication protocol. The interface unit will process the telecommands received from the on board computer. The interface is also projected to do FFT analysis of the LP sensor data and send the averaged FFT spectral amplitudes in place of the original unprocessed data. The system details are presented here.

  14. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    PubMed

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS. PMID:23206077

  15. An automated Langmuir probe controller for plasma characterization

    NASA Astrophysics Data System (ADS)

    Bustos, A.; Juarez, A. M.; de Urquijo, J.; Muñoz, M.

    2016-08-01

    We present the design, construction and test of an automated electronic controller for a Langmuir plasma probe. The novel aspect of this system lies in the isolation of the high voltage present in the discharge from the grounded reference of the controller. This controller detects currents over the range from  ±1 μA to  ±50 mA, using dynamic and automated switching of a transresistance amplifier. This automated Langmuir probe (LP) system has been successfully tested in a glow discharge in argon at 0.8 and 10 Torr.

  16. The theory of Langmuir probes in strong electrostatic potential structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    The operation of collecting and emitting Langmuir probes and double probes within time-stationary strong electrostatic potential structures is analyzed. The cross sections of spherical and cylindrical probes to charged particles within the structures are presented and used to obtain the current-voltage characteristics of idealized probes. The acquisition of plasma parameters from these characteristics is outlined, and the operation of idealized floating double-probe systems is analyzed. Probe surface effects are added to the idealized theory, and some surface effects pertinent to spacecraft probes are quantified. Magnetic field effects on idealized probes are examined, and the time required for floating probes to change their potentials by collecting charge and by emitting photoelectrons is discussed. Calculations on the space-charge effects of probe-perturbed beams and on the space-charge limiting of electron emission are given in an appendix.

  17. Langmuir probe analysis in electronegative plasmas

    SciTech Connect

    Bredin, Jerome Chabert, Pascal; Aanesland, Ane

    2014-12-15

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  18. Langmuir probe analysis in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Bredin, Jerome; Chabert, Pascal; Aanesland, Ane

    2014-12-01

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α0 = n-/ne (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (ne, n+, n-), temperatures (Te, T+, T-), and masses (me, m+, m-). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5-10%, including the ion temperatures when α0 > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α0 and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  19. Ion orbits in a cylindrical Langmuir probe

    SciTech Connect

    Taccogna, Francesco; Longo, Savino; Capitelli, Mario

    2006-04-15

    It has been suggested that in weakly collisional sheaths, potential wells and barriers could appear due to ion-neutral momentum and charge transfer collisions. These can cause the presence of repulsed and trapped ions in the region surrounding a negatively biased Langmuir probe, invalidating the commonly used orbital-motion-limited theory of ion current. This is still an open question concerning also the charging and shielding of dust grains, and at present, no fully self-consistent treatment exists. For this reason, a particle-in-cell/test-particle Monte Carlo simulation of the dynamics of an argon plasma in the region surrounding an attracting cylindrical probe at medium gas pressure has been developed. The results of the present simulation for different probe potentials and discharge pressures demonstrate the complex structure of electric potential around the probe and the failure of collisionless theories.

  20. A fixed bias, floating double probe technique with simple Langmuir probe characteristics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1971-01-01

    A new floating double-probe method is presented which has advantages over other floated-probe systems previously described in literature. The method utilized two electrodes, one of constant area and the other with a variable area. The two-electrode configuration is separated by a fixed bias voltage. The current-voltage characteristics of the new technique, which are generated by varying the area of the one electrode, are identical to those of a simple Langmuir probe, thus coupling all the advantages of a floated-probe system with the simple analysis scheme generally applied to the Langmuir probe for the determination of plasma density and temperature.

  1. Plasma-material interactions: A Langmuir probe analysis of a cylindrical SiO(2) deposition system and a computational study using VFTRIM3D

    NASA Astrophysics Data System (ADS)

    Turkot, Robert Bruce, Jr.

    This dissertation is broken into two sections describing, first, a computer code simulating ion-surface interactions, VFTRIM3D, and, second, an experimental Langmuir probe analysis of a cylindrical SiOsb2 deposition system. VFTRIM3D is a 3-dimensional, Monte-Carlo, binary collision code employing fractal algorithms used to simulate atomic-scale surface roughness. This work applies this code to studies of incident ion energies in the 10's to 100's of eV on various targets and comparisons to experimental data prove its dependability for such simulations. The experimental portion of this thesis includes the development and investigation of a cylindrical SiOsb2 deposition system used to deposit gas permeation barrier thin films onto PET bottles. The plasma analysis is done utilizing time- and spatially resolved Langmuir probe techniques. In order to study the characteristics of the dielectric deposition plasma, a "hot" Langmuir probe was developed to acquire typical Langmuir probe data during SiOsb2 deposition. The SiOsb2 films deposited in this system are analyzed for their gas permeation qualities and are correlated to the plasma properties gathered using Langmuir probes as well as the gas, pressure, and time recipes used to produce them. It is found in this work that the application of SiOsb2 films onto flexible PET bottles using the fashion explained herein results in a decrease in the gas permeation characteristics of the SiOsb2-PET membrane as desired, but is found to be independent of the thickness of the SiOsb2 present. This limit is found to be caused by cracks and pinhole defects across the SiOsb2 film that permit uninhibited gas flow directly to the PET bottle.

  2. Langmuir Probe Measurements in Plasma Shadows

    SciTech Connect

    Waldmann, O.; Koch, B.; Fussmann, G.

    2006-01-15

    When immersing a target into a plasma streaming along magnetic field lines, a distinct shadow region extending over large distances is observed by the naked eye downstream of the target.In this work we present an experimental study of the effect applying Langmuir probes. In contrast to expectations, there are only marginal changes in the profiles of temperature and density behind masks that cut away about 50% of the plasma cross-section. On the other hand, the mean density is drastically reduced by an order of magnitude. First attempts to simulate the observations by solving the classical 2D diffusion equation were not successful.

  3. Langmuir probe analysis of highly electronegative plasmas

    SciTech Connect

    Bredin, Jerome; Chabert, Pascal; Aanesland, Ane

    2013-04-15

    A Langmuir probe analysis of highly electronegative plasmas is proposed. Analytical models are used to fit the IV-characteristics and their second derivatives above and below the plasma potential. Ion and electron densities are obtained for {alpha} (negative ion to electron density ratio) up to 3000, and the temperature of negative and positive ions is obtained for {alpha} ranging from 100 to 3000. The transport across a localized magnetic barrier is studied using this technique. It is shown that an ion-ion (electron free) plasma is formed downstream from the barrier at the highest magnetic field.

  4. Calibration of Langmuir probes against microwaves and plasma oscillation probes

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.; Evans, John D.; Zawalski, Wade

    2012-10-01

    The use of Langmuir probes for measuring plasma density is subject to uncertainty because the theories commonly used to interpret the data give widely differing results. This is especially troublesome in partially ionized plasmas used, for instance, in the semiconductor industry, since no existing theory adequately treats the case when there are a few collisions between ions and neutral atoms. In this work, plasma densities measured by microwave interferometry and plasma-oscillation probes are compared with those from probe data analyzed with Langmuir's orbital motion limited (OML) theory, the Allen-Boyd-Reynolds (ABR) theory and the Bernstein-Rabinowitz-Laframboise (BRL) theory. It is found that ABR underestimates and BRL overestimates the density, the problems being the neglect of ion orbiting in ABR and the effect of ion-neutral collisions in BRL. The best theory is either OML or the geometric mean between the ABR and BRL results. For thicker probes, other methods are suggested.

  5. Floating Potential Probe Langmuir Probe Data Reduction Results

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Minow, Joseph I.

    2002-01-01

    During its first five months of operations, the Langmuir Probe on the Floating Potential Probe (FPP) obtained data on ionospheric electron densities and temperatures in the ISS orbit. In this paper, the algorithms for data reduction are presented, and comparisons are made of FPP data with ground-based ionosonde and Incoherent Scattering Radar (ISR) results. Implications for ISS operations are detailed, and the need for a permanent FPP on ISS is examined.

  6. Empirical model for analyzing Langmuir Probe characteristics

    NASA Astrophysics Data System (ADS)

    Burchill, J. K.

    2013-12-01

    A six-parameter empirical model is presented for obtaining plasma parameters from a Langmuir probe characteristic curve. The model curve is obtained by integrating expressions for the current derivative with respect to bias voltage. Slopes in the saturation regions are modeled by hyperbolic tangent sigmoids; the slope of the transition region between the two is modeled by a Gaussian. Nonlinear least-squares fits of lab- and satellite-based characteristics are used to investigate the robustness of the model over a wide range of plasma conditions. The technique may have utility in automated processing of characteristic curves, such as those from satellites where telemetry bandwidth is at a premium. Moreover, the technique may be useful as a basis for quantitative and systematic investigation of non-thermal and magnetized plasmas.

  7. Fast reciprocating Langmuir probe for the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R.D.; Moyer, R.A.; Cuthbertson, J.W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D.N.; Mascaro, M.; Robinson, J.I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented. {copyright} {ital 1997 American Institute of Physics.}

  8. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  9. Temporal limits of a rapidly swept Langmuir probe

    SciTech Connect

    Lobbia, Robert B.; Gallimore, Alec D.

    2010-07-15

    The finite, electrostatically achievable, temporal resolution of plasma properties from a turbulent discharge is limited by an array of effects wherein the theory of Langmuir probes breaks down. Formulations for the particle transit time, sheath formation time, plasma-probe resonance, polarization current, sheath capacitance, stray capacitance, and mutual capacitance effects are all evaluated for time-resolved operation of a Langmuir probe. The resulting time scales serve to place a theoretical bound on the maximum rate of a rapidly swept Langmuir probe as analyzed with typical thin-sheath collisionless probe theory. For plasma typical to the plume of a Hall effect thruster [xenon plasma, n{sub e}=(1-1000)x10{sup +15} m{sup -3}, and T{sub e}=1-20 eV], upper limits of 0.01-70 kHz are observed for a noncapacitive compensated Langmuir probe. With a high-speed dual Langmuir probe (HDLP) (a regular probe plus a null compensation probe), the upper probing frequency limits are increased to 0.04-11 MHz limited by sheath capacitance in the far and near field, and polarization effects for closer internal measurements. For a typical tokamak edge plasma (with HDLP), the thermally equilibrated hotter species (typically T{sub e}approx =T{sub i}approx =10 to 20 eV) and lighter ions together lend higher limiting rates of ion transit, sheath formation, and sheath capacitance effects (in excess of 20 MHz), but the fully magnetized plasma complicates the collected probe current, limiting the allowable sweep rate to <1 MHz (for a magnetic field of 2 T). Thus we find that the upper rate of Langmuir probe sweeping is in the low megahertz range for both electric thruster and fusion plasma device diagnostics.

  10. Contamination effects on fixed-bias Langmuir probes

    SciTech Connect

    Steigies, C. T.; Barjatya, A.

    2012-11-15

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seen in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.

  11. Langmuir probe theory and the problem of anisotropic collection

    NASA Technical Reports Server (NTRS)

    Kyrala, A.

    1981-01-01

    A more general understanding of Langmuir probe theory by going beyond particular coordinate systems as far as possible was studied. To delineate the role of initial velocities in the problem and to characterize the interaction between the velocity flow field and the electrostatic potential field both of which enter into the determination of particle trajectories are desired. The probe is supposed to be negatively charged throughout and the ensuing region of positive space charge about it differs fundamentally from the plasma region beyond in the sense that the former represents a region in which deterministic trajectories dominate while the lattice is a region dominated by statistical interactions largely controlled by the collisionless stationary Boltzmann equation. A general solution of this Boltzmann equation is given and its relationship to the problem of saturation current density in 3D is elucidated.

  12. Relativistic current collection by a cylindrical Langmuir probe

    SciTech Connect

    Sanchez-Arriaga, G.; Sanmartin, J. R.

    2012-06-15

    The current I to a cylindrical Langmuir probe with a bias {Phi}{sub p} satisfying {beta}{identical_to}e{Phi}{sub p}/m{sub e}c{sup 2}{approx}O(1) is discussed. The probe is considered at rest in an unmagnetized plasma composed of electrons and ions with temperatures kT{sub e}{approx}kT{sub i} Much-Less-Than m{sub e}c{sup 2}. For small enough radius, the probe collects the relativistic orbital-motion-limited (OML) current I{sub OML}, which is shown to be larger than the non-relativistic result; the OML current is proportional to {beta}{sup 1/2} and {beta}{sup 3/2} in the limits {beta} Much-Less-Than 1 and {beta} Much-Greater-Than 1, respectively. Unlike the non-relativistic case, the electron density can exceed the unperturbed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/I{sub OML} drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed.

  13. Revisiting plasma hysteresis with an electronically compensated Langmuir probe

    SciTech Connect

    Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K.

    2012-09-15

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 {mu}A, allowing plasma measurements to be done with ion saturation current of the order of hundreds of {mu}A. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of {<=}45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as {delta}T{sub pk-pk} changes by {approx}30%. The developed technique with swept rate {<=}100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering {<=}50 kHz.

  14. Langmuir probe measurements in a VHF dielectric plasma etcher

    NASA Astrophysics Data System (ADS)

    Dorf, Leonid; Ramaswamy, Kartik; Collins, Ken; Merry, Walter

    2008-10-01

    Langmuir probe (LP) measurements in a realistic VHF CCP discharge are complicated by a number of factors, such as absence of a well-defined DC ground reference and unpredictable behavior of standard electronic components at VHF. The VHF source can produce plasma very efficiently; therefore, to reach the same plasma density, VHF discharges require lower power than HF discharges. Nevertheless, even at low source power (˜100--200W with Ne<= 10^10 cm-3), RF potential in a VHF CCP discharge can be large, especially compared to that in an ICP discharge with similar parameters. Uncompensated RF potential distorts both electron and ion parts of the measured V-I characteristic, resulting in unrealistic plasma parameters. Here, we present preliminary results of our work to develop a LP system suitable for measurements in a 162 MHz dielectric plasma etcher. The probe design employs many previously developed RF compensation techniques. Furthermore, all electronic components of the probe and the measuring circuit were characterized using a network analyzer to select adequate values. The probe was used to study the effects of magnetic field, input power, pressure, and other operating conditions on electron and ion density profiles. Electron temperature was found to be in the range of 1.8 -- 3.5 eV, and the shape of ion saturation curve was found to be in agreement with OML theory.

  15. Contamination effects on fixed-bias Langmuir probes.

    PubMed

    Steigies, C T; Barjatya, A

    2012-11-01

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seen in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region. PMID:23206057

  16. Biasing, Acquisition and Interpretation of a Dense Langmuir Probe Array in NSTX

    SciTech Connect

    Jaworski, M. A.; Kallman, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Marsala, R.; Ruzic, D.

    2010-09-22

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiments (NSTX). This array is instrumented with a system of elec- tronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe and operation as passive floating potential and scrape-off-layer (SOL) current monitors). The use of flush-mounted probes requires careful inter- pretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in comple- mentary fashion to determine the temperature and density at the probe location. A comparison to mid-plane measurements is made. Work is supported by DOE contracts DE-AC02-09CHI1466 and DE-PS02-07ER07-29.

  17. Biasing, acquisition, and interpretation of a dense Langmuir probe array in NSTX

    SciTech Connect

    Jaworski, M. A.; Kallman, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Marsala, R.; Ruzic, D. N.

    2010-10-15

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as passive floating potential and scrape-off-layer SOL current monitors). The use of flush-mounted probes requires careful interpretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in complementary fashion to determine the temperature and density at the probe location. A comparison to midplane measurements is made.

  18. Preliminary Langmuir probe results on the CTX gun experiment

    SciTech Connect

    Tuszewski, M.

    1981-12-01

    Preliminary results obtained with a double Langmuir probe in the Compact Toroid experiment facility confirm the existence of a gun plasma of n approx. 5 x 10/sup 14/ cm/sup -3/ and T approx. 10 eV lasting for approx. 250 to 400 ..mu..s, which is consistent with interferometry and Thomson scattering data. The probe current characteristics as a function of voltage suggest non-Maxwellian features of the particles distribution functions.

  19. Langmuir Probe Spacecraft Potential End Item Specification Document

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian; Curtis, Leslie (Technical Monitor)

    2001-01-01

    This document describes the Langmuir Probe Spacecraft Potential (LPSP) investigation of the plasma environment in the vicinity of the ProSEDS Delta II spacecraft. This investigation will employ a group of three (3) Langmuir Probe Assemblies, LPAs, mounted on the Delta II second stage to measure the electron density and temperature (n(sub e) and T(sub e)), the ion density (n(sub i)), and the spacecraft potential (V(sub s)) relative to the surrounding ionospheric plasma. This document is also intended to define the technical requirements and flight-vehicle installation interfaces for the design, development, assembly, testing, qualification, and operation of the LPSP subsystem for the Propulsive Small Expendable Deployer System (ProSEDS) and its associated Ground Support Equipment (GSE). This document also defines the interfaces between the LPSP instrument and the ProSEDS Delta II spacecraft, as well as the design, fabrication, operation, and other requirements established to meet the mission objectives. The LPSP is the primary measurement instrument designed to characterize the background plasma environment and is a supporting instrument for measuring spacecraft potential of the Delta II vehicle used for the ProSEDS mission. Specifically, the LPSP will use the three LPAs equally spaced around the Delta II body to make measurements of the ambient ionospheric plasma during passive operations to aid in validating existing models of electrodynamic-tether propulsion. These same probes will also be used to measure Delta II spacecraft potential when active operations occur. When the electron emitting plasma contractor is on, dense neutral plasma is emitted. Effective operation of the plasma contactor (PC) will mean a low potential difference between the Delta II second stage and the surrounding plasma and represents one of the voltage parameters needed to fully characterize the electrodynamic-tether closed circuit. Given that the LP already needs to be well away from any

  20. Solar extreme ultraviolet sensor and advanced langmuir probe

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1992-01-01

    For more than two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument. Under contract NAG5-419 these improvements were implemented and are what characterize the Advanced Langmuir Probe (ALP). Using data from the Langmuir Probe on the Pioneer Venus Orbiter, Brace and Walter Hoegy of GSFC demonstrated a novel method of monitoring the solar extreme ultraviolet (EUV) flux. This led to the idea of developing a sensor similar to a Langmuir probe specifically designed to measure solar EUV (SEUV) that uses a similar electronics package. Under this contract, a combined instrument package of the ALP and SEUV sensor was to be designed, constructed, and laboratory tested. Finally the instrument was to be flight tested as part of sounding rocket experiment to acquire the necessary data to validate this method for possible use in future earth and planetary aeronomy missions. The primary purpose of this contract was to develop the electronics hardware and software for this instrument, since the actual sensors were suppied by GSFC. Due to budget constraints, only a flight model was constructed. These electronics were tested and calibrated in the laboratory, and then the instrument was integrated into the rocket payload at Wallops Flight Facility where it underwent environmental testing. After instrument recalibration at SPRL, the payload was reintegrated and launched from the Poker Flat Research Range near Fairbanks Alaska. The payload was successfully recovered and after refurbishment underwent further testing and developing to improve its performance for future use.

  1. Operation of a Langmuir Probe in a Photoelectron Plasma

    SciTech Connect

    Dove, Adrienne; Robertson, Scott; Horanyi, Mihaly; Poppe, Andrew; Wang Xu

    2011-11-29

    Dust transport on the lunar surface is likely facilitated by the variable electric fields that are generated by changing plasma conditions. We have developed an experimental apparatus to study lunar photoelectric phenomena and gain a better understanding of the conditions controlling dust transport. As an initial step, Langmuir probe measurements are used to characterize the photoelectron plasma produced above a Zr surface, and these techniques will be extended to CeO{sub 2} and lunar simulant surfaces.

  2. Results from Langmuir probe measurements in PDX and PLT

    SciTech Connect

    Budny, R.

    1982-02-01

    Fits to Langmuir probe measurements made near the midplanes of the PDX and PLT tokamaks imply density and electron temperature profiles. In ohmically heated plasmas with either circular or diverted configurations, the edge densities decrease approximately exponentially with e-folding lengths of 1-4cm. Electron temperatures are low (5 to 50 eV) and decrease more gradually than the density profiles in the outer edge.

  3. Correlation of plasma characteristics to etch rate and via sidewall angle in a deep reactive ion etch system using Langmuir probe and optical emission spectroscopy

    SciTech Connect

    Koirala, S. P.; Awaah, I.; Burkett, S. L.; Gordon, M. H.

    2011-01-15

    A Langmuir probe and optical emission spectroscopy were used in a deep reactive ion etch system to correlate plasma parameters (atomic fluorine and argon emission, electron density, ion density, and electron average energy) with the etch rate and via sidewall angle. All data were obtained for coil powers ranging from 200 to 800 W, platen powers ranging from 7 to 16 W, and pressure ranging from 3.8 to 62 mTorr with constant SF{sub 6} and Ar flow rates of 112 and 18 SCCM (SCCM denotes cubic centimeter per minute at STP), respectively. Results indicate that there is a correlation with etch rate for all plasma parameters except for argon emission. For argon emission, the etch rate exhibits a double-valued relation where the etch rate can either increase or decrease with increasing argon emission intensity due to changes in pressure which affect the energy coupling efficiency. As expected, the etch rate increases for measured increases in fluorine emission, electron density, and ion density. The etch rate, however, decreases with increasing average electron energy due to collision processes. In contrast, no correlation is observed between any of the measured plasma parameters with sidewall angle. The last result is consistent with the idea that sidewall angle is primarily controlled by the passivation cycle as opposed to the etching cycle, where all the authors' data were obtained.

  4. Analysis of cylindrical Langmuir probe using experiment and different theories

    SciTech Connect

    Hassouba, M. A.; Galaly, A. R.; Rashed, U. M.

    2013-03-15

    Cylindrical probe data have been analyzed using different theories in order to determine some plasma parameters (electron temperature and electron and ion densities). Langmuir probe data are obtained in a cylindrical DC glow discharge in the positive column plasma at argon gas pressures varied from 0.5 to 6 Torr and at constant discharge current equal to 10 mA. The electron density has calculated from the electron current at the space potential and from Orbital Motion Limited (OML) collisionless theory. Ion density has obtained from the OML analysis of the ion saturation currents. In addition, the electron temperature has measured by three different methods using probe and electrons currents. The electron temperature T{sub e}, plasma density n{sub e}, and space potential V{sub s}, have been obtained from the measured single cylindrical probe I-V characteristic curves. The radial distribution of the electron temperature and plasma density along the glow discharge are measured and discussed. Using the collisionless theories by Langmuir cylindrical probe and up to several Torr argon gas pressures the differences between the values of electron temperature and electron and ion densities stay within reasonable error limits.

  5. Double Langmuir probe diagnostic of a resonant cavity microwave discharge

    SciTech Connect

    McColl, W.; Brooks, C.; Brake, M.L. )

    1993-07-01

    An Asmussen resonant cavity operating at 2.45 GHz provides the basis for the application of probe theory to a microwave discharge. A double Langmuir probe is inserted into a discharge produced by a microwave resonant cavity. Typical operating pressures range from 0.5 to 50 Torr in helium, with continuous wave microwave powers ranging from 60 to 120 W at 2.45 GHz. Typical probe data indicates electron densities in the range of 10[sup 11]--10[sup 12] cm[sup [minus]3] with electron temperatures of 5 to 20 eV. The probe data is compared with the results of a model based upon the electromagnetics of the discharge.

  6. Test of Langmuir probes developed for the CubeSat LINK

    NASA Astrophysics Data System (ADS)

    Na, Go Woon; Yang, Jongmann; Ryu, Kwangsun; Lee, Jun Chan; Min, Kyoung Wook

    2016-02-01

    We develop Langmuir probes with different gains to measure the electron density in the lower ionosphere and thermosphere at altitudes of 200 - 380 km on board a CubeSat. These probes sweep over a wide range of voltage, but the data are acquired mostly in the electron saturation region, from which the electron density is calculated. The frequency of the voltage sweep is set at a high level (10 Hz) to reduce the effect of probe contamination. The probes are tested and calibrated in a laboratory chamber that simulates plasma densities similar to those of the lower ionosphere. We report here the measurement principles, system architecture, and test results.

  7. Modeling of current characteristics of Segmented Langmuir Probe on DEMETER

    NASA Astrophysics Data System (ADS)

    Imtiaz, Nadia; Marchand, Richard

    2012-10-01

    We model current characteristics of a Segmented Langmuir probe mounted on DEMETER satellite. The probe is used to measure electron density and temperature in the ionosphere on DEMETER at altitudes of 700 km.It also serves as a Mach probe and used to measure the plasma flow velocities in satellite frame of reference.The probe is partitioned into seven segments: six electrically insulated spherical caps and a Guard electrode (sphere). Comparisons are made between the model predictions and measurements for characteristics of various segments for actual ionospheric plasma conditions encountered along DEMETER orbit. Segment characteristics are computed numerically with PTetra, a 3 D PIC simulation code. The model accounts for several physical effects of importance in the interaction of spacecraft with the space environment e.g. satellite charging, photoelectron and secondary electron emission. The supersonic flow of plasma results in different characteristics for different segments of the probe. This anisotropy in turn can be used to infer the velocity of the background plasma. It is observed in that a positive bias can significantly modify plasma sheath region and wake formation around the probe.Computed characteristics and their angular anisotropy are compared with measurements.

  8. Design and fabrication of an actively cooled Langmuir probe for long pulse applications

    SciTech Connect

    Paterson, J.A.; Biagi, L.A.; Ehlers, K.W.; Koehler, G.W.

    1985-11-01

    The details of the mechanical design and fabrication for a Langmuir Probe for the continuous monitoring of plasma density are given. The probe was designed for use as a diagnostic tool in the development of long pulse positive ion plasma sources for use on neutral beam systems. The essential design feature of this probe is the incorporation of two electrically isolated cooling water circuits which actively cool the probe tip and probe jacket. The electrical isolation is required to prevent drain currents from the probe body disturbing the measurement of the probe tip current and thereby the plasma density measurement. The successful realization of the design requires precision components and vacuum tight ceramic to refractory metal brazes. To date this design has successfully operated in steady-state in plasma densities up to 250 mA/cmS and surface heat fluxes of 25 W/cmS.

  9. Langmuir probe measurements of weakly collisional electropositive RF discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bryant, Paul; Dyson, Anthony; Allen, John E.

    2001-05-01

    We report on Langmuir probe measurements of low-pressure (0.1-20 Pa) electropositive plasmas in an RF discharge at 13.56 MHz. From the probe I-V characteristic it is found that the electron density inferred from the ion current in the ion saturation region using radial motion (Allen, Boyd and Reynolds, ABR) theory can be up to one-half that obtained directly from the electron current at the plasma potential. The reduction in the ion current is attributed to orbital motion (OM) of the ions and also to a small number of ion-neutral collisions in the presheath. We show that if a sufficiently large probe is chosen so as to minimize the OM effects then the collisional theory developed by Shih and Levi (1971) can be used to give an appropriate correction factor over a narrow pressure range. The corrected electron density is found to agree with the knee current value to typically 10% for Ar, N2 and Kr plasmas.

  10. Modeling of current characteristics of segmented Langmuir probe on DEMETER

    SciTech Connect

    Imtiaz, Nadia; Marchand, Richard; Lebreton, Jean-Pierre

    2013-05-15

    We model the current characteristics of the DEMETER Segmented Langmuir probe (SLP). The probe is used to measure electron density and temperature in the ionosphere at an altitude of approximately 700 km. It is also used to measure the plasma flow velocity in the satellite frame of reference. The probe is partitioned into seven collectors: six electrically insulated spherical segments and a guard electrode (the rest of the sphere and the small post). Comparisons are made between the predictions of the model and DEMETER measurements for actual ionospheric plasma conditions encountered along the satellite orbit. Segment characteristics are computed numerically with PTetra, a three-dimensional particle in cell simulation code. In PTetra, space is discretized with an unstructured tetrahedral mesh, thus, enabling a good representation of the probe geometry. The model also accounts for several physical effects of importance in the interaction of spacecraft with the space environment. These include satellite charging, photoelectron, and secondary electron emissions. The model is electrostatic, but it accounts for the presence of a uniform background magnetic field. PTetra simulation results show different characteristics for the different probe segments. The current collected by each segment depends on its orientation with respect to the ram direction, the plasma composition, the magnitude, and the orientation of the magnetic field. It is observed that the presence of light H{sup +} ions leads to a significant increase in the ion current branch of the I-V curves of the negatively polarized SLP. The effect of the magnetic field is demonstrated by varying its magnitude and direction with respect to the reference magnetic field. It is found that the magnetic field appreciably affects the electron current branch of the I-V curves of certain segments on the SLP, whereas the ion current branch remains almost unaffected. PTetra simulations are validated by comparing the computed

  11. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  12. A fast reciprocating Langmuir probe for the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Hunter, J.; Tafoya, B.

    1996-11-01

    A new reciprocating Langmuir probe has been used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X-point on the DIII-D tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for SOL and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition and power supply systems design will be described. Initial measurements will also be presented.

  13. Theory and Capability of the Planar Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Cooke, D. L.; Roddy, P. A.; Ballenthin, J.; Machuzak, J.; Albarran, R. M.; Klenzing, J.

    2014-12-01

    The Planar Langmuir Probe, PLP, in its simplest form is just a flat plate and perhaps a guard ring placed on the ram side of a Low Earth Orbit spacecraft such that it can intersect an uninterrupted flow of plasma. At small negative potential, it measures the ion ram current and thus the ion density with great accuracy, and when swept to positive potential, electrons are collected and the electron temperature may be extracted from the current-voltage characteristic. With rapid sampling, the turbulence spectrum of the plasma may also be sampled. AFRL has pioneered the development and application of the PLP for close to 2 decades. The PLP was used on numerous rocket flights in the 90's, was flown on the CHAMP satellite from 2002 to 2011, on the C/NOFS satellite from 2008 to present, and a new version is in development for possible future flights. This talk will review the design variations to date, data validation, lessons learned, and theory of operation. In particular we will present methods for extracting the electron temperature from the current-voltage characteristic, and address how the probes can measure higher moments of the electron distribution as suggested by the observations of Rother et.al. (Radio Sci, Vol 45, 2010).

  14. Langmuir probe diagnostic suite in the C-2 field-reversed configuration

    SciTech Connect

    Roche, T. Armstrong, S.; Knapp, K.; Slepchenkov, M.; Sun, X.

    2014-11-15

    Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

  15. The Langmuir Probe and Waves (LPW) Instrument for MAVEN

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Ergun, R. E.; Delory, G. T.; Eriksson, A.; Westfall, J.; Reed, H.; McCauly, J.; Summers, D.; Meyers, D.

    2015-12-01

    We describe the sensors, the sensor biasing and control, the signal-processing unit, and the operation of the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The LPW instrument is designed to measure the electron density and temperature in the ionosphere of Mars and to measure spectral power density of waves (DC-2 MHz) in Mars' ionosphere, including one component of the electric field. Low-frequency plasma waves can heat ions resulting in atmospheric loss. Higher-frequency waves are used to calibrate the density measurement and to study strong plasma processes. The LPW is part of the Particle and Fields (PF) suite on the MAVEN spacecraft. The LPW instrument utilizes two, 40 cm long by 0.635 cm diameter cylindrical sensors with preamplifiers, which can be configured to measure either plasma currents or plasma waves. The sensors are mounted on a pair of {˜}7 meter long stacer booms. The sensors and nearby surfaces are controlled by a Boom Electronics Board (BEB). The Digital Fields Board (DFB) conditions the analog signals, converts the analog signals to digital, processes the digital signals including spectral analysis, and packetizes the data for transmission. The BEB and DFB are located inside of the Particle and Fields Digital Processing Unit (PFDPU).

  16. DC Langmuir Probe for Measurement of Space Plasma: A Brief Review

    NASA Astrophysics Data System (ADS)

    Oyama, Koichiro

    2015-09-01

    Herein, we discuss the in situ measurement of the electron temperature in the ionosphere/plasmasphere by means of DC Langmuir probes. Major instruments which have been reported are a conventional DC Langmuir probe, whose probe voltage is swept; a pulsed probe, which uses pulsed bias voltage; a rectification probe, which uses sinusoidal signal; and a resonance cone probe, which uses radio wave propagation. The content reviews past observations made with the instruments above. We also discuss technical factors that should be taken into account for reliable measurement, such as problems related to the contamination of electrodes and the satellite surface. Finally, we discuss research topics to be studied in the near future.

  17. Improved optogalvanic detection with voltage biased Langmuir probes

    NASA Astrophysics Data System (ADS)

    Persson, A.; Berglund, M.; Salehpour, M.

    2014-12-01

    Optogalvanic detectors show great potential for infrared spectroscopy, especially in cavity enhanced techniques where they, in contrast to ordinary absorption detectors, can perform intracavity measurements. This enables them to utilize the signal-to-noise ratio improvement gained from the extended effective path length inside an optical cavity, without losing signal strength due to the limited amount of light exiting through the rear mirror. However, if optogalvanic detectors are to become truly competitive, their intrinsic sensitivity and stability has to be improved. This, in turn, requires a better understanding of the mechanisms behind the generation of the optogalvanic signal. The study presented here focuses on an optogalvanic detector based on a miniaturized stripline split-ring resonator plasma source equipped with Langmuir probes for detecting the optogalvanic signal. In particular, the effect of applying a constant bias voltage to one of the probes is investigated, both with respect to the sensitivity and stability, and to the mechanism behind the generation of the signal. Experiments with different bias voltages at different pressures and gas composition have been conducted. In particular, two different gas compositions (pure CO2 and 0.25% CO2 in 99.75% N2) at six different pressures (100 Pa to 600 Pa) have been studied. It has been shown that probe biasing effectively improves the performance of the detector, by increasing the amplitude of the signal linearly over one order of magnitude, and the stability by about 40% compared with previous studies. Furthermore, it has been shown that relatively straightforward plasma theory can be applied to interpret the mechanism behind the generation of the signal, although additional mechanisms, such as rovibrational excitation from electron-molecule collisions, become apparent in CO2 plasmas with electron energies in the 1-6 eV range. With the achieved performance improvement and the more solid theoretical

  18. Improved optogalvanic detection with voltage biased Langmuir probes

    SciTech Connect

    Persson, A.; Salehpour, M.; Berglund, M.

    2014-12-28

    Optogalvanic detectors show great potential for infrared spectroscopy, especially in cavity enhanced techniques where they, in contrast to ordinary absorption detectors, can perform intracavity measurements. This enables them to utilize the signal-to-noise ratio improvement gained from the extended effective path length inside an optical cavity, without losing signal strength due to the limited amount of light exiting through the rear mirror. However, if optogalvanic detectors are to become truly competitive, their intrinsic sensitivity and stability has to be improved. This, in turn, requires a better understanding of the mechanisms behind the generation of the optogalvanic signal. The study presented here focuses on an optogalvanic detector based on a miniaturized stripline split-ring resonator plasma source equipped with Langmuir probes for detecting the optogalvanic signal. In particular, the effect of applying a constant bias voltage to one of the probes is investigated, both with respect to the sensitivity and stability, and to the mechanism behind the generation of the signal. Experiments with different bias voltages at different pressures and gas composition have been conducted. In particular, two different gas compositions (pure CO{sub 2} and 0.25% CO{sub 2} in 99.75% N{sub 2}) at six different pressures (100 Pa to 600 Pa) have been studied. It has been shown that probe biasing effectively improves the performance of the detector, by increasing the amplitude of the signal linearly over one order of magnitude, and the stability by about 40% compared with previous studies. Furthermore, it has been shown that relatively straightforward plasma theory can be applied to interpret the mechanism behind the generation of the signal, although additional mechanisms, such as rovibrational excitation from electron-molecule collisions, become apparent in CO{sub 2} plasmas with electron energies in the 1–6 eV range. With the achieved performance improvement and

  19. Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.

    1999-01-01

    In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.

  20. The detection of energetic electrons with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.-E.; Holmberg, M. K. G.; Morooka, M.; Grimald, S.; Eriksson, A.; Schippers, P.; Gurnett, D. A.; Krimigis, S. M.; Krupp, N.; Coates, A.; Crary, F.; Gustafsson, G.

    2012-10-01

    The Cassini Langmuir probe, part of the Radio and Plasma Wave Science (RPWS) instrument, has provided a wealth of information about the cold and dense plasma in the Saturnian system. The analysis of the ion side current (current for negative potentials) measured by the probe from 2005 to 2008 reveals also a strong sensitivity to energetic electrons (250-450 eV). These electrons impact the surface of the probe, and generate a detectable current of secondary electrons. A broad secondary electrons current region is inferred from the observations in the dipole L Shell range of ˜6-10, with a peak full width at half maximum (FWHM) at L = 6.4-9.4 (near the Dione and Rhea magnetic dipole L Shell values). This magnetospheric flux tube region, which displays a large day/night asymmetry, is related to the similar structure in the energetic electron fluxes as the one measured by the onboard Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS). It corresponds spatially to both the outer electron radiation belt observed by the Magnetosphere Imaging Instrument (MIMI) at high energies and to the low-energy peak which has been observed since the Voyager era. Finally, a case study suggests that the mapping of the current measured by the Langmuir probe for negative potentials can allow to identify the plasmapause-like boundary recently identified at Saturn, and thus potentially identify the separation between the closed and open magnetic field lines regions.

  1. H-mode Edge Turbulence and Pedestal Measurements in Pegasus Plasmas using Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Kriete, D. M.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2015-11-01

    In Pegasus discharges, L-H mode transitions are induced using Ohmic heating and high-field-side fueling. H-mode plasmas have energy confinement consistent with the ITER98pb(y,2) scaling law, indications of increased electron and ion temperature, and an increase in core rotation compared to L-mode plasmas. Electron density and temperature profiles have been measured in the edge region using a scannable triple Langmuir probe on a shot-by-shot basis. In H-mode, a pressure pedestal that has a hyperbolic tangent shape and a ~ 2 cm ∇pe scale length is observed, in contrast to a linear shape in L-mode. Autopower spectra of the collected ion saturation current in H-mode discharges show a factor of ~ 3 reduction in fluctuations in the 50-200 kHz band with respect to L-mode. Two Langmuir probes with 8 cm poloidal separation have been installed on Pegasus. The turbulence correlation length in the edge will be measured by radially scanning the probes. Knowledge of the correlation length will be used to inform the design of a future 8-channel radial multiprobe array. This system will simultaneously measure the dynamic ne (R , t) , Te (R , t) , and Φ (R , t) profiles and fluctuations across the L-H mode transition and be used to investigate nonlinear ELM dynamics. Work supported by US DOE grant DE-FG02-96ER54375.

  2. Ram-wake effects on plasma current collection of the PIX 2 Langmuir probe

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1985-01-01

    The Plasma Interaction Experiment 2 (PIX 2) Langmuir probe readings of the same polar magnetospheric regions taken on consecutive orbits showed occasional apparent densities as much as 10 times lower than the average, although each pass clearly showed density structures related to the day/night boundary. At other points in the orbit, Langmuir probe currents varied by as much as a factor of 20 on a time scale of minutes. The hypothesis is advanced that these apparent inconsistencies in Langmuir probe current are the results of the probe's orientation relative to the body of the spacecraft and the velocity vector. Theoretical studies predict a possible depletion in collected electron current by a factor of 100 in the wake. Experimental results from other spacecraft indicate that a wake electron depletion by a factor of 10 or so is realistic. This amount of depletion is consistent with the PIX 2 data if the spacecraft was rotating. Both the Sun sensor and temperature sensor data on PIX 2 show a complex variation consistent with rotation of the Langmuir probe into and out of the spacecraft wake on a time scale of minutes. Furthermore, Langmuir probe data taken when the probe was not in the spacecraft wake are consistent from orbit to orbit. This supports the interpretation that ram/wake effects may be the source of apparent discrepancies at other orientations.

  3. Langmuir probe data analysis for a magnetized inductive radio-frequency discharge

    SciTech Connect

    Popescu, S.; Ohtsu, Y.; Fujita, H.

    2007-11-01

    The properties of an inductively coupled argon plasma in a uniform magnetic field, at pressures of the order of 0.1 Pa, in the presence of a weak current-free electric double layer, are measured with a plane Langmuir probe. The static current-voltage probe characteristics, recorded on the symmetry axis of the experimental device, both in the plasma source and in the main chamber of the setup, showed the existence of two electron populations with different temperatures. The axial profiles of plasma parameters, such as the plasma potential and the cold and hot electron temperatures, offered a new insight into such a complex system. However, both the external magnetic field and the two electron populations contribute to the difficulty of calculation of the local plasma density. A method for solving this problem, involving the definition of an effective electron temperature, is also presented.

  4. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment. PMID:22667663

  5. Means to remove electrode contamination effect of Langmuir probe measurement in space

    SciTech Connect

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  6. Ion currents to cylindrical Langmuir probes for finite ion temperature values: Theory

    SciTech Connect

    Ballesteros, J.; Palop, J.I.F.; Colomer, V.; Hernandez, M.A.

    1995-12-31

    As it is known, the experimental ion currents to a cylindrical Langmuir probe fit quite well to the radial motion theory, developed by Allen, Boyd and Reynolds (ABR Model) and generalized by Chen for the cylindrical probe case. In this paper, we are going to develop a generalization of the ABR theory, taking into account the influence of a finite ion temperature value.

  7. A time-resolved Langmuir double-probe method for the investigation of pulsed magnetron discharges

    SciTech Connect

    Welzel, Th.; Dunger, Th.; Kupfer, H.; Richter, F.

    2004-12-15

    Langmuir probes are important means for the characterization of plasma discharges. For measurements in plasmas used for the deposition of thin films, the Langmuir double probe is especially suited. With the increasing popularity of pulsed deposition discharges, there is also an increasing need for time-resolved characterization methods. For Langmuir probes, several single-probe approaches to time-resolved measurements are reported but very few for the double probe. We present a time-resolved Langmuir double-probe technique, which is applied to a pulsed magnetron discharge at several 100 kHz used for MgO deposition. The investigations show that a proper treatment of the current measurement is necessary to obtain reliable results. In doing so, a characteristic time dependence of the charge-carrier density during the ''pulse on'' time containing maximum values of almost 2{center_dot}10{sup 11} cm{sup -3} was found. This characteristic time dependence varies with the pulse frequency and the duty cycle. A similar time dependence of the electron temperature is only observed when the probe is placed near the magnesium target.

  8. Single Langmuir probe characteristic in a magnetized plasma at the text tokamak

    SciTech Connect

    Jachmich, S.

    1995-05-01

    A single Langmuir probe tip was used at TEXT-Upgrade to obtain I-V characteristics in a magnetized plasma. Noisy data were reduced by a boxcar-averaging routine. Unexpected effects, namely nonsaturation of ion current, hysterises in the characteristics and I(V)-data were observed, which are in disagreement to the common single probe model. A double probe model allows parameterization of the I(V) curves and to determine the plasma properties in the scrape-off layer. It is shown in this model that a Langmuir probe does perturb the local space potential in the plasma. Comparisons were made with the triple probe technique of measuring temperatures. The nonsaturation of ion current leads to an error in the triple probe technique of order 20%.

  9. Payload charging events in the mesosphere and their impact on Langmuir type electric probes

    NASA Astrophysics Data System (ADS)

    Bekkeng, T. A.; Barjatya, A.; Hoppe, U.-P.; Pedersen, A.; Moen, J. I.; Friedrich, M.; Rapp, M.

    2013-02-01

    Three sounding rockets were launched from Andøya Rocket Range in the ECOMA campaign in December 2010. The aim was to study the evolution of meteoric smoke particles during a major meteor shower. Of the various instruments onboard the rocket payload, this paper presents the data from a multi-Needle Langmuir Probe (m-NLP) and a charged dust detector. The payload floating potential, as observed using the m-NLP instrument, shows charging events on two of the three flights. These charging events cannot be explained using a simple charging model, and have implications towards the use of fixed bias Langmuir probes on sounding rockets investigating mesospheric altitudes. We show that for a reliable use of a single fixed bias Langmuir probe as a high spatial resolution relative density measurement, each payload should also carry an additional instrument to measure payload floating potential, and an instrument that is immune to spacecraft charging and measures absolute plasma density.

  10. A comparison of two rocket borne Langmuir probes having electrodes of different materials

    NASA Technical Reports Server (NTRS)

    Schutz, S. R.; Smith, L. G.

    1975-01-01

    The behavior of two types of Langmuir probes, one with electrodes made of low-sulfur stainless steel and one with electrodes made of aluminum coated with Aquadag, has been compared on two rocket flights. Each rocket payload included one Langmuir probe of each type. The electron temperatures measured with the stainless-steel electrodes were about 15% higher than the electron temperatures measured with the Aquadag-coated electrodes at 150 km on ascent and about 10% higher at 180 km. These results imply that the use of Aquadag coated electrodes or electrodes of other carefully chosen materials permits greater reliability in the measurement of electron temperatures in the ionosphere by the Langmuir probe technique.

  11. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Eskridge, Richard; Lee, Michael H.; Martin, Adam; Hawk, Clark W.; Fimognan, Peter

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.

  12. Combined Impedance Probe and Langmuir Probe Studies of the Low-Latitude E Region

    NASA Technical Reports Server (NTRS)

    Rowland, D. E.; Pfaff, R. F.; Steigies, C. T.

    2008-01-01

    The EQUIS-2 sounding rocket and radar campaign, launched from Kwajalein Atoll in 2004, included a mission to study low-latitude irregularities and electrodynamics, led by NASA GSFC. This mission included two instrumented rockets launched into the nighttime E region (apogee near 120 km), which included comprehensive electrodynamics and neutral density instrumentation. These rockets carried the first of a new generation of impedance probes, that utilize a wide-band drive signal to simultaneously measure the impedance of an antenna in a plasma as a function of frequency from 7 kEIz to 4 MHz. at a rapid cadence. This technique promises to permit true plasma spectroscopy, and resulted in the identification of multiple plasma resonances and accurate measurements of the plasma density, even in the low density nighttime E region. We present analyses of the technique and resulting spectra, and show how these data may be combined with fixed-bias Langmuir Probe data to infer the temperature structure of the E region as well as providing accurate absolute calibrations for the very high time resolution fixed-bias probe data. The data is shown to agree well with data from ionosonde, the ALTAIR radar, and the Peruvian beacon experiment.

  13. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  14. Particle-in-cell Simulation of Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Iza, Felipe

    2005-10-01

    Ion kinetics in the sheath and pre-sheath of planar and cylindrical probes has been studied by means of 1-dimensional (1d3v) particle-in-cell Monte Carlo collision simulations. Collisionless and collisional regimes are considered and simulation results (floating potentials and the ion saturation currents) are compared with available theories. As pressure increases, the ion velocity at the sheath edge decreases below the Bohm velocity (uB). For planar probes, this velocity is ˜ uB(1+5λDe/λi) where λDe is the Debye length at the sheath edge and λi the ion mean free path. Although ionization can be neglected in the sheath region, it plays a key role in determining the voltage across the presheath. For planar probes and Maxwellian electrons, this voltage increases rapidly for electron temperatures below ˜2eV. For cylindrical probes, however, the voltage across the presheath can be drastically reduced by the geometrical increase of current density as ions approach the probe. At low pressure, simulation results lie between the Laframboise and the ABR theories. As pressure increases, however, collisions and ionization in the presheath becomes critical in determining the ion flux to the probe at a given bias voltage.

  15. Characterization of the TFTR plasma edge by Langmuir-calorimeter probes

    SciTech Connect

    Kilpatrick, S.J.; Manos, D.M.; Budny, R.V.; Stangeby, P.C.; Ritter, R.S.; Young, K.M.

    1986-03-01

    Two combination Langmuir-calorimeter probes were operated on the TFTR midplane to measure plasma properties of the scrape-off layer. Two different caloriemter elements were used: 0.5 x 3 x 8 mm Ta plates or 6.4 mm diameter graphite rods fitted with thermocouples. Separate graphite rods served as Langmuir elements. This paper presents Langmuir probe measurements of the radial profiles of edge density and electron temperature, and calorimeter measurements of heat flux. The variation of these quantities in certain operational regimes are presented, including dependence on ohmic and neutral beam heating, compression and free expansion, plasma major and minor radii, plasma current, and line integral density with and without Cr gettering.

  16. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  17. LabVIEW software for analyzing Langmuir probe characteristics in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Gandhi, S.; Binwal, S.; Kabariya, H.; Karkari, S. K.

    2016-03-01

    This paper describes the methodology for processing Ampere-Volts (I-V) characteristics of the Langmuir probe in magnetized plasma using graphical programming language based on LabVIEW. Computing the plasma parameters from I-V characteristic involves several steps that include signal processing, interpolation, linear and non-linear curve fitting based on physical models, finding the derivatives of the experimental curve and determining the zero-crossing of the probe current as a function of the applied voltage. These operations are practically tedious to perform manually causing systematic errors in output parameters. To overcome this challenge, software is developed to analyze the planar Langmuir probe characteristics in magnetized plasma. The software allows simultaneous display of different plasma parameters that helps to verify the consistency of the analyzed plasma parameters with the standard probe theory. Using this software, plasma parameters are obtained in a linear plasma device and its characteristics are discussed.

  18. Asymmetric double Langmuir probe for fast and automatic measurements of plasma temperature

    SciTech Connect

    Uckan, T.

    1987-11-01

    We present a fast technique for determining the plasma electron temperature T/sub e/ automatically from the small signal application of the asymmetric double Langmuir probe when it is operated in the region where -1 < eV/sub a/T/sub e/ < 1. The method described here is based on simple time and rms averages of the probe current that results from a sinusoidally varying applied voltage V/sub a/. 4 refs., 2 figs.

  19. Asymmetric double Langmuir probe for fast and automatic measurements of plasma temperature

    SciTech Connect

    Uckan, T.

    1988-01-01

    We present a fast technique for determining the plasma electron temperature T/sub e/ automatically from the small signal application of the asymmetric double Langmuir probe when it is operated in the region where -1probe current that results from a sinusoidally varying applied voltage V/sub a/.

  20. On the interpretation of Langmuir probe data inside a spacecraft sheath

    SciTech Connect

    Olson, J.; Brenning, N.; Wahlund, J.-E.; Gunell, H.

    2010-10-15

    If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius r{sub LP}<<{lambda}{sub D}) using a modified version of the orbit motion limited (OML) probe theory. We find that the ambient electron contribution I{sub e}(U{sub LP}) to the probe characteristic is suitably analyzed in terms of three regions of applied probe potential U{sub LP}. In region I, where the probe is negatively charged (i.e., U{sub LP}probe position), the probe characteristic I{sub e}(U{sub LP}) is close to that of OML theory for a free probe in the ambient plasma. In the probe potential range U{sub LP}>U{sub 1}, there is first a transition region II in applied potential, U{sub 1}probe and the ambient plasma. This minimum gives the depth U{sub pl}-U{sub M} of a potential barrier that prevents the lowest energy ambient electrons from reaching the probe. For a high enough positive probe potential, in region III, the barrier becomes small. Here, I{sub e}(U{sub LP}) again approaches OML theory for a free probe. The boundary U{sub 2} between regions II and III is somewhat arbitrary; we propose a condition on the barrier, U{sub pl}-U{sub M}<probe characteristic is likely to depart from usual OML in crucial respects: (1) the ambient plasma potential U{sub pl} falls into the transition

  1. On the interpretation of Langmuir probe data inside a spacecraft sheath.

    PubMed

    Olson, J; Brenning, N; Wahlund, J-E; Gunell, H

    2010-10-01

    If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius r(LP)≪λ(D)) using a modified version of the orbit motion limited (OML) probe theory. We find that the ambient electron contribution I(e)(U(LP)) to the probe characteristic is suitably analyzed in terms of three regions of applied probe potential U(LP). In region I, where the probe is negatively charged (i.e., U(LP)probe position), the probe characteristic I(e)(U(LP)) is close to that of OML theory for a free probe in the ambient plasma. In the probe potential range U(LP)>U(1), there is first a transition region II in applied potential, U(1)probe and the ambient plasma. This minimum gives the depth U(pl)-U(M) of a potential barrier that prevents the lowest energy ambient electrons from reaching the probe. For a high enough positive probe potential, in region III, the barrier becomes small. Here, I(e)(U(LP)) again approaches OML theory for a free probe. The boundary U(2) between regions II and III is somewhat arbitrary; we propose a condition on the barrier, U(pl)-U(M)≪k(B)T(e)/e, as the definition of region III. The main findings in this work are qualitative rather than quantitative. The existence of the transition region points to that special care must be taken to extract plasma parameters from measured I(U(LP)) as the probe characteristic is likely to depart from usual OML in crucial respects: (1) the ambient plasma potential U(pl) falls into the transition region, but there is no obvious knee or other feature to identify it, (2) there is in this region no exponential part of I

  2. Spatiotemporal temperature fluctuation measurements by means of a fast swept Langmuir probe array.

    PubMed

    Schubert, M; Endler, M; Thomsen, H

    2007-05-01

    Stationary Langmuir probe measurements of ion saturation current and floating potential in a plasma cannot give direct information on density and plasma potential fluctuations in the presence of temperature fluctuations. This problem can be avoided if the probe bias voltage is continuously swept faster than the fluctuation time scale, recording the current-voltage characteristic. This article reports the development of a spatiotemporal highly resolving Langmuir probe array with 15 fast swept tips, operating in the strongly magnetized, collisionless edge plasma of the Wendelstein 7-AS stellarator [Plasma Phys. Controlled Fusion 31, 1579 (1989)]. The probe tips are aligned in the poloidal direction, the tip spacing is 2 mm, and the sweeping frequency is 1.4 MHz. Current and voltage data are sampled with 50 MHz. The high bandwidth of the measurement is achieved by placing miniaturized differential amplifiers close to the probe tips in order to do an impedance transform. The surface-mounting technology and an additional inverse feedback module are utilized, allowing for an input voltage range of +/-100 V, and a common mode rejection rate of 55 dB at 4 MHz, which is sufficient to resolve the nonlinear probe characteristic. For the evaluation of the data, a fit model for stationary probes is employed and found adequate. Changes of the plasma parameters during one voltage sweep are taken into account by a linear interpolation of the fit parameters. Spatio-temporal fluctuation data gained by a fast swept Langmuir probe array, which can be relevant for the turbulent radial transport of particles and energy, are presented. PMID:17552818

  3. Virtual Cathodes near small electrodes biased near the plasma potential and its effects on Langmuir probes

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg

    2015-09-01

    Movable small (3cm x 3.8cm) plates biased near the plasma potential are immersed in a filament discharge in a multi-dipole chamber. The plates are small (Aplate /Achamber < (me/Mi)1/2 such that an electron sheath is possible. Plasma potential and IVDF's near the plate are measured, and virtual cathodes, a double layer consists of an ion sheath and an electron sheath, was found to form. Ion velocities are determined by Laser-Induced Florescence, the electron temperature and electron density are measured by a planar Langmuir probe and the plasma potential is measured by an emissive probe. Effects of the virtual cathode on Langmuir probe I-V characteristics were predicted through estimating the current collection of an electrode in the presence of the virtual cathode, and was experimentally investigated by comparing I-V characteristics of the small plate and a 0.6cm diameter Langmuir probe. This work is supported by U.S. DOE under the Grant and Contract No. DE-FG02-97ER54437.

  4. Four free parameter empirical parametrization of glow discharge Langmuir probe data

    SciTech Connect

    Azooz, A. A.

    2008-10-15

    For the purpose of developing a simple empirical model capable of producing the electron energy distribution function (EEDF) from Langmuir probe I-V characteristics, a four parameter empirical equation that fits most Langmuir probe experimental data is suggested. The four free fitting parameters are related to the main plasma properties. These properties include the ion and electron saturation currents and the plasma electron temperature. This equation can be readily differentiated twice to give the EEDF according to the Druyvesteyn formula. Furthermore, a MATLAB platform based computer code based on this model yielding results for the plasma potential and all plasma parameters mentioned above is presented. The information given below can be used to write other computer codes for the same purpose in any other programming language.

  5. Dust Impact Detection by the Cassini Langmuir Probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, H.-W.; Wahlund, J.-E.; Morooka, M.; Kempf, S.; Horanyi, M.

    2015-10-01

    In this work, we present preliminary analysis of dust impact detections recorded by the Cassini Langmuir probe (LP) in Saturn's E ring. These signals appear as sharp spikes in the LP current-voltage (I-V) curves and show clear correlation with the E ring dust density. The statistical analysis will help to understand the nature of these detections as well as provide an alternative method to study the densest part of the E ring.

  6. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.

  7. Comparison of Plasma Density Measurements in ICP Discharges Using Langmuir Probe, Plasma Oscillation Probe and Interferometry Techniques

    NASA Astrophysics Data System (ADS)

    Evans, John; Zawalski, Wade; Chen, Francis

    2000-10-01

    A comparison study of the application of various probe theories, including the so-called orbital motion limited (OML) and ABR theories, in the interpretation of Langmuir probe I-V characteristics is performed. Experimental data for the comparison is obtained in an inductively coupled plasma (ICP) source over a wide range of parameters of interest to the plasma processing community. Measurements of Ni from the Hiden Electrostatic Plasma Probe (ESP) characteristics and software are compared to ``known" values of Ne obtained via microwave interferometry and the plasma oscillation probe (POP) technique, in regimes including those where the probe theories yield different results. Excellent agreement is obtained between the interferometry and POP methods at low Po, whereas POP starts to fail at Po>5 mTorr, as expected. Langmuir probe results using OML theory yield reasonable agreement for Ne<2x1011cm-3, but fail at higher Ne. Closely spaced multiple peaks in the spectra of the POP are observed in some cases at higher RF input powers, possibly due to RF modulation of the source plasma density, leading to experimental uncertainty in Ne values thus obtained. Other considerations for the applicability of the POP method will also be discussed.

  8. Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas

    SciTech Connect

    Sánchez-Arriaga, G.; Pastor-Moreno, D.

    2014-07-15

    Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

  9. Updates on Optical Emission Spectroscopy & Langmuir Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Karama, Jackson; Frank, John; Azzari, Phillip; Hopson, Jordan; James, Royce; Duke-Tinson, Omar; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Eva; Turk, Jeremy

    2015-11-01

    HPX is developing a to shorter lifetime (20 - 30 ns) more reproducible plasma at the Coast Guard Academy Plasma Laboratory (CGAPL). Once achieved, spectral and particle probes will help to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Once corrections for the RF field are in place for the Langmuir probe, raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Direct measurements of plasma properties can be determined with modeling and by comparison with the state transition tables, both using Optical Emission Spectroscopy (OES). The spectral will add to HPX's data collection capabilities and be used in conjunction with the particle probes, and Thomson Scattering device to create a robust picture of the internal and external plasma parameters on HPX. Progress on the implementation of the OES and Langmuir probes will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  10. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method

    SciTech Connect

    Deline, C.; Gilchrist, B. E.; Dobson, C.; Jones, J. E.; Chavers, D. G.

    2007-11-15

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.

  11. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method.

    PubMed

    Deline, C; Gilchrist, B E; Dobson, C; Jones, J E; Chavers, D G

    2007-11-01

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas. PMID:18052471

  12. Multi-Needle Langmuir Probe concept for high-resolution plasma density measurements: A potential novel plasma sensor for Cubesats

    NASA Astrophysics Data System (ADS)

    Moen, J.; Pedersen, A.; Bekkeng, T. A.; Lindem, T.; Jacobsen, K. S.

    2008-09-01

    A new concept Langmuir probe to measure absolute electron density at 2 kHz sampling rate will be presented. It comprises multiple Needle Langmuir Probes (m-NLP) with diameter smaller than the Debye shielding length. Each probe is fixed at a different potential, positive above the platform potential to draw electrons. With this method we eliminate the need to determine the electron temperature in deriving the electron density. A 4-NLP system has now been completed for the ICI-2 sounding rocket to investigate HF radar backscatter irregularities above Svalbard in December 2008. The weight of the experiment is <100g, i.e. a low weight and high performance instrument. Simulations and test results from the plasma tank at ESTEC will be presented. Furthermore we will outline a preliminary plan for an m-NLP system to be prepared for a Norwegian Cubesat. The main motivation is to develop a new capability to monitor Fregion irregularities in Equatorial and Polar Regions, that is a particularly relevant space weather issue for satellite communication and navigation systems.

  13. Resistance and capacitance measurements of the films deposited on a planar Langmuir probe

    NASA Astrophysics Data System (ADS)

    Samara, Vladimir; Brouri, Mohand; de Marneffe, Jean-Francois; Milenin, Alexey P.; Boullart, Werner

    2011-10-01

    The beneficial use of DC-pulsing instead of RF for biasing a capacitively coupled planar Langmuir probe mounted in industrial CCP etcher is demonstrated. The ion flux is determined from the discharging of a DC-biased capacitor for Ar, O2, and C2H4-based plasmas taking into account the RC constant of the films grown on the probe. A comparison is made between the clean probe after Ar sputter-cleaning and the probe coated with a polymer film. A new fitting procedure is proposed including both the capacitance and resistance of the film. The experimental validation is done with a C2H4-based polymer film, which resistance and capacitance are measured. Finally, it is shown that, together with the measurement of intrinsic plasma parameters like Te and ion flux, one can monitor deposition on the chamber walls that can possibly be extrapolated to the etched wafer.

  14. High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions

    SciTech Connect

    Kallman, J.; Jaworski, M. A.; Kaita, R.; Kugel, H.; Gray, T. K.

    2010-10-15

    A high density Langmuir probe array has been developed for measurements of scrape-off layer parameters in NSTX. Relevant scale lengths for heat and particle fluxes are 1-5 cm. Transient edge plasma events can occur on a time scale of several milliseconds, and the duration of a typical plasma discharge is {approx}1 s. The array consists of 99 individual electrodes arranged in three parallel radial rows to allow both swept and triple-probe operation and is mounted in a carbon tile located in the lower outer divertor of NSTX between two segments of the newly installed liquid lithium divertor. Initial swept probe results tracking the outer strike point through probe flux measurements are presented.

  15. Particle-in-cell modeling of Dual Segmented Langmuir Probe on PROBA2

    NASA Astrophysics Data System (ADS)

    Imtiaz, Nadia; Marchand, Richard

    2015-11-01

    We model the current characteristics of the Dual Segmented Langmuir Probe (DSLP), which is a part of the scientific payload of the ESA satellite PROBA2. It is used for the directional measurement of plasma parameters in the ionosphere at an altitude of approximately 725 km. The DSLP consists of two independent segmented Langmuir probes. Each probe is partitioned into eight collectors: seven electrically insulated spherical segments and a Guard electrode (the rest of the sphere and a small post). The current characteristics of the DSLP are computed by using the 3D particle-in-cell code PTetra. The model is electrostatic and it accounts for a uniform background magnetic field. The computed characteristics of different probe segments exhibit significant variation which depends on their orientation with respect to the ram direction. The floating potential and ion current branch of the I-V curves of each segment illustrate the directional sensitivity of the DSLP. It is found that the magnetic field also affects the electron current branch of the I-V curves of certain segments on the DSLP. The I-V curves computed with and without the ambient magnetic field are then used to estimate the electron temperature. This study will be helpful to understand the floating potential and electron temperature anisotropies measured by the DSLP.

  16. First operation of a high-heat flux, flush mounted ``rail'' Langmuir probe array on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kuang, Adam Q.; Brunner, Dan; Labombard, Brian; Leccacorvi, Rick; Vieira, Rui

    2015-11-01

    Divertor Langmuir probes are typically built proud of the divertor surface for an accurate measurement of the plasma flux. However, under the high heat flux conditions seen in Alcator C-Mod, proud tungsten probes that present a 10 degree attack angle to the incident heat flux can experience melt damage with less then 1 second plasma exposure time. A similar situation is anticipated for ITER. It is therefore desirable to develop a flush probe system that can both survive reactor-level fluxes and take accurate measurements. A poloidal array of 21 flush-mounted ``rail'' probes have been installed in the C-Mod outer divertor plate, which are toroidally-extended and field-aligned to minimize sheath expansion effects. Initial results indicate that the ``rail'' probes have a well-defined ion saturation current, reporting similar density and temperature measurements as proud probes. However, uncertainty in the projected area becomes significant when the incident magnetic field angle becomes less than ~0.5 degrees. Additionally, because the flush probes are conformal to the divertor surface, they are ideally suited to measure the poloidal distribution of halo currents during disruptions. Supported by USDoE C-Mod award DE-FC02-99ER54512.

  17. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    SciTech Connect

    Gambino, Nadia Brandstätter, Markus; Rollinger, Bob; Abhari, Reza

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device has been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.

  18. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy

    SciTech Connect

    Song, M. A.; Lee, Y. W.; Chung, T. H.

    2011-02-15

    The properties of low-pressure inductively coupled nitrogen-argon plasmas were investigated by using a Langmuir probe combined with optical emission spectroscopy (OES) under the conditions of pressures in the range of 1-30 mTorr and applied rf powers of 200-600 W. In the experiments, the argon was introduced as an actinometer and as an adding gas. The effect of the argon content in the gas mixture was examined in the range of 5%-80%. The electron energy probability function (EEPF), the electron density, and the electron temperature were obtained by using an rf-compensated Langmuir probe. The dissociation fractions were obtained from the OES actinometry. The electron temperature was also obtained by OES corona model and compared with that measured by the probe. The second positive and first negative systems of spectral bands from nitrogen molecules were analyzed to estimate the vibrational and rotational temperatures. The effects of the control parameters on the plasma parameters and dissociation fraction were investigated. While the calculated nitrogen atom density increased with power, it exhibited a maximum value near the Ar content of 30%.

  19. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Eskridge, Richard; Fimognari, Peter; Hawk, Clark W.; Lee, Mike; Martin, Adam

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and subsequently ejecting them at high velocity. An overview of PTX is described in a companion paper. The shape and magnetic field structure of the translating plasmoids will be measured with of an array of inductive magnetic field probes. Six sets of two B-dot probes (for a total of twelve probes) have been constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes were calibrated with a Helmholtz coil, driven alternately by a high-voltage pulser or a signal generator. The probes are wound on a G-10 form, and have an average (calibrated) NA of 9.37 x 10(exp -5) square meters, where N is the number of turns and A is cross-sectional area. The frequency response of the probes was measured over the range from 1 kHz to 10 MHZ. The electron number density n(sub e), electron temperature T(sub e) and velocity v will be determined from measurements taken with a quadruple Langmuir probe, situated in the exhaust chamber. Three of the four probes on the quadruple probe sample the current-voltage characteristic, and from this yield measurements of T(sub e) and n(sub e). The fourth probe provides a measurement of plasma flow velocity. A 6-inch long alumina rod, hollowed with four holes to house the probe wires, is being used to construct the quadruple probe. A variety of propellants will be used, including hydrogen, nitrogen and argon. From the measurements of the plasmoid mass, density, temperature, and velocity, the basic propulsion characteristics of PTX will be evaluated.

  20. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  1. The Use of Langmuir Probes in Non-Maxwellian Space Plasmas

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; Brace, Larry H.

    1998-01-01

    Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to photoemission, interactions between the spacecraft and thermospheric gases, or electron emissions from other devices on the spacecraft. Significant non-maxwellian plasma distributions may also occur in nature as a mixture of ionospheric and magnetospheric plasmas or secondaries produced by photoionization in the thermosphere or auroral precipitation. The general formulas for current collection (volt-ampere curves) by planar, cylindrical, and spherical Langmuir probes in isotropic and anisotropic non-maxwellian plasmas are examined. Examples are given of how one may identify and remove the non-maxwellian components in the Langmuir probe current to permit the ionospheric parameters to be determined. Theoretical volt-ampere curves presented for typical examples of non-maxwellian distributions include: two-temperature plasmas and a thermal plasma with an energetic electron beam. If the non-ionospheric electrons are Maxwellian at a temperature distinct from that of the ionosphere electrons, the volt-ampere curves can be fitted directly to obtain the temperatures and densities of both electron components without resorting to differenting the current. For an arbitrary isotropic distribution, the current for retarded particles is shown to be identical for the three geometries. For anisotropic distributions, the three probe geometries are not equally suited for measuring the ionospheric electron temperature and density or for determining the distribution function in the presence of non-maxwellian back-round electrons.

  2. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  3. Laser-Plasma Density and Temperature Measurements with Triple Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Arias, A.; Quiros, N.; Khanal, V.; Wan, W. C.; Meineke, J.; Kugland, N. L.; Morita, T.; Gregori, G.; Park, H.-S.; Presura, R.

    2013-10-01

    Experiments to investigate shocks produced by the explosive expansion of a laser-plasma plume against a gas background were performed on the Titan laser (LLNL). Knowledge of density and temperature is essential for understanding the underlying processes. Triple Langmuir probes (TLP) were used for measuring these quantities as function of time at a given location in the plasma. In the experiment, laser ablation plasma from a carbon rod expanded in hydrogen, helium, or argon ambient gas. Density and temperature jumps in the TLP measurements can be correlated with shocks detected by interferometry and proton deflectometry. This work was supported by the US DOE/OFES grant DE-SC0008829.

  4. Immunosensor systems with the Langmuir-film-based fluorescence detection

    SciTech Connect

    Chudinova, G K; Nagovitsyn, I A; Savranskii, V V; Karpov, R E

    2003-09-30

    A method is developed for detecting protein antigens for fluorescent immunoassay using a model system based on the technique for preparation of Langmuir films. Fluorescein isothiocyanate and donor-acceptor energy-transfer pairs of markers (the Yb complex of tetraphenyl porphyrin - benzoyl trifluoroacetoneisothiocyanate and derivatives of tetra(carboxyphenyl) porphyrin - cyanine dye containing a five-membered polyene chain), which were nor studied earlier, were used as markers for detecting the binding of an antigen on the surface of Langmuir films of antibodies. Fluorescence was detected in the near-IR region (for the first pair) and in the visible spectral range (for the second pair). To reduce the nonspecific sorption of a protein (antigen), a method was proposed for the preparation of a nonpolar surface by applying an even number of layers of stearic acid as a substrate for the Langmuir - Blodgett film. A high sensitivity of model systems to a protein antigen in solution was achieved ({approx}10{sup -11} M), the assay time being 6 - 8 min. The model system with the first donor - acceptor pair was tested in analysis of the blood plasma. The fluorescence of the Dy{sup 3+}, Tm{sup 3+}, and Yb{sup 3+} complexes of tetraphenyl porphyrin sensitised by diketonate complexes of lanthanides was studied for the first time and the enhancement of the IR fluorescence of these complexes in a Langmuir film was demonstrated. (papers devoted to the memory of academician a m prokhorov)

  5. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  6. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  7. Investigation of modulated radio frequency plasma etching of GaAs using Langmuir probes

    SciTech Connect

    Law, V.J.; Braithwaite, N.St.J.; Ingram, S.G.

    1994-11-01

    Radio frequency ClCH{sub 3}/H{sub 2} plasma etching of GaAs is examined in the 10-140 mTorr pressure ranging using square-wave modulation of the excitation source to control the etching. A Langmuir probe is used to measure time-resolved electron density, characteristic temperature, and floating potential during the plasma afterglow period. The ClCH{sub 3}/H{sub 2} plasma electron energy is found to be 1.2 {+-} 0.3 eV. The near afterglow plasma density decay has a time constant in the order of {tau}=30 {mu}s at 140 mTorr for 10%-20% ClCh{sub 3} in H{sub 2} and {tau}=100 {mu}s for H{sub 2}. The floating potential continues to decay into the far afterglow, with a characteristic time of the order of milliseconds. The Langmuir probe measurements indicate that the ClCH{sub 3} plasmas the near afterglow is dominated by electron attachment, whereas the far afterglow is dominated by ambipolar diffusion. The GaAs etch rate experiments show that surface reactions continue into the far afterglow, dominating the behavior of the time average etch rate. 11 refs., 5 figs., 1 tab.

  8. Effect of electron temperature fluctuations on slowly swept Langmuir probe measurements

    SciTech Connect

    Rudakov, D.L.; Boedo, J.A.; Moyer, R.A.; Stangeby, P.C.; McLean, A.; Watkins, J.G.

    2004-10-01

    Swept Langmuir probes are widely used to measure electron temperature (T{sub e}) in laboratory plasmas by performing an exponential fit to the measured volt-ampere (I-V) characteristic. Often the probe voltage sweep frequency is much lower than the characteristic frequencies of the plasma fluctuations and a time-averaged I-V characteristic is used for the fit. We show by numerical modeling that in the presence of T{sub e} fluctuations with frequencies well above the voltage sweep frequency this standard technique applied to a swept single probe tends to read higher than the actual time-averaged T{sub e} provided no correlated plasma potential (V{sub p}) fluctuations are present. In the presence of coupled T{sub e} and V{sub p} fluctuations a slowly swept single probe may read either higher or lower than the average T{sub e}, depending on the relative amplitude and phase of the temperature and potential fluctuations. In contrast, swept double probe measurements of T{sub e} are virtually unaffected by either T{sub e} or V{sub p} fluctuations.

  9. Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hsu, H.-W.; Horányi, M.

    2015-04-01

    Langmuir probes on spacecraft have been used for characterizing the ambient plasma parameters in space. When their boom is short compared to the Debye length, the probes remain immersed in the spacecraft sheath, causing the current-voltage (I-V) characteristics to deviate from that of a probe far away from the spacecraft. We present identification of when a Langmuir probe is in a sheath, based on the secondary electron (SE) emission from the probe itself. The I-V characteristics of a spherical probe are investigated in a plasma sheath above a conducting plate. Plasmas with cold and hot electrons (1 eV and 10 eV), as well as monoenergetic electrons (50-100 eV), are created. The derivative (dI/dV) of the probe I-V curves shows that in addition to a "knee" at a potential more positive than the plasma potential, an additional knee appears at a sheath potential at the probe location. This additional knee is created due to the SE emission from the probe and is identified as an indication of the probe being immersed in the sheath. Our experimental results reproduced the aspects of the Cassini Langmuir probe I-V characteristics, suggesting that at times, the probe may have been immersed in the sheath of the spacecraft in Saturn's magnetosphere, and SE emission from the probe itself may have significantly altered its I-V characteristics.

  10. Dust impact detection by the Cassini Langmuir probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Wahlund, J. E.; Kempf, S.; Wang, X.; Horanyi, M.; Morooka, M. W.

    2015-12-01

    Individual examination reveals the existence of sharp spikes in the Cassini Radio and Plasma Wave Science / Langmuir probe (RPWS/LP) I-V (current-voltage) sweeps. These spikes are characterized as a sudden increase or decrease in the probe current, with many of them appearing as one-point anomalies lasting less than a millisecond. Their occurrence generally correlates with the E ring dust density - the closer to the ring plane and Enceladus, the more frequent the appearance of spikes. These characteristics suggest that the LP spike signals are caused by dust impacts - most likely the collection of plasma produced from high velocity dust-probe impacts. Because of the low detection rate and the flexibility regarding to the spacecraft attitude, LP spikes provide an alternative way to explore the densest part of the E ring. Here we will present a preliminary statistical analysis of the LP spike appearance as a function of the spacecraft location, the relative dust speed, the spacecraft and probe potentials, and other relevant parameters. Comparison with measurements carried out by the High Rate Detector, a subsystem of the Cassini Cosmic Dust Analyser, will provide constraints on the dust grain size responsible for these detections. We will also examine their spatial distribution to identify features that may associate with ring dynamical effects, such as the seasonal variation or the noon-to-midnight electric field.

  11. Investigations of laser plasmas dynamics by means of real and virtual Langmuir probes

    SciTech Connect

    Gambino, N.; Mascali, D.; Tudisco, S.; Anzalone, A.; Gammino, S.; Musumeci, F.; Spitaleri, A.

    2011-07-01

    In this paper we propose a novel technique for LPP-Laser Produced Plasmas investigation, combining high time resolved measurements using compact Langmuir Probes with the output of a theoretical model called HYBLAS developed on purpose, which is able to simulate the charged particles collected by a so-called virtual probe. It will be shown that with an appropriate experimental set-up and with the use of a Matlab software able to accurately analyze the experimental I-V curves, laser plasmas can be investigated properly even if the probe is placed very close to the target surface. This permits not only to study the plume expansion with a high temporal resolution, but also to estimate correctly the self-generated coulomb electric field inside the plume and to detect the inner structure of the the first upcoming expanding plasma. HYBLAS is able to predict and describe the plume expansion at relatively low power densities and is a powerful method to compare directly the experimental current signals with the numerical results if the initial conditions are settled properly. A direct comparison of the theoretical data with the experimental ones realized on different metal targets shows that our method is able to predict properly the overall plasma expansion in the nanosecond laser pulse duration regime. The virtual probe method was moreover tested by comparing the numerical results with another numerical code called MULTI, which simulate the expansion by combining the hydrodynamics equations to a multigroup method in order to include the radiation transport. (authors)

  12. Observations of neutral mesospheric smoke particles using triboelectric current measurements from a multi-surface Langmuir probe

    NASA Astrophysics Data System (ADS)

    Barjatya, A.; Friedrich, M.; Strelnikov, B.

    2014-12-01

    We present results from two recent mesospheric rocket flights which were part of the German WADIS campaign from Andoya Rocket Range. One rocket was flown in polar summer, and the other in early winter. The payloads carried a novel multi-surface Langmuir probe. Three fixed bias Langmuir probes with different surfaces: Stainless Steel, Nickel and Platinum were exposed to the mesospheric plasma environment. In addition to collecting thermal electrons, each surface is expected to interact differently with the neutral constituents of the mesosphere: neutral metal atoms, mesospheric smoke particles, ice particles, etc. We estimate these particle densities from the measured electric current data.

  13. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    SciTech Connect

    Brombin, M. Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-15

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors’ holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  14. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  15. The DSLP Langmuir Probe experiment on-board Proba2: first observations and preliminary scientific results

    NASA Astrophysics Data System (ADS)

    Stverak, Stepan; Travnicek, Pavel M.; Hercik, David; Hellinger, Petr; Lebreton, Jean-Pierre; Kozacek, Zdenek; Brinek, Jan

    2010-05-01

    The experiment Dual Segmented Langmuir Probe (DSLP) is one of the four scientific instruments on board the mini-satellite Proba-2 of the European Space Agency. The Proba 2 satellite was successfully launched on 2nd November 2009. First three months of the mission has been dedicated to overall commissioning phase of the Proba 2 payload including all scientific instruments. The main operational phase focused on nominal scientific data acquisition has started in February 2010. As a part of the Plasma Measurement Equipment, the DSLP instrument aims at mapping and studying characteristic macroscopic properties (e.g. density, temperature or flow dynamics) of ionospheric plasmas and their temporal and spatial variations. Furthermore, with use of Sun observations provided by SWAP and LYRA instruments, the DSLP experiment intends to identify observed ionospheric irregularities with possible solar-terrestrial connections related to sudden space weather events. Here we present first data samples acquired during the main operational phase and their preliminary scientific analysis.

  16. Soft Particle Spectrometer, Langmuir Probe, and Data Analysis for Aerospace Magnetospheric/Thermospheric Coupling Rocket Program

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Frahm, R. A.; Scherrer, J. R.

    1997-01-01

    Under this grant two instruments, a soft particle spectrometer and a Langmuir probe, were refurbished and calibrated, and flown on three instrumented rocket payloads as part of the Magnetosphere/Thermosphere Coupling program. The flights took place at the Poker Flat Research Range on February 12, 1994 (T(sub o) = 1316:00 UT), February 2, 1995 (T(sub o) = 1527:20 UT), and November 27, 1995 (T(sub o) = 0807:24 UT). In this report the observations of the particle instrumentation flown on all three of the flights are described, and brief descriptions of relevant geophysical activity for each flight are provided. Calibrations of the particle instrumentation for all ARIA flights are also provided.

  17. Langmuir probe measurements in the TEXTOR tokamak during ALT-I pump limiter experiments

    SciTech Connect

    Goebel, D.M.; Campbell, G.A.; Conn, R.W.; Leung, W.K.; Dippel, K.H.; Finken, K.H.; Thomas, G.J.; Pontau, A.E.

    1986-04-01

    Langmuir probes have been used to characterize the edge plasma of the TEXTOR tokamak and measure the parameters of the plasma incident on the ALT-I pump limiter during ohmic and ICRH heating. Probes mounted directly on the ALT limiter, and a scanning probe located 90/sup 0/ toroidally from the limiter, provide data for the evaluation of pump limiter performance and its effect on the edge plasma. The edge plasma is characterized by density and flux e-folding lengths of about 1.8cm when ALT is the main limiter. These scrape-off lengths do not vary significantly as ALT is moved between the normal 42-46cm minor radii, but increase to over 2.2cm when ALT is inserted to 40cm. The flux to probes at a fixed position in the limiter shadow varies by less than 25% for core density changes of a factor of five. This suggests that the global particle confinement time tau/sub p/, scales as the core density. Estimates from the probes indicate that tau/sub p/ is on the order of the energy confinement time, tau/sub E/. The edge electron temperature, T/sub e/, typically decreases by a factor of two when the core density is raised from 1 to 4 x 10/sup 13/ cm/sup -3/. The T/sub e/ profile is essentially flat in the limiter shadow, with values of 10-25 eV depending on the core plasma density and ICRH power. ICRH heating increases the electron temperature and flux in proportion to the coupled power. With ALT as the primary limiter and no direct shadowing, the ion side receives 2 to 3 times the flux of the electron side during both ohmic and ICRH heating. The edge plasma is not directly modified by pump limiter operation, but changes with the core plasma density as particle removal lowers the recycling of neutrals in the boundary.

  18. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  19. Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.

    2000-01-01

    Fluorocarbon gases, such as CF4, and their mixtures are widely used in contemporary low-pressure and high-density plasma processing techniques. In such plasmas Langmuir probe is one of the most commonly employed diagnostic techniques to obtain electron number density (ne), electron temperature (Te), electron energy distribution function (EEDF), mean electron energy (Ee), ion number density (ni), and plasma potential (Vp). In this paper we report probe data for planar inductively coupled plasmas in CF4/O2/Ar mixtures. By varying the relative concentrations in the mixture, radial profiles of ne, ni, Te, Ee, Vp, EEDF were measured in the mid-plane of the plasma at 10 mTorr and 20 mTorr of gas pressures, and 200 W and 300 W of RF powers. Data show that ne and ni decrease with increase of CF4 content and decrease of gas-pressure but they increase with increase of RF-power, whereas Vp increases with decrease of gas-pressure and remains independent of RF-power. However, they all peak at the center of the plasma and decrease towards the edge while Te follows the other way and increases a little with increase of power. The measured EEDFs exhibit Druyvesteyn-like distribution at all pressures and powers. Data are analyzed and will be presented.

  20. Measurement of electronegativity at different laser wavelengths: accuracy of Langmuir probe assisted laser photo-detachment

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Oudini, N.; Bendib, A.; Ellingboe, A. R.

    2016-08-01

    Langmuir probe (LP) assisted pulsed laser photo-detachment (LPD) of negative ions is one of the frequently used diagnostic techniques in electronegative plasmas. The technique is based on measuring the rise in electron saturation current following photo-detachment. During the photo-detachment process it is assumed that the background electron parameters (temperature and density) remain unchanged in the laser channel and the photo-detached electrons thermalize instantaneously with the background electrons (same temperature). Therefore, the measured electronegativity should be independent of laser wavelengths. However, our recent simulation results (2015 Phys. Plasmas 22 073509) demonstrates a failure of these assumptions and suggests that the measured rise in electron saturation current has a dependence on the laser wavelength. This letter presents experimental evidence in support of these simulation results. In this work, photo-detachment is performed at two different laser wavelengths in an oxygen inductively coupled plasma discharge. Electronegativity measured by LP assisted LPD is compared with those obtained by the hairpin probe (HPP) assisted LPD which is based on quasi-neutrality assumption. The experimental results reveal that the electronegativities measured by LP assisted LPD are affected by the laser wavelength, whereas, electronegativities measured by HPP assisted LPD are almost independent. The discrepancy between the measurements is higher at high electronegativities. In conclusion, the experimental results validate the weakness of assumptions to estimate electronegativity from LPD combined with LP and therefore emphasizes the need of a more realistic model to analyze raw data or an alternate solution is to utilize HPP.

  1. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  2. Design of a Miniaturized Langmuir Plasma Probe for the QuadSat/PnP

    NASA Astrophysics Data System (ADS)

    Landavazo, M.; Jorgensen, A. M.; Del Barga, C.; Ferguson, D.; Guillette, D.; Huynh, A.; Klepper, J.; Kuker, J.; Lyke, J. C.; Marohn, B.; Mason, J.; Quiroga, J.; Ravindran, V.; Yelton, C.; Zagrai, A. N.; Zufelt, B.

    2011-12-01

    We have developed a miniaturized Langmuir plasma probe for measuring plasma density in low-earth orbit. Measuring plasma density in the upper ionosphere is important as a diagnostic for the rest of the ionosphere and as an input to space weather forecasting models. Developing miniaturized instrumentation allows easier deployment of a large number of small satellites for monitoring space weather. Our instrument was designed for the Swedish QuadSat/PnP, with the following constraints: A volume constraint of 5x5x1.25cm for the electronics enclosure, a mass budget 100 g, and a power budget of 0.5 W. We met the volume and mass constraints and where able to use less power than budgeted, only 0.25 W. We designed the probe for a bias range of +/-15V and current measurements in the 1 nA to 1 mA range (6 orders of magnitude). Necessary voltage of +/- 15 V and 3.3 V were generated on-board from a single 5 V supply. The electronics suite is based off carefully selected yet affordable commercial components that exhibit low noise, low leakage currents and low power consumption. Size constraints, low noise and low leakage requirements called for a carefully designed four layer PCB with a properly guarded current path using surface mount components on both sides. An ultra-low power microcontroller handles instrument functionality and is fully controllable over i2c using SPA-1 space plug and play. We elected for a probe launched deployed, which required careful design to survive launch vibrations while staying within the mass budget. The QuadSat/PnP has not been launched at the time of writing. We will present details of the instrument design and initial calibration data.

  3. Radial-to-orbital motion transition in cylindrical Langmuir probes studied with particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Tejero-del-Caz, A.; Fernández Palop, J. I.; Díaz-Cabrera, J. M.; Ballesteros, J.

    2016-02-01

    A particle-in-cell (PIC) simulation of the plasma sheath around a cylindrical Langmuir probe has been developed to evaluate the ion current collected by the probe. The simulation includes the positive ion thermal motion and has been optimized by solely describing the positive ion motion. A transition from the prediction of the radial model to the orbital-motion-limited model is observed. The transition is explained as an effect of the positive ion thermal motion and the radial model is recovered when the positive ion to electron temperature ratio is decreased. The behaviour of this transition strongly depends on the dimensionless probe radius.

  4. A seven-month solar cycle observed with the Langmuir probe on Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wolff, C. L.

    1989-01-01

    Data collected by the Langmuir probe aboard the Pioneer Venus orbiter (PVO) over the years 1979 though 1987 were normalized to remove the long-period 11-year solar maximum to minimum trend and were analyzed for periodicity. Results yield evidence for the existence of an approximately 7-month solar cycle, which was also observed from SME Lyman alpha and 2800-MHz radio flux measurements carried out from an earth-based platform. This coincidence suggests that the cycle is an intrinsic periodicity in the solar output. The cycle has a frequency independent of the orbital frequency of the PVO and is distinct from a 'rotating beacon' cycle whose period depends on the orbital motion of the PVO about the sun. The second most dominant cycle discovered was a 5-month period. Results of an oscillation model of solar periodicity indicate that the 7-month and 5-month cycles are caused by long-lived flux enhancements from nonlinear interactions of global oscillation modes in the sun's convective envelope (r modes) and radiative interior (g modes).

  5. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    SciTech Connect

    Biswas, Subir Chowdhury, Satyajit; Pal, Rabindranath

    2015-08-14

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  6. The DSLP Langmuir Probe experiment on-board Proba2: instrument design and first in-flight operations

    NASA Astrophysics Data System (ADS)

    Hercik, David; Travnicek, Pavel M.; Stverak, Stepan; Hellinger, Petr; Lebreton, Jean-Pierre; Kozacek, Zdenek; Brinek, Jan

    2010-05-01

    The experiment Dual Segmented Langmuir Probe (DSLP) is part of the Plasma Measurements Equipment on board the mini-satellite Proba-2 of the European Space Agency. The Proba 2 satellite was successfully launched on 2nd November 2009. The DSLP instrument aims to test and verify a novel Langmuir probe design based on a segmented spherical sensor originally used on the experiment ISL (French satellite Demeter). From scientific point of view, DSLP will provide in situ observations of the ionospheric plasmas. Here we present an overall description of the instrument design and explain the data acquisition techniques and basic principles of measurements. In addition, we provide first measurements results from the initial in-flight operations of the DSLP instrument which were performed within the first three month of the Proba 2 mission during the commissioning phase of the overall payload.

  7. Hall thruster plume measurements from High-speed Dual Langmuir Probes with Ion Saturation Reference

    NASA Astrophysics Data System (ADS)

    Sekerak, M.; McDonald, M.; Hofer, R.; Gallimore, A.

    The plasma plume of a 6 kW Hall Effect Thruster (HET) has been investigated in order to determine time-averaged and time-resolved plasma properties in a 2-D plane. HETs are steady-state devices with a multitude of kilohertz and faster plasma oscillations that are poorly understood yet impact their performance and may interact with spacecraft subsystems. HETs are known to operate in different modes with differing efficiencies and plasma characteristics, particularly the axial breathing mode and the azimuthal spoke mode. In order to investigate these phenomena, high-speed diagnostics are needed to observe time-resolved plasma properties and correlate them to thruster operating conditions. A new technique called the High-speed Dual Langmuir Probe with Ion Saturation Reference (HDLP-ISR) builds on recent results using an active and an insulated or null probe in conjunction with a third, fixed-bias electrode maintained in ion saturation for ion density measurements. The HDLP-ISR was used to measure the plume of a 6-kW-class single-channel HET called the H6 operated at 300 V and 20 A at 200 kHz. Time-averaged maps of electron density, electron temperature and plasma potential were determined in a rectangular region from the exit plane to over five channel radii downstream and from the centrally mounted cathode radially out to over three channel radii. The power spectral density (PSD) of the time-resolved plasma density oscillations showed four discrete peaks between 16 and 28 kHz which were above the broad breathing mode peak between 10 and 15 kHz. Using a high-speed camera called FastCam imaging at 87,500 frames per second, the plasma oscillations were correlated with visible rotating spokes in the discharge channel. Probes were vertically spaced in order to identify azimuthal plasma transients around the discharge channel where density delays of 14.4 μ s were observed correlating to a spoke velocity of 1800 m/s in the E× B direction. The results presented- here are

  8. Quantification of the error induced on Langmuir probe determined electron temperature and density due to an RF plasma potential

    NASA Astrophysics Data System (ADS)

    Kafle, Nischal; Donovan, David; Martin, Elijah

    2015-11-01

    An RF plasma potential can significantly effect the IV characteristic of a Langmuir probe if not properly compensated. A substantial research effort in the low temperature plasma community has been carried out to determine this effect and how to achieve the required compensation for accurate measurements. However, quantification of the error induced on the extracted electron temperature and density from an uncompensated Langmuir probe due to an RF plasma potential has not been explored. The research presented is the first attempt to quantify this error in terms of RF plasma potential magnitude, electron temperature, and electron density. The Langmuir probe IV characteristic was simulated using empirical formulas fitted to the Laframboise simulation results. The RF effected IV characteristic was simulated by adding a sinusoidal variation to the plasma potential and computing the time average numerically. The error induced on the electron temperature and density was determined by fitting the RF effected IV characteristic to the empirical formulas representing the standard Laframboise simulation results. Experimental results indicating the accuracy of this quantification will be presented.

  9. Langmuir Probe and Mass Spectroscopic Measurements in Inductively Coupled CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, Surendra; Cruden, B. A.; Meyyappan, M.

    2001-01-01

    Abstract Electron and ion energy distribution functions and other plasma parameters such as plasma potential (V(sub p)) , electron temperature (T(sub e)), and electron and ion number densities (n (sub e) and n(sub i)) in low pressure CF4 plasmas have been measured. The experiments were conducted in a GEC cell using an inductively coupled plasma (ICP) device powered by a 13.56 MHz radio-frequency (rf) power source. The measurements were made at 300 W of input rf power at 10, 30 and 50 mTorr gas pressures. Langmuir probe measurements suggest that n(sub e), n(sub i) and V(sub p) remain constant over 60% of the central electrode area, beyond which they decrease. Within the limits of experimental error (+/- 0.25 eV), T(sub e) remains nearly constant over the electrode area. T(sub e) and V(sub p) increase with a decrease in pressure. n(sub e) and n(sub i) are not affected as significantly as T(sub e) or V(sub p) by variation in the gas pressure. The electron energy distribution function (EEDF) measurements indicate a highly non-Maxwellian plasma. CF3+ is the most dominant ion product of the plasma, followed by CF2+ and CF+. The concentrations of CF2+ and CF+ are much larger than that is possible from direct electron impact ionization of the parent gas. The cross-section data suggest that the direct electron impact ionization of fragment neutrals and negative ion production by electron attachment may be responsible for increase of the minor ions.

  10. Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period

    NASA Astrophysics Data System (ADS)

    Pignalberi, Alessio; Pezzopane, Michael; Tozzi, Roberta; De Michelis, Paola; Coco, Igino

    2016-05-01

    Preliminary Swarm Langmuir probe measurements recorded during March 2015, a period of time including the St. Patrick storm, are considered. Specifically, six time periods are identified: two quiet periods before the onset of the storm, two periods including the main phase of the storm, and two periods during the recovery phase of the storm. Swarm electron density values are then compared with the corresponding output given by the International Reference Ionosphere (IRI) model, according to its three different options for modelling the topside ionosphere. Since the Swarm electron density measurements are still undergoing a thorough validation, a comparison with IRI in terms of absolute values would have not been appropriate. Hence, the similarity of trends embedded in the Swarm and IRI time series is investigated in terms of Pearson correlation coefficient. The analysis shows that the electron density representations made by Swarm and IRI are different for both quiet and disturbed periods, independently of the chosen topside model option. Main differences between trends modelled by IRI and those observed by Swarm emerge, especially at equatorial latitudes, and at northern high latitudes, during the main and recovery phases of the storm. Moreover, very low values of electron density, even lower than 2 × 104 cm-3, were simultaneously recorded in the evening sector by Swarm satellites at equatorial latitudes during quiet periods, and at magnetic latitudes of about ±60° during disturbed periods. The obtained results are an example of the capability of Swarm data to generate an additional valuable dataset to properly model the topside ionosphere.

  11. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA 300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.

  12. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  13. Plasma Potential and Langmuir Probe Measurements in the Near-Field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 ? 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 ? 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  14. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA-300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 mean thruster diameters from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the near-field, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was low, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA-300M.

  15. On the interpretation of fluctuation and ExB turbulent transport measured by Langmuir probes in fusion plasmas

    SciTech Connect

    Calderon, E.; Hidalgo, C.; Pedrosa, M.A.; Silva, C.

    2004-10-01

    Plasma fluctuations and fluctuation-induced particle fluxes have been investigated in the plasma edge of the TJ-II stellarator using Langmuir probes. Simultaneous measurements of plasma fluctuations carried out by probes located in and out of the probe body sheath show similar results in the normalized level of fluctuations in the ion saturation current. However, floating potential fluctuations measured in the co and counter direction of the magnetic field on the sheath probe body show slight but significant differences. The local radial electrostatic turbulent driven transport measured in and out of the probe body sheath shows consistent results, within the errors bars due to uncertainties in the determination of the effective probe collecting area; the normalized local radial transport to the average ion saturation current (the effective velocity which is not affected by uncertainties in the probe area) show consistent results. These results and previous findings call into question the recent interpretation of probe measurements on the basis of the influence of the probe's pre-sheath zone [B. Labombard, Phys. Plasmas. 9, 1300 (2002)].

  16. Development of a novel sweeping Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    NASA Astrophysics Data System (ADS)

    Ranvier, Sylvain; De Keyser, Johan; Cardoen, Pepijn; Pieroux, Didier

    2014-05-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Belgian Institute for Space Aeronomy. PICASSO was initiated to join the QB50 project as scientific in-orbit demonstrator. The sweeping Langmuir probe (SLP) instrument is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e6/m³ at high latitude and high altitude up to 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1000 K and 3000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, and 5) ionospheric dynamics via coordinated observations with EISCAT's heating radar. To achieve the scientific objectives described above, the instrument includes four thin cylindrical probes whose electrical potential is swept in such a way that both plasma density and electron temperature can be derived. In addition, since at least two probes will be out of the spacecraft's wake at any given time, differential measurements can be performed to increase the accuracy. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive

  17. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  18. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  19. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    SciTech Connect

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  20. Observations of Langmuir ponderomotive effects using the Solar TErrestrial RElations Observatory spacecraft as a density probe

    SciTech Connect

    Henri, P.; Meyer-Vernet, N.; Briand, C.; Donato, S.

    2011-08-15

    Langmuir ponderomotive effects are nonlinear effects that enable to couple the electron and ion dynamics in space plasmas. The main difficulty to provide observational evidence of such nonlinear coupling is to simultaneously observe both fluctuations of plasma density and electric field. We have thus developed a new method to measure and to calibrate in situ small scale density fluctuations. Density fluctuations in the solar wind are measured using the observed quasistatic fluctuations of the STEREO spacecraft floating potential in the frequency range, where the spacecraft floating potential is in quasistatic equilibrium between photoionization and electron attachment, whereas the potential of the antenna, of much longer equilibrium time scale, is blind to the density fluctuations. Density fluctuations and Langmuir waves are thus directly and simultaneously measured using a dataset of more than three years of STEREO/WAVES measurements. We present here the first observational evidence for ponderomotive effects in the solar wind that nonlinearly couple density fluctuations to high energy Langmuir waves (({epsilon}{sub 0}E{sup 2})/(nk{sub B}T)>10{sup -4}).

  1. Comparison of currents predicted by NASCAP/LEO model simulations with elementary Langmuir-type bare probe models for an insulated cable containing a single pinhole

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.

    1990-01-01

    The behavior of a defect in the insulation of a short biased section of cable in a Low Earth Orbit (LEO) space environment was examined. Such studies are of the utmost importance for large space power systems where great quantities of cabling will be deployed. An insulated probe containing a pinhole was placed into a hypothetical high speed LEO plasma. The NASA Charging Analyzer Program (NASCAP/LEO) was used to explore sheath growth about the probe as a function of applied voltage and to predict I-V behavior. A set of independent current calculations using Langmuir's formulations for concentric spheres and coaxial cylinders were also performed. The case of concentric spheres was here extended to include the case of concentric hemispheres. Several simple Langmuir-type models were then constructed to bracket the current collected by the cable. The space-charge sheath radius and impact parameters were used to determine the proper current regime. I-V curves were plotted for the models and comparisons were made with NASCAP/LEO results. Finally, NASCAP/LEO potential contours and surface cell potential plots were examined to explain interesting features in the NASCAP/LEO I-V curve.

  2. Comparison between Langmuir probe and microwave autointerferometry measurements at intermediate pressure in an argon surface wave discharge

    SciTech Connect

    Rousseau, A.; Teboul, E.; Bechu, S.

    2005-10-15

    This paper is devoted to the validation of Langmuir probe technique by microwave autointerferometry in a surface wave discharge at medium pressure (from 0.1 up to 10 Torr). Temperatures of neutrals, obtained from Rayleigh scattering, and electrons, given by double probe measurements, have been used to estimate the mean free path and the sheath length. Hence, the number of collisions in the sheath has been obtained. We have verified that two different phenomena occur in the sheath, while the pressure increases. These phenomena are depicted, in literature, as two different coefficients used to modify the value of the noncollisional current of Laframboise. Coefficients given by various authors have been investigated with accuracy knowing the number of collisions in the sheath. Very good agreements are obtained between Zakrzewski and Kopiczynski theory and autointerferometry measurements which are unaffected by collisional phenomena.

  3. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  4. The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Holmberg, M. K. G.; Wahlund, J.-E.; Lewis, G. R.; Grimald, S. Rochel; Thomsen, M. F.; Gurnett, D. A.; Coates, A. J.; Crary, F. J.; Dandouras, I.

    2013-11-01

    The Cassini Langmuir Probe (LP) onboard the Radio and Plasma Wave Science experiment has provided much information about the Saturnian cold plasma environment since the Saturn Orbit Insertion in 2004. A recent analysis revealed that the LP is also sensitive to the energetic electrons (250-450 eV) for negative potentials. These electrons impact the surface of the probe and generate a current of secondary electrons, inducing an energetic contribution to the DC level of the current-voltage (I-V) curve measured by the LP. In this paper, we further investigated this influence of the energetic electrons and (1) showed how the secondary electrons impact not only the DC level but also the slope of the (I-V) curve with unexpected positive values of the slope, (2) explained how the slope of the (I-V) curve can be used to identify where the influence of the energetic electrons is strong, (3) showed that this influence may be interpreted in terms of the critical and anticritical temperatures concept detailed by Lai and Tautz (2008), thus providing the first observational evidence for the existence of the anticritical temperature, (4) derived estimations of the maximum secondary yield value for the LP surface without using laboratory measurements, and (5) showed how to model the energetic contributions to the DC level and slope of the (I-V) curve via several methods (empirically and theoretically). This work will allow, for the whole Cassini mission, to clean the measurements influenced by such electrons. Furthermore, the understanding of this influence may be used for other missions using Langmuir probes, such as the future missions Jupiter Icy Moons Explorer at Jupiter, BepiColombo at Mercury, Rosetta at the comet Churyumov-Gerasimenko, and even the probes onboard spacecrafts in the Earth magnetosphere.

  5. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  6. A direct Vlasov code to study the non-stationary current collection by a cylindrical Langmuir probe

    SciTech Connect

    Sanchez-Arriaga, G.

    2013-01-15

    The time-dependent current collection by a cylindrical Langmuir probe, whose bias is suddenly changed from zero to a positive or negative finite value, is studied with a novel direct Vlasov code. The numerical algorithm is based on finite-difference formulas to approximate spatial and velocity derivatives and the time integration is carried out with an explicit Runge-Kutta method, or in the case of probe radius small compared with the Debye length, by using the unconditionally stable backward Euler scheme. Both electrons and ions are treated kinetically by the code, which implements initial and boundary conditions that are consistent with the presence of the probe. Within the considered parameter range, the plasma sheath around the probe exhibited an overshoot and it later recovered a steady state. Phase space diagrams of the particle trajectories revealed the presence of a trapped population of particles. The dependence of this population as a function of the probe radius is presented as well as a comparison with the stationary theory. The performance of the code and a comparison with previously used particle-in-cell algorithms are discussed.

  7. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  8. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers--spectroscopic investigations.

    PubMed

    Bursa, B; Wróbel, D; Biadasz, A; Kędzierski, K; Lewandowska, K; Graja, A; Szybowicz, M; Durmuş, M

    2014-07-15

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate. PMID:24682066

  9. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers - Spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Bursa, B.; Wróbel, D.; Biadasz, A.; Kędzierski, K.; Lewandowska, K.; Graja, A.; Szybowicz, M.; Durmuş, M.

    2014-07-01

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate.

  10. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    SciTech Connect

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-12-31

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n{sub e} = 10{sup 18} m{sup -3}. Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10{sup 17} m{sup -3} and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  11. PICASSO-SLP: a Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    NASA Astrophysics Data System (ADS)

    Ranvier, Sylvain; Anciaux, Michel; Cardoen, Pepijn; Gamby, Emmanuel; Bonnewijn, Sabrina; De Keyser, Johan; Echim, Marius; Pieroux, Didier

    2016-04-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Royal Belgian Institute for Space Aeronomy. PICASSO, an ESA in-orbit demonstrator, is a triple unit CubeSat of dimensions 340.5x100x100 mm. The sweeping Langmuir probe (SLP) instrument, which includes four thin cylindrical probes whose electrical potential is swept, is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e8/m³ at high latitude and high altitude up to several times 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1.000 K and 10.000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m for the electron density and temperature, and up to a few meters for electron density only. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, 5) for the density, the multi-scale behaviour, spectral properties and turbulence of processes typical for the auroral regions, and 6) ionospheric dynamics via coordinated observations with EISCAT's heating radar. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive modelling and simulations of the sheath effects on the

  12. Electron energy distribution functions measured by Langmuir probe with optical emission spectroscopy in very high frequency capacitive discharge in nitrogen

    SciTech Connect

    Abdel-Fattah, E.; Bazavan, M.; Sugai, H.

    2012-11-15

    By using a rf compensated Langmuir probe and optical emission spectroscopy, the effects of driving frequency (13.56-50 MHz) on the electron energy probability function (EEPF), electron density, electron temperature, and the vibrational and rotational temperatures in capacitively coupled nitrogen discharge were investigated. Measurements were performed in the pressure range 60-200 mTorr, and at a fixed voltage of 140 V (peak-to-peak). With increasing the driving frequency, the dissipated power and electron density markedly increased along with the intensity of the optical emission lines belonging to the 2nd positive (337.1 nm) and 1st negative systems (391.4 nm) of N{sub 2}. The EEPF at low pressure 60 mTorr is two-temperature (bi-Maxwellian) distribution, irrespective of the driving frequency, in contrast with argon and helium discharges in the similar conditions. The mechanism forming such bi-Maxwellian shape was explained by two combined effects: one is the collisionless sheath-heating effect enhancing the tail electron population, and the other is the collision-induced reduction of electrons at the energy 2-4 eV where the collision cross-section for the vibrational excitation has a resonantly large peak. The two-temperature EEPF structure was basically retained at moderate pressure 120 mTorr and high pressure 200 mTorr. The vibrational temperature T{sub vib} and rotational temperature T{sub rot} are measured for the sequence ({Delta}{nu}=-2) of N{sub 2} second positive system (C{sup 3}{Pi}{sub u}{yields}B{sup 3}{Pi}{sub g}) using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. It was found that, both of T{sub vib} and T{sub rot} are a weakly dependent on driving frequency at low pressure 60 mTorr. At higher pressure (120 and 200 mTorr), T{sub vib} rises monotonically with the driving frequency, whereas the T{sub rot} slightly decreases with frequency below 37 MHz, beyond which it relatively increases or

  13. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  14. Characterization of O2/Ar inductively coupled plasma studied by using a Langmuir probe and global model

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wen, De-Qi; Zhao, Shu-Xia; Gao, Fei; Wang, You-Nian

    2015-04-01

    An O2/Ar inductively coupled plasma is investigated by a Langmuir probe and a global model (volume averaged model). The electron density, electron temperature and electron energy distribution function (EEDF) are measured at different O2 contents, gas pressures and applied powers. At fixed pressure and power, the electron density first drops quickly with the O2 ratio and then tends to saturate in the high O2 ratio range. The effective electron temperature exhibits completely opposite behaviors at low and high pressures. This is caused by the different evolving behaviors of low and high energy electrons of the EEDFs with the O2 ratio. Both the Langmuir probe and the global model predict that the electron density of O2/Ar mixed plasma first increases, peaks and then drops constantly, upon increasing the pressure. An analysis based on the simulation reveals that the non-monotonic variation of electron density with the pressure is due to the non-monotonic variation of the ionizations from both ground state O and metastable O*. Due to the strong ionizations, the electron density increases linearly with the power. The effective electron temperature is unchanged because the EEDF shape that determines the electron temperature is not varied upon increasing the power. The calculated electron density and temperature when varying the power agree better with the experiments at high pressure, i.e. 45 mTorr. The quantitative deviation between the model and the experiment when varying the pressure and the O2 ratio can be explained by two aspects. (1) The electron energy probability function is assumed to have a Maxwellian distribution in the global model while the realistic EEDFs vary significantly with the pressure and/or the O2 ratio, as revealed by the experiment. (2) The power transfer efficiency (i.e. the fraction of the power coupled into plasma) increases with the pressure.

  15. First electron density and temperature estimates from the Swarm Langmuir probes and a comparison with IS measurements

    NASA Astrophysics Data System (ADS)

    Buchert, Stephan C.; Eriksson, Anders; Gill, Reine; Nilsson, Thomas; Åhlen, Lennart; Wahlund, Jan-Erik; Knudsen, David; Burchill, Johnathan; Archer, William; Kouznetsov, Alexei; Stricker, Nico; Bouridah, Abderrazak; Bock, Ralph; Häggström, Ingemar; Rietveld, Michael; Gonzalez, Sixto; Aponte, Nestor

    2014-05-01

    The Langmuir Probes (LP) on the Swarm satellites are part of the Electric Field Instruments (EFI), which are featuring thermal ion imagers (TII) and so are measuring 3-d ion distributions. The main task of the Langmuir probes is to provide measurements of spacecraft potentials influencing the ions before they enter the TIIs. In addition also electron density (Ne) and temperature (Te) are estimated from EFI LP data. The design of the Swarm LP includes a standard current sampling under sweeps of the bias voltage, and also a novel ripple technique yielding derivatives of the current-voltage characteristics at three points in a rapid cycle. In normal mode the time resolution of the Ne and Te measurements so becomes only 0.5 s. We show first Ne and Te estimates from the EFI LPs obtained in the commissioning phase in December 2013, when all three satellites were following each other at about 500 km altitude at mutual distances of a few tens of kilometers. The LP data are compared with observations by incoherent scatter radars, namely EISCAT UHF, VHF, the ESR, and also Arecibo. Acknowledgements: The EFIs were developed and built by a consortium that includes COM DEV Canada, the University of Calgary, and the Swedish Institute for Space Physics in Uppsala. The Swarm EFI project is managed and funded by the European Space Agency with additional funding from the Canadian Space Agency. EISCAT is an international association supported by research organisations in China (CRIRP), Finland (SA), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (NERC). The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association.

  16. Theory of cylindrical and spherical Langmuir probes in the limit of vanishing Debye number

    SciTech Connect

    Parrot, M.J.M.; Storey, L.R.O.; Parker, L.W.; Laframboise, J.G.

    1982-12-01

    A theory has been developed for cylindrical and spherical probes and other collectors in collisionless plasmas, in the limit where the ratio of Debye length to probe radius (the Debye number lambda/sub D/) vanishes. Results are presented for the case of equal electron and ion temperatures. On the scale of the probe radius, the distributions of potential and density in the presheath appear to have infinite slope at the probe surface. The dimensionless current--voltage characteristic is the same for the cylinder as for the sphere, within the limits of error of the numerical results, although no physical reason for this is evident. As the magnitude of probe potential (relative to space) increases, the current does not saturate abruptly but only asymptotically; its limiting value is about 45% larger than at space potential. Probe currents for small nonzero lambda/sub D/ approach those for zero lambda/sub D/ only very slowly, showing power-law behavior as function of lambda/sub D/ in the limit as lambda/sub D/ ..-->.. 0, with power-law exponents less than unity, resulting in infinite limiting derivatives with respect to lambda/sub D/.

  17. Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U

    SciTech Connect

    Hosea, J C; Perkins, R J; Jaworski, M A; Kramer, G J; Ahn, J-W

    2014-07-01

    RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over the tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.

  18. Optimization of substrate-target distance for pulsed laser deposition of tungsten oxide thin films using Langmuir probe

    NASA Astrophysics Data System (ADS)

    Panda, A. Kumar; Singh, A.; Thirumurugesan, R.; Kuppusami, P.; Mohandas, E.

    2015-09-01

    The paper investigates the spatial and temporal variation of laser produced plasma of tungsten oxide using a Langmuir probe. The plasma was produced by laser ablation of tungsten oxide target using an Excimer laser of wavelength 248 nm. Our experimental studies confirmed that oxygen partial pressure (P) of 2× 10-2 mbar is sufficient enough to get stoichiometric tungsten oxide thin films and the plume dynamics was diagnosed for their spatial and temporal behaviour at the above optimised oxygen pressure. Spatial distribution was recorded with the target to substrate distance (D) ranging from the target position to a distance of 75 mm away from the target, whereas the temporal variation was taken in the range of 0-50 μ S with an interval of 0.5 μ S. The average electron densities were found to be maximum at 30 mm from the target position. However, ion density was constant beyond the probe distance of 45 mm from the target. The plasma current was found to be maximum at 28 μ S. The target to substrate distance was optimized for homogenous adherent good quality thin films using plasma parameters such as ion density and average electron density obtained at different oxygen pressure. The target distance and background gas pressure were correlated as PD scaling law and fitted as PD3 in the model.

  19. Compensated Langmuir Probe Measurement of the Near-keeper Plasma of a Hollow Cathode Operating in Plume Mode

    NASA Astrophysics Data System (ADS)

    Taillefer, Zachary; Blandin, John; Szabo, James

    2014-10-01

    It has been reported that oscillations of the plasma potential, over a range of frequencies (<=1 kHz--2 MHz) are related to high energy ion production in the plume of a neutralizer hollow cathode when operating in plume mode. Impact of these high energy ions with the keeper electrode face is the dominant mechanism by which electrode erosion occurs over long periods of operation (~10,000 hours). Reliable measurement of the plasma properties in this operating mode is critical to development of computational models and efforts to mitigate the erosion and maximize lifetime of these cathodes. In this work, both plume and spot mode operating conditions of a low current (<=5 A), dispenser hollow cathode have been quantitatively identified. An emissive probe was used to characterize the plasma potential oscillations in the near-keeper plasma during plume mode operation. Large amplitude fluctuations (exceeding 70 V) of the plasma potential were observed, at a fundamental frequency of 55 kHz, along with 2nd and 3rd harmonics. In order to measure the local electron energy distribution function (EEDF) during plume mode operation, a compensated Langmuir probe was constructed, using RF chokes, to allow accurate measurement of the EEDF and calculation of the electron temperature.

  20. Application of an RF Biased Langmuir Probe to Etch Reactor Chamber Matching, Fault Detection and Process Control

    NASA Astrophysics Data System (ADS)

    Keil, Douglas; Booth, Jean-Paul; Benjamin, Neil; Thorgrimsson, Chris; Brooks, Mitchell; Nagai, Mikio; Albarede, Luc; Kim, Jung

    2008-10-01

    Semiconductor device manufacturing typically occurs in an environment of both increasing equipment costs and per unit sale price shrinkage. Profitability in such a conflicted economic environment depends critically on yield, throughput and cost-of-ownership. This has resulted in increasing interest in improved fault detection, process diagnosis, and advanced process control. Achieving advances in these areas requires an integrated understanding of the basic physical principles driving the processes of interest and the realities of commercial manufacturing. Following this trend, this work examines the usefulness of an RF-biased planar Langmuir probe^1. This method delivers precise real-time (10 Hz) measurements of ion flux and tail weighted electron temperature. However, it is also mechanically non-intrusive, reliable and insensitive to contamination and deposition on the probe. Since the measured parameters are closely related to physical processes occurring at the wafer-plasma interface, significant improvements in process control, chamber matching and fault detection are achieved. Examples illustrating the improvements possible will be given. ^1J.P. Booth, N. St. J. Braithwaite, A. Goodyear and P. Barroy, Rev.Sci.Inst., Vol.71, No.7, July 2000, pgs. 2722-2727.

  1. Improved tunable external filter for Langmuir probe measurement at low density plasmas

    NASA Astrophysics Data System (ADS)

    Chang, Yoon-Min; Lee, Hyo-Chang; Jeon, Sang-Bum; Kim, Dong-Hwan; Kim, Ju-Ho; Chung, Chin-Wook; Department of Electrical Engineering Team; Department of Nanoscale Semiconductor Engineering Team

    2015-09-01

    Measurement of the electron energy probability function (EEPF) at low density plasma, especially in molecular gas discharge, is difficult due to large RF fluctuation. To overcome the problem, an improved tunable external filter was developed. In contrast to an internal filter, the external filter can tune the resonance frequency of the choke filter. However, conventional external filter has low impedance due to a large stray capacitance between a probe tip and the external filter. To reduce the effect of the stray capacitance, an appropriate inductor was connected to the probe tip, and the external filter was designed to tune the first and the second harmonic frequencies independently. Using our filter, the EEPFs were measured at low density plasma with various gases, and the results show the improved performance of the filter as compared to the previous studies.

  2. A numerical method for determining highly precise electron energy distribution functions from Langmuir probe characteristics

    SciTech Connect

    Bang, Jin-Young; Chung, Chin-Wook

    2010-12-15

    Electron energy distribution functions (EEDFs) were determined from probe characteristics using a numerical ac superimposed method with a distortion correction of high derivative terms by varying amplitude of a sinusoidal perturbation voltage superimposed onto the dc sweep voltage, depending on the related electron energy. Low amplitude perturbation applied around the plasma potential represented the low energy peak of the EEDF exactly, and high amplitude perturbation applied around the floating potential was effective to suppress noise or distortion of the probe characteristic, which is fatal to the tail electron distribution. When a small random noise was imposed over the stabilized prove characteristic, the numerical differentiation method was not suitable to determine the EEDF, while the numerical ac superimposed method was able to obtain a highly precise EEDF.

  3. Ion currents to cylindrical Langmuir probes for finite ion temperature values: Experimental

    SciTech Connect

    Ballesteros, J.; Palop, J.I.F.; Colomer, V.; Hernandez, M.A.

    1995-12-31

    A new theoretical model about the ion currents to a cylindrical probe has been developed which takes into account the influence of a finite ion temperature value. The ABR (Allen, Boyd and Reynolds) model, which considers only radial motion for the positive ions, is recovered in the limit of cold ions. In this paper we axe going to show the experimental ion currents obtained in a plasma in which the positive ion temperature effect cannot be neglected.

  4. Measurement of edge plasma parameters in IR-T1 Tokamak by double Langmuir probe

    SciTech Connect

    Ghoranneviss, M.; Khademian, A.; Masnavi, M.; Khorshid, P.; Salami, M.R.

    1996-12-31

    IR-T1 Tokamak is an air-core transformer type Tokamak. The vacuum chamber was made of 4 mm thick stainless steel with minor and major radii of 12.5 cm and 45 cm as respectively. Measurements of T{sub e} have been observed in IR-T1 with fabricated circuits of double pore design. This pore can be movable in the horizontal direction, therefore one can measure temperature along 1 cm distance. This note presents a theoretical and experimental explanation of double probe techniques. Details will be discussed in the full paper.

  5. Langmuir-magnetic probe measurements of ELMs and dithering cycles in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yan, N.; Naulin, V.; Xu, G. S.; Rasmussen, J. J.; Wang, H. Q.; Liu, S. C.; Wang, L.; Liang, Y.; Nielsen, A. H.; Madsen, J.; Guo, H. Y.; Wan, B. N.

    2014-09-01

    Measurements of the dynamical behavior associated with edge localized modes (ELMs) have been carried out in the Experimental Advanced Superconducting Tokamak (EAST) by direct probing near the separatrix and far scrape-off layer (SOL) using electrostatic as well as magnetic probes. Type-III ELMs and dithering cycles have been investigated near the threshold power for the transition from the low confinement mode (L-mode) to the high confinement mode (H-mode). A precursor is observed prior to type-III ELM events with chirping frequency (130-70 kHz). It is located inside the separatrix and does not lead to considerable particle transport into the SOL. Distinct from type-III ELMs, no precursor modes precede the dithering cycles. It is evident from our measurements that the absence of precursor activity is a good indicator to distinguish the dithering cycles from type-III ELMs. A number of distinct current filaments are identified slightly inside the separatrix, both during type-III ELM events and dithering cycles. The characteristic current topology in these filaments is still ambiguous in our investigations. Furthermore, small ELMs are observed in type-I ELMy-like H-mode discharge regimes on EAST, in which solitary monopolar current filaments are observed to propagate in the SOL.

  6. The behavior of the plasmapause at mid-latitudes - Isis 1 Langmuir probe measurements

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.

    1974-01-01

    Observations of the electron concentration and the temperature from the electrostatic probes on the Isis 1 satellite were used to examine the location and behavior of the plasmapause at about 3000-km altitude in the vicinity of L = 4. At these altitudes the electron concentration measurements are equivalent to measurements of H(+), since the satellite is well into the protonosphere. The plasmapause is evident as a sharp drop in electron concentration by a factor of 100 as the satellite passes into the polar cap, and a corresponding increase is observed as it enters the plasmasphere on the opposite side of the earth. An enhancement of temperature is also observed at the plasmapause, an effect that is most visible at night, when the temperatures at latitudes above and below the plasmapause are usually very low. The position of the plasmapause decreases with magnetic activity but is found to be somewhat less sensitive to Kp than is the equatorial plasmapause.

  7. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe

    SciTech Connect

    Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Stoeri, H.

    2012-02-15

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H{sup -} volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e{sup -} and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H{sup -} ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H{sup -} ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  8. Evolution of the plasma environment of comet 67P from spacecraft potential measurements by the Rosetta Langmuir probe instrument

    NASA Astrophysics Data System (ADS)

    Odelstad, E.; Eriksson, A. I.; Edberg, N. J. T.; Johansson, F.; Vigren, E.; André, M.; Tzou, C.-Y.; Carr, C.; Cupido, E.

    2015-12-01

    We study the evolution of the plasma environment of comet 67P using measurements of the spacecraft potential from early September 2014 (heliocentric distance 3.5 AU) to late March 2015 (2.1 AU) obtained by the Langmuir probe instrument. The low collision rate keeps the electron temperature high (˜5 eV), resulting in a negative spacecraft potential whose magnitude depends on the electron density. This potential is more negative in the northern (summer) hemisphere, particularly over sunlit parts of the neck region on the nucleus, consistent with neutral gas measurements by the Cometary Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Assuming constant electron temperature, the spacecraft potential traces the electron density. This increases as the comet approaches the Sun, most clearly in the southern hemisphere by a factor possibly as high as 20-44 between September 2014 and January 2015. The northern hemisphere plasma density increase stays around or below a factor of 8-12, consistent with seasonal insolation change.

  9. Langmuir Probe Measurements of Inductively Coupled CHF3/Ar and Ar/CHF3/O2 Plasmas

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, M.

    2000-01-01

    Plasma parameters, such as, electron number density (ne), electron temperature (Te), y electron energy distribution function (EEDF), mean electron energy (Ee), ion number density (ni), and plasma potential (Vp), have been measured by using Langmuir probe in low-pressure (10-50 mTorr) inductively coupled CHF3/Ar and CHF3/Ar/O2 plasmas generated in the GEC cell. The measurements were made at the center of the plasma, keeping the lower electrode grounded, for various CHF3/Ar and Ar/CHF3/O2 mixtures operating at 10-50 mTorr pressures and two input RF power levels, 200 and 300 W. EEDF data show a strong Druyvesteyn distribution with relatively lower number of low energy electrons as compared to a Maxwell distribution and a large electron population with energies higher than the plasma potential. The results further show that at low CHF3 concentrations (less than 50%) the electron number density remains nearly constant with increase in pressure. At higher CHF3 concentrations, however, it decreases with increase in pressure. Plasma potential and electron temperature increase with decrease in pressure and with increase in CHF3 concentration. An analysis of the above observations and mechanisms will be presented.

  10. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed. PMID:22380224

  11. Long Awaited Fundamental Measurement of the Martian Upper Atmosphere from the Langmuir Probe and Waves Instrument on the MAVEN Mission.

    NASA Astrophysics Data System (ADS)

    Andersson, Laila; Andrews, David; Ergun, Bob; Delory, Greg; Morooka, Michiko; Fowler, Chris; McEnulty, Tess; Weber, Tristan; Eriksson, Anders; Malaspina, David; Crary, Frank; Mitchell, David; McFadden, Jim; Halekas, Jasper; Larson, Davin; Connerney, Jack; Espley, Jared; Eparvies, Frank

    2015-04-01

    Electron temperature and density are critical quantities in understanding an upper atmosphere. Approximately 40 years ago, the Viking landers reached the Martian surface, measuring the first (and only) two temperature profiles during it's descent. With the MAVEN mission arriving at Mars details of the Martian ionosphere can agin be studied by a complete plasma package. This paper investigates the first few months of data from the MAVEN mission when the orbit is below 500 km and around the northern hemisphere's terminator. The fo-cus of this presentation is on the different measure-ments that the Langmuir probe and Waves (LPW) in-strument is making on the MAVEN mission. Some of the LPW highlights that will be presented: (a) the long awaited new the electron temperature profiles; (b) the structures observed on the nightside ionosphere; (c) wave-particle insteractions observed below 500 km; and (d) the observed dusty environment at Mars. This presentation is supported by measurements from the other Particle and Fileds (PF) measurements on MAVEN.

  12. Solar EUV index for aeronomical studies at earth from Langmuir probe photoelectron measurements on the Pioneer Venus orbiter

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Mahajan, K. K.

    1992-01-01

    A solar EUV index for aeronomical studies at earth, obtained from the Langmuir probe measurement of photoelectron current on the Pioneer Venus orbiter, is presented. To examine the potential of E sub EUV as a solar EUV flux index, the behavior of ionospheric parameters f sub 0 E, f sub 0 F1, and f sub 0 F2 are studied at midlatitude stations, and their relationship with E sub EUV and with the 10.7-cm solar radio flux is compared. f sub 0 F1 and f sub 0 F2 are found to be better correlated with E sub EUV than with the 10.7-cm flux. F sub 0 E is better correlated with the 10.7-cm flux, because the 10.7-cm flux is also a proxy for soft X-rays, which are an important ionizing source in the E region. A table is also presented for the EUV index, E sub EUV, for the period February 12, 1979, through most of 1991.

  13. Density Structures Within the Martian Ionosphere from the Langmuir Probe and Waves Instrument on the MAVEN Mission

    NASA Astrophysics Data System (ADS)

    McEnulty, Tess; Andrews, David; Andersson, Laila; Ergun, Robert E.; Delory, Greg T.; Fowler, Chris M.; Morooka, MIchiko W.; Weber, Tristan; Eriksson, Anders I.; Mitchell, David L.; McFadden, James P.; Halekas, Jasper; Larson, Davin; Connerney, Jack; Espley, Jared; Eparvier, Francis G.

    2015-04-01

    MAVEN is the first mission to Mars that has included a full suite of particles and fields instruments, allowing characterization of the plasma environment from the solar wind down to ~125-150 km altitude. These altitudes are below the exobase, and well into the ionosphere. The ionospheric density had not been measured locally down to these altitudes before MAVEN, and previous spacecraft that did measure the density at higher altitudes did not include full particles and fields suites. The Langmuir Probe and Waves (LPW) instrument on MAVEN provides measurements of the plasma frequency that allow the density to be determined within 5%. Since the plasma line is not always present, the LPW instrument was designed to be able to broadcast white noise to stimulate the plasma. This broadcasting feature has proven very successful and for some orbits the plasma line is observed nearly continuously. The cadence of these measurements within the ionosphere allows the density to be determined with a spatial resolution as small as ~8 to ~16 km. In this paper, observations of electron density structures from the first 6 months of operation are presented. During this time period the orbit precessed, so measurements were made both on the dayside and nightside. Observed density structures include variations of almost 2 orders of magnitude within ~40 km along the orbital track below 300 km. Observations of these density structures are presented with supporting measurements from the other particles and fields instruments.

  14. The behavior of the plasmapause at mid-latitudes: ISIS-1 Langmuir probe measurements

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.

    1973-01-01

    Observations of the electron concentration, N sub e, and temperature, T sub e, from the electrostatic probes on the ISIS-1 satellite were used to examine the location and behavior of the plasmapause at about 3000 kilometers altitude in the vicinity of L = 4. At these altitudes, the N sub e measurements are equivalent to measurements of H(+) since the satellite is well into the protonosphere. The plasmapause as is evident as a sharp drop in N sub e by a factor of 10 to 100 as the satellite passes into the polar cap, and a corresponding increase is observed as it enters the plasmasphere on the opposite side of the Earth. An enhancement of T sub e is also observed at the plasmapause, an effect that is most visible at night when the temperatures at latitudes above and below the plasmapause are usually very low. The position of the plasmapause decreases with magnetic activity but is found to be somewhat less sensitive to K sub p than is the equatorial plasmapause. Also unlike its equatorial behavior, the mid-latitude plasmapause exhibits no detectable late afternoon bulge. These differences imply rather complex coupling of the thermal plasma along the field lines that link these two regions of the plasmasphere. An additional factor may be the recently observed axial asymmetry in the geomagnetic field at high altitudes.

  15. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  16. Observed Coupling Between the International Space Station PCU Plasma and a FPMU Langmuir Probe Facilitated by the Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Hartman, William; Koontz, Steven L.

    2010-01-01

    Electrical charging of the International Space Station (ISS) is a matter of serious concern resulting from the possibility of vehicle arcing and electrical shock hazard to crew during extravehicular activity (EVA). A Plasma Contactor Unit (PCU) was developed and integrated into ISS in order to control the ISS floating potential, thereby, minimize vehicle charging and associated hazards. One of the principle factors affecting ISS electrical charging is the ionosphere plasma state (i.e., electron temperature and density). To support ISS electrical charging studies a Floating Potential Monitoring Unit (FPMU) is also integrated into ISS in order to measure the ionosphere properties using Langmuir probes (LP). The FPMU was located on the Starboard side of ISS. The PCU is located near the center of ISS with its plasma exhaust pointed to port. From its integration on ISS in 2006 through November of 2009, the FPMU data exhibited nominal characteristics during PCU operation. On November 21, 2009 the FPMU was relocated from the Starboard location to a new Port location. After relocation significant enhanced noise was observed in both the LP current-voltage sweeps and the derived electron temperature data. The enhanced noise only occurred when the PCU was in discharge and at unique and repeatable locations of the ISS orbit. The cause of this enhanced noise was investigated. It was found that there is coupling occurring between the PCU plasma and the FPMU LP. In this paper we shall 1) present the on-orbit data and the presence of enhanced noise, 2) demonstrate that the coupling of the PCU plasma and the FPMU measurements is geomagnetically organized, 3) show that coupling of the PCU plasma and the FPMU is primarily due to and driven by particle-wave interaction and 4) show that the ionosphere conditions are adequate for Alfven waves to be generated by the PCU plasma.

  17. A particle-in-cell model of the Langmuir probe immersed in Xe plasma under conditions corresponding to those of Hall effect thruster plasma

    NASA Astrophysics Data System (ADS)

    Cenian, Adam; Chernukho, Andrey; Rachubiński, Hubert; Dudeck, Michel

    2014-05-01

    Hall effect thrusters (HETs) are efficient propulsion devices for the station-keeping of geostationary satellites. However, a further efficiency increase requires better knowledge of plasma and plasma-wall interactions. Electric probes are often used for diagnosing HET plasmas but the existing semi-analytical theories, used for the interpretation of probe characteristics, could only be applied with caution. Therefore, in this work a particle-in-cell model of the Langmuir probe immersed in plasma under conditions corresponding to those of HET plasma is developed. It was found that materials with a predominant elastic contribution to secondary electron emission (SEE) will generally lead to lower power deposition on a surface. In the case of inelastic and true SEE processes, the power deposited on a wall depends on the ratio of the sum of secondary electron energies to the electron impact energy. The axial magnetic field also leads to substantial reduction of power deposition on the probe.

  18. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  19. Deriving the characteristics of warm electrons (100-500 eV) in the magnetosphere of Saturn with the Cassini Langmuir probe

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Holmberg, M. K. G.; Wahlund, J.-E.; Lewis, G. R.; Schippers, P.; Coates, A.; Gurnett, D. A.; Waite, J. H.; Dandouras, I.

    2014-12-01

    agreement with the CAPS measurements than the values derived from the proxy technique (Morooka et al., 2009) based on the floating potential of the LP. Both the electron temperature and the density estimates lie outside the classical capabilities of the LP, which are essentially ne > 5 cc and Te < 5 eV at Saturn. This approximate derivation technique may be used in the regions where the cold plasma component is small with an average temperature in the range ~ [ 100 - 500 ] eV, which occurs often in the L range 6.4-9.4 RS when Cassini is off the equator, but may occur anywhere in the magnetosphere. This technique may be all the more interesting since the CAPS instrument was shut down, and, though it cannot replace the CAPS instrument, the technique can provide useful information about the electron moments, with probably even better estimates than CAPS in some cases (when the plasma is strongly anisotropic). Finally, a simple modeling approach allows us to predict the impact of the energetic contributions on LP measurements in any plasma environment whose characteristics (density, temperature, etc.) are known. LP observations may thus be influenced by warm electrons in several planetary plasma regions in the solar system, and ambient magnetospheric electron density and temperature could be estimated in some of them (e.g. around several galilean satellites) through the use of Langmuir probes.

  20. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  1. Langmuir-Blodgett films of a pyrrole and ferrocene mixed surfactant system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Clough, S.; Tripathy, S.; Hale, P.D.; Inagaki, T.; Skotheim, T.A.; Okamoto, Y. . Dept. of Chemistry; Brookhaven National Lab., Upton, NY; Polytechnic Univ., Brooklyn, NY . Dept. of Chemistry)

    1989-01-01

    The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization, it appears, leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization. Near Edge X-Ray Absorption Fine Structure (NEXAFS) studies revealed that highly ordered multilayer structures are being formed. Electrochemical studies have been initiated to determine the feasibility of these films in molecular electronic device applications. 13 refs., 6 figs., 1 tab.

  2. Response of Venus exospheric temperature measured by neutral mass spectrometer to solar EUV flux measured by Langmuir probe on the Pioneer Venus orbiter

    NASA Technical Reports Server (NTRS)

    Mahajan, K. K.; Kasprzak, W. T.; Brace, L. H.; Niemann, H. B.; Hoegy, W. R.

    1990-01-01

    The photoelectron current from the Pioneer Venus Langmuir probe has provided measurements of the total flux of solar EUV photons at Venus since 1979. The neutral oxygen scale height measured by the orbiter neutral mass spectrometer has permitted the exospheric temperature to be derived during the same mission. In this paper, the EUV observations are used to examine the response of exospheric temperature to changes in solar activity, primarily those related to solar rotation. It is found that the dayside exospheric temperature quite faithfully tracks variations in the EUV flux. Comparison is also made with the earth-based solar activity index F10.7 adjusted to the position of Venus. This index varied from 142 to 249 flux units during the period of measurements. The exospheric temperature is better correlated with EUV flux than with the 10.7-cm solar radio flux.

  3. Langmuir Probe Measurements Within the Discharge Channel of the 20-kW NASA-300M and NASA-300MS Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Haag, Thomas W.; Kamhawi, Hani

    2013-01-01

    NASA is presently developing a high-power, high-efficiency, long-lifetime Hall thruster for the Solar Electric Propulsion Technology Demonstration Mission. In support of this task, studies have been performed on the 20-kW NASA-300M Hall thruster to aid in the overall design process. The ability to incorporate magnetic shielding into a high-power Hall thruster was also investigated with the NASA- 300MS, a modified version of the NASA-300M. The inclusion of magnetic shielding would allow the thruster to push existing state-of-the-art technology in regards to service lifetime, one of the goals of the Technology Demonstration Mission. Langmuir probe measurements were taken within the discharge channels of both thrusters in order to characterize differences at higher power levels, as well as validate ongoing modeling efforts using the axisymmetric code Hall2De. Flush-mounted Langmuir probes were also used within the channel of the NASA-300MS to verify that magnetic shielding was successfully applied. Measurements taken from 300 V, 10 kW to 600 V, 20 kW have shown plasma potentials near anode potential and electron temperatures of 4 to 12 eV at the walls near the thruster exit plane of the NASA-300MS, verifying magnetic shielding and validating the design process at this power level. Channel centerline measurements on the NASA-300M from 300 V, 10 kW to 500 V, 20 kW show the electron temperature peak at approximately 0.1 to 0.2 channel lengths upstream of the exit plane, with magnitudes increasing with discharge voltage. The acceleration profiles appear to be centered about the exit plane with a width of approximately 0.3 to 0.4 channel lengths. Channel centerline measurements on the NASA-300MS were found to be more challenging due to additional probe heating. Ionization and acceleration zones appeared to move downstream on the NASA-300MS compared to the NASA-300M, as expected based on the shift in peak radial magnetic field. Additional measurements or alternative

  4. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  5. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core. PMID:24387432

  6. Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

    SciTech Connect

    Oudini, N.; Sirse, N.; Ellingboe, A. R.; Benallal, R.; Taccogna, F.; Bendib, A.

    2015-07-15

    This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

  7. Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Borodkina, I.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Meigs, A.; Moulton, D.; O'Mullane, M.; Stamp, M.; contributors, JET

    2016-02-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (˜10 μs) allowing very precise description of the W sputtering source during ELMs.

  8. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  9. New insights on boundary plasma turbulence and the quasi-coherent mode in Alcator C-Mod using a Mirror Langmuir Probe

    SciTech Connect

    LaBombard, B.; Golfinopoulos, T.; Terry, J. L.; Brunner, D.; Davis, E.; Greenwald, M.; Hughes, J. W.

    2014-05-15

    A new “Mirror Langmuir Probe” diagnostic, combined with a double-coil scanning magnetic probe, is used to interrogate Alcator C-Mod's quasi-coherent mode (QCM) with unprecedented detail. In ohmic EDA H-modes, the QCM is found to reside in a region of positive radial electric field, with a radial width (∼3 mm) that spans open and closed field line regions. Large amplitude, in-phase sinusoidal bursts (∼100 kHz) in density, electron temperature, and plasma potential are observed, with potential lagging density by ∼16°, producing an outward radial transport velocity of ∼10 m/s. Mode propagation corresponds to the sum of local E × B and electron diamagnetic drift velocities. Poloidal magnetic field fluctuations project to current filaments carrying peak current densities of ∼25 A/cm{sup 2}. An evaluation of parallel electron force balance (Ohm's law) over a fluctuation cycle indicates a significant electromotive component. Interchange drive is also a contributor in the current continuity (vorticity) equation. Thus, the QCM is primarily a separatrix-spanning electron drift-wave with interchange and electromagnetic contributions.

  10. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  11. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  12. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    SciTech Connect

    Boedo, J. A. Rudakov, D. L.; Myra, J. R.; D'Ippolito, D. A.; Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A.; Soukhanovskii, V. A.; Ahn, J. W.; Canik, J.; Crocker, N.

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}∼ 1.3 MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ≈4×10{sup 21} s{sup −1} in L-mode and are suppressed to ≈0.2×10{sup 21} s{sup −1} in H mode (80%–90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 4–10 cm in diameter, appear first ∼2 cm inside the LCFS at a rate of ∼1×10{sup 21} s{sup −1} and leave that region with radial speeds of ∼3–5 km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ∼150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  13. Cross Comparison of Electron Density and Electron Temperature Observations from the DICE CubeSat Langmuir Probes and the Millstone Hill Incoherent Scatter Radar.

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Erickson, P. J.; Crowley, G.; Pilinski, M.; Barjatya, A.; Fish, C. S.

    2014-12-01

    The Dynamic Ionosphere CubeSat Experiment (DICE) consists of two identical 1.5U CubeSats deployed simultaneously from a single P-POD (Poly Picosatellite Orbital Deployer) into the same orbit. Several observational campaigns were planned between the DICE CubeSats and the mid-latitude Millstone Hill Incoherent Scatter Radar (ISR) in order to calibrate the DICE measurements of electron density and electron temperature. In this presentation, we compare in-situ observations from the Dynamic Ionosphere CubeSat Experiment (DICE) and from the Millstone Hill ISR. Both measurements are cross-calibrated against an assimilative model of the global ionospheric electron density. The electron density and electron temperature were obtained for three Millstone Hill DICE overflights (2013-03-12, 2013-03-15, 2013-03-17). We compare the data during quiet and geomagnetically disturbed conditions and find evidence of an storm enhanced density (SED) plume in the topside ionosphere on 2013-03-17 at 19? UTC. During this disturbed interval, American longitude sector high density plasma was convected near 15 SLT towards the noontime cusp. DICE was selected for flight under the NSF "CubeSat-based Science Mission for Space Weather and Atmospheric Research" program. The DICE twin satellites were launched on a Delta II rocket on October 28, 2011. The satellites are flying in a "leader-follower" formation in an elliptical orbit which ranges from 820 to 400 km in altitude. Each satellite carries a fixed-bias DC Langmuir Probe (DCP) to measure in-situ ionospheric plasma densities and a science grade magnetometer to measure DC and AC geomagnetic fields. The purpose of these measurements was to permit accurate identification of storm-time features such as the SED bulge and plume. The mission team combines expertise from ASTRA, Utah State University/Space Dynamics Laboratory (USU/SDL), and Embry-Riddle Aeronautical University. In this paper we present a comparison of data from DICE and Millstone Hill

  14. Different Adsorption Behavior of Rare Earth and Metallic Ion Complexes on Langmuir Mono layers Probed by Sum-Frequency Generation Spectroscopy

    SciTech Connect

    Song, Woongmo; Vaknin, David; Kim, Doseok

    2013-02-25

    Adsorption behavior of counterions under a Langmuir monolayer was investigated by sum-frequency generation (SFG) spectroscopy. By comparing SFG spectra of arachidic acid (AA) Langmuir monolayer/water interface with and without added salt, it was found that the simple trivalent cation La3+ adsorbed on AA monolayer only when the carboxylic headgroups are charged (deprotonated), implying that counterion adsorption is induced by Coulomb interaction. On the other hand, metal hydroxide complex Fe(OH)3 adsorbed even on a charge-neutral AA monolayer, indicating that the adsorption of iron hydroxide is due to chemical interaction such as covalent or hydrogen bonding to the headgroup of the molecules at the monolayer.

  15. Biopolymer-induced calcium phosphate scaling in membrane-based water treatment systems: Langmuir model films studies.

    PubMed

    Dahdal, Yara N; Oren, Yoram; Schwahn, Dietmar; Pipich, Vitaliy; Herzberg, Moshe; Ying, Wang; Kasher, Roni; Rapaport, Hanna

    2016-07-01

    Biofouling and scaling on reverse osmosis (RO) or nanofiltration (NF) membranes during desalination of secondary and tertiary effluents pose an obstacle that limits the reuse of wastewater. In this study we explored the mineral scaling induced by biopolymers originated from bacterial biofilms: bovine serum albumin (BSA), fibrinogen, lysozyme and alginic acid, as well as an extracts of extracellular polymeric substances (EPS) from bio-fouled RO membranes from wastewater treatment facility. Mineralization studies were performed on Langmuir films of the biopolymers deposited at the interface of a solution simulating RO desalination of secondary-treated wastewater effluents. All studied biopolymers and EPS induced heterogeneous mineralization of mainly calcium phosphate. Using IR spectroscopy coupled with systematic quantitative analysis of the surface pressure versus molecular-area isotherms, we determined the mineralization tendencies of the biopolymers to be in the order of: fibrinogen>lysozyme>BSA>alginic acid. The biopolymers and EPS studied here were found to be accelerators of calcium-phosphate mineralization. This study demonstrates the utilization of Langmuir surface-pressure area isotherms and a model solution in quantitatively assessing the mineralization tendencies of various molecular components of EPS in context of membrane-based water treatment systems. PMID:27015648

  16. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  17. Langmuir probe measurements and mass spectrometry of plasma plumes generated by laser ablation of La{sub 0.4}Ca{sub 0.6}MnO{sub 3}

    SciTech Connect

    Chen, Jikun; Lippert, Thomas Ojeda-G-P, Alejandro; Stender, Dieter; Schneider, Christof W.; Wokaun, Alexander; Lunney, James G.

    2014-08-21

    The plasma formed in vacuum by UV nanosecond laser ablation of La{sub 0.4}Ca{sub 0.6}MnO{sub 3} in the fluence range of 0.8 to 1.9 J cm{sup −2} using both Langmuir probe analysis and energy-resolved mass spectrometry has been studied. Mass spectrometry shows that the main positive ion species are Ca{sup +}, Mn{sup +}, La{sup +}, and LaO{sup +}. The Ca{sup +} and Mn{sup +} energy distributions are quite broad and lie in the 0–100 eV region, with the average energies increasing with laser fluence. In contrast, the La{sup +} and LaO{sup +} distributions are strongly peaked around 10 eV. The net time-of-arrival signal derived from the measured positive ion energy distributions is broadly consistent with the positive ion signal measured by the Langmuir probe. We also detected a significant number of O{sup −} ions with energies in the range of 0 to 10 eV. The Langmuir probe was also used to measure the temporal variation of the electron density and temperature at 6 cm from the ablation target. In the period when O{sup −} ions are found at this position, the plasma conditions are consistent with those required for significant negative oxygen ion formation, as revealed by studies on radio frequency excited oxygen plasma.

  18. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.

    PubMed

    Herman, Daniel A; Gallimore, Alec D

    2008-01-01

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8 x 10(12) cm(-3) on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates. PMID:18248026

  19. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system

    SciTech Connect

    Herman, Daniel A.; Gallimore, Alec D.

    2008-01-15

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8x10{sup 12} cm{sup -3} on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  20. Triple probe signal detection electronics for systems lacking a well defined ground.

    PubMed

    Compeau, R; Gilmore, M; Watts, C

    2008-10-01

    Triple probes have been used to measure plasma parameters of low temperature and edge plasmas, yielding simultaneous measurements of electron temperature, ion density, and floating potential. Unlike standard Langmuir and double probe techniques, there is no requirement to sweep the probe potential relative to the plasma, thus allowing fast time resolution. However, in some plasma systems "ground" is not well defined with respect to a known ground, may vary strongly in time, or may be at an inconveniently high voltage. The resulting high plasma (or floating) potential requires common mode rejection before the signals can be digitized. A signal detection circuit constructed from inexpensive operational amplifiers and that makes use of a novel floating bias generation configuration is described. PMID:19044612

  1. Triple probe signal detection electronics for systems lacking a well defined ground

    SciTech Connect

    Compeau, R.; Gilmore, M.; Watts, C.

    2008-10-15

    Triple probes have been used to measure plasma parameters of low temperature and edge plasmas, yielding simultaneous measurements of electron temperature, ion density, and floating potential. Unlike standard Langmuir and double probe techniques, there is no requirement to sweep the probe potential relative to the plasma, thus allowing fast time resolution. However, in some plasma systems 'ground' is not well defined with respect to a known ground, may vary strongly in time, or may be at an inconveniently high voltage. The resulting high plasma (or floating) potential requires common mode rejection before the signals can be digitized. A signal detection circuit constructed from inexpensive operational amplifiers and that makes use of a novel floating bias generation configuration is described.

  2. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  3. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  4. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  5. Characterization of Fiber Optic CMM Probe System

    SciTech Connect

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  6. Comment on the paper ‘The impact of Langmuir probe geometries on electron current collection and the integral relation for obtaining electron energy distribution functions’

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Czarnetzki, Uwe

    2016-08-01

    A paper by El Saghir and Shannon (2012 Plasma Sources Sci. Technol. 21 025003) raises the question about the validity of the widely-used Druyvesteyn formula for obtaining the electron energy distribution function by cylindrical probes. They conclude that there are deviations between the Druyvesteyn formula for cylindrical and for spherical probes. In this comment this conclusion is questioned and the correct expressions are derived. It is shown that no such difference exists when all three velocity components are correctly accounted for. Furthermore, the disturbance to the plasma introduced by the probe is estimated.

  7. Investigating the role of hydrogen in silicon deposition using an energy-resolved mass spectrometer and a Langmuir probe in an Ar/H{sub 2} radio frequency magnetron discharge

    SciTech Connect

    Mensah, S. L.; Naseem, Hameed H.; Abu-Safe, Husam; Gordon, M. H.

    2012-07-15

    The plasma parameters and ion energy distributions (IED) of the dominant species in an Ar-H{sub 2} discharge are investigated with an energy resolved mass spectrometer and a Langmuir probe. The plasmas are generated in a conventional magnetron chamber powered at 150 W, 13.56 MHz at hydrogen flow rates ranging from 0 to 25 sccm with a fixed argon gas flow rate of 15 sccm. Various H{sub n}{sup +}, SiH{sub n}{sup +}, SiH{sub n} fragments (with n = 1, 2, 3) together with Ar{sup +} and ArH{sup +} species are detected in the discharge. The most important species for the film deposition is SiH{sub n} (with n = 0, 1, 2). H fragments affect the hydrogen content in the material. The flux of Ar{sup +} decreases and the flux of ArH{sup +} increases when the hydrogen flow rate is increased; however, both fluxes saturate at hydrogen flow rates above 15 sccm. Electron density, n{sub e}, electron energy, T{sub e}, and ion density, n{sub i}, are estimated from the Langmuir probe data. T{sub e} is below 1.2 eV at hydrogen flow rates below 8 sccm, and about 2 eV at flow rates above 8 sccm. n{sub e} and n{sub i} decrease with increased hydrogen flow but the ratio of n{sub i} to n{sub e} increases. The formation of H{sup +} ions with energies above 36 eV and electrons with energies greater than 2 eV contributes to the decrease in hydrogen content at hydrogen flow rates above 8 sccm. Analysis of the IEDs indicates an inter-dependence of the species and their contribution to the thin film growth and properties.

  8. Saturn Probe: Revealing Solar System Origins

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  9. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  10. Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach.

    PubMed

    Khuzwayo, Z; Chirwa, E M N

    2015-12-30

    This study investigated, modelled and simulated the influence of multi-chlorohalogenation in heterogeneous photocatalytic degradation of substituted phenols (pentachlorophenol (PCP), trichlorophenol (TCP), dichlorophenol (DCP), and monochlorophenol (CP)). The Langmuir-Hinshelwood approach was applied to determine oxidation kinetics. Aquasim 2.0 computational software was used to model, simulate and estimate model parameters of the different chlorophenols. Chemical adsorption equilibrium isotherms for the four chlorophenols and phenol were studied and modelled for adsorption onto titanium dioxide (TiO2) semiconductor catalyst. Langmuir adsorption parameters were determined and used to calculate adsorption constant and maximum adsorption capacity. The adsorption of chloride phenolics onto titanium dioxide catalyst increased in the order of 4 - CP < DCP < Ph < TCP < PCP. Photocatalytic studies analysed the efficiency of oxidation and found improved degradation with higher chloride substituted phenolics in the order of PCP > TCP > DCP ≥ 4 - CP. Photocatalytic parameters were calculated and estimated along with sensitivity and uncertainty analyses. PMID:26223020

  11. Galileo probe battery system -- An update

    SciTech Connect

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    1996-11-01

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisions made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.

  12. Concepts in strong Langmuir turbulence theory

    SciTech Connect

    DuBois, D.F.; Rose, H.A.

    1990-01-01

    Some of the basic concepts of strong Langmuir turbulence (SLT) theory are reviewed. In SLT system, a major fraction of the turbulent energy is carried by local, time-dependent, nonlinear excitations called cavitons. Modulational instability, localization of Langmuir fields by density fluctuations, caviton nucleation, collapse, and burnout and caviton correlations are reviewed. Recent experimental evidence will be presented for SLT phenomena in the interaction of powerful HF waves with the ionosphere and in laser-plasma interaction experiments. 38 refs., 11 figs.

  13. Gravity Probe B gyroscope readout system

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.

    2015-11-01

    We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

  14. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  15. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  16. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  17. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    NASA Astrophysics Data System (ADS)

    Samuelson, L.; Rahman, A. K. M.; Puglia, G. P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X. Q.; Skotheim, T. A.; Okamoto, Y.

    Novel, self-assembled materials were designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for 2-D magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed.

  18. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Puglia, G.P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X.Q.; Skotheim, T.A.; Okamoto, Y.

    1989-01-01

    Novel, self-assembled materials have been designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for two-dimensional magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed. 8 refs., 4 figs., 1 tab.

  19. Gravity Probe B data system description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.

    2015-11-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.

  20. Local thermoelectric probes of nonequilibrium quantum systems

    NASA Astrophysics Data System (ADS)

    Stafford, Charles

    A theory of local temperature and voltage measurement in an interacting quantum system far from equilibrium is developed. We prove that a steady-state measurement by a floating thermoelectric probe is unique if it exists. Furthermore, we show that a solution exists provided there is no net local population inversion. In the case of population inversion, the system may be assigned a (unique) negative temperature. An expression for the local entropy of a nonequilibrium quantum system is introduced that, together with the local temperature and voltage, allows for a complete analysis of the local thermodynamics of the thermoelectric processes in the system. The Clausius form of the second law and the third law are shown to hold exactly locally, while the zeroth and first laws are shown to be valid to leading order in the Sommerfeld expansion. The local quantum thermodynamics underlying the enhancement of thermoelectricity by quantum interference is discussed. Work supported by the U.S. Department of Energy, Office of Science, Award No. DE-SC0006699.

  1. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    PubMed

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats. PMID:24615733

  2. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  3. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by

  4. Flexible temperature probe for biological systems

    NASA Technical Reports Server (NTRS)

    Haro, P. J.; Winget, C.; Beljan, J. R.

    1973-01-01

    Probe is sufficiently flexible so that it can be worn comfortably for long periods of time, but relatively rigid to permit easy insertion. Body and electrical leads of small thermistor are imbedded in flexible fluorosilicone matrix contained in vinyl plastic tubing.

  5. [A positioning method of ultrasound probe in MR system].

    PubMed

    Wei, Bo; Shen, Guofeng; Chen, Sheng; Zhu, Mengyuan; Su, Zhiqiang; Chen, Yazhu

    2013-05-01

    This paper provides a method of positioning the ultrasound probe in MR system. Machining 6 slots or cylinder perpendicular to the ultrasound probe surface on the edge of ultrasound probe as markers, 12 central cylinder ends are chosen as positioning points. By calculating these positioning points' coordinates in MR's coordinate system, the coordinate transformation between the ultrasound and MR coordinate system can be computed. Furthermore, by taking advantage of redundant information, calculating errors can be reduced and the precision can be improved. PMID:24015606

  6. Phenomenological Modeling for Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  7. Characterizing Water Quenching Systems with a Quench Probe

    NASA Astrophysics Data System (ADS)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  8. A Universal Spring-Probe System for Reliable Probing of Electrochemical Lab-on-a-Chip Devices

    PubMed Central

    Lee, Moon-Keun; Lee, Tae Jae; Choi, Ho Woon; Shin, Su Jeong; Park, Jung Youn; Lee, Seok Jae

    2014-01-01

    For achieve sensitivity in lab-on-a-chip electrochemical detection, more reliable probing methods are required, especially for repeated measurements. Spring-probes are a promising candidate method which can replace needle-like probes and alligator clips that usually produce scratches on the surface of gold electrodes due to the strong physical contacts needed for electrochemical measurements. The superior reliability of amperometric measurements by a spring-probe system was compared with results by conventional probing methods. We demonstrated that a universal spring-probe system would be potentially suitable to achieve high performance in lab-on-a-chip devices using electrochemical detection. PMID:24406857

  9. Enhancements to the Compact Helical System fast ion loss probe

    SciTech Connect

    Darrow, D.S.; Isobe, M.; Kondo, T.; Sasao, M.; the CHS Group

    1999-01-01

    A scintillator-based fast ion loss probe has been used to measure 40 keV neutral beam ion loss from Compact Helical System plasmas. Modifications have recently been made to the probe to expand the range of gyroradius covered and to increase the probe acceptance at low pitch angles. In addition, a lamp has been installed inside the probe to facilitate calibration of the scintillator position within the field of view of the video camera. Finally, a Faraday cup structure, integral with the scintillator, has been added to allow direct measurement of the ion current to the probe. This last feature allows much easier absolute calibration of the diagnostic. {copyright} {ital 1999 American Institute of Physics.}

  10. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ∼4 × 10{sup 19} m{sup −2} s{sup −1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  11. Study of Langmuir and Langmuir-Blodgett Thin films

    NASA Astrophysics Data System (ADS)

    Goodwin, Ross; Prayaga, Chandra; Wade, Aaron

    Arachidic Acid, Cholesterol, and Stearic Acid thin films were created and studied utilizing the Langmuir method in order to obtain a single molecule or monomolecular layer out of a desired substance at an air-water interface. The phase transitions are observed by measuring the surface pressure vs. area isotherms. Langmuir-Blodgett (LB) films were created on a prepared substrate. The LB film structures were then studied using X-ray Diffraction, and Raman Spectroscopy. UWF Office of Undergraduate Research Project Award, UWF ITEP-Technology Fee Project Award, UWF Quality Enhancement Plan Award.

  12. Potential measurements with heavy ion beam probe system on LHD.

    PubMed

    Shimizu, A; Ido, T; Nakamura, S; Toi, K; Nishiura, M; Kato, S

    2010-10-01

    The heavy ion beam probe system in the Large Helical Device (LHD) was improved as follows. At first, the additional new sweeper was installed into the diagnostic port to extend the observable region. By using this sweeper, the potential profile was measured in a wider minor radius range than in previous experiments, in the case of outward shifted magnetic configuration of LHD. Next, the real time control system was installed to control the probe beam orbit for measuring the potential in plasma with large plasma current. In this system, a digital signal processor was used to control the probe beam in real time. The system worked well in the fixed position observation mode. In the sweeping mode for profile measurement, this control system became unstable. The details of this system and the experimental results are reported in this article. PMID:21033999

  13. Potential measurements with heavy ion beam probe system on LHD

    SciTech Connect

    Shimizu, A.; Nishiura, M.; Kato, S.; Ido, T.; Toi, K.; Nakamura, S.

    2010-10-15

    The heavy ion beam probe system in the Large Helical Device (LHD) was improved as follows. At first, the additional new sweeper was installed into the diagnostic port to extend the observable region. By using this sweeper, the potential profile was measured in a wider minor radius range than in previous experiments, in the case of outward shifted magnetic configuration of LHD. Next, the real time control system was installed to control the probe beam orbit for measuring the potential in plasma with large plasma current. In this system, a digital signal processor was used to control the probe beam in real time. The system worked well in the fixed position observation mode. In the sweeping mode for profile measurement, this control system became unstable. The details of this system and the experimental results are reported in this article.

  14. Virtual probing system for medical volume data

    NASA Astrophysics Data System (ADS)

    Xiao, Yongfei; Fu, Yili; Wang, Shuguo

    2007-12-01

    Because of the huge computation in 3D medical data visualization, looking into its inner data interactively is always a problem to be resolved. In this paper, we present a novel approach to explore 3D medical dataset in real time by utilizing a 3D widget to manipulate the scanning plane. With the help of the 3D texture property in modern graphics card, a virtual scanning probe is used to explore oblique clipping plane of medical volume data in real time. A 3D model of the medical dataset is also rendered to illustrate the relationship between the scanning-plane image and the other tissues in medical data. It will be a valuable tool in anatomy education and understanding of medical images in the medical research.

  15. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  16. Dynamic Force Sensing Using an Optically Trapped Probing System.

    PubMed

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2011-12-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe-sample interaction force in real time, along with the estimation of the probing system's trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  17. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  18. Cavitating Langmuir turbulence in the terrestrial aurora.

    PubMed

    Isham, B; Rietveld, M T; Guio, P; Forme, F R E; Grydeland, T; Mjølhus, E

    2012-03-01

    Langmuir cavitons have been artificially produced in Earth's ionosphere, but evidence of naturally occurring cavitation has been elusive. By measuring and modeling the spectra of electrostatic plasma modes, we show that natural cavitating, or strong, Langmuir turbulence does occur in the ionosphere, via a process in which a beam of auroral electrons drives Langmuir waves, which in turn produce cascading Langmuir and ion-acoustic excitations and cavitating Langmuir turbulence. The data presented here are the first direct evidence of cavitating Langmuir turbulence occurring naturally in any space or astrophysical plasma. PMID:22463417

  19. Reciprocating and fixed probe measurements of n{sub e} and T{sub e} in the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Moyer, R.A.; Cuthbertson, J.W.; Buchenauer, D.A.; Carlstrom, T.N.; Hill, D.N.; Ulrickson, M.

    1996-11-01

    This paper describes divertor density and temperature measurements using both a new reciprocating Langmuir probe (XPT-RCP) which plunges vertically above the divertor floor up to the X-point height and swept, single, Langmuir probes fixed horizontally across the divertor floor. These types of measurements are important for testing models of the SOL and divertor which then are used to design plasma facing components in reactor size tokamaks. This paper presents an overview of the new divertor probe measurements and how they compare with the new divertor Thomson scattering system. The fast time response of the probe measurements allows detailed study of ELMs.

  20. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  1. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  2. Probing CPT violation in B systems

    SciTech Connect

    Kundu, Anirban; Patra, Sunando Kumar; Nandi, Soumitra

    2010-04-01

    We discuss how a possible violation of the combined symmetry CPT in the B meson system can be investigated at the LHC. We show how a tagged and an untagged analysis of the decay modes of both B{sub d} and B{sub s} mesons can lead not only to a possible detection of a CPT-violating new physics but also to an understanding of its precise nature. The implication of CPT violation to a large mixing phase in the B{sub s} system is also discussed.

  3. Dichromatic Langmuir waves in degenerate quantum plasma

    SciTech Connect

    Dubinov, A. E. Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  4. Observation of the saturation of Langmuir waves driven by ponderomotive force in a large scale plasma

    SciTech Connect

    Kirkwood, R. K.; Moody, J. D.; MacGowan, B. J.; Glenzer, S. H.; Kruer, W. L.; Estabrook, K. G.; Wharton, K. B.; Williams, E. A.; Berger, R. L.

    1997-06-22

    We report the observation of amplification of a probe laser beam (I {le} 1 {times} 10{sup 14} W/cm{sup 2}) in a large scale ({approximately} 1 mm) plasma by interaction with a pumping laser beam (I = 2 {times} 10{sup 15} W/cm{sup 2}) and a stimulated Langmuir wave. When the plasma density is adjusted to allow the Langmuir wave dispersion to match the difference frequency and wave number of the two beams, amplification factors as high as {times} 2.5 result. Interpretation of this amplification as scattering of pump beam energy by the Langmuir wave that is produced by the ponderomotive force of the two beams, allows the dependence of Langmuir wave amplitude on ponderomotive force to be measured. It is found that the Langmuir wave amplitude saturates at a level that depends on ion wave damping, and is generally consistent with secondary ion wave instabilities limiting its growth. 20 refs., 4 figs.

  5. Note: Folded optical system for narrow forward looking probe

    SciTech Connect

    Hou, Hsuan-Chao; Hah, Dooyoung; Kim, Jeonghwan; Feldman, M.

    2014-02-15

    An optical system is described in which a laser beam makes three passes through a single graded index lens, forming a focus along the optic axis. It has important applications in endoscopic probes, where the forward looking characteristic permits the avoidance of obstacles and the narrow structure makes it minimally invasive.

  6. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  7. Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems

    PubMed Central

    Lebedev, Artem Y.; Cheprakov, Andrei V.; Sakadžić, Sava; Boas, David A.; Wilson, David F.; Vinogradov, Sergei A.

    2009-01-01

    Oxygen levels in biological systems can be measured by the phosphorescence quenching method using probes with controllable quenching parameters and defined biodistributions. We describe a general approach to the construction of phosphorescent nanosensors with tunable spectral characteristics, variable degrees of quenching, and a high selectivity for oxygen. The probes are based on bright phosphorescent Pt and Pd complexes of porphyrins and symmetrically π-extended porphyrins (tetrabenzoporphyrins and tetranaphthoporphyrins). π-Extension of the core macrocycle allows tuning of the spectral parameters of the probes in order to meet the requirements of a particular imaging application (e.g., oxygen tomography versus planar microscopic imaging). Metalloporphyrins are encapsulated into poly(arylglycine) dendrimers, which fold in aqueous environments and create diffusion barriers for oxygen, making it possible to regulate the sensitivity and the dynamic range of the method. The periphery of the dendrimers is modified with poly(ethylene glycol) residues, which enhance the probe’s solubility, diminish toxicity, and help prevent interactions of the probes with the biological environment. The probe’s parameters were measured under physiological conditions and shown to be unaffected by the presence of biomacromolecules. The performance of the probes was demonstrated in applications, including in vivo microscopy of vascular pO2 in the rat brain. PMID:20072726

  8. Heavy ion beam probe systems for tight aspect ratio tokamaks

    SciTech Connect

    Melnikov, A.V.; Zimeleva, L.G.; Krupnik, L.I.; Nedzelskij, I.S.; Trofimenko, Y.V.; Minaev, V.B.

    1997-01-01

    We discuss the specific features of the application of heavy ion beam probe (HIBP) systems to tight aspect ratio tokamaks. We present and compare the HIBP projects for the TUMAN-3, GLOBUS, and COMPASS, where the inner part of the plasma is not available for regular chord diagnostics, so the HIBP becomes very desirable. All existing tight aspect ratio facilities and projects have a low (less than 1.9 T) toroidal field that requires a comparatively low beam energy range. The natural elongation and triangularity in tight aspect ratio tokamaks require an accurate calculation of the three-dimensional magnetic field for probing optimization. In comparison with traditional tokamaks, the detector grids have a wider energy interval. In general, the trajectories and detector grids for tight aspect ratio tokamaks become similar to the stellarator ones. Traditional and new probing schemes are suggested and discussed. {copyright} {ital 1997 American Institute of Physics.}

  9. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90

  10. Impact of science objectives and requirements on probe mission and system design

    NASA Technical Reports Server (NTRS)

    Ledbetter, K. W.

    1974-01-01

    Problem areas in probe science technology are discussed that require a solution before probe systems can actually be designed. Considered are the effects of the model atmospheres on probe design; secondly, the effects of implementing the requirements to locate and measure the clouds and, trade-offs between descent sampling and measurement criteria as they affect probe system design.

  11. Development progress of the Materials Analysis and Particle Probe.

    PubMed

    Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques. PMID:25430248

  12. Development progress of the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  13. Development progress of the Materials Analysis and Particle Probe

    SciTech Connect

    Lucia, M. Kaita, R.; Majeski, R.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.; Bedoya, F.; Allain, J. P.

    2014-11-15

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  14. Multi-function diamond film fiber optic probe and measuring system employing same

    DOEpatents

    Young, J.P.

    1998-11-24

    A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.

  15. Multi-function diamond film fiberoptic probe and measuring system employing same

    DOEpatents

    Young, Jack P.

    1998-01-01

    A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  16. Probe measurements in ion-beam plasma

    SciTech Connect

    Dudin, S.V.

    1994-12-31

    The particularities of the electric probe measurements in the ion-beam plasma (IBP) have been investigated. To find the electron density n{sub e} and temperature T{sub c} as well as electron energy distribution it is necessary to separate electron current from full probe current, because ion part of this current is often large enough to mask the electron part. According to collisionless probe theory, radius of ion layer in strongly non-isothermal plasma (as in their case) and consequently the ion current are determined by Child`s law. However, at presence of ion beam with high enough energy {var_epsilon}{sub b} >> e{var_phi}{sub p}, this law is broken. The author has found the dependence of Langmuir probe ion current I{sub i} on probe potential {var_phi}{sub p} at presence of IB. The constant ion density approach was used in cylindrical and spherical geometry of the probe layer. Dependence of ion current founded experimentally accords with Child`s law when the probe is placed outside the beam and linear--within the beam. Application of only the chemical Langmuir probe is insufficient for energoanalysis of IBP electrons because of ion current interference. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5mm) and two-grid energoanalyzer was used. Design and parameters of the two-grid analyzer are presented. Measuring system is described for determination of electron energy distribution function in low temperature plasma by double differentiation of the electric probe volt-ampere characteristic by modulation method.

  17. Child-Langmuir flow with periodically varying anode voltage

    SciTech Connect

    Rokhlenko, A.

    2015-02-15

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed by a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance.

  18. Evaluation of the NDP (neutron diagnostic probe) system

    SciTech Connect

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  19. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  20. Excitation of electron Langmuir frequency harmonics in the solar atmosphere

    SciTech Connect

    Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.

    2013-05-15

    An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

  1. On the use of Linearized Langmuir Equations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most commonly used models for describing solute sorption to soils is the Langmuir model. Because the Langmuir model is nonlinear, fitting the model to sorption data requires that the model be solved iteratively using an optimization program. To avoid the use of optimization programs, a li...

  2. Limitations to Using Linearized Langmuir Equations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most commonly used models for describing solute sorption to soils is the Langmuir model. Because the Langmuir model is nonlinear, fitting the model to sorption data requires that the model be solved iteratively using an optimization program. To avoid the use of optimization programs, a li...

  3. Probing TRAPPIST-1-like Systems with K2

    NASA Astrophysics Data System (ADS)

    Demory, Brice-Olivier; Queloz, Didier; Alibert, Yann; Gillen, Ed; Gillon, Michael

    2016-07-01

    The search for small planets orbiting late M dwarfs holds the promise of detecting Earth-size planets for which their atmospheres could be characterized within the next decade. The recent discovery of TRAPPIST-1 entertains hope that these systems are common around hosts located at the bottom of the main sequence. In this Letter, we investigate the ability of the repurposed Kepler mission (K2) to probe planetary systems similar to TRAPPIST-1. We perform a consistent data analysis of 189 spectroscopically confirmed M5.5 to M9 late M dwarfs from Campaigns 1–6 to search for planet candidates and inject transit signals with properties matching TRAPPIST-1b and c. We find no transiting planet candidates across our K2 sample. Our injection tests show that K2 is able to recover both TRAPPIST-1 planets for 10% of the sample only, mainly because of the inefficient throughput at red wavelengths resulting in Poisson-limited performance for these targets. Increasing injected planetary radii to match GJ 1214b’s size yields a recovery rate of 70%. The strength of K2 is its ability to probe a large number of cool hosts across the different campaigns, out of which the recovery rate of 10% may turn into bona fide detections of TRAPPIST-1-like systems within the next two years.

  4. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  5. Healing of Defects at the Interface of Nematic Liquid Crystals and Structured Langmuir-Blodgett Monolayers

    NASA Astrophysics Data System (ADS)

    Petit-Garrido, Núria; Trivedi, Rahul P.; Ignés-Mullol, Jordi; Claret, Josep; Lapointe, Clayton; Sagués, Francesc; Smalyukh, Ivan I.

    2011-10-01

    We use Langmuir-Blodgett molecular monolayers and nematic liquid crystals as model two- and three-dimensional orientationally ordered systems to study the stability and healing of topological defects at their contact interfaces. Integer-strength defects at the monolayer induce disclinations of similar strength in the nematic that, however, do not propagate deep into the bulk, but rather form single- or double-split arch-shaped loops pinned to the interface. This behavior is qualitatively independent of the far-field director orientation and involves either half-integer singular or twist-escaped unity-strength nonsingular nematic disclinations. These two defect configurations can be selected by varying sample preparation given their comparable free energy, consistently with direct probing by use of laser tweezers.

  6. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and

  7. Eutectic Solder Bonding for Highly Manufacturable Microelectromechanical Systems Probe Card

    NASA Astrophysics Data System (ADS)

    Kim, Bonghwan

    2011-06-01

    We developed eutectic solder bonding for the microelectromechanical systems (MEMS) probe card. We tested various eutectic solder materials, such as Sn, AgSn, and AuSn, and investigated the bonding ability of Sn-based multi-element alloys and their resistance to chemical solutions. The Sn-based alloys were formed by sputtering, electroplating, and the use of solder paste. According to our experimental results, Sn-rich solders, such as Ag3.5Sn, Ag3.5Sn96Cu0.5, and Sn, were severely damaged by silicon wet etchant such as potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). On the other hand Au80Sn20 was resistant to those chemicals. In order to verify the joint bondability of the solders, we used a cantilever probe beam, and bump which were made of nickel and nickel alloy. After flip-chip bonding of the cantilever beam and the bump with Au80Sn20 solder paste, we measured the contact force to verify the mechanical strength. We then re-inspected it with X-rays and found no voids in the joint.

  8. Synthetic fluorescent probes for studying copper in biological systems

    PubMed Central

    Cotruvo, Joseph A.; Aron, Allegra T.; Ramos-Torres, Karla M.; Chang, Christopher J.

    2015-01-01

    The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals. PMID:25692243

  9. Probing the environment of an inaccessible system by a qubit ancilla

    SciTech Connect

    Campbell, S.; Paternostro, M.; Kim, M. S.; Bose, S.

    2010-05-15

    We study the conditions for probing the environment affecting an inaccessible system by means of continuous interaction and measurements performed only on a probe. The scheme exploits the statistical properties of the probe at its steady state and simple data postprocessing. Our results, highlighting the roles played by interaction and entanglement in this process, are both pragmatically relevant and fundamentally interesting.

  10. The Gravity Probe B electrostatic gyroscope suspension system (GSS)

    NASA Astrophysics Data System (ADS)

    Bencze, W. J.; Brumley, R. W.; Eglington, M. L.; Hipkins, D. N.; Holmes, T. J.; Parkinson, B. W.; Ohshima, Y.; Everitt, C. W. F.

    2015-11-01

    A spaceflight electrostatic suspension system was developed for the Gravity Probe B (GP-B) Relativity Mission’s cryogenic electrostatic vacuum gyroscopes which serve as an indicator of the local inertial frame about Earth. The Gyroscope Suspension System (GSS) regulates the translational position of the gyroscope rotors within their housings, while (1) minimizing classical electrostatic torques on the gyroscope to preserve the instrument’s sensitivity to effects of General Relativity, (2) handling the effects of external forces on the space vehicle, (3) providing a means of precisely aligning the spin axis of the gyroscopes after spin-up, and (4) acting as an accelerometer as part of the spacecraft’s drag-free control system. The flight design was tested using an innovative, precision gyroscope simulator Testbed that could faithfully mimic the behavior of a physical gyroscope under all operational conditions, from ground test to science data collection. Four GSS systems were built, tested, and operated successfully aboard the GP-B spacecraft from launch in 2004 to the end of the mission in 2008.

  11. Abegg, Lewis, Langmuir, and the Octet Rule.

    ERIC Educational Resources Information Center

    Jensen, William B.

    1984-01-01

    Discusses major events leading to the development of the octet rule. Three conclusions based on the work of Mendeleev, Abegg, Thompson, Kossel, Lewis, and Langmuir are considered as is the debate over the rule's validity. (JN)

  12. Advanced development of particle beam probe diagnostic systems

    SciTech Connect

    Hickok, R.L.; Crowley, T.P.; Connor, K.A.

    1990-11-01

    This progress report covers the period starting with the approval to go ahead with the 2 MeV heavy ion beam probe (HIBP) for TEXT Upgrade to the submission of the grant renewal proposal. During this period the co-principal investigators, R. L. Hickok and T. P. Crowley have each devoted 45% of their time to this Grant. Their effort has been almost exclusively devoted to the design and fabrication of the 2 MeV HIBP system. The 1989 report that described the advantages of a 2 MeV HIBP for TEXT Upgrade compared to the existing 0.5 MeV HIBP and outlined the design of the 2 MeV system is attached as Appendix A. Since the major effort under the renewal proposal will be the continued fabrication, installation and operation of the 2 MeV system on TEXT Upgrade, we describe some of the unique results that have been obtained with the 0.5 MeV system on TEXT. For completeness, we also include the preliminary operation of the 160 keV HIBP on ATF. We present the present fabrication status of the 2 MeV system with the exception of the electrostatic energy analyzer. The energy analyzer which is designed to operate with 400 kV on the top plate is a major development effort and is treated separately. Included in this section are the results obtained with a prototype no guard ring analyzer, the conceptual design for the 2 MeV analyzer, the status of the high voltage testing of full size analyzer systems and backup plans if it turns out that it is impossible to hold 400 kV on an analyzer this size.

  13. Development of X-ray mini-probes for the Digiray RGX system

    NASA Astrophysics Data System (ADS)

    Wojcik, R.; Kross, B.; Majewski, L.; Majewski, S.; Weisenberger, A. G.; Zorn, C.; Birt, E. A.; Parker, F. R.; Winfree, W. P.; Albert, R. D.; Albert, T. M.

    1994-12-01

    We have developed and tested a variety of X-ray mini-probes for the Reverse Geometry X-radiography ®, (RGX) system each having their own advantages and disadvantages. These mini-probes consist of small scintillators (as small as 2 mm in diameter and 5 mm long) attached to optical light guides (as long as 14 m) coupled to photomultipliers. Images produced with these probes show that even smaller probes and/or longer light guides may be fashioned. Such probes may be useful in both non-destructive evaluation and medical imaging. ® Reverse Geometry X-radiography, Digiray, and RGX are registered trademarks of Digiray Corporation.

  14. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  15. Restoring Redundancy to the Wilkinson Microwave Anisotrophy Probe Propulsion System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.

    2004-01-01

    The Wilkinson Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Attitude control system engineers discovered sixteen months before launch that configuration changes after the critical design review had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch-axis thruster. A tiger team was formed and identified potential solutions to this problem, such as adding thruster-plume shields to redirect thruster torque, adding or removing mass from the spacecraft, adding an additional thruster, moving thrusters, bending thruster nozzles or propellant tubing, or accepting the loss of redundancy. The project considered the impacts on mass, cost, fuel budget, and schedule for each solution, and decided to bend the propellant tubing of the two roll-control thrusters to allow the pair to be used for backup control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes and verification performed. Flight data are presented to show the on-orbit performance of the propulsion system and lessons learned are described.

  16. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  17. Interfacial nanorheology: Probing molecular mobility in mesoscopic polymeric systems

    NASA Astrophysics Data System (ADS)

    Sills, Scott E.

    Investigating the finite size limited structural relaxations in mesoscopic polymer systems is central to nanotechnological applications involving thin films, complex structures, and nanoscale phase-separated systems; for example, polymer electrolyte membranes, optoelectronic devices, and ultrahigh-density thermomechanical data storage (terabit recording). In such systems, bulk statistical averaging and continuum models are jeopardized. Interfacial constraints lead to bulk-deviating molecular dynamics and dictate material and transport properties. The objective of this dissertation is to provide insight to the exotic mesoscopic behaviors in thin films by developing novel rheological and tribological analytical methods based on scanning probe microscopy (SPM). Activation energies are deduced for the molecular motions associated with internal friction dissipation, and the temperature resolved length scale for cooperative motion during the glass transition is directly obtained for polystyrene. These results confirm the dynamical heterogeneity of the glass transition and reveal a crossover from intra- to inter-molecular relaxation in the transition regime. The impact of dimensional constraints on molecular mobility in ultrathin polymer films is explored through interfacial glass-transition profiles. With these profiles, a structural model of the rheological changes near interfacial boundaries is constructed as function of molecular weight and crosslinking density. The manifestation of interfacial constraints in nanotechnological applications is illustrated for thermomechanical recording, where rheological gradients near the substrate dictate the contact pressure and strain shielding at the substrate compromises film stability. A foundation for the critical aspects of interfacial stability is developed, and mechanically graded interfaces and modulus-matching techniques are explored as a means of improving the stability, durability, and stress transmission characteristics

  18. EPR spin probe study of polymer associative systems.

    PubMed

    Wasserman, A M; Yasina, L L; Motyakin, M V; Aliev, I I; Churochkina, N A; Rogovina, L Z; Lysenko, E A; Baranovsky, V Yu

    2008-05-01

    Molecular dynamics of polyacrylamide gels, polymeric micelles and hydrogel of polyacrylic acid and macrodiisocyanate was investigated by the ESR spectroscopy of spin probes. The local mobility in network junction of polyacrylamide gels is found to be essentially slower than that in the micelles created by the low molecular weight detergents and does not depend on the amount and length of hydrophobic groups (C9 or C12) in the polymer chain. The immersion of 10-30 mol.% of ionic monomers into the polymer chain (sodium acrylate) influences insufficiently on the local mobility of network junctions. In aqueous solutions, polystyrene-block-poly-(N-ethyl-4-vinylpyridinium bromide) block copolymers create polymeric micelles. The local mobility in the polystyrene core of the micelles is about twice as much as that in the solid polystyrene. Partially swellable polymer network in aqueous solutions was synthesized from polyacrylic acid and macrodiisocyanate. The local mobility in hydrophobic regions of the gel is substantially lower than that in the hydrophilic regions. It was concluded that the hydrophobic and hydrophilic regions and the local dynamics of them dictate practical application of the polymer associative systems. PMID:17988940

  19. EPR spin probe study of polymer associative systems

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Yasina, L. L.; Motyakin, M. V.; Aliev, I. I.; Churochkina, N. A.; Rogovina, L. Z.; Lysenko, E. A.; Baranovsky, V. Yu.

    2008-05-01

    Molecular dynamics of polyacrilamide gels, polymeric micelles and hydrogel of polyacrylic acid and macrodiisocyanate was investigated by the ESR spectroscopy of spin probes. The local mobility in network junction of polyacrylamide gels is found to be essentially slower than that in the micelles created by the low molecular weight detergents and does not depend on the amount and length of hydrophobic groups (C9 or C12) in the polymer chain. The immersion of 10-30 mol.% of ionic monomers into the polymer chain (sodium acrylate) influences insufficiently on the local mobility of network junctions. In aqueous solutions, polystyrene-block-poly-( N-ethyl-4-vinylpyridinium bromide) block copolymers create polymeric micelles. The local mobility in the polystyrene core of the micelles is about twice as much as that in the solid polystyrene. Partially swellable polymer network in aqueous solutions was synthesized from polyacrylic acid and macrodiisocyanate. The local mobility in hydrophobic regions of the gel is substantially lower than that in the hydrophilic regions. It was concluded that the hydrophobic and hydrophilic regions and the local dynamics of them dictate practical application of the polymer associative systems.

  20. Young's modulus of a solid two-dimensional Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    Bercegol, H.; Meunier, J.

    1992-03-01

    LANGMUIR monolayers-films of amphiphilic molecules at the surface of water-exhibit many phases1,2. Some of these behave like two-dimensional solids on experimental timescales, but previous measurements of the shear modulus of these 'solid' monolayers3-5 have yielded a value too small to be compatible with a two-dimensional crystal. The interpretation of these is complicated, however, by the likelihood of inhomogeneities in the films, which are probably assemblies of microscopic crystalline domains. Here we describe measurements of the Young's modulus of an isolated "solid' domain of NBD-stearic acid monolayers. We obtain a value large enough to be compatible with the modulus of a two-dimensional crystal6-8. This suggests that Langmuir monolayers should provide model systems for studies of melting in two dimensions6-8.

  1. Probe based confocal laser endomicroscopy of the pancreatobiliary system

    PubMed Central

    Almadi, Majid A; Neumann, Helmut

    2015-01-01

    AIM: To review applications of confocal laser endomicroscopy (CLE) in pancreatobiliary lesions and studies that assessed training and interpretation of images. METHODS: A computerized literature search was performed using OVID MEDLINE, EMBASE, Cochrane library, and the ISI Web of Knowledge from 1980 to October 2014. We also searched abstracts from major meetings that included the Digestive Disease Week, Canadian Digestive Disease Week and the United European Gastroenterology Week using a combination of controlled vocabulary and text words related to pCLE, confocal, endomicroscopy, probe-based confocal laser endomicroscopy, and bile duct to identify reports of trials. In addition, recursive searches and cross-referencing was performed, and manual searches of articles identified after the initial search was also completed. We included fully published articles and those in abstract form. Given the relatively recent introduction of CLE we included randomized trials and cohort studies. RESULTS: In the evaluation of indeterminate pancreatobiliary strictures CLE with ERCP compared to ERCP alone can increase the detection of cancerous strictures with a sensitivity of (98% vs 45%) and has a negative predictive value (97% vs 69%), but decreased the specificity (67% vs 100%) and the positive predictive value (71% vs 100%) when compared to index pathology. Modifications in the classification systems in indeterminate biliary strictures have increased the specificity of pCLE from 67% to 73%. In pancreatic cystic lesions there is a need to develop similar systems to interpret and characterize lesions based on CLE images obtained. The presence of superficial vascular network predicts serous cystadenomas accurately. Also training in acquiring and interpretation of images is feasible in those without any prior knowledge in CLE in a relatively simple manner and computer-aided diagnosis software is a promising innovation. CONCLUSION: The role of pCLE in the evaluation of

  2. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs

    PubMed Central

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-01-01

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values (“stiff” and “flexible”) to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system. PMID:27070611

  3. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs.

    PubMed

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-01-01

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values ("stiff" and "flexible") to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system. PMID:27070611

  4. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  5. Suprathermal Solar Wind Electrons and Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Yoon, Peter H.; Choe, G. S.; moon, Y.-J.

    2016-09-01

    The steady-state model recently put forth for the solar wind electron velocity distribution function during quiet time conditions, was originally composed of three population electrons (core, halo, and superhalo) with the core remaining nonresonant with any plasma waves while the halo and superhalo separately maintained steady-state resonance with whistler- and Langmuir-frequency range fluctuations, respectively. However, a recent paper demonstrates that whistler-range fluctuations in fact have no significant contribution. The present paper represents a consummation of the model in that a self-consistent model of the suprathermal electron population, which encompasses both the halo and the superhalo, is constructed solely on the basis of the Langmuir fluctuation spectrum. Numerical solutions to steady-state particle and wave kinetic equations are obtained on the basis of an initial trial electron distribution and Langmuir wave spectrum. Such a finding offers a self-consistent explanation for the observed steady-state electron distribution in the solar wind.

  6. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  7. Langmuir mixing effects on global climate: WAVEWATCH III in CESM

    NASA Astrophysics Data System (ADS)

    Li, Qing; Webb, Adrean; Fox-Kemper, Baylor; Craig, Anthony; Danabasoglu, Gokhan; Large, William G.; Vertenstein, Mariana

    2016-07-01

    Large-Eddy Simulations (LES) have shown the effects of ocean surface gravity waves in enhancing the ocean boundary layer mixing through Langmuir turbulence. Neglecting this Langmuir mixing process may contribute to the common shallow bias in mixed layer depth in regions of the Southern Ocean and the Northern Atlantic in most state-of-the-art climate models. In this study, a third generation wave model, WAVEWATCH III, has been incorporated as a component of the Community Earth System Model, version 1.2 (CESM1.2). In particular, the wave model is now coupled with the ocean model through a modified version of the K-Profile Parameterization (KPP) to approximate the influence of Langmuir mixing. Unlike past studies, the wind-wave misalignment and the effects of Stokes drift penetration depth are considered through empirical scalings based on the rate of mixing in LES. Wave-Ocean only experiments show substantial improvements in the shallow biases of mixed layer depth in the Southern Ocean. Ventilation is enhanced and low concentration biases of pCFC-11 are reduced in the Southern Hemisphere. A majority of the improvements persist in the presence of other climate feedbacks in the fully coupled experiments. In addition, warming of the subsurface water over the majority of global ocean is observed in the fully coupled experiments with waves, and the cold subsurface ocean temperature biases are reduced.

  8. Saturn Uranus atmospheric entry probe mission spacecraft system definition study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.

  9. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster. PMID:23277983

  10. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume

    SciTech Connect

    Dannenmayer, K.; Mazouffre, S.

    2012-12-15

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  11. Outer planet entry probe system study. Volume 2: Supporting technical studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.

  12. Terahertz radiation by beating Langmuir waves

    SciTech Connect

    Son, S.; Moon, Sung Joon; Park, J. Y.

    2012-11-15

    An intense terahertz (THz) radiation generated by the beating of two Langmuir waves, which are excited by the forward Raman scattering, is analyzed theoretically. The radiation energy per shot can be as high as 0.1 J, with the duration of 10 ps. Appropriate plasma density and the laser characteristics are examined.

  13. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  14. Sungrazing comets: Probing the inner extremes of the Solar System

    NASA Astrophysics Data System (ADS)

    Knight, M.

    2014-07-01

    /Machholz 1. The third group, Meyer, has not been linked to any known solar system object and has an unknown orbital period. The remaining known sungrazing comets have a variety of orbits and, with the notable exception of ISON, are generally not observed extensively. Due to their extreme orbits, sungrazing comets offer unique opportunities for understanding evolutionary processes in our solar system. During their perihelion passages they experience equilibrium temperatures exceeding 1500 K, resulting in sublimation of their dust and potentially allowing the least volatile components of our solar system to be cataloged. In fact, while all of the near-Sun objects discovered by SOHO and STEREO are designated ''comets'', many of those not associated with other known cometary objects may be asteroids or defunct comets whose apparent activity at these distances is due to sublimation of their bare surfaces. Sungrazing comets also experience strong tidal forces, resulting in frequent fragmentation. Such breakups expose the unprocessed interiors, potentially allowing intercomparison of the compositions of discrete fragments and revealing the size distribution of the planetessimals out of which the parent comet formed. Finally, it has recently become possible to use comets as ''solar probes'', treating them as test particles that can reveal properties of the solar environment such as the coronal temperature and density, magnetic field strength, and solar wind speed and direction.

  15. Magnetically driven filament probe.

    PubMed

    Schmid, A; Herrmann, A; Rohde, V; Maraschek, M; Müller, H W

    2007-05-01

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma. PMID:17552815

  16. STEREO database of interplanetary Langmuir electric waveforms

    NASA Astrophysics Data System (ADS)

    Briand, C.; Henri, P.; Génot, V.; Lormant, N.; Dufourg, N.; Cecconi, B.; Nguyen, Q. N.; Goetz, K.

    2016-02-01

    This paper describes a database of electric waveforms that is available at the Centre de Données de la Physique des Plasmas (CDPP, http://cdpp.eu/). This database is specifically dedicated to waveforms of Langmuir/Z-mode waves. These waves occur in numerous kinetic processes involving electrons in space plasmas. Statistical analysis from a large data set of such waves is then of interest, e.g., to study the relaxation of high-velocity electron beams generated at interplanetary shock fronts, in current sheets and magnetic reconnection region, the transfer of energy between high and low frequencies, the generation of electromagnetic waves. The Langmuir waveforms were recorded by the Time Domain Sampler (TDS) of the WAVES radio instrument on board the STEREO mission. In this paper, we detail the criteria used to identify the Langmuir/Z-mode waves among the whole set of waveforms of the STEREO spacecraft. A database covering the November 2006 to August 2014 period is provided. It includes electric waveforms expressed in the normalized frame (B,B × Vsw,B × (B × Vsw)) with B and Vsw the local magnetic field and solar wind velocity vectors, and the local magnetic field in the variance frame, in an interval of ±1.5 min around the time of the Langmuir event. Quicklooks are also provided that display the three components of the electric waveforms together with the spectrum of E∥, together with the magnitude and components of the magnetic field in the 3 min interval, in the variance frame. Finally, the distribution of the Langmuir/Z-mode waves peak amplitude is also analyzed.

  17. Ultrasonic probe system for the bore-side inspection of tubes and welds therein

    DOEpatents

    Cook, K. Von; Koerner, Dan W.; Cunningham, Jr., Robert A.; Murrin, Jr., Horace T.

    1977-07-26

    A probe system is provided for the bore-side inspection of tube-to-header welds and the like for small diameter tubes. The probe head of the system includes an ultrasonic transmitter-receiver transducer, a separate ultrasonic receiver, a reflector associated with the transducer to properly orient the ultrasonic signal with respect to a tube wall, a baffle to isolate the receiver from the transducer, and means for maintaining the probe head against the tube wall under investigation. Since the probe head must rotate to inspect along a helical path, special ultrasonic signal connections are employed. Through the use of the probe, flaws at either the inner or outer surfaces may be detected.

  18. Semi-active magnetorheological refueling probe systems for aerial refueling events

    NASA Astrophysics Data System (ADS)

    Choi, Young-Tai; Wereley, Norman M.

    2013-09-01

    This study analyzes the feasibility of applying a semi-active magnetorheological (MR) damper to a naval hose-drogue based aerial refueling system to minimize undesirable hose-drogue vibrations. The semi-active smart aerial refueling probe system consists of a probe, a coil spring, and a MR damper. The dynamics of the smart refueling probe system were derived and incorporated into an analysis of the coupled hose-drogue dynamics, so as to evaluate the load reduction of the refueling hose at the drogue position effected by the MR damper. The simulated responses of the smart refueling probe system using a MR damper were conducted at different maximum closure velocities of 1.56 and 5 ft s-1 and different tanker flight speeds of 185 and 220 knots. The simulations demonstrate that the smart refueling probe system using a MR damper enables large reductions in probe-and-drogue motions, as well as preventing the onset of large and undesirable hose-drogue motions resulting from tension loads during engagement of the probe.

  19. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  20. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume.

  1. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  2. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  3. Development of simple designs of multitip probe diagnostic systems for RF plasma characterization.

    PubMed

    Naz, M Y; Shukrullah, S; Ghaffar, A; Rehman, N U

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  4. Fusion Propulson System Requirements for an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Spencer, D. F.

    1963-01-01

    An examination of the engine constraints for a fusion-propelled vehicle indicates that minimum flight times for a probe to a 5 light-year star will be approximately 50 years. The principal restraint on the vehicle is the radiator weight and size necessary to dissipate the heat which enters the chamber walls from the fusion plasma. However, it is interesting, at least theoretically, that the confining magnetic field strength is of reasonable magnitude, 2 to 3 x 10(exp5) gauss, and the confinement time is approximately 0.1 sec.

  5. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Astrophysics Data System (ADS)

    Valles, James; Guevorkian, Karine; Wurzel, Samuel; Mihalusova, Mariana

    2003-03-01

    We have commissioned a superconducting solenoid based apparatus designed to exert strong magnetic body forces on biological specimens and other organic materials in ambient environmental conditions for extended periods. In its room temperature bore, it can produce a maximum magnetic field-field gradient product of 16 T^2-cm-1 which is sufficient to levitate frog embryos Xenopus Laevis[1]. We will discuss how we are applying these magnetic body forces to probe the known influences of gravitational forces on frog embryos and the swimming behavior of Paramecium Caudatum. In the process, we will describe a novel method for measuring the diamagnetic susceptibilities of specimens such as paramecia.

  6. Irving Langmuir and the light bulb

    NASA Astrophysics Data System (ADS)

    Lister, Graeme

    2009-02-01

    Irving Langmuir's principal contribution to lighting was a major improvement in the efficiency of the incandescent lamp. He also used experiments on these lamps to provide fundamental new insight into a number of other areas of physics, including evaporation of metals, the space charge limited current in a vacuum and thermionic emission of electrons from metallic surfaces. This paper describes his experiments, and the chain of ideas which led him to new discoveries.

  7. Langmuir Films of Polycyclic Molecules on Mercury

    SciTech Connect

    Tamam,L.; Kraack, H.; Sloutskin, E.; Ocko, B.; Pershan, P.; Deutsch, M.

    2007-01-01

    Langmuir films (LFs) of biphenyl and anthracene derivatives on the surface of liquid mercury were studied by surface-specific X-ray and surface tension measurements. Phases of lying-down, side-lying and standing-up molecules were found, some of which exhibit long-range lateral order. The molecular symmetry and the position and nature of the side-, end-, and headgroups are shown to dominate the structural evolution of the LFs with surface coverage.

  8. Bulk organisation and alignment in Langmuir and Langmuir-Blodgett films of tetrachloroperylene tetracarboxylic acid esters

    NASA Astrophysics Data System (ADS)

    Modlińska, Anna; Filipowicz, Marek; Martyński, Tomasz

    2016-12-01

    Perylene derivatives with chlorine atoms attached at the bay position to the dye core are expected to affect organisation and tendency to aggregation in Langmuir and Langmuir-Blodgett (LB) films. Therefore, newly synthesized core-twisted homologous series of tetrachloroperylene tetracarboxylic acid esters with n = 1,4,5,6,9 carbon atoms in terminal alkyl chains were studied. Phase transitions and crystalline structures were specified by differential scanning calorimetry (DSC) and single crystal X-ray diffraction (XRD), respectively. Intermolecular interactions and organisation of the dyes in monomolecular films were investigated by means of Brewster angle microscope (BAM), UV-Vis absorption and emission spectroscopy, fluorescence microscopy and atomic force microscopy (AFM). The dyes investigated do not form thermotropic mesogenic phases in bulk. The crystalline triclinic elementary cell with P-1 symmetry is revealed from X-ray experiments. In Langmuir and Langmuir-Blodgett films molecular tilted head-on alignment is postulated. Spectroscopic research confirmed by AFM texture images of the LB films show that in the Langmuir and LB films the dyes, depending on length of terminal chains, have a tendency to create H or I molecular aggregates. The impact of the twisted core on the molecular behavior in a bulk and thin films is discussed.

  9. Oxygen transport as a structure probe for amorphous polymeric systems

    NASA Astrophysics Data System (ADS)

    Liu, Richard Yufeng

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules "senses" the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume in the oriented glassy state, (2) the role of amorphous phase orientation and strain-induced crystallization on oxygen barrier properties of polyester blends, and (3) the nature of interphase between immiscible amorphous polymers in forced-assemblies. In the first part, the mechanism of oxygen transport in oriented glassy polyesters is examined. PET, PETBB55, and PEN were oriented by cold-drawing. Densification of the glassy state correlates with conformational transformation of glycol linkages from gauche to trans. Orientation is seen as a process of decreasing the amount of excess-hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium condition. Further insights into the free volume structure are obtained by exploring the relationships between free volume structure and oxygen transport property using a simple lattice-hole model. In the second part, oxygen transport through polyester blends is investigated. It is found that cold-drawing the blocky PET/PETBB55 produces highly oriented PETBB55 frustrated LCP microfibrils, which prevent relaxation of the continuous PET phase. On the other hand, careful examination of oxygen barrier for the PET/PEI blends leads to a two-phase model from which the amount of crystallinity and the amorphous phase density are determined. In the third part, oxygen permeability is utilized as a powerful probe for interphase thickness between immiscible polymers, which is as thin as a few nanometers. We

  10. Common-path optical coherence tomography using a microelectromechanical-system-based endoscopic probe.

    PubMed

    Wang, Donglin; Duan, Can; Zhang, Xiaoyang; Yun, Zhao; Pozzi, Antonio; Xie, Huikai

    2016-09-01

    This paper presents a common-path (CP) swept-source optical coherence tomography (SSOCT) system based on a special endoscopic probe design with an in-line internal reflection as the reference and a two-axis electrothermal microelectromechanical system mirror for image scanning. The rear surface of a gradient reflective index (GRIN) lens inside the probe is set as the reference reflection plane. The length of the GRIN lens is optimized to eliminate the artifacts in SSOCT images successfully. Doppler OCT is also demonstrated based on the CP endoscopic probe. The diameter of the probe is only 2.5 mm, so it can be easily inserted into the biopsy channel of traditional endoscopes to access human internal organs for in vivo diagnoses. PMID:27607267

  11. Compact probing system using remote imaging for industrial plant maintenance

    NASA Astrophysics Data System (ADS)

    Ito, F.; Nishimura, A.

    2014-03-01

    Laser induced breakdown spectroscopy (LIBS) and endoscope observation were combined to design a remote probing device. We use this probing device to inspect a crack of the inner wall of the heat exchanger. Crack inspection requires speed at first, and then it requires accuracy. Once Eddy Current Testing (ECT) finds a crack with a certain signal level, another method should confirm it visually. We are proposing Magnetic particle Testing (MT) using specially fabricated the Magnetic Particle Micro Capsule (MPMC). For LIBS, a multichannel spectrometer and a Q-switch YAG laser were used. Irradiation area is 270 μm, and the pulse energy was 2 mJ. This pulse energy corresponds to 5-2.2 MW/cm2. A composite-type optical fiber was used to deliver both laser energy and optical image. Samples were prepared to heat a zirconium alloy plate by underwater arc welding in order to demonstrate severe accidents of nuclear power plants. A black oxide layer covered the weld surface and white particles floated on water surface. Laser induced breakdown plasma emission was taken into the spectroscope using this optical fiber combined with telescopic optics. As a result, we were able to simultaneously perform spectroscopic measurement and observation. For MT, the MPMC which gathered in the defective area is observed with this fiber. The MPMC emits light by the illumination of UV light from this optical fiber. The size of a defect is estimated with this amount of emission. Such technology will be useful for inspection repair of reactor pipe.

  12. Thermal characteristics of sapphire contact probe delivery systems for laser angioplasty.

    PubMed

    Ashley, S; Brooks, S G; Gehani, A A; Kester, R C; Rees, M R

    1990-01-01

    Contact probes made from synthetic sapphire crystal, designed for general laser surgery, are currently being evaluated for use in laser angioplasty. Their mode of action and safety in the context of arterial recanalisation is unknown, particularly with respect to the degree of probe and catheter heating. Infrared thermal imaging was used to investigate the surface temperature rise of various rounded sapphire probes during emission of continuous wave Nd-YAG (1,064 nm) laser energy. Catheter safety was addressed by analyzing the temperature of the metal interface between the optical fiber and sapphire, as well as the catheter proximal to this junction. Transmission of Nd-YAG energy through each probe was also measured. Five rounded probes of 1.8-3.0 mm diameter (three supplied by Surgical Laser Technologies [SLT], two by Living Technology [LT]), along with their respective optical catheters, were compared. There was a large temperature gradient between the front and rim of the probes. The maximum surface temperature rise of the sapphire (at 20 W, 5-second exposure) was 314-339 degrees C (SLT) and 90-108 degrees C (LT) [P less than 0.001, 3-way ANOVA]. The reason for this difference may be related to "crazing" of the front surface of the SLT sapphires. At all energy levels sapphire temperatures were considerably lower than attained by metal laser thermal angioplasty probes. Forward transmission was slightly higher in the SLT probes (75-85%) than the LT sapphires (54-69%). With fiber perfusion at 2 ml/minute, a minor degree of heating of the metal sapphire holders was recorded (maximum rise 35 degrees C), but heating of the catheter proximal to this was negligible. Therefore, it would appear that the risk of tip detachment or arterial injury due to heating of the connecting metal interface is extremely low. Without perfusion, however, there was a greater degree of interface heating in the LT delivery system suggestive of more laser backscattering by these sapphires

  13. The study of dual camera 3D coordinate vision measurement system using a special probe

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Peng, Kai; Zhang, Xuefei; Zhang, Haifeng; Huang, Fengshan

    2006-11-01

    Due to high precision and convenient operation, the vision coordinate measurement machine with one probe has become the research focus in visual industry. In general such a visual system can be setup conveniently with just one CCD camera and probe. However, the price of the system will surge up too high to accept while the top performance hardware, such as CCD camera, image captured card and etc, have to be applied in the system to obtain the high axis-oriented measurement precision. In this paper, a new dual CCD camera vision coordinate measurement system based on redundancy principle is proposed to achieve high precision by moderate price. Since two CCD cameras are placed with the angle of camera axis like about 90 degrees to build the system, two sub-systems can be built by each CCD camera and the probe. With the help of the probe the inner and outer parameters of camera are first calibrated, the system by use of redundancy technique is set up now. When axis-oriented error is eliminated within the two sub-systems, which is so large and always exits in the single camera system, the high precision measurement is obtained by the system. The result of experiment compared to that from CMM shows that the system proposed is more excellent in stableness and precision with the uncertainty beyond +/-0.1 mm in xyz orient within the distance of 2m using two common CCD cameras.

  14. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  15. Oxygen transport as a structure probe for heterogeneous polymeric systems

    NASA Astrophysics Data System (ADS)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  16. Concept and Demonstration of Individual Probe Actuation in Two-Dimensional Parallel Atomic Force Microscope System

    NASA Astrophysics Data System (ADS)

    Akiyama, Terunobu; Aeschimann, Laure; Chantada, Laura; de Rooij, Nico. F.; Heinzelmann, Harry; Herzig, Hans P.; Manzardo, Omar; Meister, André; Polesel-Maris, Jérôme; Pugin, Raphaël; Staufer, Urs; Vettiger, Peter

    2007-09-01

    A concept of an array actuator that is used to control the tip-sample separation of cantilevers in a two-dimensional (2D) probe array scanning system is proposed in this article. The feasibility of the concept is demonstrated with a 10× 10 array actuator with 500 μm xy-pitches. The array actuator is made by slicing a bulk piezoceramic block. The obtained maximum actuation of a single probe was 2.19 μmp-p at ± 168 Vp-p. A major issue for the actuator was the insufficient strength of the frame of the probe array chip. The demonstrated array actuator is highly compatible with previously developed parallel readout modules that use either a parallel optical beam or integrated piezoresistive deflection sensing. A large-scale 2D probe array is our ultimate target.

  17. Numerical comparison of strong Langmuir turbulence models

    NASA Technical Reports Server (NTRS)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    Two models of Langmuir turbulence, the nonlinear Schroedinger equation and the Zakharov equations, are solved numerically for an initial value problem in which the electric field evolves from an almost flat initial condition via the modulational instability and finally saturates into a set of solitons. The two models agree well with each other only when the initial dimensionless electric field has an amplitude less than unity. An analytic soliton gas model consisting of equal-amplitude, randomly spaced, zero-speed solitons is remarkably good at reproducing the time-averaged Fourier spectra in both cases.

  18. Tethered Chains in Poor Solvent Conditions: An Experimental Study Involving Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, M.S.; Lee, L.T.; Majewski, J.; Satija, S.; Smith, G.S.

    1998-10-13

    We have employed Langmuir monolayer of highly asymmetric polydimethylsiloxane- polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 "C to -35 `C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire r~ge. However, the v~iation with T becomes weak below -20 "C. At the ]owest T, the layer thicknesses are contracted 55 % -75 `% of their values at the theta condition (T8 = 22 "C), but are still quite swollen compared to the fully collapsed, nonsolvent limit. The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight. These data are compared to universal scaling forms. The PS segments are depleted from the air surface over the entire T range, the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. Negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayer, indicating metastability toward lateral phase separation. Evidence for a trruisition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity at very low PDMS-PS coverage.

  19. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  20. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  1. Spacecraft-level verification of the Van Allen Probes' RF communication system

    NASA Astrophysics Data System (ADS)

    Crowne, M. J.; Srinivasan, D.; Royster, D.; Weaver, G.; Matlin, D.; Mosavi, N.

    This paper presents the verification process, lessons learned, and selected test results of the radio frequency (RF) communication system of the Van Allen Probes, formerly known as the Radiation Belt Storm Probes (RBSP). The Van Allen Probes mission is investigating the doughnut-shaped regions of space known as the Van Allen radiation belts where the Sun interacts with charged particles trapped in Earth's magnetic field. Understanding this dynamic area that surrounds our planet is important to improving our ability to design spacecraft and missions for reliability and astronaut safety. The Van Allen Probes mission features two nearly identical spacecraft designed, built, and operated by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) for the National Aeronautics and Space Administration (NASA). The RF communication system features the JHU/APL Frontier Radio. The Frontier Radio is a software-defined radio (SDR) designed for spaceborne communications, navigation, radio science, and sensor applications. This mission marks the first spaceflight usage of the Frontier Radio. RF ground support equipment (RF GSE) was developed using a ground station receiver similar to what will be used in flight and whose capabilities provided clarity into RF system performance that was previously not obtained until compatibility testing with the ground segments. The Van Allen Probes underwent EMC, acoustic, vibration, and thermal vacuum testing at the environmental test facilities at APL. During this time the RF communication system was rigorously tested to ensure optimal performance, including system-level testing down to threshold power levels. Compatibility tests were performed with the JHU/APL Satellite Communication Facility (SCF), the Universal Space Network (USN), and the Tracking and Data Relay Satellite System (TDRSS). Successful completion of this program as described in this paper validated the design of the system and demonstrated that it will be able to me

  2. Shear-induced molecular precession in a hexatic Langmuir monolayer.

    PubMed

    Ignés-Mullol, J; Schwartz, D K

    2001-03-15

    Liquid crystalline behaviour is generally limited to a select group of specially designed bulk substances. By contrast, it is a common feature of simple molecular monolayers and other quasi-two-dimensional systems, which often possess a type of in-plane ordering that results from unbinding of dislocations-a 'hexatic' liquid crystalline phase. The flow of monolayers is closely related to molecular transport in biological membranes, affects foam and emulsion stability and is relevant to microfluidics research. For liquid crystalline phases, it is important to understand the coupling of the molecular orientation to the flow. Orientationally ordered (nematic) phases in bulk liquid crystals exhibit 'shear aligning' or 'tumbling' behaviour under shear, and are described quantitatively by Leslie-Ericksen theory. For hexatic monolayers, the effects of flow have been inferred from textures of Langmuir-Blodgett films and directly observed at the macroscopic level. However, there is no accepted model of hexatic flow at the molecular level. Here we report observations of a hexatic Langmuir monolayer that reveal continuous, shear-induced molecular precession, interrupted by occasional jump discontinuities. Although superficially similar to tumbling in a bulk nematic phase, the kinematic details are quite different and provide a possible mechanism for domain coarsening and eventual molecular alignment in monolayers. We explain the precession and jumps within a quantitative framework that involves coupling of molecular orientation to the local molecular hexatic 'lattice', which is continuously deformed by shear. PMID:11268206

  3. Development of the STPX Spheromak System

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Weatherford, C. A.

    2015-11-01

    The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.

  4. A system for testing airdata probes at high angles of attack using a ground vehicle

    NASA Technical Reports Server (NTRS)

    Geenen, Robert J.; Moulton, Bryan J.; Haering, Edward A., Jr.

    1991-01-01

    A system to calibrate airdata probes at angles of attack between 0 and 90 deg was developed and tested at the NASA Ames Dryden Flight Research Facility. This system used a test fixture mounted to the roof of a ground vehicle and included an onboard instrumentation and data acquisition system for measuring pressures and flow angles. The data could be easily transferred to the facility mainframe computer for further analysis. The system was designed to provide convenient and inexpensive airdata probe calibrations for projects which require airdata at high angles of attack, such as the F-18 High Alpha Research Program. This type of probe was tested to 90 deg angle of attack in a wind tunnel and using the ground vehicle system. The results of both tests are in close agreement. An airdata probe with a swiveling pilot-static tube was also calibrated with the ground vehicle system. This paper presents the results of these tests and gives a detailed description of the test system.

  5. Quasiperiodic behavior in beam-driven strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Newman, D. L.

    1989-01-01

    The evolution of unmagnetized beam-driven strong Langmuir turbulence is studied in two dimensions by numerically integrating the Zakharov equations for systems pumped by monochromatic and broadband negative-damping drivers with nonzero central wavenumber. Long-time statistically steady states are reached for which the dependence of the evolution on the driver wavenumber, growth rate, and bandwidth is examined in detail. For monochromatic drivers, a quasiperiodic cycle is found to develop if the driver wavenumber is sufficiently large. The characteristic frequency of the quasiperiodic cycle and the average system energy are both approximately proportional to the growth rate. Broadening of the driver in wavenumber tends to degrade the system-wide coherence of the cycle, but its main features appear to survive on the scale of the coherence length of the driver.

  6. Focus Adjustment System of Laser Probe for Radio Frequency Surface and Bulk Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Kashiwa, Keisuke; Hashimoto, Ken-ya; Omori, Tatsuya; Yamaguchi, Masatsune; Kasai, Naoki

    2009-10-01

    In this paper, we describe a focus adjustment system designed especially for a fast-mechanical-scanning laser probe for radio-frequency surface and bulk acoustic wave devices. When high spatial resolution is necessary for the observation, one needs an objective lens of large magnifying power with extremely shallow focal depth. Then, a small inclination of a measurement device may cause severe defocus resulting in blurred images. We installed the focus adjustment system in the laser probe, and showed that even with inclination, high-quality information of the wave field can be acquired without reducing the scanning speed.

  7. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  8. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  9. A lidar system for remote probing of the lower atmosphere

    NASA Technical Reports Server (NTRS)

    Craig, C. D.; Bartz, R.; Olsson, L. E.; Hewson, E. W.

    1974-01-01

    The development and characteristics of a lidar system for atmospheric measurements are discussed. The lidar system employs a Q-switched ruby laser that radiates an intense pulse of light into the atmosphere to illuminate aerosol particles in the laser beam. Light backscattered from the particles is received by a Cassegrain telescope equipped with a sensitive photomultiplier tube. The output signal of the photomultiplier tube is displayed on an oscilloscope and recorded on polaroid film.

  10. PERFORMACE OF MULTI-PROBE CORROSION MONITORING SYSTEMS AT THE HANFORD SITE

    SciTech Connect

    CAROTHERS KD; BOOMER KD; ANDA VS; DAHL MM; EDGEMON GL

    2010-01-14

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  11. Probing other solar systems with current and future adaptive optics

    SciTech Connect

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  12. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe.

    PubMed

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W; Chen, Zhongping

    2011-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. PMID:20635426

  13. Probing infinity in bounded two-dimensional electrostatic systems.

    PubMed

    Abutalib, M; Batle, J; Ooi, C H Raymond

    2016-07-01

    The total electrostatic energy of systems of identical particles of equal charge is studied in configurations bounded in space, but divergent in the number of charges. This approach shall guide us to unveil a non-linear, functional form specifying the divergent nature of system energy. We consider fractals to be physical entities, with charges located in their vertices or nodes. This description is interesting since features, such as the corresponding fractal dimension, can characterize the total energy EN. Finally, at local length scales, we describe how energy diverges at charge accumulation points in the fractal, that is, almost everywhere by definition. PMID:27475073

  14. Probing infinity in bounded two-dimensional electrostatic systems

    NASA Astrophysics Data System (ADS)

    Abutalib, M.; Batle, J.; Ooi, C. H. Raymond

    2016-07-01

    The total electrostatic energy of systems of identical particles of equal charge is studied in configurations bounded in space, but divergent in the number of charges. This approach shall guide us to unveil a non-linear, functional form specifying the divergent nature of system energy. We consider fractals to be physical entities, with charges located in their vertices or nodes. This description is interesting since features, such as the corresponding fractal dimension, can characterize the total energy EN. Finally, at local length scales, we describe how energy diverges at charge accumulation points in the fractal, that is, almost everywhere by definition.

  15. Using Approximate Bayesian Computation to Probe Multiple Transiting Planet Systems

    NASA Astrophysics Data System (ADS)

    Morehead, Robert C.

    2015-08-01

    The large number of multiple transiting planet systems (MTPS) uncovered with Kepler suggest a population of well-aligned planetary systems. Previously, the distribution of transit duration ratios in MTPSs has been used to place constraints on the distributions of mutual orbital inclinations and orbital eccentricities in these systems. However, degeneracies with the underlying number of planets in these systems pose added challenges and make explicit likelihood functions intractable. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC proposes from a prior on the population parameters to produce synthetic datasets via a physically-motivated model. Samples are accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples then form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We will demonstrate the utility of ABC in exoplanet populations by presenting new constraints on the mutual inclination and eccentricity distributions in the Kepler MTPSs. We will also introduce Simple-ABC, a new open-source Python package designed for ease of use and rapid specification of general models, suitable for use in a wide variety of applications in both exoplanet science and astrophysics as a whole.

  16. Note: Refined possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  17. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination. PMID:27587177

  18. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures. PMID:20867055

  19. Probing localization in absorbing systems via Loschmidt echos.

    PubMed

    Bodyfelt, Joshua D; Zheng, Mei C; Kottos, Tsampikos; Kuhl, Ulrich; Stöckmann, Hans-Jürgen

    2009-06-26

    We measure Anderson localization in quasi-one-dimensional waveguides in the presence of absorption by analyzing the echo dynamics due to small perturbations. We specifically show that the inverse participation number of localized modes dictates the decay of the Loschmidt echo, differing from the Gaussian decay expected for diffusive or chaotic systems. Our theory, based on a random matrix modeling, agrees perfectly with scattering echo measurements on a quasi-one-dimensional microwave cavity filled with randomly distributed scatterers. PMID:19659075

  20. Simple solutions for relativistic generalizations of the Child-Langmuir law and the Langmuir-Blodgett law

    SciTech Connect

    Zhang Yongpeng; Liu Guozhi; Yang Zhanfeng; Shao Hao; Xiao Renzhen; Xing Qingzi; Zhong Huaqiang; Lin Yuzheng

    2009-04-15

    In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.

  1. The geometry of interacting liquid domains in Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Heinig, Peter

    2003-07-01

    The present work investigates the structure formation and wetting in two dimensional (2D) Langmuir monolayer phases in local thermodynamic equilibrium. A Langmuir monolayer is an isolated 2D system of surfactants at the air/water interface. It exhibits crystalline, liquid crystalline, liquid and gaseous phases differing in positional and/or orientational order. Permanent electric dipole moments of the surfactants lead to a long range repulsive interaction and to the formation of mesoscopic patterns. An interaction model is used describing the structure formation as a competition between short range attraction (bare line tension) and long range repulsion (surface potentials) on a scale Delta. Delta has the meaning of a dividing length between the short and long range interaction. In the present work the thermodynamic equilibrium conditions for the shape of two phase boundary lines (Young-Laplace equation) and three phase intersection points (Young′s condition) are derived and applied to describe experimental data: The line tension is measured by pendant droplet tensiometry. The bubble shape and size of 2D foams is calculated numerically and compared to experimental foams. Contact angles are measured by fitting numerical solutions of the Young-Laplace equation on micron scale. The scaling behaviour of the contact angle allows to measure a lower limit for Delta. Further it is discussed, whether in biological membranes wetting transitions are a way in order to control reaction kinetics. Studies performed in our group are discussed with respect to this question in the framework of the above mentioned theory. Finally the apparent violation of Gibbs′ phase rule in Langmuir monolayers (non-horizontal plateau of the surface pressure/area-isotherm, extended three phase coexistence region in one component systems) is investigated quantitatively. It has been found that the most probable explanation are impurities within the system whereas finite size effects or the

  2. Beyond the Child-Langmuir limit

    NASA Astrophysics Data System (ADS)

    Caflisch, R. E.; Rosin, M. S.

    2012-05-01

    This article presents a new formulation of the solution for fully nonlinear and unsteady planar flow of an electron beam in a diode. Using characteristic variables (i.e., variables that follow particle paths) the solution is expressed through an exact analytic, but implicit, formula for any choice of incoming velocity v0, electric field E0, and current J0. For steady solutions, this approach clarifies the origin of the maximal current Jmax, derived by Child and Langmuir for v0=0 and by Jaffe for v0>0. The implicit formulation is used to find (1) unsteady solutions having constant incoming flux J0>Jmax, which leads to formation of a virtual cathode, and (2) time-periodic solutions whose average flux exceeds the adiabatic average of Jmax.

  3. Langmuir films containing ibuprofen and phospholipids

    NASA Astrophysics Data System (ADS)

    Geraldo, Vananélia P. N.; Pavinatto, Felippe J.; Nobre, Thatyane M.; Caseli, Luciano; Oliveira, Osvaldo N.

    2013-02-01

    This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.

  4. Coherency properties of strong Langmuir turbulence

    SciTech Connect

    Rose, H.A.; DuBois, D.F.; Russell, D. )

    1989-01-01

    Strongly correlated Langmuir wave collapse has been observed in two dimensional simulations of Zakharov's model in a regime characterized by strong ion sound wave damping and an external drive frequency, {omega}{sub 0}, close to but less than the plasma frequency, ({omega}{sub p} {minus} {omega}{sub 0})/{omega}{sub 0} > {epsilon} with {epsilon} {approx equal} 0.005. Caviton-caviton interactions induce temporal correlations between different collapse sites on a time scale the order of a collapse cycle, and on a longer time scale site locations migrate possibly leading to strong spatial correlations. Certain features of ionospheric incoherent scatter radar (ISR) spectra are consistent with such correlations. 6 refs.

  5. Fluid flow volume measurements using a capacitance/conductance probe system

    NASA Technical Reports Server (NTRS)

    Nguyen, T. X.; Arndt, G. D.; Carl, J. R.

    1995-01-01

    A probe system has been developed to measure the flow volume of a single fluid passing through an orifice or flow line. The system employs both capacitance and a conductance probe at the orifice, together with phase detection and data acquisition circuitry to measure flow volume and salinity under low or zero gravity conditions. A wide variety of frequencies can be used for the radio frequency (RF) signal source which is chosen primarily by the capacitance of the orifice probe and the fluid passing through the orifice. Rapid measurements are made using the reflected signal from the orifice probe to determine the 'instantaneous' permittivity of the fluid/gas mixture passing through. The 'instantaneous' measurements are integrated over time to determine flow volume. Analysis reveals that a narrow orifice helps to reduce non-linearities caused by differing flow rates. The geometry of 'deflectors' and 'directors' for the flowing fluid are important in obtaining linearity. Measured data shows that a volume measurement accuracy of approximately four percent can be consistently achieved. The prototype hardware system and associated software have been optimized and are available for further applications. The system has immediate application in low or zero gravity environments for measurements of urine or other liquid volumes.

  6. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    SciTech Connect

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-07-07

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency.

  7. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 1: Trade analysis and design

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.

  8. Probing disorders of the nervous system using reprogramming approaches

    PubMed Central

    Ichida, Justin K; Kiskinis, Evangelos

    2015-01-01

    The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges. PMID:25925386

  9. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step. PMID:26574398

  10. Probing disorders of the nervous system using reprogramming approaches.

    PubMed

    Ichida, Justin K; Kiskinis, Evangelos

    2015-06-01

    The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges. PMID:25925386

  11. Langmuir-Blodgettry of nanocrystals and nanowires.

    PubMed

    Tao, Andrea R; Huang, Jiaxing; Yang, Peidong

    2008-12-01

    Although nanocrystals and nanowires have proliferated new scientific avenues in the study of their physics and chemistries, the bottom-up assembly of these small-scale building blocks remains a formidable challenge for device fabrication and processing. An attractive nanoscale assembly strategy should be cheap, fast, defect tolerant, compatible with a variety of materials, and parallel in nature, ideally utilizing the self-assembly to generate the core of a device, such as a memory chip or optical display. Langmuir-Blodgett (LB) assembly is a good candidate for arranging vast numbers of nanostructures on solid surfaces. In the LB technique, uniaxial compression of a nanocrystal or nanowire monolayer floating on an aqueous subphase causes the nanostructures to assemble and pack over a large area. The ordered monolayer can then be transferred to a solid surface en masse and with fidelity. In this Account, we present the Langmuir-Blodgett technique as a low-cost method for the massively parallel, controlled organization of nanostructures. The isothermal compression of fluid-supported nanoparticles or nanowires is unique in its ability to achieve control over nanoscale assembly by tuning a macroscopic property such as surface pressure. Under optimized conditions (e.g., surface pressure, substrate hydrophobicity, and pulling speed), it allows continuous variation of particle density, spacing, and even arrangement. For practical application and device fabrication, LB compression is ideal for forming highly dense assemblies of nanowires and nanocrystals over unprecedented surface areas. In addition, the dewetting properties of LB monolayers can be used to further achieve patterning within the range of micrometers to tens of nanometers without a predefined template. The LB method should allow for easy integration of nanomaterials into current manufacturing schemes, in addition to fast device prototyping and multiplexing capability. PMID:18683954

  12. A Coumarin-Based Fluorescent Probe as a Central Nervous System Disease Biomarker

    PubMed Central

    Yap, Ann-Chee; Mahamad, Ummi Affah; Lim, Shen-Yang; Kim, Hae-Jo; Choo, Yeun-Mun

    2014-01-01

    Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS). A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson's disease (PD) patients' blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC-MS). The results obtained from both analyses were in agreement. The new chemoassay utilizing coumarin-based fluorescent probe 1 offers a cost- and time-effective method to identify the biomarkers in CNS patients. PMID:25390405

  13. Improved double planar probe data analysis technique.

    PubMed

    Ghim Kim, Young-Chul; Hershkowitz, Noah

    2009-03-01

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data. PMID:19334917

  14. Probing Nearby Planetary Systems by Debris Disk Imaging

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl

    2011-01-01

    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroidand Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, a growing number of them are now spatially resolved. In this talk, I'll review what is currently known about the structure of debris disks. Using images from the Hubble, Spitzer, and Herschel Space Telescopes, I will show how modeling of these resolved systems can place strong constraints on dust particle properties in the disks. Some of the disks show disturbed structures suggestive of planetary perturbations: specific cases will be discussed where directly-imaged exoplanets are clearly affecting debris disk structure. I'll conclude with thoughts on the future of high contrast exoplanet imaging.

  15. SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.

    SciTech Connect

    JOHNSON, P.D.; GUNTHERODT, G.

    2006-11-01

    Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.

  16. Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system

    SciTech Connect

    Chang, C.W.; Chen, K.M.; Qian, J.

    1996-07-01

    A nondestructive measurement of electromagnetic (EM) properties of anisotropic materials using an open-ended waveguide probe has been conducted. Two coupled electric field integral equations (EFIEs) for the aperture electric field are derived and solved numerically by employing the method of moments (MoM). After the determination of the aperture electric field, the reflection coefficient of the incident wave can be expressed in terms of the EM parameters of the material. Then, the EM parameters of the material layer can be inversely determined if the reflection coefficient of the incident wave is experimentally measured. A series of experiments has been conducted using the waveguide probe system constructed at MSU electromagnetics laboratory. The inverse results of the EM properties of various materials are presented. Finally, the effects of material parameters on the probe input admittance that cause problems in the measurement are analyzed.

  17. Evidence for Langmuir wave collapse in the interplanetary plasma

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.

    1992-01-01

    With the Fast Envelope Sampler part of the URAP experiment on Ulysses, there is observed much rapidly varying structure in plasma waves in the solar wind. Extremely narrow (1 ms) structures observed together with electrostatic Langmuir waves, as well as some broader Langmuir wave packets are discussed.

  18. ASSESSING THE ACCURACY OF THE LINEARIZED LANGMUIR MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most commonly used models for describing phosphorus (P) sorption to soils is the nonlinear Langmuir model. To avoid the difficulties in fitting the nonlinear Langmuir equation to sorption data, linearized versions are commonly used. Although concerns have been raised in the past regarding...

  19. Non-linear Langmuir waves in a warm quantum plasma

    SciTech Connect

    Dubinov, Alexander E. Kitaev, Ilya N.

    2014-10-15

    A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.

  20. Using Weighted Least Squares Regression for Obtaining Langmuir Sorption Constants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most commonly used models for describing phosphorus (P) sorption to soils is the Langmuir model. To obtain model parameters, the Langmuir model is fit to measured sorption data using least squares regression. Least squares regression is based on several assumptions including normally dist...

  1. Development of compression-controlled low-level laser probe system: towards clinical application

    PubMed Central

    Yeo, Changmin; Son, Taeyoon; Park, Junghwan; Lee, Young-Heum; Kwon, Kiwoon; Nelson, J. Stuart

    2011-01-01

    Various physico-chemical tissue optical clearing (TOC) methods have been suggested to maximize photon density in tissue. In order to enhance photon density, a compression-controlled low-level laser probe (CCLLP) system was developed by utilizing the principle of mechanical tissue compression. Negative compression (NC) was applied to the laser probes built in various diameters and simultaneously the laser was irradiated into ex-vivo porcine skin samples. Laser photon density (LPD) was evaluated as a function of NC and probe diameter by analyzing 2D diffusion images of the laser exposures. The CCLLP system resulted in a concentrated laser beam profile, which means enhancement of the LPD. As indicators of LPD, the laser peak intensity increased and the full width at half maximum (FWHM) decreased as a function of NC. The peak intensity at −–30 kPa increased 2.74, 3.22, and 3.64 fold at laser probe diameters of 20, 30, and 40 mm, respectively. In addition, sample temperature was measured with a thermal camera and increased 0.4 K at −30 kPa after 60 s of laser irradiation as a result of enhanced LPD. The CCLLP system effectively demonstrated enhancement of the LPD in tissue and potentially its clinical feasibility. PMID:20393768

  2. Performance enhancement for long distance BOTDR sensing system based on high extinction ratio probe pulse generator

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Xia, Lan; Wu, Xuelin; Zhang, Xuping; Wang, Guanghui

    2014-10-01

    The leakage light of an electro-optic modulator (EOM) induced by its finite extinction ratio (ER) may degrade the performance of Brillouin optical time domain reflectometer sensing system, especially for long distance measurement. In this letter, the configuration of a high ER probe pulse generator assisted by synchronous optical switch has been presented. A dual pulses interferometric method was also proposed to determine the dynamic ER value (DER) of the generated probe pulse. Contrast experiments have been performed to verify the effect of the proposed method in a BOTDR system and the results have shown that the performance of a long distance BOTDR sensing system can be improved observably with the proposed high ER probe pulse generator. At the end of a 48.5km sensing fiber, the maximum uncertainty of temperature measurement has been reduced from 5.2° to 0.8° with 25m spatial resolution after we improved the extinction ratio of probe pulse from 35dB to 65dB.

  3. Highly conducting graphene sheets and Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Li, Xiaolin; Zhang, Guangyu; Bai, Xuedong; Sun, Xiaoming; Wang, Xinran; Wang, Enge; Dai, Hongjie

    2008-09-01

    Graphene is an intriguing material with properties that are distinct from those of other graphitic systems. The first samples of pristine graphene were obtained by `peeling off' and epitaxial growth. Recently, the chemical reduction of graphite oxide was used to produce covalently functionalized single-layer graphene oxide. However, chemical approaches for the large-scale production of highly conducting graphene sheets remain elusive. Here, we report that the exfoliation-reintercalation-expansion of graphite can produce high-quality single-layer graphene sheets stably suspended in organic solvents. The graphene sheets exhibit high electrical conductance at room and cryogenic temperatures. Large amounts of graphene sheets in organic solvents are made into large transparent conducting films by Langmuir-Blodgett assembly in a layer-by-layer manner. The chemically derived, high-quality graphene sheets could lead to future scalable graphene devices.

  4. Probing the Structure-Function Relationships of Microbial Systems

    SciTech Connect

    Plomp, M; Leighton, T J; Holman, H; Malkin, A J

    2005-11-03

    The elucidation of microbial surface architecture and function is critical to determining mechanisms of pathogenesis, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. We have utilized high-resolution in vitro AFM for studies of structure, assembly, function and environmental dynamics of several microbial systems including bacteria and bacterial spores. Lateral resolutions of {approx}2.0 nm were achieved on pathogens, in vitro. We have demonstrated, using various species of Bacillus and Clostridium bacterial spores, that in vitro AFM can address spatially explicit spore coat protein interactions, structural dynamics in response to environmental changes, and the life cycle of pathogens at near-molecular resolution under physiological conditions. We found that strikingly different species-dependent crystalline structures of the spore coat appear to be a consequence of nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat, and we proposed a unifying mechanism for outer spore coat self-assembly. Furthermore, we revealed molecular-scale transformations of the spore coat during the germination process, which include profound, previously unrecognized changes of the spore coat. We will present data on the direct visualization of stress-induced environmental response of metal-resistant Arthrobacter oxydans bacteria to Cr (VI) exposure, resulting in the formation of a supramolecular crystalline hexagonal structure on the cell surface. At higher Cr (VI) concentrations the formation of microbial extracellular polymers, which cover microbial colony was observed. High-resolution visualization of stress-induced structures on bacterial surfaces builds a foundation for real time in vitro molecular scale studies of structural dynamics of metal-resistant bacteria in response to environmental stimuli. In the case of the bacterium Chlamedia trachomatis, we were

  5. Supramolecular architecture in Langmuir and Langmuir-Blodgett films incorporating a chiral azobenzene.

    PubMed

    Haro, Marta; del Barrio, Jesús; Villares, Ana; Oriol, Luis; Cea, Pilar; López, M Carmen

    2008-09-16

    This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5''-(methyloxycarbonyl)pentyl-1''-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films. PMID:18686982

  6. Landau damping of Langmuir twisted waves with kappa distributed electrons

    SciTech Connect

    Arshad, Kashif Aman-ur-Rehman; Mahmood, Shahzad

    2015-11-15

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  7. Landau damping of Langmuir twisted waves with kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2015-11-01

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  8. Shape modeling with family of Pearson distributions: Langmuir waves

    NASA Astrophysics Data System (ADS)

    Vidojevic, Sonja

    2014-10-01

    Two major effects of Langmuir wave electric field influence on spectral line shapes are appearance of depressions shifted from unperturbed line and an additional dynamical line broadening. More realistic and accurate models of Langmuir waves are needed to study these effects with more confidence. In this article we present distribution shapes of a high-quality data set of Langmuir waves electric field observed by the WIND satellite. Using well developed numerical techniques, the distributions of the empirical measurements are modeled by family of Pearson distributions. The results suggest that the existing theoretical models of energy conversion between an electron beam and surrounding plasma is more complex. If the processes of the Langmuir wave generation are better understood, the influence of Langmuir waves on spectral line shapes could be modeled better.

  9. Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes

    SciTech Connect

    Sears, Jason Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K.

    2014-10-01

    The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within ±1.5 mm of their absolute 3D position in the vessel and to within ±0.7 mm relative to other probes, on the order of the electron inertial length (1–2 mm)

  10. New Approach for Thermal Protection System of a Probe During Entry

    NASA Technical Reports Server (NTRS)

    Yendler, Boris; Poffenbarger, Nathan; Patel, Amisha; Bhave, Ninad; Papadopoulos, Periklis

    2005-01-01

    One of the biggest challenges for any thermal protection system (TPS) of a probe is to provide a sufficient barrier for heat generated during descent in order to keep the temperature inside of the probe low enough to support operational temperature of equipment. Typically, such a goal is achieved by having the ceramic tiles and blankets like on the Space Shuttle, silicon based ablators, or metallic systems to cover the probe external surface. This paper discusses the development of an innovative technique for TPS of the probe. It is proposed to use a novel TPS which comprises thermal management of the entry vehicle. It includes: a) absorption of the heat during heat pick load by a Phase Change Material (PCM), b) separation of the compartment which contains PCM from the rest of the space vehicle by a gap with a high thermal resistance, c) maintaining temperature of the internal wall of s/c cabin temperature by transfer heat from the internal wall to the "cold" side of the vehicle and to reject heat into the space during the flight and on a ground, d) utilization of an advanced heat pipe, so called Loop Heat Pipe to transfer heat from the cabin internal wall to the cold side of the s/c and to reject the heat into environment outside of the vehicle. A Loop Heat Pipe is capable of transferring heat against gravity

  11. Challenges and Advances in Instrumentation of UHV LT Multi-Probe SPM System

    NASA Astrophysics Data System (ADS)

    Wang, Zhouhang

    The progress of nanoscience and nanotechnology can be realized only through continued advances and utilization of instruments and techniques for characterizing material properties and manipulating material and device at nanoscale. The UHV LT Multi-Probe SPM system with high resolution SEM has been developed to meet such challenges. This integrated instrument bridges dimensions from the centimeter to atomic scale, and provides an unprecedented platform for local, non-destructive transport measurements and for building, manipulating and function-testing complex nanoelectronics and nanoscale machineries. It also enables combining many different techniques for characterizing sample conductance, topography, chemical, optical or magnetic properties with complementary information at the same position or on the same nanodevice. Design and development of such complex systems pose many issues and challenges. This chapter will discuss some of the issues faced, solutions reached and advances made. Examples include: (1) Disturbance by magnetic material and magnetic field of SEM imaging and coordination of SEM/SPM position, and their influence on and disturbance of SAM spectra and SAM mapping. The design and use of non-magnetic motors for multi-probe modules will be presented and discussed. (2) Tip holder and sample holder design for easy handling, better mechanical stability over the temperature range and better thermal contact and the versatility of the sample holder with multiple contacts. (3) Use of optical fiber as one of the probe modules, and positioning of the fiber probe. CL spectra and CL mapping results will be presented.

  12. Advanced development of particle-beam-probe diagnostic systems. Technical progress report, 1 July 1980-30 April 1981

    SciTech Connect

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; Connor, K.A.

    1981-05-01

    The heavy ion beam probe system on the RENTOR tokamak has been reinstalled with considerably improved performance. The heavy neutral beam probe system on the ALEX baseball facility has demonstrated the capability of measuring space potential in minimum-B geometry. A large amount of data were obtained from the highly successful TMX beam probe system and are presently being analyzed. Technological improvements were made on both the RENTOR and ALEX diagnostic systems, new ion sources and extraction configurations were investigated, and the superiority of off-line processing techniques for beam probe data has been demonstrated. The development of high energy probing beams for application to major confinement experiments has been initiated and cross-over sweep systems to improve spatial resolution, differential pumping, and reduce energy requirements have been designed.

  13. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams

    NASA Astrophysics Data System (ADS)

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  14. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.

    PubMed

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe. PMID:21456752

  15. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Karapetian, Edgar; Mirman, B; Eliseev, E. A.; Morozovska, A. N.

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  16. Micromachined Silicon Stimulating Probes with CMOS Circuitry for Use in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Tanghe, Steven John

    1992-01-01

    Electrical stimulation in the central nervous system is a valuable technique for studying neural systems and is a key element in the development of prostheses for deafness and other disorders. This thesis presents a family of multielectrode probe structures, fulfilling the need for chronic multipoint stimulation tools essential for interfacing to the highly complex neural networks in the brain. These probes are batch-fabricated on silicon wafers, employing photoengraving techniques to precisely control the electrode site and array geometries and to allow the integration of on-chip CMOS circuitry for signal multiplexing and stimulus current generation. Silicon micromachining is used to define the probe shapes, which have typical shank dimensions of 3 mm in length by 100 mu m in width by 15 μm in thickness. Each shank supports up to eight planar iridium oxide electrode sites capable of delivering charge densities in excess of 3 mC/cm^2 during current pulse stimulation. Three active probe circuits have been designed with varied complexity and capability. All three can deliver biphasic stimulus currents through 16 sites using only 5 external leads, and they are all compatible with the same external control system. The most complex design interprets site addresses and stimulus current amplitudes from 16-bit words shifted into the probe at 4 MHz. Sixteen on-chip, biphasic, 8-bit digital-to-analog converters deliver analog stimulus currents in the range of +/- 254 muA to any combination of electrode sites. These DACs exhibit full-scale internal linearity to better than +/-1/2 LSB and can be calibrated by varying the positive power supply voltage. The entire probe circuit dissipates only 80 muW from +/-5 V supplies when not delivering stimulus currents, it includes several safety features, and is testable from the input pads. Test results from the fabricated circuits indicate that they all function properly at clocking frequencies as high as 10 MHz, meeting or exceeding

  17. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  18. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  19. Time-resolved measurement of plasma parameters by means of triple probe.

    PubMed

    Qayyum, A; Ahmad, N; Ahmad, S; Deeba, Farah; Ali, Rafaqat; Hussain, S

    2013-12-01

    Triple Langmuir probe (TLP) diagnostic system with its necessary driving circuit is developed and successfully applies for time-resolved measurement of plasma parameters in the negative glow region of pulsating-dc discharge. This technique allows the instantaneous measurement of electron temperature [T_], electron number density [n_] as well as plasma fluctuations without any voltage or frequency sweep. In TLP configuration two probes are differentially biased and serve as a floating symmetric double probe whereas the third probe is simply floating into plasma to measure floating potential as a function of time and thus incorporates the effect of plasma fluctuations. As an example of the application to time-dependent plasmas, basic plasma parameters such as floating potential, electron temperature, and electron number density in low pressure air discharge are determined as a function of time for different fill pressure. The results demonstrate temporal evolution of plasma parameters and thus plasma generation progression for different fill pressures. PMID:24387429

  20. Measuring the inboard side scrape-off layer of DIII-D plasmas using Swing-Probes

    NASA Astrophysics Data System (ADS)

    Tsui, Cedric

    The scrape-off layer (SOL) plasma of a tokamak often has a complicated spatial dependence. The temperatures, densities and flow speeds can vary significantly on the same magnetic flux tube at different poloidal locations. To fully understand the plasma variation, we must make active measurements along the full length of the flux tubes by expanding our diagnostic capability to include the critically under-diagnosed inboard side. To accomplish this, a new pair of in-situ reciprocating Mach probes called Swing-Probes have been developed and deployed on the DIII D centerpost. This design is unique in that the probe swings vertically through the SOL plasma, taking measurements along a 180° arc with a 20 cm radius. Two electrodes maintain a Mach-pair orientation throughout the swing and provide measurements of saturation current, electron temperature, and parallel flow speeds. The probes can handle very high heat fluxes and have taken measurements up to the Last Closed Flux Surface (LCFS) in high-powered H-Mode at 10 MW. The Swing-Probe temperature and density measurements have been verified against the floor Langmuir probes, the core Thomson scattering and the divertor Thomson scattering systems in DIII-D for conditions where poloidal variation are expected to be small. Measurements have been taken across a wide range of plasma conditions and provide informative relationships between the plasma parameters at the entrance of the inner divertor and the crown of the plasma. The low-turbulence plasmas on the inboard scrape-off layer make it possible to clearly quantify the sheath-expansion around Langmuir probes. An I-V fitter has been developed which can account for sheath-expansion in a theoretically consistent way, improving the reliability of Langmuir probe data analysis. In an inner-wall limited experiment in DIII-D requested by ITER, the Swing-Probes made the first Langmuir probe measurements of an enhanced heat flux feature just outside the LCFS. These measurements

  1. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system.

    PubMed Central

    Ho, M S; Conrad, P A; Conrad, P J; LeFebvre, R B; Perez, E; BonDurant, R H

    1994-01-01

    Trichomoniasis is a widespread, economically important venereal disease of cattle which causes infertility and abortion. Effective control of trichomoniasis has been impeded by the insensitivity of traditional diagnostic procedures, which require the isolation and cultivation of the parasite, Tritrichomonas foetus, from infected cattle. We developed a 0.85-kb T. foetus DNA probe by identifying conserved sequences in DNAs from T. foetus that were isolated from cattle in California, Idaho, Nevada, and Costa Rica. The probe hybridized specifically to DNAs of T. foetus isolates from different geographic areas but not to DNA preparations of Trichomonas vaginalis, bovine cells, or a variety of bacteria from cattle. The probe detected DNA from a minimum of 10(5) T. foetus organisms. To improve sensitivity, a partial sequence of the probe was used to identify oligonucleotide primers (TF1 and TF2) which could be used to amplify a 162-bp product from T. foetus DNAs by PCR. A chemiluminescent internal T. foetus sequence probe was hybridized to Southern blots of the amplification product. This system detected as few as one T. foetus organism in culture media or 10 parasites in samples containing bovine preputial smegma. Analysis of 52 clinical samples showed that 47 (90.4%) of the 52 samples were correctly identified, with no false-positive reactions. In comparison, the traditional cultivation method detected 44 (84.6%) of the 52 samples from T. foetus-infected and uninfected bulls. These results indicate that the PCR-based amplification system could be a useful alternative method for the diagnosis of bovine trichomoniasis. Images PMID:8126211

  2. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system.

    PubMed

    Ho, M S; Conrad, P A; Conrad, P J; LeFebvre, R B; Perez, E; BonDurant, R H

    1994-01-01

    Trichomoniasis is a widespread, economically important venereal disease of cattle which causes infertility and abortion. Effective control of trichomoniasis has been impeded by the insensitivity of traditional diagnostic procedures, which require the isolation and cultivation of the parasite, Tritrichomonas foetus, from infected cattle. We developed a 0.85-kb T. foetus DNA probe by identifying conserved sequences in DNAs from T. foetus that were isolated from cattle in California, Idaho, Nevada, and Costa Rica. The probe hybridized specifically to DNAs of T. foetus isolates from different geographic areas but not to DNA preparations of Trichomonas vaginalis, bovine cells, or a variety of bacteria from cattle. The probe detected DNA from a minimum of 10(5) T. foetus organisms. To improve sensitivity, a partial sequence of the probe was used to identify oligonucleotide primers (TF1 and TF2) which could be used to amplify a 162-bp product from T. foetus DNAs by PCR. A chemiluminescent internal T. foetus sequence probe was hybridized to Southern blots of the amplification product. This system detected as few as one T. foetus organism in culture media or 10 parasites in samples containing bovine preputial smegma. Analysis of 52 clinical samples showed that 47 (90.4%) of the 52 samples were correctly identified, with no false-positive reactions. In comparison, the traditional cultivation method detected 44 (84.6%) of the 52 samples from T. foetus-infected and uninfected bulls. These results indicate that the PCR-based amplification system could be a useful alternative method for the diagnosis of bovine trichomoniasis. PMID:8126211

  3. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    NASA Astrophysics Data System (ADS)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  4. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.

    PubMed

    Vargas, Alex M; Gülder, Ömer L

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame. PMID:27250464

  5. Bioengineered Probes for Molecular Magnetic Resonance Imaging in the Nervous System

    PubMed Central

    2012-01-01

    The development of molecular imaging probes has changed the nature of neurobiological research. Some of the most notable successes have involved the use of biological engineering techniques for the creation of fluorescent protein derivatives for optical imaging, but recent work has also led to a number of bioengineered probes for magnetic resonance imaging (MRI), the preeminent technique for noninvasive investigation of brain structure and function. Molecular MRI agents are beginning to be applied for experiments in the nervous system, where they have the potential to bridge from molecular to systems or organismic levels of analysis. Compared with canonical synthetic small molecule agents, biomolecular or semibiosynthetic MRI contrast agents offer special advantages due to their amenability to molecular engineering approaches, their properties in some cases as catalysts, and their specificity in targeting and ligand binding. Here, we discuss an expanding list of instances where biological engineering techniques have aided in the design of MRI contrast agents and reporter systems, examining both advantages and limitations of these types of probes for studies in the central nervous system. PMID:22896803

  6. Langmuir wave dispersion relation in non-Maxwellian plasmas

    SciTech Connect

    Ouazene, M.; Annou, R.

    2010-05-15

    The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.

  7. On the theory of Langmuir waves in a quantum plasma

    SciTech Connect

    Kuzelev, M. V.

    2010-04-15

    Nonlinear quantum-mechanical equations are derived for Langmuir waves in an isotropic electron collisionless plasma. A general analysis of dispersion relations is carried out for complex spectra of Langmuir waves and van Kampen waves in a quantum plasma with an arbitrary electron momentum distribution. Quantum nonlinear collisionless Landau damping in Maxwellian and degenerate plasmas is studied. It is shown that collisionless damping of Langmuir waves (including zero sound) occurs in collisionless plasmas due to quantum correction in the Cherenkov absorption condition, which is a purely quantum effect. Solutions to the quantum dispersion equation are obtained for a degenerate plasma.

  8. Relativistically strong Langmuir turbulence in the kinetic regime

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2011-08-15

    Using a kinetic description, the relativistically strong Langmuir turbulence is investigated, which has considered the nonlinear wave-wave, wave-particle interactions and the relativistic effects of electrons. The relativistic Zakharov equations have been obtained. On the basis of these equations, dynamics of collapse has been studied. It is shown that the field strength of relativistic Langmuir plasmons will increase and the ponderomotive expulsion of particles gives rise to the formation of density caviton during the collapsing, which is useful for understanding the natural structural element of relativistically strong Langmuir turbulence.

  9. Investigation of outer planet atmospheres using the pioneer entry probe radio system

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1974-01-01

    The requirements for a telecommunication link which will relay information from a space probe to a carrier spacecraft during space exploration missions are examined. Specific experiments are described and the relative value of the proposed techniques are evaluated. Radio science methods as related to telecommunications systems are discussed. Operational implications of the various approaches to scientific measurement by telemetry of tracking radios are analyzed. Emphasis is placed on a conceptual description of the physics rather than the mathematical development.

  10. Measurement and contouring of micro-scale objects through integrated transillumination in a flexible fiber probe system

    NASA Astrophysics Data System (ADS)

    Mohankumar, Valiyambath Krishnan; Sathiyamoorthy, Krishnan; Murukeshan, Vadakke M.

    2012-07-01

    High-resolution measurement and contouring of objects with micro-scale sizes have been two of the research challenges in many areas, such as nondestructive testing and imaging, imaging of artifacts in MEMS, and lab-on-chip devices, as well as in biomedical imaging. In this context, we use a transillumination incorporated fiber probe imaging system to enable imaging of the targeted object in a single shot. It also enables positioning of the probe system to the region of interest for further fine analysis, thereby reducing the long scanning time faced by conventional approaches. The capability of the developed probe is illustrated using standard USAF resolution chart and fluorescent microspheres as test targets. The probe system has axial and lateral resolutions of about 16 μm and 144 lp/mm, respectively. This proposed probe scheme can potentially be employed as a viable diagnostic imaging methodology.

  11. Two-component model of strong Langmuir turbulence - Scalings, spectra, and statistics of Langmuir waves

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Newman, D. L.

    1990-01-01

    A simple two-component model of strong turbulence that makes clear predictions for the scalings, spectra, and statistics of Langmuir waves is developed. Scalings of quantities such as energy density, power input, dissipation power wave collapse, and number density of collapsing objects are investigated in detail and found to agree well with model predictions. The nucleation model of wave-packet formation is strongly supported by the results. Nucleation proceeds with energy flowing from background to localized states even in the absence of a driver. Modulational instabilities play little or no role in maintaining the turbulent state when significant density nonuniformities are present.

  12. Pencil probe system for electrochemical analysis and modification in nanometer dimensions

    NASA Astrophysics Data System (ADS)

    Fasching, Rainer J.; Tao, Ye; Hammerick, Kyle; Prinz, Fritz B.

    2003-04-01

    A pencil-shaped electrochemical transducer system for analysis or surface modification in nanometer dimension has been developed. High aspect ratio tip structures are shaped combining isotropic and anisotropic deep reactive etch processes to form the body of the transducer. In this way, tips with an aspect ratio higher than 20 and a tip radius of smaller than 50 nm can be achieved. Subsequently, a three-layer system (an isolation layer: silicon nitride, a metal layer: platinum or gold and an isolation layer: silicon nitride) was deposited on the tip structure. Planarization of this structure in combination with a back etch process enables a precise exposure of the buried metal layer down to an electrode dimension of 200 nm on the tip. Electrochemical and impedance spectroscopic characterization showed full electrochemical functionality of the transducer system. Due to the high aspect ratio topography, this probe is particularly suited for Scanning Electrochemical Microscope (SECM) - methodologies. Furthermore this technology promises a feasible production possibility for both probe-arrays and probes on cantilevers.

  13. Signal Evaluation System of Flexible Array Ect Probes for Inspecting Complexly Shaped Surfaces

    NASA Astrophysics Data System (ADS)

    Endo, H.; Nishimizu, A.; Tooma, M.; Ouchi, H.; Yoshida, I.; Nonaka, Y.; Otani, K.

    2011-06-01

    We developed a signal evaluation system of flexible array eddy current testing (ECT) probes for inspecting complexly shaped metal surfaces. Our probes employ excitation and pickup coil pairs arrayed on a bendable substrate to measure curved targets. Since the developed probes produce signals due to the change in the relative position between the coil pair, an evaluation module for flaw signal identification is integrated into the system. The identification utilizes signal phase combination of the coil pairs. It is represented as a two-dimensional diagram constituting the phase values of two of the coil pairs with different positions. The phase of signals around flaws is significantly affected by their orientations. The diagram is therefore capable of separating flaw information from other information and of imaging flaw positions. We applied the system to complex geometric mock-ups. Flaw signals were successfully identified and the images obtained for identified positions could be used to efficiently measure the length of surface flaws by the 12 decibel down method.

  14. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  15. Tethered chains in poor solvent conditions: An experimental study involving Langmuir diblock copolymer monolayers

    SciTech Connect

    Kent, M.S.; Majewski, J.; Smith, G.S.; Lee, L.T.; Satija, S.

    1999-02-01

    We have employed Langmuir monolayers of highly asymmetric polydimethylsiloxane-polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 to {minus}35thinsp{degree}C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature ({ital T}) over this entire range. However, the variation with {ital T} becomes weak below {minus}20thinsp{degree}C. At the lowest {ital T}, the layer thicknesses are 55{percent}{endash}75{percent} of the values at the theta condition (T{sub {theta}}=22thinsp{degree}C). The contraction of the layer with decreasing {ital T} is determined as a function of surface density and molecular weight, and these data are compared to universal scaling forms. The PS segments are depleted from the near surface region over the entire {ital T} range, with the thickness of the depletion layer increasing slightly with decreasing {ital T}. The free energy of the surface layer is probed by surface tension measurements. With decreasing {ital T}, negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayers, indicating metastability toward lateral phase separation. Evidence for a transition from a dispersed phase to a condensed phase with decreasing {ital T} was observed in the reflectivity for very low PDMS-PS coverage. At high coverage where the submerged blocks are strongly interacting at 22thinsp{degree}C, only a modest decrease in surface pressure is observed over the experimental range of {ital T} despite the strong contraction. This latter result is discussed in terms of the relative contributions of enthalpic and entropic effects to the surface pressure. {copyright} {ital 1999 American Institute of Physics.}

  16. Low cost FPGA based data acquisition system for a gamma imaging probe

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, E.; Georgiou, M.; Loudos, G.; Matsopoulos, G.

    2013-11-01

    We present the development of a low cost field programmable gate arrays (FPGA) based data acquisition system for a gamma imaging probe proposed for sentinel lymph node (SLN) mapping. Radioguided surgery using a gamma probe is an established practice and has been widely introduced in SLN biopsies. For such applications, imaging systems require compact readout electronics and flexibility. Embedded systems implemented in the FPGA technology offer new possibilities in data acquisition for nuclear medicine imagers. FPGAs are inexpensive compared to application specific integrated circuits (ASICs), usually used for the readout electronics of dedicated gamma cameras and their size is rather small. In this study, cost effective analog to digital converters (ADCs) were used and signal processing algorithms were implemented in the FPGA to extract the energy and position information. The analog front-end electronics were carefully designed taking into account the low sampling rate of the ADCs. The reference gamma probe has a small field of view (2.5 cm × 2.5 cm) and is based on the R8900U-00-C12 position sensitive photomultiplier tube (PSPMT) coupled to a pixellated CsI(Na) scintillator with 1 mm × 1 mm × 5 mm crystal element size. Measurements were carried out using a general purpose collimator and 99mTc sources emitted at 140 keV. Performance parameters for the imaging gamma probe were compared with those obtained when data were acquired using the standard NIM (Nuclear Instrumentation Modules) electronics and found to be in very good agreement, which demonstrates the efficiency of the proposed implementation.

  17. Development of an Integrated Data Acquisition System for a Small Flight Probe

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Empey, Daniel M.; Skokova, Kristina A.; Venkatapathy, Ethiraj

    2012-01-01

    In support of the SPRITE concept, an integrated data acquisition system has been developed and fabricated for preliminary testing. The data acquisition system has been designed to condition traditional thermal protection system sensors, store their data to an on-board memory card, and in parallel, telemeter to an external system. In the fall of 2010, this system was integrated into a 14 in. diameter, 45 degree sphere cone probe instrumented with thermal protection system sensors. This system was then tested at the NASA Ames Research Center Aerodynamic Heating Facility's arc jet at approximately 170 W/sq. cm. The first test in December 2010 highlighted hardware design issues that were redesigned and implemented leading to a successful test in February 2011.

  18. Experimental signatures of localization in Langmuir wave turbulence

    SciTech Connect

    Rose, H.A.; DuBois, D.F.; Russell, D.; Bezzerides, B.

    1988-01-01

    Features in certain laser-plasma and ionospheric experiments are identified with the basic properties of Langmuir wave turbulence. Also, a model of caviton nucleation is presented which leads to certain novel scaling predictions. 12 refs., 19 figs.

  19. Developing Nuclear Magnetic Resonance Force Microscopy (NMRFM) as an Electronic Probe of Nanoscale Condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Paster, Jeremy W.; Tennant, Daniel M.; Mozaffari, Shirin; Markert, John T.

    2015-03-01

    The investigation of NMR via magnetic force coupling in a large field gradient has led to vast improvements in spatial resolution over the conventional inductive method. It has been demonstrated that nanoscale force sensors could be scaled to distinguish a single nuclear spin, assuming experimental noise can be minimized and other specious force signatures stifled. Accordingly, there are many efforts aimed at repurposing NMR for 3D imaging on the atomic scale. In addition to proof-of-concept experiments aimed at separately resolving some of the eventual experimental barriers to atomic resolution, some of us have directed our attention to using NMR to probe the electronic environment in larger condensed matter systems which are not well suited for other scanning probe microscopy techniques and which are prohibitively small for inductive NMR detection. Previously, we proposed using NMRFM to probe superconducting transitions in microcrystals. In parallel, we revamped our investigation of thin films to explore two-dimensional conducting interfaces between insulating oxides. Presented here is a survey of the technical impediments as well as current strategies for unlocking this exciting potential for NMRFM, as a tool to investigate sub-surface electronic transport in microscale and nanoscale condensed matter systems.

  20. A CMUT probe for medical ultrasonography: from microfabrication to system integration.

    PubMed

    Savoia, Alessandro Stuart; Calianov, Giosuè; Pappalardo, Massimo

    2012-06-01

    Medical ultrasonography is a powerful and cost-effective diagnostic technique. To date, high-end medical imaging systems are able to efficiently implement real-time image formation techniques that can dramatically improve the diagnostic capabilities of ultrasound. Highly performing and thermally efficient ultrasound probes are then required to successfully enable the most advanced techniques. In this context, ultrasound transducer technology is the current limiting factor. Capacitive micromachined ultrasonic transducers (CMUTs) are micro-electro-mechanical systems (MEMS)-based devices that have been widely recognized as a valuable alternative to piezoelectric transducer technology in a variety of medical imaging applications. Wideband operation, good thermal efficiency, and low fabrication cost, especially for those applications requiring high-volume production of small-area dice, are strength factors that may justify the adoption of this MEMS technology in the medical ultrasound imaging field. This paper presents the design, development, fabrication, and characterization of a 12-MHz ultrasound probe for medical imaging, based on a CMUT array. The CMUT array is microfabricated and packed using a novel fabrication concept specifically conceived for imaging transducer arrays. The performance of the developed probe is optimized by including analog front-end reception electronics. Characterization and imaging results are used to assess the performance of CMUTs with respect to conventional piezoelectric transducers. PMID:22711408

  1. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  2. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  3. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  4. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  5. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems.

    PubMed

    Miccoli, I; Edler, F; Pfnür, H; Tegenkamp, C

    2015-06-10

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field. PMID:25985184

  6. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    NASA Astrophysics Data System (ADS)

    Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C.

    2015-06-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.

  7. INTEGRATING THE STORED GRAIN ADVISOR PRO EXPERT SYSTEM WITH AN AUTOMATED ELECTRONIC GRAIN PROBE TRAPPING SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector) has recently been marketed. To make accurate insect management decisions, managers need to know both the insect species and number...

  8. Reflections on Electric Probes

    NASA Astrophysics Data System (ADS)

    Braithwaite, Nicholas

    2007-10-01

    One of the more immediate temptations for an experimental plasma physicist is to insert some kind of refractory, conducting material into a plasma, as a simple means of probing its charge composition. Irvine Langmuir tried it in the 1920s and was one of the first to develop an electrical probe method in his early work on electrical discharge plasmas. There are now numerous variations on the theme including planar, cylindrical and spherical geometry with single, double and triple probes. There are also probes that resonate, propagate and reciprocate. Some probes are electrostatic and others are electromagnetic; some are effectively wireless; most absorb but some emit. All types can be used in steady and transient plasmas, while special schemes have been devised for RF plasmas, using passive and active compensation. Magnetised plasmas pose further challenges. Each configuration is accompanied by assumptions that constrain both their applicability and the analytical methods that translate the measured currents and voltages variously into charge densities, space potentials, particle fluxes, energy distributions and measures of collisionality. This talk will take a broad look at the options and opportunities for electric probes, principally in the environment of non-equilibrium plasma.

  9. THE EFFECTS OF ELECTRON-BEAM-INDUCED ELECTRIC FIELD ON THE GENERATION OF LANGMUIR TURBULENCE IN FLARING ATMOSPHERES

    SciTech Connect

    Zharkova, Valentina V.; Siversky, Taras V. E-mail: taras.siversky@gmail.com

    2011-05-20

    The precipitation of an electron beam injected into the solar atmosphere is studied for the generation of Langmuir wave turbulence in the presence of collisional and Ohmic losses. The system of quasi-linear time-dependent kinetic equations describing the evolution of beams and Langmuir waves is solved by using the summary approximation method. It is found that at upper atmospheric levels the self-induced electric field suppresses the generation of Langmuir turbulence to very small regions below injection. With further precipitation into deeper atmosphere the initial single power-law distributions of beam electrons are transformed into energy distributions with maxima at lower energies formed by collisional and Ohmic energy depletion. The electrons with lower energies (<20 keV) generate on large spatial scales intense low-hybrid and high-hybrid Langmuir waves with well-defined patterns in the corona while higher energy electrons generate moderate low-hybrid waves in the chromosphere. The maximum wave density appears at the maximum of the ambient density. The self-induced electric field reduces the level and makes the regions with low-hybrid Langmuir turbulence narrower in the corona and upper chromosphere. The higher the beam energy flux or its self-induced electric field, the narrower the regions with Langmuir turbulence. High-hybrid Langmuir waves in the form of multiple patterns in space (in the corona) and energy (below 20 keV) are found to be generated only by a very intense electron beam. The number of patterns in both dimensions is also shown to be significantly reduced by the self-induced electric field.

  10. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  11. Probing vacuum-induced coherence via magneto-optical rotation in molecular systems

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Deb, Bimalendu; Dasgupta, Shubhrangshu

    2016-05-01

    Vacuum-induced coherence (VIC) arises due to the quantum interference between the spontaneous emission pathways from the degenerate excited states to a common ground state. The stringent requirement for the VIC to occur is the nonorthogonality of the transition dipole matrix elements. Unlike atoms, molecules are the promising systems for exploration of VIC, as it is possible to identify the non-orthogonal transitions due to the coupling of the rotation of molecular axis with molecular electronic angular momentum. Usually, the possible signatures of VIC are obtained by manipulating the absorption of the probe field. In this paper, we show how the dispersion of the probe field can be manipulated to obtain a measurable signature of VIC. Precisely speaking, we explore a way to probe VIC in molecules by observing its influence on magneto-optical rotation (MOR). We show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rotation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases. Such a large MOR angle may be used as a tool for optical magnetometry to detect weak magnetic field with large measurement sensitivity.

  12. Novel HDD-type SNDM ferroelectric data storage system aimed at high-speed data transfer with single probe operation.

    PubMed

    Hiranaga, Yoshiomi; Uda, Tomoya; Kurihashi, Yuichi; Tanaka, Kenkou; Cho, Yasuo

    2007-12-01

    In this study, several read/write tests were conducted using a novel ferroelectric data storage test system equipped with a spindle motor, targeted at high-speed data transfer using a single probe head. A periodically inverted signal can be read out correctly with a bit rate of 100 kbps using this test system, and 10 Mbps data transfer is also possible during writing operations. The effect of a dc-offset voltage applied to the writing waveform with high-speed probe scanning is discussed. In addition, a novel noncontact probe height control technique was adopted to solve the problem of tip abrasion. PMID:18276549

  13. Two-dimensional axisymmetric Child-Langmuir scaling law

    SciTech Connect

    Ragan-Kelley, Benjamin; Verboncoeur, John; Feng Yang

    2009-10-15

    The classical one-dimensional (1D) Child-Langmuir law was previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of radius r, outer drift tube radius R>r, and gap length L, we further examine the space charge limit in two dimensions. Simulations were done with no applied magnetic field as well as with a large (100 T) longitudinal magnetic field to restrict motion of particles to 1D. The ratio of the observed current density limit J{sub CL2} to the theoretical 1D value J{sub CL1} is found to be a monotonically decreasing function of the ratio of emission radius to gap separation r/L. This result is in agreement with the planar results, where the emission area is proportional to the cathode width W. The drift tube in axisymmetric systems is shown to have a small but measurable effect on the space charge limit. Strong beam edge effects are observed with J(r)/J(0) approaching 3.5. Two-dimensional axisymmetric electrostatic particle-in-cell simulations were used to produce these results.

  14. Photoacoustic Imaging with a Commercial Ultrasound System and a Custom Probe

    PubMed Central

    Wang, Xueding; Fowlkes, J. Brian; Cannata, Jonathan M.; Hu, Changhong; Carson, Paul L.

    2010-01-01

    Building photoacoustic imaging (PAI) systems by using stand-alone ultrasound (US) units makes it convenient to take advantage of the state-of-the-art ultrasonic technologies. However, the sometimes limited receiving sensitivity and the comparatively narrow bandwidth of commercial US probes may not be sufficient to acquire high quality photoacoustic images. In this work, a high-speed PAI system has been developed using a commercial US unit and a custom built 128-element piezoelectric-polymer array (PPA) probe using a P(VDF-TrFE) film and flexible circuit to define the elements. Since the US unit supports simultaneous signal acquisition from 64 parallel receive channels, PAI data for synthetic image formation from a 64 or 128 element array aperture can be acquired after a single or dual laser firing, respectively. Therefore, 2D B-scan imaging can be achieved with a maximum frame rate up to 10 Hz, limited only by the laser repetition rate. The uniquely properties of P(VDF-TrFE) facilitated a wide -6 dB receiving bandwidth of over 120 % for the array. A specially designed 128-channel preamplifier board made the connection between the array and the system cable which not only enabled element electrical impedance matching but also further elevated the signal-to-noise ratio (SNR) to further enhance the detection of weak photoacoustic signals. Through the experiments on phantoms and rabbit ears, the good performance of this PAI system was demonstrated. PMID:21276653

  15. Relationship between tooth loss/probing depth and systemic disorders in periodontal patients.

    PubMed

    Lagervall, Maria; Jansson, Leif

    2007-01-01

    During the last decades, many published studies have focused on the associations between periodontal disease and different systemic disorders. The purpose of the present investigation was to study the relationship between occurrence of systemic disorders and the two variables mean number of teeth and periodontal probing pocket depth after stratification according to smoking habits. The study was conducted as a retrospective study based on consecutive selection of patients at a specialist clinic of Periodontology. The study population consisted of 1854 individuals. Of these, 797 were males, and 1057 were females. Multiple regression analyses were adopted in order to calculate the partial correlations between the number of remaining teeth/the relative frequency of periodontal probing depths > or = 5 mm and presence of systemic disease for different strata according to sex and smoking habits with age included as an independent variable. Non-smoking men with cardiovascular disease, diabetes and rheumatoid disease had significantly fewer teeth compared to non-smoking men without systemic disorder. In conclusion, cardio-vascular disease, diabetes and rheumatoid disease may be regarded as risk indicators of tooth loss in men. However, in order to investigate hypotheses concerning potential risk factors, emerging from cross-sectional studies, being true risk factors of tooth loss, longitudinal prospective studies including established risk factors along with new exposures of interest as covariates are required. PMID:17508705

  16. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  17. An optical biopsy system with miniaturized Raman and spectral imaging probes; in vivo animal and ex vivo clinical application studies

    NASA Astrophysics Data System (ADS)

    Sato, Hidetoshi; Suzuki, Toshiaki; Andriana, Bibin B.; Morita, Shin'ichi; Maruyama, Atsushi; Shinzawa, Hideyuki; Komachi, Yuichi; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Matsuura, Yuji; Toi, Masakazu; Shimosegawa, Toru; Ozaki, Yukihiro

    2009-02-01

    An optical biopsy system which equips miniaturized Raman probes, a miniaturized endoscope and a fluorescent image probe has been developed for in vivo studies of live experimental animals. The present report describes basic optical properties of the system and its application studies for in vivo cancer model animals and ex vivo human cancer tissues. It was developed two types of miniaturized Raman probes, micro Raman probe (MRP) made of optical fibers and ball lens hollow optical fiber Raman probe (BHRP) made of single hollow optical fiber (HOF) with a ball lens. The former has rather large working distance (WD), up to one millimeter. The latter has small WD (~300μm) which depends on the focal length of the ball lens. Use of multiple probes with different WD allows one to obtain detailed information of subsurface tissues in the totally noninvasive manner. The probe is enough narrow to be inserted into a biopsy needle (~19G), for observations of the lesion at deeper inside bodies. The miniaturized endoscope has been applied to observe progression of a stomach cancer in the same rat lesion. It was succeeded to visualize structure of non-stained cancer tissue in live model animals by the fluorescent image technique. The system was also applied to ex vivo studies of human breast and stomach cancers.

  18. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration. PMID:16553421

  19. Probing microelectromechanical systems in an environmentally controlled chamber using long working distance interferometry.

    PubMed

    Soylemez, E; Plass, R A; Ashurst, W R; de Boer, M P

    2013-07-01

    It is well known that the environment in which micromechanical systems operate significantly affects their performance. It is, therefore, important to characterize micromachine behavior in environments where the humidity, pressure, and chemical composition of the ambient can be precisely controlled. Achieving such a level of environmental control presents significant challenges in view of the required instrumentation. To that end, a custom micromachine characterization system is built that allows for full environmental control (pressure, humidity, and gas composition) while retaining full micromachine characterization techniques (long working distance interferometry, electrical probe connectivity, actuation scripting capability). The system also includes an effective in situ surface cleaning mechanism. As an example of the system's utility, a microcantilever crack healing experiment is conducted and surface adhesion energy measurements are tracked over time after a step change in humidity is applied. PMID:23902098

  20. Nondestructive probing of means, variances, and correlations of ultracold-atomic-system densities via qubit impurities

    NASA Astrophysics Data System (ADS)

    Elliott, T. J.; Johnson, T. H.

    2016-04-01

    We show how impurity atoms can measure moments of ultracold-atomic-gas densities, using the example of bosons in a one-dimensional lattice. This builds on a body of work regarding the probing of systems by measuring the dephasing of an immersed qubit. We show that this dephasing is captured by a function resembling characteristic functions of probability theory, of which the derivatives at short times reveal moments of the system operator to which the qubit couples. For a qubit formed by an impurity atom, in a system of ultracold atoms, this operator can be the density of the system at the location of the impurity, and thus means, variances, and correlations of the atomic densities are accessible.

  1. A Thermal Melt Probe System for Extensive, Low-Cost Instrument Deployment Within and Beneath Ice Sheets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Elam, W. T.; Carpenter, M.; Kintner, P., III

    2014-12-01

    component and system testing. We are therefore revising the probe heaters using a newer but more development-intensive technology. With probe systems now validated in our tests, this will result in a reliable means to emplace instruments for studies of subglacial hydrology, ice dynamics, and possible subglacial ecologies.

  2. Langmuir-Blodgett films of micron-sized organic and inorganic colloids.

    PubMed

    Reculusa, Stéphane; Perrier-Cornet, Romain; Agricole, Béatrice; Héroguez, Valérie; Buffeteau, Thierry; Ravaine, Serge

    2007-12-28

    Multilayered films starting with silica or polymer particles in the micron-size range have been prepared using the Langmuir-Blodgett technique. The polymer particles made of highly cross-linked cores and hydrophilic shells were elaborated through a precipitation polymerization method that allows formation of particles with a low polydispersity. The influence of the surface function, the differences between organic and inorganic systems, and the characterization of these materials by means of reflectance infrared spectroscopy are also discussed. PMID:18060168

  3. Evaluation of the Self-Nulling Rotating Eddy Current Probe System

    NASA Technical Reports Server (NTRS)

    Hagemaier, Don; Rengel, Kent; Wincheski, Buzz; Namkung, Min

    1999-01-01

    In order to detect multi-site fatigue cracks located under flush-head rivets, automated eddy current equipment is required. To assure a reliable system, the eddy current probe must be centered easily over the installed rivets. To meet these requirements, the NDE Group at NASA LaRC developed the Self-Nulling Rotating Eddy Current Probe System (SNRECPS) which will be referred to as RPS in this document. The system was evaluated at the FAA, NDI Validation Center, in Albuquerque, New Mexico. The system was capable of detecting a 0.032 inch long crack with a 90/95% PoD. Further evaluations were conducted at Boeing in Long Beach, California. These evaluations included fatigue cracks and notches in a range from 0.025 to 0.100 inch long under flush-head aluminum rivets, and titanium or steel flush-head fasteners. The results of these tests are reported herein. Subsequently, the system was loaned to the USAF Structures Laboratory for the purpose of detecting and measuring short cracks under flush-head rivets in a variety of fatigue test specimens. The inspection task was to detect and plot crack growth from numbered fasteners in lettered rows. In January, 1998, the system was taken to Northwest Airlines Maintenance Base, in Atlanta, to inspect a DC-9, for multi-site cracks in three circumferential splices. The aircraft had 83,000 cycles. The inspection was conducted at 30 kHz from longeron 5 left to longeron 5 right. The system was calibrated using a 0,030 EDM first layer notch. The instrument gain was set to 19 mV from the notch. The reject level was set at 10 mV and the unflawed fasteners yielded a signal amplitude of 2 to 3 mV. Only one fastener location, out of about 2,500 tested, yielded a signal of 58 mV. The rivet was removed and visually evaluated. It appeared to be a slight gouge in the counter-sink zone. No fatigue cracks were detected. The same fastener locations were also inspected using the Boeing MAUS system at 60 kHz. No cracks were detected. Thus far, the

  4. Status of the cryogenic inertial reference system for the Gravity Probe B mission

    NASA Technical Reports Server (NTRS)

    Lipa, J. A.; Gwo, D.-H.; Kirschman, R. K.

    1993-01-01

    We describe the status of the development and testing program for the inertial reference system for the Gravity Probe B gyroscopes. The gyroscope housings are attached to a cryogenic telescope with a 14 cm aperture that continuously points at a guide star. The star image is split to provide quadrant pointing information which is used to steer the spacecraft. This data is also combined with the gyro readout data to provide an absolute precession measurement. Motion of the guide star is independently checked by reference to background galaxies. Room temperature testing of a prototype telescope has been completed and preparations are being made for low temperature tests.

  5. Quantification of Gordona amarae Strains in Foaming Activated Sludge and Anaerobic Digester Systems with Oligonucleotide Hybridization Probes

    PubMed Central

    de los Reyes, M. Fiorella; de los Reyes, Francis L.; Hernandez, Mark; Raskin, Lutgarde

    1998-01-01

    Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems. PMID:9647822

  6. Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes.

    PubMed

    de los Reyes, M F; de los Reyes, F L; Hernandez, M; Raskin, L

    1998-07-01

    Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems. PMID:9647822

  7. Coulomb blockade phenomena in ultrathin Langmuir-Blodgett sandwich junctions

    NASA Astrophysics Data System (ADS)

    Burghard, M.; Mueller-Schwanneke, C.; Philipp, G.; Roth, S.

    1999-04-01

    Electrical junctions were fabricated in sandwich configuration from Langmuir-Blodgett (LB) films of two types of material, 0953-8984/11/14/015/img1-conjugated, peripherally substituted ring systems or a 0953-8984/11/14/015/img2-bonded polymer. The sandwich junctions consisted of four to ten monolayers between two micro-structured gold electrodes, corresponding to a nominal film thickness between about 8 and 20 nm. At liquid helium temperature, the current (I)/voltage (V) characteristics generally exhibited smooth exponential behaviour or irregular steps. However, for a small fraction of the LB sandwiches comprising a 0953-8984/11/14/015/img1-conjugated or 0953-8984/11/14/015/img2-bonded compound, regular staircases were observed. It was possible to fit such 0953-8984/11/14/015/img5 characteristics with curves calculated on the basis of a Coulomb blockade model. These results are accounted for by the presence of nanometre-sized gold particles formed upon evaporation of the top electrode. Single electron tunnelling is assumed to proceed through double tunnel barrier junctions consisting of a gold island asymmetrically located between the top and bottom electrode.

  8. The Anopheles punctulatus complex: DNA probes for identifying the Australian species using isotopic, chromogenic, and chemiluminescence detection systems

    SciTech Connect

    Cooper, L.; Cooper, R.D.; Burkot, T.R. )

    1991-07-01

    Isotopic and enzyme-labeled species-specific DNA probes were made for the three known members of the Anopheles punctulatus complex of mosquitoes in Australia (Anopheles farauti Nos. 1, 2, and 3). Species-specific probes were selected by screening total genomic libraries made from the DNA of individual species with 32P-labeled DNA of homologous and heterologous mosquito species. The 32P-labeled probes for A. farauti Nos. 1 and 2 can detect less than 0.2 ng of DNA while the 32P-labeled probe for A. farauti No. 3 has a sensitivity of 1.25 ng of DNA. Probes were then enzyme labeled for chromogenic and chemiluminescence detection and compared to isotopic detection using 32P-labeled probes. Sequences of the probe repeat regions are presented. Species identifications can be made from dot blots or squashes of freshly killed mosquitoes or mosquitoes stored frozen, dried, and held at room temperature or fixed in isopropanol or ethanol with isotopic, chromogenic, or chemiluminescence detection systems. The use of nonisotopic detection systems will enable laboratories with minimal facilities to identify important regional vectors.

  9. Structural and Other Studies of Langmuir-Blodgett Films.

    NASA Astrophysics Data System (ADS)

    Prakash, Maneesha

    Certain organic materials comprised of ampiphilic molecules will spread on the surface of water to form monolayer films known as Langmuir films. These films can be transferred to solid substrates by dipping the substrates in and out of the water. The films transfer to the substrates monolayer by monolayer and the resulting built-up films are known as Langmuir-Blodgett films. Langmuir-Blodgett films are very regular, with the planes aligned parallel to a high degree. This technique has potential for building structures that may exhibit unusual mechanical, optical, magnetic or electronic properties. Because the proposed uses of Langmuir-Blodgett films depend in a fundamental way on their structure, structural studies of Langmuir-Blodgett films are of great relevance. We have made Langmuir and Langmuir-Blodgett films of simple materials for the purpose of x-ray diffraction characterization. We have looked for differences between the structure of the materials in bulk form as compared with the structure in Langmuir -Blodgett film form. We have studied the in-plane structure of films of the lead salts of various fatty acids using both an external reflection geometry for samples made on glass slide substrates, and a transmission geometry for samples made on thin single crystal mica substrates. Information concerning the in-plane structure and correlations between the layers has been obtained. For the samples made on single crystal mica substrates, epitaxial growth has been observed, whereas on glass substrates the samples have been found to be powders in the plane. An anomalous intensity pattern has been observed for the in-plane and out-of-the -plane peaks. We have proposed a positioning of the hydrocarbon chans that nicely explains the data. We have investigated the conditions for transfer of films on the lipid dipalmitoylphosphatidylcholine, a primary consituent of cell membranes. We have succeeded in forming Langmuir-Blodgett films of this material by the addition of

  10. High Temperature Antenna Measurement System with GSG or GS Contact Probing Capability

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Scardelletti, Maximilian C.; Ponchak, George E.

    2009-01-01

    Applications that require data transmission at high temperatures are becoming more common due to growing commercial and military needs. Antennas are an indispensable part of these systems and the ability to characterize them at elevated temperatures is quite complicated with little or no information being reported on the subject [1]. This paper describes a measurement system that can characterize planar antennas up 600 C with ground-signal-ground (GSG) or ground-signal (GS) probe contacts. The return loss and radiation patterns of a folded slot antenna (FSA), designed to operate at 5 GHz (no ground plane on back side) and fabricated on an alumina substrate, are presented at room temperature (RT) and 250 C [2]. All measurements were made with Agilent's Precision Network Analyzer (PNA) E8361. The return loss and radiation patterns were also measured on a Styrofoam chuck to illustrate the effect the high temperature measurement system has on the patterns.

  11. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process.

    PubMed

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Osawa, Hitoshi; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-06-01

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge2Sb2Te5 film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width (ΔE∕E ~ 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge2Sb2Te5 phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge2Sb2Te5 layers on laser power. PMID:23822352

  12. Validation Test Results for Orthogonal Probe Eddy Current Thruster Inspection System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2007-01-01

    Recent nondestructive evaluation efforts within NASA have focused on an inspection system for the detection of intergranular cracking originating in the relief radius of Primary Reaction Control System (PCRS) Thrusters. Of particular concern is deep cracking in this area which could lead to combustion leakage in the event of through wall cracking from the relief radius into an acoustic cavity of the combustion chamber. In order to reliably detect such defects while ensuring minimal false positives during inspection, the Orthogonal Probe Eddy Current (OPEC) system has been developed and an extensive validation study performed. This report describes the validation procedure, sample set, and inspection results as well as comparing validation flaws with the response from naturally occuring damage.

  13. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  14. A probe array for the investigation of spatio-temporal structures in drift wave turbulence

    SciTech Connect

    Latten, A.; Klinger, T.; Piel, A.; Pierre, T.

    1995-05-01

    A probe array with 64 azimuthally arranged Langmuir probes is presented as a new diagnostic tool for the investigation of drift waves. A parallel data acquisition system provides full spatio-temporal data of azimuthally propagating waves. For both regular and turbulent states of current-driven drift waves, the information provided by such space-time patterns is compared with results obtained from conventional two-point correlation methods. The probe array allows one to directly estimate the time-averaged wave number spectrum. In a turbulent state, the spectrum yields to a power law of {ital S}({ital k}){proportional_to}{ital k}{sup {minus}3.6{plus_minus}0.1}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Observational Characteristics of Langmuir Turbulence Associated with Solar Type III Radio Bursts

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2015-12-01

    Solar flares present the most dramatic energy releases from the Sun. The solar flares accelerate electrons, which form bump-on-tail distributions, and excite electrostatic waves called Langmuir waves, which are subsequently converted into escaping radiation at the fundamental and second harmonic of the electron plasma frequency by some nonlinear processes. These radio emissions are called the type III radio bursts. The sources of these bursts represent natural laboratories of beam-plasma systems. The WAVES experiment on the STEREO spacecraft contains an improved Time Domain Sampler (TDS), improved over that of all similar high time resolution receivers flown in earlier spacecraft. It is primarily intended for the study of Langmuir waves. These in situ high time resolution wave measurements enable us to identify and understand the physical processes associated with beam-plasma systems, as well as for conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency. The waveforms captured by the TDS usually contain a variety of distortions caused by various nonlinear processes. The normalized peak intensities, wave numbers and spectral widths of these wave packets determine the nonlinear processes, which control the evolution of these wave packets. We have analyzed the in situ high time resolution measurements of Langmuir wave packets and determined their three dimensional relative peak intensities, spectral components and spectral widths. Using the frequency drifts of the type III bursts, we have estimated the velocities of the electron beams which in turn yielded the corresponding wave numbers. We will present the distributions of these important physical quantities and their implications for the theoretical models.

  16. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2009-02-01

    We describe two laser optoacoustic imaging systems for breast cancer detection based on arrays of acoustic detectors operated manually in a way similar to standard ultrasonic breast imaging. The systems have the advantages of standard light illumination (regardless of the interrogated part of the breast), the ability to visualize any part of the breast, and convenience in operation. The first system could work in both ultrasonic and optoacoustic mode, and was developed based on a linear ultrasonic breast imaging probe with two parallel rectangular optical bundles. We used it in a pilot clinical study to provide for the first time demonstration that the boundaries of the tumors visualized on the optoacoustic and ultrasonic images matched. Such correlation of coregistered images proves that the objects on both images represented indeed the same tumor. In the optoacoustic mode we were also able to visualize blood vessels located in the neighborhood of the tumor. The second system was proposed as a circular array of acoustic transducers with an axisymmetric laser beam in the center. It was capable of 3D optoacoustic imaging with minimized optoacoustic artifacts caused by the distribution of the absorbed optical energy within the breast tissue. The distribution of optical energy absorbed in the bulk tissue of the breast was removed from the image by implementing the principal component analysis on the measured signals. The computer models for optoacoustic imaging using these two handheld probes were developed. The models included three steps: (1) Monte Carlo simulations of the light distribution within the breast tissue, (2) generation of optoacoustic signals by convolving N-shaped pressure signals from spherical voxels with the shape of individual transducers, and (3) back-projecting processed optoacoustic signals onto spherical surfaces for image reconstruction. Using the developed models we demonstrated the importance of the included spatial impulse response of the

  17. Self-calibrating remote atmospheric electromagnetic probe and data acquisition system

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1972-01-01

    Design and development of electromagnetic probe is discussed. Probe is designed to measure wind speed, turbulence levels, and aerosol content of atmosphere. Data are used to construct real-time, three dimensional map of atmospheric composition.

  18. Langmuir wave decay in turbulent inhomogeneous solar wind plasmas

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A.

    2016-03-01

    Langmuir wave decay in solar wind plasmas typical of type III bursts' source regions near 1 AU have been reported by several spacecraft observations. In such plasmas, due to the presence of random density fluctuations, wave decay occurs usually simultaneously and compete with other coupling effects between the fields and the density irregularities, as reflection, scattering and/or refraction processes. Numerical simulations show that resonant three-wave coupling processes including several cascades of Langmuir wave decay can occur in such plasmas, leading to wave energy transfer to smaller wavenumbers k, as shown in the frame of weak turbulence theory. However, in such conditions, and contrary to what occurs in homogeneous plasmas, the decay process is localized in space at a given time. Moreover, wave-wave coupling plays a significant role in the modulation of the Langmuir waveforms, in agreement with recent space observations.

  19. Sunscope: a video-guided intubation system through a detachable imaging probe.

    PubMed

    Yeh, Jia-Rong; Shieh, Jiann-Shing; Lin, Chih-Peng; Sun, Wei-Zen

    2008-06-01

    We have designed a novel apparatus, the Sunscope, which integrates a semiconductor image sensor into a compact video-guided intubation system. This device consists of three separate modules: viewer, console and visual tube. The 4-inch LCD viewer panel displays the real-time video image with optimal view angle. The console is designed with respect to ergonomics allowing comfortable manipulation and internally accommodating the power supply, image processing components and connector platform for both viewer and probe. The distal end of the detachable probe is packaged with a high resolution lens, CMOS sensor, and four LEDs. The proximal end is a 6-pin connector which can be readily removed and attached on demand. The probe is detachable and disposable with length and diameter adaptable to the size of the endotracheal tube. In our preliminary test, the video-guided apparatus helped inexperienced performers to identify the vocal cords correctly and improve the success rate of intubation on the simulation model. With further improvements on the miniature design, all captured images could be transmitted to remote devices through standard wireless transmission and could thus be stored in a specific database station. The wireless technique enables image sharing on multiple devices while a powerful database can provide valuable resources for training, data mining and serial case studies. We demonstrate that the CMOS image sensor combined with advanced reduced instruction set computer machine can serve as a visual aid for tracheal intubation. The disposable station will become a revolutionary technology both in clinical practice and medical education. PMID:18593652

  20. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  1. A Ratiometric Fluorescent Probe Based on a Through-Bond Energy Transfer (TBET) System for Imaging HOCl in Living Cells.

    PubMed

    Zhang, Yan-Ru; Meng, Ning; Miao, Jun-Ying; Zhao, Bao-Xiang

    2015-12-21

    A simple ratiometric probe (Naph-Rh) has been designed and synthesized based on a through-bond energy transfer (TBET) system for sensing HOCl. In this probe, rhodamine thiohydrazide and naphthalene formyl were connected by simple synthesis methods to construct a structure of monothio-bishydrazide. Free probe Naph-Rh showed only the emission of naphthalene. When probe Naph-Rh reacted with HOCl, monothio-bishydrazide could be converted into 1,2,4-oxadiazole, which not only ensured that the donor and the acceptor were connected with electronically conjugated bonds, but also resulted in the spiro-ring opening and the emission of rhodamine. Therefore, a typical TBET process took place. The probe possessed high-energy transfer efficiency and large pseudo-Stokes shifts. As the first TBET probe for HOCl, Naph-Rh showed excellent selectivity and sensitivity toward HOCl over other reactive oxygen species (ROS)/reactive nitrogen species (RNS), and could respond fast to a low concentration of HOCl in the real sample. In addition, the probe was suitable for imaging HOCl in living cells due to its real-time response, excellent resolution, and reduced cytotoxicity. PMID:26568524

  2. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  3. Non-equilibrium two-level system dynamics probed with a biased bridge resonator

    NASA Astrophysics Data System (ADS)

    Khalil, Moe; Gladchenko, Sergiy; Stoutimore, M. J. A.; Wellstood, F. C.; Osborn, K. D.

    2013-03-01

    We have designed a biased bridge resonator (BBR), which allows us to probe amorphous dielectric films by simultaneously applying a quasi-static electric bias field in addition to a microwave electric field. The BBR is made with a bridge arrangement of capacitors using superconducting aluminum electrodes and operated at millikelvin temperatures. Measurements of a universal amorphous dielectric film at high microwave amplitudes and a sufficiently fast bias field ramp reveals a non-equilibrium dielectric loss equal to its intrinsic steady state value. This phenomenon is explained by a theory which uses the dynamics of charged two-level systems undergoing Landau-Zener transitions to remain in their ground state. We will compare the experimental data to Monte Carlo simulations of the theory which allow for the separate extraction of the dipole moment and the spectral density of two-level systems.

  4. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  5. Backward Raman amplification in the Langmuir wavebreaking regime

    SciTech Connect

    Toroker, Z.; Malkin, V. M.; Fisch, N. J.

    2014-11-15

    In plasma-based backward Raman amplifiers, the output pulse intensity increases with the input pump pulse intensity, as long as the Langmuir wave mediating energy transfer from the pump to the seed pulse remains intact. However, at high pump intensity, the Langmuir wave breaks, at which point the amplification efficiency may no longer increase with the pump intensity. Numerical simulations presented here, employing a one-dimensional Vlasov-Maxwell code, show that, although the amplification efficiency remains high when the pump only mildly exceeds the wavebreaking threshold, the efficiency drops precipitously at larger pump intensities.

  6. Landau damping of Langmuir waves in non-Maxwellian plasmas

    SciTech Connect

    Ouazene, M.; Annou, R.

    2011-11-15

    As free electrons move in the nearest neighbour ion's potential well, the equilibrium velocity departs from Maxwell distribution. The effect of the non-Maxwellian velocity distribution function (NMVDF) on many properties of the plasma such as the transport coefficients, the kinetic energy, and the degree of ionization is found to be noticeable. A correction to the Langmuir wave dispersion relation is proved to arise due to the NMVDF as well [Phys. Plasmas 17, 052105 (2010)]. The study is extended hereafter to include the effect of NMVDF on the Landau damping of Langmuir wave.

  7. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2011-11-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  8. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2012-03-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  9. Integrated scanning Kelvin probe-scanning electrochemical microscope system: development and first applications.

    PubMed

    Maljusch, Artjom; Schönberger, Bernd; Lindner, Armin; Stratmann, Martin; Rohwerder, Michael; Schuhmann, Wolfgang

    2011-08-01

    The integration of a scanning Kelvin probe (SKP) and a scanning electrochemical microscope (SECM) into a single SKP-SECM setup, the concept of the proposed system, its technical realization, and first applications are presented and discussed in detail. A preloaded piezo actuator placed in a grounded stainless steel case was used as the driving mechanism for oscillation of a Pt disk electrode as conventionally used in SECM when the system was operated in the SKP mode. Thus, the same tip is recording the contact potential difference (CPD) during SKP scanning and is used as a working electrode for SECM imaging in the redox-competition mode (RC-SECM). The detection of the local CPD is established by amplification of the displacement current at an ultralow noise operational amplifier and its compensation by application of a variable backing potential (V(b)) in the external circuit. The control of the tip-to-sample distance is performed by applying an additional alternating voltage with a much lower frequency than the oscillation frequency of the Kelvin probe. The main advantage of the SKP-SECM system is that it allows constant distance measurements of the CPD in air under ambient conditions and in the redox-competition mode of the SECM in the electrolyte of choice over the same sample area without replacement of the sample or exchange of the working electrode. The performance of the system was evaluated using a test sample made by sputtering thin Pt and W films on an oxidized silicon wafer. The obtained values of the CPD correlate well with known data, and the electrochemical activity for oxygen reduction is as expected higher over Pt than W. PMID:21675763

  10. Commercial-Off-The-Shelf Microelectromechanical Systems (MEMS) Flow-Measurement Probes Fabricated And Assembled

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2002-01-01

    As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at the NASA Glenn Research Center have been fabricating packaging components and assembling a set of unique probes using commercial-off-the-shelf microelectromechanical systems (MEMS) integrated circuits (computer chips). Using MEMS as an alternative has some compelling advantages over standard measurement devices. Sensor technologies have matured through high-production usage in industries such as automotive and aircraft manufacturers. Currently, MEMS are the choice in applications such as tire pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Conventional instrumentation uses tubing buried in the model aerodynamic surfaces or wind tunnel walls. The measurements are made when pressure is introduced at the tube opening. The pressure then must travel the tubing for lengths ranging from 20 to hundreds of feet before reaching an electronic signal conditioner. This condition causes a considerable amount of damping and requires measurements to be made only after the test rig has reached steady-state operation. The electronic MEMS pressure sensor is able to take readings continuously under dynamic states in nearly real time. The use of stainless steel tubing for pressure measurements requires many tubes to be cleaned, cut to length, carefully installed, and delicately deburred and spliced for use. A cluster of a few hundred 1/16-in.- (0.0625-in.-) diameter tubes (not uncommon in research testing facilities) can be several inches in diameter and may weigh enough to require two men to handle. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of the 1/16-in. tubing with room to spare. The P592 piezoresistive silicon pressure sensor (Lucas NovaSensor, Fremont, CA) was chosen for this project because of its cost, availability, and tolerance to extreme ambient

  11. Systems-Based Approaches to Probing Metabolic Variation within the Mycobacterium tuberculosis Complex

    PubMed Central

    Lofthouse, Emma K.; Wheeler, Paul R.; Beste, Dany J. V.; Khatri, Bhagwati L.; Wu, Huihai; Mendum, Tom A.; Kierzek, Andrzej M.; McFadden, Johnjoe

    2013-01-01

    The Mycobacterium tuberculosis complex includes bovine and human strains of the tuberculosis bacillus, including Mycobacterium tuberculosis, Mycobacterium bovis and the Mycobacterium bovis BCG vaccine strain. M. bovis has evolved from a M. tuberculosis-like ancestor and is the ancestor of the BCG vaccine. The pathogens demonstrate distinct differences in virulence, host range and metabolism, but the role of metabolic differences in pathogenicity is poorly understood. Systems biology approaches have been used to investigate the metabolism of M. tuberculosis, but not to probe differences between tuberculosis strains. In this study genome scale metabolic networks of M. bovis and M. bovis BCG were constructed and interrogated, along with a M. tuberculosis network, to predict substrate utilisation, gene essentiality and growth rates. The models correctly predicted 87-88% of high-throughput phenotype data, 75-76% of gene essentiality data and in silico-predicted growth rates matched measured rates. However, analysis of the metabolic networks identified discrepancies between in silico predictions and in vitro data, highlighting areas of incomplete metabolic knowledge. Additional experimental studies carried out to probe these inconsistencies revealed novel insights into the metabolism of these strains. For instance, that the reduction in metabolic capability observed in bovine tuberculosis strains, as compared to M. tuberculosis, is not reflected by current genetic or enzymatic knowledge. Hence, the in silico networks not only successfully simulate many aspects of the growth and physiology of these mycobacteria, but also provide an invaluable tool for future metabolic studies. PMID:24098743

  12. Hard scattering of partons as a probe of collisions at RHIC using the STAR detector system

    SciTech Connect

    Christie, W.B.

    1995-07-15

    Presented here is the current state of the author`s investigations into the use of hard probes to study pp, pA, and AA collisions at the Relativistic Heavy Ion Collider (RHIC) being built at Brookhaven National Laboratory. The overall goal of the RHIC program is the discovery and study of the Quark-Gluon Plasma (QGP), which is predicted to be formed at the high energy densities reached at RHIC in high energy AA collisions. The term {open_quotes}Hard probes{close_quotes} as used in this document includes those particles whose origin is the result of a direct hard parton scatter (i.e qq, qg, or gg). The final states of these hard parton scatters which the author proposes to study include dijets, gamma-jet coincidences, and inclusive high P{sub t} particle spectra. A brief discussion of the physics objectives is given in section 1. This is followed by an introduction to the STAR detector system in section 2, with particular details given for the proposed STAR Electromagnetic Calorimeter (EMC). The present simulation studies and results are given in section 3. The author concludes with a summary and a discussion of future plans in section 4.

  13. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  15. The fine structure of Langmuir waves observed upstream of the bow shock at Venus

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.

    1994-01-01

    Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with time scales as short as 0.15 milliseconds, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wavepackets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.

  16. Deactivation of excitation energy in bacterial photosynthetic reaction centres in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Miyake, J.; Hara, M.; Goc, J.; Planner, A.; Wróbel, D.

    1997-08-01

    Absorption, photoacoustic and time-resolved in μs time range delayed luminescence spectra have been measured in order to follow the interaction among chromophores when Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centres are closely packed in a form of Langmuir-Blodgett multilayers. Two types of Langmuir-Blodgett samples have been prepared and investigated: multilayers consist of one type of reaction centre ( Rhodobacter sphaeroides or Rhodopseudomonas viridis) and multilayers composed of mixed reaction centres ( Rhodobacter sphaeroides mixed with Rhodopseudomonas viridis). Using the Langmuir-Blodgett multilayers composed of two types of bacteria reaction centres mixture, we were able to extend the spectral region of the light/solar energy absorbed by the system. It was shown that each form of pigment participates in thermal dissipation but to a different degree. A special pair (bacteriochlorophyll dimer) does not contribute to delayed luminescence. Delayed luminescence in Rhodopseudomonas viridis and Rhodobacter sphaeroides differs very significantly from each other. Bacteriopheophytin as well as dihydromesochlorophyll contribute to delayed luminescence but the degree of their participation in this radiative process depends strongly on the type of reaction centre. Delayed luminescence and thermal processes have been indicated as important processes of deactivation of the photoexcited chromophores in reaction centres.

  17. Fine structure of Langmuir waves observed upstream of the bow shock at Venus

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.

    1994-01-01

    Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with timescales as short as 0.15 ms, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wave packets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.

  18. Double-cladding-fiber-based detection system for intravascular mapping of fluorescent molecular probes

    NASA Astrophysics Data System (ADS)

    Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis

    2011-03-01

    Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on

  19. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed Central

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  20. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-03-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  1. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Chang, H. Y.

    2016-03-01

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuit model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.

  2. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    SciTech Connect

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.

  3. Design of the unmanned Multiple Exploratory Probe System (MEPS) for Mars observations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The unmanned Multiple Exploratory Probe System (MEPS) is designed for Mars observations in preparation for manned missions to the planet early in the 21st century. MEPS will test vehicle systems, provide important data about the Martian surface and atmosphere, and assist the planning of manned missions. This mission will be a precursor to the manned missions. MEPS will consist of six primary systems. A Command Information Center (CIC) will be employed as an onboard mission control, communications link, and observation post. The Space Transportation Main Engine (STME) will be used to provide the thrust for Earth-Mars transit following vehicle construction near the Space Station. A polar lander/Orbital Transfer Vehicle (OTV) will be deployed during transit to achieve a polar orbit about Mars. A secondary propulsion will be used to place MEPS into orbit about Mars; this system and the aerobrake will circularize the orbit. Following orbit circulation, a satellite will be deployed to observe the Martian surface and atmosphere and to study the space environment. Polar and equatorial lander systems will land on Mars with rovers to collect surface and atmospheric samples while on-board laboratories will provide initial sample study. Two solid rocket booster/payload vehicles will launch samples into a low Mars orbit. The OTV will rendezvous with each payload capsule and then transfer the samples to Earth for hands-on observation.

  4. Interstellar Silicate Dust Grain Properties in Distant Galaxies Probed by Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2015-01-01

    Dust grains are a fundamental component of the interstellar medium, and significantly impact many of the physical processes driving galaxy evolution, including star formation, and the heating, cooling and ionization of interstellar material. Using the absorption features produced by dust in the spectra of luminous background quasars, it is possible to study the properties of extragalactic interstellar dust grains. We will present results from an ongoing program utilizing existing Spitzer Space Telescope infrared quasar spectra to probe silicate dust grain properties in z<1.4 quasar absorption systems. In combination with complementary ground-based data on associated gas-phase metal absorption lines, we explore connections between the interstellar dust and gas in the quasar absorption systems. Our project yields clear detections of the 10 micron silicate dust absorption feature in the studied systems, as well as detections of the 18 micron silicate dust absorption feature in sources with adequate spectral coverage. Based on measured variations in the breath, peak wavelength, and substructure of the 10 micron absorption features, there appear to be differences in the silicate dust grain properties from system-to-system. We also show indications of trends between the gas-phase metal properties, such as metallicity and gas velocity spread, with the silicate dust grain absorption properties. Support for this work is provided by NASA through an award issued by JPL/Caltech and through NASA grant NNX14AG74G, and from National Science Foundation grants AST-0908890 and AST-1108830 to the University of South Carolina.

  5. New effects in Langmuir and Langmuir-Blodgett monolayers from fluorescently labelled phospholipids and their possible use for water quality control

    NASA Astrophysics Data System (ADS)

    Ivanov, G. R.; Geshev, N. I.

    2016-02-01

    Secondary water contamination poses significant challenges to the sensitivity and selectivity of sensors used for its detection and monitoring. Currently only lab tests can detect these contaminants and by the time this happens the contaminated water has entered the city water supply system. Fluorescent chromophore NitroBenzoxaDiazole (NBD) is very suitable and had been successfully used in biosensor applications due to its high sensitivity to close proximity polarity of the medium. Over the years we have discovered 3 new effects in NBD- labelled phospholipids which can significantly improve the performance of biosensors. The phospholipid matrix provides flexible biocompatible environment for immobilization of selectively reacting enzymes, microorganisms, DNA, immunoagents, whole cells. Use of single layer (3.1 nm thickness) films at the air-water interface (Langmuir films) or deposited on solid support as Langmuir-Blodgett (LB) film gives fast response times for real time monitoring (no slow diffusion processes) and precise molecule ordering and orientation. The first new effect was fluorescence self-quenching in Langmuir and LB films. In the liquid phase films exhibit normal fluorescence. Upon transition to solid phase fluorescence intensity is almost completely self-quenched and fluorescence lifetimes in the nanosecond region decrease 2 times. This is easily measured. Usually large heavy metal atoms quench fluorescence. We observed the opposite new effect when LB film is deposited in the solid phase from a subphase containing heavy metals. The third new effect is the obtaining of nanosized cylinders with bilayer thickness, which remain stable at least for months, when LB monolayer is deposited in the phase coexistence region at thermodynamic equilibrium. This greatly increases reacting surface and sensitivity of possible sensors. Almost all possible optical experimental methods were used for this research. This includes polarized ATR FTIR and polarized UV

  6. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    PubMed Central

    2014-01-01

    Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodology to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed. PMID:25492398

  7. Some studies on a solid state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  8. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

    SciTech Connect

    Cikhardt, J.; Klír, D.; Řezáč, K.; Krása, J.; De Marco, M.; Pfeifer, M.; Velyhan, A.; Krouský, E.; Cikhardtová, B.; Kubeš, P.; Kravárik, J.; Ullschmied, J.; Skála, J.

    2014-10-15

    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

  9. Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Mallet, Pierre; Brihuega, Iván; Cherkez, Vladimir; Gómez-Rodríguez, Jose Marìa; Veuillen, Jean-Yves

    2016-03-01

    For the last 25 years, scientists have demonstrated the capabilities of Scanning Tunneling Microscopy (STM) to visualize in real space the response of a two-dimensional electron gas to atomic-scale impurities. The analysis of the Friedel oscillations surrounding the impurities yields valuable information regarding the elastic scattering properties, the band structure, the doping level and the symmetry of the electronic states in the two-dimensional host system. We will address in this article the use of this technique for probing the electronic properties of graphene, the star two-dimensional compound of the last decade. In particular, we will emphasize how this technique can be pushed up to unravel the electronic pseudospin, a distinctive degree of freedom of graphene's Dirac fermions. xml:lang="fr"

  10. Architecture, modeling, and analysis of a plasma impedance probe

    NASA Astrophysics Data System (ADS)

    Jayaram, Magathi

    Variations in ionospheric plasma density can cause large amplitude and phase changes in the radio waves passing through this region. Ionospheric weather can have detrimental effects on several communication systems, including radars, navigation systems such as the Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating models of the ionospheric density is of paramount interest to scientists working in the field of satellite communication. Numerous empirical and theoretical models have been developed to study the upper atmosphere climatology and weather. Multiple measurements of plasma density over a region are of marked importance while creating these models. The lack of spatially distributed observations in the upper atmosphere is currently a major limitation in space weather research. A constellation of CubeSat platforms would be ideal to take such distributed measurements. The use of miniaturized instruments that can be accommodated on small satellites, such as CubeSats, would be key to achieving these science goals for space weather. The accepted instrumentation techniques for measuring the electron density are the Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are able to provide higher resolution measurements of relative electron density, the Plasma Impedance Probes provide absolute electron density measurements irrespective of spacecraft charging. The central goal of this dissertation is to develop an integrated architecture for the PIP that will enable space weather research from CubeSat platforms. The proposed PIP chip integrates all of the major analog and mixed-signal components needed to perform swept-frequency impedance measurements. The design's primary innovation is the integration of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip Field-Programmable Gate Array (FPGA

  11. Langmuir turbulence in the auroral ionosphere 1: Linear theory

    NASA Technical Reports Server (NTRS)

    Newman, D. L.; Goldman, M. V.; Ergun, R. E.; Boehm, M. H.

    1994-01-01

    Intense bursts of Langmuir waves with electric fields of 50 to 500 mV / m have been frequently observed at altitudes greater than 500 km in the auroral ionosphere. These bursts are driven by 20 eV to 4 keV field-aligned electrons, which are embedded in an approximately isotropic nonthermal tail of scattered electrons. The Langmuir bursts are often observed at altitudes where the ionosphere is moderately magnetized (OMEGA (sub e) approximately equals omega (sub pe)). Both the moderate magnetization and the scattered electrons have a major influence on the linear dispersion and damping of Langmuir waves. In particular, the linear dispersion is topologically different depending on whether the magnetic field is subcritical (OMEGA (sub e) less than omega (sub pe)) or supercritical (OMEGA (sub e) greater than omega (sub pe)). The correct dispersion and damping can account for the observed polarization of the Langmuir waves, which is very nearly parallel to the geomagnetic field. Inferred properties of the linear instability driven by the field-aligned electrons are discussed. The linear dispersion and damping derived here provide the basis for a nonlinear turbulence study described in a companion paper (Newman et al., this issue).

  12. Instability-Enhanced Collisional Effects and Langmuir's Paradox

    SciTech Connect

    Baalrud, S. D.; Callen, J. D.; Hegna, C. C.

    2009-06-19

    Anomalously fast equilibration of the electron distribution function to a Maxwellian in gas-discharge plasmas with low temperature and pressure, i.e., Langmuir's paradox, may be explained by electron scattering via an instability-enhanced collective response and hence fluctuations arising from convective ion-acoustic instabilities near the discharge boundaries.

  13. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Chandel, Sameep; Chaudhuri, Abhishek; Muhuri, Sudipto

    2015-04-01

    Filament-based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as kinesins weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament. This model incorporates short-range next-nearest-neighbour (NNN) interactions between the motors and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir kinetics (LK) of the motors. We analyse this model within the framework of a mean-field (MF) theory in the limit of weak interactions between the motors. We point to the mapping of this model with the non-conserved version of the Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with a variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady-state density and current profiles, analyse their variation as a function of the strength of interaction and construct the non-equilibrium MF phase diagram. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement with simulation results as long as the motors are weakly interacting. For sufficently strong NNN interaction between the motors, the mean-field results deviate significantly, and for very strong NNN interaction in the absence of LK, the current in the lattice is determined solely by the NNN interaction parameter and it becomes independent of entry and exit rates of motors at the filament boundaries.

  14. Development of multi-environment dual-probe atomic force microscopy system using optical beam deflection sensors with vertically incident laser beams.

    PubMed

    Tsunemi, Eika; Kobayashi, Kei; Oyabu, Noriaki; Hirose, Masaharu; Takenaka, Yoshiko; Matsushige, Kazumi; Yamada, Hirofumi

    2013-08-01

    We developed a dual-probe atomic force microscopy (DP-AFM) system with two cantilever probes that can be operated in various environments such as in air, vacuum, and liquid. The system employs the optical beam deflection method for measuring the deflection of each cantilever mounted on a probe scanner. The cantilever probes mounted on the probe scanners are attached to inertia sliders, which allow independent control of the probe positions. We constructed three types of probe scanners (tube, shear-piezo, and tripod types) and characterized their performance. We demonstrated AFM imaging in ambient air, vacuum, and ultrapure water, and also performed electrical measurement and pick-up manipulation of a Au nanorod using the DP-AFM system. PMID:24007067

  15. Development of multi-environment dual-probe atomic force microscopy system using optical beam deflection sensors with vertically incident laser beams

    NASA Astrophysics Data System (ADS)

    Tsunemi, Eika; Kobayashi, Kei; Oyabu, Noriaki; Hirose, Masaharu; Takenaka, Yoshiko; Matsushige, Kazumi; Yamada, Hirofumi

    2013-08-01

    We developed a dual-probe atomic force microscopy (DP-AFM) system with two cantilever probes that can be operated in various environments such as in air, vacuum, and liquid. The system employs the optical beam deflection method for measuring the deflection of each cantilever mounted on a probe scanner. The cantilever probes mounted on the probe scanners are attached to inertia sliders, which allow independent control of the probe positions. We constructed three types of probe scanners (tube, shear-piezo, and tripod types) and characterized their performance. We demonstrated AFM imaging in ambient air, vacuum, and ultrapure water, and also performed electrical measurement and pick-up manipulation of a Au nanorod using the DP-AFM system.

  16. Transmission X-ray scattering as a probe for complex liquid-surface structures.

    PubMed

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-03-01

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir-Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces. PMID:26917140

  17. Status of the heavy ion beam probe system in the Large Helical Device.

    PubMed

    Nishiura, M; Ido, T; Shimizu, A; Nakano, H; Kato, T; Kato, S; Hamada, Y; Shevelko, V P; Janev, R K; Wada, M

    2008-02-01

    A heavy ion beam probe (HIBP) system has been installed into the Large Helical Device (LHD) to measure the spatial profile of the plasma potential and density fluctuations. The optimization of the HIBP system, especially the beam injector, is described. The negative ion beam is required for the MeV beam production in a tandem accelerator. A sputter-type heavy negative ion source has been developed as an intense Au(-) beam source to produce Au(+) beams with energy in the MeV range. The extraction electrodes and the Einzel lens system of the ion source have been designed taking into account the beam optics, and installed into the real machine. Throughout the plasma diagnostics on LHD experiments, the consumptions of vaporized caesium and gold target are being characterized for practical operations. In addition, the experimental charge fractions are compared with the theoretical fractions for understanding the charge-changing behavior of Au(-) ions and optimizing the fraction of Au(+) ions at the exit of the tandem accelerator of the HIBP system. PMID:18315266

  18. Stochastic Dynamics of Langmuir Wave Fields

    NASA Astrophysics Data System (ADS)

    Zhou, Cangtao; He, Xiantu; X, T. He

    1992-11-01

    The chaotic behavior of a cubic-quintic nonlinear Schrödinger equation has been discussed numerically. It is shown that the quintic Hamiltonian perturbation leads to the integrability of system broken down.

  19. Electron Acceleration by Langmuir Waves Produced by a Decay Cascade

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A. S.

    2016-04-01

    It was recently reported that a significant part of the Langmuir waveforms observed by the STEREO satellite during type III solar radio bursts are likely consistent with the occurrence of electrostatic decay instabilities, when a Langmuir wave { L } resonantly interacts with another Langmuir wave { L }\\prime and an ion sound wave { S }\\prime through the decay channel { L }\\to { L }\\prime +{ S }\\prime . Usually such wave–wave interactions occur in regions of the solar wind where the presence of electron beams can drive Langmuir turbulence to levels allowing waves { L } to decay. Moreover, such solar wind plasmas can present long-wavelength, randomly fluctuating density inhomogeneities or monotonic density gradients which can significantly modify the development of such resonant instabilities. If some conditions are met, the waves can encounter a second decay cascade (SDC) according to { L }\\prime \\to { L }\\prime\\prime +{ S }\\prime\\prime . Analytical estimates and observations based on numerical simulations show that the Langmuir waves { L }\\prime\\prime produced by this SDC can accelerate beam particles up to velocities and kinetic energies exceeding two times the beam drift velocity vb and half the initial beam energy, respectively. Moreover, this process can be particularly efficient if the scattering effects of waves on the background plasma inhomogeneities have already accelerated a sufficient amount of beam electrons up to the velocity range where the phase velocities of the { L }\\prime\\prime waves are lying. The paper shows that the conditions necessary for such process to occur can be easily met in solar wind plasmas if the beam velocities do not exceed around 35 times the plasma thermal velocity.

  20. System and method for moving a probe to follow movements of tissue

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Andrews, T. W.; Crawford, D. W.; Cole, M. A. (Inventor)

    1981-01-01

    An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe.

  1. Probe systems for measuring static pressure and turbulence intensity in fluid streams

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.

  2. Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Kim, Kyungil

    The mechanisms governing selective CaCO3 crystal nucleation in living organisms remain unclear. For example, nacreous layers from the inner surfaces of shells are built as brick-and-mortar complexes of plate-like aragonite single crystals and organic layers. Unstable [001] surfaces of calcite columns in prismatic layers are also stabilized by organic molecules. Biogenic calcite crystals show different morphologies compared to geological calcite minerals. Langmuir monolayers are used as structured templates in simulated biomineralization from CaCO3 supersaturated subphases. But pure or mixed Langmuir monolayers do not mimic the nucleation sites of aspartic-rich proteins found within real biominerals. It has previously been shown that there is organic-inorganic lattice relaxation in the cases of BaF2 and hydrocerussite (2PbCO3·Pb(OH) 2) nucleation under fatty (carboxylate) acid with preferred orientation of crystals, but no lattice match is observed during CaCO3 crystallization under fatty acid Langmuir monolayers. Overall, geometric influences such as structural match between the interfacial lattices and the interactions between monolayer headgroups and aqueous ions do not guarantee any well-defined orientation of CaCO3 crystallization. CaCO3 mineralization on self-assembled monolayers on metal and alloy substrates have achieved higher degrees of orientations, even though molecules in Langmuir monolayers are better ordered than in self-assembled monolayers. Until now, Langmuir monolayer experiments have emphasized only the function of the acidic proteins. To better mimic the real organic template, it is important to include the hydrophobic and polyelectrolyte characteristics of real organic templates in shells. The organic matrix in actual shells contains hydrophobic silk fibroin (which is hydrophobic) and polyelectrolytes. Some acidic proteins reside on the surface of silk fibroins. There is also semi-crystalline beta-chitin structure whose function has not been

  3. Note: The expansion of possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ṡ 10-3 Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes.

  4. Note: The expansion of possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ⋅ 10(-3) Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes. PMID:27250479

  5. Inexpensive Wilhelmy balance based in a fiber optic sensor for the study of Langmuir films

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Héctor M.; Castillo, Jimmy A.; Chirinos, José R.; Caetano, Manuel

    2005-04-01

    An inexpensive Wilhelmy balance based on a fiber optic sensor capable of sensitive surface tension measurements has been designed and implemented. The system consists of a leaf spring conforming a cantilever structure and a bifurcated optical fiber acting as a laser beam deflection detector. Operated in a static way, it achieves a force measurement sensitivity of 0.154 V by N and a tension surface resolution of 0.1 mN/m. π-A isotherms of Langmuir films from insoluble amphiphiles 5 hexadecanoylaminofluorescein (fluorescein H-110) in water, were followed as a model system to characterize this instrument.

  6. Genetically-encoded tools for cAMP probing and modulation in living systems

    PubMed Central

    Paramonov, Valeriy M.; Mamaeva, Veronika; Sahlgren, Cecilia; Rivero-Müller, Adolfo

    2015-01-01

    Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs. PMID:26441653

  7. Atomistic simulations of langmuir monolayer collapse.

    PubMed

    Lorenz, Christian D; Travesset, Alex

    2006-11-21

    Monolayers at the vapor/water interface collapse by exploring the third dimension at sufficient lateral compression, either by forming three-dimensional structures or by solubilization into the aqueous solution. In this paper, we provide an atomistic description of collapse from molecular dynamics (MD) simulations. More specifically, we investigate monolayers of arachidic acids spread on pure water and in an aqueous solution with Ca2+ ions in the subphase. In both cases, it is found that the collapsed systems generally lead to the formation of multilayer structures, which in the system with Ca2+ ions, proceeds by an intermediate regime where the monolayer exhibits significant roughness (of the order of 4 A). If no roughness is present, the system forms collapsed structures into the aqueous solution. The computational cost of atomic MD limits our simulations to relatively small system sizes, fast compression rates, and temporal scales on the order of a nanosecond. We discuss the issues caused by these limitations and present a detailed discussion of how the collapse regime proceeds at long time scales. We conclude with a summary of the implications of our results for further theoretical and experimental studies. PMID:17106994

  8. Development of a magic-angle spinning nuclear magnetic resonance probe with a cryogenic detection system for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Mizuno, Takashi; Hioka, Katsuya; Fujioka, Koji; Takegoshi, K.

    2008-04-01

    A novel nuclear magnetic resonance (NMR) probe for high-resolution solid-state NMR has been developed. In this probe, temperature of the detection coil is kept at cryogenic temperature (˜12K) for sensitivity enhancement, which is achieved not only by suppression of thermal noise but also by increment of a Q factor of the coil. A marked feature of this probe is that a sample rotating at magic angle is thermally isolated from the cryogenic system in order to realize high-resolution solid-state NMR measurement at various sample temperatures. We call this system as cryocoil magic-angle spinning (cryocoil MAS). H1 MAS NMR with the coil temperature of ˜20K was successfully observed for solid adamantane rotating at room temperature, and signal-to-noise increment due to this cryocoil approach was confirmed.

  9. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    SciTech Connect

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-06-15

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge{sub 2}Sb{sub 2}Te{sub 5} film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width ({Delta}E/E {approx} 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge{sub 2}Sb{sub 2}Te{sub 5} phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge{sub 2}Sb{sub 2}Te{sub 5} layers on laser power.

  10. Prospects for Probing Strong Gravity with a Pulsar-Black Hole System

    NASA Technical Reports Server (NTRS)

    Wex, N.; Liu, K.; Eatough, R. P.; Kramer, M.; Cordes, J. M.; Lazio, T. J. W.

    2012-01-01

    The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems.

  11. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  12. Laser-produced plasma sensor-probe system for in situ molten metal analysis. Final technical report

    SciTech Connect

    Kim, Y.W.

    1997-01-28

    The radically new methodology of in-situ laser-produced plasma (LPP) analysis of molten metals, as developed at Lehigh University, has been implemented into an LPP sensor-probe system, ready for deployment at steelmaking facilities. The system consists of an LPP sensor-probe head, which is immersed into the molten metal bath for the short duration of measurement, a control console, an umbilical cord connecting the above two units, and a support console providing coolants and pneumatic supports to the control console. The Department of Energy funding has supported Phase III-A and -B of the project in a joint sponsorship with AISI, CTU 5-2 Consortium, and Lehigh University. The objectives have been to: (1) implement the molten metal calibration protocol for the LPP analysis methodology; (2) implement the methodology in the form of a second-generation LPP sensor-probe system, which facilitates real-time process control by in-situ determination of elemental composition of molten steel alloys; (3) deploy such developmental systems in steelmaking facilities; (4) upgrade the systems to a third-generation design; and (5) effect technology transfer by selecting a manufacturer of commercial LPP sensor-probe systems. Four of the five objectives have been fully met. The deployment objective has been partially realized at present. The full LPP sensor-probe system has been put through trial immersion runs at a foundry, but its deployment at steelmaking facilities has progressed to a stage where various issues of financial and legal nature are being codified into a formal agreement between a host site and Lehigh University.

  13. Disperse—a software system for design of selector probes for exon resequencing applications

    PubMed Central

    Stenberg, J.; Zhang, M.; Ji, H.

    2009-01-01

    Summary:Selector probes enable the amplification of many selected regions of the genome in multiplex. Disperse is a software pipeline that automates the procedure of designing selector probes for exon resequencing applications. Availability:Software and documentation is available at http://bioinformatics.org/disperse Contact: genomics_ji@stanford.edu PMID:19158162

  14. A novel electro-optical pump-probe system for bioelectromagnetic investigations

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Couderc, Vincent; Leproux, Philippe; Labruyère, Alexis; Tonello, Alessandro; El Amari, Saad; Arnaud-Cormos, Delia; Leveque, Philippe

    2012-10-01

    In the area of bioelectromagnetic studies there is a growing interest to understand the mechanisms leading to nanosecond electric fields induced electroporation. Real-time imaging techniques at molecular level could probably bring further advances on how electric fields interact with living cells. However the investigations are limited by the present-day lack of these kinds of advanced instrumentations. In this context, we present an innovative electro-optical pump-probe system. The aim of our project is to provide a performing and compact device for electrical stimulation and multiplex Coherent anti-Stokes Raman Scattering (M-CARS) imaging of biological cells at once. The system consists of a 1064 nm sub-nanosecond laser source providing both a monochromatic pump and a polychromatic Stokes optical beam used in a CARS process, as well as the trigger beam for the optoelectronic switching-based electrical pulse generator. The polychromatic Stokes beam (from 600 to 1700 nm) results from a supercontinuum generation in a photonic crystal fiber (PCF). A detailed spectro-temporal characterization of such a broadband spectrum shows the impact of the nonlinear propagation in the fiber on the Stokes wave. Despite the temporal distortions observable on Stokes pulse profiles, their spectral synchronization with the pump pulse remains possible and efficient in the interesting region between 1100 nm and 1700 nm. The electrical stimulation device consists of a customized generator combining microstrip-line technology and laser-triggered photoconductive semiconductor switches. Our experimental characterization highlights the capability for such a generator to control the main pulse parameters (profile, amplitude and duration) and to be easily synchronized with the imaging system. We finally test and calibrate the system by means of a KDP crystal. The preliminary results suggest that this electro-optical system provides a suitable tool for real-time investigation of

  15. Timing system design and tests for the Gravity Probe B relativity mission

    NASA Astrophysics Data System (ADS)

    Li, J.; Keiser, G. M.; Lockhart, J. M.; Ohshima, Y.; Shestople, P.

    2015-11-01

    In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16fo clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency3. The 16fo clock and the 10 Hz data strobe, which was divided down from the 16fo clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests.

  16. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques. PMID:25948334

  17. Development of a probing system for a micro-coordinate measuring machine by utilizing shear-force detection

    NASA Astrophysics Data System (ADS)

    Ito, So; Kodama, Issei; Gao, Wei

    2014-06-01

    This paper introduces a newly developed probing system for a micro-coordinate measurement machine (micro-CMM) based on an interaction force generated by the water layer on the surface of the measuring object. In order to measure the dimensions of the micrometric structures, a probing system using a nanopipette ball stylus has been developed. A glass microsphere with diameter of 9 µm is used as a stylus tip of the probing system. The glass nanopipette, which is fabricated from a capillary glass tube by a thermal pulling process, is employed as a stylus shaft to improve the fixation strength of the stylus tip. The approach between the stylus tip and the surface of the measuring object can be detected by utilizing the method of shear-force detection. The stylus is oscillated in the lateral direction at its resonant frequency to detect an interaction force owing to the viscoelasticity of the meniscus layer existing on the surface of the measuring object. The oscillation amplitude is decreased by the shear-force applied to the stylus tip. In this study, the basic characteristics of the probing system including sensitivity, resolution and reproducibility are investigated. The experimental result of dimensional measurement of micrometer-scale structure is presented.

  18. Functional network macroscopes for probing past and present Earth system dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Donges, J. F.

    2013-12-01

    probing past and present Earth system dynamics: Complex hierarchical interactions, tipping points, and beyond" by J.F. Donges, Humboldt University, Berlin, Germany, 2012. URL: http://nbn-resolving.de/urn:nbn:de:kobv:11-100207126.

  19. Langmuir structure of poly (2-vinylpyridine-b-hexyl isocyanate) rod-coil diblock copolymers at the air/water Interface

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan

    2005-03-01

    We conducted a systematic interfacial study for the complete range (5%-90% of rod mole percentage) of an amphiphilic rod-coil system, poly (hexyl isocyanate)-b-(2-vinylpyridine) at the air/water and air/solid interface. We applied Langmuir balance technique, scanning probe microscopy (SPM), transmission electron microscopy (TEM) and X-ray reflectivity for the complete characterization of the monolayer at the interfaces. The phase isotherms showed the well amphiphilic balance for the diblock copolymers, and the formation of stable monolayers. With the increasing rod content, the consistent increase in the monolayer packing density was observed by the phase isotherms and supported by X-ray reflectivity. SPM and TEM characterization showed their interesting surface morphology according to the varying rod mole percentage in the rod-coil system. Rod mole percentage 5%-15% showed micellar morphology. Rod mole percentage 23%-32% showed distinct and dispersed rods, whereas rod mole percentage 70%-90% showed well packed structure similar to lamella phase. We found the tendency of the diblock system to adopt a packed monomolecular structure has increased by the increasing rod content. This lead us to conclude that it is the hexyl-isocyanate (rod part) that governs mostly the interfacial behavior of rod-coil block copolymers.

  20. Surface dilatational viscosity of Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.