Science.gov

Sample records for langmuir-blodgett films based

  1. Effect of bovine serum albumin on the structure and properties of Langmuir Blodgett films based phosphocholine and cholesterol

    NASA Astrophysics Data System (ADS)

    Dubatovka, K. I.; Zhavnerko, G. K.; Agabekov, V. E.

    2014-02-01

    Mono- and bilayer Langmuir-Blodgett films based on phosphocholine and cholesterol and prepared by horizontal and vertical deposition are investigated by atomic force microscopy. It was found that bovine serum albumin (BSA) included at the stage of film formation. At the same time, isolation has a considerable effect on their structure. It was shown that the globular formation of nanostructures with heights of 4-7 nm occurs as a result of transferring lipids to a hydrophobic surface from a subphase containing BSA, indicating the reorganization of monolayers during protein isolation and inclusion in its composition.

  2. Organic field-effect transistors based on Langmuir-Blodgett films of an extended porphyrin analogue - Cyclo[6]pyrrole

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Wang, Ying; Yu, Gui; Xu, Wei; Song, Yabin; Zhang, Deqing; Liu, Yunqi; Zhu, Daoben

    2005-10-01

    Field-effect transistors using cyclo[6]pyrrole as active layers were prepared by Langmuir-Blodgett (LB) method. Cyclo[6]pyrrole is a porphyrin analogue with an extended π-system(22-π-electron). It could form a stable, reproducible monolayer at the air-water interface, which could be transferred onto a substrate with nearly unity transfer ratio and resulted in multilayer structure with the cyclo[6]pyrrole molecules stacking in a face-to-face configuration due to strong intermolecular π-π interactions. An un-optimized device based on this LB films displayed a mobility of 0.014 cm 2 V -1 s -1, which is higher than the highest value of the devices based on typical porphyrins reported.

  3. Second-order nonlinear optical Langmuir-Blodgett films based on a series of azo rare-earth coordination compounds

    SciTech Connect

    Gao, L.H.; Wang, K.Z.; Huang, C.H.

    1995-06-01

    A series of novel azo dyes composed of a lanthanide complex anion and an azo cation, in which strongly electron-donating (dihexadecylamino)phenyl and electron-accepting pyridinium groups are separated by an azo group, was designed as second-order nonlinear optical Langmuir-Blodgett (LB) film materials. The compounds are of good film-forming properties. The values of second-order molecular hyperpolarizability {beta} were determined to be (1.20-3.03) x 10{sup {minus}27} esu, comparable to the largest value known for azo LB materials. The compounds studied may be attactive in the application in future optical devices. 13 refs., 5 figs., 1 tab.

  4. Structural and Other Studies of Langmuir-Blodgett Films.

    NASA Astrophysics Data System (ADS)

    Prakash, Maneesha

    Certain organic materials comprised of ampiphilic molecules will spread on the surface of water to form monolayer films known as Langmuir films. These films can be transferred to solid substrates by dipping the substrates in and out of the water. The films transfer to the substrates monolayer by monolayer and the resulting built-up films are known as Langmuir-Blodgett films. Langmuir-Blodgett films are very regular, with the planes aligned parallel to a high degree. This technique has potential for building structures that may exhibit unusual mechanical, optical, magnetic or electronic properties. Because the proposed uses of Langmuir-Blodgett films depend in a fundamental way on their structure, structural studies of Langmuir-Blodgett films are of great relevance. We have made Langmuir and Langmuir-Blodgett films of simple materials for the purpose of x-ray diffraction characterization. We have looked for differences between the structure of the materials in bulk form as compared with the structure in Langmuir -Blodgett film form. We have studied the in-plane structure of films of the lead salts of various fatty acids using both an external reflection geometry for samples made on glass slide substrates, and a transmission geometry for samples made on thin single crystal mica substrates. Information concerning the in-plane structure and correlations between the layers has been obtained. For the samples made on single crystal mica substrates, epitaxial growth has been observed, whereas on glass substrates the samples have been found to be powders in the plane. An anomalous intensity pattern has been observed for the in-plane and out-of-the -plane peaks. We have proposed a positioning of the hydrocarbon chans that nicely explains the data. We have investigated the conditions for transfer of films on the lipid dipalmitoylphosphatidylcholine, a primary consituent of cell membranes. We have succeeded in forming Langmuir-Blodgett films of this material by the addition of

  5. Langmuir-Blodgett Films of the Metal-Organic Framework MIL-101(Cr): Preparation, Characterization, and CO2 Adsorption Study Using a QCM-Based Setup.

    PubMed

    Benito, Javier; Sorribas, Sara; Lucas, Irene; Coronas, Joaquin; Gascon, Ignacio

    2016-06-29

    This work reports the fabrication and characterization of Langmuir-Blodgett films of nanoparticles (size 51 ± 10 nm) of the metal organic framework MIL-101(Cr). LB film characterization by SEM, UV-vis, GIXRD, and QCM has shown that the addition of 1 wt % of behenic acid to MOF dispersion allows obtaining dense monolayers at the air-water interface that can be deposited onto solid substrates of different nature with transfer ratios close to 1. Moreover, a QCM-based setup has been built and used for the first time to measure CO2 adsorption isotherms at 303 K on MOF LB films, proving that LB films with MOF masses between 1.2 (1 layer) and 2.3 (2 layers) μg can be used to obtain accurate adsorption values at 100 kPa, similar to those obtained by conventional adsorption methods that require much larger MOF quantities (tens of milligrams). PMID:27268426

  6. Study of Langmuir and Langmuir-Blodgett Thin films

    NASA Astrophysics Data System (ADS)

    Goodwin, Ross; Prayaga, Chandra; Wade, Aaron

    Arachidic Acid, Cholesterol, and Stearic Acid thin films were created and studied utilizing the Langmuir method in order to obtain a single molecule or monomolecular layer out of a desired substance at an air-water interface. The phase transitions are observed by measuring the surface pressure vs. area isotherms. Langmuir-Blodgett (LB) films were created on a prepared substrate. The LB film structures were then studied using X-ray Diffraction, and Raman Spectroscopy. UWF Office of Undergraduate Research Project Award, UWF ITEP-Technology Fee Project Award, UWF Quality Enhancement Plan Award.

  7. Hole burning on porphyrin centers in langmuir-blodgett films

    NASA Astrophysics Data System (ADS)

    Bernard, J.; Orrit, M.; Personov, R. I.; Samoilenko, A. D.

    1989-12-01

    Spectral holes were burnt in the excitation spectra of porphyrin centers imbedded in a multilayer assembly of poly-heptyl-cyanoacrylate Langmuir-Blodgett films. We found a strong dependence of the hole width on the burning wavelength and attributed it to energy transfer to lower energy centers in our concentrated sample. The temperature dependence of the hole width was measured between 1.7 and 10 K for two wavelengths and found steeper than in glasses but weaker than in most crystals. The holes were shallower and broader in a monolayer sample.

  8. Photovoltaic Effects of Retinal-Related Materials in Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Okazaki, Choichiro

    1998-03-01

    Multilayer films consisting of retinal, retinoic acid, and retinol were fabricated using the Langmuir-Blodgett method. It was found for the first time that these three materials in Langmuir-Blodgett films exhibit different photovoltaic characteristics. To study this difference of photovoltaic characteristics, the surface pressure vs area isotherms of these materials were measured and the dipole moment of the materials were calculated.

  9. Optimization of π-A isotherms to give highly efficient SHG from Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Schwartz, Hanna; Krief, P.; Becker, J. Y.; Shapiro, Lev; Khodorkovsky, Vladimir; Klug, Jacob T.; Kovalev, E.; Meshulam, Guilia; Berkovic, Garry; Kotler, Zvi; Efrima, Schlomo

    2002-12-01

    Langmuir-Blodgett films have been prepared from amphiphilc molecules containing an indandione-based nonlinear chromophore. Study of the pressure-area (π-A) isotherm enabled us to find optimal conditions for monolayer transfer to a glass substrate. The multilayer films thus formed exhibited strong optical second harmonic generation with a bulk nonlinear co-efficient equal to the ideal value predicted by the product of the chromophore density and its known molecular hyperpolarizability.

  10. Highly conducting graphene sheets and Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Li, Xiaolin; Zhang, Guangyu; Bai, Xuedong; Sun, Xiaoming; Wang, Xinran; Wang, Enge; Dai, Hongjie

    2008-09-01

    Graphene is an intriguing material with properties that are distinct from those of other graphitic systems. The first samples of pristine graphene were obtained by `peeling off' and epitaxial growth. Recently, the chemical reduction of graphite oxide was used to produce covalently functionalized single-layer graphene oxide. However, chemical approaches for the large-scale production of highly conducting graphene sheets remain elusive. Here, we report that the exfoliation-reintercalation-expansion of graphite can produce high-quality single-layer graphene sheets stably suspended in organic solvents. The graphene sheets exhibit high electrical conductance at room and cryogenic temperatures. Large amounts of graphene sheets in organic solvents are made into large transparent conducting films by Langmuir-Blodgett assembly in a layer-by-layer manner. The chemically derived, high-quality graphene sheets could lead to future scalable graphene devices.

  11. Ferroelectric nanomesa formation from polymer Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Bai, Mengjun; Ducharme, Stephen

    2004-10-01

    We report the fabrication and characterization of nanoscale ferroelectric structures consisting of disk-shaped nanomesas averaging 8.7±0.4nm in height and 95±22nm in diameter, and nanowells 9.8±3.3nm in depth and 128±37nm in diameter, formed from Langmuir-Blodgett films of vinylidene fluoride copolymers after annealing in the paraelectric phase. The nanomesas retain the ferroelectric properties of the bulk material and so may be suitable for use in high-density nonvolatile random-access memories, acoustic transducer arrays, or infrared imaging arrays. The nanomesa and nanowell patterns may provide useful templates for nanoscale molding or contact-printing.

  12. Photoelectric Properties Based on Electric Field Modulation of Photoinduced Electron Transfer Processes in Flavin-Porphyrin Hetero-type Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Isoda, Satoru; Hanazato, Yoshio; Ueyama, Satoshi; Nishikawa, Satoshi; Akiyama, Kouich

    2004-05-01

    Metal-insulator-meal devices composed of flavin-porphyrin hetero-type Langmuir-Blodgett films showed highly efficient photoelectric properties mainly attributable to the fast charge separation process at a molecular heterojunction (MHJ) between flavin and porphyrin. The photoelectric properties of the MHJ devices showed different characteristics depending on the redox state of the central metal of porphyrin, i.e., Ru(III) or Ru(II). The rectifying behavior of the photocurrent was observed for the Ru(III)-MHJ device, whereas the Ru(II)-MHJ device did not show the rectifying behavior. We concluded that the rectifying behavior was mainly controlled by the electric field dependence of the charge recombination process. Furthermore, a bell-shaped photocurrent-voltage curve was observed for the Ru(II)-MHJ device. The mechanism underlying the negative resistance might be based on the electric field dependence of the charge shift process in flavin monolayers controlled by the inverted region mechanism of the Marcus electron transfer theory.

  13. Photophysics of rhodamine dimers in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Vuorimaa, E.; Ikonen, M.; Lemmetyinen, H.

    1994-11-01

    Temperature dependent dimerization processes of octadecylrhodamine B (RB) and octadecylrhodamine 6G (R6G) in Langmuir-Blodgett (LB) films were studied by steady-state and time-resolved fluorescence methods. The geometry of the dimers in LB films is equal for both dyes, but different to the geometry of the dimers found in solutions. The sandwich-type dimers with lifetimes of 710 ps for RB and 620 ps for R6G have their fluorescence maxima at 635 and 620 nm for RB and R6G, respectively. The dimer with an oblique geometry has its fluorescence maximum at 675 nm for both dyes, and its fluorescence lifetime is 4.6 ns for RB and 4.9 ns for R6G. The proportion of fluorescent dimers increases with decreasing temperature, when the nonfluorescent H dimers reorganize to fluorescent J dimers. The activation energy for this temperature induced process is 1.4 and 2.6 kJ mol -1 for RB and R6G, respectively.

  14. Photophysics of rhodamine dimers in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Vuorimaa, E.; Ikonen, M.; Lemmetyinen, H.

    1994-11-01

    Temperature dependent dimerization processes of octadecylrhodamine B (RB) and octadecylrhodamine 6G (R6G) in Langmuir-Blodgett (LB) films were studied by steady-state and time-resolved fluorescence methods. The geometry of the dimers in LB films is equal for both dyes, but different to the geometry of the dimers found in solutions. The sandwich-type dimers with lifetimes of 710 ps for RB and 620 ps for R6G have their fluorescence maxima at 635 and 620 nm for RB and R6G, respectively. The dimer with an oblique geometry has its fluorescence maximum at 675 nm for both dyes, and its fluorescence lifetime is 4.6 ns for RB and 4.9 ns for R6G. The proportion of fluorescent dimers increases with decreasing temperature, when the nonfluorescent H dimers reorganize to fluorescent J dimers. The activation energy for this temperature induced process is 1.4 and 2.6 kJ/mol for RB and R6G, respectively.

  15. Preparation, Characterization and Microelectronic Applications of Langmuir Blodgett Films.

    NASA Astrophysics Data System (ADS)

    Maccagno, Pierre Luigi

    This thesis evaluates the use of ultrathin Langmuir Blodgett (LB) films in semiconductor technology. Three different applications are explored: electron-beam resists, dielectric films, and tunneling dimension insulators. Deposition processes are established for LB films of cadmium brassidate, and Poly-Methyl-Methacrylate (PMMA). Film are characterized on the water subphase of the LB trough with a Wilhelmy balance and on various substrates with X-ray diffraction, Grazing Incidence Reflection Fourier Transform Infrared Spectroscopy (GIR FTIR), Scanning Electron Microscopy (SEM), Ellipsometry, Scanning Tunnelling Microscopy (STM) and electrical conduction and admittance measurements. Ultrathin PMMA LB films are shown to behave as excellent e-beam resists. PMMA LB films 10.5nm thick (13 monolayers) have pinhole densities (10/cm^2 ) three orders of magnitude smaller than those spin cast films of the same thickness. Furthermore, the same PMMA LB film thickness is able to protect a 50nm Cr underlayer for well over 13 minutes from chemical etchants. Low energy e-beam exposure of ultrathin PMMA LB films was demonstrated with the STM. The advantages of the STM as a lithography tool is that small diameter (<50nm) low energy (20eV to 100eV) e-beams may be used with LB resist films to obtain submicron resolution and reduced proximity effects due to less scattering of electrons within the ultrathin LB resist. Electrical conduction and admittance of metal/insulator/metal capacitors are studied for various thickness LB PMMA films, and electrode materials. Capacitors with Au electrodes were shorted due to pinholes in the LB film. Shorts were not observed with Al electrodes as a result of the native alumina. The thickness and dielectric constant of PMMA monolayers and Al_2O_3 are obtained. Diverse conduction mechanisms are proposed for Al electrode capacitors separated by no PMMA film; one monolayer; and three or more monolayers. Electrical properties of Au/PMMA/n-Si diodes with

  16. Switching dynamics of ferroelectric Langmuir-Blodgett copolymer films

    NASA Astrophysics Data System (ADS)

    Othon, Christina M.

    Ferroelectric switching dynamics in ferroelectric copolymer films of poly(vinylidene fluoride-trifluoroethylene) can vary over nine orders of magnitude; 100 seconds for the slowest ultrathin (1-50 nm) Langmuir-Blodgett films to 100 ns for the fastest polymorphous spin-coat films (˜50 mum thick). These ultra-thin films share many of the same ferroelectric properties of bulk films such as polarization, phase transition temperatures, crystalline structure, and high electrical resistance (>10 MO). The slow nature of switching in ultrathin films is believed to be caused by the intrinsic nature of the switching. The polarization is no longer switching by nucleation and domain wall growth enabled by defects and nanostructures in the polymorphous samples. We investigate this hypothesis by the introduction of defects in the form of nucleation sites and/or grain boundaries by electron irradiation, production of individual ferroelectric nano-crystals, and the introduction of domain wall boundaries through Direct Laser Interference Patterning (DLIP). Electron-irradiation was performed for a large range of doses from 16 to 110 Mrad, on ultra thin films 36 nm thick. It was thought that the defects introduced by electron irradiation could act as nucleation sites, promoting faster switching. However, the primary effect of electron irradiation was the decrease in crystallinity and therefore the fraction of ferroelectric material. Even for lower doses the increase in switching speed was negligible in comparison to the loss of ferroelectricity. The introduction of false domain walls through laser annealing was used to produce more complex and controlled shapes than given by the nanomesas. We investigated patterning by continuous-wave direct write, and by pulsed laser irradiation DLIP. We have demonstrated the ability to pattern films reversibly into films of ferroelectric regions surrounded by paraelectric phase, as well as irreversibly ferroelectric regions surrounded by melted

  17. Study of nonlinear optical properties of multilayer Langmuir-Blodgett films containing bacteriorhodopsin.

    PubMed

    Barmenkov Yu, O; Kir'yanov, A V; Starodumov, A N; Maslyanitsyn, I A; Shigorin, V D; Lemmetyinen, H

    2000-08-01

    Multilayer oriented Langmuir-Blodgett films of bacteriorhodopsin were prepared and their nonlinear optical properties, including second harmonic generation and photoresponse at a two phase-modulated beams mixing, were investigated. The nonlinear component of refractive index of the films was measured. PMID:10946566

  18. Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method

    SciTech Connect

    Vishalli, Dharamvir, Keya; Kaur, Ramneek; Raina, K. K.

    2015-05-15

    Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows the characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.

  19. Thermochromism and optical absorption in Langmuir-Blodgett films of alkyl-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Ahlskog, M.; Paloheimo, J.; Stubb, H.; Dyreklev, P.; Fahlman, M.; Inganas, O.; Andersson, M. R.

    1994-07-01

    Thermochromism and optical absorption in mono- and multilayers of Langmuir-Blodgett films of poly(3-alkylthiophenes), poly(3-octyl-2,2-bithiophene), and poly(3-octyl-2,2;5,2(double prime)-terthiophene) were studied. In sparsely alkylated polythiophenes the magnitude of the thermochromic shift was smaller than in poly(3-alkylthiophenes) and roughly proportional to the sidechain concentration. Results of valence Effective Hamiltonian calculations were compared with the experimental results of thermochromism. A vibronic structure was found in the absorption spectra of Langmuir-Blodgett films at room temperature. The vibronic splitting in poly(3-hexylthiophene) was approximately 0.18 eV as previously has been observed in poly(3-alkylthiophenes) but in poly(3-octyl-2,2;5,2(double prime)-terthiophene) it was 0.20-0.25 eV. The vibronic peaks stay approximately at constant energies and vanish at elevated temperatures.

  20. Surface-acoustic-wave device incorporating conducting Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Holcroft, B.; Roberts, G. G.; Barraud, A.; Richard, J.

    1987-04-01

    Surface-acoustic-wave devices incorporating conducting Langmuir-Blodgett films are reported for the first time. Excellent characteristics have been obtained using a mixed valence charge transfer salt of a substituted pyridinium tetracyanoquinodimethane. The control afforded by the deposition technique has enabled the fractional change in surface wave velocity due to the electrical effects to be distinguished from those due to mass loading. The resistivity of the organic surface layer is measured to be 2 ohm-cm.

  1. Effects of Langmuir-Blodgett-film gas sensors with integrated optical interferometers

    NASA Astrophysics Data System (ADS)

    Fushen, Chen; Yunqi, Liu; Yu, Xu; Qu, Liang

    1996-10-01

    Novel Langmuir-Blodgett-film toxic-gas sensors that have a Ti:LiNbO 3 integrated optical Mach-Zehnder interferometer structure are experimentally investigated. The gas-sensing properties of the sensors are obtained for NO 2, Cl2, NH3, and H2S by means of the detection of optical output changes. All the optical connections are made with optical fiber pigtails.

  2. Langmuir-Blodgett films of micron-sized organic and inorganic colloids.

    PubMed

    Reculusa, Stéphane; Perrier-Cornet, Romain; Agricole, Béatrice; Héroguez, Valérie; Buffeteau, Thierry; Ravaine, Serge

    2007-12-28

    Multilayered films starting with silica or polymer particles in the micron-size range have been prepared using the Langmuir-Blodgett technique. The polymer particles made of highly cross-linked cores and hydrophilic shells were elaborated through a precipitation polymerization method that allows formation of particles with a low polydispersity. The influence of the surface function, the differences between organic and inorganic systems, and the characterization of these materials by means of reflectance infrared spectroscopy are also discussed. PMID:18060168

  3. Enhanced sheet conductivity of Langmuir-Blodgett assembled graphene thin films by chemical doping

    NASA Astrophysics Data System (ADS)

    Matković, Aleksandar; Milošević, Ivana; Milićević, Marijana; Tomašević-Ilić, Tijana; Pešić, Jelena; Musić, Milenko; Spasenović, Marko; Jovanović, Djordje; Vasić, Borislav; Deeks, Christopher; Panajotović, Radmila; Belić, Milivoj R.; Gajić, Radoš

    2016-03-01

    We demonstrate a facile fabrication technique for highly conductive and transparent thin graphene films. Sheet conductivity of Langmuir-Blodgett assembled multi-layer graphene films is enhanced through doping with nitric acid, leading to a fivefold improvement while retaining the same transparency as un-doped films. Sheet resistivity of such chemically improved films reaches 10 {{k}}{{Ω }}/\\square , with optical transmittance 78% in the visible. When the films are encapsulated, the enhanced sheet conductivity effect is stable in time. In addition, stacking of multiple layers, as well as the dependence of the sheet resistivity upon axial strain have been investigated.

  4. Langmuir-Blodgett films of conjugated polymers and their applications on optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Tseng, Chin-Jen

    1998-11-01

    Langmuir-Blodgett technique has been well known to produce ultra-thin films with controlled thickness and preferred orientation. In this research, this technique was used to produce conjugated polymer films and apply these films on optoelectronic devices such as the alignment layers for twisted nematic liquid crystal displays (TNLCDs) and the luminescent materials for light emitting diodes (LEDs). In the twisted nematic liquid crystal displays, oriented Langmuir-Blodgett films behave as alignment layers and provide required pretilt orientation. Poly(para- phenylene) (PPP) ultra thin films prepared by Langmuir- Blodgett technique were applied as homogeneous alignment layers. 10,12-nonacosadiynoic acid (16-8 DA) Langmuir- Blodgett films were applied as homeotropic alignment layers. In the light emitting diode, oriented PPP LB films perform as charge transfer complexes and emit polarized light without external polarizer. A precursor method was developed for the preparation of these PPP LB films. A salt (briefed as PDCP-NIII) formed with poly(2,5-dicarboxyl-1,4-phenelene) (PDCP) and o,o',o' - Trihexadecanoyltriethanolamine (NIII) was used as the precursor materials and transformed into PPP LB films via pyrolysis. Pretilt angle of 0.2o was measured via crystal rotation method on the antiparallel liquid crystal cells with PPP LB films as the homogeneous alignment layers. 10,12-nonacosadiynoic acid was synthesized via Cadiot- chodkiewicz reaction developed by Steven Walsh. Lithium salts of 16-8DA LB films were polymerized by UV lamp and used to behave as homeotropic alignment layers. Thermodynamic properties of these Langmuir films at the air-water interface such as isotherms and creep test were studied. Surface morphology was studied with Brewster Angle Microscopy (BAM) and surface rheology was studied with the Surface Light Scattering Spectroscopy (SLSS). These LB films were characterized by UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR

  5. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  6. Formation of Electrically Conducting Polypyrrole Fine Lines in Arachidic Acid Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Sha, Seimei; Hirata, Nobuaki; Ikezaki, Kazuo; Kaihatu, Minoru; Moriizumi, Toyosaka

    1995-07-01

    A new method is proposed for preparing electrically conducting fine lines in Langmuir-Blodgett films: during transference of arachidic acid L film containing pyrrole monomers to an indium-tin-oxide (ITO)-coated glass substrate, a voltage was applied between the ITO and the platinum counterelectrode dipped in the water subphase. From microscopic observations and conductivity measurements, it was confirmed that conducting filaments of polypyrrole were formed by this new method along the contact line between the substrate and the water surface by electrochemical polymerization of pyrrole monomers in an arachidic L film.

  7. Influence of magnetic field on delayed fluorescence of coumarin dye in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh.; Afanasyev, D. A.

    2012-06-01

    The triplet-triplet annihilation (TTA) was studied in mixed Langmuir-Blodgett films of 7-decyloxy-3 (4'-ethoxyphenyl)-coumarin molecules and palmitic acid. The thermal activation of the TTA process is observed due to the inhomogeneous broadening of triplet energy levels. Modulation of the TTA rate constant in the external magnetic field for the multilayer films shows the dependence that is characteristic of crystals. Only negative magnetic effect is observed for the monolayers. Time dependence of the magnetic effect in conditions of high rate constant of triplet excitons migration is connected with the dominating contribution of ordered clusters or randomly oriented molecule clusters into the TTA process.

  8. Supramolecular structure formation of Langmuir-Blodgett films of comblike precursor and polyimide

    SciTech Connect

    Goloudina, S. I. Luchinin, V. V.; Rozanov, V. V.; Pasyuta, V. M.; Gofman, I. V.; Sklizkova, V. P.; Kudryavtsev, V. V.

    2013-03-15

    The surface structure of Langmuir-Blodgett films of a comblike polyimide precursor-a rigid-chain polyamic acid alkylamine salt bearing multichains of tertiary amine-and films of the corresponding polyimide were studied by atomic force microscopy (AFM). An analysis of the images of the surface of three-layer films revealed a domain structure. It was found that the Langmuir-Blodgett film formation of the precursor occurs as a result of the layer-by-layer deposition of two-dimensional domains (composed of polyamic acid salt molecules on the water surface) onto a substrate. The formation of domains in a monolayer is associated with the chemical structure of the precursor, to be more precise, with the rigidity of the main chain and the presence of closely spaced aliphatic side chains in the polymer chain, whose total cross-section area is close to the surface area of the projection onto the plane of the repeating unit of the main chain. Polyimide films inherit the domain structure of the precursor films; the inhomogeneity of the film thickness substantially decreases, whereas the domain size and character of their distribution in the film remain unchanged.

  9. Bulk organisation and alignment in Langmuir and Langmuir-Blodgett films of tetrachloroperylene tetracarboxylic acid esters

    NASA Astrophysics Data System (ADS)

    Modlińska, Anna; Filipowicz, Marek; Martyński, Tomasz

    2016-12-01

    Perylene derivatives with chlorine atoms attached at the bay position to the dye core are expected to affect organisation and tendency to aggregation in Langmuir and Langmuir-Blodgett (LB) films. Therefore, newly synthesized core-twisted homologous series of tetrachloroperylene tetracarboxylic acid esters with n = 1,4,5,6,9 carbon atoms in terminal alkyl chains were studied. Phase transitions and crystalline structures were specified by differential scanning calorimetry (DSC) and single crystal X-ray diffraction (XRD), respectively. Intermolecular interactions and organisation of the dyes in monomolecular films were investigated by means of Brewster angle microscope (BAM), UV-Vis absorption and emission spectroscopy, fluorescence microscopy and atomic force microscopy (AFM). The dyes investigated do not form thermotropic mesogenic phases in bulk. The crystalline triclinic elementary cell with P-1 symmetry is revealed from X-ray experiments. In Langmuir and Langmuir-Blodgett films molecular tilted head-on alignment is postulated. Spectroscopic research confirmed by AFM texture images of the LB films show that in the Langmuir and LB films the dyes, depending on length of terminal chains, have a tendency to create H or I molecular aggregates. The impact of the twisted core on the molecular behavior in a bulk and thin films is discussed.

  10. Langmuir-Blodgett film of hydrophobin protein from Pleurotus ostreatus at the air-water interface.

    PubMed

    Houmadi, S; Ciuchi, F; De Santo, M P; De Stefano, L; Rea, I; Giardina, P; Armenante, A; Lacaze, E; Giocondo, M

    2008-11-18

    We present results concerning the formation of Langmuir-Blodgett (LB) films of a class I hydrophobin from Pleurotus ostreatus at the air-water interface, and their structure as Langmuir-Blodgett (LB) films when deposited on silicon substrates. LB films of the hydrophobin were investigated by atomic force microscopy (AFM). We observed that the compressed film at the air-water interface exhibits a molecular depletion even at low surface pressure. In order to estimate the surface molecular concentration, we fit the experimental isotherm with Volmer's equation describing the equation of state for molecular monolayers. We found that about (1)/ 10 of the molecules contribute to the surface film formation. When transferred on silicon substrates, compact and uniform monomolecular layers about 2.5 nm thick, comparable to a typical molecular size, were observed. The monolayers coexist with protein aggregates, under the typical rodlet form with a uniform thickness of about 5.0 nm. The observed rodlets appear to be a hydrophilic bilayer and can then be responsible for the surface molecular depletion. PMID:18925762

  11. Optical storage in azobenzene-containing epoxy polymers processed as Langmuir Blodgett films.

    PubMed

    Fernández, Raquel; Mondragon, Iñaki; Sanfelice, Rafaela C; Pavinatto, Felippe J; Oliveira, Osvaldo N; Oyanguren, Patricia; Galante, María J

    2013-04-01

    In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n=0.03) and the azochromophore Disperse Orange 3 (DO3) cured with two monoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LB method may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery. PMID:23827588

  12. Langmuir-Blodgett films of a pyrrole and ferrocene mixed surfactant system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Clough, S.; Tripathy, S.; Hale, P.D.; Inagaki, T.; Skotheim, T.A.; Okamoto, Y. . Dept. of Chemistry; Brookhaven National Lab., Upton, NY; Polytechnic Univ., Brooklyn, NY . Dept. of Chemistry)

    1989-01-01

    The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization, it appears, leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization. Near Edge X-Ray Absorption Fine Structure (NEXAFS) studies revealed that highly ordered multilayer structures are being formed. Electrochemical studies have been initiated to determine the feasibility of these films in molecular electronic device applications. 13 refs., 6 figs., 1 tab.

  13. Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Mattevi, Cecilia; Kim, Hyun Jun; Mittal, Anudha; Mkhoyan, K. Andre; Riman, Richard E.; Chhowalla, Manish

    2013-11-01

    Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the thickness dependent conductivity and to determine the percolation threshold film thickness which was found to be about 10 nm (at a volume fraction of ~39%) for a Langmuir-Blodgett film of an average platelet lateral size of 170 +/- 40 nm. The electronic behaviour of the material shows more similarities with polycrystalline turbostratic graphite than thin films of reduced graphene oxide, carbon nanotubes, or disordered conducting polymers. While in these systems the conduction mechanism is often dominated by the presence of an energy barrier between conductive and non-conductive regions in the network, in the exfoliated graphene networks the conduction mechanism can be explained by the simple two-band model which is characteristic of polycrystalline graphite.Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the

  14. Preparation of Lead Titanate Ultrathin Film Using Langmuir-Blodgett Film as Precursor

    NASA Astrophysics Data System (ADS)

    Sugai, Hiroshi; Iijima, Takashi; Masumoto, Hiroshi

    1999-09-01

    The Langmuir-Blodgett (LB) method is investigated as a process for the fabrication of ultrathin films of oxides such as lead titanate. LB film was fabricated by depositing a monolayer prepared from a fatty acid such as stearic acid (C17H35COOH) and a subphase containing lead chloride (PbCl2) and titanium potassium oxalate (K2TiO (C2O4)2). For converting from an LB film containing lead and titanium to an inorganic film, ultraviolet/ozone (UVO) treatment was applied. Subsequent thermal annealing resulted in a dense oxide ultrathin film. The crystallographic orientation of lead titanate thin films was controlled by conditions of precursor preparation such as the molecular ratio of lead and titanium, pH value and/or temperature in the subphase and the surface pressure. An X-ray diffraction pattern of the thin film indicating a well-defined perovskite structure was observed. Moreover, the results demonstrated the potential application of LB deposition for controlling the crystallographic orientation of lead titanate ultrathin films, particularly in the (111) or (101)(110) planes.

  15. Electronic structure of nitrogen square planar copper complexes in Langmuir-Blodgett films

    SciTech Connect

    Carniato, S.; Roulet, H.; Dufour, G.

    1992-08-20

    The Cu 2p and N is X-ray photoelectron spectra of nitrogen square planar copper(II) complex, derived from copper phthalocyanine and especially substituted to produce Langmuir-Blodgett (LB) films, are reported and compared with those of commercial copper phthalocyanine (CuPc) and selected porphyrin compounds. Although the copper atom is found primarily in the Cu(II) state, the authors observe the presence of the reduced Cu(I) form, with a great variety of relative intensities, because of a concomitant ability to reduction. In contrast, in the LB films, the copper atom remains in the Cu(II) state. The authors discuss this different behavior in terms of the reduction degree of the molecule, the localization of the additional electrons on the metal or the macrocycle, and a different nitrogen geometry around copper. 25 refs., 4 figs., 1 tab.

  16. Second-harmonic generation in mixed stilbazium salt/arachidic acid Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zheng, Jiabiao; Wang, Wencheng; Zhang, Zhiming; Tao, Fenggang; Xu, Linxiao; Hu, Jiacong

    1992-10-01

    A stilbazium salt was synthesized and its second-order molecular polarizability was deduced to be 1.2×10 -27 esu. Measurements of second-harmonic generation and small-angle X-ray diffraction on Langmuir-Blodgett films of the stilbazium salt/arachide acid mixtures showed that the mixed compounds with molar ratios of 1:2 and 1:5 could form multilayers with large second- order optical nonlinearity. Second harmonic generation study on the alternate multilayers of stilbazium salt/arachide acid and arachidic acid showed that the second-harmonic signals were increasing monotonously up to 80 bilayers, but the increment was lower than the value predicted theoretically by the quadratic law. Possible reasons are discussed.

  17. Inhomogeneous translational diffusion of monoclonal antibodies on phospholipid Langmuir-Blodgett films.

    PubMed Central

    Wright, L L; Palmer, A G; Thompson, N L

    1988-01-01

    The translational mobility of fluorescent-labeled monoclonal antibodies specifically bound to supported phospholipid bilayers containing hapten-conjugated phospholipids has been measured as a function of the surface concentration of bound antibodies using fluorescence recovery after photobleaching. Fluorescence recovery curves are fit well by a model that assumes the presence of two populations of antibodies with different lateral diffusion coefficients. The larger diffusion coefficient equals 3.5 x 10(-9) cm2/s, the smaller diffusion coefficient ranges from 1.5 x 10(-9) cm2/s to 2.5 x 10(-10) cm2/s, and the fractional fluorescence recovery associated with the smaller coefficient increases from approximately 0 to approximately 0.7 with increasing concentration of bound antibody. These results suggest that complexes of haptenated phospholipids and antibodies in phospholipid Langmuir-Blodgett films form clusters or domains in a concentration-dependent fashion. PMID:3207834

  18. Electronic Properties and Langmuir-Blodgett Films of Discotic Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Ahmida, Mohamed M.

    Columnar mesophases of discotic liquid crystals (DLCs) are an emerging class of organic semiconductors that have several advantages over widely applied organic semiconductors based on conductive polymers and glasses of small molecules, such as high charge carrier mobility of >1 cm2 V-1s-1 and charge carrier diffusion length of 70 nm. Two important deficiencies that hamper the application of DLCs in organic electronic devices are an insufficient control over their frontier orbital energies and the alignment of their columnar stacks. This dissertation reports a first systematic study on the control of frontier orbital energies, along with other electronic properties, by alterations of molecular structure and two new approaches towards monomolecular alignment layers for columnar discotic mesophases. Solution cyclic voltammetry and UV-Vis absorption spectroscopy as well as computational studies at the DFT level were employed to measure and predict electronic properties of DLCs based on triphenylene and phthalocyanine derivatives (Chapters 2-4). These are the first reported studies that systematically compare changes of the molecular structures of DLCs with changes of their frontier orbital energies and mesomorphism. Our comparative studies on electron acceptor DLCs provide the first ranking of electron withdrawing groups based on their potential of lowering the energy of the lowest unoccupied molecular orbital (LUMO) of the discotic core. Unexpected was the large dependence of the frontier orbital energies on the symmetry of the substitution patterns. Symmetric patterns give higher LUMO energies mainly because of degenerated frontier orbitals. Objective of the investigation of octa-carboxylic acid and octa-alcohol substituted tetraazaporphyrin (TAP) dyes in Langmuir-Blodgett (LB) monolayers (Chapter 5) is the generation of self-assembled monolayers with the elusive face-on orientation of the TAP macrocycles. Monolayers are formed only by the TAP derivatives with the

  19. Preparation of Lead Titanate Thin Films Using Langmuir-Blodgett Method

    NASA Astrophysics Data System (ADS)

    Sugai, Hiroshi; Hoshi, Nobuo; Iijima, Takashi; Masumoto, Hiroshi

    1998-09-01

    The Langmuir-Blodgett (LB) method is investigated as a process in thefabrication of ferroelectric thin films such as lead titanate. LB film was fabricated bydepositing a monolayer prepared by stearic acid (C17H35COOH), lead chlorides (PbCl2)and titanium bis(ammonium lactato)([CH3CH(O )CO2NH4]2Ti(OH)2). As a conversionprocess from the LB film containing lead and titanium to an inorganic film, ultraviolet/ozone (UVO) treatment was found to be extremely applicable at a rate of about 4 min per monolayer. Subsequent rapid thermal annealing (RTA) resulted in a dense oxidethin film. The thickness of an oxide thin film converted from the LB film consisting of301 layers was approximately 30 nm. Hence, it is considered that approximately 0.1 nmof the oxide layer is equivalent to the thickness of the film deposited by each cycle.From an X-ray diffraction pattern of the oxide specimen, a well-defined perovskitepeak structure was observed. These results demonstrate the potential application of LBdeposition for the preparation of an inorganic oxide film such as lead titanate.

  20. Langmuir-Blodgett (LB) films of tris(2-phenylpyridine)iridium(III)

    SciTech Connect

    Samha, H.A.; Martinez, T.J.; De Armond, M.K. ); Garces, F.O.; Watts, R.J. )

    1993-05-26

    Monolayer and multilayer Langmuir-Blodgett (LB) films of the neutral hydrophobic Ir(ppy)[sub 3] (1) (ppy = 2-Phenylpyridine) have been produced on the water surface when mixed with a fatty acid (stearic acid). The molecular area of the complex in the close-packed film is 55 [angstrom][sup 2]. The homogeneity of the films was verified by measuring the absorbance vs the number of layers on a substrate (quartz) and also by comparing the relative emission intensity of multilayer mixed LB films of different molar ratios. The films are stable and capable of being transferred from the water surface onto a substrate with a transfer ratio very close to unity. A blue shift in the maxima of the emission, as the complex concentration is decreased, occurs for both room-temperature fluid solution and a rigid matrix at 77 K. In-trough cyclic voltammetry (horizontal touch) of the mixed film is also reported and compared to the cyclic voltammetry of a film transferred to an indium-tin oxide plate (vertical dip).

  1. Supramolecular architecture in Langmuir and Langmuir-Blodgett films incorporating a chiral azobenzene.

    PubMed

    Haro, Marta; del Barrio, Jesús; Villares, Ana; Oriol, Luis; Cea, Pilar; López, M Carmen

    2008-09-16

    This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5''-(methyloxycarbonyl)pentyl-1''-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films. PMID:18686982

  2. Preparation of ordered films containing a phenylene ethynylene oligomer by the Langmuir-Blodgett technique.

    PubMed

    Villares, Ana; Lydon, Donocadh P; Porrès, Laurent; Beeby, Andrew; Low, Paul J; Cea, Pilar; Royo, Fèlix M

    2007-06-28

    This paper reports the fabrication and characterization of Langmuir and Langmuir-Blodgett (LB) films incorporating an oligo(phenylene-ethynylene) (OPE) derivative, namely, 4-[4-(4-hexyloxyphenylethynyl)-phenylethynyl]-benzoic acid (HBPEB). Conditions appropriate for deposition of monolayers of HBPEB at the air-water interface have been established and the resulting Langmuir films characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and ultraviolet reflection spectroscopy. The Langmuir films are readily transferred onto solid substrates, and one-layer LB films transferred at several surface pressures onto mica substrates have been analyzed by means of atomic force microscopy, from which it can be concluded that 14 mN/m is an optimum surface pressure of transference, giving well-ordered homogeneous films without three-dimensional defects and a low surface roughness. The optical and emissive properties of the LB films have been determined with significant blue-shifted absorption spectra indicating formation of two-dimensional H aggregates and a Stokes shift illustrating the effects of the solid-like environment on the molecular chromophore. PMID:17552562

  3. J-aggregation and its characterization in Langmuir-Blodgett films of merocyanine dyes.

    PubMed

    Kuroda, Shin-ichi

    2004-12-13

    Langmuir-Blodgett (LB) films are constructed by successively transferring monomolecular layers formed at the air-water interface onto solid substrates. One of the advantages of the LB technique in fabricating molecular aggregates lies in the fact that it can employ various kinds of molecules by mixing them at the air-water interface. The mixed system may exhibit new properties that are not observed for individual components. This method would be useful, for example, in the studies of the formation and control of the J-aggregates of functional dyes that attract attention both in science and technology. In this paper, I review this subject mainly based on our recent results in merocyanines. LB films of merocyanine dyes, mixed with arachidic acid (C(20)), exhibit J-aggregate formation and have been serving as typical systems in revealing the physical and structural aspects of nanosized molecular aggregates constructed as monolayers. In the case of LB films of a merocyanine dye having benzothiazole as donor nucleus (abbreviated as DS), electron spin resonance (ESR) spectroscopy has been successful in determining the characteristic in-plane orientation of dye molecules with respect to the dipping direction, which led to the discovery of the flow orientation effect during the dipping process of LB films as the origin of optical dichroism often observed in LB films. In this article, after an introduction of ESR spectroscopy, three major topics on the merocyanine J-aggregation and its characterization in mixed films are discussed. The first topic is the observation and control of the size of J-aggregates in the dilution limit of dyes in arachidic acid matrix for a methyl-substituted DS (6-Me-DS). Dependence of atomic force microscopy (AFM) patterns on the molar ratio allows the identification of dye domains. J-band optical peak analysis based on the Kuhn's extended dipole model, supplemented by a novel application of femtosecond pump-probe optical spectroscopy, yields the

  4. Electrochromic and gas adsorption properties of Langmuir-Blodgett films of lutetium bisphthalocyanine complexes

    SciTech Connect

    Rodriguez-Mendez, M.L.; Aroca, R. ); DeSaja, J.A. )

    1993-07-01

    The electrochromic behaviour, spectroscopic properties and gas chemisorption of ultra thin films of lutetium octa-4-phenyldiphthalocyanine (LuPc[sub 2][sup Ph]), and the lutetium octa-3-bromo-octa-5-tert-butylphthalocyanine (LuPc[sub 2][sup tBr]) are reported. Electrochromism was observed for Langmuir-Blodgett (LB) and films cast onto indium tin oxide (ITO) coated glass electrodes in aqueous KClO[sub 4] solution. Mixed LB films supported on ITO glass electrodes were more stable to repetitive cycling than cast films. Films of LuPc[sub 2][sup Ph] and LuPc[sub 2][sup tBr] were sensitive to electron-acceptor gases as observed by the changes in the electronic absorption spectra and the surface-enhanced resonance Raman scattering (SERRS) spectra. The presence of electron-withdrawing bromine atoms in the phthalocyanine ring increased the rate of desorption for chemisorbed electron-acceptor molecules. 10 refs., 8 figs., 3 tabs.

  5. Anomalous conformational transitions in cytochrome C adsorbing to Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Kamatchi; Nair, B. U.; Dhathathreyan, A.

    2013-05-01

    Helix to beta conformational transitions in proteins has attracted much attention due to their relevance to fibril formation which is implicated in many neurological diseases. This study reports on unusual conformational transition of cytochrome C adsorbing to hydrophilic surface containing pure cationic lipid and mixed Langmuir-Blodgett films (LB films) of cationic and neutral lipids. Evidence for conformational changes of the protein from its native helical state to beta sheet comes from Circular dichroic spectroscopy (CD spectroscopy). Analysis of these samples using High resolution TEM (HRTEM) shows a typical fibrillar pattern with each strand spacing of about 0.41 nm across which can be attributed to the repeat distance of interdigitated neighboring hydrogen-bonded ribbons in a beta sheet. Changes in contact angles of protein adsorbing to the LB films together with the increased mass uptake of water using quartz crystal microbalance (QCM) confirm the role of positive charges in the conformational transition. Dehydration of the protein resulting from the excess water entrainment in the polar planes of the cationic lipid in hydrophilic surface seems to trigger the refolding of the protein to beta sheet while it retains its native conformation in hydrophobic films. The results suggest that drastic conformational changes in CytC adsorbing to cationic lipids may be of significance in its role as a peripheral membrane protein.

  6. Formation of nanoscale aggregates of a coumarin derivative in Langmuir-Blodgett film

    NASA Astrophysics Data System (ADS)

    Chakraborty, Santanu; Bhattacharjee, D.; Hussain, Syed Arshad

    2013-06-01

    In the present communication, we report the formation of organized nanoscale aggregates of a coumarin derivative 7 Hydroxy-N-Octadecyl Coumarin-3-Carboxamide (7HNO3C) at the air-water interface and in Langmuir-Blodgett (LB) films in the presence and absence of stearic acid (SA). A pressure-area isotherm reveals that the 7HNO3C form stable monolayer at the air-water interface. However, the stability can be improved by mixing it with a fatty acid stearic acid (SA). The miscibility study shows that the nature of interaction is strongly dependent on the mixing ratio and surface pressure. At a mole fraction of 0.4 of 7HNO3C in SA, the attractive and repulsive interaction between these two molecules balance each other forming a stable film with nanoscale aggregates. UV-Vis absorption spectroscopic studies reveal the nature of the aggregates in LB films. Scanning electron microscopy gives compelling visual evidence of formation of nanoscale aggregates in the mixed LB films.

  7. Thermally induced conformational changes of Ca-arachidate Langmuir-Blodgett Films at different compression

    NASA Astrophysics Data System (ADS)

    Weber, Jan; Beier, Andre; Hasselbrink, Eckart; Balgar, Thorsten

    2014-07-01

    The conformational order in Ca-arachidate Langmuir-Blodgett films on solid glass supports is investigated by means of vibrational sum-frequency generation spectroscopy (VSFG). The symmetric C-H stretching vibrations of both the terminal methyl and the methylene groups are utilized to monitor the chain conformation at various sample temperatures under ambient conditions. At room temperature the film is well-ordered consisting almost entirely of all-trans configured chains. Between 340 and 430 K we observe a marked increase in gauche-defects before oxidative degeneration starts at sample temperatures above 470 K. The temperature dependence of the data is well represented by apparent enthalpy changes for the formation of gauche-defects, sharply increasing with packing density from 29 to 62 kJ/mol; values, which are an order of magnitude larger than those of the gas phase molecule. These large apparent enthalpies do not prevent the formation of a high degree of conformational disorder at elevated temperatures.

  8. Lattice and defect structures of polymerizable diacetylene Langmuir-Blodgett films studied by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Vithana, Hemasiri; Johnson, David; Shih, Raymond; Mann, J. A., Jr.; Lando, Jerome

    The Scanning Force Microscope has been used to study the lattice and defect structures of multilayers of the unsaturated fatty acid, 12-8- diacetylene (10,12-Pentacosadiynoic Acid) in ambient conditions. Films were prepared by the Langmuir-Blodgett technique on ordinary microscope glass and Indium Tin Oxide coated glass. Lattice structures were deduced from the well resolved molecular images and before polymerization found to be nearly centered rectangular with lattice parameters (0.88 +/- 0.06)nm and (0.51 +/- 0.04)nm. After exposing to UV radiation for polymerization the lattice structure changed to an oblique lattice with lattice parameters (0.466 +/- 0.008)nm and (0.55 +/- 0.01)nm. Molecular level defects such as dislocations and grain boundaries were resolved in these films very clearly. Observation of these kind of defects implies that it is possible to reliably image the real surface molecules under ambient conditions. Polymerization was found to take place in one of the lattice directions and the modulation perpendicular to that direction was more pronounced than along the polymer backbone.

  9. Preparation, characterization, and second-harmonic generation of a Langmuir-Blodgett film based on a rare-earth coordination compound

    SciTech Connect

    Wang, K.Z.; Huang, C.H.; Xu, G.X.; Zhao, X.S.; Xie, X.M.; Wu, N.Z.; Xu, Y.; Liu, Y.Q.; Zhu, D.B.

    1994-11-01

    The rare-earth coordination compound (E)-N-hexadecyl-4-(2-(4-(dimethylamino)phenyl)-ethenyl)pyridinium tetrakis(1-phenyl-3-methyl-4-benzoyl-5-pyrazolonato)dysprosium(III) was synthesized. The LB films were prepared and characterized by UV-vis, IR, X-ray photoelectron spectroscopy, and low-angle X-ray diffraction. High-quality LB films up to 50 layers on the hydrophilic substrates of quartz, calcium fluoride, and glass were obtained. From the second-harmonic generation measurement, second-order molecular hyperpolarizability {beta} of the dysprosium complex was estimated to be about (6.6-9.3) x 10{sup {minus}28} esu. 14 refs., 6 figs., 1 tab.

  10. Langmuir-Blodgett Films with Bilayer Alternation of Hemicyanine Dye and Cadmium Stearate

    NASA Astrophysics Data System (ADS)

    J, Y. Fang; Z, M. Sun; S, J. Xiao; Z, H. Lu; Y, Wei; P, Stroeve

    1991-11-01

    Multilayers consisting of bilayer alternation of hemicyanine dye and cadmium stearate have been prepared by the Langmuir-Blodgett technique. x-ray diffraction and optical absorption spectra are used to characterize their periodic structures and optical properties. The results show that a well ordered superlattice is produced and the hemicyanine dye is in non-aggregated formation in the alternating multilayers.

  11. Highly ordered thin films of polyheterocycles: A synchrotron radiation study of polypyrrole and polythiophene Langmuir-Blodgett films

    SciTech Connect

    Skotheim, T.A.; Yang, X.Q.; Chen, J.; Hale, P.D.; Inagaki, T.; Samuelson, L.; Tripathy, S.; Hong, K.; Rubner, M.F.; den Boer, M.L.

    1988-01-01

    Langmuir-Blodgett films have been made with 3-n-hexadecylpyrrole and 3-n-octadecylpyrrole monomers and copolymers with unsubstituted pyrrole made by chemical polymerization at the air-water interface on a subphase containing FeCl/sub 3/. Langmuir-Blodgett films consisting of mixtures of stearic acid and alkylsubstituted polythiophenes have also been made as bilayer films. The orientation of single and multilayer films on platinum substrates have been studied by Near Edge X-ray Absorption Fine Structure Spectroscopy which also gives information about charge transfer interactions between the aromatic groups and the metallic substrates. The alkylsubstituted pyrroles form highly ordered two-dimensional structures. FeCl/sub 3/ initiated copolymerization with unsubstituted pyrrole leads to a more disordered system. In the case of polythiophene-stearic acid bilayers, the stearic acid layers are highly ordered. The poly(alkyl thiophene) layers sandwiched between stearic acid layers, on the other hand, exhibit random orientation of the thiophene moieties. 15 refs., 3 figs., 3 tabs.

  12. White light-emitting electrochemical cells based on the Langmuir-Blodgett technique.

    PubMed

    Fernández-Hernández, Jesús M; De Cola, Luisa; Bolink, Henk J; Clemente-León, Miguel; Coronado, Eugenio; Forment-Aliaga, Alicia; López-Muñoz, Angel; Repetto, Diego

    2014-11-25

    Light-emitting electrochemical cells (LECs) showing a white emission have been prepared with Langmuir-Blodgett (LB) films of the metallosurfactant bis[2-(2,4-difluorophenyl)pyridine][2-(1-hexadecyl-1H-1,2,3-triazol-4-yl)pyridine]iridium(III) chloride (1), which work with an air-stable Al electrode. They were prepared by depositing a LB film of 1 on top of a layer of poly(N,N'-diphenyl-N,N'-bis(4-hexylphenyl)-[1,1'-biphenyl]-4,4'-diamine (pTPD) spin-coated on indium tin oxide (ITO). The white color of the electroluminescence of the device contrasts with the blue color of the photoluminescence of 1 in solution and within the LB films. Furthermore, the crystal structure of 1 is reported together with the preparation and characterization of the Langmuir monolayers (π-A compression isotherms and Brewster angle microscopy (BAM)) and LB films of 1 (IR, UV-vis and emission spectroscopy, X-ray photoelectron spectroscopy (XPS), specular X-ray reflectivity (SXR), and atomic force microscopy (AFM)). PMID:25347390

  13. Polycrystalline TiO2 (B) Nanosheet Films Deposited via Langmuir-Blodgett Method

    NASA Astrophysics Data System (ADS)

    Biedermann, Laura; Kotula, Paul; Beechem, Thomas; Dylla, Anthony; Stevenson, Keith; Chan, Calvin

    2014-03-01

    As an energy storage material, TiO2 offers higher Li+ capacities and smaller volume changes with lithiation than graphite electrodes. In particular, the bronze phase, TiO2(B) has a higher lithiation capacity (1.0 Li+/Ti) and faster lithiation kinetics due to its larger lattice parameters than other TiO2 polymorphs. Direct observation of lithiation will require TiO2(B) monolayers, such as those prepared via Langmuir-Blodgett deposition of the nanosheets (NS). Optical microscopy of the TiO2(B)-NS Langmuir monolayer at the air/water interface shows that these nanosheets assemble into large (>1 mm) islands. These elastic TiO2(B)-NS monolayers are deposited on diverse substrates for further characterization. Electron diffraction in both transmission electron microscopy (TEM) and low-energy electron microscopy (LEEM) of these films confirm that their polycrystalline structure is predominately composed of TiO2(B) nanocrystals, ~10s nm across. Discrimination of monolayer and bilayer TiO2(B) is evident in LEEM. Thermal stability of these nanosheets is investigated via in-situ TEM and ex-situ Raman spectroscopy. This monolayer TiO2(B) deposition will allow future observations of lithiation and phase changes. Sandia is managed by Sandia Corp., a subsidiary Lockheed Martin, for the U.S. DOE NNSA (DE-AC04-94AL85000). Work was supported by an U.S. DOE BES EFRC (DE-SC0001091).

  14. Complexes of carbon nanotubes with oligonucleotides in thin Langmuir-Blodgett films to detect electrochemically hybridization

    NASA Astrophysics Data System (ADS)

    Egorov, A. S.; Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Orekhovskaya, T. I.; Veligura, A. A.; Govorov, M. I.; Shulitsky, B. G.

    2014-10-01

    Self-assembled complexes consisting of thin multi-walled carbon nanotubes (MWCNTs) and DNA-oligonucleotides which are able to a cooperative binding to complementary oligonucleotides have been investigated. It was establised a high-performance charge transport in nanostructured Langmuir-Blodgett complexes thin MWCNTs/DNA. A method to electrochemically detect DNA hybridization on the self-organized structures has been proposed.

  15. Deactivation of excitation energy in bacterial photosynthetic reaction centres in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Miyake, J.; Hara, M.; Goc, J.; Planner, A.; Wróbel, D.

    1997-08-01

    Absorption, photoacoustic and time-resolved in μs time range delayed luminescence spectra have been measured in order to follow the interaction among chromophores when Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centres are closely packed in a form of Langmuir-Blodgett multilayers. Two types of Langmuir-Blodgett samples have been prepared and investigated: multilayers consist of one type of reaction centre ( Rhodobacter sphaeroides or Rhodopseudomonas viridis) and multilayers composed of mixed reaction centres ( Rhodobacter sphaeroides mixed with Rhodopseudomonas viridis). Using the Langmuir-Blodgett multilayers composed of two types of bacteria reaction centres mixture, we were able to extend the spectral region of the light/solar energy absorbed by the system. It was shown that each form of pigment participates in thermal dissipation but to a different degree. A special pair (bacteriochlorophyll dimer) does not contribute to delayed luminescence. Delayed luminescence in Rhodopseudomonas viridis and Rhodobacter sphaeroides differs very significantly from each other. Bacteriopheophytin as well as dihydromesochlorophyll contribute to delayed luminescence but the degree of their participation in this radiative process depends strongly on the type of reaction centre. Delayed luminescence and thermal processes have been indicated as important processes of deactivation of the photoexcited chromophores in reaction centres.

  16. Growth, Morphology, and Electrical Characterization of Polyaniline-ZnO Nano-composite Langmuir-Blodgett Thin Films

    NASA Astrophysics Data System (ADS)

    Bhullar, Gurpreet Kaur; Kaur, Ramneek; Raina, K. K.

    2015-10-01

    Polyaniline (PANi)-zinc oxide (ZnO) nano-composites were prepared by chemical polymerization of aniline doped with ZnO nanoparticles. Surface pressure-area ( π-A) isotherms for the PANi-ZnO nano-composite revealed phase transformations of the monolayer during compression. Langmuir-Blodgett (LB) films of PANi and PANi-ZnO nano-composite were characterized by use of UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy, atomic force microscopy, and conductive atomic force microscopy (C-AFM). Local current-voltage ( I- V) characteristics revealed the current range for PANi-ZnO nano-composite LB films was larger than that for PANi LB films. Conductive data images were recorded to investigate charge-transport current inhomogeneities in the LB films.

  17. Substitution of spreading solvent by a less hazardous one for the fabrication of the Au(dmit)2 Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Miura, Yasuhiro F.

    2016-03-01

    The Langmuir-Blodgett (LB) film based on the ditetradecyldimethylammonium-Au(dmit)2 [2C14N+Me2-Au(dmit)2] salt shows a high room-temperature conductivity of 40 S/cm with a metallic temperature dependence. However, the solvent for spreading the material at the air/water interface is a 1:1 mixture of benzene and acetonitrile, which should be substituted by a less hazardous solvent considering the health effects. Here, we report on the substitution of the solvent by a less hazardous one — a 1:1 mixture of toluene and acetone; the 2C14N+Me2-Au(dmit)2 LB film fabricated using the mixture also exhibits a high room-temperature conductivity together with a metallic temperature dependence.

  18. Spectroscopic characterization of selected fullerene-organic chromophore Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Lewandowska, Kornelia; Wróbel, Danuta; Graja, Andrzej

    2012-08-01

    Electronic absorption in polarized and unpolarized light and steady-state fluorescence emission and excitation spectra of zinc porphyrins, their dimers and dyads with a fullerene as well as perylene-derived molecular systems containing a fullerene were investigated. In particular, dyads of the fullerene covalently bonded to perylene- and porphyrin-derived dyes were comprehensively studied in chloroform solution and in a form of Langmuir-Blodgett layers on solid inorganic substrates. The spectroscopic examination of the samples allowed us to analysis charge redistribution after the chromophore-fullerene dyads formation - this effect was detected as changes of the band wavelengths and shape of the lines. The layer organization, in particular the dye molecule orientation, was estimated from. Usefulness of the investigated dyads in photovoltaic devices was signaled.

  19. Effects of nanoparticle doping on the phase transitional behaviour of ferroelectric liquid crystal Langmuir-Blodgett composite films

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Raina, K. K.

    2015-12-01

    Langmuir-Blodgett films of ferroelectric liquid crystals (FLCs) doped with a low concentration of functionalized Al: ZnO (AZO) nanoparticles were prepared and characterized. Pressure-area isotherms show that the nanoparticles as well as FLC composite systems have the capability to form stable monolayers at the air-water interface. The molecular interaction between nanoparticles and FLC molecules increased during barrier compression, which resulted in increased surface pressure. We observed various phases in isotherms with increasing concentration of nanoparticles in the FLC matrix. An X-ray diffraction profile at a low angle confirmed that FLCs retain their layer structure at a low concentration doping of AZO nanoparticles in the FLC matrix. Atomic force microscopy images indicate that low wt% composites are uniformly deposited without disturbing the translation behaviour of SmC* liquid crystals.

  20. Optical properties of Langmuir-Blodgett film of hemicyanine containing the rare earth complex anion Dy(BPMPHD) (-2)

    NASA Astrophysics Data System (ADS)

    Wang, Kezhi; Huang, Chunhui; Xu, Guangxian; Zhao, Xinsheng; Xia, Xiaohua; Wu, Nianzu; Xu, Lingge; Li, Tiankai

    1994-12-01

    (E)-N-hexadecyl-4-(2-(4-dimethylaminophnyl) ethenyl) pyridinium bis(1,6-bis (1'-phenyl-3'-methyl-5'-pyrazolone-4') hexanedio-nato-(1,5)) dysprosium(III) was synthesized. The monolayers formed on a pure water subphase (pH 5.6,C) were transferred onto hydrophilic quartz, calcium fluoride, and glass substrates successively with a transfer ratio of around unity. From second-harmonic generation (SHG) experiments, the second-order molecular hyperpolarizability beta was evaluated to be about 4.8 x 10(exp -48) C cu m/sq V. The results of UV-visible, IR and X-ray photoelectron spectroscopy of the Langmuir-Blodgett films are also reported.

  1. Glued Langmuir-Blodgett bilayers from calix[n]arenes: Influence of calix[n]arene size on ionic cross-linking, film thickness, and permeation selectivity

    DOE PAGESBeta

    Wang, Minghui; Janout, Vaclav; Regen, Steven L.

    2010-07-12

    A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N2 and CO2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found to increase. Inmore » conclusion, the likely origin for these effects and the probable mechanism by which He, N2 and CO2 cross these ultrathin films are discussed.« less

  2. Efficient optical nonlinear Langmuir-Blodgett films: roles of matrix molecules

    NASA Astrophysics Data System (ADS)

    Ma, Shihong; Lu, Xingze; Liu, Liying; Han, Kui; Wang, Wencheng; Zhang, Zhi-Ming

    1996-10-01

    A novel bifat-chain amphiphilic molecule nitrogencrown (NC) was adopted as an inert material for fabrication of optical nonlinear Langmuir-Blodgett (LB) multilayers. Structural improvement in the Z-type mixed fullerene derivative (C60-Be)/NC LB multilayers samples was realized by insertion of the C60-Be molecules between two hydrophobic chains of the NC molecules. The relatively large third-order susceptibility (chi) (3)xxxx(- 3(omega) ;(omega) ,(omega) ,(omega) ) equals 2.9 multiplied by 10-19 M2V-2 (or 2.1 multiplied by 10-11 esu) was deduced by measuring third harmonic generation (THG) from the C60-Be samples. The second harmonic generation (SHG) intensity increased quadratically with the bilayer number (up to 116 bilayers) in Y-type hemicyanine (HEM)/NC interleaving LB multilayers due to improvement of the structural properties by insertion of the long hydrophobic tail of HEM molecules between two chains of NC molecules. The second-order susceptibility (chi) (2)zxx(-2(omega) ;(omega) ,(omega) ) equals 18 pM V-1 (or 4.35 multiplied by 10-8 esu) was obtained by measuring SHG from the HEM samples. The NC molecule has attractive features as a matrix material in fabrications of LB multilayers made from optically nonlinear materials with hydrophobic long tails or ball-like molecules.

  3. Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.

    PubMed

    Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati

    2016-07-01

    Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light. PMID:27299704

  4. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    NASA Astrophysics Data System (ADS)

    Wang, S.; Li, Y. L.; Zhao, H. L.; Liang, H.; Liu, B.; Pan, S.

    2012-11-01

    Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  5. Growth and stability of Langmuir-Blodgett films on OH-, H-, or Br-terminated Si(001)

    NASA Astrophysics Data System (ADS)

    Bal, J. K.; Kundu, S.; Hazra, S.

    2010-01-01

    Growth of Langmuir-Blodgett (LB) films of nickel arachidate (NiA) on differently terminated (OH-, H-, or Br-terminated) Si(001) substrates and their structural evolution with time have been investigated by x-ray reflectivity technique and complemented by atomic force microscopy. Stable and strongly attached asymmetric monolayer (AML) of NiA is found to grow on freshly prepared oxide-covered Si substrate while unstable and weakly attached symmetric monolayer (SML) of NiA grows on H-terminated Si substrate, corresponding to stable hydrophilic and unstable hydrophobic natures of the substrates, respectively. The structure of LB film on Br-terminated Si substrate, however, shows intermediate behavior, namely, both AML and SML are present on the substrate, indicative of coexisting (hydrophilic and hydrophobic) nature of this terminated surface. Such coexisting nature of the substrate shows unusual growth behavior of LB films: (i) hydrophilic and hydrophobic attachments of NiA molecules in single up stroke of deposition and (ii) growth of few ring-shaped large-heights islands in subsequent deposition. These probably occur due to the presence of substrate-induced perturbation in the Langmuir monolayer and release of initially accumulated strain in the film structures near hydrophilic/hydrophobic interface, respectively, and provide the possibility to grow desired structures (AML or SML) of LB films by passivation-selective surface engineering.

  6. Monolayers and Langmuir-Blodgett films of luminescent 1,3,5-triazine derivatives containing naphthalene or anthracene chromophores

    NASA Astrophysics Data System (ADS)

    Cai, Ya-Qi; Wu, Wei; Wang, Hua; Miyake, Jun; Qian, Dong-Jin

    2011-02-01

    Monolayer behaviors and Langmuir-Blodgett (LB) films of three luminescent aryl triazines, 2,4,6-tri(naphthalen-1-yl)-1,3,5-triazine (TN 1Ta), 2,4,6-tri(naphthalen-2-yl)-1,3,5-triazine (TN 2Ta), and 2,4,6-tri(anthracen-9-yl)-1,3,5-triazine (TATa) have been investigated. Surface pressure-area isotherms indicated that pure aryl triazines were difficult to form stable monolayers, while their mixtures with arachidic acid (AA) could be stabilized at the air-water interface. The mixed LB films of triazine-AA were deposited on substrate surfaces and analyzed by using UV-vis and infrared absorption spectra, X-ray photoelectron spectra, as well as scanning electron microscopy. Morphologies of the LB films and molecular aggregates were closely dependent on the structure of triazines and the surface pressures of deposition. Under UV radiation, TN 1Ta and TN 2Ta emitted at 410-460 nm while TATa emitted at 500-510 nm, with the emission lifetime falling into the range of 0.29 to 10.8 ns. Compared with those in solutions, the emissions of aryl triazines were red shifted in the LB films, especially for the TN 1Ta-AA and TN 2Ta-AA, which was attributed to the closely packed arrangement for the molecules in the LB films.

  7. Side-chain effect on Langmuir and Langmuir-Blodgett film properties of poly(N-alkylmethacrylamide)-coated magnetic nanoparticle.

    PubMed

    Parvin, Salina; Matsui, Jun; Sato, Eriko; Miyashita, Tokuji

    2007-09-01

    We report the fabrication of a Langmuir-Blodgett (LB) film of magnetic nanoparticles (iron oxide) coated by poly(N-alkylmethacrylamide)s with various alkyl chain lengths. The iron oxide nanoparticle (nP) was first modified with a reactive polymer, poly(N-hydroxysuccinimide methacrylate) (pSucMA) by applying surface initiated atom transfer radical polymerization (ATRP) technique. Then the succinimide group was replaced by various amine derivatives. The monolayer behaviors of the resultant nanoparticles, as modified by various poly(N-alkylmethacrylamide)s, such as poly(octylmethacrylamide) (pOMA), poly(dodecylmethacrylamide) (pDDMA), polytetradecylmethacrylamide (pTDMA), and poly(hexadecylmethacrylamide) (pHDMA) were elucidated using surface pressure-area isotherm measurements. Results show that pTDMA-modified nanoparticles (nP-pTDMA) exhibit the highest collapse pressure with a steeply rising surface pressure. The monolayer of nP-pTDMA on the water surface was transferred onto a solid substrate using the LB technique. Atomic force microscopy (AFM) images of the transferred LB film show that nP-pTDMA particles form a uniform nanoparticle monolayer. The LB film of nP-pTDMA with multilayers was fabricated through sequential transfer of the particles monolayer onto the substrate surface. The resultant LB film of nanoparticles shows a superparamagnetic behavior at room temperature. PMID:17511997

  8. A new family of Langmuir-Blodgett films of tetracyanoquinodimethane charge transfer salts: Pristine and iodine doped conducting films

    NASA Astrophysics Data System (ADS)

    Vandevyer, M.; Richard, J.; Barraud, A.; Ruaudel-Teixier, A.; Lequan, M.; Lequan, R. M.

    1987-12-01

    A new family of semiamphiphilic tetracyanoquinodimethane (TCNQ) ionic salts of nonconjugated cations, namely octadecyl-dimethylsulfonium, octadecyl-methyl-ethyl-sulfonium, and octadecyl-trimethylphosphonium labeled a, b, and c, respectively, has been synthetized. Langmuir-Blodgett (LB) films are built up from these three compounds, which are mixed with octadecylurea in a molar ratio 1/1, in order to improve the stability of the film at the water surface. The structural properties of the transferred films are thoroughly investigated by linear dichroism in the IR and UV-visible ranges, together with ESR spectroscopy. In the films of the three compounds, the polar sheets contain (TCNQ- • )2 dimers, which are the largely prevalent species. The molecular planes of these dimers are found to be roughly parallel to the substrate. Moreover, a strong in-plane orientation of the dimers is found in films of compound c. This phenomenon is thought to be related to an overall flow orientation of rod-shaped crystallites in the floating film, during the high speed downstroke of the substrate across the film. Advantage is taken from the high and well-controlled thinness of LB films to make iodine vapor diffuse into the films and convert the precursor films into conducting ones. The iodination process leads for the three salts to a stable ternary conducting compound located in the polar planes of the LB assembly. Correlatively, it induces a strong molecular reorganization in the films: the TCNQ molecules stand on edge with their long molecular axis perpendicular to the substrate. In spite of this considerable rearrangement arising from iodination, we notice that the strong in-plane anisotropy observed in pristine films of c is retained in conducting films of the iodinated c compound. Beside these structural results, the IR spectra of conducting films are reminiscent of these of highly conducting, but not metallic-like, organic conductors. The conductivity of the films is estimated

  9. Nonlinear optical anisotropy and molecular orientational distribution in poly(p-phenylene benzobisthiazole) Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Wada, Tatsuo; Yuba, Tomoyuki; Kakimoto, Masaaki; Imai, Yoshio; Sasabe, Hiroyuki

    1996-06-01

    The orientational distribution and packing of polymer chains were investigated in poly(p-phenylene benzobisthiazole) (PBT) Langmuir-Blodgett (LB) films by nonresonant third-harmonic generation measurement at a wavelength of 1907 nm. The tensor components of the third-harmonic susceptibility on the PBT LB film with a surface pressure of 50 mN/m were determined to be χ(3)XXXX=(16.6±2.5)×10-12 and χ(3)YYYY=(2.0±0.3)×10-12. The large nonlinear optical anisotropy can be explained as a result of highly oriented packing of the polymer chains induced by a flow orientation. A Gaussian distribution function with a standard deviation of σ=0.40 gives a practical description of the orientational distribution of PBT polymer chains. A maximum χ(3) value of (26.8±4.4)×10-12 esu is predicted assuming a perfect alignment of polymer chains. The χ(3)XXXX value increased by factor of 2 with the surface pressure from 30 to 50 mN/m mainly due to the packing density of the polymer chains, while the orientational degree did not change.

  10. Three-component Langmuir-Blodgett films consisting of surfactant, clay mineral, and lysozyme: construction and characterization.

    PubMed

    Miao, Shiding; Leeman, Hugo; De Feyter, Steven; Schoonheydt, Robert A

    2010-02-22

    The Langmuir-Blodgett (L-B) technique has been employed for the construction of hybrid films consisting of three components: surfactant, clay, and lysozyme (Lys). The surfactants are octadecylammonium chloride (ODAH) and octadecyl ester of rhodamine B (RhB18). The clays include saponite and laponite. Surface pressure versus area isotherms indicate that lysozyme is adsorbed by the surfactant-clay L-B film at the air-water interface without phase transition. The UV-visible spectra of the hybrid film ODAH-saponite-Lys show that the amount of immobilized lysozyme in the hybrid film is (1.3+/-0.2) ng mm(-2). The average surface area (Omega) per molecule of lysozyme is approximately 18.2 nm(2) in the saponite layer. For the multilayer film (ODAH-saponite-Lys)(n), the average amount of lysozyme per layer is (1.0+/-0.1) ng mm(-2). The amount of lysozyme found in the hybrid films of ODAH-laponite-Lys is at the detection limit of about 0.4 ng mm(-2). Attenuated total reflectance (ATR) FTIR spectra give evidence for clay layers, ODAH, lysozyme, and water in the hybrid film. The octadecylammonium cations are partially oxidized to the corresponding carbamate. A weak 1620 cm(-1) band of lysozyme in the hybrid films is reminiscent of the presence of lysozyme aggregates. AFM reveals evidence of randomly oriented saponite layers of various sizes and shapes. Individual lysozyme molecules are not resolved, but aggregates of about 20 nm in diameter are clearly seen. Some aggregates are in contact with the clay mineral layers, others are not. These aggregates are aligned in films deposited at a surface pressure of 20 mN m(-1). PMID:20104549

  11. Design and Synthesis of Aviram-Ratner-Type Dyads and Rectification Studies in Langmuir-Blodgett (LB) Films.

    PubMed

    Jayamurugan, Govindasamy; Gowri, Vijayendran; Hernández, David; Martin, Santiago; González-Orive, Alejandro; Dengiz, Cagatay; Dumele, Oliver; Pérez-Murano, Francesc; Gisselbrecht, Jean-Paul; Boudon, Corinne; Schweizer, W Bernd; Breiten, Benjamin; Finke, Aaron D; Jeschke, Gunnar; Bernet, Bruno; Ruhlmann, Laurent; Cea, Pilar; Diederich, François

    2016-07-18

    The design and synthesis of Aviram-Ratner-type molecular rectifiers, featuring an anilino-substituted extended tetracyanoquinodimethane (exTCNQ) acceptor, covalently linked by the σ-spacer bicyclo[2.2.2]octane (BCO) to a tetrathiafulvalene (TTF) donor moiety, are described. The rigid BCO spacer keeps the TTF donor and exTCNQ acceptor moieties apart, as demonstrated by X-ray analysis. The photophysical properties of the TTF-BCO-exTCNQ dyads were investigated by UV/Vis and EPR spectroscopy, electrochemical studies, and theoretical calculations. Langmuir-Blodgett films were prepared and used in the fabrication and electrical studies of junction devices. One dyad showed the asymmetric current-voltage (I-V) curve characteristic for rectification, unlike control compounds containing the TTF unit but not the exTCNQ moiety or comprising the exTCNQ acceptor moiety but lacking the donor TTF part, which both gave symmetric I-V curves. The direction of the observed rectification indicated that the preferred electron current flows from the exTCNQ acceptor to the TTF donor. PMID:27363287

  12. Molecular orientation of asphaltenes and PAH model compounds in Langmuir-Blodgett films using sum frequency generation spectroscopy.

    PubMed

    Andrews, A Ballard; McClelland, Arthur; Korkeila, Oona; Demidov, Alexander; Krummel, Amber; Mullins, Oliver C; Chen, Zhan

    2011-05-17

    Asphaltenes are an important class of compounds in crude oil whose surface activity is important for establishing reservoir rock wettability which impacts reservoir drainage. While many phenomenological interfacial studies with crude oils and asphaltenes have been reported, there is very little known about the molecular level interactions between asphaltenes and mineral surfaces. In this study, we analyze Langmuir-Blodgett films of asphaltenes and related model compounds with sum frequency generation (SFG) vibrational spectroscopy. In SFG, the polarization of the input (vis, IR) and output (SFG) beams can be varied, which allows the orientation of different functional groups at the interface to be determined. SFG clearly indicates that asphaltene polycyclic aromatic hydrocarbons (PAHs) are highly oriented in the plane of the interface and that the peripheral alkanes are transverse to the interface. In contrast, model compounds with oxygen functionality have PAHs oriented transverse to the interface. Computational quantum chemistry is used to support corresponding band assignments, enabling robust determination of functional group orientations. PMID:21491945

  13. Phase-matched second harmonic generation and nonlinear phase shift in a Langmuir-Blodgett film waveguide

    NASA Astrophysics Data System (ADS)

    Schrader, Sigurd K.; Flueraru, Costel; Motschmann, Hubert; Brehmer, Ludwig

    2001-12-01

    Wave-guides have been prepared as y-type Langmuir-Blodgett multilayers from 2-docosylamino-5-nitropyridine (DCANP) on quartz glass substrates. The tensor elements of the LB-films as determined by polarization dependent second harmonic generation (SHG) are (Formula available in paper) The wave-guides were fabricated in a way that the second-order susceptibility changes sign at the nodal plane of the first-order wave-guide mode for s-polarization. In such wave-guides efficient second harmonic generation (SHG) was reached via mode conversion at a fundamental wavelength near 1064 nm. The conversion efficiency reached the extraordinary high value of 8%/W which corresponds to a normalized conversion efficiency of 3600 %/(W cm2). In addition, interferometric measurements have been carried out to study the non-linear phase-shift which the fundamental beam experiences due to non-linear interaction in the wave-guide. From these experiments an apparent intensity-dependent refractive index n2SHG of 2,6 10-13 cm2/W was calculated. This as about 400 times the intensity-dependent refractive as expected from third-order susceptibility of the isotropic material. From that it can be concluded that the main contribution of the intensity-dependent refractive index is connected to cascading of second-order processes.

  14. Synthesis of Triptycene-Based Molecular Rotors for Langmuir-Blodgett Monolayers.

    PubMed

    Kaleta, Jiří; Kaletová, Eva; Císařová, Ivana; Teat, Simon J; Michl, Josef

    2015-10-16

    We describe syntheses of six triptycene-containing molecular rotors with several single-crystal X-ray diffraction analyses. These rod-shaped molecules carrying an axial rotator are designed to interleave on an aqueous surface into Langmuir-Blodgett (LB) monolayers containing a two-dimensional trigonal array of dipoles rotatable about an axis normal to the surface. Monolayer formation was verified with the simplest of the rotor structures. On an aqueous subphase containing divalent cations (Mg(2+), Ca(2+), Zn(2+), Sr(2+), or Cd(2+)), the LB isotherm yielded an area of 53 ± 3 Å(2)/molecule (monolayer of type A), compatible with the anticipated triangular packing of axes normal to the surface. On pure water, the area is 30 ± 3 Å(2)/molecule, and it is proposed that in this monolayer (type B), the molecular axes are tilted by 40-45° to a structure similar to those observed in single crystals of related triptycenes. After transfer to a gold surface, ellipsometry and PM IRRAS yield tilt angles of 29 ± 4° (monolayers of type A) and 38 ± 4° (type B). A full-scale examination of monolayers from all the rotors on a subphase and after transfer is underway and will be reported separately. PMID:26382886

  15. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    SciTech Connect

    Gayathri, H. N.; Suresh, K. A.

    2015-06-28

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-B films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.

  16. The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir Blodgett films for SAW sensing applications

    NASA Astrophysics Data System (ADS)

    Penza, M.; Tagliente, M. A.; Aversa, P.; Re, M.; Cassano, G.

    2007-05-01

    HiPco (high-pressure CO dissociation process) single-walled carbon nanotube (SWCNT) bundles containing Fe particles were purified in a two-step purification process by thermal annealing in oxygen and post-treatment in HCl. Nanocomposite films of pristine and purified SWCNTs embedded in an organic matrix of cadmium arachidate (CdA) were prepared by a Langmuir-Blodgett (LB) molecular engineering technique with a fixed weight filler content of 75 wt% onto a surface acoustic wave (SAW) transducer operating as an oscillator at a frequency of 433 MHz. The raw and purified samples were characterized at various stages of the purification process using thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), along with energy-dispersive x-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). Functional characterizations of the SWCNT-nanocomposite-based SAW sensors were investigated towards methanol, isopropanol and ethanol, and demonstrated high sensitivity, reversibility, fast response and ppm level detection at room temperature. Results indicate that the sensitivity of the SAW sensors based on a nanocomposite film of oxygen-annealed SWCNTs is enhanced to the alcohols tested at room temperature. Purification of the SWCNTs in the nanocomposite film affects the SAW sensitivity to alcohol by modulating the sensing properties. The sensing mechanisms are analysed and discussed.

  17. Fabrication and Characterization of ZnO Langmuir-Blodgett Film and Its Use in Metal-Insulator-Metal Tunnel Diode.

    PubMed

    Azad, Ibrahim; Ram, Manoj K; Goswami, D Yogi; Stefanakos, Elias

    2016-08-23

    Metal-insulator-metal tunnel diodes have great potential for use in infrared detection and energy harvesting applications. The quantum based tunneling mechanism of electrons in MIM (metal-insulator-metal) or MIIM (metal-insulator-insulator-metal) diodes can facilitate rectification at THz frequencies. In this study, the required nanometer thin insulating layer (I) in the MIM diode structure was fabricated using the Langmuir-Blodgett technique. The zinc stearate LB film was deposited on Au/Cr coated quartz, FTO, and silicon substrates, and then heat treated by varying the temperature from 100 to 550 °C to obtain nanometer thin ZnO layers. The thin films were characterized by XRD, AFM, FTIR, and cyclic voltammetry methods. The final MIM structure was fabricated by depositing chromium/nickel over the ZnO on Au/Cr film. The current voltage (I-V) characteristics of the diode showed that the conduction mechanism is electron tunneling through the thin insulating layer. The sensitivity of the diodes was as high as 32 V(-1). The diode resistance was ∼80 Ω (at a bias voltage of 0.78 V), and the rectification ratio at that bias point was about 12 (for a voltage swing of ±200 mV). The diode response exhibited significant nonlinearity and high asymmetry at the bias point, very desirable diode performance parameters for IR detection applications. PMID:27464073

  18. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.

    PubMed

    Gladilovich, Vladimir; Greifenhagen, Uta; Sukhodolov, Nikolai; Selyutin, Artem; Singer, David; Thieme, Domenika; Majovsky, Petra; Shirkin, Alexey; Hoehenwarter, Wolfgang; Bonitenko, Evgeny; Podolskaya, Ekaterina; Frolov, Andrej

    2016-04-22

    Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research. PMID:27016113

  19. Optical and surface morphology study of zinc phthalocyanine Langmuir Blodgett thin film

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, M.; Ganesan, V.; Gupta, P. S.

    2014-04-01

    The UV-Vis absorption spectroscopy analysis reveals that prominent J-aggregation of ZnPc molecules was observed in the LB films while no such aggregation was found in the solution. Change in fluorescence color of ZnPc LB film from its solution confirms the appearance of new aggregation.

  20. Characterization of the fulgide-doped PMMA films and investigation of photochromic reaction of Langmuir-Blodgett films as recording materials

    NASA Astrophysics Data System (ADS)

    Lafond, Christophe; Pouraghajani, Ozra; Tork, Amir; Bolte, Michel; Ritcey, Anna-Marie R.; Lessard, Roger A.

    2001-06-01

    Photochemical characterization and holographic recording of fulgide Aberchrome 670 and 540-doped polymethyl methacrylate (PMMA) were investigated. Upon UV and visible exposure, closed-form absorbency followed first-order kinetic. The real time holographic recording in fulgides doped PMMA films were studied. The effect of dye concentration, thickness of the film and the recording intensity on diffraction efficiency was reported. We used the Langmuir-Blodgett (LB) technique in order to transferring a compact multilayer of fulgide spread on water surface between two thin films of cellulose acetate (CA). The preliminary results of the surface pressure-area isotherms obtained by LB show the transfer of the fulgide between two CA thin films. Finally, the photochromic reaction of fulgide in LB films was investigated.

  1. Optical nonlinearity of pure bacteriorhodopsin Langmuir-Blodgett films derived from multi-wave mixing

    NASA Astrophysics Data System (ADS)

    Liu, S. H.; Du, Weichong

    1993-10-01

    We report an observation of optical phase conjugate and high-order diffractions from degenerate multi-wave mixing in LB films of pure purple membrane for the first time. The saturated absorption intensity and the saturated nonlinear refractive index of the LB films have been estimated to be 0.42 W/cm2, and 5×10-2 cm2/W, respectively. The typical response time of its nonlinearity is about several milliseconds.

  2. Investigation of Epitaxial Lift-Off Gallium Arsenide and Langmuir-Blodgett Films for Optoelectronic Device Applications

    NASA Astrophysics Data System (ADS)

    Shah, Divyang Manharlal

    Epitaxial lift-off (ELO), a technique of removing an epitaxially grown GaAs layer from its growth substrate by selective etching of an AlAs sacrificial layer, is described for field-effect transistor fabrication independent of the GaAs growth substrate. Metal Semiconductor Field-Effect Transistors (MESFETs) and High Electron Mobility Transistors (HEMTs) fabricated on silicon and sapphire substrates using ELO are investigated. A 0.1 μm gate length depletion mode MESFET made on silicon exhibited a unity current gain frequency f_{ rm t} = 34 GHz. Excellent device isolation with subpicoampere leakage currents is obtained. A high input impedance amplifier has been implemented on silicon substrate using ELO GaAs MESFETs. The amplifier had an input RC time constant limited bandwidth of 500 MHz. Results of investigation of a novel source of cadmium and zinc diffusion for shallow p^ {+}-n junction fabrication in In _{0.53}Ga_{0.47 }As/InP are also presented. Langmuir-Blodgett (LB) deposited monolayers of Cadmium and Zinc arachidate have been used as a source of Cd and Zn dopants in InGaAs/InP. This new source provides precise control of the dopant dose through the number of LB film monolayers deposited and it is also a safer method of handling toxic Cd. The LB film can be patterned by lift-off for a patterned diffusion without a mask. Highly doped (N_{ rm a}= 2-4 times 10^{19} cm^ {-3}), shallow (0.1-0.4 mu m) p^{+}-n junctions have been obtained. Junction field-effect transistors (JFETs) and PIN photodetectors have been fabricated as a demonstration of the usefulness of the technique. A PIN photodetector had a 100 pA dark current at -5 V DC bias and a bandwidth of 2 GHz. A new technique for fabricating optoelectronic integrated circuit (OEIC) photoreceivers for 1.3-1.55 μm wavelength optical communication has also been proposed. The proposed OEIC uses ELO GaAs MESFETs and InGaAs/InP PIN photodetectors.

  3. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    NASA Astrophysics Data System (ADS)

    Samuelson, L.; Rahman, A. K. M.; Puglia, G. P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X. Q.; Skotheim, T. A.; Okamoto, Y.

    Novel, self-assembled materials were designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for 2-D magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed.

  4. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Puglia, G.P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X.Q.; Skotheim, T.A.; Okamoto, Y.

    1989-01-01

    Novel, self-assembled materials have been designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for two-dimensional magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed. 8 refs., 4 figs., 1 tab.

  5. Fabrication and spectroscopic properties of Langmuir Blodgett films of novel zinc complexes with long chain mono (hexadecyl, octadecyl, eicosyl, and docosyl) phthalate

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Yan, Bing

    2007-08-01

    In this paper, some novel long chain amphiphillic monoester molecules were designed to afford double functions: film-formation and luminescent sensitization. Subsequently, organized molecular films of zinc complexes with these functional ligands formulated as ZnL 2 were fabricated by the Langmuir-Blodgett film (LB) technology, where L denoted the long chain carboxylic ligands monohexadecyl phthalate (16-Phth), monooctadecyl phthalate (18-Phth), monoeicosyl phthalate (20-Phth) and monodocosyl phthalate (22-Phth). The average molecular area was obtained according to the π-A isotherms. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction and the average layer spacing were obtained according to the Bragg equation. The characteristic luminescence behaviors of LB films have been discussed compared with those of their corresponding solid complexes.

  6. Studies on morphology of Langmuir-Blodgett films of stearic acid deposited with different orientation of substrates with respect to compression

    NASA Astrophysics Data System (ADS)

    Choudhary, Keerti; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    The Langmuir monolayer at an air-water interface shows remarkably different surface pressure - area isotherm, when measured with the surface normal of a Wilhemly plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir-Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid was studied using an atomic force microscope (AFM). The morphology of the LB films was found to be different due to difference in the stress in different directions.

  7. Preparation of Langmuir-Blodgett thin films of calix[6]arenes and p-tert butyl group effect on their gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ozmen, Mustafa; Ozbek, Zikriye; Bayrakci, Mevlut; Ertul, Seref; Ersoz, Mustafa; Capan, Rifat

    2015-12-01

    Organic vapor sensing properties of Langmuir-Blodgett (LB) thin films of p-tert-butyl calix[6]arene and calix[6]arene, and their certain characterization are reported in this work. LB films of these calixarenes have been characterized by contact angle measurement, quartz crystal microbalance (QCM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). QCM system was used for the measurement of sensor response against chloroform, benzene, toluene and ethanol vapors. Forming of stable monolayers was observed at the water surface using surface pressure-area isotherm graph. The results indicate that good quality, uniform LB films can be prepared with a transfer ratio of over 0.95. Due to the adsorption of vapors into the LB film structures; they yield a response to all vapors as of large, fast, and reproducible.

  8. Synthesis of novel hybrid films of a layered silicate and alkylammonium cations on rough polymeric surfaces by Langmuir-Blodgett method.

    PubMed

    Zhou, Qi; Wang, Kean; Loo, Leslie S

    2009-12-15

    Hybrid films of a layered silicate and an amphiphilic alkylammonium (hexadecyltrimethylammonium) cation have been prepared by Langmuir-Blodgett (LB) method and transferred onto a polyamide surface by dip coating. This is the first time that stable LB hybrid monolayer and multilayer films have been formed on rough polymeric surfaces. The films were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and water contact angle measurements. XRD and FTIR showed that the hybrid multilayer was well-organized and the thickness of one layer was calculated to be 1.6nm. Furthermore, the layered silicate was determined to be on the substrate side and the amphiphilic molecule layer was exposed to the air side. This provides a novel methodology for the surface modification of polymers. PMID:19781713

  9. Glued Langmuir-Blodgett bilayers from calix[n]arenes: Influence of calix[n]arene size on ionic cross-linking, film thickness, and permeation selectivity

    SciTech Connect

    Wang, Minghui; Janout, Vaclav; Regen, Steven L.

    2010-07-12

    A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N2 and CO2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found to increase. In conclusion, the likely origin for these effects and the probable mechanism by which He, N2 and CO2 cross these ultrathin films are discussed.

  10. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications. PMID:25761908

  11. Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization

    NASA Astrophysics Data System (ADS)

    Martín, Santiago; Cea, Pilar; Lafuente, Carlos; Royo, Félix M.; López, María. C.

    2004-08-01

    Hybrid Langmuir and Langmuir-Blodgett (LB) films containing two moieties of great chemical and electrochemical interest, namely a viologen derivative and tetracyanoquinodimethane (TCNQ) in a mixed valence state, were fabricated. To do so, positively ionized monolayers of 1,1 '-dioctadecyl 4,4 '-bipyridilium were prepared onto aqueous solutions of tetracyanoquinodimethane in a mixed valence state. Surface pressure vs. area ( π- A), surface potential vs. area (Δ V- A), and Brewster angle microscope (BAM) images were recorded and interpreted in terms of molecular interactions as well as the incorporation of the hydrophobic anions into the monolayer. After a comprehensive study, a 10 -6 M TCNQ aqueous solution was chosen as the best one to build hybrid LB films. Thus, the floating films were transferred onto solid substrates that were characterized using several techniques including ultraviolet-visible (UV-vis), infrared (IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM) proving the incorporation of the TCNQ onto the film. These films show a good optical conductivity as well as a high degree of order and layers with a constant architecture.

  12. Silver coated gold nanocolloids entrapped in organized Langmuir-Blodgett Film of stearic acid: Potential evidence of a new SERS active substrate

    NASA Astrophysics Data System (ADS)

    Saha, Somsubhra; Ghosh, Manash; Dutta, Bipan; Chowdhury, Joydeep

    2016-01-01

    SERS active substrate containing silver coated gold (Au@Ag) nanocolloids entrapped in the Langmuir-Blodgett (LB) film matrix of stearic acid (SA) has been reported. The SERS efficacy of the as prepared substrate has been tested with trace concentrations of Rhodamine 6G (R6G) molecules. Enhancement factors ranging from 104-1013 orders of magnitude have been estimated for the characteristic vibrational signatures of R6G molecule. The colossal enhancement factors also signify the superiority of the as prepared substrate in comparison to Au@Ag nanocolloids. The optical responses and the morphological features of the substrates are estimated with aid of UV-vis absorption spectra and FESEM, AFM images respectively. Correlations between the surface morphologies, fractal dimensions and roughness features of the as prepared substrates are also drawn. The electric field distributions around the aggregated nanocolloids entrapped in the SA matrix have been envisaged with the aid of three dimensional finite difference time domain (3D-FDTD) simulations. Tuning the interparticle localized surface plasmon (LSP) coupling between the aggregated nanocolloids may be achieved by lifting the LB film of SA at different surface pressures.

  13. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  14. Optical rotation of the second harmonic radiation from retinal in bacteriorhodopsin monomers in Langmuir-Blodgett film: evidence for nonplanar retinal structure.

    PubMed Central

    Volkov, V; Svirko, Y P; Kamalov, V F; Song, L; El-Sayed, M A

    1997-01-01

    We observed optical rotation of the plane of polarization of the second harmonic (SH) radiation at 532 nm (in resonance with the retinal absorption) generated in reflection geometry in Langmuir-Blodgett film of bacteriorhodopsin (bR). The analysis of the experimental data showed that this effect arises from the nonvanishing contribution of the antisymmetrical part of the hyperpolarizability tensor. This requires that the dipole moment of the resonant electronic transition, the change of the dipole moment upon electronic excitation, and the long axis of the retinal not be coplanar. Such conditions are satisfied only if the retinal has a nonplanar geometry, a conclusion that could lend support to the heterogeneity model of the origin of the biphasic band shape of the linear CD spectrum of the retinal in bR. On the basis of our theoretical analysis, we were able to estimate the angle between the induced dipole moment and the plan that contains the long axis of the chromophore and the transition dipole moment of the retinal absorption. Images FIGURE 2 PMID:9414228

  15. Rhodanese incorporated in Langmuir and Langmuir-Blodgett films of dimyristoylphosphatidic acid: Physical chemical properties and improvement of the enzyme activity.

    PubMed

    de Araújo, Felipe Tejada; Caseli, Luciano

    2016-05-01

    Preserving the catalytic activity of enzymes immobilized in bioelectronics devices is essential for optimal performance in biosensors. Therefore, ultrathin films in which the architecture can be controlled at the molecular level are of interest. In this work, the enzyme rhodanese was adsorbed onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid and characterized by surface pressure-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The incorporation of the enzyme (5% in mol) in the lipid monolayer expanded the film, providing small surface domains, as visualized by BAM. Also, amide bands could be identified in the PM-IRRAS spectra, confirming the presence of the enzyme at the air-water interface. Structuring of the enzyme into α-helices was identified in the mixed monolayer and was preserved when the film was transferred from the liquid interface to solids supports as Langmuir-Blodgett (LB) films. The enzyme-lipid LB films were then characterized by fluorescence spectroscopy, PM-IRRAS, and atomic force microscopy. Measurements of the catalytic activity towards cyanide showed that the enzyme accommodated in the LB films preserved more than 87% of the enzyme activity in relation to the homogeneous medium. After 1 month, the enzyme in the LB film maintained 85% of the activity in contrast to the homogeneous medium, which 24% of the enzyme activity was kept. The method presented in this work not only points to an enhanced catalytic activity toward cyanide, but also may explain why certain film architectures exhibit an improved performance. PMID:26836478

  16. Triggered J-aggregation in mixed Langmuir-Blodgett films of amphiphilic spiropyran having a methoxy group at the 5' position and an azobenzene derivative.

    PubMed

    Kawasaki, Hisashi; Tozawa, Shinnosuke; Matani, Takashi; Hayashi, Toshihiro; Watanabe, Satoshi; Shibata, Hirobumi; Matsumoto, Mutsuyoshi

    2014-01-01

    Here, we describe the formation of J-aggregates triggered by isomerization of an azobenzene derivative, N-[p-[(p-dodecylphenylazo)phenyloxy]dodecylpyridinium bromide (AzP), in mixed Langmuir-Blodgett (LB) films that contain an amphiphilic spiropyran with a methoxy group at the 5' position, MeO-SP1822. Pure LB films of MeO-SP1822 consist of multilayer domains embedded in a monolayer. UV irradiation of the films causes the isomerization of MeO-SP1822 to its merocyanine form, MeO-MC1822. Pure LB films of AzP comprise finger-like domains and granular domains. Irradiating mixed films of MeO-SP1822 and AzP with alternating UV and visible light causes J-aggregation of MeO-MC1822, with the amount of J-aggregates reaching a maximum at a 1:1 molar ratio. J-aggregation occurs in flat finger-like structures originating in the AzP-rich granular domains that are located on top of the MeO-MC1822-rich multilayer domains. J-aggregates are also present under the AzP-rich granular domains, though these domains do not serve as nucleation sites for the finger-like structures. We propose that granular domains serving as nucleation sites are partially buried in the multilayer domains, whereas those triggering the J-aggregation of MeO-MC1822 under the granular domains are situated on top of the multilayer domains. PMID:24919479

  17. Exploring the Effect of Ligand Structural Isomerism in Langmuir-Blodgett Films of Chiral Luminescent Eu(III) Self-Assemblies.

    PubMed

    Galanti, Agostino; Kotova, Oxana; Blasco, Salvador; Johnson, Chloe J; Peacock, Robert D; Mills, Shaun; Boland, John J; Albrecht, Martin; Gunnlaugsson, Thorfinnur

    2016-07-01

    Here we have investigated the influence of the antenna group position on both the formation of chiral amphiphilic Eu(III) -based self-assemblies in CH3 CN solution and, on the ability to form monolayers on the surface of quartz substrates using the Langmuir-Blodgett technique, by changing from the 1-naphthyl (2(R), 2(S)) to the 2-naphthyl (1(R), 1(S)) position. The evaluation of binding constants of the self- assemblies in CH3 CN solution was achieved using conventional techniques such as UV/Visible and luminescence spectroscopies along with more specific circular dichroism (CD) spectroscopy. The binding constants obtained for EuL, EuL2 and EuL3 species in the case of 2-naphthyl derivatives were comparable to those obtained for 1-naphthyl derivatives. The analysis of the changes in the CD spectra of 1(R) and 1(S) upon addition of Eu(III) not only allowed us to evaluate the values of the binding constants but the resulting recalculated spectra may also be used as fingerprints for assignment of the chiral self-assembly species formed in solution. The obtained monolayers were predominantly formed from EuL3 (≈85 %) with the minor species present in ≈15 % EuL2 . PMID:27258206

  18. Formation of 2D colloidal crystals by the Langmuir-Blodgett technique monitored in situ by Brewster angle microscopy.

    PubMed

    Gil, Alvaro; Guitián, Francisco

    2007-03-01

    We report a method that combines Brewster angle microscopy and Langmuir-Blodgett films technique to obtain highly ordered 2D colloidal crystals of nanospheres. The deposition of Langmuir-Blodgett films of silica spheres monitored by Brewster angle microscopy allows to determine with accuracy the best physical conditions to transfer highly ordered monolayers of nanoparticles. PMID:17184789

  19. Langmuir-Blodgett films of self-assembled (alkylether-derivatized Zn phthalocyanine)-(C₆₀ imidazole adduct) dyad with controlled intermolecular distance for photoelectrochemical studies.

    PubMed

    Obraztsov, Ievgen; Noworyta, Krzysztof; Hart, Aaron; Gobeze, Habtom B; Kc, Chandra B; Kutner, Wlodzimierz; D'Souza, Francis

    2014-06-11

    A multilayer Langmuir-Blodgett (LB) film of the self-assembled electron donor-acceptor dyad of Zn phthalocyanine, appended with four long-chain aliphatic ether peripheral substituents, and an imidazole adduct of C60 was prepared and applied as a photoactive material in a photoelectrochemical cell. Changes in the simultaneously recorded surface pressure and surface potential vs area per molecule compression isotherms for Langmuir films of the dyad and, separately, of its components helped to identify phase transitions and mutual interactions of molecules in films. The Brewster angle microscopy (BAM) imaging of the Langmuir films showed circular condensed phase domains of the dyad molecules. The determined area per molecule was lower than that estimated for the dyad and its components, separately. The multilayer LB films of the dyad were transferred onto hydrophobized fluorine-doped tin oxide-coated (FTO) glass slides under different conditions. The presence of both components in the dyad LB films was confirmed with the UV-vis spectroscopy measurements. For the LB films transferred at different surface pressures, the PM-IRRAS measurements revealed that the phthalocyanine macrocycle planes and ether moieties in films were tilted with respect to the FTO surface. The AFM imaging of the LB films indicated formation of relatively uniform dyad LB films. Then, the femtosecond transient absorption spectral studies evidenced photoinduced electron transfer in the LB film. The obtained transient signals corresponding to both Zn(TPPE)(•+) and C60im(•-) confirmed the occurrence of intramolecular electron transfer. The determined rate constants of charge separation, kcs = 2.6 × 10(11) s(-1), and charge recombination, kcr = 9.7 × 10(9) s(-1), indicated quite efficient electron transfer within the film. In the photoelectrochemical studies, either photoanodic or photocathodic current was generated depending on the applied bias potential when the dyad LB film-coated FTO was used

  20. Electrical characterization of single molecule and Langmuir-Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative.

    PubMed

    Osorio, Henrry Marcelo; Martín, Santiago; López, María Carmen; Marqués-González, Santiago; Higgins, Simon J; Nichols, Richard J; Low, Paul J; Cea, Pilar

    2015-01-01

    Monolayer Langmuir-Blodgett (LB) films of 1,4-bis(pyridin-4-ylethynyl)benzene (1) together with the "STM touch-to-contact" method have been used to study the nature of metal-monolayer-metal junctions in which the pyridyl group provides the contact at both molecule-surface interfaces. Surface pressure vs area per molecule isotherms and Brewster angle microscopy images indicate that 1 forms true monolayers at the air-water interface. LB films of 1 were fabricated by deposition of the Langmuir films onto solid supports resulting in monolayers with surface coverage of 0.98 × 10(-9) mol·cm(-2). The morphology of the LB films that incorporate compound 1 was studied using atomic force microscopy (AFM). AFM images indicate the formation of homogeneous, monomolecular films at a surface pressure of transference of 16 mN·m(-1). The UV-vis spectra of the Langmuir and LB films reveal that 1 forms two dimensional J-aggregates. Scanning tunneling microscopy (STM), in particular the "STM touch-to-contact" method, was used to determine the electrical properties of LB films of 1. From these STM studies symmetrical I-V curves were obtained. A junction conductance of 5.17 × 10(-5) G 0 results from the analysis of the pseudolinear (ohmic) region of the I-V curves. This value is higher than that of the conductance values of LB films of phenylene-ethynylene derivatives contacted by amines, thiols, carboxylate, trimethylsilylethynyl or acetylide groups. In addition, the single molecule I-V curve of 1 determined using the I(s) method is in good agreement with the I-V curve obtained for the LB film, and both curves fit well with the Simmons model. Together, these results not only indicate that the mechanism of transport through these metal-molecule-metal junctions is non-resonant tunneling, but that lateral interactions between molecules within the LB film do not strongly influence the molecule conductance. The results presented here complement earlier studies of single molecule

  1. Optical and electrical properties of the Langmuir-Blodgett films prepared from a rare earth coordination compound

    NASA Astrophysics Data System (ADS)

    Huang, C. H.; Wang, K. Z.; Zhu, X. Y.; Wu, N. Z.; Xu, G. X.; Xu, Y.; Liu, Y. Q.; Zhu, D. B.; Liu, Y. W.; Xue, Z. Q.

    1994-04-01

    The stable floating Langmuir film of N-hexadecylpyridinium tetrakis-(1-phenyl-3-methyl-4-benzoyl-pyrazolone-5-one) europium formed at air-water interface, could be deposited at a surface pressure of 10 mN/m onto various hydrophilic substrates of fuzed quartz, single crystal calcium floride and transparent indium tin oxide (ITO) glass successively with a transfer ratio of around unity. LB films with more than 50 layers in Z or Y type were obtained. The films were characterized by ultraviolet, fluorescent, X-ray photoelectron spectroscopy and low angle X-ray diffraction. The electric conductivity of the film is reported as well.

  2. Photoactive Langmuir-Blodgett, Freely Suspended and Free Standing Films of Carboxylate Ligand-Coated ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wadowska, Monika; Wróbel, Zbigniew; Matuła, Kinga; Nogala, Wojciech; Lewiński, Janusz; Hołyst, Robert

    2016-06-01

    A new possibility for the formation of macroscopic and photoactive structures from zinc oxide nanocrystals is described. Photoactive freely suspended and free-standing films of macroscopic area (up to few square millimeters) and submicrometer thickness (up to several hundreds of nanometers) composed of carboxylate ligand-coated zinc oxide nanocrystallites (RCO2-ZnO NCs) of diameter less than 5 nm are prepared according to a modified Langmuir-Schaefer method. First, the suspension of RCO2-ZnO NCs is applied onto the air/water interface. Upon compression, the films become turbid and elastic. The integrity of such structures is ensured by interdigitation of ligands stabilizing ZnO NCs. Great elasticity allows transfer of the films onto a metal frame as a freely suspended film. Such membranes are afterward extracted from the supporting frame to form free-standing films of macroscopic area. Because the integrity of the films is maintained by ligands, no abolishment of quantum confinement occurs, and films retain spectroscopic properties of initial RCO2-ZnO NCs. The mechanism of formation of thin films of RCO2-ZnO NCs at the air/water interface is discussed in detail. PMID:27158733

  3. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited. PMID:27451619

  4. Langmuir-Blodgett film and second harmonic generation of a series of new nonlinear optical rare earth complexes

    NASA Astrophysics Data System (ADS)

    Li, Hui; Huang, Chun-hui; Zhao, Yi-lei; Li, Tian-kai; Bai, Jie; Zhao, Xin-sheng; Xia, Xiao-hua

    1995-06-01

    Four kinds of amphiphilic rare earth complexes containing the new chromophore: 4-[(4-N,N'-diethylamino)phenyl)azo]-1-methyl-pyridinium-Tetrakis(4-benzoyl-1-phenyl-3-methyl-pyrazolone-5) Dysprosium (compound A), 4-[(4-N,N'-(diethylamino)phenyl)azo]-1-methyl-pyridinium-Tri(4-benzoyl-1-phenyl-3-methyl-pyrazolone-5)-(4-hexadecanoyl-1-phenyl-3-methyl Pyrazolone5)Dysprosium(compound B), 4-[(4-N,N'-diethylamino)phenyl)azo]-1-methyl-pyridinium-Tetrakis(2-thenoyl-trifluoroacetone)Dysprosium (compound C) and 4-[(4-N,N'-(diethylamino)phenyl)azo]-1-methyl-pyridinium-Tri(2-thenoyl-trifluoroacetone)-(4-hexadecanoyl-1-phenyl-3-methyl-pyrazolone-5 Dysprosium (compound D), and their iodide (compound E), were synthesized. The film-forming properties of compound A and B are good while compounds C, D and E cannot form stable Langmuir film. The second-order molecular hyperpolarizability β of the rare earth complexes were evaluated to be 1.3×10 -28e.s.u. and 5.9×10 -28e.s.u. for compounds A and B respectively.

  5. Pentacene organic ferroelectric transistors with [P(VDF-TrFE)] gate by Langmuir-Blodgett process

    NASA Astrophysics Data System (ADS)

    Sun, Yilin; Xie, Dan; Xu, Jianlong; Feng, Tingting; Zang, Yongyuan; Zhang, Cheng; Dai, Ruixuan; Meng, Xiangjian; Ji, Zhuoyu

    2015-09-01

    We report the fabrication and electrical properties of pentacene-based ferroelectric organic field-effect transistors (FeOFETs) with ultrathin poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] gate insulators. A ultrathin and uniform P(VDF-TrFE) film was successfully deposited by Langmuir-Blodgett (LB) deposition with well-defined ferroelectric microdomains at the interface between P(VDF-TrFE) films and pentacene active layers. The P(VDF-TrFE) films derived by LB deposition significantly enhance the crystallization of the upper pentacene channel films and thus the performance of our FeOFETs. Our FeOFET device achieves a threshold voltage shift of 8.56 V induced by ferroelectric polarization under different voltage sweeping directions and such enhancement indicates a great potential for future organic nonvolatile memory applications.

  6. Raman spectroscopic investigation of the single-monolayer Langmuir-Blodgett film of C16NaphOH and C10AzoNaphC4N-SDS.

    PubMed

    Wu, Yuqing; Zhao, Bing; Xu, Weiqing; Li, Guowen; Li, Bofu

    2003-04-01

    Raman spectra were measured for Langmuir-Blodgett (LB) films of C(16)NaphOH and C(10)AzoNaphC(4)N-SDS on Calcium Fluorite substrate for the first time. In order to find out favorable excitation condition, Raman spectra of the single and multi-monolayer LB films excited at different lines at 244, 514, 633 and 778 nm are recorded and compared in the present study. Raman spectrum of the monolayer LB film of C(16)NaphOH excited by 244 nm demonstrate that excellent signal to noise is achieved even for one monolayer LB film with an extremely short integrating time as 60 s because of being resonantly enhanced, while no meaningful spectra were recorded under the same condition for the monolayer LB film of C(10)AzoNaphC(4)N-SDS because of burning. Using a HeNe 633 nm excitation the problem with strong substrate fluorescence was partially solved, since under these conditions this fluorescence is mainly outside the fingerprint region of the LB film molecules (1000-2000 cm(-1)). Therefore by using the HeNe laser excitation, Raman spectra with high signal to noise ratio of LB films of C(16)NaphOH were collected and shown in this paper. These findings stress again the necessity to define an appropriate Raman system for this special application of LB film diagnosis. PMID:12659885

  7. Second-harmonic generation from Z-type Langmuir-Blodgett films of a transparent dye and a comparison of the properties when the layers are interleaved with poly(t-butyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Ashwell, Geoffrey J.; Ranjan, Rakesh

    1998-10-01

    The Langmuir-Blodgett (LB) film structure of E-4-[(N- octadecyl-6,7,8-trihydro-5-isoquinolylidene)methyl]-N,N- dibutylaniline octadecylsulfate is non-centrosymmetric when the dye is deposited on the up-stroke (Z-type) and when the layers are interleaved with poly(t-butyl methacrylate). The second-harmonic intensity increases as I(N)2(omega ) equals I(1)2(omega )N2, where N is the number of active layers, and the intensity is further enhanced when the dye is mixed in a 1 to 1 ratio with octadecanoic acid. The second-order susceptibility and repeat lattice spacing of the mixed LB films are as follows: (chi) zzz(2) equals 76 pm V-1 at 1.064 micrometers and l equals 3.15 nm layer-1 when Z-type; (chi) zzz(2) equals 52 pm V-1 and l equals 4.13 nm bilayer-1 when interleaved. The films are transparent at the fundamental wavelength and have a slight absorbance of ca. 5 X 10-4 per dye layer at 532 nm. The second-harmonic intensity is the strongest to date from such a weakly absorbing LB film and this is attributed to the close proximity of the charge-transfer band and to an optimized packing arrangement.

  8. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration. PMID:16553421

  9. Self-assembling of C60-imidazole and C60-pyridine adducts in the Langmuir and Langmuir-Blodgett films via complex formation with water-soluble zinc porphyrins

    NASA Astrophysics Data System (ADS)

    Marczak, Renata; Noworyta, Krzysztof; Kutner, Wlodzimierz; Gadde, Suresh; D'Souza, Francis

    2003-10-01

    The C60-pyridine, C60py, and C60-imidazole, C60im, adducts were found to self-assemble in films floating onto aqueous solutions of zinc tetrakis (N-methylpyridinium)porphyrin cation, Zn(TMPyP), or zinc tetrakis (4-sulfonatophenyl)porphyrin anion, Zn(TPPS). This self assembling was due to axial ligation of the C60 adducts (acceptors) by Zn porphyrins (donors), which lead to the formation of relatively stable donor-acceptor dyads in the water-air interfaces. The films were compressed in a Langmuir trough and characterized by isotherms of surface pressure vs. area per molecule as well as by the Brewster angle microscopy imaging. All systems formed stable aggregated Langmuir films of the "expanded liquid" type. Extensive compression of the films resulted in two-dimensional phase transitions. The area per molecule at infinite dilution of the adducts in films increased in the order: water<0.1 mM Zn(TPPS)<0.1 mM Zn(TPMyP). Comparison of the determined and calculated values of area per molecule indicated that orientation of porphyrins in the complexes was parallel with respect to the interface plane. The Langmuir films were transferred, by using the Langmuir-Blodgett technique, onto quartz slides. The UV-vis spectroscopic study of these films revealed that Zn porphyrins were transferred together with the C60 adducts and that the transfer efficiency increased in the order: C60py-Zn(TPPS)

  10. Effects of Acid Vapor, Basic Vapor and Heat Treatments on the Properties of Langmuir-Blodgett Films of Divalent Metal Salts of Fatty Acids

    NASA Astrophysics Data System (ADS)

    Saito, Mitsuyoshi; Sugi, Michio; Ikegami, Keiichi; Yoneyama, Mitsuru; Iizima, Sigeru

    1986-06-01

    When LB films are exposed to the atmosphere vaporized from acid at room temperature, the X-ray diffraction peaks attributed to the lamellar structure disappear and new peaks appear depending on the metal ion species of the salt, whereas such noticeable change is not observed by basic vapor treatment and heat treatment. Diffraction patterns for LB films of free fatty acids are not influenced by these three treatments.

  11. Coulomb blockade phenomena in ultrathin Langmuir-Blodgett sandwich junctions

    NASA Astrophysics Data System (ADS)

    Burghard, M.; Mueller-Schwanneke, C.; Philipp, G.; Roth, S.

    1999-04-01

    Electrical junctions were fabricated in sandwich configuration from Langmuir-Blodgett (LB) films of two types of material, 0953-8984/11/14/015/img1-conjugated, peripherally substituted ring systems or a 0953-8984/11/14/015/img2-bonded polymer. The sandwich junctions consisted of four to ten monolayers between two micro-structured gold electrodes, corresponding to a nominal film thickness between about 8 and 20 nm. At liquid helium temperature, the current (I)/voltage (V) characteristics generally exhibited smooth exponential behaviour or irregular steps. However, for a small fraction of the LB sandwiches comprising a 0953-8984/11/14/015/img1-conjugated or 0953-8984/11/14/015/img2-bonded compound, regular staircases were observed. It was possible to fit such 0953-8984/11/14/015/img5 characteristics with curves calculated on the basis of a Coulomb blockade model. These results are accounted for by the presence of nanometre-sized gold particles formed upon evaporation of the top electrode. Single electron tunnelling is assumed to proceed through double tunnel barrier junctions consisting of a gold island asymmetrically located between the top and bottom electrode.

  12. The Langmuir-Blodgett technique as a tool for homeotropic alignment of fluorinated liquid crystals mixed with arachidic acid.

    PubMed

    Modlińska, Anna; Bauman, Danuta

    2011-01-01

    Some fluoro-substituted liquid crystals mixed with arachidic acid in monolayers formed at air-liquid (Langmuir films) and air-solid substrate (Langmuir-Blodgett films) interfaces were investigated. Molecular organization in Langmuir films was determined on the basis of the analysis of the shape of the surface pressure-mean molecular area isotherm and observations made by means of a Brewster angle microscope. It was found that in the compression process the liquid crystal molecules are pushed out towards the top of the first monolayer being in direct contact with the subphase. Langmuir films were transferred onto the quartz substrates at various surface pressures and mono- and multilayered Langmuir-Blodgett films were obtained. The films were characterized using electronic absorption measurements. The conditions for obtaining the homeotropic orientation of the liquid crystal molecules were determined. PMID:21954335

  13. The Langmuir-Blodgett Technique as a Tool for Homeotropic Alignment of Fluorinated Liquid Crystals Mixed with Arachidic Acid

    PubMed Central

    Modlińska, Anna; Bauman, Danuta

    2011-01-01

    Some fluoro-substituted liquid crystals mixed with arachidic acid in monolayers formed at air-liquid (Langmuir films) and air-solid substrate (Langmuir-Blodgett films) interfaces were investigated. Molecular organization in Langmuir films was determined on the basis of the analysis of the shape of the surface pressure-mean molecular area isotherm and observations made by means of a Brewster angle microscope. It was found that in the compression process the liquid crystal molecules are pushed out towards the top of the first monolayer being in direct contact with the subphase. Langmuir films were transferred onto the quartz substrates at various surface pressures and mono- and multilayered Langmuir-Blodgett films were obtained. The films were characterized using electronic absorption measurements. The conditions for obtaining the homeotropic orientation of the liquid crystal molecules were determined. PMID:21954335

  14. Modeling success and failure of Langmuir-Blodgett transfer of phospholipid bilayers to silicon dioxide.

    PubMed

    Osborn, T D; Yager, P

    1995-04-01

    Formation of planar phospholipid bilayers on solid and porous substrates by Langmuir-Blodgett transfer of monolayers from the air-water interface could be of much greater utility if the process were not irreproducible and poorly understood. To that end the energetics of transferring two phospholipid monolayers to a hydrophilic surface has been examined. An approximate mathematical relationship is formulated that relates the surface pressure of the precursor monolayers to the tension within the bilayer created. Data are presented that demonstrate that bilayer transfer can be carried out reproducibly even with refractory phospholipids such as phosphatidylcholine, but only over a very narrow range of precursor monolayer surface pressures. This range is related to the lysis tension of the bilayer. The morphology of films formed within and below the successful range of surface pressures are examined by fluorescence microscopy, and the observed features are discussed in terms of the relationship above. These results provide practical guidelines for successful formation of lipid bilayers on hydrophilic surfaces; these guidelines should prove useful for research into the properties of biomembranes and for development of bilayer-based biosensors. PMID:7540429

  15. Spectroscopic properties and orientation of molecules in Langmuir-Blodgett layers of selected functionalized fullerenes.

    PubMed

    Lewandowska, Kornelia; Barszcz, Boleslaw; Graja, Andrzej; Nam, Sun Young; Han, Yi-Seul; Kim, Tae-Dong; Lee, Kwang-Sup

    2014-01-24

    Vibrational properties of two fullerene derivatives: C60TZ-OT-5 (1) and C60TH-3HX (2) have been studied using infrared absorption and Raman scattering spectroscopies. Additionally, quantum chemical calculations of the equilibrium geometry and normal mode vibrations of these functionalized fullerenes were performed. It was stated that despite of distinct structural differences between the investigated molecules, their experimental spectra are quite similar and correspond well with the calculated ones. The orientation of the molecules in the Langmuir-Blodgett films was evaluated. PMID:24051291

  16. Spectroscopic properties and orientation of molecules in Langmuir-Blodgett layers of selected functionalized fullerenes

    NASA Astrophysics Data System (ADS)

    Lewandowska, Kornelia; Barszcz, Boleslaw; Graja, Andrzej; Nam, Sun Young; Han, Yi-Seul; Kim, Tae-Dong; Lee, Kwang-Sup

    2014-01-01

    Vibrational properties of two fullerene derivatives: C60TZ-OT-5 (1) and C60TH-3HX (2) have been studied using infrared absorption and Raman scattering spectroscopies. Additionally, quantum chemical calculations of the equilibrium geometry and normal mode vibrations of these functionalized fullerenes were performed. It was stated that despite of distinct structural differences between the investigated molecules, their experimental spectra are quite similar and correspond well with the calculated ones. The orientation of the molecules in the Langmuir-Blodgett films was evaluated.

  17. Organic quarter-wave stack filter fabricated by Langmuir-Blodgett deposition

    NASA Astrophysics Data System (ADS)

    Goodwin, M. J.; Carr, N.; Harrison, K.; Lewis, K.

    1991-05-01

    An optical interference filter fabricated using organic materials deposited by the Langmuir-Blodgett technique is developed. The materials chosen for this research are a side-chain polysiloxane and an hydrocarbon-based carboxylic acid. A significant refractive-index difference between these two materials was anticipated; these properties are determined by a number of techniques including ellipsometry, reflectometry, and optical waveguiding. The measured characteristics of the filter are in good agreement with the predicted response and make a more accurate assessment of the component monolayer properties possible.

  18. Linear and nonlinear optical properties in new cyanine dye Langmuir-Blodgett multilayers

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Gao, Feng; Zeng, Hao; Ma, Shihong; Liu, Wei; Liu, Liying; Wang, Wencheng; Tian, He

    2006-08-01

    We investigated on cyanine dye (HQ) in Langmuir and Langmuir-Blodgett (LB) films using UV-visible spectra and second-harmonic generation (SHG) methods. UV-visible spectra indicated a uniform film transfer. The significant SHG fringe signal as a function of angle of incidence for Z-type LB films observed respectively. The second-order susceptibility χ (2)zzz, refractive indexes at 532 nm as well as the average tilt angle ψ between the molecular (dipolar) axis and surface normal, obtained by means of fitting the SHG data, are 42 pM/V -1, 1.4841, 57° and 32 pM/V -1, 1.4775, 53° for LB films without and with Cd 2+ ions, respectively. These high nonlinearities are due to resonant enhancement resulting from the proximity of the second harmonic wavelength to the absorption band of the films.

  19. Oscillatory barrier-assisted Langmuir-Blodgett deposition of large-scale quantum dot monolayers

    NASA Astrophysics Data System (ADS)

    Xu, Shicheng; Dadlani, Anup L.; Acharya, Shinjita; Schindler, Peter; Prinz, Fritz B.

    2016-03-01

    Depositing continuous, large-scale quantum dot films with low pinhole density is an inevitable but nontrivial step for studying their properties for applications in catalysis, electronic devices, and optoelectronics. This rising interest in high-quality quantum dot films has provided research impetus to improve the deposition technique. We show that by incorporating oscillatory barriers in the commonly used Langmuir-Blodgett method, large-scale monolayers of quantum dots with full coverage up to several millimeters have been achieved. With assistance of perturbation provided by the oscillatory barriers, the film has been shown to relax towards thermal equilibrium, and this physical process has been supported by molecular dynamics simulation. In addition, time evolution of dilatational moduli has been shown to give a clear indication of the film morphology and its stability.

  20. Comparison of host-guest Langmuir-Blodgett multilayer formation by two different amphiphilic cyclodextrins

    SciTech Connect

    Parazak, D.P.; Khan, A.R.; D`Souza, V.T.; Stine, K.J.

    1996-08-07

    We report here our results for Langmuir monolayers of the derivatives of cyclodextrin shown: hexakis(6-deoxy-6-dodecylamino)-{alpha}-cyclodextrin (1a), heptakis(6-deoxy-6-dodecylamino)-{beta}-cyclodextrin (1b), and heptakis(6-deoxy-6-dodecylthio)-{beta}-cyclodextrin (2b ), which was found to be partially substituted. Langmuir films of these derivatives were examined using {Pi}-A isotherm measurements and Brewster angle microscopy. Langmuir-Blodgett (LB) multilayer films of these derivatives were deposited from subphases containing p-nitrophenol to determine the extent of incorporation of the guest molecule in the LB film. The transfer ratios of the film exhibited a noteworthy evolution with the transfer pressure. The variation in the extent of guest molecule incorporation is discussed and compared with the binding behavior in solution of unmodified cyclodextrins. 29 refs., 4 figs.

  1. Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids

    SciTech Connect

    Fazio, Valentina S. U.; Nannelli, Francesca; Komitov, Lachezar

    2001-06-01

    The anchoring of the nematic liquid crystal N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers of fatty acids (COOHC{sub n}H{sub 2n+1}) was studied as a function of the length of the fatty acid alkyl chain n (n=15,17,19,21). The monolayers were deposited onto glass plates coated with indium tin oxide, which were used to assemble sandwich cells of various thicknesses that were filled with MBBA in the nematic phase. The mechanism of relaxation from the flow-induced quasiplanar to the surface-induced homeotropic alignment was studied for the four aligning monolayers. It was found that the speed of the relaxation decreases linearly with increasing length of the alkyl chain n, which suggests that the Langmuir-Blodgett film plays a role in the phenomenon. This fact was confirmed by a sensitive estimation of the anchoring strength of MBBA on the fatty acid monolayers after anchoring breaking, which takes place at the transition between two electric-field-induced turbulent states, denoted as DSM1 and DSM2 (where DSM indicates dynamic scattering mode). It was found that the threshold electric field for the anchoring breaking, which can be considered as a measure of the anchoring strength, also decreases linearly as n increases. Both methods thus possess a high sensitivity in resolving small differences in anchoring strength. In cells coated with mixed Langmuir-Blodgett monolayers of two fatty acids (n=15 and n=17) a maximum of the relaxation speed was observed when the two acids were present in equal amounts. This observation suggests an efficient method for controlling the anchoring strength in homeotropic cells by changing the ratio between the components of the surfactant film.

  2. Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids

    NASA Astrophysics Data System (ADS)

    Fazio, Valentina S.; Nannelli, Francesca; Komitov, Lachezar

    2001-06-01

    The anchoring of the nematic liquid crystal N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers of fatty acids (COOHCnH2n+1) was studied as a function of the length of the fatty acid alkyl chain n (n=15,17,19,21). The monolayers were deposited onto glass plates coated with indium tin oxide, which were used to assemble sandwich cells of various thicknesses that were filled with MBBA in the nematic phase. The mechanism of relaxation from the flow-induced quasiplanar to the surface-induced homeotropic alignment was studied for the four aligning monolayers. It was found that the speed of the relaxation decreases linearly with increasing length of the alkyl chain n, which suggests that the Langmuir-Blodgett film plays a role in the phenomenon. This fact was confirmed by a sensitive estimation of the anchoring strength of MBBA on the fatty acid monolayers after anchoring breaking, which takes place at the transition between two electric-field-induced turbulent states, denoted as DSM1 and DSM2 (where DSM indicates dynamic scattering mode). It was found that the threshold electric field for the anchoring breaking, which can be considered as a measure of the anchoring strength, also decreases linearly as n increases. Both methods thus possess a high sensitivity in resolving small differences in anchoring strength. In cells coated with mixed Langmuir-Blodgett monolayers of two fatty acids (n=15 and n=17) a maximum of the relaxation speed was observed when the two acids were present in equal amounts. This observation suggests an efficient method for controlling the anchoring strength in homeotropic cells by changing the ratio between the components of the surfactant film.

  3. Naked-eye cadmium sensor: using chromoionophore arrays of Langmuir-Blodgett molecular assemblies.

    PubMed

    Prabhakaran, Deivasigamani; Yuehong, Ma; Nanjo, Hiroshi; Matsunaga, Hideyuki

    2007-06-01

    This study demonstrates the possibility of a reversible naked-eye detection method for submicromolar levels of cadmium(II) using the Langmuir-Blodgett (L-B) technique. Molecular assemblies of 4-n-dodecyl-6-(2-thiazolylazo)resorcinol are transferred on precleaned microscopic glass slides, to act as a sensing probe. Isotherm (pi-A) measurements were performed to ensure the films' structural rigidity and homogeneity during sensor fabrication. The sensor surface morphology was characterized using atomic force microscopy and scanning electron microscopy. The probe membrane exhibits visual color transition, forming a series of reddish-orange to pinkish-purple complexes with cadmium, over a wide concentration range (0.04-44.5 microM). Cadmium response kinetics and the changes in the sensors' intrinsic optical properties were monitored using absorption spectroscopy and further confirmed using X-ray photoelectron spectroscopy. A hybrid L-B film composite of poly(vinyl stearate) and poly(vinyl-N-octadecylcarbamate) were investigated for enhancing sensor performance. The sensor was tested for its practical approach to prove its cadmium selectivity and sensitivity amid common matrix constituents using synthetic mixtures and real water samples. Using the sensor strips, the respective lower limits of cadmium detection and quantification are 0.039 and 0.050 microM, as estimated from a normalized linear calibration plot. PMID:17447727

  4. Atomic force microscopy for the study of specially prepared surfaces including transferred Langmuir-Blodgett layers. Final report

    SciTech Connect

    Dr. J. D. Miller

    1999-06-02

    During the past four years a major number of surface science research programs in the Department of Metallurgical Engineering at the University of Utah have involved the use of the Atomic Force Microscope (AFM) and the Langmuir-Blodgett (LB) film balance procured with financial assistance from DOE under grant number DE-FG03-96ER76049. These instruments have been used for research in the areas of nonsulfide flotation chemistry, mineral processing, waste paper deinking, water treatment, treatment of contaminated soil, coal preparation, and plastics recycling. In addition, the AFM and LB film balance have been of great help to university researchers in other departments at the University of Utah and elsewhere, as well as researchers from industry.

  5. High-Yield Spreading of Water-Miscible Solvents on Water for Langmuir-Blodgett Assembly.

    PubMed

    Nie, Hua-Li; Dou, Xuan; Tang, Zhihong; Jang, Hee Dong; Huang, Jiaxing

    2015-08-26

    Langmuir-Blodgett (LB) assembly is a classical molecular thin-film processing technique, in which the material is spread onto water surface from a volatile, water-immiscible solvent to create floating monolayers that can be later transferred to solid substrates. LB has also been applied to prepare colloidal thin films with an unparalleled level of microstructural control and thickness, which has enabled the discovery of many exciting collective properties of nanoparticles and the construction of bulk nanostructured materials. To maximize the benefits of LB assembly, the nanoparticles should be well dispersed in both the spreading solvent and on water. This is quite challenging since colloids usually need contrasting surface properties in order to be stable in the water-hating organic solvents and on water surface. In addition, many organic and polymeric nanostructures dissolve in those organic solvents and cannot be processed directly. Using water-liking spreading solvents can avoid this dilemma. However, spreading of water-miscible solvents on water surface is fundamentally challenging due to extensive mixing, which results in significant material loss. Here we report a conceptually simple strategy and a general technique that allows nearly exclusive spreading of such solvents on water surface using electrospray. Since the volume of these aerosolized droplets is reduced by many orders of magnitude, they are readily depleted during the initial spreading step before any significant mixing could occur. The new strategy drastically reduces the burden of material processing prior to assembly and broadens the scope of LB assembly to previously hard-to-process materials. It also avoids the use of toxic volatile organic spreading solvents, improves the reproducibility, and can be readily automated, making LB assembly a more robust tool for colloidal assembly and thin-film fabrication. PMID:26272701

  6. Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C60 projectiles

    PubMed Central

    Paruch, R.; Rzeznik, L.; Czerwinski, B.; Garrison, B. J.; Winograd, N.; Postawa, Z.

    2009-01-01

    Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C60 projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs. a more isotropic solid are discussed. The results indicate that the trajectories of projectile fragments and, consequently, the primary energy can be channeled by the geometrical structure of the overlayer. Although, a similar process is known from sputtering of single crystals by atomic projectiles, it has not been anticipated to occur during C60 bombardment due to the large size of the projectile. An open and ordered molecular structure of LB films is responsible for such behavior. Both the extent of damage and the efficiency of sputtering depend on the kinetic energy, the impact angle, and the layer thickness. The results indicate that the best depth profiling conditions can be achieved with low-energy cluster projectiles irradiating the organic overlayer at large off-normal angles. PMID:20174461

  7. Polar Glass Structure for Second-Order Nonlinear Optics Prepared by the Langmuir-Blodgett Method Using Amorphous Polymers with an Azo-Dye

    NASA Astrophysics Data System (ADS)

    Okada, Shuji; Matsuda, Hiro; Masaki, Atsushi; Nakanishi, Hachiro; Abe, Takashi; Ito, Hiroshi

    1992-02-01

    In order to obtain Langmuir-Blodgett (LB) films for second-order nonlinear optics, LB films of the amorphous copolymers synthesized from methyl methacrylate and 2-(N-ethyl-N-(4-(4-nitrophenyl)azo)phenyl)aminoethyl acrylate were investigated. From the measurement of F-A isotherms and UV and visible spectra of the Langmuir (L) film, it was estimated that the azo-dye moiety was squeezed out from the air-water interface into the subphase, and the dipoles of azo-dye align uniaxially in the direction perpendicular to the interface. The L film could be deposited into X-type multilayers by the horizontal lifting method, resulting in the formation of “polar glass.”

  8. Wetting characteristics and stability of Langmuir-Blodgett carboxylate monolayers at the surfaces of calcite and fluorite

    SciTech Connect

    Jang, W.H.; Drelich, J.; Miller, J.D.

    1995-09-01

    Although surface chemistry fundamentals of semisoluble minerals have been studied by many researchers, detailed understanding of these systems is still incomplete. In situ Fourier transform infrared internal reflection spectroscopy (FT-IR/IRS) techniques have recently been used to successfully describe the adsorption of carboxylates at semisoluble mineral surfaces. The wetting characteristics of these adsorbed films, however, require further consideration. In this regard, the hydrophobicity and stability of transferred Langmuir-Blodgett (LB) monolayers of fatty acids at fluorite and calcite surfaces have been studied by contact angle measurements with water and diiodomethane. Generally, it was found that the transferred LB monolayers of fatty acids at a calcite surface are unstable whereas such monolayers transferred onto a fluorite surface are stable, as revealed from advancing and receding contact angle measurements. These results are believed to be due to incomplete reaction of the fatty acid monolayer at the calcite surface. In addition it was found that a closely packed well-ordered stearate monolayer similar to that of a transferred LB monolayer can be formed at fluorite surfaces by spontaneous adsorption and self-assembly from aqueous solutions. 41 refs., 13 figs., 1 tab.

  9. Simple solutions for relativistic generalizations of the Child-Langmuir law and the Langmuir-Blodgett law

    SciTech Connect

    Zhang Yongpeng; Liu Guozhi; Yang Zhanfeng; Shao Hao; Xiao Renzhen; Xing Qingzi; Zhong Huaqiang; Lin Yuzheng

    2009-04-15

    In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.

  10. Crossover from layering to island formation in Langmuir-Blodgett growth: Role of long-range intermolecular forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-04-01

    Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.

  11. Healing of Defects at the Interface of Nematic Liquid Crystals and Structured Langmuir-Blodgett Monolayers

    NASA Astrophysics Data System (ADS)

    Petit-Garrido, Núria; Trivedi, Rahul P.; Ignés-Mullol, Jordi; Claret, Josep; Lapointe, Clayton; Sagués, Francesc; Smalyukh, Ivan I.

    2011-10-01

    We use Langmuir-Blodgett molecular monolayers and nematic liquid crystals as model two- and three-dimensional orientationally ordered systems to study the stability and healing of topological defects at their contact interfaces. Integer-strength defects at the monolayer induce disclinations of similar strength in the nematic that, however, do not propagate deep into the bulk, but rather form single- or double-split arch-shaped loops pinned to the interface. This behavior is qualitatively independent of the far-field director orientation and involves either half-integer singular or twist-escaped unity-strength nonsingular nematic disclinations. These two defect configurations can be selected by varying sample preparation given their comparable free energy, consistently with direct probing by use of laser tweezers.

  12. Photoluminescence kinetics in CdS nanoclusters formed by the Langmuir-Blodgett technique

    SciTech Connect

    Zarubanov, A. A. Zhuravlev, K. S.

    2015-03-15

    The photoluminescence kinetics in CdS nanocrystals produced by the Langmuir-Blodgett technique is studied at a temperature of 5 K. The photoluminescence kinetics is described by the sum of two exponential functions, with characteristic times of about 30 and 160 ns. It is found that the fast and slow decay times become longer, as the nanocrystal size increases. Analysis of the data shows that the fast decay time is controlled by trion recombination in nanocrystals with defects, whereas the slow decay time is controlled by the annihilation of optically inactive excitons in nanocrystals without defects. It is established that, as the nanocrystal size is decreased, the fraction of imperfect nanocrystals is reduced because of an increase in the energy of defect formation.

  13. Growth of CdS nanocrystallites on graphene oxide Langmuir-Blodgett monolayers

    NASA Astrophysics Data System (ADS)

    Narayanam, Pavan K.; Singh, Gulbagh; Divakar Botcha, V.; Sutar, D. S.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S.

    2012-08-01

    Large area GO-Cd composite Langmuir-Blodgett monolayers were transferred onto Si substrate by introducing Cd2+ ions into the subphase. The changes in the behaviour of the Langmuir monolayer isotherm in the presence of Cd2+ ions are attributed to changes in the microstructure and density of the GO sheets on the subphase surface. The uptake of Cd onto the GO monolayers and the effect of subsequent sulphidation were investigated by AFM, FTIR, Raman, XPS and HRTEM techniques. The incorporation of Cd into the GO monolayers causes some overlapping of sheets and extensive formation of wrinkles. Sulphidation of the GO-Cd sheets results in the formation of uniformly distributed CdS nanocrystallites on the entire basal plane of the GO monolayers. The de-bonding of Cd with oxygen functional groups results in a reduction of the wrinkles. The GO sheets function primarily as a platform for the interaction of metal ions with oxygen functionalities and their structure and characteristic features are not affected by either uptake of Cd or formation of CdS.

  14. Growth of CdS nanocrystallites on graphene oxide Langmuir-Blodgett monolayers.

    PubMed

    Narayanam, Pavan K; Singh, Gulbagh; Botcha, V Divakar; Sutar, D S; Talwar, S S; Srinivasa, R S; Major, S S

    2012-08-17

    Large area GO-Cd composite Langmuir-Blodgett monolayers were transferred onto Si substrate by introducing Cd(2+) ions into the subphase. The changes in the behaviour of the Langmuir monolayer isotherm in the presence of Cd(2+) ions are attributed to changes in the microstructure and density of the GO sheets on the subphase surface. The uptake of Cd onto the GO monolayers and the effect of subsequent sulphidation were investigated by AFM, FTIR, Raman, XPS and HRTEM techniques. The incorporation of Cd into the GO monolayers causes some overlapping of sheets and extensive formation of wrinkles. Sulphidation of the GO-Cd sheets results in the formation of uniformly distributed CdS nanocrystallites on the entire basal plane of the GO monolayers. The de-bonding of Cd with oxygen functional groups results in a reduction of the wrinkles. The GO sheets function primarily as a platform for the interaction of metal ions with oxygen functionalities and their structure and characteristic features are not affected by either uptake of Cd or formation of CdS. PMID:22828441

  15. Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model

    NASA Astrophysics Data System (ADS)

    Köpf, Michael H.; Thiele, Uwe

    2014-11-01

    We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium by a lateral driving. This forms a simple model, e.g., for the deposition of stripe patterns of different phases of surfactant molecules through Langmuir-Blodgett transfer. Employing continuation techniques the bifurcation structure is numerically investigated using the non-dimensional transfer velocity as the main control parameter. It is found that the snaking structure of steady front states is intertwined with a large number of branches of time-periodic solutions that emerge from Hopf or period-doubling bifurcations and end in global bifurcations (sniper and homoclinic). Overall the bifurcation diagram has a harp-like appearance. This is complemented by a two-parameter study in non-dimensional transfer velocity and domain size (as a measure of the distance to the phase transition threshold) that elucidates through which local and global codimension 2 bifurcations the entire harp-like structure emerges.

  16. Self-Assembled Monolayers Get Their Final Finish via a Quasi-Langmuir-Blodgett Transfer.

    PubMed

    Meltzer, Christian; Dietrich, Hanno; Zahn, Dirk; Peukert, Wolfgang; Braunschweig, Björn

    2015-04-28

    The growth of self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA) molecules on α-Al2O3(0001) and subsequent dewetting of the SAMs were studied with a combination of in situ sum-frequency generation (SFG) and molecular dynamics (MD) simulations. Although SAM growth after deposition times >8 h reduces to nearly negligible values, the resultant ODPA SAMs in solution are still not in a well-ordered state with the alkyl chains in all-trans configurations. In fact, in situ SFG spectroscopy revealed a comparatively high concentration of gauche defects of the SAM in the ODPA 2-propanol solution even after a growth time of 16 h. Here, results of the MD simulations strongly suggest that defects can be caused by ODPA molecules which are not attached to the substrate but are incorporated into the SAM layer with the polar headgroup oriented into the 2-propanol solvent. This inverted adsorption geometry of additional ODPA molecules blocks adsorption sites and thus stabilizes the SAM without improving ordering to an extent that all molecules are in the all-trans configuration. While persistent in solution, the observed defects can be healed out when the SAMs are transferred from the solvent to a gas phase. During this process, a quasi-Langmuir-Blodgett transfer of molecules takes place which drives the SAM into a higher conformational state and significantly improves its quality. PMID:25835342

  17. Surface morphologies of Langmuir-Blodgett monolayers of PEOnPSn multiarm star copolymers.

    PubMed

    Gunawidjaja, Ray; Peleshanko, Sergiy; Genson, Kirsten L; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2006-07-01

    Star polymers composed of equal numbers of poly(ethylene oxide) (PEO) and polystyrene (PS) arms with variable lengths and a large (up to 38 total) number of arms, PEO(n)PS(n), have been examined for their ability to form domain nanostructures at the air-water and air-solid interfaces. All PEO(n)PS(n) star polymers formed stable Langmuir-Blodgett (LB) monolayers transferable to a solid substrate. A range of nanoscale surface morphologies have been observed, ranging from cylindrical to circular domains to bicontinuous structures as the weight fraction of the PEO block varied from 19% to 88% and n from 8 to 19. For the PS-rich stars and at elevated surface pressure, a two-dimensional supramolecular netlike nanostructure was formed. In contrast, in the PEO-rich star polymer with the highest PEO content, we observed peculiar dendritic superstructures caused by intramolecular segregation of nonspherical core-shell micellar structures. On the basis of Langmuir isotherms and observed monolayer morphologies, three different models of possible surface behavior of the star polymers at the interfaces were proposed. PMID:16800672

  18. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed. PMID:27218474

  19. 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science.

    PubMed

    Ariga, Katsuhiko; Yamauchi, Yusuke; Mori, Taizo; Hill, Jonathan P

    2013-12-01

    The Langmuir-Blodgett (LB) technique is known as an elegant method for fabrication of well-defined layered structures with molecular level precision. Since its discovery the LB method has made an indispensable contribution to surface science, physical chemistry, materials chemistry and nanotechnology. However, recent trends in research might suggest the decline of the LB method as alternate methods for film fabrication such as layer-by-layer (LbL) assembly have emerged. Is LB film technology obsolete? This review is presented in order to challenge this preposterous question. In this review, we summarize recent research on LB and related methods including (i) advanced design for LB films, (ii) LB film as a medium for supramolecular chemistry, (iii) LB technique for nanofabrication and (iv) LB involving advanced nanomaterials. Finally, a comparison between LB and LbL techniques is made. The latter reveals the crucial role played by LB techniques in basic surface science, current advanced material sciences and nanotechnologies. PMID:24302266

  20. Diffusion barrier characteristics of co monolayer prepared by Langmuir Blodgett technique

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Kumar, Mukesh; Rani, Sumita; Kumar, Dinesh

    2016-04-01

    Monolayers of Co over SiO2/Si substrate were deposited using Langmuir Blodgett (LB) technique. The diffusion barrier capability of Co layer was evaluated against copper diffusion. The structure of the deposited Co layer was analyzed using X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-ray Spectroscopy (EDS) and Atomic force microscopy (AFM) techniques. Thermal stability of Cu/SiO2/Si and Cu/Co/SiO2/Si test structures was studied and compared using X-ray diffraction (XRD), scanning electron microscope (SEM) and four probe techniques. The samples were annealed at different temperatures starting from 200 °C up to 700 °C in vacuum for 30 min. XRD results indicated that combination of Co/SiO2 worked as diffusion barrier up to 550 °C whereas SiO2 alone could work as barrier only up to 300 °C. Sheet resistance of these samples was measured as a function of annealing temperature which also supports XRD results. C-V curves of these structures under the influence of Biased Thermal Stress (BTS) were analyzed. BTS was applied at 2.5 MV cm-1 at 150 °C. Results showed that in the presence of Co barrier layer there was no shift in the C-V curve even after 90 min of BTS while in the absence of barrier there was a significant shift in the C-V curve even after 30 min of BTS. Further these test structures were examined for leakage current density (jL) at same BTS conditions and leakage current density (jL) was plotted against the BTS duration. It was found that the Cu/Co/SiO2/Si test structure could survive about one and half time more than the Cu/SiO2/Si test structure.

  1. Distinguishing individual vibrational fingerprints: single-molecule surface-enhanced resonance raman scattering from one-to-one binary mixtures in Langmuir-Blodgett monolayers.

    PubMed

    Goulet, Paul J G; Aroca, Ricardo F

    2007-04-01

    Here, it is demonstrated that similar chemical species within a multicomponent sample can be distinguished, down to the single-molecule level, by means of their surface-enhanced vibrational fingerprints. Surface-enhanced resonance Raman scattering spectra and 2D spatial intensity maps are recorded from thin Ag nanoparticle films coated with fatty acid Langmuir-Blodgett monolayers containing one-to-one binary mixtures, at varying concentrations, of two dye molecules of similar absorption and scattering cross section (n-pentyl-5-salicylimidoperylene and octadecylrhodamine B). The results reveal the change in the distribution of the two dyes within the monolayer, and the breakdown of ensemble spectral averaging, which occur as the single-molecule regime is approached. It is found that the unimolecular level is reached when 1-10 molecules of each dye occupy the 1-microm2 scattering areas probed by the laser. These signals are attributed to the rare spatial coincidence of isolated target analyte molecules and localized electromagnetic hot spots in the nanostructured metal film. The bianalyte nature of the samples provides strong corroborative support for the attribution of spectra to single molecules at high dilution, while the effect of domain formation/aggregation is found to be important at higher concentrations. PMID:17311464

  2. Angle-resolved X-ray photoelectron spectroscopy study of poly(vinylidene fluoride)/poly(N-dodecylacrylamide) Langmuir-Blodgett nanofilms

    NASA Astrophysics Data System (ADS)

    Zhu, Huie; Gao, Yu; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-03-01

    Our earlier research prepared ferroelectric poly(vinylidene fluoride) (PVDF) homopolymer monolayers at the air-water interface using amphiphilic poly(N-dodecylacrylamide) (pDDA) nanosheets with Langmuir-Blodgett (LB) technique. However, the miscibility of solvent for PVDF with the water sub-phase in the Langmuir trough makes the film composition unclear in spite of the feeding ratio of \\text{PVDF}:\\text{pDDA} (50:1). In this study, angle-resolved X-ray photoelectron spectroscopy (AR-XPS) was used to investigate the surface chemical composition and the depth profile of the PVDF/pDDA LB nanofilms. The X-ray photoelectron spectroscopy (XPS) spectra confirmed by the detection of fluorine atoms that PVDF molecules were deposited successfully onto the substrate. The constant chemical composition with increasing takeoff angle from 15 to 75° reflects a well-regular layer structure of the PVDF LB nanofilm. The mixing ratio of \\text{PVDF}:\\text{pDDA} is 33:1, which contributes 89.8 wt % PVDF and 10.2 wt % in the PVDF/pDDA LB nanofilms.

  3. Au/Cr-ZnO-Ni structured metal-insulator-metal diode fabrication using Langmuir-Blodgett technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2016-05-01

    The thin nanolayer film of ZnO was synthesized through Langmuir-Blodgett (LB) organic precursor film. The zinc stearate monolayer was formed at air-water interface using zinc acetate as a subphase. The zinc stearate monolayers were deposited on silicon (Si), glass, and gold (Au)/chromium (Cr) plated Silicon (Si) substrates using LB technique. Later, the zinc stearate multilayers LB films on various substrates were annealed at two different temperatures (300oC and 550oC) for the fabrication of zinc oxide (ZnO) nanolayer film. The zinc stearate monolayers as well zinc oxide (ZnO) nanolayer films were characterized using atomic force microscopy (AFM) and X-ray diffraction techniques. The X-ray diffraction measurement has shown the hexagonal wurtzite structure of the ZnO nanolayer on the substrate. The average surface roughness was estimated to be 1.076 nm using AFM technique. The metal-insulator-metal (MIM) diode structure was realized by sandwiching ZnO nanolayer film between thin layer of Gold (Au)/Chromium (Cr) and Nickel (Ni) on silicon substrates. The electron tunneling conduction mechanism is understood through the current-voltage (I-V) characteristics of MIM diode. The highest measured sensitivity magnitude of 20 in inverse of voltage (V-1) with rectification ratio of nearly 10 at +/-400 mV in MIM diode is an indicative of its potential application in infrared sensing applications. However, the thin film of ZnO synthesized using LB film as an insulating layer in metal-insulator-metal diode structure was studied for the first time.

  4. Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties.

    PubMed

    Akatsuka, Kosho; Haga, Masa-aki; Ebina, Yasuo; Osada, Minoru; Fukuda, Katsutoshi; Sasaki, Takayoshi

    2009-05-26

    Exfoliated unilamellar titania nanosheets of Ti(0.87)O(2) with a lateral size of 10-30 microm were deposited layer-by-layer onto various substrates by Langmuir-Blodgett procedure to produce a highly ordered lamellar nanofilms. The nanosheets dispersed in an aqueous suspension containing quaternary ammonium ions as a supporting electrolyte floated spontaneously at the air/liquid interface, and they were successfully transferred onto the substrate after surface compression. Neat tiling of the nanosheets could be realized at an optimized surface pressure. The film thus obtained was exposed to UV light to turn the substrate surface hydrophilic, which was helpful for stable repetition of monolayer deposition. Layer-by-layer growth was confirmed by UV-visible absorption spectra, which showed progressive enhancement of an absorption band due to the nanosheet. Cross-sectional transmission electron microscopy images visualized the ultrathin film homogeneously deposited on the substrate surface and a lamellar fringe of the layer-by-layer assembled nanosheets was clearly resolved at a higher magnification. X-ray diffraction data on the films showed sharp basal reflections up to the seventh order, and Williamson-Hall analysis of the pattern indicated that the film was coherent across the total thickness with respect to X-ray and that the lattice strain was extremely small. In addition, the first basal reflection was accompanied by small satellite peaks, which are accounted for by the Laue interference function. All these features clearly indicate the formation of a highly ordered lamellar nanostructure of the titania nanosheets comparable to artificial lattice films produced via modern vapor-phase deposition processes. The obtained films showed superior dielectric and insulating properties as a reflection of the highly organized film nanoarchitecture. PMID:19402657

  5. New effects in Langmuir and Langmuir-Blodgett monolayers from fluorescently labelled phospholipids and their possible use for water quality control

    NASA Astrophysics Data System (ADS)

    Ivanov, G. R.; Geshev, N. I.

    2016-02-01

    Secondary water contamination poses significant challenges to the sensitivity and selectivity of sensors used for its detection and monitoring. Currently only lab tests can detect these contaminants and by the time this happens the contaminated water has entered the city water supply system. Fluorescent chromophore NitroBenzoxaDiazole (NBD) is very suitable and had been successfully used in biosensor applications due to its high sensitivity to close proximity polarity of the medium. Over the years we have discovered 3 new effects in NBD- labelled phospholipids which can significantly improve the performance of biosensors. The phospholipid matrix provides flexible biocompatible environment for immobilization of selectively reacting enzymes, microorganisms, DNA, immunoagents, whole cells. Use of single layer (3.1 nm thickness) films at the air-water interface (Langmuir films) or deposited on solid support as Langmuir-Blodgett (LB) film gives fast response times for real time monitoring (no slow diffusion processes) and precise molecule ordering and orientation. The first new effect was fluorescence self-quenching in Langmuir and LB films. In the liquid phase films exhibit normal fluorescence. Upon transition to solid phase fluorescence intensity is almost completely self-quenched and fluorescence lifetimes in the nanosecond region decrease 2 times. This is easily measured. Usually large heavy metal atoms quench fluorescence. We observed the opposite new effect when LB film is deposited in the solid phase from a subphase containing heavy metals. The third new effect is the obtaining of nanosized cylinders with bilayer thickness, which remain stable at least for months, when LB monolayer is deposited in the phase coexistence region at thermodynamic equilibrium. This greatly increases reacting surface and sensitivity of possible sensors. Almost all possible optical experimental methods were used for this research. This includes polarized ATR FTIR and polarized UV

  6. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers--spectroscopic investigations.

    PubMed

    Bursa, B; Wróbel, D; Biadasz, A; Kędzierski, K; Lewandowska, K; Graja, A; Szybowicz, M; Durmuş, M

    2014-07-15

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate. PMID:24682066

  7. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers - Spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Bursa, B.; Wróbel, D.; Biadasz, A.; Kędzierski, K.; Lewandowska, K.; Graja, A.; Szybowicz, M.; Durmuş, M.

    2014-07-01

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate.

  8. Single molecular detection of a perylene dye dispersed in a Langmuir-Blodgett fatty acid monolayer using surface-enhanced resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R.

    2002-02-01

    The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per μm 2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per μm 2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 μm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to +200°C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.

  9. Charge storage phenomena and I-V characteristics observed in ultrathin polyimide Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Fukuda, Atsushi

    1992-04-01

    Au/PI/Al junctions were fabricated and the charge storage phenomena in polyimide (PI) layers were examined. The current-voltage (I-V) characteristics of the junctions were examined in connection with charge storage phenomena. It was found that numerous excess charges were injected into PI multilayers from electrodes by the application of biasing voltages. Therefore, the space charge field formed in as-deposited PI layers was distorted by the excess charges injected. It was also found that asymmetric I-V characteristics observed for Au/PI/Al junctions depended on the biasing voltages, because the space charge field formed in PI layers influenced the I-V characteristics.

  10. Characterization of Langmuir-Blodgett Organclay Films using X-ray Reflectivity and Atomic Fore Microscopy

    SciTech Connect

    Koo,J.; Park, S.; Satija, S.; Tikhonov, A.; Sokolov, J.; Rafailovich, M.; Koga, T.

    2008-01-01

    Monolayers of organoclay platelets were formed at the air/water interface using the Langmuir technique and were then investigated either by in situ or lifted onto Si wafers and studied ex situ, using X-ray reflectivity (XR) methods. The XR data showed that the surfactant molecules on the clay platelets formed a dense, self-assembled monolayer where the molecules were tilted at an angle of 35 {+-}6 from the normal to the dry clay surface. The surfactant layers only covered a fraction of the clay platelet surface area, where the fractional surface coverage for the three clays studied (C6A, C15A, and C20A) was found to be 0.90, 0.86, and 0.73, respectively. These values were significantly higher than those estimated from the cation exchange capacity (CEC) values. Rather than being uniformly distributed, the surfactant was clustered in patchy regions, indicating that the surface of the clay platelets had both polar and non-polar segments. This heterogeneity confirmed the hypothesis which was previously invoked to explain the distribution of the clay platelets in melt mixed homopolymer and polymer blend nanocomposites.

  11. Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate.

    PubMed Central

    Yang, J; Kleijn, J M

    1999-01-01

    The ordering in dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayers and bilayers on a semiconducting indium tin oxide (ITO) surface has been investigated at the equilibrium potential of the interface and at various externally applied potentials. Second- and fourth-rank order parameters of a diphenylhexatriene (DPH) containing phospholipid probe were derived from total internal reflection fluorescence measurements, and orientation distributions were calculated using the maximum-entropy method. Generally, bimodal orientation distributions were obtained, suggesting that only part of the probes is aligned with the DPPC molecules. The effect of applied potentials is small for DPPC layers on unmodified (hydrophilic) ITO; with decreasing potential the ordering changes slightly to more random distributions, possibly because of the onset of hydrogen evolution at the substrate surface. For monolayers on hydrophobized ITO, where the phospholipids are initially with their tails directed toward the surface, the changes are more significant. At the highest positive potential applied, the derived order parameters indicate that nearly all probes are flat on the surface. This can be understood as a result of enhanced competition between headgroups and tails for access to the surface as it becomes more polarized. On unmodified ITO the electrochemistry of Fe(CN)6(3-/4-) and Ru(bipyridyl)3(2+/3+) is hardly hindered by the presence of DPPC monolayers or bilayers. On hydrophobized ITO a DPPC monolayer enhances the redox reactions. PMID:9876144

  12. A Raft-Associated Species of Phosphatidylethanolamine Interacts with Cholesterol Comparably to Sphingomyelin. A Langmuir-Blodgett Monolayer Study

    PubMed Central

    Grzybek, Michal; Kubiak, Jakub; Łach, Agnieszka; Przybyło, Magdalena; Sikorski, Aleksander F.

    2009-01-01

    Background Specific interactions between sphingomyelin (SM) and cholesterol (Ch) are commonly believed to play a key role in the formation of rafts in the biological membranes. A weakness of this model is the implication that these microdomains are confined to the outer bilayer leaflet. The cytoplasmic leaflet, which contains the bulk of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI), is thought also to harbour half of the membrane cholesterol. Moreover, SLPE (1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidyl-ethanolamine) has recently been shown to be enriched in isolated detergent-resistant membranes (DRM), and this enrichment was independent of the method of isolation of DRM. Methodology/Principal Findings Here we present quantitative evidence coming from Langmuir-Blodgett monolayer experiments that SLPE forms complex with Ch similar to that between SM and Ch. The energies of these interactions as calculated form the monolayer studies are highly negative. FRAP analysis showed that NBD-Ch recovery was similar in liposomes composed of DOPC/Ch SM or SLPE but not DPPE, providing further evidence that SLPE may form an lo phase in the presence of high Ch concentration. Experiments on the solubility of DOPC liposomes containing DPPE/Ch (1∶1), SM/Ch (1∶1) or SLPE/Ch (1∶1) showed the presence of Triton X-100 insoluble floating fraction (TIFF) in the case of SM/Ch or SLPE/Ch but not in DPPE/Ch containing liposomes. Quantitative determination of particular lipid species in the TIFF fraction confirms the conclusion that SLPE (or similar PE species) could be an important constituent of the inner leaflet raft. Conclusion Such interactions suggest a possible existence of inner-leaflet nanoscale assemblies composed of cholesterol complexes with SLPE or similar unsaturated PE species. PMID:19330037

  13. Preparation of NiO Monolayer by Langmuir-Blodgett Technique and Its Characterization as Diffusion Barrier for Copper Metallization

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Kumar, Mukesh; Rani, Sumita; Kumar, Dinesh; Tripathi, C. C.

    2015-07-01

    Langmuir-Blodgett (LB) technique was used to prepare monolayers of NiO over SiO2/Si substrate. Diffusion barrier capability of NiO layer against the diffusion of copper into the dielectric was evaluated. Deposition and structure of the NiO layer were analyzed using X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy (AFM) techniques. Thermal stability of Cu/SiO2/Si and Cu/NiO/SiO2/Si test structures was compared using X-ray diffraction (XRD), scanning electron microscope (SEM), and four probe techniques. The samples were annealed at different temperatures starting from 473 K up to 873 K (200 °C up to 600 °C) in vacuum for 30 minutes each. XRD and SEM results indicated that combination of NiO/SiO2 worked as diffusion barrier up to 773 K (500 °C), whereas SiO2 alone could work as barrier only up to 573 K (300 °C). Sheet resistance of these samples was measured as a function of annealing temperature which also supports XRD results. Capacitance-voltage ( C- V) curves of these structures under the influence of biased thermal stress (BTS) were analyzed. BTS was applied at 2.5 MV cm-1 at 423 K (150 °C). Results showed that in the presence of NiO barrier layer, there was no shift in the C- V curve even after 45 minutes of BTS. Little shift was observed after 60 minutes of BTS while in the absence of barrier there was a significant shift in the C- V curve even after 30 minutes of BTS. For the structure with NiO barrier, the threshold voltage ( V t) was almost unchanged up to 60 minutes under BTS while Vt of structure without barrier changed significantly even after 15 minutes of stress. Further, these test structures were examined for leakage current density ( j L) at same BTS conditions. It was found that the Cu/NiO/SiO2/Si test structure could survive about one and half time more than the Cu/SiO2/Si test structure.

  14. Reversible response to NO of copper phthalocyanine-based sensor at low temperature

    SciTech Connect

    Emelyanov, Yu.L.; Khatko, V.V.; Tomchenko, A.A.

    1996-12-31

    Recently, it have been reported that the NO{sub x} adsorption resulted in marked in the semiconducting properties of copper tetra-tert-butyl phthalocyanine Langmuir-Blodgett films (CuTTBPc LB films). However, the recovery time of these chemiresistors after NO{sub x} exposure was very long at room temperature. Because of this, the heating up to 150{degrees}C was needed for reasons of a reversibility. In the present paper, the authors report on the development of CuTTBPc-based sensor reversibly operating at low temperature (<50{degrees}C).

  15. Immunosensor systems with the Langmuir-film-based fluorescence detection

    SciTech Connect

    Chudinova, G K; Nagovitsyn, I A; Savranskii, V V; Karpov, R E

    2003-09-30

    A method is developed for detecting protein antigens for fluorescent immunoassay using a model system based on the technique for preparation of Langmuir films. Fluorescein isothiocyanate and donor-acceptor energy-transfer pairs of markers (the Yb complex of tetraphenyl porphyrin - benzoyl trifluoroacetoneisothiocyanate and derivatives of tetra(carboxyphenyl) porphyrin - cyanine dye containing a five-membered polyene chain), which were nor studied earlier, were used as markers for detecting the binding of an antigen on the surface of Langmuir films of antibodies. Fluorescence was detected in the near-IR region (for the first pair) and in the visible spectral range (for the second pair). To reduce the nonspecific sorption of a protein (antigen), a method was proposed for the preparation of a nonpolar surface by applying an even number of layers of stearic acid as a substrate for the Langmuir - Blodgett film. A high sensitivity of model systems to a protein antigen in solution was achieved ({approx}10{sup -11} M), the assay time being 6 - 8 min. The model system with the first donor - acceptor pair was tested in analysis of the blood plasma. The fluorescence of the Dy{sup 3+}, Tm{sup 3+}, and Yb{sup 3+} complexes of tetraphenyl porphyrin sensitised by diketonate complexes of lanthanides was studied for the first time and the enhancement of the IR fluorescence of these complexes in a Langmuir film was demonstrated. (papers devoted to the memory of academician a m prokhorov)

  16. Thermal Response of Langmuir-Blodgett Films of Dipalmitoylphosphatidylcholine Studied by Atomic Force Microscopy and Force Spectroscopy

    PubMed Central

    Oncins, Gerard; Picas, Laura; Hernández-Borrell, Jordi; Garcia-Manyes, Sergi; Sanz, Fausto

    2007-01-01

    The topographic evolution of supported dipalmitoylphosphatidylcholine (DPPC) monolayers with temperature has been followed by atomic force microscopy in liquid environment, revealing the presence of only one phase transition event at ∼46°C. This finding is a direct experimental proof that the two phase transitions observed in the corresponding bilayers correspond to the individual phase transition of the two leaflets composing the bilayer. The transition temperature and its dependency on the measuring medium (liquid saline solution or air) is discussed in terms of changes in van der Waals, hydration, and hydrophobic/hydrophilic interactions, and it is directly compared with the transition temperatures observed in the related bilayers under the same experimental conditions. Force spectroscopy allows us to probe the nanomechanical properties of such monolayers as a function of temperature. These measurements show that the force needed to puncture the monolayers is highly dependent on the temperature and on the phospholipid phase, ranging from 120 ± 4 pN at room temperature (liquid condensed phase) to 49 ± 2 pN at 65°C (liquid expanded phase), which represents a two orders-of-magnitude decrease respective to the forces needed to puncture DPPC bilayers. The topographic study of the monolayers in air around the transition temperature revealed the presence of boundary domains in the monolayer surface forming 120° angles between them, thus suggesting that the cooling process from the liquid-expanded to the liquid-condensed phase follows a nucleation and growth mechanism. PMID:17586574

  17. Development of a Taste Sensor Based on a Carbon Nanotube-Polymer Composite Material

    NASA Astrophysics Data System (ADS)

    Hirata, Takamichi; Takagi, Keisuke; Akiya, Masahiro

    2007-04-01

    A taste sensor consisting of a back-gate type field effect transistor (FET) chip based on carbon nanotube compound materials [poly(ethylene glycol) (PEG)-grafted single-walled carbon nanotubes (PEG-SWNTs)] was developed. The results of impedance measurements for five tastes (sourness, saltiness, bitterness, sweetness, and umami), are shown much difference for specific tastes which are difficult to identify by using Langmuir-Blodgett (LB) film. Moreover, the sensor is able to distinguish most of the experimental taste materials with a short response time (˜60 s).

  18. Unexpected luminescent and quenching properties of metalloporphyrins in Langmuir-Blodgett structures: application to relative air-humidity sensing

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitry B.; Ponomarev, Gely V.; Chernov, Sergey F.; Kurochkin, Ilya N.

    1993-05-01

    Monomolecular thin solid films containing water-soluble Pt- and Pd-porphyrins were prepared and transferred onto solid supports. Surface active charged polymer on the basis of alkylated polyethyleneimine was used to improve extraction of the dye from aqueous solution to the interface. The solid-state materials obtained which showed intense long-decay luminescence were studied by optical methods with emphasis to luminescence quenching and lifetime measurements. The results were applied to quenched-luminescence lifetime-based sensing of relative air humidity. A corresponding fiber-optic prototype device was developed.

  19. High performance NH 3 gas sensor based on ordered conducting polymer ultrathin film

    NASA Astrophysics Data System (ADS)

    Xu, Jianhua; Jiang, Yadong; Yu, Junsheng; Yang, Yajie; Ying, Zhihua

    2008-02-01

    Conducting polymer ultrathin film shows promising future for gas sensor application due to their high conductivity and excellent doping/dedoping performance. In this work, based on an modified Langmuir-Blodgett film method, ultrathin conducting poly(3,4-ethylene dioxythiophene) (PEDOT) film was fabricated. The PEDOT ultathin film was characterized by UV-Vis absorption spectrum, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed small PEDOT grains distributed in polymer LB films after the polymerization of monomer. This ultrathin film exhibited an electrical conductivity about 1.2 Scm -1, and the conductivity increased and decreased to 16.8 and 0.03 Scm -1 after doping and dedoping treatment. The interaction or response of films coated QCM to NH 3 have been tested and it has been found that sensitivity of the composite films on QCM showed better sensitivity than bulk material. To the same analyte concentration, it increased with the increasing number of LB layers coated onto QCMS before 80 layers, and then a decrease of sensitivity of QCM was observed after the layer number exceeded 80 layers. The interaction mechanisms between the ultrathin film and analyte vapor were also included.

  20. The behavior of the adsorption of cytochrome C on lipid monolayers: A study by the Langmuir-Blodgett technique and theoretical analysis.

    PubMed

    Li, Junhua; Sun, Runguang; Hao, Changchun; He, Guangxiao; Zhang, Lei; Wang, Juan

    2015-10-01

    Cytochrome c (Cyt c) is an essential component of the inner mitochondrial respiratory chain because of its function of transferring electrons. The feature is closely related to the interaction between Cyt c and membrane lipids. We used Langmuir-Blodgett monolayer technique combined with AFM to study the interaction of Cyt c with lipid monolayers at air-buffer interface. In our work, by comparing the mixed Cyt c-anionic (DPPS) and Cyt c-zwitterionic (DPPC/DPPE) monolayers, the adsorption capacity of Cyt c on lipid monolayers is DPPS>DPPE>DPPC, which is attributed to their different headgroup structures. π-A isothermal data show that Cyt c (v=2.5 μL) molecules are at maximum adsorption quantity on lipid monolayer. Moreover, Cyt c molecules would form aggregations and drag some lipids with them into subphase if the protein exceeds the maximum adsorption quantity. π-T curve indicates that it takes more time for Cyt c molecular conformation to rearrange on DPPE monolayer than on DPPC. The compressibility study reveals that the adsorption or intermolecular aggregation of Cyt c molecules on lipid monolayer will change the membrane fluidization. In order to quantitatively estimate Cyt c molecular adsorption properties on lipid monolayers, we fit the experimental isotherm with a simple surface state equation. A theoretical model is also introduced to analyze the liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC monolayer. The results of theoretical analysis are in good agreement with the experiment. PMID:26071844

  1. A new approach to the deposition of nanostructured biocatalytic films

    NASA Astrophysics Data System (ADS)

    Troitsky, V. I.; Berzina, T. S.; Pastorino, L.; Bernasconi, E.; Nicolini, C.

    2003-06-01

    In the present work, monolayer engineering was used to fabricate biocatalytic nanostructured thin films based on the enzyme penicillin G acylase. The biocatalytic films with enhanced characteristics were produced by the deposition of alternate-layer assemblies with a predetermined structure using a combination of Langmuir-Blodgett and adsorption techniques. The value of enzyme activity and the level of protein detachment were measured in dependence on the variation of film composition and on the sequence of layer alternation. As a result, highly active and stable structures were found, which could be promising candidates for practical applications. The method of modification of the deposition method to provide continuous film formation on large-area supports is discussed.

  2. Synchrotron FTIR microscopy of Langmuir-Blodgett monolayers and polyelectrolyte multilayers at the solid-solid interface.

    PubMed

    Beattie, David A; Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Harmer, Sarah L; Thierry, Benjamin; Puskar, Ljiljana; Tobin, Mark

    2012-01-24

    Synchrotron FTIR microscopy has been used to probe the structure of model boundary lubricant layers confined at the solid-solid interface. The combination of high brightness of the IR source and a novel contact geometry that uses a hemispherical internal reflection element as the means for light delivery has enabled the detection of <2.5 nm thin monolayer lubricant layers in the solid-solid contact, in addition to allowing for spectral acquisition from specific regions of the contact. Spectra of hydration water from within a confined polyelectrolyte multilayer film have also been acquired, highlighting the altered hydrogen bonding environment within the polymer layer. PMID:22225512

  3. Thermodynamic aspects of cholesterol effect on properties of phospholipid monolayers: Langmuir and Langmuir-Blodgett monolayer study.

    PubMed

    Jurak, Małgorzata

    2013-04-01

    Cholesterol is an important component of lipid rafts in mammalian cell membranes. Studies of phospholipid monolayers containing cholesterol provide insight into the role of cholesterol in regulating the properties of animal cells, raft stability, and organization. In this contribution, a study of the characteristics of binary Langmuir monolayers consisting of phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG), and cholesterol (Chol), was conducted on the basis of the surface pressure-area per molecule (π-A) isotherms. Analysis of the results obtained provided information on the mean molecular area, the excess Gibbs energy of mixing, and condensation in the monolayer. The mixed monolayers were also deposited onto the mica plates and investigated by the contact angle measurements of water, formamide, and diiodomethane. The contact angles allowed calculating surface free energy of the films from the van Oss et al. approach. It was found that cholesterol determines the molecular packing and ordering of the monolayers closely connected with the kind of phospholipid. This is reflected in the values of surface free energy of the model membranes. From the thermodynamic analysis of phospholipid/cholesterol/liquid interactions, one may draw conclusions about the most favorable composition (stoichiometry) of the binary film which is especially important in view of the lipid rafts formation. PMID:23470025

  4. Phase-modulated beams technique for thin photorefractive films characterization

    NASA Astrophysics Data System (ADS)

    Barmenkov, Yu. O.; Kir'yanov, A. V.; Starodumov, A. N.; Kozhevnikov, N. M.; Lemmetyinen, H.

    2000-04-01

    The phase-modulated beams technique is developed for nonlinear thin photorefractive films characterization. In the Raman-Nath diffraction approximation, the formulas are deduced, allowing us to measure the amplitude of phase grating recorded in a film and its nonlinear refractive index n2. The method is applied for studying Langmuir-Blodgett multilayer thin (˜0.6 μm) films of Bacteriorhodopsin at wavelength 633 nm.

  5. A Taste Sensor Based on a Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Takagi, Keisuke; Hirata, Takamichi; Akiya, Masahiro

    A taste sensor consisting of a back-gate type field effect transistor(FET) chip based on carbon nanotube compound materials[poly(ethylene glycol)(PEG)-grafted single-walled carbon nanotubes(PEG-SWNTs)] was developed. The results of impedance measurements for five tastes (sourness, saltiness, bitterness, sweetness, and umami), are shown much difference for specific tastes which are difficult to identify by using Langmuir-Blodgett(LB)film. Moreover, the sensor is able to distinguish most of the experimental taste materials with a short response time. Characteristics of the sensor involve in taste material concentration , initial impedance and frequency characteristics. A clear difference is observed over five basic taste materials.

  6. Photoluminescence quenching in a polymer thin-film field-effect luministor

    NASA Astrophysics Data System (ADS)

    Dyreklev, P.; Inganas, O.; Paloheimo, J.; Stubb, H.

    1992-03-01

    Photoluminescence quenching is observed in thin films of poly(3-hexylthiophene) and Langmuir-Blodgett films of poly(3-hexylthiophene)/arachidic acid due to the injection of positive charges in the polymer. Charge injection was made in a polymer field-effect transistor. The quenching is discussed in terms of polarons/bipolarons acting as recombination centra for the excitons and suppress the photoluminescence. The inverse phenomenon, luminescence enhancement by depletion of charges, is also achieved.

  7. Study of polymorphism of ZnPc LB thin film on annealing

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, Mukul; Gupta, P. S.

    2016-05-01

    The average molecular orientation in the as-deposited Zinc Phthalocyanine (ZnPc) Langmuir-Blodgett (LB) film has been obtained to be 47° w.r.t to substrate surface from polarized Raman spectroscopy analysis. Absorption spectroscopy confirms the phase transition of ZnPc thin film from α-phase to β-phase on annealinghowever, such confirmation could not get established from Raman spectroscopy.

  8. Fabrication Of Nano-Silver Thin Films Using Self Assembly And Its Interaction With Proteins

    SciTech Connect

    Verma, Gunjan; Choudhury, Sipra; Hassan, P. A.

    2010-12-01

    The silver nanoparticle thin films were prepared with an aim to use them for sensing of biomolecules. The monolayers of arachidic acid were deposited on glass plates by Langmuir Blodgett (LB) technique and silver nanoparticles thin films were deposited within the arachidic acid films. Small angle XRD studies confirm the formation of ordered array of nanoparticles. These thin films were treated with a model protein, bovine serum albumin (BSA a natural protein). From the optical absorption spectra a shift in the intensity as well as lambda max ({lambda}max) could be observed when silver thin films were treated with BSA.

  9. Composite films of poly(allylamine)-capped polydopamine nanoparticles and P8W48 polyoxometalates with electroactive properties.

    PubMed

    Ball, Vincent; Haider, Ali; Kortz, Ulrich

    2016-11-01

    Polyoxometalates (POMs) are often used to functionalize surfaces with photochromic or electroactive compounds. Among the common deposition methods, besides the Langmuir-Blodgett deposition, the layer-by-layer (LBL) deposition method has become more and more popular due to its facility and versatility combined with the polyanionic character of POMs. The LBL deposition of POMs and oppositely charged nanoparticles is however poorly described in the literature. Using polydopamine nanoparticles (PDA) produced in the presence of poly(allylamine) and displaying a hydrodynamic diameter of 25nm, we show that LBL films containing the large, cyclic P8W48 polyanion and the PDA@PAH nanoparticles display reduction currents which are proportional to the number of deposition steps and hence to the film thickness. In addition the obtained films display not only the electrochemical properties of the POM but also that of PDA nanoparticles. Hence we demonstrate the feasibility to build up films based on particles only with the electrochemical behavior of each kind of particles being conserved. PMID:27474813

  10. Self-assembly of ferromagnetic organic-inorganic perovskite-like films.

    PubMed

    Akhtar, Naureen; Polyakov, Alexey O; Aqeel, Aisha; Gordiichuk, Pavlo; Blake, Graeme R; Baas, Jacob; Amenitsch, Heinz; Herrmann, Andreas; Rudolf, Petra; Palstra, Thomas T M

    2014-12-10

    Perovskite-based organic-inorganic hybrids hold great potential as active layers in electronics or optoelectronics or as components of biosensors. However, many of these applications require thin films grown with good control over structure and thickness--a major challenge that needs to be addressed. The work presented here is an effort towards this goal and concerns the layer-by-layer deposition at ambient conditions of ferromagnetic organic-inorganic hybrids consisting of alternating CuCl4-octahedra and organic layers. The Langmuir-Blodgett technique used to assemble these structures provides intrinsic control over the molecular organization and film thickness down to the molecular level. Magnetic characterization reveals that the coercive field for these thin films is larger than that for solution-grown layered bulk crystals. The strategy presented here suggests a promising cost effective route to facilitate the excellently controlled growth of sophisticated materials on a wide variety of substrates that have properties relevant for the high density storage media and spintronic devices. PMID:25059565

  11. Self-assembly of rigid macromolecules to create ordered thin films

    SciTech Connect

    Enriquez, E.P.; Samulski, E.T.

    1993-12-31

    Poly({gamma}-benzyl-L-glutamate) (PBLG) derivatized at its N-terminus with lipoic acid, a disulfide-containing moiety, self-assembles on gold from helicogenic solvents to give a thin film with the polypetide {alpha}-helices orientation distribution different from the planar orientation in the unlabeled, physisorbed PBLG films (control) and Langmuir-Blodgett monolayers. These films were studied by angle-dependent XPS, reflection-absorption FTIR spectroscopy, ellipsometry, and contact angle measurements. The IR dichroic properties of the amide vibrational frequencies, in particular, were used to infer the orientational distribution of the helices in the self-assembled film.

  12. Gas sensitivity measurements on NO{sub 2} sensors based on copper(II) tetrakis(n-butylaminocarbonyl)phthalocyanine LB films

    SciTech Connect

    Capone, S.; Rella, R.; Siciliano, P.; Mongelli, S.; Valli, L.

    1999-03-02

    The NO{sub 2} gas-sensing characteristics of chemiresistors in the form of multilayered Langmuir-Blodgett films of a symmetrically substituted phthalocyanine, containing on the periphery four amidic groups -CONH-, have been studied. Floating layers were spread onto the water surface from a chloroform solution and were transferred onto both hydrophilic and hydrophobic quartz substrates using the vertical lifting method. Response and recovery times have been measured for different working temperatures at a fixed NO{sub 2} concentration. Dynamic response characteristics of the electrical conductance of the LB films to different NO{sub 2} concentrations, carried out in dry air, have shown a high sensitivity to concentrations of nitrogen dioxide smaller than 20 ppm at room temperature. All measurements have been carried out using coplanar configurations of the devices.

  13. Temperature dependence of electronic transport property in ferroelectric polymer films

    NASA Astrophysics Data System (ADS)

    Zhao, X. L.; Wang, J. L.; Tian, B. B.; Liu, B. L.; Zou, Y. H.; Wang, X. D.; Sun, S.; Sun, J. L.; Meng, X. J.; Chu, J. H.

    2014-10-01

    The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir-Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel-Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  14. Surface excitons on a ZnO (000-1) thin film

    SciTech Connect

    Kuehn, S. Friede, S.; Elsaesser, T.; Sadofev, S.; Blumstengel, S.; Henneberger, F.

    2013-11-04

    Elementary excitations at the polar (000-1) surface of a 20 nm pseudomorphically grown ZnO thin film are examined by steady state and time-resolved photoluminescence spectroscopy at low temperature. We control the density of emission centers through the deposition of prototypical organic molecules with a carboxylic acid anchor group by the Langmuir-Blodgett technique. Knowledge of the precise film thickness, defect concentrations and number density of deposited molecules leads us to associate the surface exciton emission to defect-related localization centers that are generated through a photochemical process.

  15. How does spacer length of imidazolium gemini surfactants control the fabrication of 2D-Langmuir films of silver-nanoparticles at the air-water interface?

    PubMed

    Datta, Sougata; Biswas, Joydeep; Bhattacharya, Santanu

    2014-09-15

    A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as [Im-n-Im], 2Br(-) (n=2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units [-(CH2)n-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units [-(CH2)n-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. PMID:24998058

  16. Characteristic Fragmentation of Polysiloxane Monolayer Films by Bombardment with Monatomic and Polyatomic Primary Ions in TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Moon, Hye Kyoung; Wells, David D.; Gardella, Joseph A.

    2012-01-01

    This study reports the characteristic fragmentation patterns from two polysiloxane polymers that form ordered overlayer on silver substrates. Results are compared for the bombardment of various monatomic and polyatomic projectiles of Cs+, C{60/+} (10 keV), Bi{1/+}, and Bi{3/+} (25 keV) in the high mass range time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra. Results are reported from sub-monolayer (solution cast) coverages of poly(dimethylsiloxane)s with the number average molecular weights (Mn) of 2200 and 6140 Da, respectively, and Langmuir-Blodgett monolayers of poly(methylphenylsiloxane) with molecular weights (MW) from 600 and 1000 Da. For each film, Bi projectiles resulted in the emission of positive silver cluster ions from the substrate under the polymer overlayer and peaks corresponding to silver cluster ions with larger mass were observed by impact of polyatomic 25 keV Bi{3/+} projectiles. In addition, depending on the change of energy of Bi{3/+}, a different pattern of fragments was observed. With Cs+ and C{60/+} impact, however, the emission of silver cluster ions was not detected. In the case of C{60/+} impact for PDMS-6140, peaks corresponding to silver-cationized intact oligomers were not observed. In this paper, these results are explained by the possible bombardment mechanism for each projectile, based on its mass, energy, and split trajectories of the component atoms under the polyatomic impact.

  17. Electrocatalytic (Bio)Nanostructures Based on Polymer-Grafted Platinum Nanoparticles for Analytical Purpose.

    PubMed

    Gal, François; Challier, Lylian; Cousin, Fabrice; Perez, Henri; Noel, Vincent; Carrot, Geraldine

    2016-06-15

    Functionalized platinum nanoparticles (PtNPs) possess electrocatalytic properties toward H2O2 oxidation, which are of great interest for the construction of electrochemical oxidoreductase-based sensors. In this context, we have shown that polymer-grafted PtNPs could efficiently be used as building bricks for electroactive structures. In the present work, we prepared different 2D-nanostructures based on these elementary bricks, followed by the subsequent grafting of enzymes. The aim was to provide well-defined architectures to establish a correlation between their electrocatalytic properties and the arrangement of building bricks. Two different nanostructures have been elaborated via the smart combination of surface initiated-atom transfer radical polymerization (SI-ATRP), functionalized PtNPs (Br-PtNPs) and Langmuir-Blodgett (LB) technique. The first nanostructure (A) has been elaborated from LB films of poly(methacrylic acid)-grafted PtNPs (PMAA-PtNPs). The second nanostructure (B) consisted in the elaboration of polymer brushes (PMAA brushes) from Br-PtNPs LB films. In both systems, grafting of the glucose oxidase (GOx) has been performed directly to nanostructures, via peptide bonding. Structural features of nanostructures have been carefully characterized (compression isotherms, neutron reflectivity, and profilometry) and correlated to their electrocatalytic properties toward H2O2 oxidation or glucose sensing. PMID:27192083

  18. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines.

    PubMed

    Medina-Plaza, C; Furini, L N; Constantino, C J L; de Saja, J A; Rodri Guez-Mendez, M L

    2014-12-01

    A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir-Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc2) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by π-A isotherms, BAM, UV-vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc2:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir-Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc2 and SAuNPs inserted in the films and limits of detection in the range of 10(-7)molL(-1) were attained. PMID:25440670

  19. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    PubMed

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days. PMID:25014167

  20. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    NASA Astrophysics Data System (ADS)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  1. Solution-Based Fabrication of Perovskite Multilayers and Superlattices Using Nanosheet Process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Wen; Osada, Minoru; Akatsuka, Kosho; Ebina, Yasuo; Ozawa, Tadashi C.; Sasaki, Takayoshi

    2011-09-01

    We report a solution-based fabrication of perovskite multilayers and superlattices using perovskite nanosheets. Perovskite nanosheets (LaNb2O7, Ca2Nb3O10, and Sr2Nb3O10) were prepared by delaminating layered perovskites. A layer-by-layer approach using Langmuir-Blodgett deposition was effective for fabricating high-quality nanofilms of perovskite nanosheets on various substrates, such as quartz glass, Si, and SrRuO3. Structural characterizations by X-ray diffraction, transmission electron microscopy, and hard X-ray photoelectron spectroscopy revealed that these perovskite nanofilms are composed of a well-ordered lamellar structure with an atomically sharp interface. The multilayer films exhibited a stable dielectric response inherent to the perovskite nanosheet. We also found that the superlattices of (LaNb2O7/Ca2Nb3O10)5 and (Sr2Nb3O10/Ca2Nb3O10)5 possess strong interface coupling, which gives rise to enhanced dielectric constant.

  2. Molecular-based electronically switchable tunnel junction devices.

    PubMed

    Collier, C P; Jeppesen, J O; Luo, Y; Perkins, J; Wong, E W; Heath, J R; Stoddart, J F

    2001-12-19

    Solid-state tunnel junction devices were fabricated from Langmuir Blodgett molecular monolayers of a bistable [2]catenane, a bistable [2]pseudorotaxane, and a single-station [2]rotaxane. All devices exhibited a (noncapacitive) hysteretic current-voltage response that switched the device between high- and low-conductivity states, although control devices exhibited no such response. Correlations between the structure and solution-phase dynamics of the molecular and supramolecular systems, the crystallographic domain structure of the monolayer film, and the room-temperature device performance characteristics are reported. PMID:11741428

  3. Visible Absorption Properties of Retinoic Acid Controlled on Hydrogenated Amorphous Silicon Thin Film

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2008-02-01

    Langmuir-Blodgett (LB) films of retinoic acid and LB films of retinoic acid mixed with a peptide that contains an alanine-lysine-valine (AKV) amino acid sequence deposited on a hydrogenated amorphous silicon (a-Si:H) film prepared by electron cyclotron resonance (ECR) plasma sputtering were fabricated, and their light absorption spectrums were compared. A specific visible light absorption at approximately 500 nm occurred in a film that had a film thickness of more than 80 nm and a hydrogen concentration of more than 20% in the sputtering process gas. Mixing the AKV sequence peptide with retinoic acid caused a 6 nm blueshift, from 363 to 357 nm, of the absorption maximum of the composite LB film on a SiO2 substrate. Using the same peptide, a large 30 nm blueshift, from 500 to 470 nm, was induced in the composite LB film on the a-Si:H film.

  4. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes.

    PubMed

    Stevenson, Kelly; Miyashita, Naoko; Smieja, Joanne; Mazur, Ursula

    2003-01-01

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu)(8), (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu)(8), (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu)(8) and nCuPc(OBu)(8) posses physical and chemical properties favorable for molecular electronic device application. PMID:12801680

  5. The influence of the preparation conditions on structure and optical properties of solid films of graphene oxide

    NASA Astrophysics Data System (ADS)

    Seliverstova, E.; Ibrayev, N.; Dzhanabekova, R.; Gladkova, V.

    2016-02-01

    In this study, we investigated the physico-chemical properties of graphene oxide monolayers at the interface water-air. Monolayers were formed by the spreading of dispersion of graphene oxide in acetone and THF. It was found than graphene monolayers are in the “liquid” state on the surface of subphase. Monolayers were transferred onto solid substrates according to Langmuir-Blodgett (LB) method. SEM images show that the films have an island structure. The films obtained from acetone solutions are more uniform, which makes them more promising in terms of their use as conductive coatings. Absorption spectrum of graphene LB films exhibits a broad band in the ultraviolet and visible region of the spectrum. The optical density of the film obtained from acetone solution is greater than the optical density of the film prepared from THF. In the visible region of the spectrum both films have high transparency.

  6. Zinc Oxide LB Films with Improved Antireflective, Photoactive and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Naszályi Nagy, Lívia; Ábrahám, Nóra; Kovács, Attila L.; van der Lee, Arie; Rouessac, Vincent; Cot, Didier; Ayral, André; Hórvölgyi, Z.

    Multifunctional Langmuir-Blodgett films were prepared using sol-gel derived ZnO and silica nanoparticles synthesized by the procedure of Seelig et al. [1] and Stöber et al. [2], respectively. High inherent porosity was observed for ZnO particles (30-40%) by pycnometry, scanning angle reflectometry, N2 adsorption-desorption and ellipsometric porosimetry methods. Water contact angle of ZnO nanoparticles was determined from the non-dissipative part of the obtained surface pressure-surface area isotherms, and by scanning angle reflectometry measurements in a Wilhelmy film balance. Antireflective and photocatalytically active coatings of ZnO particles were deposited on glass, conductive glass and silicon substrates. The antireflectivity of ZnO LB films was improved by the integration of silica nanoparticles in the LB film. The photocatalytic activity and the mechanical stability of the samples were enhanced by means of surface modification with 3-methacryloxypropyl(trimethoxy)silane.

  7. Magneto-optical investigations of molecular nanomagnet monolayers.

    PubMed

    Rozbořil, J; Rechkemmer, Y; Bloos, D; Münz, F; Wang, C N; Neugebauer, P; Čechal, J; Novák, J; van Slageren, J

    2016-05-01

    We report field-dependent magnetization measurements on monolayers of [Dy(Pc)2] on quartz, prepared by the Langmuir-Blodgett technique. The films are thoroughly characterized by means of X-ray reflectivity and atomic force microscopy. The magnetisation of the sample is measured through the magnetic circular dichroism of a ligand-based electronic transition. PMID:27080152

  8. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography.

    PubMed

    Gwinner, Michael Christian; Koroknay, Elisabeth; Fu, Liwei; Patoka, Piotr; Kandulski, Witold; Giersig, Michael; Giessen, Harald

    2009-03-01

    A fast and cheap, large-area (>1 cm(2)), high-coverage fabrication technique for periodic metallic split-ring resonator metamaterials is presented, which allows control of inner- and outer-ring diameters, gap angles, as well as thickness and periodicity. This method, based on shadow nanosphere lithography, uses tilted-angle-rotation thermal evaporation onto Langmuir-Blodgett-type monolayers of close-packed polystyrene nanospheres. Excellent agreement of the process parameters with a simplified model is demonstrated. Pronounced, tunable optical metamaterial resonances in the range of 100 THz are consistent with simulations. PMID:19148886

  9. Artificial biomembrane based on DPPC--Investigation into phase transition and thermal behavior through ellipsometric techniques.

    PubMed

    González, Carmen M; Pizarro-Guerra, Guadalupe; Droguett, Felipe; Sarabia, Mauricio

    2015-10-01

    Organic thin film deposition presents a multiplicity of challenges. Most notably, layer thickness control, homogeneity and subsequent characterization have been not cleared yet. Phospholipid bilayers are frequently used to model cell membranes. Bilayers can be disrupted by changes in mechanical stress, pH and temperature. The strategy presented in this article is based on thermal study of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) through analysis of slight changes in material thickness. The sample was prepared by depositing X- or Y-type DPPC bilayers using Langmuir-Blodgett technique over silicon wafer. Thus, molecular inclination degree, mobility and stability of phases and their respective phase transitions were observed and analyzed through ellipsometric techniques during heating cycles and corroborated by Grazing Incidence X-ray Diffraction and Atomic Force Microcopy measurements. DPPC functional group vibrations were detected by Raman spectra analysis. Scanning Electron Microscope with Field Emission gun (FE-SEM) and conventional SEM micrographs were also used to characterize sample morphology, demonstrating that homogenous bilayer formations coexist with some vesicles or micelles at surface level. Contact angle measurements corroborate DPPC surface wettability, which is mainly related to surface treatment methods of silicon wafer used to create either hydrophilic or hydrophobic nature regarding the substrate surface. Also, shifting and intensity changes of certain functional groups into Raman spectra confirm water presence between DPPC layers. Signal analysis detects certain interdigitation between aliphatic chains. These studies correspond to the base of future biosensors based on proteins or antimicrobial peptides stabilized into phospholipid bilayers over thin hydrogel films as moist scaffold. PMID:26150275

  10. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy. PMID:26427916

  11. Investigation of ferroelectric domains in thin films of vinylidene fluoride oligomers

    SciTech Connect

    Sharma, Pankaj Poddar, Shashi; Ducharme, Stephen; Gruverman, Alexei; Korlacki, Rafal

    2014-07-14

    High-resolution vector piezoresponse force microscopy (PFM) has been used to investigate ferroelectric domains in thin vinylidene fluoride oligomer films fabricated by the Langmuir-Blodgett deposition technique. Molecular chains are found to be preferentially oriented normal to the substrate, and PFM imaging shows that the films are in ferroelectric β-phase with a predominantly in-plane polarization, in agreement with infrared spectroscopic ellipsometry and X-ray diffraction measurements. The fractal analysis of domain structure has yielded the Hausdorff dimension (D) in the range of ∼1.3–1.5 indicating a random-bond nature of the disorder potential, with domain size exhibiting Landau-Lifshitz-Kittel scaling.

  12. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Vishalli; Raina, K. K.; Avasthi, D. K.; Srivastava, Alok; Dharamvir, Keya

    2016-04-01

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir-Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (Se) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV-Vis-NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  13. (Thin films under chemical stress)

    SciTech Connect

    Not Available

    1990-01-01

    As stated above the purpose of this research is to enable workers in a variety of fields to understand the chemical and physical changes which take place when thin films (primarily organic films) are placed under chemical stress. This stress may occur because the film is being swelled by penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). These questions are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers, which might have unique functional properties. In the past year we have concentrated on the following objectives: (1) understanding how the two possible diffusion mechanisms contribute to the swelling of thin films of organic polymers place in solution, (2) identifying systems which are appropriate polymer media for the construction of composite membranes for use in aqueous environments, and (3) understanding the self-assembly process for long chain fatty acids at model surfaces. Progress in meeting each of these objectives will be described in this report. 4 figs.

  14. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunsuke; Uchiyama, Shun; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-03-01

    Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N-dodecylacrylamide (DDA) and dopamine methacrylamide (DMA). The p(DDA/DMA) nanosheets were immersed into water dispersions of SiO2, Al2O3, and WO3 nanoparticles (NPs) respectively. The results show that the adsorption properties can be altered by varying the NP type: SiO2 NP adsorption was observed only below pH = 6, at which the o-quinone form in p(DDA/DMA) nanosheets transforms into the catechol form or vice versa. However, their transition point for Al2O3 NP adsorption was found at approximately pH 10, at which the surface potential of Al2O3 NPs changes the charge polarity, indicating that the electrostatic interaction is predominant. For WO3 NPs, adsorption was observed when citric acid, which modifies the surface of WO3 NPs by complex formation, was used as a pH-controlling agent, but no adsorption was found for hydrochloric acid used as a pH controlling agent. FT-IR measurements proved that miniscule amounts of water molecules were trapped in p(DDA/DMA) nanosheets and that they acquired hydrogen bonding network formations, which might assist nanoparticle adsorption underwater and make the catechol units adjustable. The results indicate that the nanoscale spatial arrangements of catechol units in films are crucially important for the application of multimodal adsorption of oxide nanoparticles on catechol-based polymer materials.Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N

  15. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode.

    PubMed

    Yang, Yajie; Yang, Xiaojie; Yang, Wenyao; Li, Shibin; Xu, Jianhua; Jiang, Yadong

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices. PMID:25298757

  16. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode

    PubMed Central

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices. PMID:25298757

  17. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films.

    PubMed Central

    Pum, D; Weinhandl, M; Hödl, C; Sleytr, U B

    1993-01-01

    S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde. Images PMID:8478338

  18. Interfacial Assembly of Graphene Oxide Films

    NASA Astrophysics Data System (ADS)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  19. Preparation of Amperometric Glucose Biosensor Based on 4-Mercaptobenzoic Acid

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    A novel glucose biosensor was fabricated by a combination of a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid and the Langmuir-Blodgett (LB) technique. Because of the catalysis of Prussian Blue contained in the LB film layers, the prepared amperometric biosensor worked at a very low potential range around 0.0 V vs. Ag/AgCl. The optimum operating conditions for glucose biosensor were investigated by varying the glucose oxidase immobilization time, the applied potential and the pH of buffer solution. The steady-state current responses of the glucose biosensor showed a good linear relationship to glucose concentrations from 0.1 mM to 154 mM.

  20. Measurement of optical anisotropy in ultrathin films using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Devanarayanan, V. P.; Manjuladevi, V.; Poonia, Monika; Gupta, R. K.; Gupta, Sanjeev K.; Akhtar, Jamil

    2016-01-01

    The optical phenomenon, surface plasmon resonance (SPR) is employed for the measurement of optical anisotropy in the ultrathin films fabricated through Langmuir-Blodgett (LB) and self-assembled monolayer (SAM) techniques onto 50 nm gold film supported on BK7 glass substrates. The resonance angle (RA) is measured using a home built setup in Kretschmann configuration. The LB films and SAM can provide a single layer of highly ordered and organized molecules on the two dimensional surface. If the film forming molecules are anisotropic, their organization in the LB films and SAM can yield an anisotropic film due to tilt of the molecules with respect to the surface normal. The SPR spectra are recorded for the two orthogonal directions of the film with respect to the plane of incidence. The spectra are simulated by modeling the Fresnel's reflection from 4-layers viz., prism, gold, ultrathin films and air; and the real and imaginary parts of refractive index are estimated. Our study shows the metallic and dielectric nature of the LB films of bundles of single walled carbon nanotubes (SWCNTs) when the long axis of SWCNTs are aligned parallel and perpendicular to plane of incidence, respectively. The optical anisotropy was estimated from the change in real part of refractive index (Δnr) of the ultrathin films measured in the orthogonal directions. In addition, we have also studied such optical anisotropy in the LB film of cadmium-stearate and self-assembled monolayer of octadecanethiol.

  1. Quantitative determination of molecular structure in multilayered thin films of biaxial and lower symmetry from photon spectroscopies. I. Reflection infrared vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Parikh, Atul N.; Allara, David L.

    1992-01-01

    appropriate rotation matrix operation. To test the viability of this approach, three sets of experimentally derived infrared spectra of oriented monolayer assemblies on quite distinctively different substrates were chosen for simulation: (1) n-alkanethiols self- assembled onto gold, (2) n-alkanoic acid salt Langmuir-Blodgett (LB) monolayers on carbon, and (3) n-alkanoic acid salt LB monolayers on silica glass. The formalism developed was used to simulate the spectral response and to derive structural features of the monolayers. Good agreement was found where comparisons with independent studies could be made and, in general, the method appears quite useful for structural studies of highly organized thin films.

  2. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    SciTech Connect

    Greene, J. E.

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  3. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  4. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  5. A trilayer film approach to multicolor electrochromism.

    PubMed

    Matsui, Jun; Kikuchi, Rie; Miyashita, Tokuji

    2014-01-22

    Development of multicolored electrochromic materials is important to realize their applications in electronic devices such as full color electronic paper. One method to increase the number of colors in an electrochromic device is by color mixing. A simple method for color mixing involves two electrochromes deposited at different working electrodes. Selective control of the redox state of each electrochrome allows the generation of both the individual electrochrome colors and a mixture of the two colors. In this paper we report a new strategy that enables color mixing using a single working electrode. A trilayer film composed of an ultrathin layer of a ruthenium complex sandwiched between two layers of Prussian blue (PB) nanoparticles was prepared on an ITO electrode using the Langmuir-Blodgett technique. Cyclic voltammetry and spectroelectrochemistry of the films indicate that the redox state of PB located at the top and bottom layer can be independently controlled using a single working electrode. In this way a mixture of the colors of PB and Prussian yellow could be produced without the necessity for multiple electrodes. PMID:24380502

  6. Tensile testing of ultra-thin films on water surface

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

    2013-10-01

    The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

  7. Langmuir films of asphaltene model compounds and their fluorescent properties.

    PubMed

    Nordgård, Erland L; Landsem, Eva; Sjöblom, Johan

    2008-08-19

    The relationship between the physicochemical properties of asphaltenes and asphaltene structure is an issue of increasing focus. Surface pressure-area isotherms of asphaltene model compounds have been investigated to gain more knowledge of their arrangement at an aqueous surface. Variations in interfacial activity have been correlated to proposed arrangements. The presence of a carboxylic acid has shown to be crucial for their interfacial activity and film properties. The acid group directs the molecules normal to the surface, forming a stable monolayer film. The high stability was absent when no acidic groups were present. Fluorescence spectra of deposited Langmuir-Blodgett films showed only the presence of the excimer emission for thin films of acidic model compounds, indicating a close face-to-face arrangement of the molecules. Time-correlated single photon counting (TCSPC) of the model compounds in toluene indicated the presence of aggregates for two of four compounds at low concentrations. However, a sudden drop of interfacial tension observed could not be correlated to the aggregation. Instead, aggregation induced by addition of a "poor" solvent showed decreased interfacial activity when aggregated due to decrease of monomers in bulk. The findings regarding these asphaltene model compounds and their structural differences show the great effect an acidic group has on their physicochemical properties. PMID:18652499

  8. Structural hierarchy in molecular films of two class II hydrophobins.

    PubMed

    Paananen, Arja; Vuorimaa, Elina; Torkkeli, Mika; Penttilä, Merja; Kauranen, Martti; Ikkala, Olli; Lemmetyinen, Helge; Serimaa, Ritva; Linder, Markus B

    2003-05-13

    Hydrophobins are highly surface-active proteins that are specific to filamentous fungi. They function as coatings on various fungal structures, enable aerial growth of hyphae, and facilitate attachment to surfaces. Little is known about their structures and structure-function relationships. In this work we show highly organized surface layers of hydrophobins, representing the most detailed structural study of hydrophobin films so far. Langmuir-Blodgett films of class II hydrophobins HFBI and HFBII from Trichoderma reesei were prepared and analyzed by atomic force microscopy. The films showed highly ordered two-dimensional crystalline structures. By combining our recent results on small-angle X-ray scattering of hydrophobin solutions, we found that the unit cells in the films have dimensions similar to those of tetrameric aggregates found in solutions. Further analysis leads to a model in which the building blocks of the two-dimensional crystals are shape-persistent supramolecules consisting of four hydrophobin molecules. The results also indicate functional and structural differences between HFBI and HFBII that help to explain differences in their properties. The possibility that the highly organized surface assemblies of hydrophobins could allow a route for manufacturing functional surfaces is suggested. PMID:12731866

  9. Characteristics of Intramolecular Charge Transfer by J-Aggregates in Merocyanine Dye LB Films.

    PubMed

    Yang, Chang Heon; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-06-01

    In this study, for the development of future molecular electronic devices, we have investigated the characteristics of the aggregates of Langmuir-Blodgett films. The characteristics of intramolecular charge transfer by J-aggregates in merocyanine dye LB films have been studied experimentally by using UV irradiation and heat treatment. In addition to intramolecular charge transfer, we also studied the conjugation and energy changes of the molecules. In case a dye is thinned by LB method, the alkyl chain is often displaced in order to form a mono-molecular film with ease. Since the molecular association form is often made by self-organization of molecules themselves, in case the dye and the alkyl chain are strongly bonded by the covalent bond, it may be said that the properties of the LB film to be built up are almost determined at the time of synthesis of film-forming molecules. Meanwhile, since, in case LB film is fabricated by the diffusion absorption method, the cohesive force between the water-soluble dye and the surface-active mono-molecular film is electrostatic, the dye molecule can move relatively freely on the air/water interface, which may be regarded as a two-dimensional crystal growth process. PMID:27427711

  10. Ordered organic thin films self-assembled from the vapor phase

    NASA Technical Reports Server (NTRS)

    Debe, M. K.

    1993-01-01

    Organic films self-assembled from a liquid phase, as in Langmuir-Blodgett or adsorption from solution, have received much attention in the past decade as techniques to achieve highly oriented-ordered polymeric thin films. Many organic compounds including some of the same fatty acids have been vapor deposited as well. However, organic pigments and dyes comprise a major class of important materials which have very low solubilities yet excellent thermal stabilities, making them ideally suited for film deposition from the vapor phase. Surprisingly, such molecular systems exhibit a significant propensity to self order, a high sensitivity to deposition parameters, and a range of microstructural forms that cannot be duplicated by the less energetic mechanisms associated with solution adsorption processes. Molecular solids such as heterocyclic polynuclear aromatics are excellent candidates for film formation by vacuum deposition means. Over the past decade, our work and that of others investigating a wide variety of perylene and phthalocyanine derivatives identified five deposition parameters that can significantly affect film morphology, physical microstructure, and type and extent of ordering developed in vacuum and vapor transport grown films. These parameters are substrate temperature, deposition rate, substrate chemistry and epitaxy, ambient gas convective flows, and post deposition annealing. Examples of how each of these conditions manifest themselves in the film structure and ordering, most frequently revealed by scanning electron microscopy, reflection absorption infrared spectroscopy (RAIR), and grazing incidence x-ray diffraction (GIX), are presented.

  11. Properties of Organic Films on Aqueous Subphases

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Vaida, V.

    2003-12-01

    Recently, it has been determined that organics represent a significant percentage of the composition of certain atmospheric aerosols. The air/aqueous interface of such an aerosol has the ability to act as a concentrator and selector of organic surfactants. Amphiphilic organics, such as fatty acids and alcohols, have been found to partition to the interface of aerosols thus creating a hydrophobic organic coating on an aqueous core. The selectivity of the interface was studied by monitoring the composition of various films, via GC-MS, as a function of exposure time. A Langmuir-Blodgett trough was used to contain and collect the self-assembled films that were produced from the addition of binary solutions of surfactants to the surface of an aqueous subphase. Surfactants with differing carbon number and head group functionalities were studied. The stability of the films was examined by varying the thickness of the organic films and the pH of the subphase. For a multilayer film containing equimolar stearic acid and lauric acid on a distilled water subphase, it was found that the acid with the longer hydrocarbon tail (stearic acid) remained at the interface much longer that the shorter acid. Films containing 1-octadecanol and stearic acid, both of which have identical carbon numbers, showed similar lifetimes at the air/water interface. Octadecane was found to have a longer lifetime at the interface when dissolved in equimolar stearic acid than when in a homogeneous film. Multilayer films and films formed on acidic subphases were found to be the most stable for both fatty acids studied. The relevance of these findings as they relate to organic aerosol content and structure as well as atmospheric processing and transport will be discussed.

  12. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  13. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Xu, Jianhua; Yang, Yajie; Yu, Junsheng; Jiang, Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  14. Photosensitive organized organic films in the light of bound electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Sekkat, Zouheir; Knoll, Wolfgang

    1997-01-01

    This paper describes recent advances in the field of photochromic polymeric structures for optical data storage. In particular, we discuss photo-induced effects in supramolecular assemblies containing azobenzene molecules (e.g. Langmuir-Blodgett-Kuhn structures and ultrathin silane layers). Reorientation of azobenzenes in these structures is compared to that observed in spin-cast films. Photoisomerization and photo-induced orientation of azobenzene molecules is studied at the molecular level by means of azosilane molecules chemisorbed on silicon oxide substrates. The study of the thermal back isomerization reaction of the azobenzene molecules in these layers reveals steric hindrance at the molecular level. These ultra-thin photochromic self-assembled monolayers (SAMs) exhibit persistent dichroism upon linearly polarized light irradiation. This dichroism could be both written and erased by irradiation with light of an appropriate wavelength. In addition, the sign of this dichroism can be inverted by choosing the appropriate polarization of the irradiating light, thus showing a 'smart communication' between the light polarization and the ultra-thin photochromic layers. Photoisomerization also induces reversible changes in the optical thickness of these molecularly thin SAMs. Langmuir- Blodgett-Kuhn (LBK) multilayer assemblies of 'hairy-rod' polyglutamates with stiff main chains and flexible side chains containing photochromic azo units exhibit a highly optically anisotropic structure when the azo molecules are in the trans form, and a nearly optically isotropic structure when the azo molecules are in the cis form. The trans $ARLR cis photoisomerization of the azo molecules switches them between a highly oriented trans configuration and a bend cis configuration, thus turning the anisotropy 'on' and 'off.' In contrast to spin-cast polymer films containing azobenzene units, photoselection under polarized light irradiation does not occur in these LBK structures. The

  15. Aggregation of quantum dots in hybrid structures based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolesova, Ekaterina P.; Orlova, Anna O.; Maslov, Vladimir G.; Gun'ko, Yurii K.; Cleary, Olan; Baranov, Aleksander V.; Fedorov, Anatoly V.

    2016-04-01

    A morphology and photoinduced changes of luminescence properties of two types of hybrid structures based on TiO2 nanoparticles and CdSe/ZnS QDs were examined. A spin-coating method and a modified Langmuir- Blodgett technique have been applied to form the multilayer hybrid structures on glass slides. It was demonstrated that uniformity of QD surface concentration in hybrid structures depends on the method of structure formation. A photodegradation of luminescence properties of the structures is associated with the formation of QD aggregates. The QD aggregate concentration and their size depend on the method of the structure formation and the concentration of TiO2 nanoparticles. A decay of luminescence of QD aggregates in hybrid structures contains a microsecond components. An exposure of the hybrid structures with uniform QD surface concentration by visible light resulted in a photopassivation of their surface, which is accompanied by significant increase of luminescence quantum yield of QDs.

  16. 70 Years of Built-Up Films: Katharine Blodgett's Scientific Legacy

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel

    2004-03-01

    While working at the General Electric Research Laboratories in 1934, Katharine Blodgett published a brief account (in JACS) of her success at transferring layers of fatty acids from the water surface to a glass plate layer-by-layer; creating what was arguably the first rationally-designed nanostructured material. These structures would come bear her name along with that of her mentor, Irving Langmuir. Although various commercial applications have been proposed, ranging from anti-reflection coatings to soft X-ray monochromators, Langmuir-Blodgett (LB) films have never truly found their way into the marketplace in a significant way. Nevertheless, the scientific interest in LB films remains strong after 70 years because the technique offers a controlled method for building supermolecular assemblies with well-defined molecular arrangement and orientation. LB films have proven extremely useful as a research tool in order to explore fundamental interactions of amphiphilic molecules, chemical reactions in confined geometries, and to create model systems to calibrate and challenge new experimental techniques. From a statistical physics standpoint, LB films offer the possibility of studying the evolution of structure and phase transitions as a molecular system evolves from two to three dimensions. LB methods are also frequently used to create model biological membranes of known composition as well as molecular (or nanoparticle) layers for studies of potential nanoscale optoelectronic devices.

  17. Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films

    PubMed Central

    Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan

    2014-01-01

    Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000

  18. Effects of plasmonic field due to gold nanoparticles and magnetic field on photocurrents of zinc porphyrin-viologen linked compound-gold nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao

    2016-03-01

    Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.

  19. Cellulose antibody films for highly specific evanescent wave immunosensors

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Bock, Daniel; Jaworek, Thomas; Kaul, Sepp; Schulze, Matthais; Tebbe, H.; Wegner, Gerhard; Seeger, Stefan

    1996-01-01

    For the production of recognition elements for evanescent wave immunosensors optical waveguides have to be coated with ultrathin stable antibody films. In the present work non amphiphilic alkylated cellulose and copolyglutamate films are tested as monolayer matrices for the antibody immobilization using the Langmuir-Blodgett technique. These films are transferred onto optical waveguides and serve as excellent matrices for the immobilization of antibodies in high density and specificity. In addition to the multi-step immobilization of immunoglobulin G(IgG) on photochemically crosslinked and oxidized polymer films, the direct one-step transfer of mixed antibody-polymer films is performed. Both planar waveguides and optical fibers are suitable substrates for the immobilization. The activity and specificity of immobilized antibodies is controlled by the enzyme-linked immunosorbent assay (ELISA) technique. As a result reduced non-specific interactions between antigens and the substrate surface are observed if cinnamoylbutyether-cellulose is used as the film matrix for the antibody immobilization. Using the evanescent wave senor (EWS) technology immunosensor assays are performed in order to determine both the non-specific adsorption of different coated polymethylmethacrylat (PMMA) fibers and the long-term stability of the antibody films. Specificities of one-step transferred IgG-cellulose films are drastically enhanced compared to IgG-copolyglutamate films. Cellulose IgG films are used in enzymatic sandwich assays using mucine as a clinical relevant antigen that is recognized by the antibodies BM2 and BM7. A mucine calibration measurement is recorded. So far the observed detection limit for mucine is about 8 ng/ml.

  20. Oriented inorganic thin film channel structures with uni-directional monosize micropores

    SciTech Connect

    Cesarano, J. III; Sasaki, D.Y.; Singh, S.; Brinker, C.J.

    1997-10-01

    The goal of this project was to develop a novel technology that may be used to eventually manufacture a new generation of inorganic membranes and sensors with oriented, unidirectional monosized pores. The premise is that very thin membranes with oriented channels as pores will have a high flux in addition to being highly selective. Applications include: (1) gas separation membranes for oxygen enrichment, partial oxidation, dehydrogenation, and purification of natural gas; (2) refractory catalytic membrane reactors; and (3) molecular recognition sensors. The methodology for making such membranes was to combine Langmuir - Blodgett (LB) technology with sol-gel chemistry to engineer pore channels within the range 3 to 20 K The channel structure was fabricated of amorphous SiO{sub 2} because of its good thermal, chemical, and mechanical stability. Our approach was to use LB techniques to uniformly place organic molecular spacers throughout a thin silica precursor matrix and apply this film to a substrate. LB films of solid solutions of commercially available silane amphiphiles and organic amphiphiles were fabricated. The siloxane groups were then hydrolyzed to form silica and the organic portions of the amphiphiles removed by thermal decomposition. With the completely fugitive organic spacer amphiphiles removed, a thin silica film with micropores resulted. The pore size was in the range of 6 - 8 {angstrom} and in an ultra-thin configuration. With further development this technique may be useful for fabrication of inorganic membranes which satisfy all the criteria of the ideal membrane.

  1. Characterisation of thin films of graphene-surfactant composites produced through a novel semi-automated method.

    PubMed

    Walch, Nik J; Nabok, Alexei; Davis, Frank; Higson, Séamus P J

    2016-01-01

    In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene-surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir-Blodgett (LB) or electrostatic layer-by-layer (LbL) deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(-)SDS alternated with polyethyleneimine (PEI). The optical study of graphene thin films deposited on different substrates was carried out using UV-vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE) which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers. PMID:26977378

  2. Electrical and Optical Properties of Organic Thin Films

    NASA Astrophysics Data System (ADS)

    Buckner, Spencer Lewis

    The purpose of this research was to examine the applicability of organic thin films as electrical insulators in metal-insulator-semiconductor (MIS) and metal-insulator -metal (MIM) devices and an anti-reflective (A-R) coatings for solar cells. Films of anthracene, stearic acid and diacetylene alcohol were examined for their electrical and optical properties. Two techniques were used to deposit the films for these studies. Thermal evaporation in vacuum was used to deposit aluminum as electrodes and contacts in MIS and MIM devices. The organic films were deposited by either thermal evaporation or the Langmuir-Blodgett (L-B) dipping technique. Several vacuum systems and an L-B trough were fabricated for these studies and their design and construction are outlined. Several types of measurements were used to examine the properties of the organic films. Optical reflectance measurements of the diacetylene alcohol and stearic acid, both deposited by the L-B technique, on commercial silicon solar cells were used to study the potential use of these types of films as A-R and protective coatings. Electrical breakdown studies of the MIM devices were conducted to determine the maximum electric fields the insulators could withstand without destruction. Capacitance versus voltage (C-V) measurements of the organic films in MIS devices were used to determine surface defect densities at the semicondcutor/insulator interface. For each type of measurements made on the devices, theories are outlined to analyze the data obtained. The optical reflectance data are analyzed using standard electromagnetic theory. The electrical breakdown data are examined using the theories of Forlani and Minnaja (F-M) and Klein. The C-V data are examined using several different theories to determine charge and defect densities and to analyze the effects of thermal stressing and annealing. Finally, conclusions are drawn as to the applicability of these types of organic materials as insulators and coatings

  3. Photochemistry and photophysics of stilbene and diphenylpolyene surfactants in supported multilayer films

    NASA Astrophysics Data System (ADS)

    Spooner, Susan P.; Whitten, David G.

    1991-03-01

    A number of surfactant trans-stilbene derivatives have been synthesized and investigated in supported Langmuir-Blodgett assemblies. Layers of pure stilbene surfactants or mixtures with fatty acids show 'H' aggregate characteristics including relatively low oscillator strengths for the lowest excited singlet state. Consequently these exhibit relatively low ability, individually, to donate excitation energy or transfer electrons over long ranges. Mixtures of these stilbenes, layered together to form mixed films, also show 'H' aggregate characteristics but give evidence for delocalization which can effectively span the width of an entire monolayer and result in efficient energy and electron transfer processes over distances spanning several monolayers. The extension to 'H' aggregated and dilute (monomer) diphenylbutadiene and diphenylhexatriene layers results in assemblies in which vectorial energy transfer and redox processes can occur. One of the molecules used as an energy transfer and electron transfer quencher is the cobalt (III) complex of 8S1A. Although this molecule undergoes photochemical intramolecular-electron transfer-induced fragmentation in solution and microheterogeneous media, it show net photostability in the films but serves a highly effective trap.

  4. Electrochemistry of LB films of mixed MGDG:UQ on ITO.

    PubMed

    Hoyo, Javier; Guaus, Ester; Torrent-Burgués, Juan; Sanz, Fausto

    2015-08-01

    The electrochemical behaviour of biomimetic monolayers of monogalactosyldiacylglycerol (MGDG) incorporating ubiquinone-10 (UQ) has been investigated. MGDG is the principal component in the thylakoid membrane and UQ seems a good substitute for plastoquinone-9, involved in photosynthesis chain. The monolayers have been performed using the Langmuir and Langmuir-Blodgett (LB) techniques and the redox behaviour of the LB films, transferred at several surface pressures on a glass covered with indium-tin oxide (ITO), has been characterized by cyclic voltammetry. The cyclic voltammograms show that UQ molecules present two redox processes (I and II) at high UQ content and high surface pressures, and only one redox process (I) at low UQ content and low surface pressures. The apparent rate constants calculated for processes I and II indicate a different kinetic control for the reduction and the oxidation of UQ/UQH2 redox couple, being k(Rapp)(I) = 2.2 · 10(-5) s(-1), k(Rapp)(II) = 5.1 · 10(-14) k(Oapp)(I) = 3.3 · 10(-3) s(-1) and k(Oapp)(II) = 6.1 · 10(-6) s(-1), respectively. The correlation of the redox response with the physical states of the LB films allows determining the positions of the UQ molecules in the biomimetic monolayer, which change with the surface pressure and the UQ content. These positions are known as diving and swimming. PMID:25725477

  5. Modifying surface properties of diamond-like carbon films via nanotexturing

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Portal-Marco, S.; Rubio-Roy, M.; Bertran, E.; Oncins, G.; Vallvé, M. A.; Ignés-Mullol, J.; Andújar, J. L.

    2011-10-01

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres (~300 nm) on monocrystalline silicon (~5 cm2) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  6. Time-resolved grazing-incidence diffraction studies of thin films using an imaging-plate camera and focusing monochromator.

    PubMed

    Foran, G J; Gentle, I R; Garrett, R F; Creagh, D C; Peng, J B; Barnes, G T

    1998-03-01

    A multiple imaging-plate (IP) detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett (LB) films by grazing-incidence X-ray diffraction (GIXD). The first reported application of imaging plates to a GIXD study was carried out by our group and proved to be very successful in the determination of thin-film structure [Foran, Peng, Steitz, Barnes & Gentle (1996). Langmuir, 12, 774-777]. To extend the capabilities of this system, an IP camera was designed and built which can accommodate up to 13 IPs (40 x 20 cm) inside the vacuum chamber of the main diffractometer at the Australian Beamline at the Photon Factory. The camera allows the enclosed IPs to be successively exposed and stored inside the diffractometer for later scanning. The focusing monochromator employed in this technique combines fixed exit-beam height with sagittal focusing of the second crystal and delivers a gain in flux of >/=20 times when measured through a 0.1 x 0.1 mm aperture. The utility of the system incorporating the IP camera and the focusing monochromator has been demonstrated through the study of temperature-dependent phase transitions in LB films of metal fatty acids. PMID:16687811

  7. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni E; Vuorimaa-Laukkanen, Elina P; Hakola, Hanna M; Liang, Huamin; Ujula, Tiina A; Valle-Delgado, Juan José; Österberg, Monika; Yliperttula, Marjo L; Skottman, Heli

    2015-05-01

    The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls. PMID:25771016

  8. Structural and electrochemical properties of lutetium bis-octachloro-phthalocyaninate nanostructured films. Application as voltammetric sensors.

    PubMed

    Alessio, P; Apetrei, C; Rubira, R J G; Constantino, C J L; Medina-Plazal, C; De Saja, J A; Rodríguez-Méndez, M L

    2014-09-01

    Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The π-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L. PMID:25924327

  9. Photoconductive properties of organic-inorganic hybrid films of layered perovskite-type niobate.

    PubMed

    Saruwatari, Kazuko; Sato, Hisako; Idei, Tomochika; Kameda, Jun; Yamagishi, Akihiko; Takagaki, Atsushi; Domen, Kazunari

    2005-06-30

    A hybrid film of layered niobate and an organic amphiphile was prepared by the Langmuir-Blodgett (LB) method. Trimethylammonium-exchanged perovskite-type niobates ((CH(3))(3)NHSr(2)Nb(3)O(10)) were exfoliative to form an aqueous suspension. A monolayer of octadecylamine was produced on such an aqueous dispersion as a template for a hybrid film. A hybrid film was transferred as a Y-type LB film onto a hydrophilic glass plate or an ITO substrate. The structure of a deposited film was investigated with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic force microscopy (AFM) measurements, indicating a layer-by-layer structure with a single or double sheet of niobate as an inorganic composite. From the cyclic voltammogram on an ITO electrode modified with the Y-type 10 layered film, the lower edge of the conduction band of a niobate layer was determined to be - 0.6 V (vs Ag/AgCl). ac impedance and dc measurements were carried out on 1, 5, and 10-layered LB films (2 mm (electrode spacing) x 8 mm (width)) with aluminum electrodes. The freshly deposited samples behaved as an insulator under the illumination of 280 nm light (2.04 x 10(16) quanta s(-1)). Photoconductivities appeared, however, when they were preirradiated with a 150 W Xe lamp (ca. 2 x 10(18) quanta s(-1)) for 0.5-8.5 h. The process was denoted as photomodification. From the FT-IR and XRD results, it was deduced that the photomodification of LB films caused the decomposition of organic templates (octadecylammonium) accompanied by the collapse of layer-by-layer structures. dc analyses on the 5- and 10-layered films after photomodification also showed that they behaved as a photosemiconductor under UV light illumination. PMID:16852536

  10. Acylated Carrageenan Changes the Physicochemical Properties of Mixed Enzyme-Lipid Ultrathin Films and Enhances the Catalytic Properties of Sucrose Phosphorylase Nanostructured as Smart Surfaces.

    PubMed

    Rocha, Jefferson M; Pavinatto, Adriana; Nobre, Thatyane M; Caseli, Luciano

    2016-06-23

    Control over the catalytic activity of enzymes is important to construct biosensors with a wide range of detectability and higher stability. For this, immobilization of enzymes on solid supports as nanostructured films is a current approach that permits easy control of the molecular architecture as well as tuning of the properties. In this article, we employed acylated carrageenan (AC) mixed with phospholipids at the air-water interface to facilitate the adsorption of the enzyme sucrose phosphorylase (SP). AC stabilized the adsorption of SP at the phospholipid monolayer, as detected by tensiometry, by which thermodynamic parameters could be inferred from the surface pressure-area isotherm. Also, infrared spectroscopy applied in situ over the monolayer showed that the AC-phospholipid system not only permitted the enzyme to be adsorbed but also helped conserve its secondary structure. The mixed monolayers were then transferred onto solid supports as Langmuir-Blodgett (LB) films and investigated with transfer ratio, quartz crystal microbalance, fluorescence spectroscopy, and atomic force microscopy. The enzyme activity of the LB film was then determined, revealing that although there was an expected reduction in activity in relation to the homogeneous environment the activity could be better preserved after 1 month, revealing enhanced stability. PMID:27249064

  11. Lamellar versus compact self-assembly of lipoguanosine derivatives in thin surface films.

    PubMed

    Čoga, Lucija; Masiero, Stefano; Drevenšek-Olenik, Irena

    2014-09-01

    We performed a comparative study on the self-assembling properties of four guanosine derivatives with one and two lipophilic chains of two different lengths at the air-water interface and after Langmuir-Blodgett (LB) deposition onto various solid supports (mica, silicon wafer, graphite). At the air-water interface the derivatives with one lipophilic chain exhibit surface compression behaviour with a profound first order phase transition from the liquid-expanded to the liquid-condensed phase. They assemble into lamellar surface formations, whose structural characteristics remain practically unmodified after their transfer onto the solid substrates. Domain regions with orientationally aligned lamellar formations of sizes up to 150μm(2) can be obtained. The compression behaviour of double-chain derivatives is more diverse. While the derivative with two decanoyl chains exhibits the liquid-expanded as well as the liquid-condensed phase, the derivative with two hexadecanoyl chains reveals only the condensed-analogous phase with a relatively high collapse pressure. LB films of double chain derivatives show formation of very homogeneous and compact surface structures with high surface coverage. PMID:24956505

  12. Thin films under chemical stress. [Final Report], September 1, 1988--April 1, 1991

    SciTech Connect

    Not Available

    1991-12-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  13. Functional properties of chitosan-based films.

    PubMed

    Leceta, I; Guerrero, P; de la Caba, K

    2013-03-01

    Chitosan-based films plasticized with glycerol were prepared by casting with the aim to obtain environmentally friendly materials for packaging applications. Different contents of glycerol were incorporated into chitosan solutions to improve mechanical properties and all films obtained were flexible and transparent. It was observed that the transparency and good behaviour of the films against UV radiation were not affected by chitosan molecular weight or glycerol content. Moreover, chitosan-based films exhibited excellent barrier properties against water vapour and oxygen, even with the addition of glycerol. The effect of the plasticizer on the properties has been explained using Fourier transform infrared (FTIR) spectroscopic analysis. The changes observed in the intensity of the bands showed that glycerol interacts with chitosan, which could be confirmed by total soluble matter (TSM). PMID:23465939

  14. Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, P. S.

    2014-07-01

    The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) & ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

  15. Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology

    SciTech Connect

    Roy, Dhrubojyoti Das, Nayan Mani; Gupta, P. S.

    2014-07-15

    The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) and ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

  16. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  17. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  18. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  19. Thin film based plasmon nanorulers

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander D.; Lu, Chang; Geyer, Scott; Carroll, D. L.

    2016-07-01

    In this work, isolated metal nanoparticles are supported on a dielectric thin film that is placed on a conducting plane. The optical scattering characteristics of these metal nanoparticles are directly correlated with the localized surface plasmon states of the nanoparticle—image particle dimer, formed in the conducting plane below. Quantification of plasmon resonance shifts can be directly correlated with the application of the plasmon nanoruler equation. This simple geometry shows that direct optical techniques can be used to resolve thickness variations in dielectrics of only a few nanometers.

  20. Single Molecular Film for Recognizing Biological Molecular Interaction: DNA-Protein Interaction and Enzyme Reaction

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazue

    Protein-protein and protein-substrate interactions play essential roles in biological functions. Surface forces measurement and atomic force microscopy, which directly measure the interaction forces as a function of the surface separation, enable us to quantitatively evaluate these interactions [1-3]. We have employed the surface forces measurement [4] and colloidal probe atomic force microscopy [5] to study interactions involved in specific molecular recognition of DNA-protein and enzyme-substrate reaction. Studied are interactions between nucleic acid bases (adenine and thymine) [6], Spo0A-DB (the DNA-binding site of a transcription factor Spo0A), and DNA [7,8], those between subunits I and II of heptaprenyl diphosphate (HepPP) synthase in the presence of a substrate ((E,E)-farnesyl diphosphate, FPP) and a cofactor (Mg2+) [9-11], and the selectivity of the substrates in this enzymatic reaction [12]. Keys of our approach are the preparation of well-defined samples and the appropriate analysis. We have modified he substrate surfaces with these proteins using the Langmuir-Blodgett (LB) method. This chapter reviews the LB modification method and subsequent demonstrations of biological specific interactions employing this approach.

  1. Functional Materials for Microsystems: Smart Self-Assembled Photochromic Films: Final Report

    SciTech Connect

    BURNS, ALAN R.; SASAKI, DARRYL Y.; CARPICK, R.W.; SHELNUTT, JOHN A.; BRINKER, C. JEFFREY

    2001-11-01

    This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films.

  2. Kaolin-based particle films for arthropod control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle film technology was conceived by ARS scientists in the mid-1990's as an alternative to chemical pesticides. This technology was based on coating plant parts with mineral films that were chemically inert, could be formulated to spread and create a uniform film, formed a porous film that doe...

  3. Lignin and silicate based hydrogels for biosensor applications

    NASA Astrophysics Data System (ADS)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  4. Molecular self assembly on optical fiber-based fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Ayyagari, Madhu S. R.; Gao, Harry H.; Bihari, Bipin; Chittibabu, Kethinni G.; Kumar, Jayant; Marx, Kenneth A.; Kaplan, David L.; Tripathy, Sukant K.

    1994-03-01

    We discuss the molecular self-assembly on optical fibers in which a novel method for protein attachment to the sensing tip of the fiber is used. Our objective is to assemble a conjugated polythiophene copolymer as an attachment vehicle. Subsequent attachment of the photodynamic phycobiliprotein serves as the fluorescence probe element. Following our earlier experiments from Langmuir-Blodgett deposition of these polymeric materials as thin films on glass substrates, we extended the technique to optical fibers. First, the bare fiber surface is silanized with a C18 silane compound. The copolymer (3-undecylthiophene-co-3- methanolthiophene, biotinylated at the methanol moiety) assembly on the fiber is carried out presumable through van der Waals interactions between the hydrophobic fiber surface and the undecyl alkyl chains on the polymer backbone. A conjugated Str-PE (streptavidin covalently attached to phycoerythrin) complex is then attached to the copolymer via the conventional biotin-streptavidin interaction. The conjugated polymer not only supports the protein but, in principle, may help to transduce the signal generated by phycoerythrin to the fiber. Our results from fluorescence intensity measurements proved the efficacy of this system. An improved methodology is also sought to more strongly attach the conjugated copolymer to the fiber surface, and a covalent scheme is developed to polymerize and biotinylate polythiophene in situ on the fiber surface.

  5. Structural studies of ultrathin organic films

    NASA Astrophysics Data System (ADS)

    Yim, Hyun

    1998-11-01

    Ultrathin organic films have been a focus of research due to the growing interest in optoelectronics and molecular electronics. In both areas, it is believed that self-assembled (SA) films and Langmuir-Blodgett (LB) films may provide the desired control of order at the molecular level. The tethering of polyglutamate molecules to surfaces is of special interest due to nonlinear optical properties which can be achieved when the molecules are oriented. The tethering of poly(benzyl-L-glutamate) to silicon has been done by polymerization of benzyl-L-glutamate-N-carboxyanhydride using self-assembled monolayers with various concentrations of amino end groups as initiating layers. X-ray reflectivity results show that a minimum concentration of initiator sites on the surface is required. The second tethering system is a polystyrene brush. The polystyrene brush is expected to give strong sensitivity to solvent swelling. The structure of the polystyrene brush, which was chemically grafted to a substrate, in poor solvent and its change at different temperatures were investigated by neutron reflectometry. When temperature increases up to 30sp°C, both the thickness and roughness increase greatly, which indicates that the polystyrene brush changes from a collapsed state to a theta state. Hairy-rod polyimide molecules are of interest due to their interesting physical properties. Multilayer films of preformed polyimide molecules (6FDA-C18) have been obtained for the first time by the LB technique. The multilayer films do not display a distinctively periodic structure. Upon annealing for a few hours at 180sp°C, the structure relaxes slightly. The alkyl side chain substituted polyimides (BACBF/BPDA) can form metastable monolayers for which the pressure-area isotherms vary markedly with side chain length. For the polyimide with octadecyl side chains, a sharp reduction in zero pressure area occurs between 20 and 24sp°C, suggesting an important change in side chain mobility

  6. Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers.

    PubMed

    González-Henríquez, Carmen M; del C Pizarro, Guadalupe; Sarabia-Vallejos, Mauricio A; Terraza, Claudio A

    2015-10-01

    Thermal behavior of Dipalmitoylphosphatidylcholine (DPPC) bilayers deposited over hydrogel fibers was examined. Thus, membrane stability, water absorption-release, phase transitions and phase transition temperatures were studied through different methods during heating cycles. Hydrogel films were realized using an oligomer mixture (HEMA-PEGDA575/photo-initiator) with adequate viscosity. Then, the fibers were deposited over silicon wafers (hydrophilic substrate) through electrospinning technique using four different voltages: 15, 20, 25 and 30 kV. The films were then exposed to UV light, favoring polymer chain crosslinking and interactions between hydrogel and substrate. For samples deposited at 20 and 25 kV, hierarchical wrinkle folds were observed at surface level, their arrangement distribution depends directly on thickness and associated point defects. DPPC bilayers were then placed over hydrogel scaffold using Langmuir-Blodgett technique. Field emission scanning electron microscopy (FE-SEM) analysis were used to investigate sample surface, micrographies show homogeneous layer formation with chain polymer order/disorder related to applied voltage during hydrogel deposition process, among other parameters. According to the results obtained, it is possible to conclude that the oligomer deposited at 20 kV produce thin homogenous films (~40 nm) with enhanced ability to absorb water and release it in a controlled way during heating cycles. These scaffold properties confer to DPPC membrane thermal stability, which allow an easy detection of phase(s) and phase transitions. Thermal behavior was also studied via Atomic Force Microscopy (roughness analysis). Contact angle measurements corroborate system wettability, supporting the theory that hydrogel thin films act as DPPC membrane enhancers for thermal stability against external stimuli. PMID:26129642

  7. Polarization of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition

    NASA Astrophysics Data System (ADS)

    Bystrov, Vladimir S.; Paramonova, Ekaterina V.; Dekhtyar, Yuri; Pullar, Robert C.; Katashev, Aleksey; Polyaka, Natalie; Bystrova, Anna V.; Sapronova, Alla V.; Fridkin, Vladimir M.; Kliem, Herbert; Kholkin, Andrei L.

    2012-05-01

    The electronic structure and self-polarization of P(VDF-TrFE) Langmuir-Blodgett nanofilms were analyzed under temperature-driven phase transitions, according to their thickness, composition, and structural conformation. Both thermo-stimulated exoelectron emission (TSEE) spectroscopy and computational simulation, including quantum-chemical calculations from first principles, were carried out. PVDF and composite P(VDF-TrFE) (70:30) molecular chains as Trans and Gauche conformers, as well as crystal cells, were modeled for these TSEE analyses. The quantum-chemical calculations and the computational simulation were based on the density functional theory (DFT) as well as semi-empirical (PM3) methods. It was demonstrated that the energy of electron states, as well as the total energies of the studied P(VDF-TrFE) molecular clusters during phase transformation, is influenced by electron work function and electron affinity. Analysis was performed by combining TSEE experimental data with the computational data of the molecular models, demonstrating the effectiveness of this joint approach. For the first time, TSEE was used for contactless measurements of nanofilm polarization, and characterization of the phase transition. The proposed new method can be widely applied in nanobiomedicine, particularly in development of new bone bio-implants, including built-in sensors (new smart nanotechnology).

  8. Synthesis of KCa₂Nb₃O₁₀ Crystals with Varying Grain Sizes and Their Nanosheet Monolayer Films As Seed Layers for PiezoMEMS Applications.

    PubMed

    Yuan, Huiyu; Nguyen, Minh; Hammer, Tom; Koster, Gertjan; Rijnders, Guus; ten Elshof, Johan E

    2015-12-16

    The layered perovskite-type niobate KCa2Nb3O10 and its derivatives show advantages in several fields, such as templated film growth and (photo)catalysis. Conventional synthesis routes generally yield crystal size smaller than 2 μm. We report a flux synthesis method to obtain KCa2Nb3O10 crystals with significantly larger sizes. By using different flux materials (K2SO4 and K2MoO4), crystals with average sizes of 8 and 20 μm, respectively, were obtained. The KCa2Nb3O10 crystals from K2SO4 and K2MoO4 assisted synthesis were protonated and exfoliated into monolayer nanosheets, and the optimal exfoliation conditions were determined. Using pulsed laser deposition, highly (001)-oriented piezoelectric stacks (SrRuO3/PbZr0.52Ti0.48O3/SrRuO3, SRO/PZT/SRO) were deposited onto Langmuir-Blodgett films of Ca2Nb3O10(-) (CNO) nanosheets with varying lateral nanosheet sizes on Si substrates. The resulting PZT thin films showed high crystallinity irrespective of nanosheet size. The small sized nanosheets yielded a high longitudinal piezoelectric coefficient d33 of 100 pm/V, while the larger sized sheets had a d33 of 72 pm/V. An enhanced transverse piezoelectric coefficient d31 of -107 pm/V, an important input parameter for the actuation of active structures in microelectromechanical systems (MEMS) devices, was obtained for PZT films grown on CNO nanosheets with large lateral size, while the corresponding value on small sized sheets was -96 pm/V. PMID:26583282

  9. Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings

    PubMed Central

    2014-01-01

    Subwavelength nanostructures are considered as promising building blocks for antireflection and light trapping applications. In this study, we demonstrate excellent broadband antireflection effect from thin films of monolayer silica nanospheres with a diameter of 100 nm prepared by Langmuir-Blodgett method on glass substrates. With a single layer of compact silica nanosphere thin film coated on both sides of a glass, we achieved maximum transmittance of 99% at 560 nm. Furthermore, the optical transmission peak of the nanosphere thin films can be tuned over the UV-visible range by changing processing parameters during Langmuir-Blodgett deposition. The tunable optical transmission peaks of the Langmuir-Blodgett films were correlated with deposition parameters such as surface pressure, surfactant concentration, ageing of suspensions and annealing effect. Such peak-tunable broadband antireflection coating has wide applications in diversified industries such as solar cells, windows, displays and lenses. PMID:25136278

  10. Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings.

    PubMed

    Tao, Fei; Hiralal, Pritesh; Ren, Lianbing; Wang, Yong; Dai, Qing; Amaratunga, Gehan Aj; Zhou, Hang

    2014-01-01

    Subwavelength nanostructures are considered as promising building blocks for antireflection and light trapping applications. In this study, we demonstrate excellent broadband antireflection effect from thin films of monolayer silica nanospheres with a diameter of 100 nm prepared by Langmuir-Blodgett method on glass substrates. With a single layer of compact silica nanosphere thin film coated on both sides of a glass, we achieved maximum transmittance of 99% at 560 nm. Furthermore, the optical transmission peak of the nanosphere thin films can be tuned over the UV-visible range by changing processing parameters during Langmuir-Blodgett deposition. The tunable optical transmission peaks of the Langmuir-Blodgett films were correlated with deposition parameters such as surface pressure, surfactant concentration, ageing of suspensions and annealing effect. Such peak-tunable broadband antireflection coating has wide applications in diversified industries such as solar cells, windows, displays and lenses. PMID:25136278