Science.gov

Sample records for lanthanide shift reagents

  1. Nuclear Magnetic Resonance Shift Reagents: Abnormal 13C Shifts Produced by Complexation of Lanthanide Chelates with Saturated Amines and n-Butyl Isocyanide

    PubMed Central

    Marzin, Claude; Leibfritz, Dieter; Hawkes, Geoffrey E.; Roberts, John D.

    1973-01-01

    Lanthanide-induced shfits of 13C nuclear magnetic resonances are reported for several amines and n-butyl isocyanide. Contact contributions to such shifts, especially of ? carbons, are clearly important for the chelates of Eu+3 and Pr+3. The importance of contact terms is shown to change in a rather predictable manner with the structure of the amine. PMID:16592062

  2. Selectivity enhancement of Arsenazo(III) reagent towards heavier lanthanides using polyaminocarboxylic acids: A spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Matharu, Komal; Mittal, Susheel K.; Ashok Kumar, S. K.; Sahoo, Suban K.

    2015-06-01

    A new study has been conducted to quantify lanthanide(III) ions using Arsenazo III-polyaminocarboxylic acid (PACA) system. The study disclosed two different analytically important information: (i) ?max of lanthanide-Arsenazo III complexes for lighter lanthanides like Ce(III) and Nd(III) did not shift from its original position on addition of PACA and (ii) for heavier lanthanides like Dy(III), Tm(III) and Lu(III) a new ?max at 538 nm was observed, while wavelengths at 610 nm and 654 nm were disappeared in presence of ethylenediaminetertracetic acid (EDTA) and trans-1,2-Diaminocyclohexane-N,N,N?,N?-tetraacetic acid (DCTA), further the intensity of peak decreased with increase in lanthanide(III) ion concentration. Effect of ethylene glycol-bis(2-aminoethylether)-N,N,N?,N?-tetraacetic acid (EGTA) and N-(2-hydroxyethyl) ethylenediamine-N,N?,N?-triacetic acid (EDTA-OH) on Arsenzo(III)-Ln(III) complex is very weak and there is no analytically importance of such interaction. Moreover, this work confirms that Nd(III) and heavy lanthanides can be successfully determined with high accuracy in the working range of concentration of these metal ions.

  3. Ready to use dry-reagent PCR assays for the four common bacterial pathogens using switchable lanthanide luminescence probe system.

    PubMed

    Lehmusvuori, A; Soikkeli, M; Tuunainen, E; Seppä, T; Spangar, A; Rantakokko-Jalava, K; von Lode, P; Karhunen, U; Soukka, T; Wittfooth, S

    2015-11-01

    Ready to use dry-reagent PCR assays for Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas spp. and for broad-range bacteria detection were developed. The assays were based on novel switchable lanthanide probes that provide sensitive target DNA detection with exceptionally high signal-to-background ratio, thus enabling clear discrimination between positive and negative results. For example, sensitivity of three S. aureus and two S. pneumonia bacteria (colony forming units) per PCR assay was measured with fluorescence signal more than 30 times over the background signal level. The rapid and easy-to-use assays are suitable for routine clinical diagnostics without molecular biology expertise and facilities. PMID:26342433

  4. Highly Emitting Near-Infrared Lanthanide “Encapsulated Sandwich” Metallacrown Complexes with Excitation Shifted Toward Lower Energy

    PubMed Central

    2015-01-01

    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLnL = 2.88(2)%, ?obs = 150.7(2) ?s; Nd3+, QLnL = 1.35(1)%, ?obs = 4.11(3) ?s; Er3+, QLnL = 3.60(6)·10–2%, ?obs = 11.40(3) ?s), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties. PMID:24432702

  5. Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy.

    PubMed

    Trivedi, Evan R; Eliseeva, Svetlana V; Jankolovits, Joseph; Olmstead, Marilyn M; Petoud, Stéphane; Pecoraro, Vincent L

    2014-01-29

    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+ [12-MC(Zn(II),quinHA)-4]2[24-MC(Zn(II),quinHA)-8] (Ln3+ [Zn(II)MC(quinHA)]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+ [Zn(II)MC(quinHA)] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLn(L) = 2.88(2)%, ?obs = 150.7(2) ?s; Nd3+, QLn(L) = 1.35(1)%, ?obs = 4.11(3) ?s; Er3+, QLn(L) = 3.60(6)·10–2%, ?obs = 11.40(3) ?s), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties. PMID:24432702

  6. Biological and Clinical Aspects of Lanthanide Coordination Compounds

    PubMed Central

    Misra, Sudhindra N.; M., Indira Devi; Shukla, Ram S.

    2004-01-01

    The coordinating chemistry of lanthanides, relevant to the biological, biochemical and medical aspects, makes a significant contribution to understanding the basis of application of lanthanides, particularly in biological and medical systems. The importance of the applications of lanthanides, as an excellent diagnostic and prognostic probe in clinical diagnostics, and an anticancer material, is remarkably increasing. Lanthanide complexes based X-ray contrast imaging and lanthanide chelates based contrast enhancing agents for magnetic resonance imaging (MRI) are being excessively used in radiological analysis in our body systems. The most important property of the chelating agents, in lanthanide chelate complex, is its ability to alter the behaviour of lanthanide ion with which it binds in biological systems, and the chelation markedly modifies the biodistribution and excretion profile of the lanthanide ions. The chelating agents, especially aminopoly carboxylic acids, being hydrophilic, increase the proportion of their complex excreted from complexed lanthanide ion form biological systems. Lanthanide polyamino carboxylate-chelate complexes are used as contrast enhancing agents for Magnetic Resonance Imaging. Conjugation of antibodies and other tissue specific molecules to lanthanide chelates has led to a new type of specific MRI contrast agents and their conjugated MRI contrast agents with improved relaxivity, functioning in the body similar to drugs. Many specific features of contrast agent assisted MRI make it particularly effective for musculoskeletal and cerebrospinal imaging. Lanthanide-chelate contrast agents are effectively used in clinical diagnostic investigations involving cerebrospinal diseases and in evaluation of central nervous system. Chelated lanthanide complexes shift reagent aided 23Na NMR spectroscopic analysis is used in cellular, tissue and whole organ systems. PMID:18365075

  7. Peptide-lanthanide cation equilibria in aqueous phase. I. Bound shifts for L-carnosine-praseodymium complexes

    NASA Astrophysics Data System (ADS)

    Mossoyan, J.; Asso, M.; Benlian, D.

    L-Carnosine complexes of Pr 3+ were characterized in aqueous solution by 1H NMR and potentiometric titration. A rigorous treatment of chemical shifts and pH variation data with lanthanide concentration is presented. Two different forms of the peptide ligand, forming simultaneously two complexes, were taken into account. At low pH values the cation is only coordinated at the carboxylate site of the ligand in a weak complex ( ?2 = 6) whereas in neutral solution a stronger complex ( ?1 = 37) is present as a consequence of the deprotonation of the imidazole ring. The computation of induced bound shifts † 2 and ?1 for resonating nuclei of the peptide in both forms yields consistent figures. These provide the experimental basis for a conformational model which is usually not obtainable for labile complexes with low stability constants.

  8. Potential lanthanide ion selective reagents. 3. Metal complex formation with 1,7-diaza-4,10-13-trioxacyclopentadecane-N,N'-diacetic acid

    SciTech Connect

    Chang, C.A.; Ochaya, V.O.

    1986-01-29

    Stability constants for the ligand 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid (dapda or K21DA) with the lanthanides and several other metal ions have been determined at 25 /sup 0/C in aqueous 0.1 M (CH/sub 3/)/sub 4/NCl medium by a potentiometric method. The results obtained are compared to those obtained for a similar ligand of large cavity size, 1,20-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N'-diacetic acid (dacda or K22DA), which has been previously studied and reported. The stability of dapda is found to reach a peak at Eu(III) with the lanthanide series and is rationalized in terms of the matching of the ligand properties with metal ion characteristics. The transition-metal ions Ni(II), Cu(II), and Zn(II) all form stronger dapda (as compared to dacda) complexes due to a better match of the ligand cavity size and metal ion radius. 18 references, 3 figures, 1 table.

  9. Aqueous shift reagents for high-resolution cation NMR. V. Thermodynamics of interaction of DyTTHA 3- with Na +, K +, Mg 2+ , and Ca 2+

    NASA Astrophysics Data System (ADS)

    Chu, Simon C.-K.; Qiu, Howard Z.-H.; Springer, Charles S.; Wishnia, Arnold

    Triethylenetetraminehexaacetate complexes of Dy(II) or Tm(III) (DyTTHA 3- and TmTTHA 3-, introduced as NMR shift reagents for alkali metal cations, Chu et al., J. Magn. Reson.56, 33 (1984) bind to the four major biological inorganic cations: Na +, K +, Mg 2+, and Ca 2+. New 23Na and 39K NMR shift displacement data, obtained over wide and different ranges of concentration, were combined with the previous results (including some 25Mg data) for computer analysis. With a proper treatment of the relevant activity coefficients using Pitzer's formulas, it is established that only mono complexes of the shift reagent and a cation need be considered. The cations bind competitively, with nearly identical limiting shifts of 159 and 155 ppm for Na + and K +; the shift for 25Mg is {3}/{5} as large. The thermodynamic formation constants for M-LnTTHA are 11 and 18 M-1 with Na + and K + (enthalpy of binding, -54 kJ) , and 130 and 3100 M-1 with Mg 2+ and Ca 2+ at 3°C. The results suggest that all the cations bind at the same site, with Mg 2+ probably forming a solvent-separated complex. The formation constants expected at 37°C indicate that, at useful shift reagent concentrations, and at physiological cation concentrations, DyTTHA 3- can be used not only to distinguish among cation pools but also for quantitative studies of cation relationships. In particular, 23Na signals might be used to report free extracellular Ca 2+ concentrations in vivo.

  10. Secret lanthanides.

    PubMed

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz. PMID:25408760

  11. Secret Lanthanides

    PubMed Central

    Sturza, CM

    2014-01-01

    Abstract Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz. PMID:25408760

  12. Method bacterial endospore quantification using lanthanide dipicolinate luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor); Venkateswaran, Kasthuri J. (Inventor); Kirby, James Patrick (Inventor)

    2007-01-01

    A lanthanide is combined with a medium to be tested for endospores. The dipicolinic acid released from the endospores binds the lanthanides, which have distinctive emission (i.e., luminescence) spectra, and are detected using photoluminescence. The concentration of spores is determined by preparing a calibration curve generated from photoluminescence spectra of lanthanide complex mixed with spores of a known concentration. A lanthanide complex is used as the analysis reagent, and is comprised of lanthanide ions bound to multidentate ligands that increase the dipicolinic acid binding constant through a cooperative binding effect with respect to lanthanide chloride. The resulting combined effect of increasing the binding constant and eliminating coordinated water and multiple equilibria increase the sensitivity of the endospore assay by an estimated three to four orders of magnitude over prior art of endospore detection based on lanthanide luminescence.

  13. Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)

    PubMed Central

    Maritim, Samuel; Huang, Yuegao; Coman, Daniel; Hyder, Fahmeed

    2014-01-01

    Purposely-designed magnetic resonance imaging (MRI) probes encapsulated in liposomes, which alter contrast by their paramagnetic effect on longitudinal (T1) and transverse (T2) relaxation times of tissue water, hold promise for molecular imaging. However a challenge with liposomal MRI probes that are solely dependent on enhancement of water relaxation is lack of specific molecular readouts, especially in strong paramagnetic environments, thereby reducing the potential for monitoring disease treatment (e.g., cancer) beyond the generated MRI contrast. Previously it has been shown that molecular imaging with magnetic resonance is also possible by detecting the signal of non-exchangeable protons emanating from paramagnetic lanthanide complexes themselves (e.g., TmDOTP5?, which is a Tm3+-containing biosensor based on a macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate), DOTP5?) with a method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Here we show that BIRDS is useful for molecular imaging with probes like TmDOTP5? even when they are encapsulated inside liposomes with ultra-strong T1 and T2 contrast agents (e.g., Magnevist and Molday ION, respectively). We demonstrate that molecular readouts like pH and temperature determined from probes like TmDOTP5? are resilient, because sensitivity of the chemical shifts to the probe’s environment is not compromised by presence of other paramagnetic agents contained within the same nanocarrier milieu. Because high liposomal encapsulation efficiency allows for robust MRI contrast and signal amplification for BIRDS, nanoengineered liposomal probes containing both monomers like TmDOTP5? and paramagnetic contrast agents could allow high spatial resolution imaging of disease diagnosis (with MRI) and status monitoring (with BIRDS). PMID:25304046

  14. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R. (Berkeley, CA); Hearst, John (Berkeley, CA)

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  15. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays.

    PubMed

    Dickson, E F; Pollak, A; Diamandis, E P

    1995-01-01

    The principles and practice of the application of time-resolved lanthanide chelate luminescence (or fluorescence) as a detection method for ultrasensitive bioanalytical assays such as immunoassays and nucleic acid hybridization assays are reviewed. The various lanthanide chelate-based detection systems which have been developed for use in heterogeneous and homogeneous assay formats are described, including reagents, assay methods, and instrumentation, along with recent improvements in these methods. Detection systems described include those based on dissociative enhancement of lanthanide ions, direct labeling with luminescent chelates, enzyme-amplified lanthanide luminescence, lanthanide luminescence quenching, and energy transfer. PMID:7699520

  16. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    PubMed

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ? x ? 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ? y ? 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. PMID:24801742

  17. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick (Livermore, CA)

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  18. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V. (Hinsdale, IL); Williams, Clayton W. (Chicago, IL)

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  19. The Lanthanide Contraction Revisited

    SciTech Connect

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  20. Thermolysis of lanthanide dithiocarbamate complexes

    SciTech Connect

    Boncher, William L.; Regulacio, Michelle D.; Stoll, Sarah L.

    2010-01-15

    Polycrystalline lanthanide sulfide materials were formed at low temperatures using a single-source precursor based on the lanthanide dithiocarbamate complex. The synthesis temperatures are generally lower than standard solid state preparations, avoid toxic sulfurizing gases and provide a convenient route to prepare lanthanide chalcogenide nanoparticles. Depending on the reaction conditions and oxophilicity of the lanthanide, the sulfide material was formed with oxidized products including oxysulfides, oxysulfates and the oxide. - Graphical abstract: Polycrystalline lanthanide sulfide materials were formed at low temperatures using a single-source precursor based on the lanthanide dithiocarbamate complex.

  1. Luminescent macrocyclic lanthanide complexes

    SciTech Connect

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  2. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N. (Berkeley, CA); Corneillie, Todd M. (Campbell, CA); Xu, Jide (Berkeley, CA)

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  3. Handling Pyrophoric Reagents

    SciTech Connect

    Alnajjar, Mikhail S.; Haynie, Todd O.

    2009-08-14

    Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

  4. Synthesis and characterisation of luminescent lanthanide dyes for solar energy conversion 

    E-print Network

    Congiu, Martina

    2013-06-29

    Lanthanide (III) complexes are used extensively in solar conversion devices, such as Luminescent Solar Concentrators (LSCs) and Luminescent Down-Shifting (LDS) for their peculiar characteristics of narrow band emission, ...

  5. Paradigm shift from alkaline (earth) metals to early transition metals in fluoroorganometal chemistry: perfluoroalkyl titanocene(III) reagents prepared via not titanocene(II) but titanocene(III) species.

    PubMed

    Fujiu, Motohiro; Hashimoto, Ryota; Nakamura, Yuzo; Aikawa, Kohsuke; Ito, Shigekazu; Mikami, Koichi

    2014-02-17

    Perfluoroalkyl (RF) titanocene reagents [Cp2Ti(III)RF] synthesized via [Cp2Ti(III)Cl] rather than [Cp2Ti(II)] show new types of perfluoroalkylation reactions. The [Cp2Ti(III)RF] reagents exhibit a wide variety of reactivity with carbonyl compounds including esters and nitriles, and selectivities far higher than those reported for conventional RFLi and RFMgX reagents. PMID:24459023

  6. Luminescent lanthanide coordination polymers

    SciTech Connect

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  7. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.

    PubMed

    am Ende, Christopher W; Meng, Hai Yun; Ye, Mao; Pandey, Anil K; Zondlo, Neal J

    2010-08-16

    Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif. Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high alpha-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 microM for binding Er(3+). CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins. Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide. PMID:20623571

  8. Aromatic triamide-lanthanide complexes

    DOEpatents

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  9. DFTB+ and lanthanides

    NASA Astrophysics Data System (ADS)

    Hourahine, B.; Aradi, B.; Frauenheim, T.

    2010-07-01

    DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.

  10. A Lanthanide(III) Triflate Mediated Macrolactonization/Solid-Phase Synthesis Approach for Depsipeptide Synthesis.

    PubMed

    Goodreid, Jordan D; dos Santos, Eduardo da Silveira; Batey, Robert A

    2015-05-01

    The effect of dysprosium(III) triflate on macrolactonization reactions to form depsipeptides using MNBA (Shiina's reagent) is reported. Improved yields were obtained for the formation of 16-membered depsipeptides using lanthanide triflate additives. The use of a macrocyclization strategy permits the use of a semiautomated solid-phase synthesis approach for the rapid synthesis of analogues of the antibacterial A54556 acyldepsipeptides in only two physical operations, requiring only final product purification after cyclization. PMID:25866888

  11. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    SciTech Connect

    Anstey, Mitchell; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves %22Click%22 chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  12. Calibration beads containing luminescent lanthanide ion complexes

    EPA Science Inventory

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  13. Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix.

    PubMed

    Bertini, I; Janik, M B; Lee, Y M; Luchinat, C; Rosato, A

    2001-05-01

    The full series of lanthanide ions (except the radioactive promethium and the S-state gadolinium) has been incorporated into the C-terminal calcium binding site of the dicalcium protein calbindin D(9k). A fairly constant coordination environment is maintained throughout the series. At variance with several lanthanide complexes with small chelating ligands investigated in the past, the large protein moiety provides a large number of NMR signals whose hyperfine shifts can be exclusively ascribed to pseudocontact shifts (PCS). The chemical shifts of 1H and 15N backbone and side chain amide NH groups were accurately measured through HSQC experiments. 1097 PCS were estimated from these by subtracting the diamagnetic contributions measured on HSQC spectra of either the 4f(0) lanthanum(III) or the 4f(14) lutetium(III) derivatives and used to define a quality factor for the structure. The differences in diamagnetic chemical shifts between the two diamagnetic blanks were relatively small, although some were not negligible especially for the nuclei closest to the metal center. These differences were used as a tolerance for the PCS. The magnetic susceptibility tensor anisotropies for each paramagnetic lanthanide ion were obtained as the result of the solution structure determination performed by using the NOEs of the cerium(III) derivative and the PCS of all lanthanides simultaneously. This set of reliable magnetic data permits an experimental assessment of Bleaney's theory relative to the magnetic properties for an extended series of lanthanide complexes in solution. All of the obtained tensors show some rhombicity, as could be expected from the lack of symmetry of the protein environment. The directions of the largest magnetic susceptibility component for Ce, Pr, Nd, Sm, Tb, Dy, and Ho and of the smallest magnetic susceptibility component for Eu, Er, Tm, and Yb were found to be all within 15 degrees from their average (within 20 degrees for Sm), confirming the essential similarity of the coordination environment for all lanthanides. Bleaney's theory is in excellent qualitative agreement with the observed pattern of axial anisotropies. Its quantitative agreement is substantially better than that suggested by previous analyses performed on more limited sets of PCS data for small lanthanide complexes, the so-called crystal field parameter varying only within +/-30% from one lanthanide to another. These variations are even smaller (+/-15%) if a reasonable T(-3) correction is taken into consideration. A knowledge of magnetic susceptibility anisotropy properties of lanthanides is essential in determining the self-orienting properties of lanthanide complexes in solution when immersed in magnetic fields. PMID:11457182

  14. RAS Reference Reagents

    Cancer.gov

    Reference Reagents Group An important priority of the RAS Initiative is to distribute highly validated materials and methods to the world-wide community of RAS researchers. Two panels of KRAS-related DNA plasmids are now available and methods for assessing

  15. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  16. Azidopolynucleotides as photoaffinity reagents.

    PubMed Central

    Cartwright, I L; Hutchinson, D W

    1980-01-01

    Polynucleotides containing adenosine and 8-azidoadenosine or inosine and 8-azidoinosine residues have been prepared from mixtures of nucleoside diphosphates using polynucleotide phosphorylase from Escherichia coli. These copolymers can form complexes with polyuridylic or polycytidylic acids respectively. Single stranded poly(adenylic, 8-azidoadenylic acid) [poly(A,z8A)] has been used as a photoaffinity reagent to explore the subunit topography of RNA polymerase from E. coli. PMID:7001370

  17. Investigation of Gravity Lanthanide Separation Chemistry

    SciTech Connect

    Payne, Rosara F.; Schulte, Shannon M.; Douglas, Matthew; Friese, Judah I.; Farmer, Orville T.; Finn, Erin C.

    2011-03-01

    Lanthanides are common fission products and the ability to separate and quantify these elements is critical to rapid radiochemistry applications. Published lanthanide separations using Eichrom Ln Spec resin utilize an HCl gradient. Here it is shown that the efficacy and resolution of the separation is improved when a nitric acid gradient is used instead. The described method allows parallel processing of many samples in 1.5 hours followed by 60 minute counting for quantification of 9 isotopes of 7 lanthanide elements.

  18. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  19. US Veterinary Immune Reagents Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major obstacle to advances in veterinary immunology and disease control is the lack of sufficient immunological reagents specific for ruminants, swine, poultry, equine, and aquaculture species. Sets of reagents, i.e. monoclonal (mAb) and polyclonal antibodies (Ab), that can identify the major leu...

  20. US Veterinary Immune Reagents Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major obstacle to advances in veterinary immunology and disease control is the lack of sufficient immunological reagents specific for ruminants, swine, poultry, equine and aquaculture species". Sets of reagents, i.e., monoclonal (mAb) and polyclonal antibodies, that can identify the major leukocy...

  1. Toxicological and cytophysiological aspects of lanthanides action.

    PubMed

    Pa?asz, A; Czekaj, P

    2000-01-01

    Lanthanides, also called rare-earth elements, are an interesting group of 15 chemically active, mainly trivalent, f-electronic, silvery-white metals. In fact, lanthanides are not as rare as the name implies, except for promethium, a radioactive artificial element not found in nature. The mean concentrations of lanthanides in the earth's crust are comparable to those of life-important elements like iodine, cobalt and selenium. Many lanthanide compounds show particular magnetic, catalytic and optic properties, and that is why their technical applications are so extensive. Numerous industrial sources enable lanthanides to penetrate into the human body and therefore detailed toxicological studies of these metals are necessary. In the liver, gadolinium selectively inhibits secretion by Kupffer cells and it decreases cytochrome P450 activity in hepatocytes, thereby protecting liver cells against toxic products of xenobiotic biotransformation. Praseodymium ion (Pr3+) produces the same protective effect in liver tissue cultures. Cytophysiological effects of lanthanides appear to result from the similarity of their cationic radii to the size of Ca2+ ions. Trivalent lanthanide ions, especially La3+ and Gd3+, block different calcium channels in human and animal cells. Lanthanides can affect numerous enzymes: Dy3+ and La3+ block Ca2+-ATPase and Mg2+-ATPase, while Eu3+ and Tb3+ inhibit calcineurin. In neurons, lanthanide ions regulate the transport and release of synaptic transmitters and block some membrane receptors, e.g. GABA and glutamate receptors. It is likely that lanthanides significantly and uniquely affect biochemical pathways, thus altering physiological processes in the tissues of humans and animals. PMID:11996100

  2. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100 Complement reagent. (a)...

  3. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100 Complement reagent. (a)...

  4. Separation of actinides from lanthanides

    SciTech Connect

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1989-09-19

    This patent describes an organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which include a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  5. Separation of actinides from lanthanides

    DOEpatents

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  6. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  7. Synthesis of N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine. An Application of Lanthanide-Catalyzed Transamidation

    PubMed Central

    Çalimsiz, Selçuk; Lipton, Mark A.

    2006-01-01

    N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine (6) was synthesized from t-butyl N-Boc-(2S,3S,4R)-dimethylpyroglutamate (13). This synthesis involved selective deprotection of a Boc group from a lactam nitrogen in the presence of a t-butyl ester, Fmoc protection of the lactam, and a lanthanide-catalyzed transamidation reaction of the Fmoc-protected lactam using ammonia and dimethylaluminum chloride. The scope of Lewis acid-catalyzed transamidation of acylated lactams was explored through the variation of lanthanide, lactam, acyl group, amine and aluminum reagent. The reactivity of various metal triflates was found to vary in the qualitative order: Yb?Sc>Er?Eu?Sm>Ce?AgI>CuII?Zn. Intriguingly, catalysis was only observed when ammonia was the nitrogen nucleophile; addition of other amidoaluminum complexes to acyl lactams was found to be insensitive to the addition of lanthanides. PMID:16050680

  8. PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT*

    E-print Network

    Kroll, Kristen L.

    PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT* BY OLIVER H. LOWRY, NIRA J. ROSEBROUGH, A. LEWIS of the Folin phenol reagent for the measurement of proteins (l), a number of modified analytical pro- cedures of NaOH. Re- agent E, diluted Folin reagent. Titrate Folin-Ciocalteu phenol reagent ((II), Eimer

  9. Rapid Separation of Beryllium and Lanthanide Derivatives by Capillary Gas Chromatography

    SciTech Connect

    Harvey, Scott D.; Lucke, Richard B.; Douglas, Matthew

    2012-10-01

    Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated ?-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The ?-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Un-optimized separations on a 100-µm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanide derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements [Ba(II) and Sr(II)] without interference. Extension of the general approach was demonstrated for several additional elements [i.e., Cu(II), Cr(III), and Ga(III)].

  10. Lanthanide-tagged proteins – An illuminating partnership

    E-print Network

    Imperiali, Barbara

    Lanthanide-tagged proteins are valuable for exploiting the unique properties of Ln ions for investigating protein structure, function, and dynamics. Introduction of the Ln into the target is accomplished via chemical ...

  11. The role of lanthanides in optical materials

    SciTech Connect

    Weber, M.J.

    1995-05-01

    A survey is presented of the use of the lanthanides as chemical components in transmitting optical materials and as activators in materials for luminescent, electro-optic, magneto-optic, and various photosensitive applications.

  12. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  13. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their academic experience. New information has been developed to qualify the extraction potential of a class of pyridine-functionalized tetraaza complexants indicating potential single contact Am-Nd separation factors of about 40. The methodology developed for characterization will find further application in our continuing efforts to synthesize and characterize new reagents for this separation. Significant new insights into the performance envelope and supporting information on the TALSPEAK process has also been developed.

  14. Alkynylation of Thiols with Ethynylbenziodoxolone (EBX) Reagents: ?- or ?- ?-Addition?

    PubMed

    Wodrich, Matthew D; Caramenti, Paola; Waser, Jerome

    2016-01-01

    The alkynylation of thiols with EthynylBenziodoXolone (EBX) reagents is a fast and chemoselective method for the synthesis of thioalkynes. Combined experimental and computational studies are reported, which led to the identification of a new mechanism for this reaction, proceeding via an initial sulfur-iodine interaction followed by ?-addition, ?-elimination, and a 1,2-shift. Depending on the substituent on the alkyne, this mechanism can be favored over the previously disclosed concerted ?-addition pathway. PMID:26652212

  15. Exploring Crown Ethers as Shift Reagents for Ion Mobility Spectrometry

    E-print Network

    Clemmer, David E.

    .; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Anal. Chem. 1999, 71, 291-301. (2) Valentine, S. J.; Schultz, A. J. Anal. Chem. 2000, 72, 3965-3971. (5) Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H., Jr. Anal. Chem. 2000, 72, 391. (6) Guevremont, R.; Barnett, D. A.; Purves, R. W.; Vandermey, J. Anal. Chem

  16. Axial fluoride binding by lanthanide DTMA complexes alters the local crystal field, resulting in dramatic spectroscopic changes.

    PubMed

    Blackburn, Octavia A; Kenwright, Alan M; Beer, Paul D; Faulkner, Stephen

    2015-12-01

    Addition of fluoride to aqueous solutions of lanthanide complexes of DTMA results in the formation of ternary complexes of the form [F·Ln·DTMA](2+) in which an axial solvent molecule is displaced by fluoride. [F·Ln·DTMA](2+) and [H2O·Ln·DTMA](3+) are in exchange on a timescale of around 1 s. Dramatic changes are observed in both the NMR and luminescence spectra of the complexes: these are consistent with a change in the nature of the magnetic anisotropy at the paramagnetic lanthanide centre, itself arising from a change in the local crystal field. Study of paramagnetic lanthanide complexes with anisotropic electronic distributions reveals that, upon replacing water with fluoride, there is an inversion of the sign, and a significant reduction in the magnitude, of the crystal field term that defines the nature of the pseudocontact shift. PMID:26206272

  17. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Corynebacterium spp. serological reagents...Serological Reagents § 866.3140 Corynebacterium spp. serological reagents. (a) Identification. Corynebacterium spp. serological...

  18. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Corynebacterium spp. serological reagents...Serological Reagents § 866.3140 Corynebacterium spp. serological reagents. (a) Identification. Corynebacterium spp. serological...

  19. Enantioselective organocatalytic epoxidation using hypervalent iodine reagents

    E-print Network

    MacMillan, David W. C.

    Enantioselective organocatalytic epoxidation using hypervalent iodine reagents Sandra Lee and David Abstract--A rare example of a hypervalent iodine reagent participating in a 1,4-heteroconjugate addition

  20. US Veterinary Immune Reagent Network: Prioritization & Progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Veterinary Immune Reagent Network represents a broad community plan to begin to systematically address the immunological reagent gap for the US veterinary immunology research community including for the following groups: ruminants (concentrating on cattle), swine, poultry (primarily chickens)...

  1. Switchable sensitizers stepwise lighting up lanthanide emissions

    PubMed Central

    Zhang, Yan; Jiao, Peng-Chong; Xu, Hai-Bing; Tang, Ming-Jing; Yang, Xiao-Ping; Huang, Shaoming; Deng, Jian-Guo

    2015-01-01

    Analagous to a long-ranged rocket equipped with multi-stage engines, a luminescent compound with consistent emission signals across a large range of concentrations from two stages of sensitizers can be designed. In this approach, ACQ, aggregation-caused quenching effect of sensitizers, would stimulate lanthanide emission below 10?4?M, and then at concentrations higher than 10?3?M, the “aggregation-induced emission” (AIE) effect of luminophores would be activated with the next set of sensitizers for lanthanide emission. Simultaneously, the concentration of the molecules could be monitored digitally by the maximal excitation wavelengths, due to the good linear relationship between the maximal excitation wavelengths and the concentrations {lg(M)}. This model, wherein molecules are assembled with two stages (both AIE and ACQ effect) of sensitizers, may provide a practicable strategy for design and construction of smart lanthanide bioprobes, which are suitable in complicated bioassay systems in which concentration is variable. PMID:25791467

  2. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ensor, Dale D. (Cookeville, TN)

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  3. Switchable sensitizers stepwise lighting up lanthanide emissions.

    PubMed

    Zhang, Yan; Jiao, Peng-Chong; Xu, Hai-Bing; Tang, Ming-Jing; Yang, Xiao-Ping; Huang, Shaoming; Deng, Jian-Guo

    2015-01-01

    Analagous to a long-ranged rocket equipped with multi-stage engines, a luminescent compound with consistent emission signals across a large range of concentrations from two stages of sensitizers can be designed. In this approach, ACQ, aggregation-caused quenching effect of sensitizers, would stimulate lanthanide emission below 10(-4) M, and then at concentrations higher than 10(-3) M, the "aggregation-induced emission" (AIE) effect of luminophores would be activated with the next set of sensitizers for lanthanide emission. Simultaneously, the concentration of the molecules could be monitored digitally by the maximal excitation wavelengths, due to the good linear relationship between the maximal excitation wavelengths and the concentrations {lg(M)}. This model, wherein molecules are assembled with two stages (both AIE and ACQ effect) of sensitizers, may provide a practicable strategy for design and construction of smart lanthanide bioprobes, which are suitable in complicated bioassay systems in which concentration is variable. PMID:25791467

  4. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (?) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (?) of liquid lanthanides.

  5. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Influenza virus serological reagents. 866...Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are...

  6. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Influenza virus serological reagents. 866...Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are...

  7. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Influenza virus serological reagents. 866...Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are...

  8. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Salmonella spp. serological reagents. 866...Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification. Salmonella spp. serological reagents...

  9. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Salmonella spp. serological reagents. 866...Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification. Salmonella spp. serological reagents...

  10. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Salmonella spp. serological reagents. 866...Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification. Salmonella spp. serological reagents...

  11. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 2012-04-01 false Escherichia coli serological reagents. 866.3255 ...Serological Reagents § 866.3255 Escherichia coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices...

  12. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 2013-04-01 false Escherichia coli serological reagents. 866.3255 ...Serological Reagents § 866.3255 Escherichia coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices...

  13. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 false Escherichia coli serological reagents. 866.3255 ...Serological Reagents § 866.3255 Escherichia coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices...

  14. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 2014-04-01 false Escherichia coli serological reagents. 866.3255 ...Serological Reagents § 866.3255 Escherichia coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices...

  15. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2011-04-01 false Escherichia coli serological reagents. 866.3255 ...Serological Reagents § 866.3255 Escherichia coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices...

  16. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Vibrio cholerae serological reagents. 866...Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  17. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  18. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  19. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  20. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  1. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864... Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to...

  2. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864... Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to...

  3. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864... Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to...

  4. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864... Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to...

  5. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864... Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to...

  6. Stain Reagent Reversible Stain Kits

    E-print Network

    Lebendiker, Mario

    further diluted serially in 1X SDS-PAGE buffer (50 mM Tris·HCl, pH 6.8, 100 mM dithiothreitol, 2% SDS, 0 during the staining process. 1 Water Wash-Enhanced Protein Staining With GelCode ® Blue Stain Reagent to the nanogram level. The main drawbacks of this method is that it requires long (12-hour) staining times

  7. Spectroscopic Study of the Use of Lanthanide Metalloporphyrins as Sensors for Benzene and Acetonitrile Detection in Aqueous Studies

    NASA Astrophysics Data System (ADS)

    Crawford, Carlos Lemarr, Jr.

    This work entails the research on lanthanide metalloporphyrins for their potential use as chemical sensors for benzene and acetonitrile. This research is of importance due to the health implications that benzene and acetonitrile cause; benzene is a known carcinogen and acetonitrile is a known lung irritant. The use of UV-Vis spectroscopy, Fluorescence spectroscopy, Gaussian DFT, and X-ray diffraction crystallography were used in the characterization and analysis of the lanthanide porphyrin complexes. Europium, terbium, dysprosium, cerium, and gadolinium were the lanthanides used in conjunction with 5,10,15,20-tetraphenylporphyrin, TPP and 5,10,15,20-tetrakissulfonato porphyrin, TBSP. Based on the luminescence spectroscopy and UV-Vis spectroscopy data, an aqueous sensor for acetonitrile and benzene was shown to be promising. Among the compounds studied, EuTPP and DyTPP complexes exposed to sodium hydroxide showed promising results for sensing acetonitrile due to significant narrowing of the soret band and the decrease of Q bands in the UV-Vis spectra, along with the blue shifting of luminescence emission spectra. On the other hand, the CeTPP and EuTPP solutions show promise as benzene sensors due to the blue shifting of emission luminescence and variation in intensity. Based on the lanthanide TBSP complexes, TbTBSP was shown to be a promising sensor for acetonitrile due to the narrow soret band, decreased Q bands, and blue shifted emission spectra. EuTBSP, DyTBSP, and TbTBSP were shown to be promising for benzene sensors. Benzene stabilized the TBSP at a higher energy state, S2, to facilitate the energy transfer to the lanthanide ions.

  8. LANTHANIDE-BASED IMAGING OF PROTEIN-PROTEIN INTERACTIONS IN LIVE CELLS

    PubMed Central

    Rajendran, Megha; Yapici, Engin; Miller, Lawrence W.

    2013-01-01

    In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the sub-cellular location, activation and interaction of proteins within living cells in real time. Förster resonance energy transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein–protein interactions or protein conformational dynamics. However, non-specific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide (Tb(III) or Eu(III)) complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (~ms) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation followed by a brief delay that eliminates nonspecific fluorescence before detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data is presented showing that conjugation to arginine-rich, cell penetrating peptides (CPPs) can be used as a general strategy for cellular delivery of membrane impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim (TMP) and conjugated to nonaarginine via a reducible disulfide linker rapidly (~10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) was imaged at high signal-to-noise ratio with fast (1–3 s) image acquisition using a time-gated luminescence microscope. The data reviewed and presented here show that lanthanide biosensors enable fast, sensitive and technically simple imaging of protein-protein interactions in live cells. PMID:24144069

  9. Homogeneous Catalysis Using Lanthanide Amidinates and Guanidinates

    NASA Astrophysics Data System (ADS)

    Edelmann, Frank T.

    For decades, the organometallic chemistry of the rare earth elements was largely dominated by the cyclopentadienyl ligand and its ring-substituted derivatives. A hot topic in current organolanthanide chemistry is the search for alternative ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations. Among the most successful approaches in this field is the use of amidinate ligands of the general type [RC(NR ' )2]- (R = H, alkyl, aryl; R ' = alkyl, cycloalkyl, aryl, SiMe3) which can be regarded as steric cyclopentadienyl equivalents. Closely related are the guanidinate anions of the general type [R2NC(NR ' )2]- (R = alkyl, SiMe3; R ' = alkyl, cycloalkyl, aryl, SiMe3). Two amidinate or guanidinate ligands can coordinate to a lanthanide ion to form a metallocene-like coordination environment which allows the isolation and characterization of stable though very reactive amide, alkyl, and hydride species. Mono- and trisubstituted lanthanide amidinate and guanidinate complexes are also readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts, for example, for ring-opening polymerization reactions. This article covers the success story of lanthanide amidinates and guanidinates and their transition from mere laboratory curiosities to efficient homogeneous catalysts.

  10. Tendency of the Nephelauxetic Effect to Vary in a Series of Lanthanide Complexes with Allyl Acetoacetate

    NASA Astrophysics Data System (ADS)

    Mishchenko, A. M.; Trunova, E. K.; Berezhnytskaya, A. S.; Rogovtsov, A. A.

    2015-01-01

    The complexation of allyl acetoacetate with Pr3+, Nd3+, Ho3+, Er3+, and Tm3+ in aqueous solution was studied by electronic absorption spectroscopy. It was shown that allyl acetoacetate at pH 5.50 formed 1:1 and 1:2 complexes with the lanthanide ions depending on the reagent ratio. Intensity parameters ?? in addition to bond parameters using the free ions as comparative standards were calculated for the 1:2 complexes. It was established that the nephelauxetic ratio ? increased smoothly and approached unity in the order Pr3+ < Nd3+ < Ho3+ < Er3+ < Tm3+. Such variation was explained in the framework of covalent and polarization models.

  11. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.B.

    1999-08-24

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  12. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

    1999-01-01

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  13. Polyborylated reagents for modern organic synthesis

    PubMed Central

    SHIMIZU, Masaki; HIYAMA, Tamejiro

    2008-01-01

    Diverse kinds of gem- and vic-diborylated compounds are now readily available thanks to advances in gem-diborylation of lithium carbenoids as well as vic-diborylation of carbon–carbon multiple bonds with diboron compounds. These diborylated reagents lead to invention of polyborylated reagents and many novel and useful synthetic methods for supreme stereocontrol. This review summarizes preparative methods and synthetic reactions of di- and polyborylated reagents with the emphasis on multiple bond formation. PMID:18941288

  14. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  15. FuGENE 6 Transfection Reagent: minimizing reagent-dependent side effects as analyzed by gene-

    E-print Network

    Cai, Long

    . Therefore, evalu- ation and selection of a suitable transfection reagent is crucial to achieve valuable transfection reagent from a different supplier. We carried out transfections of HEK 293 cells with three

  16. The Actinide-Lanthanide Separation Process

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Carter, Jennifer C.; Niver, Cynthia M.; Smoot, Margaret R.

    2014-02-21

    The Actinide-Lanthanide SEParation (ALSEP) process is described. The process uses an extractant phase consisting of either N,N,N',N'-tetraoctyldiglycolamide (TODGA) or N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). The neutral TODGA or T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid media. Switching the aqueous phase chemistry to a citrate buffered diethylenetriaminepentaacetic acid (DTPA) solution at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus resulting in separation of these two groups of elements.

  17. U. S. Veterinary Immune Reagents Network: Progress with poultry immune reagents development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major obstacle to advances in veterinary immunology and disease research is the lack of sufficient immunological reagents specific for veterinary animal species. In 2006, U. S. Veterinary Immune Reagent Network (VIRN) Consortium (www.vetimm.org) was developed to develop immune reagents against ma...

  18. Actinide and lanthanide separation process (ALSEP)

    DOEpatents

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  19. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  20. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  1. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  2. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  3. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  4. Extraction equilibria of rare earths by a new reagent (2-ethylhexyl-3-pentadecylphenyl) phosphoric acid.

    PubMed

    Sreelatha, S; Rao, T P; Narayanan, C S; Damodaran, A D

    1994-03-01

    A new reagent (2-ethylhexyl-3-pentadecylphenyl) phosphoric acid (EPPA = HR) was synthesized from cardanol (I, 37300-39-5) and was used to investigate the extraction behaviour of lanthanum(III), europium(III) and lutetium(III) from hydrochloric acid solutions. The species extracted were found to be Ln(HR(2))(3) (where Ln = La(III) or Eu(III) or Lu(III)). The extraction behaviour of the above lanthanides has also been compared with yttrium and other rare earths. It was observed that the extraction increases with increase in atomic number of rare earths. In addition, the extraction efficiency of EPPA has also been compared with well known acidic organophosphorus extractants like di-2-ethylhexyl phosphoric acid (DEHPA), 2-ethylhexyl-mono-2-ethylhexyl phosphoric acid (EHEHPA). PMID:18965945

  5. Phthalamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N. (Berkeley, CA); Petoud, Stephane (Pittsburgh, PA); Cohen, Seth (Boston, MA); Xu, Jide (Berkeley, CA)

    2008-10-28

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  6. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N. (Berkeley, CA); Petoud, Stephane (Berkeley, CA); Cohen, Seth (Boston, MA); Xu, Jide (Berkeley, CA)

    2008-07-29

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  7. Phthalamide lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N. (Berkeley, CA); Petoud, Stephane (Berkeley, CA); Cohen, Seth M. (Boston, MA); Xu, Jide (Berkeley, CA)

    2003-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  8. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  9. Inactivation of rabies diagnostic reagents by gamma radiation

    SciTech Connect

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-11-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents.

  10. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Respiratory syncytial virus serological reagents...Serological Reagents § 866.3480 Respiratory syncytial virus serological reagents. (a) Identification. Respiratory syncytial virus serological...

  11. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Respiratory syncytial virus serological reagents...Serological Reagents § 866.3480 Respiratory syncytial virus serological reagents. (a) Identification. Respiratory syncytial virus serological...

  12. 21 CFR 660.20 - Blood Grouping Reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 7 2010-04-01 2010-04-01 false Blood Grouping Reagent. 660.20 Section 660...FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Blood Grouping Reagent § 660.20 Blood Grouping Reagent. (a) Proper name and...

  13. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents... (a) A general purpose reagent is a chemical reagent that has general...in tests for more than one individual chemical substance or ligand are general...

  14. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents... (a) A general purpose reagent is a chemical reagent that has general...in tests for more than one individual chemical substance or ligand are general...

  15. 21 CFR 606.65 - Supplies and reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Each day of use. Blood grouping reagents Do. Lectins Do. Antibody screening and reverse grouping cells Do. Hepatitis test reagents Each run. Syphilis serology reagents Do. Enzymes Each day of use. (d) Supplies and...

  16. 21 CFR 606.65 - Supplies and reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Each day of use. Blood grouping reagents Do. Lectins Do. Antibody screening and reverse grouping cells Do. Hepatitis test reagents Each run. Syphilis serology reagents Do. Enzymes Each day of use. (d) Supplies and...

  17. 21 CFR 606.65 - Supplies and reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Each day of use. Blood grouping reagents Do. Lectins Do. Antibody screening and reverse grouping cells Do. Hepatitis test reagents Each run. Syphilis serology reagents Do. Enzymes Each day of use. (d) Supplies and...

  18. 21 CFR 864.8100 - Bothrops atrox reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Reagents § 864.8100 Bothrops atrox reagent. (a) Identification. A Bothrops atrox reagent is a device made from snake venom and used to determine blood fibrinogen levels to aid in the evaluation of disseminated intravascular...

  19. Shelf-stable electrophilic reagents for trifluoromethylthiolation.

    PubMed

    Shao, Xinxin; Xu, Chunfa; Lu, Long; Shen, Qilong

    2015-05-19

    Fluorine, which is the most electronegative element and has a small atomic radius, plays a key role in pharmaceutical, agrochemical, and materials sciences. One of the fluoroalkyl groups, the trifluoromethylthio group (CF3S-), has been well-recognized as an important structural motif in the design of lead compounds for new drug discovery because of its high lipophilicity (Hansch lipophilicity parameter ? = 1.44) and strong electron-withdrawing properties, which could improve the drug molecule's cell-membrane permeability and enhance its chemical and metabolic stability. While classic methods for the preparation of trifluoromethylthiolated compounds typically involve halogen-fluorine exchange reactions of polyhalogenomethyl thioethers or trifluoromethylation of sulfur-containing compounds under harsh reaction conditions, an alternative but more attractive strategy is direct trifluoromethylthiolation of the substrate at a late stage by employing an electrophilic trifluoromethylthiolating reagent. Although several electrophilic trifluoromethylthiolating reagents have been reported previously, these reagents either require a strong Lewis acid/Brønsted acid as an activator or suffer from a toxic nature or limited substrate scope. To address these problems, in late 2011 we initiated a project with the aim to develop new, shelf-stable, and highly reactive electrophilic trifluoromethylthiolating reagents that could easily install the trifluoromethylthio group at the desired positions of the drug molecule at a late stage of drug development. Inspired by the broad reactivity of the hypervalent iodine reagent, we initially discovered a highly reactive trifluoromethylthiolating reagent, trifluoromethanesulfenate 1a. Structure-reactivity studies disclosed that the iodine atom of reagent 1a does not play an important role in this reagent's reactivity. Consequently, a simplified second-generation electrophilic reagent, trifluoromethanesulfenate 1b, was developed. In parallel, we developed another shelf-stable, highly reactive electrophilic reagent with a broad substrate scope, N-trifluoromethylthiosaccharin (2). In this Account, we mainly describe our discovery of these two different types of electrophilic trifluoromethylthiolating reagents, trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2. Systematic studies showed that both types of reagents are highly reactive toward a wide range of nucleophiles, yet the substrate scopes of these two different types of reagents are complementary. In particular, reagents 1a and 1b are more reliable in transition-metal-catalyzed reactions such as copper-catalyzed trifluoromethylthiolation of aryl/vinyl/alkylboronic acids and silver-catalyzed decarboxylative trifluoromethylthiolation of aliphatic carboxylic acids as well as in the organocatalytic asymmetric trifluoromethylthiolation of ?-keto esters and oxindoles. Reagent 2 is more electrophilic than reagents 1a and 1b and is more efficient for direct trifluoromethylthiolation with nucleophiles such as alcohols, amines, thiols, and electron-rich arenes. The ease in preparation, broad scope, and mild reaction conditions make reagents 1a, 1b, and 2 very attractive as general reagents that allow rapid installation of the trifluoromethylthio group into small molecules. PMID:25947041

  20. Manufacturability of lab on chip devices : reagent-filled reservoirs bonding process and its effect on reagents flow pattern

    E-print Network

    Saber, Aabed (Aabed Saud)

    2013-01-01

    In its lab-on-a-chip product, Daktari Diagnostics utilizes "reagent-filled reservoirs" as a means of storing and delivering the liquid reagent. During the clinical trials of the product, undesired reagent flow patterns ...

  1. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140 Corynebacterium spp. serological reagents. (a) Identification....

  2. 21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3060 Blastomyces dermatitidis serological reagents. (a)...

  3. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140 Corynebacterium spp. serological reagents. (a) Identification....

  4. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490 Rhinovirus serological reagents. (a) Identification....

  5. 21 CFR 866.3340 - Klebsiella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3340 Klebsiella spp. serological reagents. (a) Identification....

  6. 21 CFR 866.3350 - Leptospira spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3350 Leptospira spp. serological reagents. (a) Identification....

  7. 21 CFR 866.3145 - Coxsackievirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3145 Coxsackievirus serological reagents. (a)...

  8. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification....

  9. 21 CFR 866.3510 - Rubella virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3510 Rubella virus serological reagents. (a) Identification....

  10. 21 CFR 866.3520 - Rubeola (measles) virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3520 Rubeola (measles) virus serological reagents. (a)...

  11. 21 CFR 866.3470 - Reovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3470 Reovirus serological reagents. (a) Identification....

  12. 21 CFR 866.3035 - Arizona spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3035 Arizona spp. serological reagents. (a) Identification....

  13. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205 Echovirus serological reagents. (a) Identification....

  14. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600 Schistosoma spp. serological reagents. (a) Identification....

  15. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification....

  16. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490 Rhinovirus serological reagents. (a) Identification....

  17. 21 CFR 866.3350 - Leptospira spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3350 Leptospira spp. serological reagents. (a) Identification....

  18. 21 CFR 866.3340 - Klebsiella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3340 Klebsiella spp. serological reagents. (a) Identification....

  19. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3065 Bordetella spp. serological reagents. (a) Identification....

  20. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella spp. serological reagents. (a) Identification....

  1. 21 CFR 866.3250 - Erysipelothrix rhusiopathiae serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3250 Erysipelothrix rhusiopathiae serological reagents. (a)...

  2. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205 Echovirus serological reagents. (a) Identification....

  3. 21 CFR 866.3850 - Trichinella spiralis serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3850 Trichinella spiralis serological reagents. (a) Identification....

  4. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700 Staphylococcus aureus serological reagents. (a) Identification....

  5. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700 Staphylococcus aureus serological reagents. (a) Identification....

  6. 21 CFR 866.3085 - Brucella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3085 Brucella spp. serological reagents. (a) Identification....

  7. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella spp. serological reagents. (a) Identification....

  8. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus serological reagents. (a) Identification....

  9. 21 CFR 866.3110 - Campylobacter fetus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3110 Campylobacter fetus serological reagents. (a) Identification....

  10. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125 Citrobacter spp. serological reagents. (a) Identification....

  11. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella spp. serological reagents. (a) Identification....

  12. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3480 Respiratory syncytial virus serological reagents. (a)...

  13. 21 CFR 866.3470 - Reovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3470 Reovirus serological reagents. (a) Identification....

  14. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600 Schistosoma spp. serological reagents. (a) Identification....

  15. 21 CFR 866.3395 - Norovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3395 Norovirus serological reagents. (a) Identification....

  16. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps virus serological reagents. (a) Identification....

  17. 21 CFR 866.3175 - Cytomegalovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3175 Cytomegalovirus serological reagents. (a)...

  18. 21 CFR 866.3250 - Erysipelothrix rhusiopathiae serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3250 Erysipelothrix rhusiopathiae serological reagents. (a)...

  19. 21 CFR 866.3520 - Rubeola (measles) virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3520 Rubeola (measles) virus serological reagents. (a)...

  20. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp. serological reagents. (a) Identification....

  1. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125 Citrobacter spp. serological reagents. (a) Identification....

  2. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp. serological reagents. (a) Identification....

  3. 21 CFR 866.3510 - Rubella virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3510 Rubella virus serological reagents. (a) Identification....

  4. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification....

  5. 21 CFR 866.3340 - Klebsiella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3340 Klebsiella spp. serological reagents. (a) Identification....

  6. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600 Schistosoma spp. serological reagents. (a) Identification....

  7. 21 CFR 866.3280 - Francisella tularensis serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3280 Francisella tularensis serological reagents. (a)...

  8. 21 CFR 866.3250 - Erysipelothrix rhusiopathiae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3250 Erysipelothrix rhusiopathiae serological reagents. (a)...

  9. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification....

  10. 21 CFR 866.3470 - Reovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3470 Reovirus serological reagents. (a) Identification....

  11. 21 CFR 866.3085 - Brucella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3085 Brucella spp. serological reagents. (a) Identification....

  12. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps virus serological reagents. (a) Identification....

  13. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps virus serological reagents. (a) Identification....

  14. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600 Schistosoma spp. serological reagents. (a) Identification....

  15. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false Mycobacterium tuberculosis immunofluorescent reagents... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents...Identification. Mycobacterium tuberculosis immunofluorescent...

  16. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Mycobacterium tuberculosis immunofluorescent reagents... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents...Identification. Mycobacterium tuberculosis immunofluorescent...

  17. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false Mycobacterium tuberculosis immunofluorescent reagents... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents...Identification. Mycobacterium tuberculosis immunofluorescent...

  18. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Mycobacterium tuberculosis immunofluorescent reagents... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents...Identification. Mycobacterium tuberculosis immunofluorescent...

  19. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 false Mycobacterium tuberculosis immunofluorescent reagents... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents...Identification. Mycobacterium tuberculosis immunofluorescent...

  20. The Crystal Structure of Lanthanide Zirconates

    NASA Astrophysics Data System (ADS)

    Clements, Richard; Kennedy, Brendan; Ling, Christopher; Stampfl, Anton P. J.

    2010-03-01

    The lanthanide zirconates of composition Ln2Zr2O7 (Ln = La-Gd) are of interest for use in inert matrix fuels and nuclear wasteforms. The series undergoes a pyrochlore to fluorite phase transition as a function of the Ln atomic radii. The phase transition has been attributed to disordering of both the cation and the anion [1]. We have undertaken a synthesis of the lanthanide zirconate series Ln2Zr2O7 (Ln = La-Gd), Ln0.2Zr0.8O1.9 (Ln = Tb-Yb) and NdxHo2-xZr2O7 (0

  1. Some aspects of the geochemistry of yttrium and the lanthanides

    USGS Publications Warehouse

    Fleischer, Michael

    1965-01-01

    Recent data on the relative abundances of the lanthanides and yttrium in meteorites, basaltic rocks, granitic rocks and sedimentary rocks are reviewed. It is shown that the data are inadequate to substantiate or to disprove Taylor's derivation from these data of a 1:1 abundance ratio of basaltic to granitic rocks in the continental crust. Graphs are given to illustrate the variation of lanthanides in minerals with paragenesis. Both the paragenesis and the crystal chemistry of minerals affect the composition of the lanthanides.

  2. Lanthanide-doped upconverting phosphors for bioassay and therapy

    NASA Astrophysics Data System (ADS)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  3. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  4. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  5. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  6. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reagent Red Blood Cells. 660.30 Section 660.30 Food... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be Reagent...

  7. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  8. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  9. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  10. A lanthanide salen "square prism" and a wrapped exo-lanthanide salen "double decker".

    PubMed

    Shu, Yu-Bo; Liu, Wei-Sheng

    2015-04-14

    An erbium(iii) salen "square prism" and a supramolecular aggregate of exo-erbium(iii) salen "double-decker" cations wrapped by an anionic cuprous cyanide network were prepared from N,N'-ethylene bis[4-(diethylamino)salicylideneimine. Both erbium(iii) edifices show fine-structure near-infrared (NIR) luminescence under the excitation in the visible light area. Here we provide a novel and efficient method for stabilizing non-isolable lanthanide edifices in the solid state. PMID:25773380

  11. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    SciTech Connect

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  12. U.S. VETERINARY IMMUNE REAGENTS NETWORK: PROGRESS WITH POULTRY IMMUNE REAGENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major obstacle to advances in veterinary immunology and disease control is the lack of sufficient immunological reagents specific for ruminants, swine, poultry, equine and aquaculture species. Sets of reagents, i.e., monoclonal (mAb) and polyclonal antibodies, that can identify the major leukocyt...

  13. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    NASA Astrophysics Data System (ADS)

    Maertens, Gaetan; L'homme, Chloe; Canesi, Sylvain

    2014-12-01

    We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  14. Total synthesis of natural products using hypervalent iodine reagents

    PubMed Central

    Maertens, Gaëtan; L'Homme, Chloé; Canesi, Sylvain

    2014-01-01

    We present a review of natural product syntheses accomplished in our laboratory during the last 5 years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products. PMID:25601909

  15. Lighting up cells with lanthanide self-assembled helicates

    PubMed Central

    Bünzli, Jean-Claude G.

    2013-01-01

    Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthanide luminescent probes illuminating live cells and selectively detecting biomarkers expressed by cancerous human breast cells. PMID:24511387

  16. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research. PMID:26482034

  17. Unnatural Isotopic Composition of Lithium Reagents

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.; Wang, Q. Zh; Wang, Y.-H.

    1997-01-01

    Isotopic analysis of 39 lithium reagents from several manufacturers indicates that seven were artificially depleted in 6Li significantly in excess of the variation found in terrestrial materials. The atomic weight of lithium in analyzed reagents ranged from 6.939 to 6.996, and ??7-Li, reported relative to L-SVEC lithium carbonate, ranged from -11 to +3013???. This investigation indicates that 6Li-depleted reagents are now found on chemists' shelves, and the labels of these 6Li-depleted reagents do not accurately reflect the atomic and (or) molecular weights of these reagents. In 1993, IUPAC issued the following statement: "Commercially available Li materials have atomic weights that range between 6.94 and 6.99; if a more accurate value is required, it must be determined for the specific material." This statement has been found to be incorrect In two of the 39 samples analyzed, the atomic weight of Li was in excess of 6.99.

  18. Stick shift

    E-print Network

    Parness, Aaron J. (Aaron Joseph), 1981-

    2004-01-01

    Stick Shift is a novel that has undergone several rounds of significant revision. Scott, the book's main character, is a sarcastic American who travels to England to move in with an ex-girlfriend. He experiences all of the ...

  19. A High-Sensitivity Lanthanide Nanoparticle Reporter for Mass Cytometry: Tests on Microgels as a Proxy for Cells

    PubMed Central

    2015-01-01

    This paper addresses the question of whether one can use lanthanide nanoparticles (e.g., NaHoF4) to detect surface biomarkers expressed at low levels by mass cytometry. To avoid many of the complications of experiments on live or fixed cells, we carried out proof-of-concept experiments using aqueous microgels with a diameter on the order of 700 nm as a proxy for cells. These microgels were used to test whether nanoparticle (NP) reagents would allow the detection of as few as 100 proteins per “cell” in cell-by-cell assays. Streptavidin (SAv), which served as the model biomarker, was attached to the microgel in two different ways. Covalent coupling to surface carboxyls of the microgel led to large numbers (>104) of proteins per microgel, whereas biotinylation of the microgel followed by exposure to SAv led to much smaller numbers of SAv per microgel. Using mass cytometry, we compared two biotin-containing reagents, which recognized and bound to the SAvs on the microgel. One was a metal chelating polymer (MCP), a biotin end-capped polyaspartamide containing 50 Tb3+ ions per probe. The other was a biotinylated NaHoF4 NP containing 15?000 Ho atoms per probe. Nonspecific binding was determined with bovine serum albumin (BSA) conjugated microgels. The MCP was effective at detecting and quantifying SAvs on the microgel with covalently bound SAv (20?000 SAvs per microgel) but was unable to give a meaningful signal above that of the BSA-coated microgel for the samples with low levels of SAv. Here the NP reagent gave a signal 2 orders of magnitude stronger than that of the MCP and allowed detection of NPs ranging from 100 to 500 per microgel. Sensitivity was limited by the level of nonspecific adsorption. This proof of concept experiment demonstrates the enhanced sensitivity possible with NP reagents in cell-by-cell assays by mass cytometry. PMID:24617504

  20. The biosafety of lanthanide upconversion nanomaterials.

    PubMed

    Sun, Yun; Feng, Wei; Yang, Pengyuan; Huang, Chunhui; Li, Fuyou

    2015-03-21

    Lanthanide upconversion nanophosphors (UCNPs) show unique upconversion luminescence where lower-energy photons (such as near-infrared (NIR) excitation) are converted into higher-energy photons covering the NIR to the UV region, and are considered to have a bright future in clinical translation. As UCNPs are used in a significant number of potential bio-applications, their biosafety is important and has attracted significant attention. In this critical review, recent reports regarding the cellular internalization, biodistribution, excretion, cytotoxicity and in vivo toxic effects of UCNPs are reviewed. In particular, the studies which evaluated the association between the chemical and physical properties of UCNPs and their biodistribution, excretion, and toxic effects are presented in detail. Finally, we also discuss the challenges of ensuring the biosafety of UCNPs in vivo. PMID:25113504

  1. Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future.

    PubMed

    Carlos, Luís D; Ferreira, Rute A S; Bermudez, Verónica de Zea; Ribeiro, Sidney J L

    2009-02-01

    Interest in lanthanide-containing organic-inorganic hybrids has grown considerably during the last decade, with the concomitant fabrication of materials with tunable attributes offering modulated properties. The potential of these materials relies on exploiting the synergy between the intrinsic characteristics of sol-gel derived hosts (highly controlled purity, versatile shaping and patterning, excellent optical quality, easy control of the refractive index, photosensitivity, encapsulation of large amounts of isolated emitting centers protected by the host) and the luminescence features of trivalent lanthanide ions (high luminescence quantum yield, narrow bandwidth, long-lived emission, large Stokes shifts, ligand-dependent luminescence sensitization). Promising applications may be envisaged, such as light-emitting devices, active waveguides in the visible and near-IR spectral regions, active coatings, and bio-medical actuators and sensors, opening up exciting directions in materials science and related technologies with significant implications in the integration, miniaturization, and multifunctionalization of devices. This review provides an overview of the latest advances in Ln(3+)-containing siloxane-based hybrids, with emphasis on the different possible synthetic strategies, photoluminescence features, empirical determination. PMID:21161975

  2. Separation of Lanthanide Ions with Kläui Ligand Resin

    SciTech Connect

    Granger, Trinity D.; Henry, Victoria A.; Latesky, Stanley

    2007-07-01

    Separation and pre-concentration of the desired analyte is often a critical step in many radioanalytical methods. Current procedures for separating and concentrating analytes for detection are complex, and can be both expensive and time consuming. Therefore, the purpose of this research is to develop an alternative method of separating lanthanide ions through the use of an extraction chromatography resin containing a Klaui ligand salt. This research is a continuation of a concerted effort to develop new methods of detecting small concentrations of radionuclides and lanthanides using Klaui ligands. The Klaui ligands, C5Me5Co(OP(OR)2)3- (R=Me, Et, n-Pr) (LOR-), have unique affinity for lanthanide and actinide ions in the presence of competing metal ions. The use of 1 wt% NaLOR (R=Et or n-Pr) adsorbed onto resin support has been shown to extract lanthanide ions from aqueous nitric acid solutions of different concentrations. In order to further evaluate the utility of these materials in radiochemical separation, the selectivity of the resins for the different lanthanide ions was examined by measuring the distribution coefficients (Kd) for a series of lanthanides over a range of solution conditions. Based on prior research with actinide ions, it was hypothesized that the lanthanide ions would bond strongly with the Klaui ligands. The success of this research is important, because it will assist in expanding and improving current automated radiochemical methods, which will decrease the cost of developing and implementing radiochemical methods. To date, Kd values have been determined for Eu+3, Nd+3 and Pr+3 under varying nitric acid (HNO3) concentration, using a resin consisting of 1.0 wt% NaLOPr on Amberlite XAD-7HP. The dependence of the Kd values for Eu+3 has also been examined as a function of the ligand-to-europium ratio and the nitrate concentration. Decreasing Kd values were obtained upon increasing the nitric acid concentration, indicating protonation of the ligand, which competes with binding of the lanthanide ions. As expected, increasing the Klaui ligand-to-europium ratio results in increasing Kd, but no conclusions could be made from these data regarding stoichiometry of the complex formed on the resin. No dependence of the Kd on the nitrate concentration was observed, supporting the notion that the HNO3 dependence is dominated by the presence of the acidic hydronium ion (as opposed to the nitrate ion). Future work will involve the determination of the Kd values for the remainder of the lanthanide series to further assess the potential of the Klaui ligand for intra-group lanthanide separations.

  3. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix

    SciTech Connect

    Hartzell, C.J.

    1994-07-24

    Goal was to use NMR to study TBP/lanthanide complexes in the interlayer or on edge sites of clays. Work in this laboratory yielded details of the complexation of Eu(NO{sub 3}){sub 3} and Pr(NO{sub 3}){sub 3} with TBP in hexane solution; this information is crucial to interpretation of results of NMR studies of the complexes exchanged into clays. The solution {sup 31}P-chemical shift values were improved by repeating the studies on the lanthanide salts dissolved directly into neat TBP. NMR studies of these neat solutions of the Eu(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex and the Pr(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex show that the {sup 31}P chemical shift remains relatively constant for TBP: lanthanide ratios below 3: 1. At higher ratios, the chemical shift approaches that of free TBP, indicating rapid exchange of TBP between the free and complexed state. Exchange of these complexes into the clay hectorite yielded discrete {sup 31}P-NMR signals for the Eu{lg_bullet}TBP complex at -190 ppm and free TBP at -6 ppm. Adsorption of the Pr{lg_bullet}TBP complex yielded broad signals at 76 ppm for the complex and -6 ppm for free TBP. There was no evidence of exchange between the incorporated complex and the free TBP.

  4. High-pressure X-ray diffraction studies of light lanthanides 

    E-print Network

    Evans, Shaun Russell

    2010-11-25

    The (trivalent) lanthanides exhibit a common sequence of phases upon the application of pressure: hcp ? dhcp ? fcc ? “distorted-fcc”. The “distorted-fcc”’ phase (d-fcc), observed in the light lanthanides is known to be ...

  5. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.

  6. Isopropyl-3-pentadecylphenyl phosphoric acid - a new reagent for liquid-liquid extraction and separation of rare earths

    SciTech Connect

    Sreelatha, S.; Prasada Rao, T.; Narayanan, C.S.; Damodaran, A.D. )

    1993-03-01

    A new reagent isopropyl-3-pentadecylphenyl phosphoric acid (IPPA = HR) was synthesized from cardanol [I-37, 300-39-5] and was used to investigate the extraction behavior of lanthanum(III), europium(III) and lutetium(III) from HCl and HClO[sub 4] solutions into toluene. The species extracted were found to be Ln(HR[sub 2])[sub 3] (where Ln = La(III) or Eu(III) or Lu(III)). The extraction behavior of above lanthanides has also been compared with yttrium and other rare earths. It was observed that the extraction increases with increase of atomic number of rare earths. In addition the extraction efficiency of IPPA has been compared with well known acidic organophosphorus extractants like di-2-ethylhexyl phosphoric acid (DEHPA) and 2-ethylhexyl-mono-2-ethylhexyl phosphoric acid (EHEHPA). 6 refs., 5 figs., 3 tabs.

  7. Remarks on preparation of indandione detection reagents

    NASA Technical Reports Server (NTRS)

    Stepan, J.; Kral, V.

    1985-01-01

    A modified Claisen condensation with sliced sodium at a higher temperature was recommended for the production of ungranulated charcoal. A new ninhydrin production method by oxidation of benzaldiketohydrinden using available reagents was tried and was unsuccessful. Triketohydrinden was obtained by boiling ninhydrin in acetic acid anhydrides.

  8. USE OF FENTON'S REAGENT AS DISINFECTING AGENT

    EPA Science Inventory

    This project was conducted as an EPA in-house research, assisted by the on-site contractor, US Infrastructure, Inc. (USI) located in Edison, NJ. The Fenton's reagent (e.g., H2O2, ferrous iron Fe(aq)+2) is an alternative method of chemical oxidation. Hydroxyl radicals (OH ), gen...

  9. UV integration of extrachromosomal arrays Reagents needed

    E-print Network

    Lamitina, Todd

    . Wait for the UV light to go off and for the machine to beep (takes ~10 seconds) 9. Pick ~50 L4. After 24 hours, check the original plate. If the UV mutagenesis was successful, there should be manyUV integration of extrachromosomal arrays Reagents needed · UV Cross linker (Stratalinker

  10. USE OF FENTON'S REAGENT AS A DISINFECTANT

    EPA Science Inventory

    Combined sewage samples obtained from a wastewater treatment facility were disinfected by the Fenton's Reagent of several different compositions. The pre-settled samples contained both suspended solids (SS) and dissolved organic carbon (DOC) at concentrations of 28 and 290 mg/L,...

  11. Tritioacetylating reagents and processes for preparation thereof

    DOEpatents

    Saljoughian, Manoucher (Moraga, CA); Morimoto, Hiromi (El Cerrito, CA); Williams, Philip G. (Oakland, CA); Than, Chit (Lafayette, CA)

    2000-01-01

    Novel acetylating and tritioacetylating reagents suitable for preparation of nonlabelled and radiolabelled organic compounds. N-acetoxynaphthalimide, N-tritioacetoxyphthalimide, N-tritioacetoxysuccinimide, N-tritioacetoxynaphthalimide and processes of their preparation. The invention also concerns synthesis of nonlabelled acetylated and tritioacetylated organic compounds from precursors containing a free --NH.sub.2, --SH or --OH group.

  12. Chemistry Students' Erroneous Conceptions of Limiting Reagent.

    ERIC Educational Resources Information Center

    Mammen, K. J.

    1996-01-01

    Describes a study of 32 University of Transkei (South Africa) freshmen's conceptualization of "limiting reagent," a basic concept in chemistry, based on student responses to two written test questions and clinical interviews. Results indicated that a high percentage of students had misconceptions and could not apply the concept successfully. Makes…

  13. Determination of Cellular Cholesterol Content Reagents Needed

    E-print Network

    Pike, Linda J.

    Determination of Cellular Cholesterol Content Reagents Needed: Wako CII Cholesterol CII assay kit solvents using the SpeedVac. 4. Add 1 ml of the Cholesterol CII (Wako) buffer solution and vortex development with cholesterol is stable for incubation periods of up to 60 min. at 37° C. If detecting ent-cholesterol

  14. Whole worm glycerol assay Reagents needed

    E-print Network

    Lamitina, Todd

    Whole worm glycerol assay Reagents needed: 1. Dry Ice 2. Mortar and pestles 3. 1N Perchloric acid-biopharm) Protocol 1. Wash worms off plates w/ M9 (make sure osmolarity matches that of plate) 2. Wash twice 3. Resuspend worm pellet in 10 ml M9 and allow worms to evacuate bacteria for 15 minutes. 4. While worms

  15. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...reagent is a device that consists of complement, a naturally occurring serum protein from any warm-blooded animal such as guinea pigs, that may be included as a component part of serological test kits used in the diagnosis of disease. (b)...

  16. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...reagent is a device that consists of complement, a naturally occurring serum protein from any warm-blooded animal such as guinea pigs, that may be included as a component part of serological test kits used in the diagnosis of disease. (b)...

  17. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...reagent is a device that consists of complement, a naturally occurring serum protein from any warm-blooded animal such as guinea pigs, that may be included as a component part of serological test kits used in the diagnosis of disease. (b)...

  18. Supplemental Materials and Methods Proteins and reagents

    E-print Network

    Kowalczykowski, Stephen C.

    Supplemental Materials and Methods Proteins and reagents Proteins were purified as described. 2006); and RecA730 protein (Handa and Kowalczykowski 2007). Restriction enzymes, Klenow fragment and T4Cl centrifugation. Linear pUC19 DNA was prepared by digestion with EcoRI or HindIII, and then 3'-end labeled with 32

  19. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome.

  20. Tertiary ?-diarylmethylamines derived from diarylketimines and organomagnesium reagents.

    PubMed

    Desmarchelier, Alaric; Ortiz, Pablo; Harutyunyan, Syuzanna R

    2015-01-14

    Organomagnesium reagents enable swift and versatile derivatisation of diarylimines to the corresponding ?-substituted diarylmethylamines in excellent yields, through fast and clean reactions. Where it occurs, 1,2-reduction can be circumvented using readily accessible dialkylmagnesium reagents. PMID:25418069

  1. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Identification. Analyte specific reagents (ASR's) are antibodies, both polyclonal and monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which, through specific binding or chemical reaction with...

  2. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Identification. Analyte specific reagents (ASR's) are antibodies, both polyclonal and monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which, through specific binding or chemical reaction with...

  3. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mycobacterium tuberculosis immunofluorescent... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents. (a) Identification. Mycobacterium tuberculosis immunofluorescent reagents are devices that consist of antisera conjugated with a fluorescent...

  4. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mycobacterium tuberculosis immunofluorescent... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents. (a) Identification. Mycobacterium tuberculosis immunofluorescent reagents are devices that consist of antisera conjugated with a fluorescent...

  5. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mycobacterium tuberculosis immunofluorescent... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents. (a) Identification. Mycobacterium tuberculosis immunofluorescent reagents are devices that consist of antisera conjugated with a fluorescent...

  6. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mycobacterium tuberculosis immunofluorescent... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents. (a) Identification. Mycobacterium tuberculosis immunofluorescent reagents are devices that consist of antisera conjugated with a fluorescent...

  7. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mycobacterium tuberculosis immunofluorescent... § 866.3370 Mycobacterium tuberculosis immunofluorescent reagents. (a) Identification. Mycobacterium tuberculosis immunofluorescent reagents are devices that consist of antisera conjugated with a fluorescent...

  8. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3940 West Nile virus serological reagents. (a) Identification....

  9. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3940 West Nile virus serological reagents. (a) Identification....

  10. The Grignard Reagent: Preparation, Structure, and Some Reactions.

    ERIC Educational Resources Information Center

    Orchin, Milton

    1989-01-01

    The Grignard reagent used in the laboratory synthesis of organic compounds is the product resulting from the reaction of an alkyl or aryl halide with elemental magnesium. Describes the structure, formation, and some reactions of the reagent. (YP)

  11. Crystal engineering of lanthanide transition-metal coordination polymers

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Xue, Dongfeng; Ratajczak, Henryk

    2008-09-01

    Crystal engineering allows us to predict and control the packing of molecular building units in solid state, which has been attracting much attention due to its exploitation for the synthesis of crystalline materials with novel structures and promising properties. The crystal engineering strategies toward the synthesis of high-nuclearity lanthanide clusters and three-dimensional (3D) lanthanide-transition-metal (Ln-M) coordination polymers were well discussed in the present work. It has shown that the high-nuclearity lanthanide clusters can be rationally synthesized by surface modification strategy. On the basis of the different coordination nature of lanthanide and transition-metal ions, the multifunctional organic ligands with mixed coordination sites such as isonicotinate have been elaborately selected to rationally construct a series of homochrial and achiral 3D Ln-M coordination frameworks built from inorganic heterometallic chains with improved thermal stability. Furthermore, novel 3D Ln-M coordination frameworks have been built from discrete lanthanide clusters (or cluster polymers) and transition-metal clusters (or cluster polymers) by faultlessly harmonizing the subtle relationship between these two different types of metal cluster or cluster polymer units. The current work offers us great potential toward the pursuit of rational synthesis of Ln-M coordination assemblies on the basis of crystal engineering principles.

  12. r-process Lanthanide Production and Heating Rates in Kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka & Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial specific entropies s, and expansion timescales ?. We find that the ejecta is lanthanide-free for Ye ? 0.22-0.30, depending on s and ?. The heating rate is insensitive to s and ?, but certain, larger values of Ye lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Ye, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Ye, s, and ? to estimate whether or not the ejecta is lanthanide-rich.

  13. Purificaiton of Lanthanides for Large Neutrino Detectors: Thorium Removal from Gadolinium Chloride

    SciTech Connect

    Yeh, M.; Cumming, J.B.; Hans, S.; Hahn, R.L.

    2010-06-01

    Metal-loaded liquid scintillators are the detectors of choice for various neutrino experiments. Procedures have been developed to transfer metals into organic liquids by solvent extraction or direct dissolution of a metallic compound. Traces of natural radioactivity introduced into the scintillator with the metal may produce undesirable backgrounds. Measurements using a {sup 229}Th tracer indicate that the inclusion of a pH-controlled partial hydrolysis and filtration prior to the preparation of a gadolinium-loading compound can reduce thorium by a factor of {approx}100. This 'self-scavenging' procedure has the advantage that it uses only reagents encountered in the production process. Addition of non-elemental scavengers such as iron, or the use of solvent extraction or ion exchange procedures can be avoided. It also improves the optical transmission in the blue region by removing traces of iron. This purification method has potential applications to the large-scale production of other metal-loaded liquid scintillators and for the removal of traces of thorium in the industrial production of lanthanides.

  14. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    SciTech Connect

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong circularly polarized luminescence (CPL) activity. To efficiently sensitize Eu(III) emission, we have utilized ligands based on the 1-hydroxypyridin-2-one (1,2-HOPO) chelate, which are remarkable since they combine both excellent photophysical properties in addition to exceptional aqueous stabilities. A more compete understanding of this chromophore has been achieved by combining low temperature phosphorescence measurements with the same TD-DFT approach used with the IAM system. Also, Eu(III) complexes with strong CPL activity have been obtained through preparation of chiral 1,2-HOPO ligands. Using the unique spectroscopic properties of Eu(III), we have also undertaken the kinetic analysis of radiative and non-radiative decay pathways for a series of complexes, which has highlighted the importance of the metal ion symmetry on the ensuing photophysical properties. Lastly, the commercial development of a Tb-IAM compound that offers improved performance in the common HTRF platform and has the potential to vastly improve the sensitivity of measurements carried out using this technique is presented.

  15. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Analyte specific reagents. 864.4020 Section 864.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4020 Analyte specific reagents. (a) Identification....

  16. 21 CFR 864.8100 - Bothrops atrox reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bothrops atrox reagent. 864.8100 Section 864.8100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8100 Bothrops atrox reagent....

  17. 21 CFR 864.8100 - Bothrops atrox reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bothrops atrox reagent. 864.8100 Section 864.8100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8100 Bothrops atrox reagent....

  18. 21 CFR 864.8100 - Bothrops atrox reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bothrops atrox reagent. 864.8100 Section 864.8100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8100 Bothrops atrox reagent....

  19. 21 CFR 864.8100 - Bothrops atrox reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bothrops atrox reagent. 864.8100 Section 864.8100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8100 Bothrops atrox reagent....

  20. 21 CFR 864.8100 - Bothrops atrox reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bothrops atrox reagent. 864.8100 Section 864.8100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8100 Bothrops atrox reagent....

  1. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  2. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  3. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  4. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  5. 21 CFR 606.65 - Supplies and reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reagents. All supplies and reagents used in the collection, processing, compatibility testing, storage and... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Supplies and reagents. 606.65 Section 606.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  6. 21 CFR 606.65 - Supplies and reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reagents. All supplies and reagents used in the collection, processing, compatibility testing, storage and... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Supplies and reagents. 606.65 Section 606.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  7. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  8. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  9. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  10. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  11. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  12. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vibrio cholerae serological reagents. 866.3930 Section 866.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3930 Vibrio cholerae serological reagents....

  13. 21 CFR 866.3145 - Coxsackievirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coxsackievirus serological reagents. 866.3145 Section 866.3145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3145 Coxsackievirus serological reagents. (a)...

  14. 21 CFR 866.3780 - Toxoplasma gondii serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Toxoplasma gondii serological reagents. 866.3780 Section 866.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3780 Toxoplasma gondii serological reagents....

  15. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Echovirus serological reagents. 866.3205 Section 866.3205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205 Echovirus serological reagents. (a) Identification....

  16. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30 Food and Drugs...SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition....

  17. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30 Food and Drugs...SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition....

  18. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30 Food and Drugs...SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition....

  19. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2010-04-01 true Reagent Red Blood Cells. 660.30 Section 660.30 Food and Drugs...SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition....

  20. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30 Food and Drugs...SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition....

  1. Swine Toolkit Progress for US Veterinary Immune Reagent Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Veterinary Immune Reagent Network (http://www.umass.edu/vetimm/) was established to address the lack of immunological reagents for veterinary species. Within this context, plans are underway to produce sets of reagents needed to evaluate immune changes during disease and following vaccination...

  2. Lanthanide Metal-Organic Framework Materials

    NASA Astrophysics Data System (ADS)

    Hsieh, Ping-Yen; Green, Mark A.; Briber, Robert M.

    2009-03-01

    A series of lanthanide metal-organic framework materials (MOF) with variable organic linkages including benzene-dicarboxylic acid (BDC); 1,3,5-benzene-tricarboxylic acid (BTC); and 1,3,5-tris(4-carboxyphenyl)benzene (BTB) have been synthesized. The low density and high porosity of MOFs make them candidates molecular sieve or hydrogen storage materials. The crystal structures have been determined using a combination of single crystal X-ray diffractometer and synchrotron powder X-ray diffraction work. Holmium with the BDC ligand material (Ho-BDC) crystallizes in a monoclinic C2/c space group, with lattice parameters of a = 17.06 å, b = 10.67 å, c = 10.57 å, b = 96.12^o. The crystal structure of Ho-BTC is in tetragonal P 41 2 2 space group and Ho-BTB is in a triclinic P-1 space group. A comprehensive examination of Ho-MOF with different ligands by x-ray and thermogravimetric analysis shows that there is a stable nanoporous structure for dehydrated Ho-BTC up to 250^oC. The same phenomenon is not observed in the Ho-BDC and Ho-BTB materials. The collapsed structure with BDC and BTB indicates the stability of dehydrated samples is strongly related to the interactions between the metal and the organic linkers.

  3. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine

    PubMed Central

    Xu, Wenlong; Bony, Badrul Alam; Kim, Cho Rong; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2013-01-01

    There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI–FI agents. PMID:24220641

  4. Ultrasensitive DNAzyme beacon for lanthanides and metal speciation.

    PubMed

    Huang, Po-Jung Jimmy; Lin, Jenny; Cao, Jing; Vazin, Mahsa; Liu, Juewen

    2014-02-01

    Metal-ion detection and speciation analysis is crucial for environmental monitoring. Despite the importance of lanthanides, few sensors are available for their detection. DNAzymes have been previously used to detect divalent metals, while no analytical work was carried out for trivalent and tetravalent ions. Herein, in vitro selection was performed using a Ce(4+) salt as the target metal, and a new DNAzyme (named Ce13) with a bulged hairpin structure was isolated and characterized. Interestingly, Ce13 has almost no activity with Ce(4+) but is highly active with all trivalent lanthanides and Y(3+), serving as a general probe for rare earth metals (omitting Sc). A DNAzyme beacon was engineered detecting down to 1.7 nM Ce(3+) (240 parts per trillion), and other lanthanides showed similar sensitivity. The feasibility of metal speciation analysis was demonstrated by measuring the reduction of Ce(4+) to Ce(3+). PMID:24383540

  5. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. This study has been selected for flight implementation and is one of the candidate investigations being considered for the one year mission.

  6. How reagents are evaluated at CONSOL

    SciTech Connect

    Meenan, G.F.; Bancroft, B.A.

    1995-08-01

    CONSOL Inc. evaluates new coal processing chemicals to improve preparation plant operating efficiencies and lower the cost per clean ton. The reagent performance evaluation tests are conducted at the plant site under the supervision of CONSOL employees. Test protocol and sampling procedures were developed to minimize time and manpower requirements to identify the {open_quotes}best{close_quotes} chemical with a high degree of confidence. The test results have proven useful to the plant operating personnel for selecting the most cost effective chemical for their particular application. In addition, the performance evaluation tests tend to stimulate competition among the chemical suppliers to develop cheaper, more effective chemicals for the coal industry. The evaluation methods used for flotation reagents and centrifugal dewatering aids are reviewed along with case studies.

  7. EPR investigations of impurities in the lanthanide orthophosphates

    SciTech Connect

    Abraham, M.M.; Boatner, L.A.; Rappaz, M.

    1980-09-01

    Lanthanide orthophosphates formed from elements in the first half of the 4f transition series are analogs of the monoclinic mineral monazite. The known geologic properties of this mineral make the general class of lanthanide orthophosphate compounds attractive substances for long-term containment and disposal of ..cap alpha..-active actinide nuclear wastes. EPR spectroscopy has been used to investigate the structural properties and solid state chemical properties of impurities in these materials and to compare the characteristics of single crystals and polycrystalline bodies.

  8. Plasma mass filtering for separation of actinides from lanthanides

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Fisch, N. J.

    2014-06-01

    Separating lanthanides from actinides is a key process in reprocessing nuclear spent fuel. Plasma mass filters, which operate on dissociated elements, offer conceptual advantages for such a task as compared with conventional chemical methods. The capabilities of a specific plasma mass filter concept, called the magnetic centrifugal mass filter, are analyzed within this particular context. Numerical simulations indicate separation of americium ions from a mixture of lanthanides ions for plasma densities of the order of 1012 cm-3, and ion temperatures of about 10 eV. In light of collision considerations, separating small fractions of heavy elements from a larger volume of lighter ones is shown to enhance the separation capabilities.

  9. Method for providing oxygen ion vacancies in lanthanide oxides

    DOEpatents

    Kay, D. Alan R. (4305 Lakeshore Rd., Burlington, CA); Wilson, William G. (820 Harden Dr., Pittsburgh, PA 15229)

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  10. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip (Naperville, IL); Kalina, Dale G. (Naperville, IL); Kaplan, Louis (Lombard, IL); Mason, George W. (Clarendon Hills, IL)

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  11. Microscopy on anesthetized worms Reagents needed

    E-print Network

    Lamitina, Todd

    Microscopy on anesthetized worms Reagents needed · Vacuum grease syringe · M9 + 5 mM Na Azide (3µl of M9/NaAzide in a watchglass slide 2. Pick 5-10 worms off an NGM plate and into the azide into the square. 6. Pick anesthetized worms onto the slide and gently overlay them with a 22 x 22 mm coverslip. 7

  12. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15?%, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) ?Tb?Eu, a pure europium luminescence with a PLQY of 29?% was achieved. PMID:26489887

  13. Investigation of benzoyloximes as benzoylating reagents: benzoyl-Oxyma as a selective benzoylating reagent.

    PubMed

    Burugupalli, Satvika; Shah, Sayali; van der Peet, Phillip L; Arora, Seep; White, Jonathan M; Williams, Spencer J

    2016-01-01

    Hydroxybenzotriazole (HOBt) and HOBt-derived reagents have been classified as Class I explosives, with restrictions on their transportation and storage. We explored a range of benzoylated oxime-based reagents as alternatives to benzoyloxybenzotriazole (BBTZ) for the selective benzoylation of carbohydrate polyols. Benzoylated oximes derived from 2-hydroximino-malononitrile, ethyl 2-hydroximino-2-cyanoacetate (Oxyma), and tert-butyl 2-hydroximino-2-cyanoacetate were most effective for benzoylation of a simple primary alcohol, with yields approaching that obtained for BBTZ. When applied to carbohydrate diols, the most effective reagent was identified as benzoyl-Oxyma. Benzoyl-Oxyma is a highly crystalline, readily prepared alternative to BBTZ, useful in the selective benzoylation of carbohydrate polyols. PMID:26531176

  14. Lanthanide humic substances complexation. I. Experimental evidence for a lanthanide contraction effect

    NASA Astrophysics Data System (ADS)

    Sonke, Jeroen E.; Salters, Vincent J. M.

    2006-03-01

    The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L -1 NaNO 3, 1-1000 nmol L -1 Ln, 10-20 mg L -1 HS). Conditional binding constants for REE-HS interaction ( Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ?LKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ?LKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ?LKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.

  15. Detection of Bacterial Spores with Lanthanide-Macrocycle Binary Complexes

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Levine, Dana J.; Manary, Micah J.; Gray, Harry B.; Ponce, Adrian

    2009-01-01

    The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)+ binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb3+ alone, and 10-fold greater than other Ln(DO2A)+ complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb-DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)+, yielding a 3-fold increase in the signal-to-noise ratio over Tb3+. Out of the eight cases investigated, the Tb(DO2A)+ binary complex is best for the detection of bacterial spores. PMID:19537757

  16. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2013-10-15

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  17. Heat capacities of lanthanide and actinide monazite-type ceramics

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr M.; Beridze, George; Vinograd, Victor L.; Bosbach, Dirk

    2015-09-01

    (Ln, An) xPO4 monazite-type ceramics are considered as potential matrices for the disposal of nuclear waste. In this study we computed the heat capacities and the standard entropies of these compounds using density functional perturbation theory. The calculations of lanthanide monazites agree well with the existing experimental data and provide information on the variation of the standard heat capacities and entropies along the lanthanide series. The results for AnPO4 monazites are similar to those obtained for the isoelectronic lanthanide compounds. This suggests that the missing thermodynamic data on actinide monazites could be similarly computed or assessed based on the properties of their lanthanide analogs. However, the computed heat capacity of PuPO4 appear to be significantly lower than the measured data. We argue that this discrepancy might indicate potential problems with the existing experimental data or with their interpretation. This shows a need for further experimental studies of the heat capacities of actinide-bearing, monazite-type ceramics.

  18. Ratiometric oxygen sensing using lanthanide luminescent emitting interfaces.

    PubMed

    Lehr, Joshua; Tropiano, Manuel; Beer, Paul D; Faulkner, Stephen; Davis, Jason J

    2015-11-14

    Herein we describe the first example of a ratiometric lanthanide luminescent oxygen sensing interface. Immobilisation of terbium and europium cyclen complexes on glass substrates was achieved by a novel aryl nitrene photografting approach. The resulting interfaces demonstrated a ratiometric oxygen response between 0 and 0.2 atm partial oxygen pressure. PMID:26376829

  19. Polyaminocarboxylic acids as potential candidates for trivalent actinide/lanthanide separations

    NASA Astrophysics Data System (ADS)

    Kissel, Daniel S.

    Nuclear energy, which has historically been considered an alternative energy solution in the United States, is regaining support as an efficient means of energy production. The viability of nuclear energy for the future, however, will remain suspect until issues involving the waste created are fully addressed in the next generation of advanced nuclear fuel cycles. The TALSPEAK process, developed at Oak Ridge National Laboratory, is a classic solvent extraction technique that employs a series of analytical separations in an effort to remove radioactive contaminants from spent nuclear fuel (SNF) and recover uranium in high purity. This separation utilizes a polyaminocarboxylic acid and a phosphorous extractant to separate trivalent actinides (An(III)s) from trivalent lanthanides (Ln(III)s). Conversely, issues with these reagents have hampered TALSPEAK's implementation as an industrial scale solution. The process requires a high concentration of lactic acid to facilitate phase separations, and the An(III)/Ln(III) separation factor is too low to achieve the purity required for artificial transmutation. Artificial transmutation involves steady neutron irradiation, which is impossible in the presence of Ln(III)s because of large neutron capture cross-sections. It is therefore critical to develop superior solvent extractants that effectively separate An(III)s from Ln(III)s. The present study focuses on the design, synthesis, characterization and analysis of advanced polyaminocarboxylic acids and their metal complexes in an effort to identify potential TALSPEAK-type extractants with superior separation properties. A facile, higher yield synthesis of these ligands and their complexation of trivalent metal ions (Co(III), Al(III), Ga(III), and In(III)), and selected lanthanides are reported. The polyaminocarboxylic acids and their trivalent metal complexes were characterized by elemental analysis, mass spectrometry, IR spectroscopy and NMR spectroscopy. Quantum mechanical calculations were performed to obtain the relative stabilities of the three possible geometric isomers for pseudo-octahedral polyaminocarboxylate metal complexes in solution. The calculations were supported by X-ray crystallographic data obtained for different Co(III) and Ga(III) polyaminocarboxylate complexes. Advanced 2D NOESY and classic 1D NMR spectroscopy were used to differentiate experimentally between cis- (C1 symmetry) and both trans- (C2 symmetry) isomers. IR spectroscopy was used to investigate the nature of carboxylate binding for metal complexes isolated in the solid state.

  20. Evaluation of lanthanide salts as alternative stains to uranyl acetate.

    PubMed

    Hosogi, Naoki; Nishioka, Hideo; Nakakoshi, Masamichi

    2015-12-01

    Uranyl acetate (UAc) has been generally used not only as a superb staining reagent for ultrathin sections of plastic-embedded biological materials, but also as high-contrast negative stains for biological macromolecules such as particles of protein or virus. However, the use and purchase of radioactive UAc have been restricted. In this study, we determine the performance of ytterbium triacetate, lutetium triacetate, samarium triacetate and gadolinium triacetate as new staining reagents for biological electron microscopy. We observed chemically fixed spinach (Spinacia oleracea) leaves stained with these reagents. Ultrathin sections were stained with these reagents. Some of them were counterstained with lead citrate. The transmission electron microscopy contrast of spinach organelles was evaluated in sections exposed to the conventional stain and new stains. We show acetate salts of samarium, gadolinium, ytterbium and lutetium could be excellent substitutes for UAc for thin section staining and for negative staining. In addition, each reagent showed appreciable negative-staining effects. PMID:26374081

  1. Enhancement of Anion Binding in Lanthanide Optical Sensors

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Gray, Harry B.; Ponce, Adrian

    2013-01-01

    In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the ‘lock-and-key.’ Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can be established from the ionization energy of Ln3+ ? Ln4+. These results account for the order Tb3+ > Dy3+ > Eu3+ ? Sm3+. As with many lanthanide properties, ranging from hydration enthalpy to vaporization energy, this AL-induced enhancement shows a large discrepancy between Tb3+ and Eu3+ despite their similarity in size, a phenomenon known as the ‘gadolinium break.’ This discrepancy, based on the unusual stabilities of the Eu2+ and Tb4+ oxidation states, results from the half-shell effect, as both of these ions have half-filled 4f-shells. The high polarizability of Tb3+ explains the extraordinarily large increase in the binding affinity of anions for terbium compared to other lanthanides. We recommend that researchers consider this AL-induced enhancement when designing lanthanide-macrocycle optical sensors. Ancillary ligands also can reduce the impact of interfering species such as phosphate) commonly found in environmental and physiological samples. PMID:24032446

  2. Engineering Encodable Lanthanide-Binding Tags (LBTs) into Loop Regions of Proteins

    PubMed Central

    Barthelmes, Katja; Reynolds, Anne M.; Peisach, Ezra; Jonker, Hendrik R. A.; DeNunzio, Nicholas J.; Allen, Karen N.; Imperiali, Barbara; Schwalbe, Harald

    2011-01-01

    Lanthanide-binding-tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1? and varied the length of the spacer between the LBT and the protein (denoted 1-3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1?-S1 and IL1?-L3 constructs and for the remaining constructs by comparing 1H-15N-HSQC NMR spectra with wild-type IL1?. Additionally, binding of LBT-loop IL1? proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop-constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1? structure. The paramagnetic NMR spectra of loop-LBT mutant IL1?-R2 were assigned and the ?? tensor components were calculated based on RDCs and pseudocontact shifts (PCSs). A structural model of the IL1?-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modelling. PMID:21182275

  3. The 3-(bromoacetamido)-propylamine hydrochloride: A novel sulfhydryl reagent and its future potential in the configurational study of S1-myosin

    NASA Technical Reports Server (NTRS)

    Sharma, Prasanta; Cheung, Herbert C.

    1989-01-01

    Configurational study of S1-Myosin is an important step towards understanding force generation in muscle contraction. Previously reported NMR studies were corroborated. A new compound was synthesized, 3-(Bromoacetamido)-propylamine hydrochloride. Its potential as a sulfhydryl reagent provides an indirect but elegant approach towards future structural elucidation of S1-Myosin. The preliminary investigation has shown that this compound, BAAP, reacted with S1 in the absence of MgADP. The modified enzyme had a 2-fold increase in CaATPase activity and no detectable K-EDTA ATPase activity. Reaction of BAAP with S1 in the presence of MgADP resulted in a modified enzyme which retained a Ca-ATPase activity that was about 60 percent of the unmodified S1 and had essentially zero K-EDTA ATPase activity. Sulfhydryl titration indicated that about 1.5 and 3.5 SH groups per S1 molecule were blocked by BAAP in the absence and presence of MgADP, respectively. When coupled to a carboxyl group of EDTA, the resulting reagent could become a useful SH reagent in which chelated paramagnetic or luminescent lanthanide ions can be exploited to probe S1 conformation.

  4. Lanthanide speciation in potential SANEX and GANEX actinide/lanthanide separations using tetra-N-donor extractants.

    PubMed

    Whittaker, Daniel M; Griffiths, Tamara L; Helliwell, Madeleine; Swinburne, Adam N; Natrajan, Louise S; Lewis, Frank W; Harwood, Laurence M; Parry, Stephen A; Sharrad, Clint A

    2013-04-01

    Lanthanide(III) complexes with N-donor extractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr(3+), Eu(3+), Tb(3+), and Yb(3+) complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and the Pr(3+), Eu(3+), and Tb(3+) complexes of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two of the tetra-N-donor ligands to each Ln(3+) ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln(3+)/L(N4-donor) species (Ln = Pr(3+), Eu(3+), Tb(3+)) in methanol when the N-donor ligand was in excess. When the Ln(3+) ion was in excess, evidence for formation of a 1:1 Ln(3+)/L(N4-donor) complex species was observed. Luminescent lifetime studies of mixtures of Eu(3+) with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu(3+) and Tb(3+) species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln(3+)/L(N-donor) species. PMID:23438021

  5. Shifting Sugars and Shifting Paradigms

    PubMed Central

    Siegal, Mark L.

    2015-01-01

    No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face. PMID:25688600

  6. U. S. VETERINARY IMMUNE REAGENTS NETWORK: PROGRESS WITH POULTRY IMMUNE REAGENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This poster will present a progress report on the CSREES-funded NRI grant to support a broad community approach to systematically address the immunological reagent gap for the US veterinary immunology research community including for the following groups: ruminants (concentrating on cattle but inclu...

  7. Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing.

    PubMed

    Nichols, Kevin P; Pompano, Rebecca R; Li, Liang; Gelis, Artem V; Ismagilov, Rustem F

    2011-10-01

    The closing of the nuclear fuel cycle is an unsolved problem of great importance. Separating radionuclides produced in a nuclear reactor is useful both for the storage of nuclear waste and for recycling of nuclear fuel. These separations can be performed by designing appropriate chelation chemistries and liquid-liquid extraction schemes, such as in the TALSPEAK process (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes). However, there are no approved methods for the industrial scale reprocessing of civilian nuclear fuel in the United States. One bottleneck in the design of next-generation solvent extraction-based nuclear fuel reprocessing schemes is a lack of interfacial mass transfer rate constants obtained under well-controlled conditions for lanthanide and actinide ligand complexes; such rate constants are a prerequisite for mechanistic understanding of the extraction chemistries involved and are of great assistance in the design of new chemistries. In addition, rate constants obtained under conditions of known interfacial area have immediate, practical utility in models required for the scaling-up of laboratory-scale demonstrations to industrial-scale solutions. Existing experimental techniques for determining these rate constants suffer from two key drawbacks: either slow mixing or unknown interfacial area. The volume of waste produced by traditional methods is an additional, practical concern in experiments involving radioactive elements, both from disposal cost and experimenter safety standpoints. In this paper, we test a plug-based microfluidic system that uses flowing plugs (droplets) in microfluidic channels to determine absolute interfacial mass transfer rate constants under conditions of both rapid mixing and controlled interfacial area. We utilize this system to determine, for the first time, the rate constants for interfacial transfer of all lanthanides, minus promethium, plus yttrium, under TALSPEAK process conditions, as a first step toward testing the molecular mechanism of this separation process. PMID:21888347

  8. Bis-(N-maleimidomethyl) ether: an antisickling reagent.

    PubMed Central

    Zak, S J; Geller, G R; Finkel, B; Tukey, D P; McCormack, M K; Krivit, W

    1975-01-01

    The interaction of bis-(N-maleimidomethyl) ether with oxyhemoglobin results in covalent linkages of both maleimide groups, converting them to succinyl derivatives of beta93 Cys and beta97 His at their sulfhydryl and imidazolyl side chains, respectively. The resultant hemoglobin is stable, and reveals a left-shifted oxyhemoglobin equilibrium curve in which cooperativity is abolished. This reagent readily traverses the red cell membrane and prevents the sickling reaction upon deoxygenation. It appears to affect none of the activities of the red cell enzymes adversely, nor does it appear to affect the red cell membrane. Since there are several defined effects on the stereochemical status of the molecule conferred by interaction with bis-(N-maleimidomethyl) ether, the precise mechanism of the anitsickling effect remains to be elucidated. A more subtle perturberant will be required to specify a precise antisickling effect. By use of bis-(N-maleimidomethyl) ether a precise locus on the beta chain of human hemoglobin S can be perturbed to produce the desired effect. Images PMID:1060096

  9. The Reagent-sorption Technology of Water Treatment

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Neschimenko, Y. P.; Feklistov, D. Y.

    The main purpose of this work is to intensify and to improve the efficiency of water treatment processes as well as to combine optimally modern techniques and technological devices in water treatment processes. Offered comprehensive hybrid water treatment developing technology of different origin is based on the combination of the treatment by reagent and membrane electro dialysis. In offered technology, of water treatment as a reagent is proposed to use alumino-silicic reagent, which simultaneously is coagulant, flocculant and adsorbent.

  10. Organometallic palladium reagents for cysteine bioconjugation.

    PubMed

    Vinogradova, Ekaterina V; Zhang, Chi; Spokoyny, Alexander M; Pentelute, Bradley L; Buchwald, Stephen L

    2015-10-29

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications. PMID:26511579

  11. Organometallic palladium reagents for cysteine bioconjugation

    NASA Astrophysics Data System (ADS)

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-10-01

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  12. Fluorescent-antibody reagents for the identification of Clostridium botulinum.

    PubMed

    Glasby, C; Hatheway, C L

    1983-12-01

    Fluorescent-antibody reagents were prepared against vegetative cells of representative strains of each physiological group and toxin type of Clostridium botulinum known to have caused botulism in humans. A fluorescent-antibody reagent was also prepared for C. botulinum type G, which has been isolated from autopsy specimens but which has not clearly been implicated in botulism. These fluorescent-antibody reagents were evaluated against 200 strains of C. botulinum and 64 strains of other clostridia. Each reagent reacted with at least a 2+ intensity with all of the strains in its same toxin type and physiological group. Ninety-seven percent of the strains gave at least a 3+ reaction with the homologous group or toxin type reagent. Some cross-reactions occurred with reagents against different toxin type strains within a physiological group; there was less cross-reaction between physiological groups and very little reactivity of C. botulinum reagents with nontoxigenic organisms. Absorption of cross-reacting antibodies was not successful. Certain reagents could be used for presumptive laboratory identification of C. botulinum strains causing botulism, especially in infants. The type G reagent provided a good means of identifying C. botulinum type G, which lacks the lipase marker and whose toxigenicity may be more difficult to demonstrate in mixed cultures. There was a serological relationship between C. botulinum type G and some strains of Clostridium subterminale. This relationship provided evidence of differences between strains of C. botulinum type G isolated in two different countries. PMID:6361053

  13. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which, through..., 1994. 4. “Draft Review Criteria for Nucleic Acid Amplification-Based In Vitro Diagnostic Devices...

  14. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which, through..., 1994. 4. “Draft Review Criteria for Nucleic Acid Amplification-Based In Vitro Diagnostic Devices...

  15. Tetraarylphosphonium-supported carbodiimide reagents: synthesis, structure optimization and applications.

    PubMed

    Ginisty, Maryon; Roy, Marie-Noelle; Poupon, Jean-Christophe; Picard, Anne; Charette, André B

    2008-04-01

    New tetraarylphosphonium (TAP)-supported alkyl- and arylcarbodiimides were synthesized and used as coupling reagents for esterification reactions, amidation reactions and dehydration reactions of hydroxyesters. Taking advantage of the solubility properties imparted by the tetraarylphosphonium unit, a simple precipitation and filtration allowed complete separation of the urea by-products. This paper describes the structure optimization study of the various TAP-supported carbodiimide reagents to obtain the desired reactivity and solubility profile. Furthermore, we have demonstrated that the diimide reagent can be regenerated from the urea to recycle the reagents. PMID:18315003

  16. Dynamic tests for actinide/lanthanide separation by CMPO solvent in fluorinated diluents

    SciTech Connect

    Tkachenko, L.; Babain, V.; Alyapyshev, M.; Vizniy, A.; Il'in, A.; Shadrin, A.

    2013-07-01

    Actinide and lanthanide extraction by new solvent: 0.2 M phenyl-octyl-N,N-diiso-butylcarbamoyl-phosphine oxide (CMPO) + 30% TBP + formal of octafluoro-pentanol was studied. A dynamic test with this solvent was performed. It was shown that americium and lanthanides are effectively extracted from PUREX process raffinate. The separation of americium from light lanthanides was confirmed in the modified SETFICS flowsheet with this new solvent. (authors)

  17. Extraction of trivalent lanthanides and actinides by ``CMPO-like`` calixarenes

    SciTech Connect

    Delmau, L.H.; Simon, N.; Schwing-Weill, M.J.

    1999-04-01

    Extractive properties of calix[4]arenes bearing carbamoylmethylphosphine oxide moieties on their upper rim toward trivalent lanthanide and actinide cations were investigated. The study revealed that these molecules selectively extract light lanthanides and actinides from heavy lanthanides. All parameters present in the extraction system were varied to determine the origin of the selectivity. It was found that this selectivity requires a calix[4]arene platform and acetamidophosphine oxide groups containing phenyl substituents on the four phosphorus atoms.

  18. Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols.

    PubMed

    Durocher, Suzanne; Rezaee, Asad; Hamm, Caroline; Rangan, Chitra; Mittler, Silvia; Mutus, Bulent

    2009-02-25

    Disulfide-linked gold nanoparticles (AuNP) were synthesized by reacting dithiobis[succinimidylpropionate] (DSP) coated nanoparticles with glutathione disulfide. AuNP-cross-linking was monitored by the red shift and broadening of the AuNP's localized surface plasmon absorption resonance (LSPR) spectrum. The exposure of the disulfide-linked AuNPs to a variety of free thiols with systematically varying molecular weight revealed a AuNP-disulfide stability to reduction by thiols up to a critical molecular weight, M(c), of >300 Da thus making the disulfide-linked AuNP the first reagent that can discriminate thiols based on their size. PMID:19178279

  19. Transport of lanthanides in milk into suckling rats.

    PubMed

    Marciniak, M; Cha?, J; Baltrukiewicz, Z

    1996-12-01

    The aim of this paper was to examine the transport of lanthanides in milk of contaminated rats into their sucklings and the retention of lanthanides in the sucklings. The research involved 55 female Wistar rats contaminated in the period of lactation and their offspring (400 infant rats). The study showed that in the period of lactation the transport in milk from the mother to the offspring of the lanthanide radionuclides under examination (144Ce, 147Nd, 152Sm, 155Eu and 160Tb) increased with their mass numbers: CE < Nd < Sm < Eu < Tb, and varied from 0.01% for 144Ce to 17.7% for 160Tb of the administered dose per litter. It was demonstrated that lanthanides were not absorbed from the digestive tract of sucklings because they were not detected beyond its area. Because of its highest concentration in milk 160Tb was chosen for further investigation of the kinetics of transport in individual segments of the digestive tract. The model for determining the function of lanthanide retention in separate parts of the digestive tract of sucklings and the half life of effective accumulation and elimination of 160Tb in the whole organism as well as in individual segments of the digestive tract are presented. Terbium-160 accumulation in sucklings increased whereas its elimination decreased with the age of the infant. No significant differences in 160Tb specific activity in stomach, and small and large intestines were observed in sucklings one to 21 days old. Biological half lives for retention of the contaminated milk were as follow: 0.25 +/- 0.021 per day for the stomach, 0.92 +/- 0.12 per day for the small intestine and 5.03 +/- 0.22 per day for the large intestine. The data obtained can be used in the evaluation of the doses absorbed from 160Tb and from other lanthanide radionuclides that are nonabsorbable from the digestive tract, as well as in estimation of the radiation risk to the offspring of mothers contaminated in the period of lactation. PMID:9050340

  20. Spectroscopic study on the photophysical properties of novel lanthanide complexes with long chain mono-L phthalate (L = hexadecyl, octadecyl and eicosyl)

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Xu, Bing

    2005-11-01

    Ortho-phthalic anhydride was modified with long chain alcohol (1-hexadecanol, 1-octadecanol and 1-eicosanol) to their corresponding mono-L phthalate (L = hexadecyl, octadecyl and eicosyl), i.e. monohexadecyl phthalate (16-Phth), monooctadecyl phthalate (18-Phth), and monoeicosyl phthalate (20-Phth), respectively. Nine novel lanthanide (Eu 3+, Tb 3+ and Dy 3+) complexes with these three mono-L phthalate ligands were synthesized and characterized by elemental analysis and IR spectra. The photophysical properties of these complexes were studied in detail with various spectroscopes such as ultraviolet-visible absorption spectra, low temperature phosphorescence spectra and fluorescent spectra. The ultraviolet-visible absorption spectra show some band shifts with the different chain-length of phthalate monoester and homologous lanthanide complexes. From the low temperature phosphorescent emission, the triplet state energies for these three ligands were determined to be around 22,650 cm -1 (16-Phth), 23,095 cm -1 (18-Phth) and 22,400 cm -1 (20-Phth), respectively, suggesting they are suitable for the sensitization of the luminescence of Eu 3+, Tb 3+ and Dy 3+. The fluorescence excitation and emission spectra for these lanthanides complexes of the three ligands take agreement with the above predict from energy match.

  1. Quantum coherent control of blue, green and red emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ by two shaped infrared ultrashort laser beams

    NASA Astrophysics Data System (ADS)

    Cheng, Wenjing; Zhang, Shian; Jia, Tianqing; Ma, Jing; Sun, Zhenrong

    2014-01-01

    The enhancement and tunable color emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ have been studied extensively in recent decades. In this paper, we present a new scheme for quantum coherent control of two-photon absorption (TPA) and color emission in codoped lanthanide ions of Er3+/Tm3+/Yb3+ by properly phase shaping two infrared ultrashort laser beams at central frequencies of 10?650 cm-1 and 7650 cm-1, respectively. Compared with the results irradiated by transform-limited pulses, the TPA probabilities of the blue, green and red emissions are independently controlled in the ranges 0-13.3, 0-14.5 and 0-1.0, respectively. The effects of the energy states of lanthanide ions and the laser spectral bandwidths on the coherent features are also discussed. The TPA probabilities for the blue and green emissions increase with the laser spectral bandwidths and decrease with the energy bandwidths of the final level states. As the intermediate energy level shifts in the range 10?100-10?500 cm-1, the TPA probabilities for the blue and green emissions change in the ranges 7-15 and 8-17, respectively.

  2. The lanthanides and yttrium in minerals of the apatite group; a review

    USGS Publications Warehouse

    Fleischer, Michael; Altschuler, Z.S.

    1982-01-01

    More than 1000 analyses have been tabulated of the distribution of the lanthanides and yttrium in minerals of the apatite group, recalculated to atomic percentages. Average compositions have been calculated for apatites from 14 types of rocks. These show a progressive change of composition from apatites of granitic pegmatites, highest in the heavy lanthanides and yttrium, to those from alkalic pegmatites, highest in the light lanthanides and lowest in yttrium. This progression is clearly shown in plots of S (= at % La+Ce+Pr) vs the ratio La/Nd and of S vs the ratio 100Y/(Y+Ln), where Ln is the sum of the lanthanides. Apatites of sedimentary phosphorites occupy a special position, being relatively depleted in Ce and relatively enriched in yttrium and the heavy lanthanides, consequences of deposition from sea water. Apatites associated with iron ores are close in composition to apatites of carbonatites, alkalic ultramafic, and ultramafic rocks, being enriched in the light lanthanides and depleted in the heavy lanthanides. Their compositions do not support the hypothesis of Parak that the Kiruna-type ores are of sedimentary origin. Table 9 and Figures 1-3 show the dependence of lanthanide distribution on the nature of the host rock. Although a given analysis of the lanthanides does not unequivocally permit certain identification of the host rock, it can indicate a choice of highly probable host rocks.

  3. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    SciTech Connect

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  4. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    SciTech Connect

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  5. The first quaternary lanthanide(III) nitride iodides: NaM{sub 4}N{sub 2}I{sub 7} (M=La-Nd)

    SciTech Connect

    Schurz, Christian M.; Schleid, Thomas

    2010-10-15

    In attempts to synthesize lanthanide(III) nitride iodides with the formula M{sub 2}NI{sub 3} (M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides NaM{sub 4}N{sub 2}I{sub 7} (orthorhombic, Pna2{sub 1}; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are {sup 1}{sub {infinity}}{l_brace}[NM{sub 4/2}{sup e}]{sup 3+}{r_brace} chains of trans-edge linked [NM{sub 4}]{sup 9+} tetrahedra, which run parallel to the polar 2{sub 1}-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI{sub 6}]{sup 5-} octahedra are embedded. The IR spectrum of NaLa{sub 4}N{sub 2}I{sub 7} recorded from 100 to 1000 cm{sup -1} shows main bands at {upsilon}=337, 373 and 489 cm{sup -1}. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [NM{sub 4}]{sup 9+} tetrahedra, are shifted toward higher frequencies for the NaM{sub 4}N{sub 2}I{sub 7} series (M=La-Nd), following the lanthanide contraction. - Abstract: View at the main structural features of the NaM{sub 4}N{sub 2}I{sub 7} series (M=La-Nd): The {sup 1}{sub {infinity}}{l_brace}[NM{sub 4/2}{sup e}]{sup 3+}{r_brace} chains, consisting of trans-edge connected [NM{sub 4}]{sup 9+} tetrahedra, and the special kind of iodide anions, namely (I7){sup -}, form cages, in which isolated [NaI{sub 6}]{sup 5-} octahedra are embedded.

  6. Lanthanide Template Synthesis of Trefoil Knots of Single Handedness.

    PubMed

    Zhang, Gen; Gil-Ramírez, Guzmán; Markevicius, Augustinas; Browne, Colm; Vitorica-Yrezabal, Iñigo J; Leigh, David A

    2015-08-19

    We report on the assembly of 2,6-pyridinedicarboxamide ligands (1) with point chirality about lanthanide metal ion (Ln(3+)) templates, in which the helical chirality of the resulting entwined 3:1 ligand:metal complexes is covalently captured by ring-closing olefin metathesis to form topologically chiral molecular trefoil knots of single handedness. The ligands do not self-sort (racemic ligands form a near-statistical mixture of homoleptic and heteroleptic lanthanide complexes), but the use of only (R,R)-1 leads solely to a trefoil knot of ?-handedness, whereas (S,S)-1 forms the ?-trefoil knot with complete stereoselectivity. The knots and their isomeric unknot macrocycles were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography and the expression of the chirality that results from the topology of the knots studied by circular dichroism. PMID:26214819

  7. A TRUEX-based separation of americium from the lanthanides

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt; Mary E. Case

    2011-03-01

    Abstract: The inextractability of the actinide AnO2+ ions in the TRUEX process suggests the possibility of a separation of americium from the lanthanides using oxidation to Am(V). The only current method for the direct oxidation of americium to Am(V) in strongly acidic media is with sodium bismuthate. We prepared Am(V) over a wide range of nitric acid concentrations and investigated its solvent extraction behavior for comparison to europium. While a separation is achievable in principal, the presence of macro amounts of cerium competes for the sparingly soluble oxidant and the oxidant itself competes for CMPO complexation. These factors conspire to reduce the Eu/Am separation factor from ~40 using tracer solutions to ~5 for extractions from first cycle raffinate simulant solution. To separate pentavalent americium directly from the lanthanides using the TRUEX process, an alternative oxidizing agent will be necessary.

  8. Phenylethynyl endcapping reagents and reactive diluents

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (inventor); Bryant, Robert G. (inventor); Hergenrother, Paul M. (inventor)

    1994-01-01

    A phenylethynyl composition which can be used to endcap nucleophilic species is employed in the production of phenylethynyl terminated reactive oligomers exclusively. These phenylethynyl terminated reactive oligomers display unique thermal characteristics, as exemplified by the model compound, 4-phenoxy 4'-phenylethynylbenzophenone, which is relatively stable at 200 C, but reacts at 350 C. In addition, a reactive diluent was prepared which decreases the melt viscosity of the phenylethynyl terminated oligomers and subsequently reacts therewith to increase density of the resulting thermoset. The novelty of this invention resides in the phenylethynyl composition used to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent was also employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to increase the crosslink density of the resulting thermoset. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  9. Prussian Blue as a Prebiotic Reagent

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S.; Veintemillas-Verdaguer, S.

    2009-12-01

    Ferrocyanide has been proposed as a potential prebiotic reagent and the complex salt Prussian Blue, Fe4[Fe(CN)6]3, might be an important reservoir of HCN, in the early Earth. HCN is considered the main precursor of amino acids and purine and pyrimidine bases under prebiotic conditions. Recently, we observed the formation of Prussian Blue in spark discharge experiments using saline solutions of ferrous chloride, FeCl2. Using Prussian Blue as starting material in ammonium suspensions, we obtained organic compounds containing nitrogen. These results seem to indicate that Prussian Blue could have been first, a sink of HCN, and then in subsequent reactions, triggered by pH fluctuations, it might have lead to organic life precursors.

  10. 21 CFR 864.1860 - Immunohistochemistry reagents and kits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunohistochemistry reagents and kits. 864.1860 Section 864.1860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1860 Immunohistochemistry reagents and kits. (a)...

  11. 21 CFR 864.8950 - Russell viper venom reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper...

  12. 21 CFR 864.8950 - Russell viper venom reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper...

  13. 21 CFR 864.8950 - Russell viper venom reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper...

  14. 21 CFR 864.1860 - Immunohistochemistry reagents and kits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunohistochemistry reagents and kits. 864.1860 Section 864.1860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1860 Immunohistochemistry reagents and kits. (a)...

  15. 21 CFR 864.1860 - Immunohistochemistry reagents and kits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunohistochemistry reagents and kits. 864.1860 Section 864.1860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1860 Immunohistochemistry reagents and kits. (a)...

  16. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Analyte specific reagents. 864.4020 Section 864.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4020 Analyte...

  17. 21 CFR 864.4020 - Analyte specific reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Analyte specific reagents. 864.4020 Section 864.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4020 Analyte...

  18. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4010 General...

  19. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4010 General...

  20. 21 CFR 864.8950 - Russell viper venom reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper...

  1. 21 CFR 864.8950 - Russell viper venom reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper...

  2. 21 CFR 866.3040 - Aspergillus spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspergillus spp. serological reagents. 866.3040 Section 866.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3040...

  3. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415...

  4. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  6. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  7. 21 CFR 866.3340 - Klebsiella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Klebsiella spp. serological reagents. 866.3340 Section 866.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3340...

  8. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Salmonella spp. serological reagents. 866.3550 Section 866.3550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550...

  9. 21 CFR 866.3040 - Aspergillus spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspergillus spp. serological reagents. 866.3040 Section 866.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3040...

  10. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Salmonella spp. serological reagents. 866.3550 Section 866.3550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550...

  11. 21 CFR 866.3110 - Campylobacter fetus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Campylobacter fetus serological reagents. 866.3110 Section 866.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3110...

  12. 21 CFR 866.3355 - Listeria spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Listeria spp. serological reagents. 866.3355 Section 866.3355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3355 Listeria...

  13. 21 CFR 866.3405 - Poliovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Poliovirus serological reagents. 866.3405 Section 866.3405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3405...

  14. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  15. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  16. 21 CFR 866.3500 - Rickettsia serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rickettsia serological reagents. 866.3500 Section 866.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3500...

  17. 21 CFR 866.3850 - Trichinella spiralis serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Trichinella spiralis serological reagents. 866.3850 Section 866.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  18. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mumps virus serological reagents. 866.3380 Section 866.3380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps...

  19. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  20. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Echovirus serological reagents. 866.3205 Section 866.3205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205...

  1. 21 CFR 866.3200 - Echinococcus spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Echinococcus spp. serological reagents. 866.3200 Section 866.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3200...

  2. 21 CFR 866.3280 - Francisella tularensis serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Francisella tularensis serological reagents. 866.3280 Section 866.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  3. 21 CFR 866.3350 - Leptospira spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Leptospira spp. serological reagents. 866.3350 Section 866.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3350...

  4. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Trypanosoma spp. serological reagents. 866.3870 Section 866.3870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3870...

  5. 21 CFR 866.3340 - Klebsiella spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Klebsiella spp. serological reagents. 866.3340 Section 866.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3340...

  6. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Salmonella spp. serological reagents. 866.3550 Section 866.3550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550...

  7. 21 CFR 866.3405 - Poliovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Poliovirus serological reagents. 866.3405 Section 866.3405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3405...

  8. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Influenza virus serological reagents. 866.3330 Section 866.3330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330...

  9. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bordetella spp. serological reagents. 866.3065 Section 866.3065 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3065...

  10. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415...

  11. 21 CFR 866.3340 - Klebsiella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Klebsiella spp. serological reagents. 866.3340 Section 866.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3340...

  12. 21 CFR 866.3300 - Haemophilus spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Haemophilus spp. serological reagents. 866.3300 Section 866.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3300...

  13. 21 CFR 866.3200 - Echinococcus spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Echinococcus spp. serological reagents. 866.3200 Section 866.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3200...

  14. 21 CFR 866.3035 - Arizona spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arizona spp. serological reagents. 866.3035 Section 866.3035 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3035 Arizona...

  15. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia...

  16. 21 CFR 866.3320 - Histoplasma capsulatum serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Histoplasma capsulatum serological reagents. 866.3320 Section 866.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  17. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Citrobacter spp. serological reagents. 866.3125 Section 866.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125...

  18. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415...

  19. 21 CFR 866.3175 - Cytomegalovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cytomegalovirus serological reagents. 866.3175 Section 866.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  20. 21 CFR 866.3375 - Mycoplasma spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mycoplasma spp. serological reagents. 866.3375 Section 866.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3375...

  1. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Echovirus serological reagents. 866.3205 Section 866.3205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205...

  2. 21 CFR 866.3395 - Norovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Norovirus serological reagents. 866.3395 Section 866.3395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3395...

  3. 21 CFR 866.3280 - Francisella tularensis serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Francisella tularensis serological reagents. 866.3280 Section 866.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3250 - Erysipelothrix rhusiopathiae serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erysipelothrix rhusiopathiae serological reagents. 866.3250 Section 866.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mumps virus serological reagents. 866.3380 Section 866.3380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps...

  6. 21 CFR 866.3850 - Trichinella spiralis serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Trichinella spiralis serological reagents. 866.3850 Section 866.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  7. 21 CFR 866.3355 - Listeria spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Listeria spp. serological reagents. 866.3355 Section 866.3355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3355 Listeria...

  8. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Influenza virus serological reagents. 866.3330 Section 866.3330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330...

  9. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Citrobacter spp. serological reagents. 866.3125 Section 866.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125...

  10. 21 CFR 866.3780 - Toxoplasma gondii serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Toxoplasma gondii serological reagents. 866.3780 Section 866.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3780...

  11. 21 CFR 866.3035 - Arizona spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arizona spp. serological reagents. 866.3035 Section 866.3035 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3035 Arizona...

  12. 21 CFR 866.3470 - Reovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Reovirus serological reagents. 866.3470 Section 866.3470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3470...

  13. 21 CFR 866.3520 - Rubeola (measles) virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rubeola (measles) virus serological reagents. 866.3520 Section 866.3520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  14. 21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  15. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120...

  16. 21 CFR 866.3040 - Aspergillus spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspergillus spp. serological reagents. 866.3040 Section 866.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3040...

  17. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Influenza virus serological reagents. 866.3330 Section 866.3330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330...

  18. 21 CFR 866.3460 - Rabiesvirus immuno-fluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rabiesvirus immuno-fluorescent reagents. 866.3460 Section 866.3460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3460...

  19. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Respiratory syncytial virus serological reagents. 866.3480 Section 866.3480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  20. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shigella spp. serological reagents. 866.3660 Section 866.3660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella...

  1. 21 CFR 866.3460 - Rabiesvirus immuno-fluorescent reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rabiesvirus immuno-fluorescent reagents. 866.3460 Section 866.3460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3460...

  2. 21 CFR 866.3040 - Aspergillus spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspergillus spp. serological reagents. 866.3040 Section 866.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3040...

  3. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mumps virus serological reagents. 866.3380 Section 866.3380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps...

  4. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3375 - Mycoplasma spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mycoplasma spp. serological reagents. 866.3375 Section 866.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3375...

  6. 21 CFR 866.3300 - Haemophilus spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Haemophilus spp. serological reagents. 866.3300 Section 866.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3300...

  7. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  8. 21 CFR 866.3740 - Streptococcus spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Streptococcus spp. serological reagents. 866.3740 Section 866.3740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3740...

  9. 21 CFR 866.3175 - Cytomegalovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cytomegalovirus serological reagents. 866.3175 Section 866.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  10. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  11. 21 CFR 866.3355 - Listeria spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Listeria spp. serological reagents. 866.3355 Section 866.3355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3355 Listeria...

  12. 21 CFR 866.3220 - Entamoeba histolytica serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Entamoeba histolytica serological reagents. 866.3220 Section 866.3220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  13. 21 CFR 866.3460 - Rabiesvirus immuno-fluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rabiesvirus immuno-fluorescent reagents. 866.3460 Section 866.3460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3460...

  14. 21 CFR 866.3460 - Rabiesvirus immuno-fluorescent reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rabiesvirus immuno-fluorescent reagents. 866.3460 Section 866.3460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3460...

  15. 21 CFR 866.3336 - John Cunningham Virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false John Cunningham Virus serological reagents. 866.3336 Section 866.3336 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.3740 - Streptococcus spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Streptococcus spp. serological reagents. 866.3740 Section 866.3740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3740...

  17. 21 CFR 866.3375 - Mycoplasma spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mycoplasma spp. serological reagents. 866.3375 Section 866.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3375...

  18. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bordetella spp. serological reagents. 866.3065 Section 866.3065 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3065...

  19. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  20. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  1. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  2. 21 CFR 866.3350 - Leptospira spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leptospira spp. serological reagents. 866.3350 Section 866.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3350...

  3. 21 CFR 866.3250 - Erysipelothrix rhusiopathiae serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erysipelothrix rhusiopathiae serological reagents. 866.3250 Section 866.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3320 - Histoplasma capsulatum serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Histoplasma capsulatum serological reagents. 866.3320 Section 866.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Parainfluenza virus serological reagents. 866.3400 Section 866.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3400...

  6. 21 CFR 866.3355 - Listeria spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Listeria spp. serological reagents. 866.3355 Section 866.3355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3355 Listeria...

  7. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  8. 21 CFR 866.3200 - Echinococcus spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Echinococcus spp. serological reagents. 866.3200 Section 866.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3200...

  9. 21 CFR 866.3500 - Rickettsia serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rickettsia serological reagents. 866.3500 Section 866.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3500...

  10. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Schistosoma spp. serological reagents. 866.3600 Section 866.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600...

  11. 21 CFR 866.3175 - Cytomegalovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cytomegalovirus serological reagents. 866.3175 Section 866.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  12. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  13. 21 CFR 866.3395 - Norovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Norovirus serological reagents. 866.3395 Section 866.3395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3395...

  14. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Shigella spp. serological reagents. 866.3660 Section 866.3660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella...

  15. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.3120 - Chlamydia serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chlamydia serological reagents. 866.3120 Section 866.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3120...

  17. 21 CFR 866.3270 - Flavobacterium spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Flavobacterium spp. serological reagents. 866.3270 Section 866.3270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  18. 21 CFR 866.3470 - Reovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Reovirus serological reagents. 866.3470 Section 866.3470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3470...

  19. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Schistosoma spp. serological reagents. 866.3600 Section 866.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600...

  20. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Respiratory syncytial virus serological reagents. 866.3480 Section 866.3480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  1. 21 CFR 866.3145 - Coxsackievirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coxsackievirus serological reagents. 866.3145 Section 866.3145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  2. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia...

  3. 21 CFR 866.3085 - Brucella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Brucella spp. serological reagents. 866.3085 Section 866.3085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3085 Brucella...

  4. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salmonella spp. serological reagents. 866.3550 Section 866.3550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550...

  5. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Echovirus serological reagents. 866.3205 Section 866.3205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205...

  6. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Parainfluenza virus serological reagents. 866.3400 Section 866.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3400...

  7. 21 CFR 866.3405 - Poliovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Poliovirus serological reagents. 866.3405 Section 866.3405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3405...

  8. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  9. 21 CFR 866.3680 - Sporothrix schenckii serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sporothrix schenckii serological reagents. 866.3680 Section 866.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  10. 21 CFR 866.3145 - Coxsackievirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coxsackievirus serological reagents. 866.3145 Section 866.3145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  11. 21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  12. 21 CFR 866.3375 - Mycoplasma spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mycoplasma spp. serological reagents. 866.3375 Section 866.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3375...

  13. 21 CFR 866.3085 - Brucella spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Brucella spp. serological reagents. 866.3085 Section 866.3085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3085 Brucella...

  14. 21 CFR 866.3220 - Entamoeba histolytica serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Entamoeba histolytica serological reagents. 866.3220 Section 866.3220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  15. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Respiratory syncytial virus serological reagents. 866.3480 Section 866.3480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.3850 - Trichinella spiralis serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Trichinella spiralis serological reagents. 866.3850 Section 866.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  17. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Schistosoma spp. serological reagents. 866.3600 Section 866.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600...

  18. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  19. 21 CFR 866.3220 - Entamoeba histolytica serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Entamoeba histolytica serological reagents. 866.3220 Section 866.3220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  20. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Parainfluenza virus serological reagents. 866.3400 Section 866.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3400...

  1. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  2. 21 CFR 866.3780 - Toxoplasma gondii serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Toxoplasma gondii serological reagents. 866.3780 Section 866.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3780...

  3. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Shigella spp. serological reagents. 866.3660 Section 866.3660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella...

  5. 21 CFR 866.3350 - Leptospira spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leptospira spp. serological reagents. 866.3350 Section 866.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3350...

  6. 21 CFR 866.3680 - Sporothrix schenckii serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sporothrix schenckii serological reagents. 866.3680 Section 866.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  7. 21 CFR 866.3780 - Toxoplasma gondii serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Toxoplasma gondii serological reagents. 866.3780 Section 866.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3780...

  8. 21 CFR 866.3375 - Mycoplasma spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mycoplasma spp. serological reagents. 866.3375 Section 866.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3375...

  9. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Parainfluenza virus serological reagents. 866.3400 Section 866.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3400...

  10. 21 CFR 866.3280 - Francisella tularensis serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Francisella tularensis serological reagents. 866.3280 Section 866.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  11. 21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  12. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  13. 21 CFR 866.3740 - Streptococcus spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Streptococcus spp. serological reagents. 866.3740 Section 866.3740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3740...

  14. 21 CFR 866.3110 - Campylobacter fetus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Campylobacter fetus serological reagents. 866.3110 Section 866.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3110...

  15. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Citrobacter spp. serological reagents. 866.3125 Section 866.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125...

  17. 21 CFR 866.3500 - Rickettsia serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rickettsia serological reagents. 866.3500 Section 866.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3500...

  18. 21 CFR 866.3520 - Rubeola (measles) virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rubeola (measles) virus serological reagents. 866.3520 Section 866.3520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  19. 21 CFR 866.3200 - Echinococcus spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Echinococcus spp. serological reagents. 866.3200 Section 866.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3200...

  20. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415...

  1. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bordetella spp. serological reagents. 866.3065 Section 866.3065 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3065...

  2. 21 CFR 866.3220 - Entamoeba histolytica serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Entamoeba histolytica serological reagents. 866.3220 Section 866.3220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  3. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mumps virus serological reagents. 866.3380 Section 866.3380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps...

  4. 21 CFR 866.3780 - Toxoplasma gondii serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Toxoplasma gondii serological reagents. 866.3780 Section 866.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3780...

  5. 21 CFR 866.3270 - Flavobacterium spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Flavobacterium spp. serological reagents. 866.3270 Section 866.3270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  6. 21 CFR 866.3680 - Sporothrix schenckii serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sporothrix schenckii serological reagents. 866.3680 Section 866.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  7. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415...

  8. 21 CFR 866.3320 - Histoplasma capsulatum serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Histoplasma capsulatum serological reagents. 866.3320 Section 866.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  9. 21 CFR 866.3320 - Histoplasma capsulatum serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Histoplasma capsulatum serological reagents. 866.3320 Section 866.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  10. 21 CFR 866.3270 - Flavobacterium spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flavobacterium spp. serological reagents. 866.3270 Section 866.3270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  11. 21 CFR 866.3380 - Mumps virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mumps virus serological reagents. 866.3380 Section 866.3380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3380 Mumps...

  12. 21 CFR 866.3220 - Entamoeba histolytica serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Entamoeba histolytica serological reagents. 866.3220 Section 866.3220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  13. 21 CFR 866.3035 - Arizona spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arizona spp. serological reagents. 866.3035 Section 866.3035 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3035 Arizona...

  14. 21 CFR 866.3110 - Campylobacter fetus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Campylobacter fetus serological reagents. 866.3110 Section 866.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3110...

  15. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bordetella spp. serological reagents. 866.3065 Section 866.3065 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3065...

  17. 21 CFR 866.3085 - Brucella spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Brucella spp. serological reagents. 866.3085 Section 866.3085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3085 Brucella...

  18. 21 CFR 866.3600 - Schistosoma spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Schistosoma spp. serological reagents. 866.3600 Section 866.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3600...

  19. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  20. 21 CFR 866.3300 - Haemophilus spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Haemophilus spp. serological reagents. 866.3300 Section 866.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3300...

  1. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia...

  2. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  3. 21 CFR 866.3680 - Sporothrix schenckii serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sporothrix schenckii serological reagents. 866.3680 Section 866.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3270 - Flavobacterium spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flavobacterium spp. serological reagents. 866.3270 Section 866.3270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3320 - Histoplasma capsulatum serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Histoplasma capsulatum serological reagents. 866.3320 Section 866.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  6. 21 CFR 866.3660 - Shigella spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shigella spp. serological reagents. 866.3660 Section 866.3660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3660 Shigella...

  7. 21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  8. 21 CFR 866.3405 - Poliovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Poliovirus serological reagents. 866.3405 Section 866.3405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3405...

  9. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Citrobacter spp. serological reagents. 866.3125 Section 866.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125...

  10. 21 CFR 866.3280 - Francisella tularensis serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Francisella tularensis serological reagents. 866.3280 Section 866.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  11. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bordetella spp. serological reagents. 866.3065 Section 866.3065 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3065...

  12. 21 CFR 866.3125 - Citrobacter spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Citrobacter spp. serological reagents. 866.3125 Section 866.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3125...

  13. 21 CFR 866.3140 - Corynebacterium spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  14. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Influenza virus serological reagents. 866.3330 Section 866.3330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330...

  15. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  17. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3490...

  18. 21 CFR 866.3250 - Erysipelothrix rhusiopathiae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erysipelothrix rhusiopathiae serological reagents. 866.3250 Section 866.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  19. 21 CFR 866.3205 - Echovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Echovirus serological reagents. 866.3205 Section 866.3205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3205...

  20. 21 CFR 866.3480 - Respiratory syncytial virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Respiratory syncytial virus serological reagents. 866.3480 Section 866.3480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...