Science.gov

Sample records for lanthanide-induced phosphorus-31 nmr

  1. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  2. Phosphorus-31 NMR of covalent phosphorylated derivatives of. alpha. -chymotrypsin

    SciTech Connect

    Gorenstein, D.G.; Shah, D.; Chen, R.; Kallick, D. )

    1989-03-07

    The structures of various covalent phosphorylated derivatives of {alpha}-chymotrypsin ({alpha}-CT) have been studied by {sup 31}P NMR spectroscopy. Diisopropylphosphoryl-{alpha}-chymotrypsin ({alpha}-DIPCT) shows a single {sup 31}P signal at ca. 0.0 ppm (pH 4). At low pH, the {sup 31}P NMR spectrum of {alpha}-DIPCT gradually changed with the appearance of one or two additional peaks. The ratio of the peaks varied with pH, time, and concentration. One of these two new downfield peaks (both at ca. 2.0 ppm) has been previously identified. A new additional downfield signal, separate from the {alpha}-MIPCT signal, is attributed to a dimer of the phosphorylated {alpha}-DIPCT. Phosphorylation of the enzyme with diphenyl chlorophosphate yields a monophenylphosphoryl-{alpha}-chymotrypsin ({alpha}-MPPCT) that also showed a single {sup 31}P signal at -2.1 ppm (pH 7). However, the spectrum did not change as a function of pH, incubation time, or concentration. Comparison of the {sup 31}P chemical shifts of the native and denatured phosphorylated derivatives of {alpha}-chymotrypsin suggests changes in the conformation about the P-O ester bonds are at least partially responsible for the various {sup 31}P chemical shift differences.

  3. Phosphonato complexes of platinum(II): kinetics of formation and phosphorus-31 NMR characterization studies

    SciTech Connect

    Slavin, L.L.; Bose, R.N. )

    1990-12-01

    Reactions of cis-diamminedichloroplatinum(II) with phosphonoformic acid (PFA), phosphonoacetic acid (PAA), and methylenediphosphonic acid (MDP) yield various phosphonatoplatinum(II) chelates which were characterized by phosphorus-31 NMR spectroscopy. The P-31 resonances for the chelates appear at 6-12 ppm downfield as compared to the uncomplexed ligands. All complexes exhibit monoprotic acidic behavior in the pH range 2-10. The chemical shift-pH profiles yielded acidity constants, 1.0 x 10(-4), 1.5 x 10(-4), and 1.3 x 10(-6) M-1, for the PFA, PAA, and MDP chelates. In addition to the monomeric chelate, MDP formed a bridged diplatinum(II,II) complex when it reacted with cis-Pt (NH3)2(H2O)2(2)+. The P-31 resonance for this binuclear complex appears at 22 ppm downfield from the unreacted ligand. Rate data for the complexation reactions of the phosphonate ligands with the dichloroplatinum complex are consistent with a mechanism in which a monodentate complex is formed initially through rate-limiting aquation process of the platinum complex, followed by a rapid chelation. For the PFA and PAA complexes, initial binding sites are the carboxylato oxygens. Implications of the various binding modes of the phosphonates in relationship to their antiviral activities are discussed.

  4. Nucleophilic Substitution Reactions Using Phosphine Nucleophiles: An Introduction to Phosphorus-31 NMR

    ERIC Educational Resources Information Center

    Sibbald, Paul A.

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is commonly used in modern synthetic chemistry to monitor the conversion of reactants to products. Since instruction in the use of NMR spectroscopy typically does not occur until after the introduction of nucleophilic substitution reactions, organic chemistry students are not able to take advantage of

  5. Nucleophilic Substitution Reactions Using Phosphine Nucleophiles: An Introduction to Phosphorus-31 NMR

    ERIC Educational Resources Information Center

    Sibbald, Paul A.

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is commonly used in modern synthetic chemistry to monitor the conversion of reactants to products. Since instruction in the use of NMR spectroscopy typically does not occur until after the introduction of nucleophilic substitution reactions, organic chemistry students are not able to take advantage of…

  6. Synthesis and characterization of polyphosphazene copolymers using phosphorus-31 NMR spectroscopy

    SciTech Connect

    Stewart, F.F.; Peterson, E.S.; Stone, M.L.; Singler, R.E.

    1997-01-01

    It was observed that competitive nucleophilic addition processes may be observed by {sup 31}P NMR spectroscopy. Methoxyethoxyethanol (MEE) and p-methoxyphenol readily substitute for chlorineonto phosphorus and the relative rates are generally comparable to each other. Sterically, the phenol presents is slightly larger than MEE but this does not appear to effect substitution judging by the observed PN(OAr){sub 2} NMR signal. These processes are still being studied.

  7. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  8. A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents.

    PubMed

    Mazumder, Avik; Kumar, Ajeet; Purohit, Ajay K; Dubey, Devendra K

    2012-02-01

    A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method has been developed for detection, identification and quantification of non-phosphorus markers of toxic nerve agents (soman and V-class), vesicants (HD, HN-2, HN-3), and incapacitating agent (Bz). These analytes were converted to phosphorus-containing derivatives via phosphitylation reaction of their hydroxyl and sulfhydryl functions (using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane). This was followed by (31)P{(1)H} and (31)P NMR analysis of these derivatives. The chemical shifts (δ) and coupling constants ((3)J(P-H)) of derivatives were used for their specific detection and identification. The method allowed clear distinction between the alcohols and thiols. The lower limits of detection of these analytes were found to be between 12 and 28 μg obtained from 128 transients of (31)P{(1)H} quantitative NMR experiments. Utility of the method was ensured by the detection and identification of triethanolamine present (at an original concentration of 5 μg/mL) in an aqueous sample from 28th OPCW Official Proficiency Tests. PMID:22160203

  9. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    SciTech Connect

    Koretsky, A.P.

    1984-08-01

    This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. Chronically implanted detection coils, employing a balanced matching configuration of capacitors in the tuned circuit, were used to obtain /sup 31/P NMR spectra from heart, kidney, and liver in situ. Gated spectra of heart obtained at systole and diastole and the effects of fructose on kidney and liver were studied. The ability to observe other nuclei using implanted coils is illustrated with /sup 39/K NMR spectra from kidney and muscle. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate (13 ..mu..mol/min/gm tissue) were compared to whole kidney oxygen consumption and Na/sup +/ reabsorption rates to derive ATP/O (0.8 to 1.7) and Na/sup +//ATP (4 to 10) values. The problems associated with ATP synthesis rate measurements in kidney, e.g., the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed.

  10. Characteristics and assessment of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR)

    NASA Astrophysics Data System (ADS)

    Zhang, W. Q.; Zhang, H.; Tang, W. Z.; Shan, B. Q.

    2013-10-01

    We studied the phosphorus (P) pollution, as described by concentrations, distribution and transformation potential, of sediments of the water scarce and heavily polluted Fuyang River, a tributary of the Haihe River, using P fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR).The sediments of the Fuyang River accumulate significant amounts of inorganic phosphorus (Pi) and organic phosphorus (Po) from industrial and domestic wastewater and agricultural non-point pollution. In terms of their contribution to total phosphorus, the rank order of the P fractions was as follows: H2SO4-P > NaOH-Pi > Res-P > NaOH-Po > KCl-P and their average relative proportions were 69.7:47.5:15.9:2.9:1.0 (the proportion was based on the average proportion of the KCl-P). Seven P compounds were detected by the 31P-NMR analysis. Orthophosphate (Ortho-P: 45.2-92.4%) and orthophosphate monoesters (mono-P: 6.6-45.7%) were the dominant forms. Smaller amounts of pyrophosphates (pyro-P: 0.1-6.6%), deoxyribonucleic acid (DNA-P: 0.3-3.9%), phosphonates (phon-P: 0-3.3%), phospholipids (lipids-P: 0-2.7%) and polyphosphate (poly-P: 0-0.04%) were observed in the sediments. Results of P fractionation and 31P-NMR analysis showed that 35% of Pi was labile P, including KCl-P and NaOH-Pi (Fe-P and Al-P). Biogenic-P accounted for 24% of P in the sediments. Analysis of the relationships between P species and water quality indicated that the Po compounds would mineralize to form ortho-P and would be potentially bioavailable for recycling to surface water, supporting further growth of phytoplankton and leading to algal blooms.

  11. Phosphorus-31 NMR spectra of ethidium, quinacrine, and daunomycin complexes with poly(adenylic acid)ter dot poly(uridylic acid) RNA duplex and calf thymus DNA

    SciTech Connect

    Gorenstein, D.G.; Lai, K. )

    1989-04-04

    {sup 31}P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A){center dot}poly(U) and calf thymus DNA. {sup 31}P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new {sup 31}P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A){center dot}poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the {sup 31}P signals is observed in sonicated poly(A){center dot}poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the {sup 31}P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA {sup 31}P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of {sup 31}P chemical shift with drug duplex unwinding angle is confirmed for both the RNA and DNA duplexes.

  12. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  13. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  14. The solution structure of Ln (DOTP) 5- complexxes. A comparison of lanthanide-induced paramagnetic shifts with the MMX energy-minimized structure

    NASA Astrophysics Data System (ADS)

    Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.

    Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.

  15. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times.

    PubMed

    Cade-Menun, B J; Liu, C W; Nunlist, R; McColl, J G

    2002-01-01

    Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy is an excellent tool with which to study soil organic P, allowing quantitative, comparative analysis of P forms. However, for 31P NMR to be tative, all peaks must be completely visible, and in their correct relative proportions. There must be no line broadening, and adequate delay times must be used to avoid saturation of peaks. The objective of this study was to examine the effects of extractants on delay times and peak saturation. Two samples (a forest litter and a mineral soil sample) and three extractants (0.25 M NaOH, NaOH plus Chelex (Bio-Rad Laboratories, Hercules, CA), and NaOH plus EDTA) were used to determine the differences in the concentration of P and cations solubilized by each extractant, and to measure spin-lattice (T1) relaxation times of P peaks in each extract. For both soil and litter, NaOH-Chelex extracted the lowest concentrations of P. For the litter sample, T1 values were short for all extractants due to the high Fe concentration remaining after extraction. For the soil sample, there were noticeable differences among the extractants. The NaOH-Chelex sample had less Fe and Mn remaining in solution after extraction than the other extractants, and the longest delay times used in the study, 6.4 s, were not long enough for quantitative analysis. Delay times of 1.5 to 2 s for the NaOH and NaOH-EDTA were adequate. Line broadening was highest in the NaOH extracts, which had the highest concentration of Fe. On the basis of these results, recommendations for future analyses of soil and litter samples by solution 31P NMR spectroscopy include: careful selection of an extractant; measurement of paramagnetic ions extracted with P; use of appropriate delay times and the minimum number of scans; and measurement of T1 values whenever possible. PMID:11931434

  16. A conformational study of nucleic acid phosphate ester bonds using phosphorus-31 nuclear magnetic resonance.

    PubMed Central

    Haasnoot, C A; Altona, C

    1979-01-01

    A systematic phosphorus-31 nuclear magnetic resonance study of some nucleic acid constituents (6-N-(dimethyl)adenylyl-(3',5')-uridine and some nucleotide methyl esters) is presented. The temperature dependent phosphorus-31 chemical shifts were analyzed by standard thermodynamic procedures. It is shown that gt conformations about the P-O ester bonds have a lower free energy content relative to gg conformers. PMID:440971

  17. Phosphorus-31 nuclear magnetic resonance studies of cellular systems

    SciTech Connect

    Robitaille, P.M.L.

    1986-01-01

    In this study, /sup 31/P-NMR spectroscopy was applied to the study of (1) sipunculan erythrocytes, (2) spermatozoa isolated from several vertebrate and invertebrate species, and (3) unfertilized eggs isolated from the blue crab and the horseshoe crab. /sup 31/P-NMR results center on the identification of key metabolites and on the determination of intracellular pH. In studies involving fish spermatozoa, emphasis was also placed on examining changes in metabolic profiles following (1) an anaerobic insult, (2) motility initiation, or (3) short-term storage. This study also captures several difficulties in spectral interpretation which a spectroscopist is likely to encounter.

  18. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena

    SciTech Connect

    Findly, R.C.; Gillies, R.J.; Shulman, R.G.

    1983-03-11

    Cells synthesize a characteristic set of proteins--heat shock proteins--in response to a rapid temperature jump or certain other stress treatments. The technique of phosphorus-31 nuclear magnetic resonance spectroscopy was used to examine in vivo the effects of temperature jump on two species of Tetrahymena that initiate the heat shock response at different temperatures. An immediate 50 percent decrease in cellular adenosine triphosphate was observed when either species was jumped to a temperature that strongly induces synthesis of heat shock proteins. This new adenosine triphosphate concentration was maintained at the heat shock temperature.

  19. A Sex-Specific Metabolite Identified in a Marine Invertebrate Utilizing Phosphorus-31 Nuclear Magnetic Resonance

    PubMed Central

    Kleps, Robert A.; Myers, Terrell C.; Lipcius, Romuald N.; Henderson, Thomas O.

    2007-01-01

    Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus) contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female) proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry? PMID:17712428

  20. A sex-specific metabolite identified in a marine invertebrate utilizing phosphorus-31 nuclear magnetic resonance.

    PubMed

    Kleps, Robert A; Myers, Terrell C; Lipcius, Romuald N; Henderson, Thomas O

    2007-01-01

    Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus) contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female) proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry? PMID:17712428

  1. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles

    SciTech Connect

    Gorenstein, D.G.; Luxon, B.A.; Goldfield, E.M.; Lai, K.; Vegeais, D.

    1982-02-02

    The temperature dependence to the /sup 31/P NMR spectra of poly(d(GC))-poly(d(GC)), d(GC)/sub 4/, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The /sup 31/P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and ''Z'' helix. The increasing downfield shift with temperature for the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A seperate upfield peak (20-26% of the total phosphates) is observed at lower temperatures in the oligo(U)-poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The /sup 31/P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation.

  2. One-dimensional phosphorus-31 chemical shift imaging of human brain tumors

    SciTech Connect

    Rutter, A.; Hugenholtz, H.; Saunders, J.K.

    1995-06-01

    Phosphorus magnetic resonance spectroscopy has been used noninvasively to determine characteristic spectral parameters for untreated human brain tumors as a prelude to its use in clinical diagnosis. The spectra, which reflect the relative amounts of phosphorus-containing compounds, and the pH within and surrounding the tumors, were obtained in vivo using the the localization technique of one-dimensional chemical shift imaging applied with a surface coil. Phosphorus-31 chemical shift imaging was performed successfully in vivo on 9 volunteers and 27 patients with untreated brain tumors, including 7 with astrocytoma, 4 with glioblastoma, 3 with meningioma, and 11 with metastases. This study provides spectra from within and surrounding the brain tumors, and allows accountability for the heterogeneity of brain tumors by the selection of the maximum data point for each parameter. The ratios of resonance areas, phosphodiesters over nucleoside triphosphate (NTP), and phosphomonoesters over NTP, were found to be higher in glioblastomas (2.55 {plus_minus} 0.22, 1.06 {plus_minus} 0.09) and astorcytomas (3.04 {plus_minus} 0.36, 1.28 {plus_minus} 0.36) than in normal brain (2.00 {plus_minus} 0.32, 0.79 {plus_minus}0.22). The ratios of areas due to inorganic phosphate and NTP, and phosphocreatine and NTP, also were higher in astrocytomas (1.16 {plus_minus} 0.40, 1.17 {plus_minus} 0.41) compared with glioblastomas (0.68 {plus_minus} 0.01, 0.88 {plus_minus} 0.19) and normal brain (0.61 {plus_minus}0.03, 0.77 {plus_minus} 0.03). The pH of brain tumors ranged from alkaline to neutral, with meningiomas consistently having alkaline pH. These data show that there are statistically significant differences in the magnetic resonance parameters of the affected brain hemispheres of patients with astrocytomas, glioblastomas, meningiomas, and normal brain tissue, and underline the need for a multisite clinical trial to establish clinical criteria for diagnosis. 28 refs., 3 figs., 2 tabs.

  3. Phosphorus-31 nuclear magnetic resonance spectroscopic study of the canine pancreas: applications to acute alcoholic pancreatitis

    SciTech Connect

    Janes, N.; Clemens, J.A.; Glickson, J.D.; Cameron, J.L.

    1988-01-01

    The first nuclear magnetic resonance spectroscopic study of the canine pancreas is described. Both in-vivo, ex-vivo protocols and NMR observables are discussed. The stability of the ex-vivo preparation based on the NMR observables is established for at least four hours. The spectra obtained from the in-vivo and ex-vivo preparations exhibited similar metabolite ratios, further validating the model. Metabolite levels were unchanged by a 50% increase in perfusion rate. Only trace amounts of phosphocreatine were observed either in the intact gland or in extracts. Acute alcoholic pancreatitis was mimicked by free fatty acid infusion. Injury resulted in hyperamylasemia, edema (weight gain), increased hematocrit and perfusion pressure, and depressed levels of high energy phosphates.

  4. Phosphorus-31 MRI of bones using quadratic echo line-narrowing

    NASA Astrophysics Data System (ADS)

    Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua

    2012-02-01

    There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.

  5. Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula.

    PubMed

    Hill, Jane E; Cade-Menun, Barbara J

    2009-01-01

    Nonpoint source phosphorus (P) pollution into the Chesapeake Bay watershed from poultry operations contributes to the algal blooms, hypoxia, anoxia, and fish kill events that occur there most years. A major source of soluble, bioavailable P species is poultry litter, which is used as a crop fertilizer on fields adjacent to the tributaries of the Bay. A potentially significant source of orthophosphate in the litter is the heavily phosphorylated compound myo-inositol hexakisphosphate (phytate), which is indigestible by poultry and thus becomes a major component of their excreta. Phytate evaluation in environmental samples is expensive; hence, its impact is not captured in standard farmer-friendly eutrophication potential guides, like Delaware's Phosphorus Site Index. In this transect study of two poultry operations on the Delmarva Peninsula, we measured the incidence of all P compounds using solution 31P nuclear magnetic resonance (NMR) spectroscopy and extracts, relating them to relevant geochemical properties. The contribution of phytate to the overall pool of P declined from around 50% in manures to between 2 and 13% in down-gradient soils and sediments, corresponding to a rise in the relative proportion of orthophosphate (increasing from 39% to 65-88%). The results show that the large pool of phytate P spread onto croplands during standard operating practice at poultry farms on the Delmarva Peninsula does not appear to accumulate; rather, phytate decreases in down-gradient locations, most likely due to transport off-site and/or through in situ biological activity. PMID:19141802

  6. Preliminary Study on Hepatocyte-Targeted Phosphorus-31 MRS Using ATP-Loaded Galactosylated Chitosan Oligosaccharide Nanoparticles

    PubMed Central

    Yu, Ri-Sheng; Zhu, Xiu-Liang; Sun, Jian-Zhong; Shi, Dan; Chen, Ying; Wang, Zhi-Kang; Tang, Ke-Zhong; Du, Yong-Zhong

    2013-01-01

    Background. The clinical applications of hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) remain to be difficult because the changes of phosphates between normal hepatic tissues and pathological tissues are not so obvious, and furthermore, up to now there is few literature on hepatocyte-targeted 31P MRS. Materials and Methods. The ATP-loaded Gal-CSO (Gal-CSO/ATP) nanoparticles were prepared and the special cellular uptake of them as evaluated by using HepG-2 tumor cells and A549 tumor cells, respectively. Two kinds of cells were incubated with the nanoparticles suspension, respectively. Then were prepared the cell samples and the enhancement efficiency of ATP peaks detected by 31P MRS was evaluated. Results. The cellular uptake rate of Gal-CSO/ATP nanoparticles in HepG-2 cells was higher than that in A549 cells. Furthermore, the enlarged ATP peaks of Gal-CSO/ATP nanoparticles in HepG-2 cells were higher than those in A549 cells in vitro detected by 31P MRS. Conclusions. Gal-CSO/ATP nanoparticles have significant targeting efficiency in hepatic cells in vitro and enhancement efficiency of ATP peaks in HepG-2 cells. Furthermore, 31P MRS could be applied in the research of hepatic molecular imaging. PMID:24363667

  7. Phosphorus-31 nuclear magnetic resonance study of post mortem catabolism and intracellular pH in intact excised rabbit muscle.

    PubMed

    Renou, J P; Canioni, P; Gatelier, P; Valin, C; Cozzone, P J

    1986-04-01

    Phosphorus-31 nuclear magnetic resonance has been used to study the post mortem catabolism of high-energy phosphate compounds and the associated intracellular pH variation in pure fast- and slow-twitch rabbit muscles and in rabbit muscle with mixed fiber types. Comparative results from pure fiber types are reported for the first time. Large amounts of glycerophosphorylcholine (14.1 mumol/g fresh tissue) are found in the internal conoidal bundle (ICB), a pure oxidative slow twitch muscle, whereas the m. psoas major (PM), a pure glycolytic fast twitch muscle and the m. gastrocnemius caput medialis (GCM), with mixed fiber types, are devoid of the same metabolite. The total content of phosphorylated metabolites is constant among the three muscle types. The time-dependent post mortem changes in phosphorylated metabolites display the expected rapid drop in phosphocreatine and a simultaneous increase in intracellular inorganic phosphate. However, the ATP level remains constant during more than 2 h. Rate constants for metabolite breakdown and apparent ATPase activity have been determined. The comparative kinetics of intracellular acidosis at 25 degrees C yield rates of 3.3 X 10(-3) pH unit/min for PM, 2.7 X 10(-3) pH unit/min for GCM and 3.0 X 10(-3) pH unit/min for ICB. Initial intracellular pH values are 7.07, 7.20 and 7.02, respectively. Upon aging, the heterogeneity of the Pi signal reflects the existence of cellular compartments with different internal pH. The results suggest that the more intense low-pH Pi signal arises from the sarcoplasmic reticulum while the less intense resonance would reflect the sarcoplasmic higher pH. The temperature effect on post mortem catabolism in the 15-25 degrees C range has been documented. As expected, phosphocreatine and ATP breakdown increase with temperature but at a higher rate for slow-twitch ICB than for fast-twitch PM. PMID:3091088

  8. Permeabilization of plant cells: (31)P NMR studies on the permeability of the tonoplast.

    PubMed

    Lundberg, P; Linsefors, L; Vogel, H J; Brodelius, P

    1986-02-01

    A suspension culture of Catharanthus roseus has been used to study the permeability of cell membranes after treatment with various concentrations of a permeabilizing agent (DMSO). The uptake and release (after permeabilization) of inorganic phosphate (Pi) by cells have been investigated by (32)P radiotracer and non-invasive phosphorus-31 NMR experiments. These studies have demonstrated that measurements of the Pi-efflux from plant cells provide a reliable measure of the permeability of the tonoplast. PMID:24247956

  9. Effect of Cyclosporine on Hepatic Energy Status and on Fructose Metabolism after Portacaval Shunt in Dog as Monitored by Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy in Vivo

    PubMed Central

    Rossaro, Lorenzo; Mazzaferro, Vincenzo; Scotti-Foglieni, Carlo L.; Williams, Donald S.; Simplaceanu, Elena; Simplaceanu, Virgil; Francavilla, Antonio; Starzl, Thomas E.; Ho, Chien; Van Thiel, David H.

    2010-01-01

    The effect of cyclosporin A on the hepatic energy status and intracellular pH of the liver and its response to a fructose challenge has been investigated using in vivo phosphorus-31 nuclear magnetic resonance spectroscopy in dogs. Three experimental groups were studied: (a) control dogs (n = 5), (b) dogs 4 days after the creation of an end-to-side portacaval shunt (n = 5), and (c) dogs 4 days after portacaval shunt and continuous infusion of cyclosporin A (4 mg/kg/day) by way of the left portal vein (portacaval shunt plus cyclosporin A, n = 5). The phosphorus-31 nuclear magnetic resonance spectra were obtained at 81 MHz using a Bruker BIOSPEC II 4.7-tesla nuclear magnetic resonance system equipped with a 40-cm horizontal bore superconducting solenoid. The phosphomonoesters (p < 0.01), inorganic phosphate and ATP levels (p < 0.05) were decreased significantly in portacaval shunttreated and in portacaval shunt-plus-cyclosporin Atreated dogs compared with unshunted control dogs. After a fructose challenge (750 mg/kg body wt, intravenously), fructose-1-phosphate metabolism was reduced in portacaval shunttreated dogs compared with either the normal or portacaval shunt-plus-cyclosporin Atreated dogs (p < 0.05). Both portacaval shunt and portacaval shunt-plus-cyclosporin Atreated dogs demonstrated a reduced decline in ATP levels after fructose infusion when compared with the controls (p < 0.05). Immediately after the fructose challenge, the intracellular pH decreased from 7.30 0.03 to 7.00 0.05 in all animals (p < 0.01) and then gradually returned to normal over 60 min. These data, obtained in vivo using phosphorus-31 nuclear magnetic resonance spectroscopy of the liver after a portacaval shunt, suggest that: (a) the energy status of the liver is reduced in dogs with a portacaval shunt compared with that of normal controls and (b) cyclosporin A treatment ameliorates the reduction in hepatic metabolism normally observed after a fructose challenge to the liver with a portacaval shunt. PMID:2010174

  10. Absolute concentration determination of phosphorus metabolites in the Langendorff-perfused rabbit heart by phosphorus-31 nuclear magnetic resonance

    SciTech Connect

    Gard, J.K.

    1984-01-01

    The concentrations of mobile high energy phosphorus metabolites and intracellular pH of Langendorff-perfused rabbit heart have been determined under control and reduced flow conditions. Absolute concentration determination was accomplished by Lorentzian lineshape analysis after development of hexachlorocyclotriphosphazene as an external intensity standard. Hearts were demonstrated to be biochemically and physiologically competent during control perfusion periods and compromised during reduced flow conditions by independent hemodynamic and metabolic measurements coincident with the NMR experiment. Reduction in perfusate flow from 20 mL/min to 5.0 mL/min (25% flow) or 2.5 mL/min (12.5% flow) demonstrated a fall in phosphocreatine and adenosine triphosphate concentrations, a rise in cytosolic inorganic phosphate concentrations, and drops in pH. Subsequent recovery upon reflow was observed. The derived values for the free concentration of ADP were very close to the reported values of the Michaelis constant for respiratory stimulation, implicating a regulatory role for this molecule in cellular respiration. Strong evidence that the creating kinase reaction was in equilibrium in the 25% flow study was seen. The NMR observable correlated closely with myocardial performance and biochemical indices of metabolic function, and supported the use of phosphocreatine as an indicator of current metabolic integrity.

  11. Enantiomeric differentiation of acyclic terpenes by 13C NMR spectroscopy using a chiral lanthanide shift reagent.

    PubMed

    Blanc, Marie-Cécile; Bradesi, Pascale; Casanova, Joseph

    2005-02-01

    The 13C NMR behaviour of ten acyclic terpene alcohols was examined in the presence of a chiral lanthanide shift reagent (CLSR). For each alcohol, we measured the lanthanide-induced shift (LIS) on the signals of the carbons and the splitting of some signals, which allowed the enantiomeric differentiation. As expected, the LIS decreased with the number of bonds between the binding function and the considered carbon. The enantiomeric splitting is observed for several signals in the spectrum of each compound. The influence of the hindrance of the binding function (primary, secondary or tertiary alcohol) and that of the stereochemistry of the double bonds is discussed. PMID:15593244

  12. Protective effect of pretreatment with the calcium antagonist anipamil on the ischemic-reperfused rat myocardium: a phosphorus-31 nuclear magnetic resonance study

    SciTech Connect

    Kirkels, J.H.; Ruigrok, T.J.; Van Echteld, C.J.; Meijler, F.L.

    1988-05-01

    To assess whether the prophylactic administration of anipamil, a new calcium antagonist, protects the heart against the effects of ischemia and reperfusion, rats were injected intraperitoneally twice daily for 5 days with 5 mg/kg body weight of this drug. The heart was then isolated and perfused by the Langendorff technique. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to monitor myocardial energy metabolism and intracellular pH during control perfusion and 30 min of total ischemia (37/sup 0/C), followed by 30 min of reperfusion. Pretreatment with anipamil altered neither left ventricular developed pressure under normoxic conditions nor the rate and extent of depletion of adenosine triphosphate (ATP) and creatine phosphate during ischemia. Intracellular acidification, however, was attenuated. On reperfusion, hearts from anipamil-pretreated animals recovered significantly better than untreated hearts with respect to replenishment of ATP and creatine phosphate stores, restitution of low levels of intracellular inorganic phosphate and recovery of left ventricular function and coronary flow. Intracellular pH recovered rapidly to preischemic levels, whereas in untreated hearts a complex intracellular inorganic phosphate peak indicated the existence of areas of different pH within the myocardium. It is concluded that anipamil pretreatment protects the heart against some of the deleterious effects of ischemia and reperfusion. Because this protection occurred in the absence of a negative inotropic effect during normoxia, it cannot be attributed to an energy-sparing effect during ischemia. Therefore, alternative mechanisms of action are to be considered.

  13. Comparison of Phosphorus Forms in Wet and Dried Animal Manures by Solution Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy and Enzymatic Hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both enzymatic hydrolysis and solution 31P nuclear magnetic resonance (NMR) spectroscopy have been used to characterize P compounds in animal manures. However, no comparison of the two methods has been reported in the literature. In this study, we compared P compounds in dairy and poultry manures i...

  14. A phosphorus-31 nuclear magnetic resonance study of phosphate uptake and storage in cultured Catharanthus roseus and Daucus carota plant cells.

    PubMed

    Brodelius, P; Vogel, H J

    1985-03-25

    High resolution 31P NMR spectra (103.2 MHz) of oxygenated Catharanthus roseus and Daucus carota cells grown in suspension cultures were obtained using a solenoidal perfusion probe. The spectra showed resonances for various phosphorylated metabolites such as ATP, ADP, NAD(P)(H), nucleoside diphosphoglucose, and sugar phosphates. The relative levels of the phosphorylated metabolites remained constant throughout the growth curve. No resonances for storage compounds such as polyphosphates, pyrophosphate, or phytates were observed. Two resolved resonances for Pi indicated an intracellular pH of 7.3 and 5.7 (or below) for the cytoplasm and vacuoles, respectively. The time course of Pi uptake and storage during growth in fresh culture medium was followed by studying the level of vacuolar Pi with 31P NMR (145.7 MHz). Simultaneously, the level of Pi in the culture medium was followed with radioactive 32P. C. roseus quickly takes up all the Pi from the culture medium (maximum rate 1.7 mumol min-1 g-1 (dry weight of cells]. The Pi is first stored in the vacuoles; subsequently, one part of this pool is used to keep a constant cytoplasmic Pi level while another part is apparently accumulated as an NMR invisible Pi store, probably in another cell organelle. In contrast, D. carota does not accumulate Pi in the vacuoles and consequently it takes up Pi from the medium at a much slower rate (0.05 mumol min-1 g-1 (dry weight of cells]. PMID:3972837

  15. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    SciTech Connect

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L. )

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37 refs., 9 figs., 5 tabs.

  16. Comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii

    SciTech Connect

    Vervoort, J.; Mueller, F.; Mayhew, S.G.; van den Berg, W.A.M.; Moonen, C.T.W.; Bacher, A.

    1986-11-04

    The flavodoxins from Megasphaera elsdenii, Clostridium MP, and Azotobacter vinelandii were studied by /sup 13/C, /sup 15/N, and /sup 31/P NMR techniques by using various selectivity enriched oxidized riboflavin 5'-phosphate (FMN) derivatives. It is shown that the ..pi.. electron distribution in protein-bound flavin differs from that of free flavin and depends also on the apoflavoprotein used. In the oxidized state Clostridium MP and M. elsdenii flavodoxins are very similar with respect to specific hydrogen bond interaction between FMN and the apoprotein and the electronic structure of flavin. A vinelandii flavodoxin differs from these flavodoxins in both respects, but it also differs from Desulfovibrio vulgaris flavodoxin. The similarities between A. vinelandii and D. vulgaris flavodoxins are greater than the similarities with the other two flavodoxins. The differences in the ..pi.. electron distribution in the FMN of reduced flavodoxins from A. vinelandii and D. vulgaris are even greater, but the hydrogen bond patterns between the reduced flavins and the apoflavodoxins are very similar. In the reduced state all flavodoxins studied contain an ionized prosthetic group and the isoalloxazine ring is in a planar conformation. The results are compared with existing three-dimensional data and discussed with respect to the various possible mesomeric structures in protein-bound FMN. The results are discussed in light of the proposed hypothesis that specific hydrogen bonding to the protein-bound flavin determines the specific biological activity of a particular flavoprotein.

  17. Enantiomeric differentiation of oxygenated p-menthane derivatives by 13C NMR using Yb(hfc)3.

    PubMed

    Lanfranchi, Don Antoine; Blanc, Marie-Cécile; Vellutini, Muriel; Bradesi, Pascale; Casanova, Joseph; Tomi, Félix

    2008-12-01

    The (13)C NMR behaviour of 21 p-menthanic terpene bearing an oxygenated function (alcohol, ketone, acetate) was examined in the presence of a chiral lanthanide shift reagent (Yb(hfc)(3)). For each monocyclic compound, we measured the lanthanide-induced shift (LIS) on the signals of the carbons and the splitting of signals allowing the enantiomeric differentiation. Some general features were found about their LIS behaviour: experimental data establishing distinct patterns for carvomenthone-like compounds and menthone-like compounds. The enantiomeric splitting was observed for the majority of signals in the spectrum of each compound. In the case of alcohols and acetates, the influence of the relative stereochemistry (cis vs trans) of isopropyl(ene) and the binding function was discussed. PMID:18828150

  18. Freezing Point Depression of Water in Phospholipid Membranes — A Solid-State NMR Study

    PubMed Central

    Lee, Dong-Kuk; Kwon, ByungSoo; Ramamoorthy, Ayyalusamy

    2009-01-01

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to +10°C were obtained from fully 2H2O-hydrated POPC (1-palmitoyl-2-oleoyl-phosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0°C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37. PMID:18991419

  19. Multinuclear NMR studies of the formation of platinum(II)-adenine nucleotide complexes

    SciTech Connect

    Viola, R.E.; Bose, R.N.; Cornelius, R.D.

    1986-05-01

    There has been considerable interest in the mode of interaction of the simple antitumor agent cis-platin (cis-dichlorodiammineplatinum(II)) with nucleic acids. The authors have recently shown that Pt(II) has a high affinity for inorganic phosphate and polyphosphate ligands, and forms a variety of species that have been characterized. Phosphorus-31, carbon-13, and proton NMR studies of the adenine nucleotide complexes of Pt(II) have shown that the phosphate groups of these ligands do play a role in metal ion binding, in contrast to previous work that had indicated no interaction of the phosphate oxygens with PT(II). Kinetic studies have indicated that Pt(II) binding is a two-step process in which the initial complex that is formed is slowly converted to the final products. NMR studies have suggested that a phosphate-bound intermediate is formed initially, since coordination shifts due to complex formation are observed in the /sup 31/P spectra at an early stage in the reaction time course, while shifts are observed considerably later in the proton spectra. At least two final products are observed in the binding of Pt(II) to either AMP, ADP, or ATP. All of the final Pt(II) nucleotide complexes appear to involve interactions with the phosphate groups.

  20. In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle.

    PubMed

    Clark, B J; Acker, M A; McCully, K; Subramanian, H V; Hammond, R L; Salmons, S; Chance, B; Stephenson, L W

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent 31P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all but the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation. PMID:3348365

  1. In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle

    SciTech Connect

    Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. Univ. of Pennsylvania School of Medicine, Philadelphia Univ. of Birmingham )

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

  2. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    PubMed

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO. PMID:18576656

  3. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  4. Temperature-reversible eruptions of vesicles in model membranes studied by NMR.

    PubMed Central

    Nezil, F A; Bayerl, S; Bloom, M

    1992-01-01

    Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and freeze-fracture electron microscopy were used to study spontaneous vesiculation in model membranes composed of POPC:POPS with or without cholesterol. The NMR spectra indicated the presence of a central isotropic line, the intensity of which is reversibly and linearly dependent upon temperature in the L alpha phase, with no hysteresis when cycling between higher and lower temperatures. Freeze-fracture microscopy showed small, apparently connected vesicles that were only present when the samples were frozen (for freeze-fracture) from an initial temperature of 40-60 degrees C, and absent when the samples are frozen from an initial temperature of 20 degrees C. Analysis of motional narrowing was consistent with the isotropic lines being due to lateral diffusion in (and tumbling of) small vesicles (diameters approximately 50 nm). These results were interpreted in terms of current theories of shape fluctuations in large unilamellar vesicles which predict that small daughter vesicles may spontaneously "erupt" from larger parent vesicles in order to expel the excess area created by thermal expansion of the bilayer surface at constant volume. Assuming that all the increased area due to increasing temperature is associated with the isotropic lines, the NMR results allowed a novel estimate of the coefficient of area expansion alpha A in multilamellar vesicles (MLVs) which is in good agreement with micromechanical measurements upon giant unilamellar vesicles of similar composition. Experiments performed on unilamellar vesicles, which had been placed upon glass beads, confirmed that alpha A determined in this way is unchanged compared with the MLV case. Addition of the highly positively charged (extrinsic) myelin basic protein (MBP) to a POPC:POPS system showed that membrane eruptions of the type described here occur in response to the presence of this protein. Images FIGURE 5 FIGURE 5 FIGURE 5 FIGURE 6 PMID:1600085

  5. Small NMR biomolecular sensors

    NASA Astrophysics Data System (ADS)

    Sun, Nan; Liu, Yong; Qin, Ling; Lee, Hakho; Weissleder, Ralph; Ham, Donhee

    2013-06-01

    By combining the physics of nuclear magnetic resonance (NMR) and silicon radio-frequency (RF) integrated circuits, we recently created progressively smaller NMR systems, which we originally reported in Refs. [1-4]. Our strategy for NMR system miniaturization proved effective, culminating in the smallest prototype [3,4] that weighs 0.1 kg and can be held at the palm of the hand. These small, low-cost NMR systems can be useful as biomolecular sensors in the personalized medicine setting, and we demonstrated their ability to detect proteins, compounds, and human cancer cells. The present paper, which is not a new technical contribution, reviews these developments.

  6. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  7. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  8. NMR logging apparatus

    SciTech Connect

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  9. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  10. Functional studies using NMR

    SciTech Connect

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed.

  11. Screening proteins for NMR suitability

    PubMed Central

    Yee, Adelinda A.; Semesi, Anthony; Garcia, Maite; Arrowsmith, Cheryl H.

    2014-01-01

    Summary NMR spectroscopy is an invaluable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. Here, we describe how we prepare multiple samples in parallel and screen by NMR. The method described here is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects since all the equipments used are those commonly found in any NMR structural biology laboratory. PMID:24590717

  12. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  13. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic

  14. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling

    PubMed Central

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I.; Wilmanns, Matthias; Vértessy, Beáta G.

    2013-01-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure. PMID:23982515

  15. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure. PMID:23982515

  16. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  17. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  18. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  19. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus peroxidase was essential in confirming the identity of residues participating in the aromatic donor molecule binding site of peroxidases.

  20. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  1. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about the connectivity of the pore system. Examples are given for T1-T2 correlation of some soil samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a Natural soil: Comparison of Relaxometric Imaging, T1 - T2 Correlation and Fast-Field Cycling NMR." The Open Magnetic Resonance Journal: in print. Pohlmeier, A., S. Haber-Pohlmeier, et al. (2009). "A Fast Field Cycling NMR Relaxometry Study of Natural Soils." Vadose Zone J. 8: 735-742. Stingaciu, L. R., A. Pohlmeier, et al. (2009). "Characterization of unsaturated porous media by high-field and low-field NMR relaxometry." Water Resources Research 45: W08412

  2. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  3. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  4. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  5. Validation of quantitative NMR.

    PubMed

    Malz, F; Jancke, H

    2005-08-10

    NMR is by definition a quantitative spectroscopic tool because the intensity of a resonance line is directly proportional to the number of resonant nuclei (spins). This fact enables, in principle, a precise determination of the amount of molecular structures and, hence, of substances in solids as well as liquids. With the increase of sensitivity due to stronger and stronger static magnetic fields including improved electronics the detection limits have been pushed down significantly. However, the lack of a precise protocol that considers and controls the aspects of both the measurement procedure as well as the spectra processing and evaluation is responsible for the fact that quantitative investigations of identical samples in various laboratories may differ severely (deviations up to 90% relative to gravimetric reference values). Here, a validated protocol for quantitative high resolution 1H-NMR using single pulse excitation is described that has been confirmed by national and international round robin tests. It considers all issues regarding linearity, robustness, specificity, selectivity and accuracy as well as influences of instrument specific parameters and the data processing and evaluation routines. This procedure was tested by the investigation of three different 5-model-compound mixtures. As a result of the round robin tests using the proposed protocol it was found that the maximum combined measurement uncertainty is 1.5% for a confidence interval of 95%. This applies both for the determination of molar ratios and of the amount fractions of the various components. Further, the validation was extended to purity determinations of substances as shown for 1,8-epoxy-p-menthane (cineole). PMID:15893442

  6. NMR measurement of pore structure

    SciTech Connect

    Earl, W.L.; Kim, Yong-Wah |; Smith, D.M.

    1993-05-31

    An attempt was made to pursue {sup 129}Xe NMR as a pore measurement technique. Samples studied were synthetic imogolite (tubular aluminosilicate with gibbsite structure), sodium Y-zeolite, and an aerogel and a xerogel. Gases used were normal Xe, {sup 13}CO{sub 2}, and {sup 15}N{sub 2}. Although a completely general NMR technique for measuring pore size distributions may not be possible, information about molecular motion and interactions can be obtained, because NMR is sensitive to short range interactions (1 nm or less) and to molecular dynamics in the range 10{sup {minus}2} to 10{sup {minus}6}s.

  7. NMR measurement of pore structure

    SciTech Connect

    Earl, W.L. ); Kim, Yong-Wah New Mexico Univ., Albuquerque, NM . Center for Microengineered Ceramics); Smith, D.M. . Center for Microengineered Ceramics)

    1993-05-31

    An attempt was made to pursue [sup 129]Xe NMR as a pore measurement technique. Samples studied were synthetic imogolite (tubular aluminosilicate with gibbsite structure), sodium Y-zeolite, and an aerogel and a xerogel. Gases used were normal Xe, [sup 13]CO[sub 2], and [sup 15]N[sub 2]. Although a completely general NMR technique for measuring pore size distributions may not be possible, information about molecular motion and interactions can be obtained, because NMR is sensitive to short range interactions (1 nm or less) and to molecular dynamics in the range 10[sup [minus]2] to 10[sup [minus]6]s.

  8. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ). PMID:27023095

  9. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  10. "Decoupled" Proton NMR Spectra

    NASA Astrophysics Data System (ADS)

    Woodley, M.; Freeman, R.

    High-resolution proton NMR spectra are recorded in a new form where all resonances are singlets at the chemical-shift frequencies, with no spin-spin splittings. These "decoupled" proton spectra are derived from two-dimensional J spectra after real Fourier transformation (without frequency discrimination in F1) so that each spin multiplet lies along both the 45° and the 135° diagonal, forming a pattern similar to St. Andrew's cross, with C 4 symmetry. The chemical shifts are located by searching for these centers of symmetry with a postacquisition data-processing algorithm. This is designed to facilitate the separation of overlapping and interpenetrating spin multiplets. The method is illustrated with applications to the 400 MHz high-resolution proton spectra of dehydrotestosterone and 4-androsten-3,17-dione. It is also possible to separate the spectra of components in a mixture and this is illustrated by breaking down the spectrum of an aqueous solution of D-glucose into subspectra from the α and β anomers, in order to follow the time evolution of the mutarotation.

  11. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  12. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  13. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  14. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  15. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  17. NMR Relaxation and Petrophysical Properties

    NASA Astrophysics Data System (ADS)

    Fleury, Marc

    2011-03-01

    NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.

  18. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  19. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. PMID:25641013

  20. Improving NMR Structures of RNA.

    PubMed

    Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D

    2016-05-01

    Here, we show that modern solution nuclear magnetic resonance (NMR) structures of RNA exhibit more steric clashes and conformational ambiguities than their crystallographic X-ray counterparts. To tackle these issues, we developed RNA-ff1, a new force field for structure calculation with Xplor-NIH. Using seven published NMR datasets, RNA-ff1 improves covalent geometry and MolProbity validation criteria for clashes and backbone conformation in most cases, relative to both the previous Xplor-NIH force field and the original structures associated with the experimental data. In addition, with smaller base-pair step rises in helical stems, RNA-ff1 structures enjoy more favorable base stacking. Finally, structural accuracy improves in the majority of cases, as supported by complete residual dipolar coupling cross-validation. Thus, the reported advances show great promise in bridging the quality gap that separates NMR and X-ray structures of RNA. PMID:27066747

  1. Advanced NMR characterization of zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  2. A SENSITIVE NMR THERMOMETER FOR MULTINUCLEI FT NMR

    EPA Science Inventory

    A pernicious problem in multinuclei FT NMR is accurate measurement of sample temperature. This arises from several factors including widespread use of high-power decoupling, large sample tubes (with potentially large temperature gradients across the sample volume), and lack of su...

  3. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  4. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  5. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  6. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  7. NMR hyperpolarization techniques for biomedicine.

    PubMed

    Nikolaou, Panayiotis; Goodson, Boyd M; Chekmenev, Eduard Y

    2015-02-16

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities, ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  8. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  9. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  10. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  11. NMR evaluation of hilar and mediastinal lymphadenopathy

    SciTech Connect

    Cohen, A.M.; Creviston, S.; LiPuma, J.P.; Bryan, P.J.; Haaga, J.R.; Alfidi, R.J.

    1983-09-01

    Eighteen patients with hilar or mediastinal masses demonstrated at CT were selected for examination by nuclear magnetic resonance (NMR). Only regions identified as abnormal on CT scans were scanned by NMR. All patients had histologically proved disease or characteristic findings on the CT scan. The NMR images of two patients were uninterpretable, but all other images clearly distinguished masses from either blood vessels or normal mediastinal tissues without the use of contrast medium. In four cases NMR showed a greater extent of disease than did CT. NMR is a promising modality for visualizing hilar and mediastinal masses.

  12. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents.

    PubMed

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration (GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes. PMID:12932452

  13. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.

  14. REDOR NMR for Drug Discovery

    PubMed Central

    Cegelski, Lynette

    2014-01-01

    Rotational-Echo DOuble-Resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation. PMID:24035486

  15. Measuring material susceptibility using NMR

    NASA Astrophysics Data System (ADS)

    SanGiorgio, Paul; Zens, Albert

    2015-06-01

    We report on a method of measuring the high-field susceptibilities of paramagnetic and diamagnetic materials using only a standard NMR system equipped with pulsed field gradients. We demonstrate the accuracy and sensitivity of the technique by measuring a series of 99.9% copper wires with diameters between 0.16 mm and 0.79 mm. We measured the volumetric susceptibility of the copper to be χ = - 9.5 ± 0.2 ·10-6, which agrees with the literature value of pure copper, - 9.6 ·10-6 . In addition to making quantitative measurements, this technique can also be used to evaluate the effectiveness of compensation schemes used to produce "zero-susceptibility" materials needed for construction of high-resolution NMR probes.

  16. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  17. Measurement of deformations by NMR

    NASA Astrophysics Data System (ADS)

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2015-12-01

    Two NMR data acquisition protocols together with corresponding data processing algorithms for locating macroscopic objects, measuring distances between them or monitoring their displacements or deformations with microscopic precision are presented and discussed. The performance of the methods is demonstrated by applying them to the measurement of deformations of a freely supported beam under loading. We believe that our methods will find their applications in mechanics, civil engineering and medicine.

  18. Measurement of deformations by NMR.

    PubMed

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2015-12-01

    Two NMR data acquisition protocols together with corresponding data processing algorithms for locating macroscopic objects, measuring distances between them or monitoring their displacements or deformations with microscopic precision are presented and discussed. The performance of the methods is demonstrated by applying them to the measurement of deformations of a freely supported beam under loading. We believe that our methods will find their applications in mechanics, civil engineering and medicine. PMID:26529203

  19. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  20. NMR-Based Milk Metabolomics.

    PubMed

    Sundekilde, Ulrik K; Larsen, Lotte B; Bertram, Hanne C

    2013-01-01

    Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits. PMID:24957988

  1. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  2. NMR-Based Milk Metabolomics

    PubMed Central

    Sundekilde, Ulrik K.; Larsen, Lotte B.; Bertram, Hanne C.

    2013-01-01

    Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits. PMID:24957988

  3. Structural proteomics by NMR spectroscopy.

    PubMed

    Shin, Joon; Lee, Woonghee; Lee, Weontae

    2008-08-01

    Structural proteomics is one of the powerful research areas in the postgenomic era, elucidating structure-function relationships of uncharacterized gene products based on the 3D protein structure. It proposes biochemical and cellular functions of unannotated proteins and thereby identifies potential drug design and protein engineering targets. Recently, a number of pioneering groups in structural proteomics research have achieved proof of structural proteomic theory by predicting the 3D structures of hypothetical proteins that successfully identified the biological functions of those proteins. The pioneering groups made use of a number of techniques, including NMR spectroscopy, which has been applied successfully to structural proteomics studies over the past 10 years. In addition, advances in hardware design, data acquisition methods, sample preparation and automation of data analysis have been developed and successfully applied to high-throughput structure determination techniques. These efforts ensure that NMR spectroscopy will become an important methodology for performing structural proteomics research on a genomic scale. NMR-based structural proteomics together with x-ray crystallography will provide a comprehensive structural database to predict the basic biological functions of hypothetical proteins identified by the genome projects. PMID:18761469

  4. Solid-state distortions of nominally square-planar palladium and platinum (R sub 3 P) sub 2 MX sub 2 complexes as determined by a combination of sup 13 C( sup 1 H) and sup 31 P( sup 31 H) NMR spectroscopy

    SciTech Connect

    Rahn, J.A.; Nelson, J.H. ); O'Donnell, D.J.; Pamer, A.R. )

    1989-06-28

    Phosphorus-31 and carbon-13 NMR spectra have been obtained for a series of 20 (R{sub 3}P){sub 2}MX{sub 2} complexes (R{sub 3}P = MePh{sub 2}P and Me{sub 2}PhP; M = Pd, Pt; X = Cl, Br, I, CN, N{sub 3}) in the solid state by cross-polarization and magic-angle-spinning (CP/MAS) techniques. Comparison of these data with spectral data obtained at 300 K in CDCl{sub 3} solutions was made in order to investigate the influence of local symmetry on {sup 31}P and {sup 13}C chemical shifts in the solid state. It was found that most of these compounds, which have regular square-planar geometries in solution, are distorted in the solid state. The solid-state distortions are evidenced by additional {sup 31}P and {sup 13}C resonances in the CP/MAS spectra as compared to the solution spectra. The nature and degree of these distortions are discussed. 25 refs., 2 figs., 6 tabs.

  5. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  6. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  7. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  8. Direct-injection NMR (DI-NMR): a flow NMR technique for the analysis of combinatorial chemistry libraries.

    PubMed

    Keifer, P A; Smallcombe, S H; Williams, E H; Salomon, K E; Mendez, G; Belletire, J L; Moore, C D

    2000-01-01

    A new tool for analyzing compound libraries by NMR has been developed. Aliquots of solution-state samples (between 120 and 350 microL) are directly injected, using a standard liquids handler, into an NMR (LC-NMR) flow probe. Automated NMR software tracks--and suppresses--intense signals arising from the nondeuterated solvents used (if any) and acquires high-sensitivity one-dimensional 1H NMR spectra. An 88-member combinatorial library, dissolved in DMSO and stored in a 96-well microtiter plate, has been analyzed a number of ways using this technique. This nondestructive technique, which we call direct-injection NMR (DI-NMR) and which is embodied in our versatile automated sample changer (VAST) hardware, has proven to be both routine and robust. Our success in automatically acquiring the NMR data for entire plates of library compounds (within 4-8 h) has caused us to develop new ways to display and analyze the resulting NMR data, as will be shown here. PMID:10757095

  9. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  10. Applications of NMR in Dairy Research

    PubMed Central

    Maher, Anthony D.; Rochfort, Simone J.

    2014-01-01

    NMR is a robust analytical technique that has been employed to investigate the properties of many substances of agricultural relevance. NMR was first used to investigate the properties of milk in the 1950s and has since been employed in a wide range of studies; including properties analysis of specific milk proteins to metabolomics techniques used to monitor the health of dairy cows. In this brief review, we highlight the different uses of NMR in the dairy industry. PMID:24958391

  11. Dynamic balancing in NMR double rotor system

    NASA Astrophysics Data System (ADS)

    Chakraborty, Animesh

    2000-12-01

    An exact solution to the problem of dynamic balancing in a NMR double rotor system is presented. This will enable one to perform high speed spinning about two intersecting axes. Double rotation is used in solid state NMR to average away second-order broadening, thus enhancing the resolution of spectra from quadrupolar nuclei in solid state NMR. An exact expression for imbalance due to asymmetric distribution of weights about the rotation axes is provided.

  12. Dynamic balancing in NMR double rotor system.

    PubMed

    Chakraborty, A

    2000-12-01

    An exact solution to the problem of dynamic balancing in a NMR double rotor system is presented. This will enable one to perform high speed spinning about two intersecting axes. Double rotation is used in solid state NMR to average away second-order broadening, thus enhancing the resolution of spectra from quadrupolar nuclei in solid state NMR. An exact expression for imbalance due to asymmetric distribution of weights about the rotation axes is provided. PMID:11145339

  13. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  14. Hyphenated low-field NMR techniques: combining NMR with NIR, GPC/SEC and rheometry.

    PubMed

    Räntzsch, Volker; Wilhelm, Manfred; Guthausen, Gisela

    2016-06-01

    Hyphenated low-field NMR techniques are promising characterization methods for online process analytics and comprehensive offline studies of soft materials. By combining different analytical methods with low-field NMR, information on chemical and physical properties can be correlated with molecular dynamics and complementary chemical information. In this review, we present three hyphenated low-field NMR techniques: a combination of near-infrared spectroscopy and time-domain NMR (TD-NMR) relaxometry, online (1) H-NMR spectroscopy measured directly after size exclusion chromatographic (SEC, also known as GPC) separation and a combination of rheometry and TD-NMR relaxometry for highly viscous materials. Case studies are reviewed that underline the possibilities and challenges of the different hyphenated low-field NMR methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854997

  15. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  16. NMR exposure sensitizes tumor cells to apoptosis.

    PubMed

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies. PMID:16528477

  17. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  18. NMR characterization of pituitary tumors

    SciTech Connect

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions.

  19. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  20. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R.); Wind, Robert A.)

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  1. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  2. Quartz Crystal Temperature Sensor for MAS NMR

    NASA Astrophysics Data System (ADS)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  3. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  4. Hyperpolarized NMR in Single-File Nanotubes

    NASA Astrophysics Data System (ADS)

    Bowers, C. R.; Cheng, C.-Y.; Stamatatos, T. C.; Christou, G.

    2011-03-01

    Continuous-flow hyperpolarized xenon-129 NMR is used to characterize gas exchange and diffusion in two types of polycrystalline solids with one-dimensional channels. Expressions for the hyperpolarized NMR selective-saturation recovery signal are derived for normal and single-file diffusion.

  5. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  6. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  7. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  8. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of

  9. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  10. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  11. NMR of humic substances and coal

    SciTech Connect

    Wershaw, R.L.; Mikita, M.A.

    1987-01-01

    This book, a collection of papers presented at the Eighth Rocky Mountain Regional Meeting of the American Chemical Society (ACS), might have been more appropriately published in the ACS Symposium Series. The title proposes a comprehensive treatise; however, because the book is a disjointed collection of chapters dealing mostly with humic substances. The application of solution NRM methods to the study of humic substances and the relation of solution NMR to solid-state NMR technique is discussed. NMR is a promising and important new tool for the structural characterization of complex substances, such as humic substances and coal. The authors hesitates to recommend this book for anyone attempting to learn more about the advantages of applying NMR methods to the study of humic substances and coal. For those already familiar with NMR applications, they urges them to read some of the better chapters but not to allow the pessimistic tone to unduly influence them.

  12. Applications of NMR spectroscopy to systems biochemistry.

    PubMed

    Fan, Teresa W-M; Lane, Andrew N

    2016-02-01

    The past decades of advancements in NMR have made it a very powerful tool for metabolic research. Despite its limitations in sensitivity relative to mass spectrometric techniques, NMR has a number of unparalleled advantages for metabolic studies, most notably the rigor and versatility in structure elucidation, isotope-filtered selection of molecules, and analysis of positional isotopomer distributions in complex mixtures afforded by multinuclear and multidimensional experiments. In addition, NMR has the capacity for spatially selective in vivo imaging and dynamical analysis of metabolism in tissues of living organisms. In conjunction with the use of stable isotope tracers, NMR is a method of choice for exploring the dynamics and compartmentation of metabolic pathways and networks, for which our current understanding is grossly insufficient. In this review, we describe how various direct and isotope-edited 1D and 2D NMR methods can be employed to profile metabolites and their isotopomer distributions by stable isotope-resolved metabolomic (SIRM) analysis. We also highlight the importance of sample preparation methods including rapid cryoquenching, efficient extraction, and chemoselective derivatization to facilitate robust and reproducible NMR-based metabolomic analysis. We further illustrate how NMR has been applied in vitro, ex vivo, or in vivo in various stable isotope tracer-based metabolic studies, to gain systematic and novel metabolic insights in different biological systems, including human subjects. The pathway and network knowledge generated from NMR- and MS-based tracing of isotopically enriched substrates will be invaluable for directing functional analysis of other 'omics data to achieve understanding of regulation of biochemical systems, as demonstrated in a case study. Future developments in NMR technologies and reagents to enhance both detection sensitivity and resolution should further empower NMR in systems biochemical research. PMID:26952191

  13. Chiral discrimination in NMR spectroscopy.

    PubMed

    Buckingham, A David

    2015-11-01

    Nuclear magnetic resonance is the most important form of molecular spectroscopy in chemistry and biochemistry but it is normally blind to chirality. It was predicted in 2004 that precessing nuclear spins in chiral molecules in a liquid in a strong magnetic field induce a rotating electric polarization that is of opposite sign for enantiomers. This polarization arises from the distortion of the electronic structure by the nuclear magnetic moment in the presence of the strong magnetic field and is equivalent to the linear effect of an electric field on the nuclear shielding tensor. The polarization is strongly enhanced in dipolar molecules through the partial orientation of the permanent dipole through the antisymmetric part of the nuclear magnetic shielding tensor. Alternatively, an applied electric field will induce a chirally sensitive magnetization perpendicular to the field and to the nuclear spin. Progress towards the experimental realization of chiral discrimination by NMR is assessed. PMID:26537400

  14. NMR and ICR for precision measurements

    NASA Astrophysics Data System (ADS)

    Fei, Xiang

    2006-04-01

    High-precision comparison of the NMR signals of macroscopic samples and the ion cyclotron resonance (ICR) of charged particles in the Penning traps could yield important information on the fundamental properties of matter. For example, the magnetic moment ratio of the shielded helion to the nuclear magneton could be measured by comparing the helium- 3 NMR frequencies with the proton cyclotron frequencies in the ion cyclotron- nuclear magnetic resonance (IC-NMR) scheme^1 . Cylindrical ion traps (or orthorhombic ion traps) with compensation electrodes^2 may be used to contain the NMR measurement probe structure. Vertical and radial asymmetric electrical potentials in longitudinally and azimuthally segmented electrodes can move a charged particle (e.g. a proton) away from the center of a Penning trap for 3D magnetic field gradient measurements approximately over the volume of the NMR probe. Magnetic perturbations due to the experimental setup and environment should be carefully studied^3. The magnetic effect of the NMR probe structure to its sample inside may be measured by a smaller NMR probe that can be readily inserted into and extracted from the measurement probe. ^1 X. Fei, Bull. Am. Phys. Soc. 50, No.2, L1 2 (2005). ^2X. Fei, W.M. Snow, Nucl. Instr. and Meth. A 425, 431 (1999). ^3 X. Fei, V.W. Hughes, R. Prigl, Nucl. Instr. and Meth. A 394, 349 (1997).

  15. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  16. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  17. Hyperpolarized xenon in NMR and MRI.

    PubMed

    Oros, Ana-Maria; Shah, N Jon

    2004-10-21

    Hyperpolarized gases have found a steadily increasing range of applications in nuclear magnetic resonance (NMR) and NMR imaging (MRI). They can be regarded as a new class of MR contrast agent or as a way of greatly enhancing the temporal resolution of the measurement of processes relevant to areas as diverse as materials science and biomedicine. We concentrate on the properties and applications of hyperpolarized xenon. This review discusses the physics of producing hyperpolarization, the NMR-relevant properties of 129Xe, specific MRI methods for hyperpolarized gases, applications of xenon to biology and medicine, polarization transfer to other nuclear species and low-field imaging. PMID:15566166

  18. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  19. An Inversion Recovery NMR Kinetics Experiment

    PubMed Central

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples. PMID:21552343

  20. On electrophoretic NMR. Exploring high conductivity samples

    NASA Astrophysics Data System (ADS)

    Bielejewski, Michał; Giesecke, Marianne; Furó, István

    2014-06-01

    The performance of a new electrophoretic NMR (eNMR) method that uses a Carr-Purcell-Meiboom-Gill echo train with repeated electric field reversal is investigated. We show that this pulse sequence, with acronym CPMGER, yields strongly reduced artifacts from convective flow effects caused by the simultaneous presence of electroosmotic and thermal driving forces. We demonstrate the achieved improvements in various aqueous solutions. Ultimately, the method can be used for obtaining electrophoretic mobilities by eNMR without relying on uncharged reference molecules, otherwise a significant limitation for electrophoretic experiments performed with nuclei other than 1H.

  1. MAS-NMR at very high temperatures.

    PubMed

    van Wüllen, Leo; Schwering, Georg; Naumann, Ernst; Jansen, Martin

    2004-09-01

    We report MAS-NMR experiments at temperatures of approx. 1200 K using a CO(2) laser as the heating device. An internal NMR thermometer based on the (7)Li T1 data of Li(0.24)La(0.54)TiO(3) is used for temperature calibration. Using this setup, temperatures as high as 1191 K could be reached under MAS conditions as confirmed by the melting of Li(2)B(4)O(7) at 1191 K which could be followed by (7)Li-MAS-NMR. PMID:15276638

  2. On electrophoretic NMR. Exploring high conductivity samples.

    PubMed

    Bielejewski, Michał; Giesecke, Marianne; Furó, István

    2014-06-01

    The performance of a new electrophoretic NMR (eNMR) method that uses a Carr-Purcell-Meiboom-Gill echo train with repeated electric field reversal is investigated. We show that this pulse sequence, with acronym CPMGER, yields strongly reduced artifacts from convective flow effects caused by the simultaneous presence of electroosmotic and thermal driving forces. We demonstrate the achieved improvements in various aqueous solutions. Ultimately, the method can be used for obtaining electrophoretic mobilities by eNMR without relying on uncharged reference molecules, otherwise a significant limitation for electrophoretic experiments performed with nuclei other than (1)H. PMID:24709089

  3. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  4. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  5. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  6. Sodium NMR/MRI for anisotropic systems.

    PubMed

    Eliav, U; Navon, G

    2016-02-01

    Sodium ((23) Na) plays a central role in many physiological processes, and its high NMR sensitivity makes it an attractive nucleus for biomedical NMR and MRI research. Many biological tissues contain structures such as fibers and membranes that impose anisotropic translational and rotational motions on the sodium ions. Translational motion can be studied by diffusion measurements. Anisotropic rotational motion results in non-vanishing quadrupolar interaction that it is best studied by exploiting multiple quantum coherences for (23) Na NMR spectroscopy and MRI. The current review covers the application of the various NMR techniques to the study of (23) Na in anisotropic compartments in cartilage, tendon, intervertebral discs, red blood cells, nervous system and muscles. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26105084

  7. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  8. NMR and optical studies of piezoelectric polymers

    SciTech Connect

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF[sub 2]) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done.

  9. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  10. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  11. Characterization of Hydrogenated Fullerenes by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hedenström, Mattias; Wågberg, Thomas; Johnels, Dan

    NMR spectroscopy is so far the only analytical technique that has been used to get a detailed structural characterization of hydrogenated fullerenes. A substantial amount of information derived from different NMR experiments can thus be found in the literature for a number of fullerenes hydrogenated to various degrees. These studies have benefitted from the fact that chemical shifts of 1H and 13C and in some cases also 3He can be used to obtain structural information of these compounds. Such results, together with discussions about different NMR experiments and general considerations regarding sample preparations, are summarized in this chapter. The unique information, both structural and physicochemical, that can be derived from different NMR experiments ensures that this technique will continue to be of central importance in characterization of hydrogenated fullerenes.

  12. Multinuclear NMR spectra of microscopic gaseous samples

    NASA Astrophysics Data System (ADS)

    Jackowski, Karol

    2004-01-01

    Nuclear magnetic resonance (NMR) of some nuclei (e.g. 1H, 13C, 19F, 29Si and 31P) gives strong signals which allow one for analytical investigations of gaseous compounds. The other magnetic nuclei have low natural abundance or/and contain electric quadrupole moments and therefore they are less suitable for such NMR applications. In our laboratory we have developed new experimental techniques which permit us to monitor several micrograms of chemical compounds in the gas phase. For the first time we have observed 17O and 33S NMR spectra of gaseous compounds at the natural abundance as a function of density. We have also found density-dependent spin-spin coupling constants in many molecules. We could extend our gas-phase studies on molecules which exhibit strong intermolecular interactions and are liquids at room temperature. All the latter NMR experimental results obtained for gaseous mixtures are reviewed in this paper.

  13. Frontiers of NMR in Molecular Biology

    SciTech Connect

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  14. Sparse sampling methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Maciejewski, Mark W; Schuyler, Adam D; Stern, Alan S; Hoch, Jeffrey C

    2012-08-21

    Although the discrete Fourier transform played an enabling role in the development of modern NMR spectroscopy, it suffers from a well-known difficulty providing high-resolution spectra from short data records. In multidimensional NMR experiments, so-called indirect time dimensions are sampled parametrically, with each instance of evolution times along the indirect dimensions sampled via separate one-dimensional experiments. The time required to conduct multidimensional experiments is directly proportional to the number of indirect evolution times sampled. Despite remarkable advances in resolution with increasing magnetic field strength, multiple dimensions remain essential for resolving individual resonances in NMR spectra of biological macromolecues. Conventional Fourier-based methods of spectrum analysis limit the resolution that can be practically achieved in the indirect dimensions. Nonuniform or sparse data collection strategies, together with suitable non-Fourier methods of spectrum analysis, enable high-resolution multidimensional spectra to be obtained. Although some of these approaches were first employed in NMR more than two decades ago, it is only relatively recently that they have been widely adopted. Here we describe the current practice of sparse sampling methods and prospects for further development of the approach to improve resolution and sensitivity and shorten experiment time in multidimensional NMR. While sparse sampling is particularly promising for multidimensional NMR, the basic principles could apply to other forms of multidimensional spectroscopy. PMID:22481242

  15. 33S NMR cryogenic probe for taurine detection

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  16. NMR at low and ultralow temperatures.

    PubMed

    Tycko, Robert

    2013-09-17

    Solid state nuclear magnetic resonance (NMR) measurements at low temperatures have been common in physical sciences for many years and are becoming increasingly important in studies of biomolecular systems. This Account reviews a diverse set of projects from my laboratory, dating back to the early 1990s, that illustrate the motivations for low-temperature solid state NMR, the types of information that are available from the measurements, and likely directions for future research. These projects include NMR studies of both physical and biological systems, performed at low (cooled with nitrogen, down to 77 K) and ultralow (cooled with helium, below 77 K) temperatures, and performed with and without magic-angle spinning (MAS). NMR studies of physical systems often focus on phenomena that occur only at low temperatures. Two examples from my laboratory are studies of molecular rotation and orientational ordering in solid C60 at low temperatures and studies of unusual electronic states, called skyrmions, in two-dimensionally confined electron systems within semiconductor quantum wells. To study quantum wells, we used optical pumping of nuclear spin polarizations to enhance their NMR signals. The optical pumping phenomenon exists only at ultralow temperatures. In studies of biomolecular systems, low-temperature NMR has several motivations. In some cases, low temperatures suppress molecular tumbling, thereby permitting solid state NMR measurements on soluble proteins. Studies of AIDS-related peptide/antibody complexes illustrate this effect. In other cases, low temperatures suppress conformational exchange, thereby permitting quantitation of conformational distributions. Studies of chemically denatured states of the model protein HP35 illustrate this effect. Low temperatures and rapid freeze-quenching can also be used to trap transient intermediate states in a non-equilibrium kinetic process, as shown in studies of a transient intermediate in the rapid folding pathway of HP35. NMR sensitivity generally increases with decreasing sample temperature. Therefore, it can be useful to carry out experiments at the lowest possible temperatures, particularly in studies of biomolecular systems in frozen solutions. However, solid state NMR studies of biomolecular systems generally require rapid MAS. A novel MAS NMR probe design that uses nitrogen gas for sample spinning and cold helium only for sample cooling allows a wide variety of solid state NMR measurements to be performed on biomolecular systems at 20-25 K, where signals are enhanced by factors of 12-15 relative to measurements at room temperature. MAS NMR at ultralow temperatures also facilitates dynamic nuclear polarization (DNP), allowing sizeable additional signal enhancements and large absolute NMR signal amplitudes with relatively low microwave powers. Current research in my laboratory seeks to develop and exploit DNP-enhanced MAS NMR at ultralow temperatures, for example, in studies of transient intermediates in protein folding and aggregation processes and studies of peptide/protein complexes that can be prepared only at low concentrations. PMID:23470028

  17. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each

  18. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  19. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures. PMID:24378299

  20. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  1. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    SciTech Connect

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectly predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.

  2. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  3. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and spectroscopic methods to weight or filter the spin signals represents the core of the book. This is a subject where Blümich is deeply involved with substantial contributions. The chapter includes a lot of ideas to provide MR contrast between different regions based on their mobility, diffusion, spin couplings or NMR spectra. After describing NMR imaging methods for solids with broad lines, Blümich spends time on applications in the last two chapters of the book. This part is really fun to read. It underlines the effort to bring NMR into many kinds of manufacturing. Car tyres and high-voltage cables are just two such areas. Elastomeric materials, green-state ceramics and food science represent other interesting fields of applications. This part of the book represents a personal but nevertheless extensive compilation of modern applications. As a matter of course the MOUSE is presented, a portable permanent-magnet based NMR developed by Blümich and his co-workers. Thus the book is not only of interest to NMR spectroscopists but also to people in material science and chemical engineering. The bibliography and indexing are excellent and may serve as an attractive reference source for NMR spectroscopists. The book is the first on the subject and likely to become the standard text for NMR imaging of materials as the books by Abragam, Slicher and Ernst et al are for NMR spectroscopy. The purchase of this beautiful book for people dealing with NMR spectroscopy or medical MRI is highly recommended. Ralf Ludwig

  4. Mobile NMR for Analysis of Polyethylene Pipes

    NASA Astrophysics Data System (ADS)

    Blümich, B.; Casanova, F.; Buda, A.; Kremer, K.; Wegener, T.

    2006-07-01

    NMR relaxometry is a suitable tool to determine the morphology of semi-crystalline polymers by its ability to discriminate between rigid, mostly crystalline and soft, usually amorphous material. The NMR-MOUSE® (nuclear magnetic resonance mobile universal surface explorer) was explored in this work to supply morphological data of poly(ethylene) pipes nondestructively. PE-100 pipes were investigated in the new state, after squeezing them flat, and after annealing well below the glass temperature. Furthermore, the change in morphology induced by a pressure load from the inside and a point load from the outside was investigated as a function of depth, and the morphology change across a welding line was imaged. A shear-band was detected by destructive high-field NMR imaging in an area of severe deformation of a pipe, where an anomalous depths profile was observed by the NMR-MOUSE. These results demonstrate that the NMR-MOUSE is a suitable tool for non-destructive state assessment of polymer pipes on the basis of laboratory reference data.

  5. Applications of NMR to biological systems

    SciTech Connect

    Baatz, J.E.

    1988-01-01

    This work describes the application of nuclear magnetic resonance spectrometry (NMR) for the study of three biological systems, namely, the pulmonary surfactant-associated protein, SPL(pVal), the myocardial calcium slow channel of the perfused guinea pig heart, and the intracellular buffering system of the Leishmania donovani promastigote. Investigations of structural features of bovine SPL(pVal) were performed using one and two-dimensional {sup 1}H-NMR techniques. Delayed Fourier transform {sup 1}H-NMR has been used to study the effects of bovine SPL(pVal) and temperature upon model membrane structure. A model describing the mechanism by which the SPL(pVal) lowers the membrane surface tension has been proposed. In order to study the dependence of the myocardial calcium slow channel activity on adenosine triphosphate levels and intracellular pH, and in vivo {sup 31}P-NMR probe capable of simultaneously and noninvasively monitoring these three parameters was designed. In vivo {sup 31}P-NMR was also applied for the study of the Leishmania donovani promastigote's ability to maintain a pH gradient across its cellular membrane at low extracellular pH.

  6. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  7. NMR methodologies in the analysis of blueberries.

    PubMed

    Capitani, Donatella; Sobolev, Anatoly P; Delfini, Maurizio; Vista, Silvia; Antiochia, Riccarda; Proietti, Noemi; Bubici, Salvatore; Ferrante, Gianni; Carradori, Simone; De Salvador, Flavio Roberto; Mannina, Luisa

    2014-06-01

    An NMR analytical protocol based on complementary high and low field measurements is proposed for blueberry characterization. Untargeted NMR metabolite profiling of blueberries aqueous and organic extracts as well as targeted NMR analysis focused on anthocyanins and other phenols are reported. Bligh-Dyer and microwave-assisted extractions were carried out and compared showing a better recovery of lipidic fraction in the case of microwave procedure. Water-soluble metabolites belonging to different classes such as sugars, amino acids, organic acids, and phenolic compounds, as well as metabolites soluble in organic solvent such as triglycerides, sterols, and fatty acids, were identified. Five anthocyanins (malvidin-3-glucoside, malvidin-3-galactoside, delphinidin-3-glucoside, delphinidin-3-galactoside, and petunidin-3-glucoside) and 3-O-α-l-rhamnopyranosyl quercetin were identified in solid phase extract. The water status of fresh and withered blueberries was monitored by portable NMR and fast-field cycling NMR. (1) H depth profiles, T2 transverse relaxation times and dispersion profiles were found to be sensitive to the withering. PMID:24668393

  8. Wide-line NMR and protein hydration.

    PubMed

    Tompa, K; Bokor, M; Tompa, P

    2012-01-01

    In this chapter, the reader is introduced to the basics of wide-line NMR, with particular focus on the following: (1) basic theoretical and experimental NMR elements, necessary before switching the spectrometer and designing the experiment, (2) models/theories for the interpretation of measured data, (3) definition of wide-line NMR spectrometry, the description of the measurement and evaluation variants, useful hints for the novice, (4) advice on selecting the solvent, which is not a trivial task, (5) a note of warning that not all data are acceptable in spite of the statistical confidence. Finally, we wrap up the chapter with the results on two proteins (a globular and an intrinsically disordered). PMID:22760320

  9. Iterative deconvolution of quadrupole split NMR spectra

    NASA Astrophysics Data System (ADS)

    Mila, Frédéric; Takigawa, Masashi

    2013-08-01

    We propose a simple method to deconvolute NMR spectra of quadrupolar nuclei in order to separate the distribution of local magnetic hyperfine field from the quadrupole splitting. It is based on an iterative procedure which allows to express the intensity of a single NMR line directly as a linear combination of the intensities of the total experimental spectrum at a few related frequencies. This procedure is argued to be an interesting complement to Fourier transformation since it can lead to a significant noise reduction in some frequency ranges. This is demonstrated in the case of the 11B-NMR spectrum in SrCu2(BO3)2 at a field of 31.7 T, where a magnetization plateau at 1/6 of the saturation has been observed.

  10. Gas NMR Characterization of Oil Shale

    NASA Astrophysics Data System (ADS)

    Sorte, Eric; Laicher, Gernot; Saam, Brian

    2007-10-01

    Accurate descriptions and simulations of oil reservoirs such as carbonate-rich sedimentary rock are important for the efficient development and conversion of recoverable energy reserves. These descriptions depend on reliable measures of the properties of the formation rock such as absolute and effective porosity, mineralogical composition, permeability, and tortuosity. NMR signal relaxation time (T1 and T2) and measurements of restricted diffusion of gases in porous media can be used to probe multi-pore media, yielding valuable petrophysical information and allowing the characterization of internal topology and pore size distribution. We employ NMR techniques on imbibed fluorinated and hyperpolarized noble gases - gases with the unique properties of being chemically inert and minimally invasive while exhibiting favorable NMR properties - at various pressure and temperatures to characterize the shale heterogeneity. We show current results of our characterizations and explore ideas for future work.

  11. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  12. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  13. Particulate NMR contrast agents for gastrointestinal application

    SciTech Connect

    Runge, V.M.; Clanton, J.A.

    1986-10-07

    A contrast medium composition is described for nuclear magnetic resonance (NMR) imaging of the gastrointestinal system, comprising an orally or rectally administrable aqueous suspension of particles of an NMR contrast agent the suspension containing wetting and/or suspending agents to maintain the contrast agent particles in a dispersed suspended condition. The particles comprise a substantially water-insoluble compound of a paramagnetic metal, the particles being sized below 10 microns diameter and being capable of passing through the stomach while remaining in particulate form.

  14. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  15. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  16. The Quiet Renaissance of Protein NMR

    PubMed Central

    Barrett, Paul J.; Chen, Jiang; Cho, Min-Kyu; Kim, Ji-Hun; Lu, Zhenwei; Mathew, Sijo; Peng, Dungeng; Song, Yuanli; Van Horn, Wade D.; Zhuang, Tiandi; Sönnichsen, Frank D.; Sanders, Charles R.

    2013-01-01

    From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 80s. “Without receivers fitted and kept in order, the air may tingle and thrill with the message, but it will not reach my spirit and consciousness.” Mary Slessor, Calabar, circa 1910 PMID:23368985

  17. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  18. NMR investigation of the quantum pigeonhole effect

    NASA Astrophysics Data System (ADS)

    V. S., Anjusha; Hegde, Swathi S.; Mahesh, T. S.

    2016-02-01

    NMR quantum simulators have been used for studying various quantum phenomena. Here, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeonhole effect. In this phenomenon, a set of three particles in a two-path interferometer often appears to be in such a superposition that no two particles can be assigned a single path, thus exhibiting the nonclassical behavior. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The experimental results are in good agreement with quantum theoretical predictions.

  19. Altered phospholipid metabolism in schizophrenia: a phosphorus 31 nuclear magnetic resonance spectroscopy study.

    PubMed

    Weber-Fahr, Wolfgang; Englisch, Susanne; Esser, Andrea; Tunc-Skarka, Nuran; Meyer-Lindenberg, Andreas; Ende, Gabriele; Zink, Mathias

    2013-12-30

    Phospholipid (PL) metabolism is investigated by in vivo 31P magnetic resonance spectroscopy (MRS). Inconsistent alterations of phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) have been described in schizophrenia, which might be overcome by specific editing techniques. The selective refocused insensitive nuclei-enhanced polarization transfer (RINEPT) technique was applied in a cross-sectional study involving 11 schizophrenia spectrum disorder patients (SZP) on stable antipsychotic monotherapy and 15 matched control subjects. Metabolite signals were found to be modulated by cerebrospinal fluid (CSF) content and gray matter/brain matter ratio. Corrected metabolite concentrations of PC, GPC and PE differed between patients and controls in both subcortical and cortical regions, whereas antipsychotic medication exerted only small effects. Significant correlations were found between the severity of clinical symptoms and the assessed signals. In particular, psychotic symptoms correlated with PC levels in the cerebral cortex, depression with PC levels in the cerebellum and executive functioning with GPC in the insular and temporal cortices. In conclusion, after controlling for age and tissue composition, this investigation revealed alterations of metabolite levels in SZP and correlations with clinical properties. RINEPT 31P MRS should also be applied to at-risk-mental-state patients as well as drug-naïve and chronically treated schizophrenic patients in order to enhance the understanding of longitudinal alterations of PL metabolism in schizophrenia. PMID:24045051

  20. Phosphorus-31 MRI of cell membranes using quadratic echo line-narrowing

    NASA Astrophysics Data System (ADS)

    Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael

    2012-02-01

    Soft biological tissues have phosphorus concentrated in the membranes, metabolites, RNA and DNA of cells. This leads to a complicated, multi-peak ^31P nuclear magnetic resonance spectrum (including a broad membrane peak and narrow metabolite peaks), which precludes high-resolution ^31P MRI of soft tissues. This long-standing barrier has been overcome by a novel pulse sequence - the quadratic echo - recently discovered in fundamental quantum computation research. Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, three-dimensional ^31P MRI of the soft solid components of cells and tissues. This is a functionally different kind of MR image, since conventional ^1H MRI probes the intracellular and extracellular free water, whereas our ^31P MRI signal is dominated by the cell membrane contribution, which in turn depends on the density of mitochondria. The unique aspects of the signal should provide new insights into cellular and tissue function that compliment the information revealed by ^1H MRI. So far, various ex vivo soft tissue samples have been imaged with (sub-mm)^3 voxels. We will describe plans to enhance the spatial resolution in future work, to open a new window into cells.

  1. "In-plant" NMR: analysis of the intact plant Vesicularia dubyana by high resolution NMR spectroscopy.

    PubMed

    Kutyshenko, Viktor P; Beskaravayny, Peter; Uversky, Vladimir N

    2015-01-01

    We present here the concept of "in-plant" NMR and show that high-resolution NMR spectroscopy is suitable for the analysis of intact plants and can be used to follow the changes in the intraorganismal molecular composition over long time periods. The NMR-based analysis of the effect of different concentrations of heavy water on the aquatic plant Vesicularia dubyana revealed that due to the presence of specific adaptive mechanisms this plant can sustain the presence of up to 85% of D2O. However, it dies in 100% heavy water. PMID:25759953

  2. Sample patterning on NMR surface microcoils.

    PubMed

    Ehrmann, K; Gersbach, M; Pascoal, P; Vincent, F; Massin, C; Stamou, D; Besse, P-A; Vogel, H; Popovic, R S

    2006-01-01

    Aligned microcontact printing for patterning the sample in areas of homogeneous RF-field on the highly sensitive surface of planar NMR microprobes is presented. We experimentally demonstrate that sample patterning allows drastic improvement of the spin excitation uniformity. The NMR microprobes are designed for cell analysis and characterized using lipid vesicles as cell substitutes. Lipid vesicles are advantageous as composition and concentration of the confined solution are precisely controlled and because of their similarity to living cells. Using aligned microcontact printing, a monolayer of lipid vesicles is immobilized on the surface of the planar NMR microprobe in a patterned way. 1H NMR spectra and CPMG spin echoes of sucrose solution confined within the lipid vesicles are successfully recorded. Nutation curves of the sample structured in different patterns demonstrate the impact of patterning on the spin excitation uniformity. The total detection volumes are between 1 and 2 nL and derived with help of a theoretic model based on 3D finite element simulation. This model predicts the signal-to-noise ratio and the progression of the nutation curves. PMID:16239115

  3. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  4. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  5. NMR in a Diamond Anvil Pressure Cell

    NASA Astrophysics Data System (ADS)

    Lawson, Matthew; Dioguardi, Adam; Weir, Samuel; Bush, Blaine; Dunuwille, Mihindra; Deemyad, Shanti; Curro, Nichlas

    We present recent advances in the use of diamond anvil pressure cells in nuclear magnetic resonance measurements. This technique allows access to new regions of the phase diagrams of iron pnictide and heavy fermion materials, and promises to allow NMR experiments under pressures not previously accessible.

  6. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-01

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  7. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous. PMID:26102311

  8. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  9. Solid-State NMR of PEGylated Proteins.

    PubMed

    Ravera, Enrico; Ciambellotti, Silvia; Cerofolini, Linda; Martelli, Tommaso; Kozyreva, Tatiana; Bernacchioni, Caterina; Giuntini, Stefano; Fragai, Marco; Turano, Paola; Luchinat, Claudio

    2016-02-01

    PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use. PMID:26756539

  10. SQUID detected NMR in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Matlachov, Andrei N.; Volegov, Petr L.; Espy, Michelle A.; George, John S.; Kraus, Robert H.

    2004-09-01

    We have built an NMR system that employs a superconducting quantum interference device (SQUID) detector and operates in measurement fields of 2-25 μT. The system uses a pre-polarizing field from 4 to 30 mT generated by simple room-temperature wire-wound coils that are turned off during measurements. The instrument has an open geometry with samples located outside the cryostat at room-temperature. This removes constraints on sample size and allows us to obtain signals from living tissue. We have obtained 1H NMR spectra from a variety of samples including water, mineral oil, and a live frog. We also acquired gradient encoded free induction decay (FID) data from a water-plastic phantom in the μT regime, from which simple projection images were reconstructed. NMR signals from samples inside metallic containers have also been acquired. This is possible because the penetration skin depth is much greater at the low operating frequencies of this system than for conventional systems. Advantages to ultra-low field NMR measurements include lower susceptibility artifacts caused by high strength polarizing and measurement fields, and negligible line width broadening due to measurement field inhomogeneity, reducing the burden of producing highly homogeneous fields.

  11. Solid-State NMR for Bacterial Biofilms

    PubMed Central

    Reichhardt, Courtney; Cegelski, Lynette

    2014-01-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state NMR is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an E. coli biofilm and transform our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area. PMID:24976646

  12. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  13. Hyperpolarized NMR probes for biological assays.

    PubMed

    Meier, Sebastian; Jensen, Pernille R; Karlsson, Magnus; Lerche, Mathilde H

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  14. Solid-state NMR imaging system

    SciTech Connect

    Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

    1990-01-01

    An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  15. Minimising research bottlenecks by decluttering NMR spectra.

    PubMed

    Aguilar, Juan A; Cassani, Julia; Delbianco, Martina; Adams, Ralph W; Nilsson, Mathias; Morris, Gareth A

    2015-04-20

    The lack of resolving power in everyday NMR produces ambiguous data, causing bottlenecks, lengthening multi-step projects and increasing the likelihood of making mistakes. Significant impacts can be made in many fields by minimising these problems with the aid of pure shift techniques. PMID:25756360

  16. Multinuclear NMR spectroscopy in the gas phase

    NASA Astrophysics Data System (ADS)

    Jackowski, K.

    2006-04-01

    Nuclear magnetic resonance (NMR) of some nuclei (e.g. 1H, 13C, 19F, 29Si or 31P, I=1/2) gives strong signals which allow analytical studies of gaseous compounds. The other magnetic nuclei have low natural abundance or/and contain an electric quadrupole moment and their NMR signals are rather weak. In our laboratory we have developed new experimental techniques, which permit us to monitor several micrograms of chemical compounds in gaseous matrices. Applying this approach we have observed magnetic shielding of various nuclei, including 17O and 33S at the natural abundance, in the gas phase as a function of density. Density-dependent spin-spin couplings were also found for many chemical compounds. It has been shown that NMR gas-phase studies can easily be extended on molecules, which exhibit strong intermolecular interactions and are liquids at room temperature. All the latter NMR experimental results obtained for gaseous matrices are reviewed in this paper.

  17. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa; Dieckman, Stephen L.; Ellingson, William A.

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  18. Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)

    PubMed Central

    Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2011-01-01

    We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228

  19. Combining solid-state NMR spectroscopy with first-principles calculations - a guide to NMR crystallography.

    PubMed

    Ashbrook, Sharon E; McKay, David

    2016-06-01

    Recent advances in the application of first-principles calculations of NMR parameters to periodic systems have resulted in widespread interest in their use to support experimental measurement. Such calculations often play an important role in the emerging field of "NMR crystallography", where NMR spectroscopy is combined with techniques such as diffraction, to aid structure determination. Here, we discuss the current state-of-the-art for combining experiment and calculation in NMR spectroscopy, considering the basic theory behind the computational approaches and their practical application. We consider the issues associated with geometry optimisation and how the effects of temperature may be included in the calculation. The automated prediction of structural candidates and the treatment of disordered and dynamic solids are discussed. Finally, we consider the areas where further development is needed in this field and its potential future impact. PMID:27117884

  20. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the line width (delta upsilon = 2.5 kHz).

  1. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  2. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  3. ADAPT-NMR Enhancer: complete package for reduced dimensionality in protein NMR spectroscopy

    PubMed Central

    Lee, Woonghee; Bahrami, Arash; Markley, John L.

    2013-01-01

    Summary: ADAPT-nuclear magnetic resonance (ADAPT-NMR) offers an automated approach to the concurrent acquisition and processing of protein NMR data with the goal of complete backbone and side chain assignments. What the approach lacks is a useful graphical interface for reviewing results and for searching for missing peaks that may have prevented assignments or led to incorrect assignments. Because most of the data ADAPT-NMR collects are 2D tilted planes used to find peaks in 3D spectra, it would be helpful to have a tool that reconstructs the 3D spectra. The software package reported here, ADAPT-NMR Enhancer, supports the visualization of both 2D tilted planes and reconstructed 3D peaks on each tilted plane. ADAPT-NMR Enhancer can be used interactively with ADAPT-NMR to automatically assign selected peaks, or it can be used to produce PINE-SPARKY-like graphical dialogs that support atom-by-atom and peak-by-peak assignment strategies. Results can be exported in various formats, including XEASY proton file (.prot), PINE pre-assignment file (.str), PINE probabilistic output file, SPARKY peak list file (.list) and TALOS+ input file (.tab). As an example, we show how ADAPT-NMR Enhancer was used to extend the automated data collection and assignment results for the protein Aedes aegypti sterol carrier protein 2. Availability: The program, in the form of binary code along with tutorials and reference manuals, is available at http://pine.nmrfam.wisc.edu/adapt-nmr-enhancer. Contact: whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu PMID:23220573

  4. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  5. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments. PMID:18374613

  6. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  7. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint. PMID:20513646

  8. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  9. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  10. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  11. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. 33S NMR cryogenic probe for taurine detection.

    PubMed

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a (33)S nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the (33)S NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 microM taurine solutions, which is the level of sensitivity necessary for biological samples. PMID:19334961

  13. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and developed methodology using that data to determine spatially resolved permeability distributions. We investigate the use of intrinsic properties for developing improved correlations for predicting permeability from NMR well-logging data and for obtaining more accurate estimates of multiphase flow properties--the relative permeability and capillary pressure--from displacement experiments. We demonstrate the use of MRI measurements of saturation and relaxation for prediction wetting-phase relative permeability for unstable experiments. Finally, we developed an improved method for determining surface relaxivity with NMR experiments, which can provide better descriptions of permeable media microstructures and improved correlations for permeability predictions.

  14. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  15. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  16. TROSY NMR with partially deuterated proteins.

    PubMed

    Eletsky, A; Kienhöfer, A; Pervushin, K

    2001-06-01

    TROSY-type optimization of liquid-state NMR experiments is based on the preservation of unique coherence transfer pathways with distinct transverse relaxation properties. The broadband decoupling of the 1H spins interchanges the TROSY and anti-TROSY magnetization transfer pathways and thus is not used in TROSY-type triple resonance experiments or is replaced with narrowband selective decoupling. To achieve the full advantage of TROSY, the uniform deuteration of proteins is usually required. Here we propose a new and general method for 1H broadband decoupling in TROSY NMR, which does not compromise the relaxation optimization in the 15N-1H moieties, but uniformly and efficiently refocuses the 1JCH scalar coupling evolution in the 13C-1H moieties. Combined with the conventional 2H decoupling, this method enables obtaining high sensitivity TROSY-type triple resonance spectra with partially deuterated or fully protonated 13C,15N labeled proteins. PMID:11495249

  17. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  18. 1H NMR in a-Si

    NASA Astrophysics Data System (ADS)

    Carlos, W. E.; Taylor, P. C.

    1982-10-01

    Results of pulsed NMR studies of hydrogen in a-Si: H prepared at several laboratories by glow discharge of silane are presented. The origins of the two 1H NMR lines seen in almost all samples of a-Si: H are discussed. Solid-echo measurements are presented which indicate that these two components are due to spatially isolated groups of protons. We attribute the narrow line to protons slightly clustered in the bulk of the material and the broad line to protons distributed on internal surfaces. The spin-lattice relaxation time shows a minimum at T~30 K which is interpreted as due to relaxation via spin diffusion to a small number of H2 molecules acting as relaxation centers. Annealing results suggest that all the hydrogen molecules are trapped in very similar sites.

  19. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  20. Multifunctional pulse sequence generator for pulse NMR

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng

    1988-06-01

    A new multifunctional pulse sequence generator has been designed and constructed. It can conveniently generate various pulse sequences used in nuclear-magnetic resonance (NMR) to measure the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and the spin-locking relaxation time T1 ρ. It can also be used in pulse Fourier transform NMR and double resonance. The intervals of pulses can increase automatically with sequence repetitions and the generator can be used in two-dimensional spectrum measurement and spin-density imaging research. The sequences can be generated through four different triggering methods and there are two synchronous pulse outputs and fifteen auxiliary pulse outputs, so the generator can be conveniently interfaced with a computer or other instruments. The circuitry, functions, and features of the generator are described in this article.

  1. NMR assays for carbohydrate-based vaccines.

    PubMed

    Jones, Christopher

    2005-08-10

    Antibodies against the cell surface carbohydrates of many microbial pathogens protect against infection. This was initially exploited by the development of purified polysaccharide vaccines, but glycoconjugate vaccines, in which the cell surface carbohydrate of a microbial pathogen is covalently attached to an appropriate carrier protein, are proving the most effective means to generate this protective immunity. Carbohydrate-based vaccines against Haemophilus influenzae Type b, Neisseria meningitidis, Streptococcus pneumoniae and Salmonella enterica serotype Typhi (S. Typhi) are already licensed, and many similar products are in various stages of development. For many of these vaccines, biological assays are not available or are inappropriate and NMR spectroscopy is proving a valuable tool for the characterisation and quality control of existing and novel products. This review highlights some of the areas in which NMR spectroscopy is currently used, and where further developments may be expected. PMID:16087046

  2. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  3. NMR studies of nucleic acid dynamics

    PubMed Central

    Al-Hashimi, Hashim M.

    2014-01-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner. PMID:24149218

  4. 3D NMR Imaging of Foam Structures

    NASA Astrophysics Data System (ADS)

    Kose, Katsumi

    Three-dimensional foam structures were measured using NMR imaging, and their 3D geometrical properties were analyzed. Eight bubble polyhedra of a polyurethane foam specimen were extracted from 3D NMR image data using a newly developed 3D geometrical structure analysis program, and quantitative geometrical data were measured for the first time for real foam systems. The results agreed well with the study by Matzke with soap bubbles but did not agree with the optimum solution by Weaire and Phelan for 3D space division into equal volume cells with minimum partitional area. The reason for this disagreement is not clear; however, improved foam preparation and more systematic measurements using the method developed here may clarify this difference.

  5. NMR hand-held moisture sensor.

    PubMed

    Prado, P J

    2001-01-01

    An open magnet design, hand-held NMR sensor head is presented. Wood moisture content and cement hydration tests demonstrate the potential of the tool for in-situ material assessment. The magnetic field distribution was adjusted by positioning blocks of permanent magnets using millimeter scale 3-dimensional magnetic field modeling. A low Q-factor circuit was used for spin-echo sequences with short echo times. PMID:11445342

  6. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  7. 45Scandium NMR Investigations in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Haid, E.; Khnlein, D.; Kssler, G.; Lutz, O.; Messner, W.; Mohn, K. R.; Nothaft, G.; Rickelen, B. van; Schich, W.; Steinhauser, N.

    1983-03-01

    45Sc NMR chemical shifts, linewidths, and longitudinal relaxation rates have been measured in aqueous solutions of scandium chloride and sulphate as a function of the appropriate acid. A common typical behaviour of these parameters without sudden changes has been observed. Also signals in the basic range have been obtained. H2O -D2O solvent isotope effects on Larmor frequency and relaxation rates are presented.

  8. Quantitative calibration of radiofrequency NMR Stark effects.

    PubMed

    Tarasek, Matthew R; Kempf, James G

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2?(0)). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C(14) (the response parameter in cubic crystals) were obtained for both (69)Ga and (75)As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2?(0) amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2?(0) circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2?(0) excitation to presaturate NMR spectra yielded C(14) = (2.59 0.06) 10(12) m(-1) for (69)Ga at room-temperature and 14.1 T. For (75)As, we obtained (3.1 0.1) 10(12) m(-1). Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2?(0) field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|. PMID:22047309

  9. Highly flexible pulse programmer for NMR applications

    NASA Technical Reports Server (NTRS)

    Dart, J.; Burum, D. P.; Rhim, W. K.

    1980-01-01

    A pulse generator for NMR application is described. Eighteen output channels are provided to allow use in single and double resonance experiments. Complex pulse sequences may be generated by loading instructions into a 256-word by 16-bit program memory. Features of the pulse generator include programmable time delays from 0.5 micros to 1000 s, branching and looping instructions, and the ability to be loaded and operated either manually or from a PDP-11/10 computer.

  10. Strategies for protein NMR in Escherichia coli.

    PubMed

    Xu, Guohua; Ye, Yansheng; Liu, Xiaoli; Cao, Shufen; Wu, Qiong; Cheng, Kai; Liu, Maili; Pielak, Gary J; Li, Conggang

    2014-04-01

    In-cell NMR spectroscopy provides insight into protein conformation, dynamics, and function at atomic resolution in living cells. Systematic evaluation of isotopic-labeling strategies is necessary to observe the target protein in the sea of other molecules in the cell. Here, we investigate the detectability, sensitivity, and resolution of in-cell NMR spectra of the globular proteins GB1, ubiquitin, calmodulin, and bcl-xl-cutloop, resulting from uniform (15)N enrichment (with and without deuteration), selective (15)N-Leu enrichment, (13)C-methyl enrichment of isoleucine, leucine, valine, and alanine, fractional (13)C enrichment, and (19)F labeling. Most of the target proteins can be observed by (19)F labeling and (13)C enrichment with direct detection because selectively labeling suppresses background signals and because deuteration improves in-cell spectra. Our results demonstrate that the detectability of proteins is determined by weak interactions with intercellular components and that choosing appropriate labeling strategies is critical for the success of in-cell protein NMR studies. PMID:24597855

  11. The NMR blood flowmeter--design.

    PubMed

    Halbach, R E; Battocletti, J H; Salles-Cunha, S X; Sances, A

    1981-01-01

    Two types of crossed-coil nuclear magnetic resonance (NMR) blood flowmeter detectors have been developed for the noninvasive measurement of blood flow. The first is a cylindrical coil configuration suitable for limb blood measurement. A cylindrical flowmeter (12.5 cm internal diam) operating at a nuclear resonance frequency of 3.2 MHz has been applied to measurement of flow in the forearm. The second type is the flat crossed-coil detector, which retains many of the operational advantages of the cylindrical detector, but is suitable for blood flow measurement of almost any surface of the body. Three flat crossed-coil detectors are described, operating at NMR frequencies of 9, 21.4, and 75 MHz. Two types of intermediate frequency signal processors have been used in the NMR receivers, a simple diode type, and a synchronous detector. The synchronous detector is preferred for its ease of operation and superior stability. Modular detection systems containing transmitter, receiver, post-detector signal conditioning, and power supply have been designed for all of the flat crossed-coil detectors. A self-contained synchronous detector module is included in the 21.4 and 75 MHz systems. PMID:6459529

  12. Nonclassical correlation in NMR quadrupolar systems

    SciTech Connect

    Soares-Pinto, D. O.; Auccaise, R.; Azevedo, E. R. de; Bonagamba, T. J.; Celeri, L. C.; Maziero, J.; Serra, R. M.; Fanchini, F. F.

    2010-06-15

    The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.

  13. NMR quantitation: influence of RF inhomogeneity

    PubMed Central

    Mo, Huaping; Harwood, John; Raftery, Daniel

    2016-01-01

    The NMR peak integral is ideally linearly dependent on the sine of excitation angle (θ), which has provided unsurpassed flexibility in quantitative NMR by allowing the use of a signal of any concentration as the internal concentration reference. Controlling the excitation angle is particularly critical for solvent proton concentration referencing to minimize the negative impact of radiation damping, and to reduce the risk of receiver gain compression. In practice, due to the influence of RF inhomogeneity for any given probe, the observed peak integral is not exactly proportional to sin θ. To evaluate the impact quantitatively, we introduce a RF inhomogeneity factor I(θ) as a function of the nominal pulse excitation angle and propose a simple calibration procedure. Alternatively, I(θ) can be calculated from the probe’s RF profile, which can be readily obtained as a gradient image of an aqueous sample. Our results show that without consideration of I(θ), even for a probe with good RF homogeneity, up to 5% error can be introduced due to different excitation pulse angles used for the analyte and the reference. Hence, a simple calibration of I(θ) can eliminate such errors and allow an accurate description of the observed NMR signal’s dependence on the excitation angle in quantitative analysis. PMID:21919056

  14. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. PMID:23374188

  15. NMR properties of petroleum reservoir fluids.

    PubMed

    Hirasaki, George J; Lo, Sho-Wei; Zhang, Ying

    2003-01-01

    NMR well logging of petroleum reservoir require the measurement of the NMR response of water, oil, and gas in the pore space of rocks at elevated temperatures and pressures. The viscosity of the oil may range from less than 1 cp to greater than 10,000 cp. Also, the oil and gas are not a single component but rather a broad distribution of components. The log mean T1 and T2 relaxation time of dead (gas free) crude oils are correlated with viscosity/temperature and Larmor frequency. The relaxation time of live oils deviate from the correlation for dead crude oils. This deviation can be correlated with the methane content of the oil. Natural gas in the reservoir has components other than methane. Mixing rules are developed to accommodate components such as ethane, propane, carbon dioxide, and nitrogen. Interpretation of NMR logs uses both relaxation and diffusion to distinguish the different fluids present in the formation. Crude oils have a broad spectrum of components but the relaxation time distribution and diffusion coefficient distribution are correlated. This correlation is used to distinguish crude oil from the response of water in the pores of the rock. This correlation can also be used to estimate viscosity of the crude oil. PMID:12850718

  16. Automatic maximum entropy spectral reconstruction in NMR.

    PubMed

    Mobli, Mehdi; Maciejewski, Mark W; Gryk, Michael R; Hoch, Jeffrey C

    2007-10-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system. PMID:17701276

  17. 133Cs NMR Studies of Pollucite

    NASA Astrophysics Data System (ADS)

    Ashbrook, S. E.; Whittle, K. R.; Farnan, I.

    2003-04-01

    Pollucite, CsAlSi_2O_6, a member of the aluminosilicate family that contains leucite, KAlSi_2O_6, has been proposed as a storage medium for 135Cs and 137Cs active nuclear wastes. Owing to the open framework nature of these systems, an understanding of the location and environment of Cs and its potential mobility is essential. To this end, 133Cs (I = 7/2) NMR spectra have been collected for two systems, CsAlSiO_4, an orthosilicate, and CsAlSi_2O_6. As a further structural examination, 29Si (I = 1/2) and 27Al (I = 5/2) NMR techniques have been applied to CsAlSiO_4, CsAlSi_2O_6 and KAlSi_2O_6 and the results compared with existing literature values. In particular, high-resolution two-dimensional 27Al MQMAS NMR experiments have been employed with a view to understanding the disorder in these systems.

  18. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    NASA Astrophysics Data System (ADS)

    Huster, Daniel; Schiller, Jürgen; Naji, Lama; et al.

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  19. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  20. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGESBeta

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  1. Portable microcoil NMR detection coupled to capillary electrophoresis.

    PubMed

    Diekmann, Joana; Adams, Kristl L; Klunder, Gregory L; Evans, Lee; Steele, Paul; Vogt, Carla; Herberg, Julie L

    2011-02-15

    High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system. PMID:21235258

  2. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  3. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  4. Quantum theory of NMR adiabatic pulses and their applications. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Ke, Y.

    1993-01-01

    Recently explosive developments of in vivo NMR spectroscopy (NMRS) and imaging (NMRI) in biological and medical sciences have resulted in the establishment of NMR as one of the most advanced major technique in life sciences. These developments have created huge demands for a variety of NMR adiabatic pulses with play a very important role in NMR experiments in vivo. In order to develop new NMR adiabatic pulses, a rigorous systematical quantum theory for this kind of pulses is greatly needed. Providing such a theory is one of the important goals of this dissertation. Quantum density matrix theory and product operator method have been used throughout this dissertation. Another goal, which is the major goal of this thesis research, is to use the quantum theory as a guide to develop new NMR adiabatic pulses and their applications. To fill this goal, a technique to construct a new type of adiabatic pulses, narrow band selective adiabatic pulses, has been invented, which is described through the example of constructing an adiabatic DANTE inversion pulse. This new adiabatic pulse is the first narrow band selective adiabatic pulses: Adiabatic homonuclear and heteronuclear spectral editing sequences. Unique to the first pulse sequence is a B[sub 1]-field filter which is built by using two non-refocusing adiabatic full passage pulses to refocus the wanted signal and dephase unwanted signals. This extra filter greatly enhance the editing efficiency. Unlike commonly used heteronuclear spectral editing sequences which depend on the polarization transfer or spectral subtraction by phase cycling techniques, the second pulse sequences accomplishes the editing of heteronuclear J-coupled signals based on the fact that this sequence is transparent to the uncoupled spins and is equivalent a 90[degrees] excitation pulse to the heteronuclear J-coupled spins. Experimental results have confirmed the ability of spectral editing with these two new sequences.

  5. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  6. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  7. NMR analysis of carbohydrate-binding interactions in solution: an approach using analysis of saturation transfer difference NMR spectroscopy.

    PubMed

    Hemmi, Hikaru

    2014-01-01

    One of the most commonly used ligand-based NMR methods for detecting ligand binding is saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. The STD NMR method is an invaluable technique for assessing carbohydrate-lectin interactions in solution, because STD NMR can be used to detect weak ligand binding (Kd ca. 10(-3)-10(-8) M). STD NMR spectra identify the binding epitope of a carbohydrate ligand when bound to lectin. Further, the STD NMR method uses 1H-detected NMR spectra of only the carbohydrate, and so only small quantities of non-labeled lectin are required. In this chapter, I describe a protocol for the STD NMR method, including the experimental procedures used to acquire, process, and analyze STD NMR data, using STD NMR studies for methyl-β-D-galactopyranoside (β-Me-Gal) binding to the C-terminal domain of an R-type lectin from earthworm (EW29Ch) as an example. PMID:25117260

  8. In-cell NMR in Xenopus laevis oocytes.

    PubMed

    Thongwichian, Rossukon; Selenko, Philipp

    2012-01-01

    For the purpose of studying IDPs inside cells of higher organisms, several eukaryotic in-cell NMR systems have been developed over the past years. In this chapter we will focus on high-resolution in-cell NMR applications in Xenopus laevis oocytes, the first eukaryotic cellular model system to be established. In contrast to prokaryotic in-cell NMR samples, eukaryotic in-cell NMR specimens are prepared by cytoplasmic delivery of an exogenously produced, isotope-labeled protein into the non-isotope-labeled environment of the respective "host" cell. In-cell NMR applications in Xenopus oocytes rely on intracellular sample deposition by direct microinjection into the oocyte cytoplasm. Here, we describe the preparation of oocyte in-cell NMR samples for IDP studies in this cellular model environment. PMID:22760310

  9. Universal Quantitative NMR Analysis of Complex Natural Samples

    PubMed Central

    Simmler, Charlotte; Napolitano, Jos G.; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    Nuclear Magnetic Resonance (NMR) is a universal and quantitative analytical technique. Being a unique structural tool, NMR also competes with metrological techniques for purity determination and reference material analysis. In pharmaceutical research, applications of quantitative NMR (qNMR) cover mostly the identification and quantification of drug and biological metabolites. Offering an unbiased view of the sample composition, and the possibility to simultaneously quantify multiple compounds, qNMR has become the method of choice for metabolomic studies and quality control of complex natural samples such as foods, plants or herbal remedies, and biofluids. In this regard, NMR-based metabolomic studies, dedicated to both the characterization of herbal remedies and clinical diagnosis, have increased considerably. PMID:24484881

  10. Dynamic NMR study of cyclic derivatives of pyridoxine.

    PubMed

    Rakhmatullin, I Z; Galiullina, L F; Garipov, M R; Strel'nik, A D; Shtyrlin, Y G; Klochkov, V V

    2014-12-01

    A series of pyridoxine derivatives was investigated by (1) H and 2D nuclear overhauser enhancement spectroscopy (NOESY) NMR. The free energies of activation for the pyridyl-oxygen rotation of the 2,4-dinitrophenyl ether of the seven-membered acetals of pyridoxine were measured by dynamic NMR. A conformational exchange between the chair and twist forms of the seven-membered acetal ring was confirmed by dynamic NMR and STO3G computations. PMID:25139043

  11. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  12. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  13. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.

  14. NMR study of magnetism and superparamagnetism

    NASA Astrophysics Data System (ADS)

    Yuan, Shaojie

    The research described in this dissertation is concerned with two different types of magnetic materials. Both types of systems involve competing interactions between transition metal ions. New approaches involving magnetic resonance in the large hyperfine fields at nuclear sites have been developed. The interactions responsible for the properties that have been investigated in the materials studied are geometric frustration in an insulator and ferromagnetic and antiferromagnetic interactions in a metal alloy. Further details are given below. The extended kagome frustrated system YBaCo4O7 has 2D kagome and triangular lattices of Co ions stacked along the c-axis. Antiferromagnetic (AF) ordering accompanied by a structural transition has been reported in the literature. From a zero field (ZF) NMR single crystal rotation experiment, we have obtained the Co spin configurations for both the kagome and triangular layers. A 'spin-flop' configuration between the spins on the kagome layer and the spins on the triangular layer is indicated by our results. Our NMR findings are compared with neutron scattering results for this intriguing frustrated AF spin system. The non-stoichiometric oxygenated sister compound YBaCo4O7.1 has application potential for oxygen storage. While, its' magnetic properties are quite different from those of the stoichiometric compound, in spite of their similar structures of alternating kagome and triangular Co layers. Various techniques, including ZF NMR have been used to investigate the spin dynamics and spin configuration in a single crystal of YBaCo4O7.1. A magnetic transition at 80 K is observed, which is interpreted as the freezing out of spins in the triangular layers. At low temperatures (below 50 K), the spin dynamics persists and a fraction of spins in the kagome layers form a viscous spin liquid. Below 10 K, a glass-like spin structure forms and a large distribution of spin correlation times are suggested by nuclear spin lattice relaxation behavior. The magnetic shape memory alloys Ni-Mn-Sn exhibit interesting properties including, field induced transformations, conventional and inverse magnetocaloric effects. They have potential for use as sensors, actuators and energy conversion devices. The Heusler alloy, Ni50Mn50-xSnx with x = 10 is one of these materials. It undergoes a transition from an austenite phase to a martensitic phase at 400 K, with the emergence of rich interesting magnetic properties below the transition. Coexistence of ferromagnetic (F) and AF spin configurations is reported in these compounds. 55Mn NMR has been used as a local probe to study the magnetic properties of this alloy. Rich peak features are observed with the various components assigned to nanoscale F or AF regions. Our results have provided detailed information on the AF regions, which has not been provided by other techniques. Measurements of the temperature dependence of the NMR spectra, in ZF and in a perturbing field were made. The spin-lattice relaxation dependence on T provides detailed information on the nanocluster size distribution and relative concentrations of the F and AF regions. Recently, the Heusler alloy Ni50-xCoxMn40Sn10, with 5 ≤ x ≤ 8, have attracted interest because the low thermal hysteresis and the large change in magnetization which they exhibit at the martensitic transition. Evidence for phase separation of ferromagnetic and antiferromagnetic regions at low temperatures is provided by magnetization and small angle neutron scattering measurements. Superparamagnetism and intrinsic exchange bias effects have been detected below 50 K. Zero field 55Mn NMR has provided detailed information on the nanoscale magnetic properties of samples with x = 7 and, for comparison, x = 14. For x = 7 F and AF regions, with a broad size distribution are identified and our results show that F clusters with the highest blocking temperatures are associated with regions rich in Co ions.

  15. Monitoring organic reactions by UF-NMR spectroscopy.

    PubMed

    Herrera, Antonio; Fernández-Valle, Encarnación; Martínez-Álvarez, Roberto; Molero-Vílchez, Dolores; Pardo-Botero, Zulay D; Sáez-Barajas, Elena

    2015-11-01

    Standard 2D NMR experiments suffer from the many t1 increments needed for spectra with sufficient digital resolution in the indirect dimension. Despite the different methodological approaches to overcome this problem, these increments have prevented studies of fast reactions. The development of ultrafast NMR (UF-NMR) has decisively speeded up the time scale of standard NMR to allow the study of organic reactions as they happen in real time to reveal mechanistic details. This mini-review summarizes the results achieved in monitoring organic reactions through this exciting technique. PMID:25998506

  16. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  17. Random phase detection in multidimensional NMR

    PubMed Central

    Maciejewski, Mark W.; Fenwick, Matthew; Schuyler, Adam D.; Stern, Alan S.; Gorbatyuk, Vitaliy; Hoch, Jeffrey C.

    2011-01-01

    Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts. PMID:21949370

  18. Biological and medical imaging by NMR

    NASA Astrophysics Data System (ADS)

    Mansfield, P.; Pykett, I. L.

    2011-12-01

    Several methods of producing NMR images are discussed and examples of biological application are given. The discussion emphasizes spin density projections as an introduction to the new method of echo-planar imaging, which is fully described. An example showing the first picture produced by this method is presented. The problems of scaling up medical imaging experiments to whole-body size are also discussed and the type of image expected from such experiments is anticipated by constructing cross-sectional water content maps of a human subject.

  19. NMR observation of Tau in Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Bodart, Jean-François; Wieruszeski, Jean-Michel; Amniai, Laziza; Leroy, Arnaud; Landrieu, Isabelle; Rousseau-Lescuyer, Arlette; Vilain, Jean-Pierre; Lippens, Guy

    2008-06-01

    The observation by NMR spectroscopy of microinjected 15N-labelled proteins into Xenopus laevis oocytes might open the way to link structural and cellular biology. We show here that embedding the oocytes into a 20% Ficoll solution maintains their structural integrity over extended periods of time, allowing for the detection of nearly physiological protein concentrations. We use these novel conditions to study the neuronal Tau protein inside the oocytes. Spectral reproducibility and careful comparison of the spectra of Tau before and after cell homogenization is presented. When injecting Tau protein into immature oocytes, we show that both its microtubule association and different phosphorylation events can be detected.

  20. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  1. NMR spectroscopic analysis of neferine and isoliensinine.

    PubMed

    Yang, Jian; Zhou, Kailan

    2004-11-01

    Neferine and isoliensinine are the two major compositions of the Chinese medicine lotus plumule. They have extensive cardiovascular activity, such as antiarrhythmic, antithrombic and antihypertensive. In order to confirm the structures reported in the literature by explicit 1H and 13C assignments, we used a series of NMR experiments including 1H, 1H-COSY, HSQC and HMBC. The absolute configuration of neferine (C-1 and C-1') was determined as R and S and that of isoliensinine (C-1 and C-1') was determined as R and R. PMID:15386549

  2. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large increase in sensitivity is observed. Correlation of motion of two interacting methyl groups is the subject of chapter 6. This system serves as a model for the study of hindered internal motion. Because the spin system is small and the motions are well-defined, the calculations involved are tractable. Group theory appropriate for nonrigid molecules is used to treat the change in the Hamiltonian as the methyl groups transit from correlated to uncorrelated motion. Results show that the four-quantum order alone is sufficient to distinguish between the two motions.

  3. Analysis of multiple pulse NMR in solids

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Elleman, D. D.; Vaughan, R. W.

    1973-01-01

    The general problems associated with the removal of the effects of dipolar broadening from solid-state NMR spectra are analyzed. The effects of finite pulse width and H sub 1 inhomogeneity are shown to have limited the resolution of previous pulse cycles, and a new eight-pulse cycle designed to minimize these problems is discussed. Spectra for F-19 in CaF2 taken with this cycle are presented which show residual linewidth near 10 Hz. The feasibility of measuring proton chemical shift tensors is discussed.

  4. High-Resolution Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Massiot, Dominique

    High-resolution solid state NMR and its application to the characterization of solid state inorganic, organic, or hybrid materials, is undergoing rapid developments on both methodological and hardware points of view. Starting from a general presentation, we describe different methods that give access to the high resolution spectra; we then give examples of new methods that enable more detailed structural description through the selective reintroduction of anisotropic interactions (quadrupolar, chemical shift anisotropy, dipolar and scalar couplings). A special emphasis is given to the recent improvements obtained at high, very-high and ultra-high magnetic fields.

  5. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils. PMID:26453215

  6. Touch NMR: An NMR Data Processing Application for the iPad

    ERIC Educational Resources Information Center

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to

  7. Touch NMR: An NMR Data Processing Application for the iPad

    ERIC Educational Resources Information Center

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  8. Measuring couplings in crowded NMR spectra: pure shift NMR with multiplet analysis.

    PubMed

    Foroozandeh, M; Adams, R W; Kiraly, P; Nilsson, M; Morris, G A

    2015-10-28

    The PSYCHE method for pure shift NMR is exploited to generate 2D J spectra with full decoupling in one dimension and multiplet structure in the other, allowing spin-spin coupling constants to be measured even in very crowded spectra. Significant improvements over existing techniques are demonstrated for the hormones estradiol and androstenedione. PMID:26343867

  9. Lanthanide induced formation of novel luminescent alginate hydrogels and detection features.

    PubMed

    Ma, Qianmin; Wang, Qianming

    2015-11-20

    Responsive photo-luminescent soft matters have led to the design of optical sensors and switches. In this research, two new organic-inorganic type hybrid hydrogels have been fabricated by the self-assembly of sodium alginate and lanthanide elements. The incorporation of europium ions (Eu(3+)) (or terbium ions (Tb(3+))) was required for the gelation of the dissolved alginate and thermally stable gels were formed. It has been found that red/green emissions derived from lanthanide ions were clearly identified in pure aqueous media through the metal coordination interactions with assembled alginate. These supramolecular structures could partially prevent the Eu(3+) (or Tb(3+)) from being attacked by high frequency vibrations. More importantly, the lanthanide luminescence could be switched "off-on" in the presence of the anthrax biomarker sodium dipicolinate (NaDPA). The detection limits (for NaDPA) were determined to be 8.3×10(-8)M and 9.0×10(-8)M based on Eu(III) and Tb(III) gel, respectively. PMID:26344249

  10. Analysis of lanthanide-induced conformational change of the C-terminal domain on centrin.

    PubMed

    Zhao, Ya-Qin; Yan, Jun; Song, Li; Feng, Ya-Nan; Liang, Ai-Hua; Yang, Bin-Sheng

    2012-01-01

    Centrin, an EF-hand calcium-binding protein with high homology to calmodulin (CaM), is an essential component of microtubule-organizing center (MTOC). Lanthanide (Ln) ions can improve the stability, increase the amount and enhance the orderliness of microtubules, which are components of cytoskeleton. In order to investigate the structural basis of Ln ions on enhancing orderliness of microtubules, we characterized the binding properties of Ln ions with the isolated C-terminal domain of the Euplotes centrin (C-EoCen). Results suggested that Ln ions may occupy the canonical Ca(2+) binding sites on C-EoCen with middle affinity. Near- and far-UV CD spectra of C-EoCen displayed pronounced differences before and after additing Ln ions. The asymmetry of microenvironments of Phe on C-EoCen was changed. Using 2-p-toluidinylnaphthalene-6- sulfonate (TNS) as probe, Ln ions induced C-EoCen to undergo conformational changes from closed state to open state, resulting in exposing hydrophobic patches to external environments. Ln ions have more obvious effect on the conformation of centrin than Ca(2+). The differences found in the interactions of centrin binding with Ln ions/Ca(2+) maybe provide some insights for structural basis of centrin functions in vivo. PMID:21947611

  11. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  12. The D0 solenoid NMR magnetometer

    SciTech Connect

    Sten Uldall Hansen Terry Kiper, Tom Regan, John Lofgren et al.

    2002-11-20

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10{sup 5}. To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV.

  13. NMR assessment on bone simulated under microgravity

    NASA Astrophysics Data System (ADS)

    Ni, Q.; Qin, Y.

    Introduction Microgravity-induced bone loss has been suggested to be similar to disuse-osteoporosis on Earth which constitutes a challenging public health problem No current non-destructive method can provide the microstructural changes in bone particularly on cortical bone Recently the authors have applied low field nuclear magnetic resonance NMR spin-spin relaxation technique and computational analysis method to determine the porosity pore size distribution and microdamage of cortical bone 1-3 The studies by the authors have shown that this technology can be used to characterize microstructural changes as well as bone water distribution bound and mobile water changes of weightless treated simulating a microgravity condition turkey and mouse cortical bone We further determinate that the NMR spin-spin relaxation time T 2 spectrum derived parameters can be used as descriptions of bone quality e g matrix water distribution and porosity size distributions and alone or in combination with current techniques bone mineral density measurements more accurately predict bone mechanical properties Methods underline Bone sample preparation Two kinds of animal samples were collected and prepared for designed experiments from SUNY Cortical bones of the mid-diaphyses of the ulnae of 1-year-old male turkeys were dissected from freshly slaughtered animals Eight samples were categorized from normal or control and four samples were 4-week disuse treated by functionally isolated osteotomies disuse A total of 12

  14. NMR probe for dynamic-angle spinning

    NASA Astrophysics Data System (ADS)

    Mueller, K. T.; Chingas, G. C.; Pines, A.

    1991-06-01

    We describe the design of a probe for dynamic-angle spinning (DAS) NMR experiments, comprised of a spinning cylindrical sample holder whose axis may be reoriented rapidly between discrete directions within the bore of a superconducting magnet. This allows the refocusing of nuclear spin magnetization that evolves under anisotropic interactions such as chemical shift anisotropy and quadrupolar coupling, providing high resolution NMR spectra for quadrupolar nuclei in solid materials. The probe includes an axial air delivery system to bearing and drive jets which support and spin a rotor containing the sample. Axis reorientation is accomplished with a pulley attached to the probehead and coupled to a stepping motor outside of the magnet. The choice of motor and gear ratio is based on an analysis of the moments of inertia of the motor and load, the desired angular resolution, and simplicity of design. Control of angular accuracy and precision are discussed, as well as the efficiency of radiofrequency irradiation and detection. High resolution DAS spectra of oxygen-17 and aluminum-27 nuclei in polycrystalline minerals illustrate the experimental capabilities.

  15. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  16. Nuclear magnetic resonance (NMR)-based metabolomics.

    PubMed

    Keun, Hector C; Athersuch, Toby J

    2011-01-01

    Biofluids are by far the most commonly studied sample type in metabolic profiling studies, encompassing blood, urine, cerebrospinal fluid, cell culture media and many others. A number of these fluids can be obtained at a high sampling frequency with minimal invasion, permitting detailed characterisation of dynamic metabolic events. One of the attractive properties of solution-state metabolomics is the ability to generate profiles from these fluids following simple preparation, allowing the analyst to gain a naturalistic, largely unbiased view of their composition that is highly representative of the in vivo situation. Solution-state samples can also be generated from the extraction of tissue or cellular samples that can be tailored to target metabolites with particular properties. Nuclear magnetic resonance (NMR) provides an excellent technique for profiling these fluids and is especially adept at characterising complex solutions. Profiling biofluid samples by NMR requires appropriate preparation and experimental conditions to overcome the demands of varied sample matrices, including those with high protein, lipid or saline content, as well as the presence of water in aqueous samples. PMID:21207299

  17. Assessment of Bone Microstructural Changes by NMR

    NASA Astrophysics Data System (ADS)

    Ni, Qingwen; Wang, Xiaodu

    2008-03-01

    Previous studies have shown that age related increases in bone porosity without significant changes in bone mineral density (BMD) (without bone microstructural information) result in a decrease in bone strength. Bone fracture toughness is also significantly correlated to changes in porosity, microarchitecture, collagen integrity, microdamage, and water distribution, all of which are measures of bone quality. Unfortunately, current technology does not allow the non-destructive and non-invasive detection of bone water distribution or other measures of bone quality including microporosity. On the other hand, Nuclear Magnetic Resonance (NMR) proton spin-spin (T2) relaxation time measurements and computational analytical method have been used to determine microstructural characteristics of various types of fluid filled porous materials. The study in here is to demonstrate that non-destructive and non-invasive NMR proton spin-spin (T2) relaxation techniques has been developed and applied to quantify the porosity, pore size distribution and water distribution in human cortical bone. This new bone microstructural information can then be used as descriptions of bone quality and, along or in combination with existing method (BMD) to more accurately assess bone fracture risk, and the results could help doctors and researchers to detect osteoporosis and other conditions related to weak bones in persons.

  18. Algorithmic cooling and scalable NMR quantum computers

    PubMed Central

    Boykin, P. Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh; Vrijen, Rutger

    2002-01-01

    We present here algorithmic cooling (via polarization heat bath)a powerful method for obtaining a large number of highly polarized spins in liquid nuclear-spin systems at finite temperature. Given that spin-half states represent (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon's bound on data compression, by using a set of rapidly thermal-relaxing bits. Such auxiliary bits could be implemented by using spins that rapidly get into thermal equilibrium with the environment, e.g., electron spins. Interestingly, the interaction with the environment, usually a most undesired interaction, is used here to our benefit, allowing a cooling mechanism. Cooling spins to a very low temperature without cooling the environment could lead to a breakthrough in NMR experiments, and our spin-refrigerating method suggests that this is possible. The scaling of NMR ensemble computers is currently one of the main obstacles to building larger-scale quantum computing devices, and our spin-refrigerating method suggests that this problem can be resolved. PMID:11904402

  19. Algorithmic cooling and scalable NMR quantum computers.

    PubMed

    Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh; Vrijen, Rutger

    2002-03-19

    We present here algorithmic cooling (via polarization heat bath)-a powerful method for obtaining a large number of highly polarized spins in liquid nuclear-spin systems at finite temperature. Given that spin-half states represent (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon's bound on data compression, by using a set of rapidly thermal-relaxing bits. Such auxiliary bits could be implemented by using spins that rapidly get into thermal equilibrium with the environment, e.g., electron spins. Interestingly, the interaction with the environment, usually a most undesired interaction, is used here to our benefit, allowing a cooling mechanism. Cooling spins to a very low temperature without cooling the environment could lead to a breakthrough in NMR experiments, and our "spin-refrigerating" method suggests that this is possible. The scaling of NMR ensemble computers is currently one of the main obstacles to building larger-scale quantum computing devices, and our spin-refrigerating method suggests that this problem can be resolved. PMID:11904402

  20. NMR investigation of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Imai, Takashi

    2010-03-01

    We report NMR investigation of the electronic properties of iron-based superconductors with primary focus on the 11 (FeSe) and 122 (Co-doped BaFe2As2) systems. From the ^77Se and ^75As NMR Knight shift K measurements, we will deduce the intrinsic temperature and concentration dependences of the uniform spin susceptibility, χspin, in these systems. We will also demonstrate the evolution of antiferromagnetic spin fluctuations (AFSF) as a function of pressure (in FeSe) or the doping level (in Ba[Fe1-xCox]2As2). Our results show that the optimal superconducting phase exists in close proximity with SDW order; superconductivity sets in only after AFSF grow toward Tc. This work was carried out in collaboration with F.L. Ning and K. Ahilan (McMaster), T. McQueen and R.J. Cava (Princeton), A.S. Sefat, M.A. McGuire, B. C. Sales, and D. Mandrus (Oak Ridge), P. Cheng, B. Shen, and H.-H Wen (Chinese Academy of Sciences). The work at McMaster was supported by NSERC, CIFAR, and CFI.

  1. CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...

  2. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2

  3. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  4. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  5. Structure calculation, refinement and validation using CcpNmr Analysis.

    PubMed

    Skinner, Simon P; Goult, Benjamin T; Fogh, Rasmus H; Boucher, Wayne; Stevens, Tim J; Laue, Ernest D; Vuister, Geerten W

    2015-01-01

    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone. PMID:25615869

  6. NMR-Metabolic Methodology in the Study of GM Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  7. {sup 17}O NMR investigations of oxidative degradation in polymers

    SciTech Connect

    Alam, T.M.; Celina, M.; Assink, R.A.; Gillen, K.T.; Clough, R.L.

    1996-12-31

    We have initiated studies using both solution and solid state magic angle spinning {sup 17}O NMR for a series of oxidatively aged polymers. This short note reports the solution {sup 17}O NMR for oxidatively degraded polypropylene, ethylene-propylene-diene, polyisoprene, and nitrile rubber. Enriched O{sub 2} is used during the accelerated aging. 3 figs, 7 refs.

  8. What can Lattice QCD theorists learn from NMR spectroscopists?

    SciTech Connect

    George Fleming

    2003-06-01

    Euclidean-time hadron correlation functions computed in Lattice QCD (LQCD) are modeled by a sum of decaying exponentials, reminiscent of the exponentially damped sinusoid models of free induction decay (FID) in Nuclear Magnetic Resonance (NMR) spectroscopy. We present our initial progress in studying how data modeling techniques commonly used in NMR perform when applied to LQCD data.

  9. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  10. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  11. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  12. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  13. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  14. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  15. Dynamics of antibody domains studied by solution NMR.

    PubMed

    Vu, Bang K; Walsh, Joseph D; Dimitrov, Dimiter S; Ishima, Rieko

    2009-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  16. NMR screening for rapid protein characterization in structural proteomics.

    PubMed

    Hill, Justine M

    2008-01-01

    In the age of structural proteomics when protein structures are targeted on a genome-wide scale, the identification of proteins that are amenable to analysis using x-ray crystallography or NMR spectroscopy is the key to high throughput structure determination. NMR screening is a beneficial part of a structural proteomics pipeline because of its ability to provide detailed biophysical information about the protein targets under investigation at an early stage of the structure determination process. This chapter describes efficient methods for the production of uniformly (15)N-labeled proteins for NMR screening using both conventional IPTG induction and autoinduction approaches in E. coli. Details of sample preparation for NMR and the acquisition of 1D (1)H NMR and 2D (1)H-(15)N HSQC spectra to assess the structural characteristics and suitability of proteins for further structural studies are also provided. PMID:18542882

  17. Porous media characterization by PFG and IMFG NMR.

    PubMed

    Mutina, Albina R; Skirda, Vladimir D

    2007-09-01

    Fully and partially filled with tridecane quartz sand was studied by different NMR techniques. The set of NMR experiments was carried out to obtain information about porous media geometry and fluid localization in it in case of partially filled porous space. The study was done using three NMR approaches: pulse field gradient NMR (PFG NMR), DDif experiment and tau-scanning experiment. The possibility to use all three approaches to study porous media properties even at the high resonance frequency is shown together with complementarity of the given by them information. Thus, first two approaches give information about porous sizes and geometry, at the same time tau-scanning experiment allows us to obtain information about distribution of internal magnetic field gradients in the porous space and draw conclusions about fluid localization in it. PMID:17643327

  18. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  19. Introducing the gNMR Program in an Introductory NMR Spectrometry Course to Parallel Its Use by Spectroscopists

    ERIC Educational Resources Information Center

    Rummey, Jackie M.; Boyce, Mary C.

    2004-01-01

    An approach that is useful to any introductory nuclear magnetic resonance (NMR) spectroscopy course is developed. This approach to teaching NMR spectrometry includes spectral simulation along with the traditional elements of hands-on instrument use and structure elucidation to demonstrate the connection between simulating a spectrum and structure…

  20. Introducing the gNMR Program in an Introductory NMR Spectrometry Course to Parallel Its Use by Spectroscopists

    ERIC Educational Resources Information Center

    Rummey, Jackie M.; Boyce, Mary C.

    2004-01-01

    An approach that is useful to any introductory nuclear magnetic resonance (NMR) spectroscopy course is developed. This approach to teaching NMR spectrometry includes spectral simulation along with the traditional elements of hands-on instrument use and structure elucidation to demonstrate the connection between simulating a spectrum and structure

  1. The Virtual NMR Spectrometer: A Computer Program for Efficient Simulation of NMR Experiments Involving Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Nicholas, Peter; Fushman, David; Ruchinsky, Vladislav; Cowburn, David

    2000-08-01

    This paper presents a software program, the Virtual NMR Spectrometer, for computer simulation of multichannel, multidimensional NMR experiments on user-defined spin systems. The program is capable of reproducing most features of the modern NMR experiment, including homo- and heteronuclear pulse sequences, phase cycling, pulsed field gradients, and shaped pulses. Two different approaches are implemented to simulate the effect of pulsed field gradients on coherence selection, an explicit calculation of all coherence transfer pathways, and an effective approximate method using integration over multiple positions in the sample. The applications of the Virtual NMR Spectrometer are illustrated using homonuclear COSY and DQF COSY experiments with gradient selection, heteronuclear HSQC, and TROSY. The program uses an intuitive graphical user interface, which resembles the appearance and operation of a real spectrometer. A translator is used to allow the user to design pulse sequences with the same programming language used in the actual experiment on a real spectrometer. The Virtual NMR Spectrometer is designed as a useful tool for developing new NMR experiments and for tuning and adjusting the experimental setup for existing ones prior to running costly NMR experiments, in order to reduce the setup time on a real spectrometer. It will also be a useful aid for learning the general principles of magnetic resonance and contemporary innovations in NMR pulse sequence design.

  2. Surfactant/Nonionic polymer interaction. A NMR diffusometry and NMR electrophoretic investigation.

    PubMed

    Pettersson, Erik; Topgaard, Daniel; Stilbs, Peter; Söderman, Olle

    2004-02-17

    The interaction between the nonionic polymer poly(ethylene oxide) (PEO) of molecular weight 20,000 and surfactants of various types [sodium dodecyl sulfate (SDS), dodecyl trimethylammonium bromide, octyl beta-D-glucoside, and potassium laurate] has been investigated in an aqueous solution at 25 degrees C by 1H NMR pulsed-gradient spin-echo self-diffusion techniques. The SDS/PEO study was further complemented by component-resolved 1H NMR-based studies of the electrophoretic mobility of PEO and the alkyl part of SDS under the same measurement conditions. Through such combined studies, a much more complete picture of the binding and aggregation processes becomes accessible. PMID:15803688

  3. Quasi equilibria in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Sakellariou, Dimitris; Hodgkinson, Paul; Emsley, Lyndon

    1998-08-01

    We develop the connection between theoretical studies of so-called quasi-equilibrium states in solid-state NMR for isolated spin-systems with the experimental observability of such states. The observability of these states is expected to be dependent on the relative broadenings due to coherent effects (such as dipolar couplings with the lattice) and incoherent effects, i.e. relaxation. Hence, we expect to see evidence of quasi-equilibria in cross polarization experiments, where the relevant relaxation time constant is relatively long. For classic spectral spin-diffusion experiments, however, quasi equilibria are unlikely to be observed. We also generalise the discussion to rotating solids, which is appropriate to magic angle spinning experiments.

  4. Spatially resolved spectroscopy using tapered stripline NMR.

    PubMed

    Tijssen, Koen C H; Bart, Jacob; Tiggelaar, Roald M; Janssen, J W G Hans; Kentgens, Arno P M; van Bentum, P Jan M

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10(-2)-10(1)s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields. PMID:26796112

  5. NMR Metabolomics Analysis of Parkinson's Disease

    PubMed Central

    Lei, Shulei; Powers, Robert

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disease, which is characterized by progressive death of dopaminergic neurons in the substantia nigra pars compacta. Although mitochondrial dysfunction and oxidative stress are linked to PD pathogenesis, its etiology and pathology remain to be elucidated. Metabolomics investigates metabolite changes in biofluids, cell lysates, tissues and tumors in order to correlate these metabolomic changes to a disease state. Thus, the application of metabolomics to investigate PD provides a systematic approach to understand the pathology of PD, to identify disease biomarkers, and to complement genomics, transcriptomics and proteomics studies. This review will examine current research into PD mechanisms with a focus on mitochondrial dysfunction and oxidative stress. Neurotoxin-based PD animal models and the rationale for metabolomics studies in PD will also be discussed. The review will also explore the potential of NMR metabolomics to address important issues related to PD treatment and diagnosis. PMID:26078917

  6. NMR Measurements of Granular Flow and Compaction

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  7. High-performance cryogenic pulsed NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Wood, B. M.; Code, R. F.

    1981-03-01

    A pulsed NMR spectrometer for cryogenic use is described. It includes an improved coupling scheme which is suitable for installation in most cryostats. An rf preamplifier has been developed which offers wide bandwidth, high gain, low noise and fast recovery (⩽2 μs). While the spectrometer was designed for a resonance frequency of 27 MHz, extension from 4-100 MHz is discussed. At 27 MHz the bandwidth of the free-induction decay is 1 MHz, and the dead time, after the end of the rf pulse, is 3.6 ms. Techniques are presented for reducing the dead time, the noise, and the amplitude of ground loops as well as extending the signal bandwidth and dynamic range.

  8. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  9. Network glass structure from multidimensional NMR

    SciTech Connect

    Youngman, R.E.; Olsen, K.K.; Tagg, S.L.; Zwanziger, J.W.

    1993-12-31

    This paper describes applications of several two-dimensional NMR methods to the study of short-range ordering in inorganic network glasses. In borate, both pure and modified with alkaline oxides, the authors use Dynamic Angle Spinning to extract information about the boron, oxygen, sodium, and rubidium quadrupole coupling interactions, and from them, the distribution of bond angles around the different sites. The authors also discuss the problem of measuring the spin-lattice relaxation times for the different sites. An application of Variable Angle Correlation Spectroscopy to the study of spin-1/2 nuclei such as phosphorus, silver, and selenium in phosphate and chalcogenide glasses is described to directly probe the distribution of chemical shift tensors, and from them, again, the bond angle distribution.

  10. Two-Dimensional NMR Lineshape Analysis.

    PubMed

    Waudby, Christopher A; Ramos, Andres; Cabrita, Lisa D; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  11. NMR studies on natural and synthetic Amavadin.

    PubMed

    Armstrong, E M; Collison, D; Ertok, N; Garner, C D

    2000-10-01

    The stereochemistry of isolated natural product Amavadin, which contains a 1:2 complex of V(IV) with N-hydroxyimino-2,2'-dipropionic acid (HIDPAH(3)), and some synthetic complexes have been investigated. Amavadin was isolated from Amanita muscaria and oxidized with [NH(4)](2)[Ce(NO(3))(6)]. H(2)[Delta-V(S,S-HIDPA)(2)].3H(2)O, H(2)[Delta,Lambda-V(S,S-HIDPA)(2)].3H(2)O and their equivalent oxidized species have been synthesized and characterized spectroscopically. A combination of COSY, NOE, (1)H, (13)C-NMR and CD spectroscopy have been used to prove that the isolated natural product Amavadin consists of an almost equal mixture of the Delta- and Lambda-isomers of [V(S,S-HIDPA)(2)](2-). PMID:18968091

  12. Spatially resolved spectroscopy using tapered stripline NMR

    NASA Astrophysics Data System (ADS)

    Tijssen, Koen C. H.; Bart, Jacob; Tiggelaar, Roald M.; Janssen, J. W. G. (Hans); Kentgens, Arno P. M.; van Bentum, P. Jan M.

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10-2-101 s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields.

  13. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  14. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    PubMed

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. PMID:26041156

  15. NMR at cryogenic temperatures: A {sup 13}C NMR study of ferrocene

    SciTech Connect

    Orendt, A.M.; Facelli, J.C.; Jiang, Y.J.; Grant, D.M.

    1998-09-24

    A new cryogenic apparatus is described that can be used to obtain NMR spectra at temperatures down to 8--10 K. The static solid {sup 13}C NMR spectrum of ferrocene is recorded at that temperature. Spectra recorded at higher temperatures show that ferrocene is still freely rotating about its 5-fold symmetry axis on the {sup 13}C NMR time scale at 45--50 K. A comparison of the principal values of the {sup 13}C chemical-shift tensor obtained from the room- and low-temperature spectra of ferrocene indicates that the lowest frequency chemical shift principal component, {delta}{sub 33}, is tilted off this symmetry axis by approximately 12{degree}. Quantum chemical calculations of the chemical-shift tensor, completed on structures of ferrocene from the literature as well as on optimized structures with the cyclopentadienyl rings locked in both the staggered and eclipsed arrangements, predict the angle between the {delta}{sub 33} direction and the rotation axis to be between 11 and 15{degree}, depending upon the geometry used in the calculation. The calculations also predict the sign of the angular perturbation, information not obtained from the experiment. An explanation of this angular change in the {delta}{sub 33} direction is provided by the composition of the molecular orbitals.

  16. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  17. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. PMID:21705250

  18. Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods

    PubMed Central

    Sahu, Debashish; Bastidas, Monique; Showalter, Scott

    2014-01-01

    There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs by NMR spectroscopy is limited by the poor 1H-amide chemical shift dispersion typically observed in their spectra. Recently, 13C direct-detected NMR spectroscopy has been recognized as enabling broad structural study of IDPs. Most notably, multi-dimensional experiments based on the 15N,13C-CON spectrum make complete chemical shift assignment feasible. Here we document a collection of NMR based tools that efficiently lead to chemical shift assignment of IDPs, motivated by a case study of the C-terminal disordered region from the human pancreatic transcription factor Pdx1. Our strategy builds on the combination of two 3D experiments, (HN-flip)N(CA)CON and 3D (HN-flip)N(CA)NCO, that enable daisy-chain connections to be built along the IDP backbone, facilitated by acquisition of amino-acid specific 15N,13C-CON detected experiments. Assignments are completed through carbon-detected, TOCSY based side chain chemical shift measurement. Conducting our study required producing valuable modifications to many previously published pulse sequences, motivating us to announce the creation of a database of our pulse programs, which we make freely available through the web. PMID:24333248

  19. Interactions between cations and peat organic matter monitored with NMR wideline, static and FFC NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Schaumann, Gabriele E.; Conte, Pellegrino; Jäger, Alexander; Alonzo, Giuseppe; Bertmer, Marko

    2010-05-01

    The molecular size of humic substances is still under debate and is believed to range up to several hundred thousands Dalton, although a number of recent studies suggest much lower molecular weights. Nowadays an increasing number of authors suggest a model of molecular aggregates. One explanation why results on the molecular mass of humic materials are contradictory, may be that individual OM molecules are linked via intermolecular interactions, by bridges of water molecules or by cations bridging cation exchange sites (Schaumann, 2006a, b). Properties of such cross-linked systems can be similar to macromolecular systems revealing covalent cross-links. In this context, multivalent cations play an important ecological role, serving as reversible cross-linking agent. Formation and disruption of such cation bridges may close or open sorption sites in soil organic matter. Although cross-linking by multivalent cations has been proposed in many studies, the cross-linking effect has not yet been demonstrated on the molecular scale. The objective of this study was to investigate the interactions between cations and peat organic matter using NMR wideline techniques as well as static and fast field cycling (FFC) NMR relaxometry. Peat treated with solutions containing either Na+, Ca2+ or Al3+ was investigated in air-dried state for longitudinal relaxation times (T1) and NMR wideline characteristics. T1 distributions were separated into two Gaussian functions which were interpreted to represent two proton populations belonging to two environments of differing mobility. The relaxation rates (R1 = T1-1) in the cation treated samples spread over a range of 87-123 s-1 (R1a: fast component) and 32-42 s-1 (R1b: slow component). The rates in all treatments are significantly different from each other. and decrease in the order conditioned sample > desalinated sample > Na-treated sample. The treatment with multivalent cations affects R1a and R1b in different ways and needs more detailed explanation. Wideline proton NMR spectra can be used to quantify proton containing material, mainly water, based on their mobility. Spectra were decomposed into a Gaussian and Lorentzian line and changes to mobility after heat treatment indicate the water binding strength. In this study, differences in the various NMR parameters on the cation treatments will be presented and discussed with respect to the crosslinking hypothesis.

  20. High-resolution NMR spectroscopy under the fume hood.

    PubMed

    Kster, Simon K; Danieli, Ernesto; Blmich, Bernhard; Casanova, Federico

    2011-08-01

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

  1. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  2. Can NMR solve some significant challenges in metabolomics?

    NASA Astrophysics Data System (ADS)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  3. Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses.

    PubMed

    Gallo, Vito; Intini, Nicola; Mastrorilli, Piero; Latronico, Mario; Scapicchio, Pasquale; Triggiani, Maurizio; Bevilacqua, Vitoantonio; Fanizzi, Paolo; Acquotti, Domenico; Airoldi, Cristina; Arnesano, Fabio; Assfalg, Michael; Benevelli, Francesca; Bertelli, Davide; Cagliani, Laura R; Casadei, Luca; Cesare Marincola, Flaminia; Colafemmina, Giuseppe; Consonni, Roberto; Cosentino, Cesare; Davalli, Silvia; De Pascali, Sandra A; D'Aiuto, Virginia; Faccini, Andrea; Gobetto, Roberto; Lamanna, Raffaele; Liguori, Francesca; Longobardi, Francesco; Mallamace, Domenico; Mazzei, Pierluigi; Menegazzo, Ileana; Milone, Salvatore; Mucci, Adele; Napoli, Claudia; Pertinhez, Thelma; Rizzuti, Antonino; Rocchigiani, Luca; Schievano, Elisabetta; Sciubba, Fabio; Sobolev, Anatoly; Tenori, Leonardo; Valerio, Mariacristina

    2015-07-01

    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters. PMID:26020452

  4. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C.; Jorand, R.; Klitzsch, N.

    2014-11-01

    Nuclear Magnetic Resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. These assessments are based on the proportionality of NMR signal amplitude and relaxation time to porosity (water content) and pore size, respectively. The relationship between pore size and NMR relaxation time depends on pore shape, which is usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks differs strongly from the response calculated for spherical or cylindrical pores, because these pore shapes cannot account for water menisci remaining in the corners of de-saturated angular pores. Therefore, we consider a bundle of pores with triangular cross-sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of de-saturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, NMR amplitude and NMR relaxation time at partial water saturation strongly depend on pore shape even so the NMR relaxation time at full saturation only depends on the surface to volume ratio of the pore. The pore-shape-dependence at partial saturation arises from the pore shape and capillary pressure dependent water distribution in pores with triangular cross-sections. Moreover, we show the qualitative agreement of the saturation dependent relaxation time distributions of our model with those observed for rocks and soils.

  5. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGESBeta

    Perras, Frédéric A.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional

  6. C-13 NMR identification of urea-formaldehyde resins

    SciTech Connect

    Meyer, B.; Nunlist, R.

    1980-10-01

    The work shows that adhesive and foam resins differ significantly in qualitative and quantitative composition, and that the differences in the C-13 NMR spectra can be readily recognized, even by an untrained person. The fingerprints of resins are so characteristic that NMR operators who are not familiar with urea-formaldehyde resin chemistry, can rapidly learn how to distinguish between particleboard or plywood adhesives and foam resins, as well as between different manufacturers and individual batches. Thus, the NMR method lends itself extremely well to quality control.

  7. High-pressure on-line photolysis with NMR detection

    SciTech Connect

    Yonker, C.R.; Wallen, S.L.

    1996-06-01

    The investigation of the photoreversible fulgide Aberchrome-540 as a function of pressure and temperature with the use of nuclear magnetic resonance (NMR) detection is described. This technique demonstrates the novel combination of high-pressure NMR and laser photolysis with the use of fiber optics for the conversion of the fulgide on-line in the instrument. Investigation of the photolysis of Aberchrome-540 to 2.0 kbar and 120 degrees C is reported. Extension of this technique should allow the investigation of photo-initiated reaction kinetics and equilibria as a function of pressure and temperature with simultaneous structural characterization with NMR. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  8. An inductively coupled, series-tuned NMR probe

    NASA Astrophysics Data System (ADS)

    Decorps, M.; Blondet, P.; Reutenauer, H.; Albrand, J. P.; Remy, C.

    A matching circuit for NMR coils for in vivo experiments is described. This circuit uses an inductive coupling of the NMR coil to the transmitter-receiver. This arrangement produces a nearly perfectly balanced NMR coil with respect to the sample and thus reduces the electric losses in the sample and also the radiative and resistive losses in the ground loops. Moreover, a series capacitor is inserted in the middle of the coil which further reduces the electric losses in the sample. Both inductive coupling and series tuning reduce the frequency shift of the coil resonance frequency upon the introduction of the sample or due to the movements of the animal under studies.

  9. Microfluidic gas-flow profiling using remote-detection NMR

    PubMed Central

    Hilty, Christian; McDonnell, Erin E.; Granwehr, Josef; Pierce, Kimberly L.; Han, Song-I; Pines, Alexander

    2005-01-01

    We have used nuclear magnetic resonance (NMR) to obtain spatially and temporally resolved profiles of gas flow in microfluidic devices. Remote detection of the NMR signal both overcomes the sensitivity limitation of NMR and enables time-of-flight measurement in addition to spatially resolved imaging. Thus, detailed insight is gained into the effects of flow, diffusion, and mixing in specific geometries. The ability for noninvasive measurement of microfluidic flow, without the introduction of foreign tracer particles, is unique to this approach and is important for the design and operation of microfluidic devices. Although here we demonstrate an application to gas flow, extension to liquids, which have higher density, is implicit. PMID:16214884

  10. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  11. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  12. Expanding the analytical toolbox: pharmaceutical application of quantitative NMR.

    PubMed

    Webster, Gregory K; Kumar, Shailendra

    2014-12-01

    In response to the changing market pressures being applied to the pharmaceutical industry, a greater emphasis is being made to advance new drugs to market with minimal investment in early development stages. The use of quantitative NMR (q-NMR) has been shown to be a single point replacement for routine early development testing which previously combined elements of identity testing, chromatographic assay, moisture analysis, residual solvent analysis, and elemental analysis. This Feature will highlight the applications of q-NMR to early phase drug development testing and its efficient potency, solvent quantification, and relative response factor determinations. PMID:25348289

  13. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  14. NMR imaging of components and materials for DOE application

    SciTech Connect

    Richardson, B.R.

    1993-12-01

    The suitability for using NMR imaging to characterize liquid, polymeric, and solid materials was reviewed. The most attractive applications for NMR imaging appear to be liquid-filled porous samples, partially cured polymers, adhesives, and potting compounds, and composite polymers/high explosives containing components with widely varying thermal properties. Solid-state NMR line-narrowing and signal-enhancing markedly improve the imaging possibilities of true solid and materials. These techniques provide unique elemental and chemical shift information for highly complex materials and complement images with similar spatial resolution, such as X-ray computed tomography (CT).

  15. Room Temperature Chiral Discrimination in Paramagnetic NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Soncini, Alessandro; Calvello, Simone

    2016-04-01

    A recently proposed theory of chiral discrimination in NMR spectroscopy based on the detection of a molecular electric polarization P rotating in a plane perpendicular to the NMR magnetic field [A. D. Buckingham, J. Chem. Phys. 140, 011103 (2014)] is generalized here to paramagnetic systems. Our theory predicts new contributions to P , varying as the square of the inverse temperature. Ab initio calculations for ten Dy3 + complexes, at 293 K, show that, in strongly anisotropic paramagnetic molecules, P can be more than 1000 times larger than in diamagnetic molecules, making paramagnetic NMR chiral discrimination amenable to room temperature detection.

  16. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  17. Solid phase extraction chromatography and NMR spectroscopy (SPEC-NMR) for the rapid identification of drug metabolites in urine.

    PubMed

    Wilson, I D; Nicholson, J K

    1988-01-01

    The use of solid phase extraction onto disposable columns containing a C18 bonded silica gel provides a rapid and simple procedure for the removal of interfering endogenous components from urine samples containing drug metabolites prior to detection and identification by (1)H NMR spectroscopy. In addition, these columns can be used to retain and concentrate the compounds of interest, thus improving the effective sensitivity of the NMR detection method. Using simple step gradients chromatographic separations can be performed, and metabolites may be rapidly fractionated. This approach (solid phase extraction chromatography with NMR or SPEC-NMR) utilises the multiparametric metabolite detection facility of a Fourier transform NMR spectrometer to monitor a chromatographic separation, as such it has some of the beneficial properties of a directly linked liquid chromatography-NMR system without any of the disadvantages. Applications of the SPEC-NMR method in the investigation of drug metabolism are illustrated here by reference to excretion studies on the drugs ibuprofen, paracetamol, aspirin, oxpentifylline and naproxen. PMID:16867428

  18. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.

    PubMed

    Charpentier, Thibault

    2011-07-01

    In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target. PMID:21612895

  19. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    PubMed Central

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani; Fox, Daniel A.; Sim, Adelene Y. L.; Doniach, Sebastian; Lesley, Scott A.

    2009-01-01

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy, and small angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein’s hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR. PMID:19425578

  20. A Demonstration of Imaging on an NMR Spectrometer.

    ERIC Educational Resources Information Center

    Hull, L. A.

    1990-01-01

    Described is a simple demonstration that relates the techniques of magnetic resonance imaging (MRI) used in medicine and nuclear magnetic resonance (NMR) spectroscopy. Included are materials, procedures, and probable results. (KR)

  1. Characterization of molecular structure of DAST via NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Zi-Bo; Meng, Da-Lei; Xu, Yong-Kuan; Wu, Cong

    2016-02-01

    4-N, N-dimethylamino-4‧-N‧-methyl-stilbazolium tosylate (DAST) crystal has excellent properties of nonlinear optics and electro-optical effect, and it can be used in the fields of radiation and detection through wave bands from infrared to terahertz. Besides, DAST thin films have exhibited their excellent properties and have expanded application fields of DAST material. CD3OD was chosen as the solvent to conduct 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC characterization of DAST respectively. All peaks in 1H and 13C NMR spectra of DAST were assigned with assistance of 2D NMR correlation peaks.

  2. A Covariance NMR Toolbox for MATLAB and OCTAVE

    NASA Astrophysics Data System (ADS)

    Short, Timothy; Alzapiedi, Leigh; Brüschweiler, Rafael; Snyder, David

    2011-03-01

    The Covariance NMR Toolbox is a new software suite that provides a streamlined implementation of covariance-based analysis of multi-dimensional NMR data. The Covariance NMR Toolbox uses the MATLAB or, alternatively, the freely available GNU OCTAVE computer language, providing a user-friendly environment in which to apply and explore covariance techniques. Covariance methods implemented in the toolbox described here include direct and indirect covariance processing, 4D covariance, generalized indirect covariance (GIC), and Z-matrix transform. In order to provide compatibility with a wide variety of spectrometer and spectral analysis platforms, the Covariance NMR Toolbox uses the NMRPipe format for both input and output files. Additionally, datasets small enough to fit in memory are stored as arrays that can be displayed and further manipulated in a versatile manner within MATLAB or OCTAVE.

  3. High pressure NMR studies of proteins and membranes

    NASA Astrophysics Data System (ADS)

    Jonas, Jiri

    1994-07-01

    Advanced high resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with the high pressure capability represents a powerful new tool in studies of proteins and membranes. Selected results taken from recent studies illustrate the high information content and the range of problems that can be investigated. Three specific studies dealing with proteins are mentioned: pressure-induced reversible unfolding of lysozyme; investigation of conformation of the pressure-dissociated monomer of Arc repressor, and cold denaturation of several proteins performed at high pressure by taking advantage of the phase diagram of water. A brief overview of the recent multinuclear NMR studies of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar aqueous dispersions and sonicated vesicles and DPPC bilayers containing the charged form of local anesthetic tetracaine (TTC) shows the type of unique information that can be obtained from high pressure NMR studies of model membranes.

  4. Multiplet-separated heteronuclear two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.; Sørensen, O. W.; Ernst, R. R.

    1983-02-01

    Techniques are described for the identification and separation of peaks of different multiplicity in heteronuclear two-dimensional NMR spectroscopy. The methods are applied to the two-dimensional 13C- 1H shift correlation spectrum of menthol.

  5. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    SciTech Connect

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani; Fox, Daniel A.; Sim, Adelene Y.L.; Doniach, Sebastian; Lesley, Scott A.

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.

  6. Solution NMR studies of polytopic α-helical membrane proteins.

    PubMed

    Nietlispach, Daniel; Gautier, Antoine

    2011-08-01

    NMR spectroscopy has established itself as one of the main techniques for the structural study of integral membrane proteins. Remarkably, over the last few years, substantial progress has been achieved in the structure determination of increasingly complex polytopical α-helical membrane proteins, with their size approaching ∼100kDa. Such advances are the result of significant improvements in NMR methodology, sample preparation and powerful selective isotope labelling schemes. We review the requirements facilitating such work based on the more recent solution NMR studies of α-helical proteins. While the majority of such studies still use detergent-solubilized proteins, alternative more native-like lipid-based media are emerging. Recent interaction, dynamics and conformational studies are discussed that cast a promising light on the future role of NMR in this important and exciting area. PMID:21775128

  7. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  8. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  9. NMR methods for in-situ biofilm metabolism studies

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Pinchuk, Gregory E.; Fredrickson, Jim K.; Gorby, Yuri A.; Minard, Kevin R.; Wind, Robert A.

    2005-09-01

    Novel procedures and instrumentation are described for nuclear magnetic resonance (NMR) spectroscopy and imaging studies of live, in situ microbial films. A perfused NMR/optical microscope sample chamber containing a planar biofilm support was integrated into a recirculation/dilution flow loop growth reactor system and used to grow in situ Shewanella oneidensis strain MR-1 biofilms. Localized NMR techniques were developed and used to non-invasively monitor time-resolved metabolite concentrations and to image the biomass volume and distribution. As a first illustration of the feasibility of the methodology an initial 13C-labeled lactate metabolic pathway study was performed, yielding results consistent with existing genomic data for MR-1. These results represent progress toward our ultimate goal of correlating time- and depth-resolved metabolism and mass transport with gene expression in live in situ biofilms using combined NMR/optical microscopy techniques.

  10. A high-pressure NMR probe for aqueous geochemistry.

    PubMed

    Pautler, Brent G; Colla, Christopher A; Johnson, Rene L; Klavins, Peter; Harley, Stephen J; Ohlin, C André; Sverjensky, Dimitri A; Walton, Jeffrey H; Casey, William H

    2014-09-01

    A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 μL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry. PMID:24989120

  11. Systematic solution to homo-oligomeric structures determined by NMR

    PubMed Central

    Martin, Jeffrey W.; Zhou, Pei; Donald, Bruce R.

    2015-01-01

    Protein structure determination by NMR has predominantly relied on simulated annealing-based conformational search for a converged fold using primarily distance constraints, including constraints derived from nuclear Overhauser effects (NOEs), paramagnetic relaxation enhancement (PRE), and cysteine crosslinkings. Although there is no guarantee that the converged fold represents the global minimum of the conformational space, it is generally accepted that good convergence is synonymous to the global minimum. Here, we show such a criterion breaks down in the presence of large numbers of ambiguous constraints from NMR experiments on homo-oligomeric protein complexes. A systematic evaluation of the conformational solutions that satisfy the NMR constraints of a trimeric membrane protein, DAGK, reveals 9 distinct folds, including the reported NMR and crystal structures. This result highlights the fundamental limitation of global fold determination for homo-oligomeric proteins using ambiguous distance constraints and provides a systematic solution for exhaustive enumeration of all satisfying solutions. PMID:25620116

  12. A Short Set of Carbon 13-NMR Correlation Tables.

    ERIC Educational Resources Information Center

    Brown, D. W.

    1985-01-01

    Presents a short set of carbon-13 nuclear magnetic resonance (NMR) tables. These tables not only serve pedagogic purposes but also allow students to do calculations rapidly and with acceptable accuracy for a wide variety of compounds. (JN)

  13. Advances in NMR structures of integral membrane proteins

    PubMed Central

    Maslennikov, Innokentiy; Choe, Senyon

    2013-01-01

    Integral membrane proteins (IMPs) play a central role in cell communication with the environment. Their structures are essential for our understanding of the molecular mechanisms of signaling and for drug design, yet they remain badly underrepresented in the protein structure databank. Solution NMR is, aside from X-ray crystallography, the major tool in structural biology. Here we review recently reported solution NMR structures of polytopic IMPs and discuss the new approaches, which were developed in the course of these studies to overcome barriers in the field. Advances in cell-free protein expression, combinatorial isotope labeling, resonance assignment, and collection of structural data greatly accelerated IMP structure determination by solution NMR. In addition, novel membrane-mimicking media made possible determination of solution NMR structures of IMPs in a native-like lipid environment. PMID:23721747

  14. 77Se Enrichment of Proteins Expands the Biological NMR Toolbox

    PubMed Central

    Schaefer, Stephanie A.; Dong, Ming; Rubenstein, Renee P.; Wilkie, Wayne A.; Bahnson, Brian J.; Thorpe, Colin; Rozovsky, Sharon

    2012-01-01

    Sulfur, a key contributor to biological reactivity, is not amendable to investigations by biological NMR spectroscopy. To utilize selenium as a surrogate, we have developed a generally applicable 77Se isotopic enrichment method for heterologous proteins expressed in E. coli. We demonstrate 77Se NMR spectroscopy of multiple selenocysteine and selenomethionine residues in the sulfhydryl oxidase augmenter of liver regeneration (ALR). The resonances of the active site residues were assigned by comparing the NMR spectra of ALR bound to oxidized and reduced FAD. An additional resonance appears only in the presence of the reducing agent and disappears readily upon exposure to air and subsequent reoxidation of the flavin. Hence, 77Se NMR spectroscopy can be used to report the local electronic environment of reactive and structural sulfur sites, as well as changes taking place in those locations during catalysis. PMID:23159557

  15. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  16. Reaction monitoring using online vs tube NMR spectroscopy: seriously different results.

    PubMed

    Foley, David A; Dunn, Anna L; Zell, Mark T

    2016-06-01

    We report findings from the qualitative evaluation of nuclear magnetic resonance (NMR) reaction monitoring techniques of how each relates to the kinetic profile of a reaction process. The study highlights key reaction rate differences observed between the various NMR reaction monitoring methods investigated: online NMR, static NMR tubes, and periodic inversion of NMR tubes. The analysis of three reaction processes reveals that rates derived from NMR analysis are highly dependent on monitoring method. These findings indicate that users must be aware of the effect of their monitoring method upon the kinetic rate data derived from NMR analysis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26248898

  17. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  18. NMR Studies of Enzyme Structure and Mechanism

    NASA Astrophysics Data System (ADS)

    Mildvan, Albert

    2006-03-01

    At least three NMR methodologies pioneered by Al Redfield, have greatly benefited enzymology: (1) the suppression of strong water signals without pre-saturation; (2) sequence specific NH/ND exchange; and (3) dynamic studies of mobile loops of proteins. Water suppression has enabled us to identify unusually short, strong H-bonds at the active sites of five enzymes (three isomerases and two esterases), and to measure their lengths from both the chemical shifts and D/H fractionation factors of the deshielded protons involved (J. Mol. Struct. 615, 163 (2002)). Backbone NH exchange studies were used to detect regions of an NTP pyrophosphohydrolase in which NH groups became selectively protected against exchange on Mg(2+) binding, and further protected on product (NMP) binding, thus locating binding sites as well as conformationally linked remote sites (Biochemistry 42, 10140 (2003)). Dynamic studies were used to elucidate the frequency of motion of a flexible loop of GDP-mannose hydrolase (66,000/sec) containing the catalytic base His-124, from exchange broadening of the side chain NH signals of His-124 in the free enzyme. The binding of Mg(2+) and GDP-mannose lock His-124 in position to deprotonate the entering water and complete the reaction.

  19. Ultrafast high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    André, Marion; Piotto, Martial; Caldarelli, Stefano; Dumez, Jean-Nicolas

    2015-06-21

    We demonstrate the acquisition of ultrafast 2D NMR spectra of semi-solid samples, with a high-resolution magic-angle-spinning setup. Using a recent double-quantum NMR pulse sequence in optimised synchronisation conditions, high-quality 2D spectra can be recorded for a sample under magic-angle spinning. An illustration is given with a semi-solid sample of banana pulp. PMID:25946235

  20. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  1. Laundering and Deinking Applications of 1H NMR Imaging

    NASA Astrophysics Data System (ADS)

    Tutunjian, P. N.; Borchardt, J. K.; Prieto, N. E.; Raney, K. H.; Ferris, J. A.

    One-dimensional 1H NMR imaging techniques are used to visualize oil removal from fabrics and paper fibers immersed in aqueous solutions of nonionic detergents. The method provides a unique approach to the study of oil-removal kinetics in nonionic detergent systems where traditional optical techniques fail due to solution turbidity. The only requirement of the NMR experiment is the use of deuterated water in order to selectively image the hydrocarbon phase. Preliminary applications to laundering and paper deinking are discussed.

  2. NMR Line Shape Studies in a Nematic Liquid Crystal Slab

    NASA Astrophysics Data System (ADS)

    Shahzamanian, M. A.; Babaei, A. R.

    2000-09-01

    The director distribution function in different configuration of nematic liquid crystals which are confined in a slab is calculated by minimizing the distortion free energy. Using this function and the appropriate frequency distribution function, NMR line shape is determined in different thicknesses of the slab. By increasing the slab thickness, the maximum distortion in the centre of the slab is increased. This effect reveals in the broadening of NMR lines.

  3. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  4. Flow units from integrated WFT and NMR data

    SciTech Connect

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  5. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  6. Improvements in Technique of NMR Imaging and NMR Diffusion Measurements in the Presence of Background Gradients.

    NASA Astrophysics Data System (ADS)

    Lian, Jianyu

    In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring and <{bf G}_sp{0 }{2}>. From this model, the particle concentration in a sample can be determined by measuring the lineshape of a free induction decay (fid).

  7. The SPORT-NMR Software: A Tool for Determining Relaxation Times in Unresolved NMR Spectra

    NASA Astrophysics Data System (ADS)

    Geppi, Marco; Forte, Claudia

    1999-03-01

    A software package which allows the correct determination of individual relaxation times for all the nonequivalent nuclei in poorly resolved NMR spectra is described. The procedure used, based on the fitting of each spectrum in the series recorded in the relaxation experiment, should improve the analysis of relaxation data in terms of quantitative dynamic information, especially in anisotropic phases. Tests on simulated data and experimental examples concerning1H and13CT1ρmeasurement in a solid copolymer and2HT1ZandT1Qmeasurement in a liquid crystal are shown and discussed.

  8. Conjoined Use of EM and NMR in RNA Structure Refinement

    PubMed Central

    Gong, Zhou; Schwieters, Charles D.; Tang, Chun

    2015-01-01

    More than 40% of the RNA structures have been determined using nuclear magnetic resonance (NMR) technique. NMR mainly provides local structural information of protons and works most effectively on relatively small biomacromolecules. Hence structural characterization of large RNAs can be difficult for NMR alone. Electron microscopy (EM) provides global shape information of macromolecules at nanometer resolution, which should be complementary to NMR for RNA structure determination. Here we developed a new energy term in Xplor-NIH against the density map obtained by EM. We conjointly used NMR and map restraints for the structure refinement of three RNA systems — U2/U6 small-nuclear RNA, genome-packing motif (ΨCD)2 from Moloney murine leukemia virus, and ribosome-binding element from turnip crinkle virus. In all three systems, we showed that the incorporation of a map restraint, either experimental or generated from known PDB structure, greatly improves structural precision and accuracy. Importantly, our method does not rely on an initial model assembled from RNA duplexes, and allows full torsional freedom for each nucleotide in the torsion angle simulated annealing refinement. As increasing number of macromolecules can be characterized by both NMR and EM, the marriage between the two techniques would enable better characterization of RNA three-dimensional structures. PMID:25798848

  9. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  10. NMR-based screening of membrane protein ligands.

    PubMed

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; van Vliet, Bart; van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-03-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with ligands non-specifically, overlap with protein signals, modulate protein dynamics and conformational exchange and compromise sensitivity by adding highly intense background signals. In this article, we discuss the special considerations arising from these problems when conducting NMR-based ligand-binding studies with membrane proteins. While the use of (13)C and (15)N isotopes is becoming increasingly feasible, (19)F and (1)H NMR-based approaches are currently the most widely explored. By using suitable NMR parameter selection schemes independent of or exploiting the presence of detergent, (1)H-based approaches require least effort in sample preparation because of the high sensitivity and natural abundance of (1)H in both, ligand and protein. On the other hand, the (19)F nucleus provides an ideal NMR probe because of its similarly high sensitivity to that of (1)H and the lack of natural (19)F background in biologic systems. Despite its potential, the use of NMR spectroscopy is highly underdeveloped in the area of drug discovery for membrane proteins. PMID:20331645

  11. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.

    PubMed

    Knight, Rosemary; Walsh, David O; Butler, James J; Grunewald, Elliot; Liu, Gaisheng; Parsekian, Andrew D; Reboulet, Edward C; Knobbe, Steve; Barrows, Mercer

    2016-01-01

    Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger-Doll Research (SDR) equation, which is based on the Kozeny-Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct-push methods over a 10- to 20-m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost-effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications. PMID:25810149

  12. Design and applications of an in situ electrochemical NMR cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaocan; Zwanziger, Josef W.

    2011-01-01

    A device using a three-electrode electrochemical cell (referred to as an ECNMR cell) was successfully constructed that could be used in a standard 5 mm NMR probe to acquire high-resolution NMR spectra while the working electrode was held at a constant electrical potential. The working electrode was a 20 nm thick gold film thermally coated on the outside of an inner 3 mm glass tube. An underlayer consisting of (3-mercaptopropyl)trimethoxy-silane was coated on the glass surface in order to improve its adhesion to gold. Tests showed prolonged life of the gold film. Details of the design and construction of the ECNMR cell are described. The ECNMR cell could be routinely used in a multi-user service high-resolution NMR instrument under oxygen-free conditions in both aqueous and non-aqueous solvents. Different approaches were applied to suppress the noise transmitted between the potentiostat and the NMR spectrometer. These approaches were shown to be effective in reducing background noise in the NMR spectra. The electrochemical and NMR performance of the ECNMR cell is presented. The reduction of 1,4-benzoquinone in both aqueous and non-aqueous solvents was used for testing. The evolution of the in situ ECNMR spectra with time demonstrated that use of the ECNMR cell was feasible. Studies of caffeic acid and 9-chloroanthracene using this ECNMR cell were undertaken to explore its applications, such as monitoring reactions and studying their reaction mechanisms.

  13. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  14. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  15. The development of solid-state NMR of membrane proteins

    PubMed Central

    Opella, Stanley J.

    2014-01-01

    Most biological functions are carried out in supramolecular assemblies. As a result of their slow reorientation in solution, these assemblies have been resistant to the widely employed solution NMR approaches. The development of solid-state NMR to first of all overcome the correlation time problem and then obtain informative high-resolution spectra of proteins in supramolecular assemblies, such as virus particles and membranes, is described here. High resolution solid-state NMR is deeply intertwined with the history of NMR, and the seminal paper was published in 1948. Although the general principles were understood by the end of the 1950s, it has taken more than fifty years for instrumentation and experimental methods to become equal to the technical problems presented by the biological assemblies of greatest interest. It is now possible to obtain atomic resolution structures of viral coat proteins in virus particles and membrane proteins in phospholipid bilayers by oriented sample solid-state NMR methods. The development of this aspect of the field of solid-state NMR is summarized in this review article. PMID:26069880

  16. NMR analysis on microfluidic devices by remote detection

    SciTech Connect

    McDonnell, Erin E.; Han, SongI; Hilty, Christian; Pierce,Kimberly; Pines, Alexander

    2005-08-15

    We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal, and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.

  17. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte tris(2-chloroethyl) phosphate, and the resulting purity values perfectly overlap within their expanded measurement uncertainties. PMID:25416230

  18. NMR and HPLC-NMR spectroscopic studies of futile deacetylation in paracetamol metabolites in rat and man.

    PubMed

    Nicholls, A W; Farrant, R D; Shockcor, J P; Unger, S E; Wilson, I D; Lindon, J C; Nicholson, J K

    1997-04-01

    HPLC-NMR spectroscopy has been used to investigate the level of deacetylation followed by reacetylation (futile deacetylation) of metabolites of paracetamol detected in human and rat urine. This has been achieved through the synthesis and administration of paracetamol isotopically labeled at the acetyl group with C2H3, 13CH3 and 13CO-13CH3. Using paracetamol-C2H3 it had been shown that in the rat the sulphate metabolite present in the urine shows 10-13% futile deacetylation depending on the dose, whereas for paracetamol-13CO-13CH3 the corresponding value was about 8%. After solid phase extraction, it was also possible to determine the level of futile deacetylation in the glucuronide metabolite using directly-coupled HPLC-NMR. This approach was facilitated by the use of acetonitrile-d3 as an HPLC eluent and the HPLC-NMR analyses showed that the level of futile deacetylation in the sulphate and glucuronide metabolites were equal at about 9%. The glucuronide of paracetamol-C2H3 was the predominant metabolite in man and following separation using HPLC-NMR, the level of futile deacetylation was shown to be 1% for the glucuronide and 2% for the sulphate, these values being equal within experimental error. This work demonstrates the utility of NMR and HPLC-NMR spectroscopy for isotope exchange studies. PMID:9160256

  19. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses. PMID:23745683

  20. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  1. Accessible surface area from NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule's ASA requires three-dimensional coordinate data and the use of a "rolling ball" algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called "ShiftASA" that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation. PMID:26078090

  2. Monitoring prion protein stability by NMR.

    PubMed

    Julien, Olivier; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurological diseases that affect both humans and animals. At the end of the 20th century, bovine spongiform encephalopathy (BSE), better known as mad cow disease, was shown to be transmissible to humans. This resulted in considerable concern for public health and a number of questions for scientists. The first question answered was the possible source of the disease, which appears to be the prion protein (PrP). There are two major forms of this protein: the native, noninfectious form (PrP(C)), and the misfolded infectious form (PrP(Sc)). PrP(C) is mainly alpha-helical in structure, whereas PrP(Sc) aggregates into an assembly of beta-sheets, forming amyloid fibrils. Since the first solution structure of the noninfectious form of the mouse prion protein, about 30 structures of the globular portion of PrP(C) have been characterized from different organisms. However, only a few minor differences are observed when comparing one PrP(C) structure to another. The key to understanding prion formation may then be not in the structure of PrP(C), but in the mechanism underlying PrP(C) unfolding and then conversion into a misfolded fibril state. To identify the possible region(s) of PrP(C) responsible for initiating the conversion into the amyloid fibril formation, nuclear magnetic resonance (NMR) was applied to characterize the stability and structure of PrP(C) and intermediate states during the conversion from PrP(C) to PrP(Sc). Subsequently urea was used to induce unfolding, and data analysis revealed region-specific structural stabilities that may bring insights into the mechanisms underlying conversion of protein into an infectious prion. PMID:19697241

  3. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  4. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  5. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide. PMID:26358333

  6. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics

    PubMed Central

    Ravanbakhsh, Siamak; Liu, Philip; Bjordahl, Trent C.; Mandal, Rupasri; Grant, Jason R.; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S.

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in clinical settings. BAYESIL is accessible at http://www.bayesil.ca. PMID:26017271

  7. Transient protein-protein interactions visualized by solution NMR.

    PubMed

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun

    2016-01-01

    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in ?M-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  8. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state [sup 13]C and [sup 29]Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS [sup 13]C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of [sup 29]Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The [sup 29]Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  9. Solid-state NMR characterization of Mowry Formation shales

    SciTech Connect

    Miknis, F.P.

    1992-04-01

    Solid-state {sup 13}C and {sup 29}Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS {sup 13}C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of {sup 29}Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The {sup 29}Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  10. Magic-angle spinning NMR of cold samples.

    PubMed

    Concistrè, Maria; Johannessen, Ole G; Carignani, Elisa; Geppi, Marco; Levitt, Malcolm H

    2013-09-17

    Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature. PMID:23488538

  11. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  12. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  13. Hydrogen Adsorption in Carbon-Based Materials Studied by NMR

    NASA Astrophysics Data System (ADS)

    Wu, Yue

    2006-11-01

    Hydrogen storage is a key component for hydrogen economy. So far, storage materials with large storage capacity and suitable adsorption energy remain elusive. The identification of future storage materials depends crucially on the understanding of adsorption mechanisms. Here we show that nuclear magnetic resonance (NMR) is a sensitive and quantitative probe for detecting adsorbed gas molecules (such as H2, methane, and ethane) in carbon-based materials [1]. Adsorbed gas molecules can be identified through characteristic NMR signatures such as spectral lineshape and spin dynamics, which is determined by the distinct dynamic properties of the adsorbed molecules. NMR is shown to be valuable for the understanding of adsorption mechanisms. In our studies, NMR measurements were carried out in-situ under given H2 pressure up to a pressure of over 100 atm. From such ^1H NMR measurement, the amount of adsorbed H2 molecules can be determined versus pressure. This gives an alternative method for measuring the adsorption isotherms where the H2 signature is identified based on spin properties rather than weight or volume as in gravimetric and volumetric measurements. In addition, properties of molecular dynamics can be obtained at the same time providing information on the adsorption mechanisms. [1] A. Kleinhammes, S.-H. Mao, X.-J. Yang, X.-P. Tang, H. Shimoda, J. P. Lu, O. Zhou, and Y. Wu, Phys. Rev. B. 68, 075418 (2003).

  14. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  15. GFT projection NMR spectroscopy for proteins in the solid state

    PubMed Central

    Franks, W. Trent; Atreya, Hanudatta S.; Szyperski, Thomas

    2011-01-01

    Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated ‘sampling problem’ and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins. PMID:21052779

  16. Nuclear magnetic resonance (NMR)-based drug metabolite profiling.

    PubMed

    Lenz, Eva M

    2011-01-01

    The identification of drug metabolites in biofluids such as urine, plasma and bile is an important step in drug discovery and development. Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy can provide detailed information regarding the structural transformation of a compound as a consequence of metabolism. However, successful identification of drug metabolites by (1)H-NMR spectroscopy is generally compromised by the presence of endogenous metabolites, which can obscure the signals of the drug metabolites in question. Hence, sample clean-up and separation of the metabolites from the biofluid matrix is crucial. This is generally achieved by extraction of the biofluid, solid-phase extraction (SPE), high-performance liquid chromatography (HPLC) or any combination of these. Apart from (1)H, other NMR-active nuclei, such as (19)F, can provide a useful handle for metabolite profiling, provided they are not naturally present in the biofluid. Successful studies have shown that the presence of a fluorine-handle on the drug and its metabolites can provide additional qualitative and quantitative data by (19)F-NMR spectroscopy. This chapter provides guidelines and examples of NMR-based drug metabolite profiling. PMID:21207298

  17. Batch profiling calibration for robust NMR metabonomic data analysis.

    PubMed

    Fages, Anne; Pontoizeau, Clément; Jobard, Elodie; Lévy, Pierre; Bartosch, Birke; Elena-Herrmann, Bénédicte

    2013-11-01

    Metabonomic studies involve the analysis of large numbers of samples to identify significant changes in the metabolic fingerprints of biological systems, possibly with sufficient statistical power for analysis. While procedures related to sample preparation and spectral data acquisition generally include the use of independent sample batches, these might be sources of systematic variation whose effects should be removed to focus on phenotyping the relevant biological variability. In this work, we describe a grouped-batch profile (GBP) calibration strategy to adjust nuclear magnetic resonance (NMR) metabolomic data-sets for batch effects either introduced during NMR experiments or samples work-up. We show how this method can be applied to data calibration in the context of a large-scale NMR epidemiological study where quality control samples are available. We also illustrate the efficiency of a batch profile correction for NMR metabonomic investigation of cell extracts, where GBP can significantly improve the predictive power of multivariate statistical models for discriminant analysis of the cell infection status. The method is applicable to a broad range of NMR metabolomic/metabonomic cohort studies. PMID:23975089

  18. 29Si NMR: A new tool for coal liquids characterization

    NASA Astrophysics Data System (ADS)

    Rose, K. D.; Scouten, C. G.

    1981-02-01

    Protonated heteroatom functionalities (COOH, OH, Sh, NH) have a major impact on the chemical and physical properties of coal materials. Characterization of these functionalities will, therefore, be important to efficient development of new coal utilization technologies. Silicon-29 NMR spectroscopy of the trimethysilyl derivatives of these functional groups is a powerful new tool for this characterization. Preparation of the trimethylsilyl derivatives is carried out in the NMR sample tube and the 29Si NMR spectrum of the products is accumulated under conditions similar to those routinely used in 13NMR. Studies on derivatized model compounds show that 29Si chemical shifts are generally segraged into three regions characteristic of COOh, OH and SH, and NH functionalities. The 29Si resonances of aromatic OH derivatives are further differentiated so that the major oxygenated components of coal liquids can be monitored as a function of processing and distillation conditions. Quantitative 29Si NMR results are used to calculate total OH and COOH concentrations in several solutions. Comparison of these results with the elemental oxygen content permits an estimated of the percentage oxygen present in non-derivatizable (e.g., ether) groups. The technique is illustrated using soluble coal liquid distillate fractions boiling in the range of initial boiling point to 1050°F (566 °C).

  19. Development of a superconducting bulk magnet for NMR and MRI

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)3 voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device.

  20. NMR study of the potential composition of Titan's lakes

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2015-05-01

    A large number of hydrocarbon lakes have been discovered in Titan's surface. However, the chemical composition and physical properties of these lakes are not fully understood. We investigate the potential composition of Titan's lakes by NMR. Based upon NMR data, the 1H and 13C NMR spectra of the hydrocarbons in Titan's lakes are simulated on a 1 T spectrometer [being developed at the NASA Jet Propulsion Laboratory (JPL) for future in situ characterization of Titan's lakes]. The study indicates that the dominant composition (all components>1% of the lake composition by mole fraction) in Titan's lakes can be determined and the major soluble organics quantitatively identified from either quantitative 1H or 13C spectra on a 1 T NMR spectrometer. The proton T1 relaxation times are determined for a number of candidate organics in hydrocarbon solution, a necessary determinant for quantitative NMR. The gas solubility of these organics is also investigated to understand the equilibrium of composition between Titan's lakes and atmosphere and the precipitation rates of the molecules at Titan's ground level. Our results are significant for the ongoing discussion regarding the development of in situ, low bias analysis methods and instruments for Titan missions and other outer planet exploration.

  1. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  2. Evaluation of abdominal aortic aneurysms with NMR imaging

    SciTech Connect

    Evancho, A.; Osbakken, M.; Weidner, W.

    1984-01-01

    Seven patients (5 male and 2 female, age range from 50 to 88) with angiographic proven abdominal aortic aneurysms were evaluated with NMR imaging (1.5 K gauss system) of the abdomen. Images were obtained in transverse, coronal and saggital planes with three radiofrequency pulse sequences (saturation recovery (SR), inversion recovery (IR), and spin echo (SE)). All of the aneurysms were identified as to site and relative size with NMR images. The lumen in which there was flowing blood was always dark (low intensity), whereas the aneurysmal area which contained presumed clot was brighter (high intensity) on SR images. Although the size, location and relationship to other blood vessels was best demonstrated on aortography, NMR images provided similar information in all cases. NMR images correctly demonstrated thrombus in six cases. The authors conclude that NMR imaging provides a clear delineation of the anatomy of abdominal aortic aneurysms. In addition it can provide information concerning tissue type, i.e., it distinguished clot from moving blood. It may be possible in the future to further characterize atherosclerotic and other pathological changes in vessel architecture by using various pulse sequences and timing parameters to provide in vivo histological typing.

  3. NMR of a Phospholipid: Modules for Advanced Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Gaede, Holly C.; Stark, Ruth E.

    2001-09-01

    A laboratory project is described that builds upon the NMR experience undergraduates receive in organic chemistry with a battery of NMR experiments that investigate egg phosphatidylcholine (egg PC). This material, often labeled in health food stores as lecithin, is a major constituent of mammalian cell membranes. The NMR experiments may be used to make resonance assignments, to study molecular organization in model membranes, to test the effects of instrumental parameters, and to investigate the physics of nuclear spin systems. A suite of modular NMR exercises is described, so that the instructor may tailor the laboratory sessions to biochemistry, instrumental analysis, or physical chemistry. The experiments include solution-state one-dimensional (1D) 1H, 13C, and 31P experiments; two-dimensional (2D) TOtal Correlated SpectroscopY (TOCSY); and the spectral editing technique of Distortionless Enhancement by Polarization Transfer (DEPT). To demonstrate the differences between solution and solid-state NMR spectroscopy and instrumentation, a second set of experiments generates 1H, 13C, and 31P spectra of egg PC dispersed in aqueous solution, under both static and magic-angle spinning conditions.

  4. Low Cost CE-NMR with Microcoils for Chemical Detection

    SciTech Connect

    Adams, K L; Klunder, G; Demas, V; Malba, V; Bernhardt, A; Evan, L; Harvey, C; Maxwell, R; Herberg, J

    2008-07-25

    Understanding speciation in solids and solutions is important for environmental and toxicological purposes. Capillary electrophoresis (CE) is a simple rapid separation technique that can be used to identify species in solution. CE is particularly is well suited for rapid separations of metal containing samples. Direct on-capillary measurement of metal compound speciation can be obtained with nuclear magnetic resonance (NMR). The development of a low-cost microcoil CE-NMR system for in situ characterization of samples of interest is discussed. High precision laser lithography is used to produce copper sputtered microcoils that have comparable resistivity and quality factors to that of hand wound microcoils. A portable NMR system coupled with a CE system has the potential to identify chemical species in aqueous solutions. In addition, transient isotachophoresis can separate and pre-concentrate samples of interest to obtain separate chemical peaks for speciation by online NMR analysis. We are developing separation assays to determine the speciation of chemical complexes in solutions with minimal perturbation to the original sample equilibrium. On-line NMR measurements will be made downstream of the UV detector.

  5. Low Cost CE-NMR with Microcoils for Chemical Detection

    SciTech Connect

    Adams, K; Klunder, G; Demas, V; Malba, V; Bernhardt, A; Evan, L; Harvey, C; Maxwell, R; Herberg, J L

    2009-01-08

    Understanding speciation in solids and solutions is important for environmental and toxicological purposes. Capillary electrophoresis (CE) is a simple rapid separation technique that can be used to identify species in solution. CE is particularly is well suited for rapid separations of metal containing samples. Direct on-capillary measurement of metal compound speciation can be obtained with nuclear magnetic resonance (NMR). The development of a low-cost microcoil CE-NMR system for in situ characterization of samples of interest is discussed. High precision laser lithography is used to produce copper sputtered microcoils that have comparable resistivity and quality factors to that of hand wound microcoils. A portable NMR system coupled with a CE system has the potential to identify chemical species in aqueous solutions. In addition, transient isotachophoresis can separate and pre-concentrate samples of interest to obtain separate chemical peaks for speciation by online NMR analysis. We are developing separation assays to determine the speciation of chemical complexes in solutions with minimal perturbation to the original sample equilibrium. On-line NMR measurements will be made downstream of the UV detector.

  6. First Principles NMR Study of Fluorapatite under Pressure

    PubMed Central

    Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M. J.; Fornari, Marco

    2012-01-01

    NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from −5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43Ca and 17O. PMID:22770669

  7. NMR imaging and cryoporometry of swelling clays

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey V.; Szutkowski, Kosma; Petrov, Oleg V.; Furó, István.

    2010-05-01

    Compacted bentonite clay is currently attracting attention as a promising "self-sealing" buffer material to build in-ground barriers for the encapsulation of radioactive waste. It is expected to fill up the space between waste canister and surrounding ground by swelling and thus delay flow and migration from the host rock to the canister. In environmental sciences, evaluation and understanding of the swelling properties of pre-compacted clay are of uttermost importance for designing such buffers. Major goal of present study was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during different physical processes in an aqueous environment such as swelling, dissolution, and sedimentation on the time scale from minutes to years. The propagation of the swelling front during clay expansion depending on the geometry of the confining space was also studied. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were adapted and used as main experimental techniques. With this approach, spatially resolved movement of the clay/water interface as well as clay particle distributions in gel phase can be monitored [1]. Bulk samples with swelling in a vertical tube and in a horizontal channel were investigated and clay content distribution profiles in the concentration range over five orders of magnitude and with sub-millimetre spatial resolution were obtained. Expansion rates for bulk swelling and swelling in narrow slits were compared. For sodium-exchanged montmorillonite in contact with de-ionised water, we observed a remarkable acceleration of expansion as compared to that obtained in the bulk. To characterize the porosity of the clay a cryoporometric study [2] has been performed. Our results have important implications to waste repository designs and for the assessment of its long-term performance. Further research exploring clay-water interaction over a wide variety of clay composition and water ionic strength as well as investigating the effect of the confining geometry and material surface properties seem to be worth to pursue. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. References: [1] Dvinskikh S. V., Szutkowski K., Furó I. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198, 146 (2009). [2] Petrov O. V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl. Magn. Reson. Spec. 54, 97 (2009).

  8. Identification of organic phosphorus compounds in the Bronx River bed sediments by phosphorus-31 nuclear magnetic resonance spectroscopy.

    PubMed

    Wang, Jingyu; Pant, Hari K

    2010-12-01

    Sediment characteristics influence the distribution and bioavailability of phosphorus (P) in rivers and lakes. The objectives of this study were to identify P compounds in sediments collected from 15 sites along the Bronx River to get insights on nutrient transport for management of highly variable and modified ecosystems such as the Bronx River. The nuclear magnetic resonance spectra showed that the dominant P species in Bronx River bed sediments are orthophosphate monoester and lesser phosphate diesters and pyrophosphates (pyro-P). The P compounds were mostly glycerophosphate, nucleoside monophosphates, and polynucleotides. A few sites showed a small amount of dihydroxyacetone phosphate, inosine monophosphate. By allowing a downstream comparison of P compound variations along the Bronx River, this study provides a step toward improving water quality in an urban river system such as New York City and helps to assess the bioavailability of P, in turn, design estuary habitat restoration projects in comparable region of the world. PMID:20013049

  9. Correlation of radiobiological assays of hypoxic fraction with phosphorus-31 magnetic resonance spectroscopy across multiple tumor lines

    SciTech Connect

    Shi-Jiang, L.; Guan-Yuan, J.; Fish, B.L.

    1995-07-01

    Hypoxic fractions were measured in multiple tumor models and compared to {sup 31}P magnetic resonance spectroscopy (MRS) parameters. Hypoxic fractions were measured by excision assays in intramuscular and subcutaneous RIF-1 tumors, large and small SCCVII tumors, and KHT tumors. The hypoxic fractions ranged from 3% (small SCCVII) to 21% (KHT). Measurements of {sup 31}P MRS parameters (indices of tumor metabolism) were made under the same conditions used in the hypoxic fraction assays. The PCr/P{sub i} ratios in five tumor models were strongly correlated (r{sup 2}=0.98, {tau} = 1.00, P < 0.02) with their hypoxic fractions, and the NTP/P{sub i} ratio was weakly correlated (r{sup 2} = 0.67, {tau} = 0.60, P < 0.17) with hypoxic fraction. Smaller values of the PCr/P{sub i} and NTP/P{sub i} ratios were found in the tumors with larger hypoxic fractions. These experiments indicate that {sup 31}P MRS may provide a relative measurment of hypoxic fractions across different tumor lines that can be applied non-invasively to individual tumors. 42 refs., 5 figs., 4 tabs.

  10. Detection of thin film NMR spectrum by Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Kwon, Sungmin; Lee, Soonchil; Won, Soonho

    2014-03-01

    NMR is widely used in many fields due to its powerful advantages such as nondestructive, chemically selective detection, and local probing. However, because of its low sensitivity, it is difficult to investigate thin film samples by conventional NMR. MRFM is the combined technic of NMR and Scanning Probe Microscopy (SPM), and it enabled exceptional sensitivity increasement of NMR detection. We succeeded in detecting general thin film NMR spectrum for the first time by modifying the MRFM. CaF2 34nm thin film NMR was detected and we observed 20 Gauss spectrum in proximity to bulk spectrum which is about 10 Gauss.

  11. Degradation of historical paper: nondestructive analysis by the NMR-MOUSE.

    PubMed

    Blümich, B; Anferova, S; Sharma, S; Segre, A L; Federici, C

    2003-04-01

    The NMR-MOUSE is a mobile sensor for single-sided NMR inspection of organic materials which takes advantage of the principles of magnetic resonance and inside-out-NMR. Historical books dating from the 17th century were measured at different points by positioning the NMR-MOUSE on the paper. Different degrees of paper degradation can be discriminated from the regularized inverse Laplace transform of the envelope of the acquired echo signals. For the first time the degradation of historical paper was characterized entirely nondestructively by NMR. As a contribution to current preservation efforts, NMR shows great promise for future use in damage assessment of historical documents. PMID:12713971

  12. High resolution NMR measurements using a 400 MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR

    NASA Astrophysics Data System (ADS)

    Piao, R.; Iguchi, S.; Hamada, M.; Matsumoto, S.; Suematsu, H.; Saito, A. T.; Li, J.; Nakagome, H.; Takao, T.; Takahashi, M.; Maeda, H.; Yanagisawa, Y.

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1 GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400 MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400 MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR.

  13. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR.

    PubMed

    Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. PMID:26778351

  14. Remote NMR/MRI detection of laser polarized gases

    DOEpatents

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  15. Advances in solid-state NMR of cellulose.

    PubMed

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. PMID:24590189

  16. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    SciTech Connect

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  17. Zero-field NMR enhanced by parahydrogen in reversible exchange.

    PubMed

    Theis, Thomas; Ledbetter, Micah P; Kervern, Gwendal; Blanchard, John W; Ganssle, Paul J; Butler, Mark C; Shin, Hyun D; Budker, Dmitry; Pines, Alexander

    2012-03-01

    We have recently demonstrated that sensitive and chemically specific NMR spectra can be recorded in the absence of a magnetic field using hydrogenative parahydrogen induced polarization (PHIP) (1-3) and detection with an optical atomic magnetometer. Here, we show that non-hydrogenative parahydrogen-induced polarization (4-6) (NH-PHIP) can also dramatically enhance the sensitivity of zero-field NMR. We demonstrate the detection of pyridine, at concentrations as low as 6 mM in a sample volume of 250 μL, with sufficient sensitivity to resolve all identifying spectral features, as supported by numerical simulations. Because the NH-PHIP mechanism is nonreactive, operates in situ, and eliminates the need for a prepolarizing magnet, its combination with optical atomic magnetometry will greatly broaden the analytical capabilities of zero-field and low-field NMR. PMID:22332806

  18. Formalism for Hypercomplex Multidimensional NMR Employing Partial-Component Subsampling

    PubMed Central

    Schuyler, Adam D; Maciejewski, Mark W; Stern, Alan S; Hoch, Jeffrey C

    2012-01-01

    Multidimensional NMR spectroscopy typically employs phase-sensitive detection, which results in hypercomplex data (and spectra) when utilized in more than one dimension. Nonuniform sampling approaches have become commonplace in multidimensional NMR, enabling dramatic reductions in experiment time, increases in sensitivity and/or increases in resolution. In order to utilize nonuniform sampling optimally, it is necessary to characterize the relationship between the spectrum of a uniformly sampled data set and the spectrum of a subsampled data set. In this work we construct an algebra of hypercomplex numbers suitable for representing multidimensional NMR data along with partial-component nonuniform sampling (i.e. the hypercomplex components of data points are subsampled). This formalism leads to a modified DFT–convolution relationship involving a partial-component, hypercomplex point-spread function set. The framework presented here is essential for the continued development and appropriate characterization of partial-component nonuniform sampling. PMID:23246651

  19. A fragment separator at LBL for beta-NMR experiment

    SciTech Connect

    Matsuta, K.; Ozawa, A.; Nojiri, Y.; Minamisono, T.; Fukuda, M.; Kitagawa, A.; Ohtsubo, T.; Momota, S.; Fukuda, S.; Matsuo, Y.; Takechi, H.; Minami, I.; Sugimoto, K.; Tanihata, I.; Omata, K.; Shimoura, S.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    1992-03-01

    The Beam 44 fragment separator was built at the Bevalac of LBL for NMR studies of beta emitting nuclei. {sup 37}K, {sup 39}Ca, and {sup 43}Ti fragments originating from {sup 40}Ca and {sup 46}Ti primary beams were separated by the separator for NMR studies on these nuclei. Nuclear spin polarization was created in {sup 39}Ca and {sup 43}Ti using the tilted foil technique (TFT), and the magnetic moment of {sup 43}Ti was deduced. Fragment polarization was measured for {sup 37}K and {sup 39}Ca emitted to finite deflection angles. The Beam 44 fragment separator in combination with a proper polarization technique, such as TFT or fragment polarization, has been very effective for such NMR studies.

  20. Suppression of radiation damping for high precision quantitative NMR.

    PubMed

    Bayle, Kevin; Julien, Maxime; Remaud, Gérald S; Akoka, Serge

    2015-10-01

    True quantitative analysis of concentrated samples by (1)H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification. PMID:26319280

  1. Suppression of radiation damping for high precision quantitative NMR

    NASA Astrophysics Data System (ADS)

    Bayle, Kevin; Julien, Maxime; Remaud, Gérald S.; Akoka, Serge

    2015-10-01

    True quantitative analysis of concentrated samples by 1H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification.

  2. Applications of saturation transfer difference NMR in biological systems.

    PubMed

    Bhunia, Anirban; Bhattacharjya, Surajit; Chatterjee, Subhrangsu

    2012-05-01

    The method of saturation transfer difference (STD) nuclear magnetic resonance (NMR) is an indispensable NMR tool in drug discovery. It identifies binding epitope(s) at the atomic resolution of small molecule ligands (e.g. organic drugs, peptides and oligosaccharides), while interacting with their receptors, such as proteins and/or nucleic acids. The method is widely used to screen active drug molecules, simultaneously ranking them in a qualitative way. STD NMR is highly successful for a variety of high molecular weight systems, such as whole viruses, platelets, intact cells, lipopolysaccharide micelles, membrane proteins, recombinant proteins and dispersion pigments. Modifications of STD pulse programs using (13)C and (15)N nuclei are now used to overcome the signal overlapping that occurs with more complex structures. PMID:22210119

  3. Clinical NMR imaging of the brain: 140 cases

    SciTech Connect

    Bydder, G.M.; Steiner, R.E.; Young, I.R.; Hall, A.S.; Thomas, D.J.; Marshall, J.; Pallis, C.A.; Legg, N.J.

    1982-08-01

    Cranial nuclear magnetic resonance (NMR) scans were performed on 13 healthy volunteers and 140 patients with a broad spectrum of neurologic disease and compared with x-ray computed tomography (CT) scans. Advantages of NMR imaging include the high level of gray-white matter contrast, lack of bone artifact, variety of possible sequences, transverse, sagittal, and coronal imaging, sensitivity to pathologic change, and lack of known hazard. Disadvantages include lack of bone detail, limited spatial resolution, lack of contrast agents, and cost. Promising directions for future clinical research include developmental neurology, tissue characterization with T/sub 1/ and T/sub 2/, assessment of blood flow, and the development of contrast agents. Much more detailed evaluation will be required, but NMR seems to be a potentially important addition to existing techniques of neurologic diagnosis.

  4. NMR Studies of Quantum Rotors Confined in Zeolite

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Hamida, J. A.; Sullivan, N. S.

    2010-02-01

    We report the results of NMR studies of methane trapped in zeolite at low temperatures. Samples were prepared to contain 1.0±0.2 molecules per α-sodalite cage of zeolite-13X. The NMR spin-spin and spin-lattice relaxation times were measured for 4< T<95 K to determine the rotational dynamics of the molecules and the dependence on the concentration of the A, T and E-molecular species. The results are discussed relative to recent Monte Carlo calculations that show that the molecules are localized but free to tumble in the large α-cages at low temperatures. At higher temperatures there is an effective melting of the translational degrees of freedom for the lattice formed by the centers of the supercages. A sharp definitive jump in the NMR spin-spin relaxation is seen at this “melting” transition.

  5. NMR study of black-phase in SmS

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Haga, Y.

    2015-03-01

    We report the result of the 33S nuclear magnetic resonance (NMR) measurement on the nonmagnetic semiconductor SmS at ambient pressure. For this measurement, the 33S isotope enriched powder sample of SmS was prepared to increase the 33S NMR intensity. We have attempted 33S NMR measurement on SmS and successfully observed the signal of it. With decreasing temperature, the spectrum measured at the constant magnetic field shifted to lower frequency and became weakly temperature dependent below 50 K. The presence of the energy gap was microscopically established by the rapid decrease in the nuclear spin-lattice relaxation rate 1/T1. The activation energy was deduced to be 625 K from an Arrhenius plot of T1.

  6. Toroid cavity/coil NMR multi-detector

    DOEpatents

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  7. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  8. Automated high-resolution NMR with a sample changer

    SciTech Connect

    Wade, C.G.; Johnson, R.D.; Philson, S.B.; Strouse, J.; McEnroe, F.J.

    1989-01-15

    Within the past two years, it has become possible to obtain high-resolution NMR spectra using automated commercial instrumentation. Software control of all spectrometer functions has reduced most of the tedious manual operations to typing a few computer commands or even making selections from a menu. Addition of an automatic sample changer is the next natural step in improving efficiency and sample throughput; it has a significant (and even unexpected) impact on how NMR laboratories are run and how it is taught. Such an instrument makes even sophisticated experiments routine, so that people with no previous exposure to NMR can run these experiments after a training session of an hour or less. This A/C Interface examines the impact of such instrumentation on both the academic and the industrial laboratory.

  9. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  10. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  11. NMR study in sodium-hydrogen-C{sub 60} superconductor

    SciTech Connect

    Ogata, H.; Miyajima, S.; Imaeda, K.; Inokuchi, H.

    1998-12-31

    {sup 23}Na and {sup 1}H NMR studies have been carried out for a Na{sub x}H{sub y}C{sub 60} superconductor. The peak position of the {sup 23}Na NMR spectrum exhibits discontinuous upfield shift of 30 ppm at about 250 K, indicates a first order phase transition. From the line shape of the {sup 23}Na spectrum obtained at 7 K, the quadrupole coupling constant tensor is evaluated to be {vert_bar}e{sup 2}Qq/h{vert_bar} = 3.7 MHz with the asymmetry parameter {eta} = 0.95. The {sup 1}H NMR spectrum suggests an anionic hydrogen state with weakly delocalized nature.

  12. NMR Studies of Low-Dimensional Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Horvatic, Mladen; Berthier, Claude

    Selected (high magnetic field) NMR studies of low-dimensional spin systems are presented as textbook examples of how NMR observables (magnetic hyperfine shift, electric field gradient, nuclear spin-lattice relaxation and nuclear spin-spin relaxation) are used to reveal local electronic configuration and static and dynamic spin susceptibility. We discuss NMR data for the doped Haldane chain Y2BaNi1-xMgxO5, the Kagomé based SrCr8Ga4O19 compound, the spin-Peierls chain CuGeO3 and the related alpha-NaV2O5 system, the organo-metallic spin ladder Cu2(C5H12N2)2Cl4, and the spin 1/2 Heisenberg chain Sr2CuO3.

  13. RNA structure determination by solid-state NMR spectroscopy

    PubMed Central

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-01-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machinesindependent of their ability to crystallize and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies. PMID:25960310

  14. 1H NMR, 31P NMR and Raman Study of CaHPO4 and SrHPO4

    NASA Astrophysics Data System (ADS)

    Louati, B.; Guidara, K.; Gargouri, M.; Fourati, M.

    2005-02-01

    CaHPO4 and SrHPO4 were investigated using Raman, 1H NMR and 31P NMR techniques to study the environment of their PO3-4 tetrahedra and the percentage of mobile protons. 1H NMR spectra at room temperature suggest the presence of three types of protons, in agreement with RX investigation. The percentage of mobile protons in SrHPO4 is greater than in CaHPO4 because Sr2+ is bigger than Ca2+. 31P NMR spectra at room temperature show two lines in the spectrum of SrHPO4, revealing an equal environment of two sets of pairs of PO3- 4 . The 31P NMR spectrum of CaHPO4, however, exhibits three lines. This result was confirmed using a cross polarization (CP) sequence program. The first peak is attributed to the first set of pairs of P(1)O4 units and the two other ones to P(2)O4 and P(2)O4 units.

  15. NMR imaging of fluid dynamics in reservoir core.

    PubMed

    Baldwin, B A; Yamanashi, W S

    1988-01-01

    A medical NMR imaging instrument has been modified to image water and oil in reservoir rocks by the construction of a new receiving coil. Both oil and water inside the core produced readily detectable proton NMR signals, while the rock matrix produced no signal. Because of similar T2 NMR relaxation times, the water was doped with a paramagnetic ion, Mn+2, to reduce its T2 relaxation time. This procedure enhanced the separation between the oil and water phases in the resulting images. Sequential measurements, as water imbibed into one end and oil was expelled from the other end of a core plug, produced a series of images which showed the dynamics of the fluids. For water-wet Berea Sandstone a flood front was readily observed, but some of the oil was apparently left behind in small, isolated pockets which were larger than individual pores. After several additional pore volumes of water flowed through the plug the NMR image indicated a homogeneous distribution of oil. The amount of residual oil, as determined from the ratio of NMR intensities, closely approximated the residual oil saturation of fully flooded Berea samples measured by Dean-Stark extraction. A Berea sandstone core treated to make it partially oil-wet, did not show a definitive flood front, but appeared to channel the water around the perimeter of the core plug. The relative ease with which these images were made indicates that NMR imaging can be a useful technique to follow the dynamics of oil and water through a core plug for a variety of production processes. PMID:3226235

  16. Advanced NMR characterization of zeolite catalysts. Final technical report

    SciTech Connect

    Welsh, L.B.; Oldfield, E.

    1986-03-01

    The effort described in this report involved a joint industry-university program between the Signal Research Center, Inc., and the University of Illinois, designed to advance the state of knowledge of zeolite catalyst characterization technology for application to zeolite catalysts useful in coal liquefaction related processes. The program involved the application of new and improved high resolution solid state nuclear magnetic resonance (NRM) techniques to the characterization of zeolite catalysts and other related microporous materials. The NMR experiments were performed in the state-of-the-art NMR laboratory at the University of Illinois. In this report the first comprehensive investigation of /sup 17/O NMR of A and Y zeolites by means of static, MASS and VASS (variable angle sample spinning) NMR techniques is presented. The determination of the /sup 17/O isotropic chemical shifts, nuclear quadrupole coupling constants and electric field gradient tensor asymmetry parameters provides valuable supplementary information on zeolite structure. As an extension of the /sup 17/O NMR investigation of zeolites, results for gallosilicates and for several aluminophosphate materials have also been obtained. The work presented in this study demonstrates the ability of using /sup 17/O NMR to observe chemical changes in the oxygen environment of zeolites. This has important implications for the study of zeolite based catalysts. Chemical modifications of catalysts, such as framework substitutions or ion exchange which are commonly used to modify zeolite catalyst activity can be directly studied for their effect on the oxygen rich surface of the zeolite. It is also possible that this technique could be used to directly probe the interactions between the zeolite surface and reactant molecules. 29 refs., 14 figs., 7 tabs.

  17. A community resource of experimental data for NMR / X-ray crystal structure pairs.

    PubMed

    Everett, John K; Tejero, Roberto; Murthy, Sarath B K; Acton, Thomas B; Aramini, James M; Baran, Michael C; Benach, Jordi; Cort, John R; Eletsky, Alexander; Forouhar, Farhad; Guan, Rongjin; Kuzin, Alexandre P; Lee, Hsiau-Wei; Liu, Gaohua; Mani, Rajeswari; Mao, Binchen; Mills, Jeffrey L; Montelione, Alexander F; Pederson, Kari; Powers, Robert; Ramelot, Theresa; Rossi, Paolo; Seetharaman, Jayaraman; Snyder, David; Swapna, G V T; Vorobiev, Sergey M; Wu, Yibing; Xiao, Rong; Yang, Yunhuang; Arrowsmith, Cheryl H; Hunt, John F; Kennedy, Michael A; Prestegard, James H; Szyperski, Thomas; Tong, Liang; Montelione, Gaetano T

    2016-01-01

    We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development. PMID:26293815

  18. Experimental demonstration of quantum contextuality on an NMR qutrit

    NASA Astrophysics Data System (ADS)

    Dogra, Shruti; Dorai, Kavita; Arvind

    2016-05-01

    We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et al. are first reformulated in terms of traceless observables which can be measured in an NMR experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four different initial states of a spin-1 deuterium nucleus oriented in a liquid crystal matrix, and follow the violation as the states evolve in time. We also describe and experimentally perform a single-shot test of contextuality for a subclass of qutrit states whose density matrix is diagonal in the energy basis.

  19. Sensitivity Enhancement in Solution NMR: Emerging Ideas and New Frontiers

    PubMed Central

    Lee, Jung Ho; Okuno, Yusuke; Cavagnero, Silvia

    2014-01-01

    Modern NMR spectroscopy has reached an unprecedented level of sophistication in the determination of biomolecular structure and dynamics at atomic resolution in liquids. However, the sensitivity of this technique is still too low to solve a variety of cutting-edge biological problems in solution, especially those that involve viscous samples, very large biomolecules or aggregation-prone systems that need to be kept at low concentration. Despite the challenges, a variety of efforts have been carried out over the years to increase sensitivity of NMR spectroscopy in liquids. This review discusses basic concepts, recent developments and future opportunities in this exciting area of research. PMID:24656077

  20. Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR.

    PubMed

    Hoch, Jeffrey C; Maciejewski, Mark W; Mobli, Mehdi; Schuyler, Adam D; Stern, Alan S

    2014-02-18

    NMR spectroscopy is one of the most powerful and versatile analytic tools available to chemists. The discrete Fourier transform (DFT) played a seminal role in the development of modern NMR, including the multidimensional methods that are essential for characterizing complex biomolecules. However, it suffers from well-known limitations: chiefly the difficulty in obtaining high-resolution spectral estimates from short data records. Because the time required to perform an experiment is proportional to the number of data samples, this problem imposes a sampling burden for multidimensional NMR experiments. At high magnetic field, where spectral dispersion is greatest, the problem becomes particularly acute. Consequently multidimensional NMR experiments that rely on the DFT must either sacrifice resolution in order to be completed in reasonable time or use inordinate amounts of time to achieve the potential resolution afforded by high-field magnets. Maximum entropy (MaxEnt) reconstruction is a non-Fourier method of spectrum analysis that can provide high-resolution spectral estimates from short data records. It can also be used with nonuniformly sampled data sets. Since resolution is substantially determined by the largest evolution time sampled, nonuniform sampling enables high resolution while avoiding the need to uniformly sample at large numbers of evolution times. The Nyquist sampling theorem does not apply to nonuniformly sampled data, and artifacts that occur with the use of nonuniform sampling can be viewed as frequency-aliased signals. Strategies for suppressing nonuniform sampling artifacts include the careful design of the sampling scheme and special methods for computing the spectrum. Researchers now routinely report that they can complete an N-dimensional NMR experiment 3(N-1) times faster (a 3D experiment in one ninth of the time). As a result, high-resolution three- and four-dimensional experiments that were prohibitively time consuming are now practical. Conversely, tailored sampling in the indirect dimensions has led to improved sensitivity. Further advances in nonuniform sampling strategies could enable further reductions in sampling requirements for high resolution NMR spectra, and the combination of these strategies with robust non-Fourier methods of spectrum analysis (such as MaxEnt) represent a profound change in the way researchers conduct multidimensional experiments. The potential benefits will enable more advanced applications of multidimensional NMR spectroscopy to study biological macromolecules, metabolomics, natural products, dynamic systems, and other areas where resolution, sensitivity, or experiment time are limiting. Just as the development of multidimensional NMR methods presaged multidimensional methods in other areas of spectroscopy, we anticipate that nonuniform sampling approaches will find applications in other forms of spectroscopy. PMID:24400700

  1. In situ NMR analysis of fluids contained in sedimentary rock

    PubMed

    de Swiet TM; Tomaselli; Hurlimann; Pines

    1998-08-01

    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press. PMID:9716484

  2. NMR spectroscopic study of the Murex trunculus dyeing process.

    PubMed

    Hoffman, Rina C; Zilber, Reut C; Hoffman, Roy E

    2010-11-01

    It is widely accepted that indigo dyes derived from Murex trunculus were used to produce the biblical dyes tekhelet and argaman. We describe a method of following the debromination of natural leucoindigos and their binding to wool using NMR spectroscopy. Debromination is observed prior to reaction with the wool and prior to oxidation. Binding to the wool is shown to occur prior to oxidation. NMR allows the dyeing process to be followed. This, in principle, could be used to correct problems during dyeing that would increase the reliability of the process. PMID:20882520

  3. On the solid-state NMR spectra of naproxen

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří

    2015-01-01

    Two previous measurements of the 13C and 1H NMR isotropic chemical shifts in crystalline naproxen, which is an important pharmaceutical compound, are confronted with the results obtained from several theoretical approaches capable of the proper treatment of solid-phase effects. In the underlying geometrical optimizations, two crystal structures are considered. The agreement between the data sets is quantified, including an evaluation of the similarity between the experimental solid-state NMR spectra. The 13C-1H heteronuclear correlations are analyzed, and their various assignments are discussed employing the statistical treatment of the differences between the measured and theoretical isotropic chemical shifts.

  4. Instrument Control and Data Acquisition for NMR Experiments

    Energy Science and Technology Software Center (ESTSC)

    1999-03-29

    This is a software program which is intended to do some instrument control and data acquisition for NMR experiments. The basic purpose of the program is to allow a user of the NMR system to create a list of instructions which tells the program what steps should be done, the stat the data taking program and let the system run by itself (depending on the type of sample and the type of experiment being run,more » it can take from several minutes to many hours to do a data collection run).« less

  5. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  6. Quantum Zeno Effect in an Unstable System with NMR

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Tanaka, Hirotaka

    2016-01-01

    We theoretically propose a scheme for the verification of the quantum Zeno effect (QZE) to suppress a decay process with nuclear magnetic resonance (NMR). Nuclear spins are affected by low-frequency noise, and thus we can naturally observe non exponential decay behavior, which is a prerequisite in observing the QZE. We also show that a key component for verifying the QZE, namely, the measurement of a nuclear spin, can be realized with NMR using the current technology by using a measurement process with a non selective architecture.

  7. A comment on powder averaging in wide line NMR.

    PubMed

    Iwaniec, T; Kopiecki, R; Szymanski, S

    2015-01-01

    Computer calculations of wide line NMR spectra of powders usually involve numerical evaluation of double integrals over two Euler angles. Practice confirms intuition-based expectations that the integration results should be independent from the choice of the crystal-fixed (or molecule-fixed) coordinate system used in the calculations. However, a closer inspection of the relevant integration formulas may make one wonder why this is so. The present paper provides a rigorous mathematical proof of the validity of these intuitive predictions, by formulating the problem in terms of surface integrals on a sphere, which has presumably no precedence in the NMR literature. PMID:25912210

  8. Advanced NMR approaches in the characterization of coal

    SciTech Connect

    Maciel, G.E.

    1992-01-01

    A considerable effort in this project during the past few months has been focussed on the development of [sup 1]H and [sup 13]C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A [sup 13]C MAS imaging probe and a [sup 1]H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The [sup 1]H system has already produced promising preliminary results, which are briefly described in this report.

  9. Complete NMR characterization of lychnose from Stellaria media (L.) Vill.

    PubMed

    Vanhaecke, Mieke; Van den Ende, Wim; Van Laere, André; Herdewijn, Piet; Lescrinier, Eveline

    2006-11-27

    Lychnose (alpha-D-Gal-(1-->6)-alpha-D-Glc-(1-->2)-beta-D-Fru-(1-->1)-alpha-D-Gal) was isolated from Stellaria media, a representative member of the Caryophyllaceae plant family. Weak acid hydrolysis, enzymatic hydrolysis and complete NMR characterization were performed to confirm the identity of the tetrasaccharide. All (1)H and (13)C resonances were unambiguously assigned and the conformation of the sugars was determined using one and two dimensional NMR techniques. Anomeric characterizations in lychnose were confirmed from HMBC and NOESY spectra. PMID:16997290

  10. NMR STUDY OF MOLECULAR REFORIENTATION UNDER FIVEFOLD SYMMETRY SOLID PERMETHYLFERROCENE

    SciTech Connect

    Wemmer, D.E.; Ruben, D.J.; Pines, A.

    1980-08-01

    The ring reorientation in permethylferrocene has been studied using high resolution solid state {sup 13}C NMR. The constraints which symmetry places upon the number and types of motional parameters which may be determined from the NMR spectrum are discussed. From comparison of the experimental lineshapes in the slow reorientation temperatures range with theoretical models for random rotations and symmetry related jumps, it is concluded that the reorientation occurs as jumps between symmetry related orientations with jumps of 2{pi}/5 highly favored over 4{pi}/5. The activation energy derived for the jump process is 13.5 kjoules/mole.

  11. NMR study of compressed supercritical water

    NASA Astrophysics Data System (ADS)

    Lamb, W. J.; Jonas, J.

    1981-01-01

    The proton spin-lattice relaxation time T1 in water has been measured as a function of pressure in the temperature range 150 to 700°C. This study focuses on the supercritical region (tc=374°C) where the spin-rotation interaction mechanism dominates the observed proton relaxation rate. Since water is an asymmetric top molecule, the analysis of the experimental data involves a number of simplifying assumptions discussed in detail. The experimental finding that in supercritical water the spin-rotation relaxation time T 1SR is a linear function of density ρ, up to relatively high densities (ρ≃ 1.5 ρc) provides rationale for analysis of the NMR experimental data in terms of a model used for dilute gases. The T 1SR data are analyzed on the basis of the assumption that the collision modulated spin-rotation interactions can be described by a single correlation function which is an exponential function of time. Using this procedure, we find that T 1SR/ρ αT-2, i.e.T 1SR/ρ exhibits a stronger temperature dependence than that found (T 1SR/ρ αT-3/2) for many polar and nonpolar gases. The calculated effective cross sections for the transfer of angular momentum σeff which show strong temperature dependence (σeff αT-1.5) are several times larger than the kinetic cross sections. By assuming applicability of expressions derived for isotropic reorientation of spherical-top molecules and using the effective spin-rotation interaction constant as obtained from microwave measurements, we are able to calculate the angular momentum correlation time τJ, over the range of temperatures and densities studied. In the supercritical region τJ⩾τΘ, where τΘ is the reorientational correlation time, and the estimated mean angle of reorientation ΔΘ¯ is in the range 50° to 800°. The T 1SR data are also interpreted in terms of the modified rough hard sphere (RHS) model which for ρ<2ρc takes into account the effect of attractive forces. We find that 1/T 1SR is a linear function of the Enskog relaxation time τE. The experimental ratio of τE/τJ reflecting the efficiency of angular momentum transfer shows density and temperature dependence, in agreement with expectation. There is no quantitative agreement between τE/τJ calculated and observed because of the oversimplified treatment used. An empirical relationship between T 1SR and the shear viscosity in the supercritical compressed water is established, namely, the T 1SR is a linear function of the logarithm of shear viscosity. In addition, the relaxation data in the temperature range 150 to 350°C is also reported and analyzed. In this specific temperature range, both the dipolar (intra- and intermolecular) and the spin-rotation interaction mechanisms contribute to the observed proton relaxation rate.

  12. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  13. COMPREHENSIVE PROGRESS REPORT FOR FOURIER TRANSFORM NMR (NUCLEAR MAGNETIC RESONANCE) OF METALS OF ENVIRONMENTAL SIGNIFICANCE

    EPA Science Inventory

    Interactions of the metals cadmium and selenium with various biologically important substrates were studied by nuclear magnetic resonance (NMR) spectroscopy. Cadmium-113 NMR was used for a critical examination of three metalloproteins: concanavalin A, bovine superoxide dismutase ...

  14. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  15. 19F NMR spectroscopy study of the metabolites of flucloxacillin in rat urine.

    PubMed

    Everett, J R; Jennings, K; Woodnutt, G

    1985-12-01

    19F NMR spectroscopy was used to monitor the metabolites of flucloxacillin in the urine of a rat dosed with its sodium salt. 19F NMR signals were detected and quantified from flucloxacillin and three metabolites. The 19F NMR method involves minimal sample preparation and is free from interference by endogenous urine components. High-field spin-echo 1H NMR spectroscopy and HPLC were used to confirm the results. PMID:2868093

  16. NMR spectroscopy and perfusion of mammalian cells using surface microprobes.

    PubMed

    Ehrmann, Klaus; Pataky, Kristopher; Stettler, Matthieu; Wurm, Florian Maria; Brugger, Jürgen; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50,000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells' response to environmental change. PMID:17330170

  17. NMR Studies of pseudogap and electronic inhomogeneity in BSCCO-2212

    NASA Astrophysics Data System (ADS)

    Crocker, J.; Dioguardi, A. P.; Aproberts-Warren, N.; Shockley, A. C.; Grafe, H.-J.; Xu, Z.; Wen, J.; Gu, G.; Curro, N. J.

    2011-11-01

    We present O-17 NMR measurements on a single crystal of overdoped BSCCO-2212. We measure the planar oxygen's Knight shift (K), electronic field gradient (EFG), and spin lattice relaxation rate (1/T1) along each principle axis. Our analysis shows that the temperature dependence can be explained by a suppression of the density of states in the pseudogap region.

  18. Statistical models and NMR analysis of polymer microstructure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  19. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and

  20. Symmetry constraints on spin dynamics: Application to hyperpolarized NMR

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.

    2016-01-01

    Spin dynamical evolution is constrained by the symmetries of the spin Hamiltonians that generate the quantum dynamics. The consequences of symmetry-induced constraints are examined for some common hyperpolarized NMR experiments, including the excitation of singlet order in spin-pair systems, and the transfer of parahydrogen-induced hyperpolarized singlet order to magnetization in systems displaying chemical and magnetic equivalence.

  1. NMR Studies of Biomass and its Reaction Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass refers to biological material derived from living or recently living organisms, such as wood, agricultural products and wastes, and alcohol fuels. An increasingly popular R&D approach is to convert biomass into industrial polymers or chemicals. NMR is an excellent technique for the character...

  2. Advancements in waste water characterization through NMR spectroscopy: review.

    PubMed

    Alves Filho, Elenilson G; Alexandre e Silva, Lorena M; Ferreira, Antonio G

    2015-09-01

    There are numerous organic pollutants that lead to several types of ecosystem damage and threaten human health. Wastewater treatment plants are responsible for the removal of natural and anthropogenic pollutants from the sewage, and because of this function, they play an important role in the protection of human health and the environment. Nuclear magnetic resonance (NMR) has proven to be a valuable analytical tool as a result of its versatility in characterizing both overall chemical composition as well as individual species in a wide range of mixtures. In addition, NMR can provide physical information (rigidity, dynamics, etc.) as well as permit in depth quantification. Hyphenation with other techniques such as liquid chromatography, solid phase extraction and mass spectrometry creates unprecedented capabilities for the identification of novel and unknown chemical species. Thus, NMR is widely used in the study of different components of wastewater, such as complex organic matter (fulvic and humic acids), sludge and wastewater. This review article summarizes the NMR spectroscopy methods applied in studies of organic pollutants from wastewater to provide an exhaustive review of the literature as well as a guide for readers interested in this topic. PMID:25280056

  3. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-01-01

    The goal of this thesis was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. Because glycolysis is regulated differently in normal and virally transformed CEFs, NMR experiments were performed on both types of cells. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. However, experiments with /sup 32/P labelled P/sub i/ showed that as the concentration of glucose in the medium was increased, the amount of phosphate sequestered in the cells increased. They conclude that there is a pool of P/sub i/ which is not detected by high resolution of NMR and that the size of this pool increases as the rate of glycolysis increases. These effects were found only in cultured cells; the data for transformed and normal cells were similar. Longitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured.

  4. Single bead detection with an NMR microcapillary probe

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshihiro; Boss, Michael; Russek, Stephen E.; Moreland, John

    2012-11-01

    We have developed a nuclear magnetic resonance (NMR) microcapillary probe for the detection of single magnetic microbeads. The geometry of the probe has been optimized so that the signal from the background water has a similar magnitude compared to the signal from the dephased water nearby a single magnetic bead within the probe detector coil. In addition, the RF field of the coil must be uniform within the effective range of the magnetic bead. Three different RF probes were tested in a 7 T (300 MHz) pulsed NMR spectrometer with sample volumes ranging from 5 nL down to 1 nL. The 1 nL probe had a single-shot signal-to-noise ratio (SNR) for pure water of 27 and a volume resolution that exhibits a 600-fold improvement over a conventional (5 mm tube) NMR probe with a sample volume of 18 μL. This allowed for the detection of a 1 μm magnetite/polystyrene bead (m = 2 × 10-14 A m2) with an estimated experimental SNR of 30. Simulations of the NMR spectra for the different coil geometries and positions of the bead within the coil were developed that include the B0 shift near a single bead, the inhomogeneity of the coils, the local coil sensitivity, the skin effect of the coil conductor, and quantitated estimates of the proximity effect between coil windings.

  5. Developments in chlorine detection in concrete using NMR

    NASA Astrophysics Data System (ADS)

    Yun, Andrew H.; Patton, Mark E.; Garrett, James H., Jr.; Fedder, Gary K.; Frederick, Kevin M.; Hsu, Jung-Jiin; Lowe, Irving J.; Oppenheim, Irving J.; Sides, Paul J.

    2002-06-01

    Monitoring chloride concentration and transport in concrete structures susceptible to corrosion of embedded steel reinforcement is a challenge as difficult as it is important. An embedded sensor based on nuclear magnetic resonance (NMR) would be a good solution to the problem because it would make a non-destructive atom-specific measurement of the presence and concentration of chloride. The important question is the scale of the device required to detect the chloride. Laboratory experiments to detect chloride in a cement matrix using pulse-NMR were conducted to assess the potential of this application; they provided a basis for projecting the scale of a device that would have a good chance of success. The coils were cm-scale and the magnetic field was 2.35 T. NMR signals were obtained from both aqueous chloride solution and samples of both regular and white portland cement. The experiments demonstrated that the signal-to-noise ratio (SNR) for a cm-scale cement sample volume is so small, even after averaging, that sample volumes much lower than that are unlikely to produce measurable signals at fields of 1 T or below. Thus the potential for realizing an embedded NMR-based sensor including the magnet is low. Parametric studies identify feasible alternative coil diameters and magnetic field strengths for detecting chloride ion concentrations in hardened concrete.

  6. Adiabatic single scan two-dimensional NMR spectrocopy.

    PubMed

    Pelupessy, Philippe

    2003-10-01

    New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020

  7. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  8. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  9. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  10. International NMR-based environmental metabolomics intercomparison exercise.

    PubMed

    Viant, Mark R; Bearden, Daniel W; Bundy, Jacob G; Burton, Ian W; Collette, Timothy W; Ekman, Drew R; Ezernieks, Vilnis; Karakach, Tobias K; Lin, Ching Yu; Rochfort, Simone; de Ropp, Jeffrey S; Teng, Quincy; Tjeerdema, Ronald S; Walter, John A; Wu, Huifeng

    2009-01-01

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectiveness of 1H NMR metabolomics to generate comparable data sets from environmentally derived samples. It focuses on laboratory practice that follows sample collection and metabolite extraction, specifically the final stages of sample preparation, NMR data collection (500, 600, and 800 MHz), data processing, and multivariate analysis. Seven laboratories have participated from the U.S.A., Canada, U.K., and Australia, generating a total of ten data sets. Phase 1 comprised the analysis of synthetic metabolite mixtures, while Phase 2 investigated European flounder (Platichthys flesus) liver extracts from clean and contaminated sites. Overall, the comparability of data sets from the participating laboratories was good. Principal components analyses (PCA) of the individual data sets yielded ten highly similar scores plots for the synthetic mixtures, with a comparable result for the liver extracts. Furthermore, the same metabolic biomarkers that discriminated fish from clean and contaminated sites were discovered by all the laboratories. PCA of the combined data sets showed excellent clustering of the multiple analyses. These results demonstrate that NMR-based metabolomics can generate data that are sufficiently comparable between laboratories to support its continued evaluation for regulatory environmental studies. PMID:19209610

  11. A Networked NMR Spectrometer: Configuring a Shared Instrument

    ERIC Educational Resources Information Center

    Alonso, David; Mutch, G. William; Wong, Peter; Warren, Steven; Barot, Bal; Kosinski, Jan; Sinton, Mark

    2005-01-01

    A model for a shared nuclear magnetic resonance spectroscopy (NMR) facility between a private university and two local community colleges is presented. The discussion of the components required for the shared facility, modes of data distribution, and overall effect on the curriculum is presented.

  12. Extended hopane derivatives in sediments - Identification by H-1 NMR

    NASA Technical Reports Server (NTRS)

    Taylor, J.; Wardroper, A. M. K.; Maxwell, J. R.

    1980-01-01

    Sedimentary C32 hopanoic acid, one of the most abundant in nature and of probable bacterial origin, has been isolated for the first time as a single component and characterized by H-1 NMR. The 17 alpha H, 21 beta H configuration of the C31 alkane has been similarly confirmed.

  13. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  14. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  15. NMR studies of structure and dynamics in fruit cuticle polyesters.

    PubMed

    Stark, R E; Yan, B; Ray, A K; Chen, Z; Fang, X; Garbow, J R

    2000-05-01

    Cutin and suberin are support polymers involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant organs, and minimizing the deleterious impact of microbial pathogens. Despite the complexity and intractable nature of these plant biopolyesters, their molecular structure and development are amenable to study by suitable solid-state and solution-state NMR techniques. Interactions of tomato cutin with water were examined by solid-state 2H and 13C NMR, showing that water films enhance rapid segmental motions of the acyl chains and are associated with a fivefold increase in surface elasticity upon cutin hydration. The suberization of wounded potato tissues was studied by solid-state 13C NMR, revealing the likely phenylpropanoid structures that permit dense cross-linking of the suberin structure and their proximity to the cell-wall polysaccharides. Finally, two new approaches were developed to elucidate the molecular structures of these biopolymers: partial depolymerization followed by spectroscopic analysis of the soluble oligomers; and swelling of the intact materials followed by magic-angle spinning (MAS) NMR analysis. PMID:10811427

  16. Using NMR to Determine Protein Structure in Solution

    NASA Astrophysics Data System (ADS)

    Cavagnero, Silvia

    2003-02-01

    Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.

  17. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  18. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  19. Protein dynamics and function from solution state NMR spectroscopy.

    PubMed

    Kovermann, Michael; Rogne, Per; Wolf-Watz, Magnus

    2016-01-01

    It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy. PMID:27088887

  20. Single bead detection with an NMR microcapillary probe.

    PubMed

    Nakashima, Yoshihiro; Boss, Michael; Russek, Stephen E; Moreland, John

    2012-11-01

    We have developed a nuclear magnetic resonance (NMR) microcapillary probe for the detection of single magnetic microbeads. The geometry of the probe has been optimized so that the signal from the background water has a similar magnitude compared to the signal from the dephased water nearby a single magnetic bead within the probe detector coil. In addition, the RF field of the coil must be uniform within the effective range of the magnetic bead. Three different RF probes were tested in a 7 T (300 MHz) pulsed NMR spectrometer with sample volumes ranging from 5 nL down to 1 nL. The 1 nL probe had a single-shot signal-to-noise ratio (SNR) for pure water of 27 and a volume resolution that exhibits a 600-fold improvement over a conventional (5 mm tube) NMR probe with a sample volume of 18 ?L. This allowed for the detection of a 1 ?m magnetite/polystyrene bead (m=210(-14)Am(2)) with an estimated experimental SNR of 30. Simulations of the NMR spectra for the different coil geometries and positions of the bead within the coil were developed that include the B(0) shift near a single bead, the inhomogeneity of the coils, the local coil sensitivity, the skin effect of the coil conductor, and quantitated estimates of the proximity effect between coil windings. PMID:23041798

  1. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  2. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  3. ECG gated NMR-CT for cardiovascular diseases

    SciTech Connect

    Nishikawa, J.; Ohtake, T.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.

    1985-05-01

    The authors have been applying ECG gated NMR-CT to mainly patients with myocardial infarction (MI), and hypertrophic cardiomyopathy (HCM). Thirteen patients with MI, 8 with HCM and 5 without any heart diseases were studied by ECG gated NMR imaging (spin-echo technique, TR: depends on patient heart rate, TE: 35 and 70 msec.) with 0.35 T superconducting magnet. On NMR images (MRI), the authors examined the wall thickness, wall motion and T/sub 2/ relaxation time in the area of diseased myocardium. The lesions of old MI were depicted as the area of thin wall and T/sub 2/ relaxation time of those lesions were similar to the area of non-infarcted myocardium. The lesions of recent MI (up to 3.5 months from the recent attack) were shown as the same wall thickness as the non-infarcted myocardium and the area of prolonged T/sub 2/ relaxation time compared with that of non-infarcted myocardium. MRI demonstrated diffusely thick myocardium in all patients with HCM. T/sub 2/ relaxation time of the areas of HCM was almost the same as that of normal myocardium, and it's difference among each ventricular wall in patients with HCM was not statistically significant. The authors conclude that ECG gated NMR-CT offers 3-D morphological information of the heart without any contrast material nor radioisotopes. ECG gated MRI provides the useful informations to diagnose MI, especially in the differential diagnosis between old and recent MI.

  4. Combining NMR and EPR methods for homodimer protein structure determination.

    PubMed

    Yang, Yunhuang; Ramelot, Theresa A; McCarrick, Robert M; Ni, Shuisong; Feldmann, Erik A; Cort, John R; Wang, Huang; Ciccosanti, Colleen; Jiang, Mei; Janjua, Haleema; Acton, Thomas B; Xiao, Rong; Everett, John K; Montelione, Gaetano T; Kennedy, Michael A

    2010-09-01

    There is a general need to develop more powerful and more robust methods for structural characterization of homodimers, homo-oligomers, and multiprotein complexes using solution-state NMR methods. In recent years, there has been increasing emphasis on integrating distinct and complementary methodologies for structure determination of multiprotein complexes. One approach not yet widely used is to obtain intermediate and long-range distance constraints from paramagnetic relaxation enhancements (PRE) and electron paramagnetic resonance (EPR)-based techniques such as double electron electron resonance (DEER), which, when used together, can provide supplemental distance constraints spanning to 10-70 A. In this Communication, we describe integration of PRE and DEER data with conventional solution-state nuclear magnetic resonance (NMR) methods for structure determination of Dsy0195, a homodimer (62 amino acids per monomer) from Desulfitobacterium hafniense. Our results indicate that combination of conventional NMR restraints with only one or a few DEER distance constraints and a small number of PRE constraints is sufficient for the automatic NMR-based structure determination program CYANA to build a network of interchain nuclear Overhauser effect constraints that can be used to accurately define both the homodimer interface and the global homodimer structure. The use of DEER distances as a source of supplemental constraints as described here has virtually no upper molecular weight limit, and utilization of the PRE constraints is limited only by the ability to make accurate assignments of the protein amide proton and nitrogen chemical shifts. PMID:20698532

  5. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  6. Novel Dodecaarylporphyrins: Synthesis and Variable Temperature NMR Studies

    SciTech Connect

    Cancilla, Mark; Lebrilla, Carlito; Ma, Jian-Guo; Medforth, Craig J.; Muzzi, Cinzia M.; Shelnutt, John A.; Smith, Kevin M.; Voss, Lisa

    1999-05-05

    An investigation of the synthesis of novel dodecaarylporphyrins using the Suzuki coupling reaction of arylboronic acids with octabromotetraarylporphyrins is reported. Studies of the dynamic properties of these new porphyrins using variable temperature (VT) 1H NMR spectroscopy and molecular mechanics provide interesting insights into their dynamic properties, including the first determination of {beta} aryl rotation in a porphyrin system.

  7. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  8. Substituent electrophilicities in the NMR spectra of barbituric derivatives.

    PubMed

    Rezende, Marcos Caroli; Almodovar, Iriux

    2012-04-01

    Comparison of the (1) H and (13)  C NMR spectra of a series of substituted 5-benzylidene-N,N'-dimethylbarbituric acids (1) revealed chemical-shift variations of different centers that correlated with the theoretical electrophilicities or with the substituent electrophilic constant σ(ω) , in an example of the usefulness of these DFT-based indices. PMID:22415981

  9. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  10. Structural NMR of Protein Oligomers using Hybrid Methods

    PubMed Central

    Wang, Xu; Lee, Hsiau-Wei; Liu, Yizhou; Prestegard, James H.

    2010-01-01

    Solving structures of native oligomeric protein complexes using traditional high resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice. PMID:21074622

  11. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  12. Visualization of cerebral and vascular abnormalities by NMR imaging. The effects of imaging parameters on contrast

    SciTech Connect

    Crooks, L.E.; Mills, C.M.; Davis, P.L.; Brant-Zawadzki, M.; Hoenninger, J.; Arakawa, M.; Watts, J.; Kaufman, L.

    1982-09-01

    The relationship between data acquisition parameters and contrast in nuclear magnetic resonance (NMR) images was studied. NMR imaging by the pulse echo technique selectively enhanced intracranial abnormalities; imaging by the inversion recovery technique heightened the difference between cerebral gray and white matter. Using a blood flow model, the authors also showed that NMR imaging of flow in major vessels is possible.

  13. A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Keating, Kristina; Auken, Esben

    2015-01-01

    This paper presents a comprehensive review of the recent advances in nuclear magnetic resonance (NMR) measurements for near-surface characterization using laboratory, borehole, and field technologies. During the last decade, NMR has become increasingly popular in near-surface geophysics due to substantial improvements in instrumentation, data processing, forward modeling, inversion, and measurement techniques. This paper starts with a description of the principal theory and applications of NMR. It presents a basic overview of near-surface NMR theory in terms of its physical background and discusses how NMR relaxation times are related to different relaxation processes occurring in porous media. As a next step, the recent and seminal near-surface NMR developments at each scale are discussed, and the limitations and challenges of the measurement are examined. To represent the growth of applications of near-surface NMR, case studies in a variety of different near-surface environments are reviewed and, as examples, two recent case studies are discussed in detail. Finally, this review demonstrates that there is a need for continued research in near-surface NMR and highlights necessary directions for future research. These recommendations include improving the signal-to-noise ratio, reducing the effective measurement dead time, and improving production rate of surface NMR (SNMR), reducing the minimum echo time of borehole NMR (BNMR) measurements, improving petrophysical NMR models of hydraulic conductivity and vadose zone parameters, and understanding the scale dependency of NMR properties.

  14. A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Keating, Kristina; Auken, Esben

    2014-09-01

    This paper presents a comprehensive review of the recent advances in nuclear magnetic resonance (NMR) measurements for near-surface characterization using laboratory, borehole, and field technologies. During the last decade, NMR has become increasingly popular in near-surface geophysics due to substantial improvements in instrumentation, data processing, forward modeling, inversion, and measurement techniques. This paper starts with a description of the principal theory and applications of NMR. It presents a basic overview of near-surface NMR theory in terms of its physical background and discusses how NMR relaxation times are related to different relaxation processes occurring in porous media. As a next step, the recent and seminal near-surface NMR developments at each scale are discussed, and the limitations and challenges of the measurement are examined. To represent the growth of applications of near-surface NMR, case studies in a variety of different near-surface environments are reviewed and, as examples, two recent case studies are discussed in detail. Finally, this review demonstrates that there is a need for continued research in near-surface NMR and highlights necessary directions for future research. These recommendations include improving the signal-to-noise ratio, reducing the effective measurement dead time, and improving production rate of surface NMR (SNMR), reducing the minimum echo time of borehole NMR (BNMR) measurements, improving petrophysical NMR models of hydraulic conductivity and vadose zone parameters, and understanding the scale dependency of NMR properties.

  15. Assignment of NMR data and relative stereochemistry determination of paraconic acid derivatives

    NASA Astrophysics Data System (ADS)

    Rodrigues, Shirley Muniz Machado; Nardini, Viviani; Moral, Raphael Fernando; Constantino, Mauricio Gomes; da Silva, Gil Valdo José

    2013-12-01

    γ-Butyrolactones 4a1, 4a2, 4b1 and 4b2 were carefully studied through NMR experiments. 1H NMR, 13C {1H} NMR, COSY, HMQC, HMBC and J-res experiments were performed to provide the needed structure information. NOE between protons distributed around the stereocenters were thus used to determine the relative configuration of the molecules.

  16. QUANTITATIVE SOLID-STATE 13C NMR SPECTROSCOPY OF ORGANIC MATTER FRACTIONS IN LOWLAND RICE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spin counting on solid-state **13C cross-polarization (CP) nuclear magnetic resonance (NMR) spectra of two humic fractions isolated from tropical lowland soils showed that only 32-81% of potential **13C NMR signal was detected. The observability of **13C NMR signal (Cobs) was higher in the mobile h...

  17. Field Experiment Provides Ground Truth for Surface NMR Measurement

    NASA Astrophysics Data System (ADS)

    Knight, R. J.; Abraham, J. D.; Cannia, J. C.; Dlubac, K. I.; Grau, B.; Grunewald, E. D.; Irons, T.; Song, Y.; Walsh, D.

    2010-12-01

    Effective and sustainable long-term management of fresh water resources requires accurate information about the availability of water in groundwater aquifers. Proton Nuclear Magnetic Resonance (NMR) can provide a direct link to the presence of water in the pore space of geological materials through the detection of the nuclear magnetization of the hydrogen nuclei (protons) in the pore water. Of interest for groundwater applications is the measurement of the proton-NMR relaxation time constant, referred to as T2. This parameter is sensitive to the geometry of the water-filled pore space and can be related to the hydraulic conductivity. NMR logging instruments, which have been available since the 1980’s, provide direct measurements of T2 in boreholes. Surface NMR (SNMR) is a non-invasive geophysical method that uses a loop of wire on the surface to probe the NMR properties of groundwater aquifers to a depth of ~100 m, without the need for the drilling of boreholes. SNMR provides reliable measurements of a different NMR time constant referred to as T2*, that is related to, but not necessarily equivalent to, T2. The relationship between T2* and T2 is likely to depend upon the physical environment and the composition of the sampled material. In order to advance the use of SNMR as a non-invasive means of characterizing groundwater aquifers, we must answer the fundamental question: When probing a groundwater aquifer, what information is provided by T2*, the time constant measured with SNMR? Our approach was to conduct a field experiment in Nebraska, in an area underlain by the Quaternary Alluvium and Tertiary Ogallala aquifers. We first used SNMR to obtain a 1D profile of T2* to a depth of ~60 m. We then drilled a well inside the area of the SNMR loop, to a depth of ~150 m, and used the drill cuttings to describe the composition of the geologic material at the site. The borehole was kept open for 2 days to acquire logging NMR T2 measurements over the total depth. Three months later, borehole NMR T2 measurements were repeated with a second instrument; and logging measurements were made of the ambient magnetic field. Comparison of the three measurements of NMR relaxation show that T2* at this site is affected by inhomogeneity in the background magnetic field; this effect is most pronounced in sand and gravel units where dephasing, rather than surface relaxation, dominates the NMR response. When the borehole T2 measurements are transformed to T2*, by incorporating a term to account for this effect, we find good agreement between the two forms of measurement over the investigated depth range. The ability to ground truth the SNMR measurement has advanced our understanding of the time constant measured by SNMR, T2*, and its relationship to pore-scale properties. This is a critical step in developing SNMR as a reliable geophysical method for evaluation of groundwater resources.

  18. Overhauser Dynamic Nuclear Polarization-Enhanced NMR Relaxometry

    PubMed Central

    Franck, John M.; Kausik, Ravinath; Han, Songi

    2013-01-01

    We present a new methodological basis for selectively illuminating a dilute population of fluid within a porous medium. Specifically, transport in porous materials can be analyzed by now-standard nuclear magnetic resonance (NMR) relaxometry and NMR pulsed field gradient (PFG) diffusometry methods in combination with with the prominent NMR signal amplification tool, dynamic nuclear polarization (DNP). The key components of the approach introduced here are (1) to selectively place intrinsic or extrinsic paramagnetic probes at the site or local volume of interest within the sample, (2) to amplify the signal from the local solvent around the paramagnetic probes with Overhauser DNP, which is performed in situ and under ambient conditions, and (3) to observe the ODNP-enhanced solvent signal with 1D or 2D NMR relaxometry methods, thus selectively amplifying only the relaxation dynamics of the fluid that resides in or percolates through the local porous volume that contains the paramagnetic probe. Here, we demonstrate the proof of principle of this approach by selectively amplifying the NMR signal of only one solvent population, which is in contact with a paramagnetic probe and occluded from a second solvent population. An apparent one-component T2 relaxation decay is shown to actually contain two distinct solvent populations. The approach outlined here should be universally applicable to a wide range of other 1D and 2D relaxometry and PFG diffusometry measurements, including T1–T2 or T1-D correlation maps, where the occluded population containing the paramagnetic probes can be selectively amplified for its enhanced characterization. PMID:23837010

  19. The NQR and NMR studies of icosahedral borides

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Bray, Philip J.; Aselage, Terry L.

    1999-06-01

    Boron NMR and NQR studies have been performed on three icosahedral borides: icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/>- and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>-rhombohedral boron and boron carbide (B12C3). Two 11B NMR peaks, separated by significant chemical shifts in the range from 130 ppm to 280 ppm, were clearly observed for all of the icosahedral borides that were not enriched in the 10B isotope. A single peak, however, was found for the 10B enriched boron carbide powder (90.6 at.% enrichment.) Moreover, the peak separation in the 11B NMR spectrum for the unenriched icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>-boron was reduced when the sample was crushed into a fine powder. In addition to NMR responses, four strong NQR responses were observed for boron carbides from different manufacturers. Two resonance signals, observed at 513 kHz and 2769 kHz, correspond to one of the icosahedral boron sites and the boron in the CBC chain, respectively. The other two NQR responses, having frequencies of 361 and 380 kHz, are either 10B responses for the chain site or 11B responses for the other boron sites in the icosahedra. The NQR responses are not only consistent with the previous NMR studies performed independently by Silver and Bray (1959 J. Chem. Phys. 31 247) and by Hynes and Alexander (1971 J. Chem. Phys. 54 5296, 1972 J. Chem. Phys. Erratum 56), but also provide much higher accuracy for the values of the quadrupolar parameters.

  20. SPE-NMR metabolite sub-profiling of urine.

    PubMed

    Jacobs, Doris M; Spiesser, Laura; Garnier, Maxime; de Roo, Niels; van Dorsten, Ferdi; Hollebrands, Boudewijn; van Velzen, Ewoud; Draijer, Richard; van Duynhoven, John

    2012-11-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has been developed using automated solid-phase extraction (SPE) combined with NMR metabolite profiling. SPE-NMR of urine resulted in three fractions with complementary and reproducible sub-profiles. The sub-profile from the wash fraction (100 % water) contained polar metabolites; that from the first eluted fraction (10 % methanol-90 % water) semi-polar metabolites; and that from the second eluted fraction (100 % methanol) aromatic metabolites. The method was validated by analysis of urine samples collected from a crossover human nutritional intervention trial in which healthy volunteers consumed capsules containing a polyphenol-rich mixture of red wine and grape juice extract (WGM), the same polyphenol mixture dissolved in a soy drink (WGM_Soy), or a placebo (PLA), over a period of five days. Consumption of WGM clearly increased urinary excretion of 4-hydroxyhippuric acid, hippuric acid, 3-hydroxyphenylacetic acid, homovanillic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropionic acid. However, there was no difference between the excreted amounts of these metabolites after consumption of WGM or WGM_Soy, indicating that the soy drink is a suitable carrier for WGM polyphenols. Interestingly, WGM_Soy induced a significant increase in excretion of cis-aconitate compared with WGM and PLA, suggesting a higher demand on the tricarboxylic acid cycle. In conclusion, SPE-NMR metabolite sub-profiling is a reliable and improved method for quantification and identification of metabolites in urine to discover dietary effects and markers of phytochemical exposure. PMID:22932811