Science.gov

Sample records for lanthanides separation preparacion

  1. Investigation of Gravity Lanthanide Separation Chemistry

    SciTech Connect

    Payne, Rosara F.; Schulte, Shannon M.; Douglas, Matthew; Friese, Judah I.; Farmer, Orville T.; Finn, Erin C.

    2011-03-01

    Lanthanides are common fission products and the ability to separate and quantify these elements is critical to rapid radiochemistry applications. Published lanthanide separations using Eichrom Ln Spec resin utilize an HCl gradient. Here it is shown that the efficacy and resolution of the separation is improved when a nitric acid gradient is used instead. The described method allows parallel processing of many samples in 1.5 hours followed by 60 minute counting for quantification of 9 isotopes of 7 lanthanide elements.

  2. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  3. Separation of actinides from lanthanides

    DOEpatents

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  4. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  5. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  6. The Actinide-Lanthanide Separation Process

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Carter, Jennifer C.; Niver, Cynthia M.; Smoot, Margaret R.

    2014-02-21

    The Actinide-Lanthanide SEParation (ALSEP) process is described. The process uses an extractant phase consisting of either N,N,N',N'-tetraoctyldiglycolamide (TODGA) or N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). The neutral TODGA or T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid media. Switching the aqueous phase chemistry to a citrate buffered diethylenetriaminepentaacetic acid (DTPA) solution at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus resulting in separation of these two groups of elements.

  7. Actinide and lanthanide separation process (ALSEP)

    SciTech Connect

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  8. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    SciTech Connect

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  9. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  10. Plasma mass filtering for separation of actinides from lanthanides

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Fisch, N. J.

    2014-06-01

    Separating lanthanides from actinides is a key process in reprocessing nuclear spent fuel. Plasma mass filters, which operate on dissociated elements, offer conceptual advantages for such a task as compared with conventional chemical methods. The capabilities of a specific plasma mass filter concept, called the magnetic centrifugal mass filter, are analyzed within this particular context. Numerical simulations indicate separation of americium ions from a mixture of lanthanides ions for plasma densities of the order of 1012 cm-3, and ion temperatures of about 10 eV. In light of collision considerations, separating small fractions of heavy elements from a larger volume of lighter ones is shown to enhance the separation capabilities.

  11. Development of the Actinide-Lanthanide Separation (ALSEP) Process

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2014-09-30

    Separating the minor actinide elements (Am and Cm) from acidic high-level raffinates arising from the reprocessing of irradiated nuclear fuel is an important step in closing the nuclear fuel cycle. Most proposed approaches to this problem involve two solvent extraction steps: 1) co-extraction of the trivalent lanthanides and actinides, followed by 2) separation of the actinides from the lanthanides. The objective of our work is to develop a single solvent-extraction process for isolating the minor actinide elements. We report here a solvent containing N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) that can be used to separate the minor actinides in a single solvent-extraction process. T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid solution. Switching the aqueous phase chemistry to a citrate buffered solution of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus affecting separation of the actinides from the lanthanides. Separation factors between the lanthanides and actinides are approximately 20 in the pH range of 3 to 4, and the distribution ratios are not highly dependent on the pH in this system.

  12. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  13. Advancing the scientific basis of trivalent actinide-lanthanide separations

    SciTech Connect

    Nash, K.L.

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  14. A TRUEX-based separation of americium from the lanthanides

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt; Mary E. Case

    2011-03-01

    Abstract: The inextractability of the actinide AnO2+ ions in the TRUEX process suggests the possibility of a separation of americium from the lanthanides using oxidation to Am(V). The only current method for the direct oxidation of americium to Am(V) in strongly acidic media is with sodium bismuthate. We prepared Am(V) over a wide range of nitric acid concentrations and investigated its solvent extraction behavior for comparison to europium. While a separation is achievable in principal, the presence of macro amounts of cerium competes for the sparingly soluble oxidant and the oxidant itself competes for CMPO complexation. These factors conspire to reduce the Eu/Am separation factor from ~40 using tracer solutions to ~5 for extractions from first cycle raffinate simulant solution. To separate pentavalent americium directly from the lanthanides using the TRUEX process, an alternative oxidizing agent will be necessary.

  15. Citrate based ``TALSPEAK`` lanthanide-actinide separation process

    SciTech Connect

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

  16. Dynamic tests for actinide/lanthanide separation by CMPO solvent in fluorinated diluents

    SciTech Connect

    Tkachenko, L.; Babain, V.; Alyapyshev, M.; Vizniy, A.; Il'in, A.; Shadrin, A.

    2013-07-01

    Actinide and lanthanide extraction by new solvent: 0.2 M phenyl-octyl-N,N-diiso-butylcarbamoyl-phosphine oxide (CMPO) + 30% TBP + formal of octafluoro-pentanol was studied. A dynamic test with this solvent was performed. It was shown that americium and lanthanides are effectively extracted from PUREX process raffinate. The separation of americium from light lanthanides was confirmed in the modified SETFICS flowsheet with this new solvent. (authors)

  17. Size-selective crystallization of homochiral camphorate metal-organic frameworks for lanthanide separation.

    PubMed

    Zhao, Xiang; Wong, Matthew; Mao, Chengyu; Trieu, Thuong Xinh; Zhang, Jian; Feng, Pingyun; Bu, Xianhui

    2014-09-10

    Lanthanides (Ln) are a group of important elements usually found in nature as mixtures. Their separation is essential for technological applications but is made challenging by their subtly different properties. Here we report that crystallization of homochiral camphorate metal-organic frameworks (MOFs) is highly sensitive to ionic radii of lanthanides and can be used to selectively crystallize a lanthanide element into predesigned MOFs. Two series of camphorate MOFs were synthesized with acetate (Type 1 with early lanthanides La-Dy) or formate (Type 2 with late lanthanides Tb-Lu and Y) as the auxiliary ligand, respectively. The Ln coordination environment in each type exhibits selectivity for Ln(3+) of different sizes, which could form the basis for a new cost-effective method for Ln separation. PMID:25164942

  18. Ligand-assisted elution chromatography for separation of lanthanides.

    PubMed

    Ling, Lei; Wang, Nien-Hwa Linda

    2015-04-10

    Lanthanides (Ln's) are the major components of rare earth elements, which are critical components of many high-value products. The ions of adjacent Ln's have the same valence and very similar ionic radii. They cannot be separated using conventional adsorption or ion exchange processes. Current production of high-purity Ln's is based on multiple sequential and parallel solvent extraction processes, which require large amounts of toxic solvents and result in serious negative impact on the environment. In this study, a ligand-assisted elution chromatography process for the separation of Ln's was developed for the first time for titania, which is a robust and inexpensive inorganic sorbent. A selective ligand for Ln's, ethylenediaminetetraacetic acid (EDTA), was found to adsorb on the sorbent. The adsorbed EDTA became strong adsorption sites for the Ln's. Desorption of Ln's was driven by reversible reactions of Ln's with EDTA in the mobile phase. The overall sorbent selectivity for the reaction and adsorption process was approximately equal to the ratio of the sorbent selectivity to the ligand selectivity. The separation mechanisms were tested and verified using rate model simulations and experimental data for the separation of praseodymium (Pr), neodymium (Nd), and samarium (Sm). Simulations based on the model were used to design efficient linear gradient elution and stepwise elution processes. The purity and yield of all three Ln's were found to be above 95% in the designed processes. Stepwise elution can be implemented in a continuous process for increasing sorbent productivity and reducing costs for large-scale separation. Ligand assisted elution processes are much simpler and more environmentally friendly than the conventional solvent extraction processes. PMID:25746756

  19. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  20. Pilot-Scale TRUEX Flowsheet Testing for Separation of Actinides and Lanthanides from Used Nuclear Fuel

    SciTech Connect

    Jack D. Law; Troy G. Garn; David H. Meikrantz; Jamie Warburton

    2010-01-01

    Advanced aqueous separation processes are being developed for the recycling of used nuclear fuel as part of the U.S. Department of Energy Nuclear Energy Advanced Fuel Cycle Initiative. The Transuranic Extraction (TRUEX) Process is being developed as part of these advanced separations processes for the separation of actinides and lanthanides from the used nuclear fuel. Testing of a TRUEX flowsheet has been performed using a thirty stage, 5-cm centrifugal contactor pilot plant. This testing was performed using a non-radioactive feed surrogate and data were collected and analyzed to evaluate removal efficiencies of the lanthanides, mass transfer efficiency of the lanthanides in the extraction and strip sections of the flowsheet, and the temperature profile of the process solutions throughout the centrifugal contactor pilot plant. Results indicate >99.9% separation for all lanthanides and mass transfer efficiencies typically ranging from 85% to 100%. Solution temperatures for each contactor stage, as well as general process performance, are also described.

  1. The TRUSPEAK Concept: Combining CMPO and HDEHP for Separating Trivalent Lanthanides from the Transuranic Elements

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Braley, Jenifer C.; Carter, Jennifer C.; Pittman, Jonathan W.; Warner, Marvin G.; Vandegrift, George F.

    2013-04-08

    Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl-phosphine oxide (CMPO) and bis-(2-ethylhexyl) phosphoric acid (HDEHP) into a single process solvent for separating transuranic elements from liquid high-level waste is explored. Co-extraction of americium and the lanthanide elements from nitric acid solution is possible with a solvent mixture consisting of 0.1-M CMPO plus 1-M HDEHP in n-dodecane. Switching the aqueous-phase chemistry to a citrate-buffered solution of diethylene triamine pentaacetic acid (DTPA) allows for selective stripping of americium, separating it from the lanthanide elements. Potential strategies for managing molybdenum and zirconium (both of which co-extract with americium and the lanthanides) have been developed. The work presented here demonstrates the feasibility of combining CMPO and HDEHP into a single extraction solvent for recovering americium from high-level waste and its separation from the lanthanides.

  2. Lanthanide speciation in potential SANEX and GANEX actinide/lanthanide separations using tetra-N-donor extractants.

    PubMed

    Whittaker, Daniel M; Griffiths, Tamara L; Helliwell, Madeleine; Swinburne, Adam N; Natrajan, Louise S; Lewis, Frank W; Harwood, Laurence M; Parry, Stephen A; Sharrad, Clint A

    2013-04-01

    Lanthanide(III) complexes with N-donor extractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr(3+), Eu(3+), Tb(3+), and Yb(3+) complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and the Pr(3+), Eu(3+), and Tb(3+) complexes of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two of the tetra-N-donor ligands to each Ln(3+) ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln(3+)/L(N4-donor) species (Ln = Pr(3+), Eu(3+), Tb(3+)) in methanol when the N-donor ligand was in excess. When the Ln(3+) ion was in excess, evidence for formation of a 1:1 Ln(3+)/L(N4-donor) complex species was observed. Luminescent lifetime studies of mixtures of Eu(3+) with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu(3+) and Tb(3+) species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption

  3. Trivalent actinide and lanthanide separations using tetraalkyldiglycolamides (TCnDGA) in molecular and ionic liquid diluents

    SciTech Connect

    Bruce J. Mincher; Robert V. Fox; Mary E. Mincher; Chien M. Wai

    2014-09-01

    The use of the diglycolamide, tetrabutyldiglycolamide was investigated for intergroup separations of the lanthanides, focusing especially on those lanthanides (Y, Ce, Eu, Tb, Dy, Er, and Yb) found in lighting phosphors. Tetrabutyldiglycolamide extraction efficiency for the lanthanides varied depending on whether the diluent was the conventional molecular diluent 1-octanol, the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide, or a mixture of the two. This was attributed to extraction of either neutral, cationic or anionic lanthanide metal complexes with nitrate ion. Based on the batch contact solvent extraction results measured here, a series of extractions providing product streams containing separated Y, Ce, Eu, Tb/Dy, and Er/Yb are proposed.

  4. SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION

    DOEpatents

    Peppard, D.F.; Horwitz, E.P.; Mason, G.W.

    1963-02-12

    This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)

  5. Citrate-based {open_quotes}Talspeak{close_quotes} actinide-lanthanide separation process

    SciTech Connect

    Del Cul, G.D.; Toth, L.M.; Bond, W.D.

    1997-01-01

    Lanthanide elements are produced in relatively high yield by fission of {sup 235}U. Almost all the lanthanide isotopes decay to stable nonradioactive lanthanide isotopes in a relatively short time. Consequently, it is highly advantageous to separate the relatively small actinide fraction from the relatively large quantities of lanthanide isotopes. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. Previous work based on the use of lactic or glycolic acid has shown deleterious effects of some impurity ions such as zirconium(IV), even at concentrations on the order of 10{sup {minus}4} M. Other perceived problems were the need to maintain the pH and reagent concentrations within a narrow range and a significant solubility of the organic phase at high carboxylic acid concentrations. The authors` cold experiments showed that replacing the traditional extractants glycolic or lactic acid with citric acid eliminates or greatly reduces the deleterious effects produced by impurities such as zirconium. An extensive series of batch tests was done using a wide range of reagent concentrations at different pH values, temperatures, and contact times. The results demonstrated that the citrate-based TALSPEAK can tolerate appreciable changes in pH and reagent concentrations while maintaining an adequate lanthanide extraction. Experiments using a three-stage glass mixer-settler showed a good lanthanide extraction, appropriate phase disengagement, no appreciable deleterious effects due to the presence of impurities such as zirconium, excellent pH buffering, and no significant loss of organic phase.

  6. Separation of Lanthanide Ions with Kläui Ligand Resin

    SciTech Connect

    Granger, Trinity D.; Henry, Victoria A.; Latesky, Stanley

    2007-07-01

    Separation and pre-concentration of the desired analyte is often a critical step in many radioanalytical methods. Current procedures for separating and concentrating analytes for detection are complex, and can be both expensive and time consuming. Therefore, the purpose of this research is to develop an alternative method of separating lanthanide ions through the use of an extraction chromatography resin containing a Klaui ligand salt. This research is a continuation of a concerted effort to develop new methods of detecting small concentrations of radionuclides and lanthanides using Klaui ligands. The Klaui ligands, C5Me5Co(OP(OR)2)3- (R=Me, Et, n-Pr) (LOR-), have unique affinity for lanthanide and actinide ions in the presence of competing metal ions. The use of 1 wt% NaLOR (R=Et or n-Pr) adsorbed onto resin support has been shown to extract lanthanide ions from aqueous nitric acid solutions of different concentrations. In order to further evaluate the utility of these materials in radiochemical separation, the selectivity of the resins for the different lanthanide ions was examined by measuring the distribution coefficients (Kd) for a series of lanthanides over a range of solution conditions. Based on prior research with actinide ions, it was hypothesized that the lanthanide ions would bond strongly with the Klaui ligands. The success of this research is important, because it will assist in expanding and improving current automated radiochemical methods, which will decrease the cost of developing and implementing radiochemical methods. To date, Kd values have been determined for Eu+3, Nd+3 and Pr+3 under varying nitric acid (HNO3) concentration, using a resin consisting of 1.0 wt% NaLOPr on Amberlite XAD-7HP. The dependence of the Kd values for Eu+3 has also been examined as a function of the ligand-to-europium ratio and the nitrate concentration. Decreasing Kd values were obtained upon increasing the nitric acid concentration, indicating protonation of the

  7. Solid-liquid separation of oxidized americium from fission product lanthanides

    NASA Astrophysics Data System (ADS)

    Shehee, T. C.; Martin, L. R.; Nash, K. L.

    2010-03-01

    The separation of americium from the lanthanides and curium is a requirement if transmutation of americium is to be performed in advanced nuclear fuel cycles. Oxidation of Am3+ to AmO2+ or AmO22+ may allow separation of Am from Ln and Cm in one step, since the lanthanides and curium do not have higher oxidation states as accessible. Two possible solid-liquid separation methods have been developed to address this difficult separation. Under acidic conditions using oxone or persulfate, the oxidation and retention of tracer Am in the aqueous phase has been observed with a separation factor of 11 ± 1. Most of these studies have been conducted using 237NpO2(NO3), 233UO2(NO3)2, 238Pu(NO3)4 and 241Am(NO3)3 at radiotracer concentrations. Lanthanides precipitate as the sodium or potassium europium double sulfate salt. Under basic conditions, ozone oxidation of Am(CO3)OH(s) solubilizes Am from a lanthanide carbonate hydroxide solid phase to the aqueous phase as the AmO2(CO3)34-or AmO2(CO3)35- species. For the ozone oxidation of the americium tracer a separation factor of 1.6 ± 0.8 and 47 ± 2 for the oxidation/separation in Na2CO3 and NaHCO3 respectively.

  8. Separation of Trivalent Actinides from Lanthanides in an Acetate Buffer Solution Using Cyanex 301

    SciTech Connect

    Jack D. Law; Dean R. Peterman; Terry A. Todd; Richard D. Tillotson

    2006-05-01

    The separation of trivalent actinides from the lanthanides using the active extractant in the Cyanex 301 reagent, bis(2,4,4-trimethylpentyl)dithiophosphinic acid, was studied. Specifically, the extractant was studied for an ammonium acetate/acetic acid buffered feed that would result from a transuranic separation process utilizing an ammonium acetate strip solution. Separation factors of 241Am from 154Eu with this extractant, as a function of total acetate concentration and pH, have been measured. Additionally, the extraction behavior of stable La, Ce, Pr, Nd, Sm, and Eu was measured. Separation factors were typically very high for Am from Eu at a pH ranging from 3.8 to 5.8 and a total acetate concentration ranging from 0.2 M to 1.0 M. However, separation factors across the lanthanide series varied considerably and resulted in separation of the lighter lanthanides from the heavier lanthanides at the higher pH’s.

  9. Improved separation of Am(III) from the light lanthanides using a soft-donor synergist

    SciTech Connect

    Ensor, Dale D.; Zimmerman, Matthew H.

    2008-07-01

    The separation of minor actinides from fission products, especially the trivalent lanthanides, remains a difficult problem. Current research has focused on the use of soft-donor groups that have a greater affinity for the trivalent actinides than for the lanthanides. The extractant bis(chlorophenyl)dithio-phosphinic acid was used in combination with a synergist, 4,7-diphenyl- 1,10-phenanthroline, to extract Am(III) and Eu(III) from aqueous nitrate media. The extraction efficiencies of Am(III) and Eu(III) were measured by varying the total ionic strength and concentrations of the extractant, synergist, and nitric acid. Results suggest that this synergistic system may be useful for group separation of the minor actinides from the lanthanides. (authors)

  10. Method for forming an extraction agent for the separation of actinides from lanthanides

    DOEpatents

    Klaehn, John R.; Harrup, Mason K.; Law, Jack D.; Peterman, Dean R.

    2010-04-27

    An extraction agent for the separation of trivalent actinides from lanthanides in an acidic media and a method for forming same are described, and wherein the methodology produces a stable regiospecific and/or stereospecific dithiophosphinic acid that can operate in an acidic media having a pH of less than about 7.

  11. Design and synthesis of chelating diamide sorbents for the separation of lanthanides

    SciTech Connect

    Fryxell, Glen E.; Chouyyok, Wilaiwan; Rutledge, Ryan D.

    2011-06-01

    A nanoporous sorbent designed around chelating iminodiacetamide (“IDA-Amide”) moiety was made on mesoporous silica (MCM-41) and evaluated for lanthanide separations (Ce3+, Nd3+, Eu3+, Gd3+, and Lu3+). The effects of solution pH on lanthanide binding were studied, as well as sorption kinetics, and competition from other metal ions. The IDA-Amide SAMMS® demonstrated an interesting difference in the kinetics of sorption of the lanthanide ions in the order of Lu3+ > Eu3+ > Gd3+ > Nd3+ > Ce3+ . The close proximity of the ligands in the IDA-Amide SAMMS® may allow for multiple metal-ligand interactions (“macromolecular chelation”).

  12. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    SciTech Connect

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    2014-05-01

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successful separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.

  13. Solvent systems combining neutral and acidic extractants for separating trivalent lanthanides from the transuranic elements.

    SciTech Connect

    Lumetta, G. J.; Gelis, A. V.; Vandegrift, G. F.; Chemical Sciences and Engineering Division; PNL

    2010-01-01

    This paper is a review of recent publications that have focused on combined extractant systems for separating trivalent actinides from the lanthanides. These mixed solvent systems combine an acidic extractant with a neutral extractant to achieve the actinide/lanthanide separation. Depending on the neutral extractant used, three categorizations of systems can be considered, including combinations of acidic extractants with 1 diamides, 2 carbamoylmethylphosphine oxides, and 3 polydentate nitrogen-donor ligands. This review of relevant publications indicates that, although there is significant potential for practical exploitation of mixed neutral/acidic extractant systems to achieve a single-step separation of trivalent actinides from acidic high-level waste solutions, the fundamental chemistry underlying these combined systems is not yet well understood. For example, although there is strong evidence suggesting that adducts form between the neutral and acidic extractants, the nature of these adducts generally is not known. Likewise, the structures of the mixed complexes formed between the metal ions and the two different extractants are not fully understood. Research into these basic phenomena likely will provide clues about how to design practical mixed-extractant systems that can be used to efficiently separate the transuranic elements from the lanthanides and other components of irradiated fuel.

  14. Solvent Systems Combining Neutral and Acidic Extractants for Separating Trivalent Lanthanides from the Transuranic Elements

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Vandegrift, George F.

    2010-04-23

    This paper is a review of recent publications that have focused on combined extractant systems for separating trivalent actinides from the lanthanides. These mixed solvent systems combine an acidic extractant with a neutral extractant to achieve the actinide/lanthanide separation. Depending on the neutral extractant used, three categorizations of systems can be considered, including combinations of acidic extractants with 1) diamides, 2) carbamoylmethylphosphine oxides, and 3) polydentate nitrogen-donor ligands. This review of relevant publications indicates that, although there is significant potential for practical exploitation of mixed neutral/acidic extractant systems to achieve a single-step separation of trivalent actinides from acidic high-level waste solutions, the fundamental chemistry underlying these combined systems is not yet well understood. For example, although there is strong evidence suggesting that adducts form between the neutral and acidic extractants, the nature of these adducts generally is not known. Likewise, the structures of the mixed complexes formed between the metal ions and the two different extactants are not fully understood. Research into these basic phenomena likely will provide clues about how to design practical mixed-extractant systems that can be used to efficiently separate the transuranic elements from the lanthanides and other components of irradiated fuel.

  15. Actinide-lanthanide separation with solvents on the base of amides of heterocyclic diacids

    SciTech Connect

    Babain, V.A.; Alyapyshev, M.Y.; Tkachenko, L.I.

    2013-07-01

    The separation of actinides from lanthanides with a particular emphasis on Am(III) from Eu(III) with amides of heterocyclic dicarboxylic diacids was reviewed. It was shown that the di-amides of the 2,2'-dipyridyl-6,6'-dicarboxylic acid are the most promising ligands for the simultaneous selective recovery of actinides from HLLW (high level radioactive liquid waste) within the GANEX concept. (author)

  16. Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography

    SciTech Connect

    Harvey, Scott D.; Lucke, Richard B.; Douglas, Matt

    2012-09-04

    Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanide derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Finally, extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).

  17. Radiolytic Degradation in Lanthanide/Actinide Separation Ligands–NOPOPO: Radical Kinetics and Efficiencies Determinations

    SciTech Connect

    Katy L. Swancutt; Stephen P. Mezyk; Richard D. Tillotson; Sylvie Pailloux; Manab Chakravarty; Robert T. Paine; Leigh R. Martin

    2011-07-01

    Trivalent lanthanide/actinide separations from used nuclear fuel occurs in the presence radiation fields that degrades the extraction ligands and solvents. Here we have investigated the stability of a new ligand for lanthanide/actinide separation; 2,6-bis[(di(2-ethylhexyl)phosphino)methyl] pyridine N,P,P-trioxide, TEH(NOPOPO). The impact of {gamma}-radiolysis on the distribution ratios for actinide (Am) and Lanthanide (Eu) extraction both in the presence and absence of an acidic aqueous phase by TEH(NOPOPO) was determined. Corresponding reaction rate constants for the two major radicals, hydroxyl and nitrate, were determined for TEH(NOPOPO) in the aqueous phase, with room temperature values of (3.49 {+-} 0.10) x 10{sup 9} and (1.95 {+-} 0.15) x 10{sup 8} M{sup -1} s{sup -1}, respectively. The activation energy for this reaction was found to be 30.2 {+-} 4.1 kJ mol{sup -1}. Rate constants for two analogues (2-methylphosphonic acid pyridine N,P-dioxide and 2,6-bis(methylphosphonic acid) pyridine N,P,P-trioxide) were also determined to assist in determining the major reaction pathways.

  18. Separation of Trivalent Actinides from Lanthanides Using a Capillary Electrophoresis

    SciTech Connect

    Mori, Tomotaka; Ishii, Yasuo; Hayashi, Kazunori; Suganuma, Hideo; Satoh, Isamu

    2007-07-01

    A separation of {sup 241}Am(III) from {sup 152,154}Eu(III) was carried out using a capillary electrophoresis technique in a mixed solvent (CH{sub 3}OH/H{sub 2}O) system containing thiocyanate ion. First, the formation constants ({beta}{sub n}) between thiocyanate ion and Eu(III) or Am(III) were investigated in the mixed solvent solutions by a back-extraction technique using bis (2-ethylhexyl) hydrogen phosphate-toluene. The mean charges calculated on the basis of the data of {beta}{sub n} for Eu(III) were comparatively higher than those for Am(III). Based on the differences between the mean charges of Eu(III) and Am(III), separations for Am(III)/Eu(III) by means of capillary electrophoresis technique were tried in the (H{sup +}, Na{sup +})(SCN{sup -}, ClO{sub 4}{sup -}) mixed solvent solutions. It was proved that Am(III) was completely separated from Eu(III). (authors)

  19. Thermodynamic Studies to Support Actinide/Lanthanide Separations

    SciTech Connect

    Rao, Linfeng

    2015-09-01

    This milestone report summarizes the data obtained in FY15 on the complexation of HEDTA with Np(V) and U(VI) in a temperature range from 25 to 70°C. The results show the effect of temperature on the chemical speciation of Np(V) and U(VI) in the modified TALSPEAK Process, and help to evaluate the effectiveness of the process when the operation envelope (e.g., temperature) varies. Eventually, the results from this study will help to achieve a better control of the separation process based on the HEDTA/HEH[EHP] combination.

  20. Development and Testing of an Americium/Lanthanide Separation Flowsheet Using Sodium Bismuthate

    SciTech Connect

    Jack Law; Bruce Mincher; Troy Garn; Mitchell Greenhalgh; Nicholas Schmitt; Veronica Rutledge

    2014-04-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term heat load of material interred in a future high-level waste repository. A separation process amenable to process scale-up remains elusive. Given only subtle chemistry differences within and between the ions of the trivalent actinide and lanthanide series this separation is challenging ; however, higher oxidation states of americium can be prepared using sodium bismuthate and separated via solvent extraction using diamylamylphosphonate (DAAP) extraction. Among the other trivalent metals only Ce is also oxidized and extracted. Due to the long-term instability of Am(VI) , the loaded organic phase is readily selectively stripped to partition the actinide to a new acidic aqueous phase. Batch extraction distribution ratio measurements were used to design a flowsheet to accomplish this separation. Additionally, crossflow filtration was investigated as a method to filter the bismuthate solids from the feed solution prior to extraction. Results of the filtration studies, flowsheet development work and flowsheet performance testing using a centrifugal contactor are detailed.

  1. Evaluation of tertiary pyridine resin for the separation of lanthanides by simulated moving-bed chromatography.

    PubMed

    Sreedhar, Balamurali; Suzuki, Tatsuya; Hobbs, David T; Kawajiri, Yoshiaki

    2014-10-01

    Lanthanide separation by simulated moving-bed chromatography was studied as a model system for separating lanthanide fission products and minor actinides from used nuclear fuels. The simulated moving-bed system was modeled for a tertiary pyridine anion-exchange resin supported on silica particles as the stationary phase and a mixture of methanol and 1 M nitric acid as the mobile phase. Pulse injection tests using a single packed column were used to obtain chromatographic parameters for mathematical modeling of the simulated moving-bed system. Higher concentrations of methanol improved the separation, but the chromatograms showed evidence of nonlinearity of the isotherms. The mathematical model of the simulated moving-bed process predicted a production rate of purified samarium and neodymium at 118 g solute/L resin/day and a purity of 99.5%. The optimal methanol ratio for the production rate for various product purities was determined from the model. The excellent separation of Nd and Sm suggests that the simulated moving-bed system could be applied to the separation of minor actinides such as americium and curium. PMID:25088396

  2. Combining CMPO and HEH[EHP] for Separating Trivalent Lanthanides from the Transuranic Elements

    SciTech Connect

    Braley, Jenifer C.; Lumetta, Gregg J.; Carter, Jennifer C.

    2013-09-05

    Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) into a single process solvent for separating transuranic elements from liquid high-level waste is explored. The lanthanides and americium can be co-extracted from HNO3 into 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in n-dodecane. The extraction is relatively insensitive to the HNO3 concentration within 0.1 to 5 mol/L HNO3. Americium can be selectively stripped from the CMPO/HEH[EHP] solvent into a citrate-buffered N-(2-hydroxyethyl)ethylenediaminetriacetic acid solution . Separation factors >14 can be achieved in the range pH 2.5 to 3.7, and the separation factors are relatively insensitive to pH, a major advantage of this solvent formulation.

  3. Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides.

    PubMed

    Hudson, Michael J; Harwood, Laurence M; Laventine, Dominic M; Lewis, Frank W

    2013-04-01

    The removal of the most long-lived radiotoxic elements from used nuclear fuel, minor actinides, is foreseen as an essential step toward increasing the public acceptance of nuclear energy as a key component of a low-carbon energy future. Once removed from the remaining used fuel, these elements can be used as fuel in their own right in fast reactors or converted into shorter-lived or stable elements by transmutation prior to geological disposal. The SANEX process is proposed to carry out this selective separation by solvent extraction. Recent efforts to develop reagents capable of separating the radioactive minor actinides from lanthanides as part of a future strategy for the management and reprocessing of used nuclear fuel are reviewed. The current strategies for the reprocessing of PUREX raffinate are summarized, and some guiding principles for the design of actinide-selective reagents are defined. The development and testing of different classes of solvent extraction reagent are then summarized, covering some of the earliest ligand designs right through to the current reagents of choice, bis(1,2,4-triazine) ligands. Finally, we summarize research aimed at developing a fundamental understanding of the underlying reasons for the excellent extraction capabilities and high actinide/lanthanide selectivities shown by this class of ligands and our recent efforts to immobilize these reagents onto solid phases. PMID:22867058

  4. Analytical-scale separations of lanthanides : a review of techniques and fundamentals.

    SciTech Connect

    Nash, K. L.; Jensen, M. P.

    1999-10-27

    Separations chemistry is at the heart of most analytical procedures to determine the rare earth content of both man-made and naturally occurring materials. Such procedures are widely used in mineral exploration, fundamental geology and geochemistry, material science, and in the nuclear industry. Chromatographic methods that rely on aqueous solutions containing complexing agents sensitive to the lanthanide cationic radius and cation-exchange phase transfer reactions (using a variety of different solid media) have enjoyed the greatest success for these procedures. In this report, they will briefly summarize the most important methods for completing such analyses. they consider in some detail the basic aqueous (and two-phase) solution chemistry that accounts for separations that work well and offer explanations for why others are less successful.

  5. Sequential separation of ultra-trace U, Th, Pb, and lanthanides using a simple automatic system.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2015-07-01

    Uranium, thorium, lead, and the lanthanides were automatically and sequentially separated with a single anion-exchange column. This separation was achieved using eluents consisting of a simple and highly pure acid mixture of HCl, HNO3, acetic acid, and HF. The elements of interest were separated from the major constituents, which included alkaline metal elements, alkaline earth metal elements, and iron. This simple and automatic system is driven with pressurized nitrogen gas and controlled using a computer program. An optimized separation was accomplished under the following conditions: a 50 mm long and 2 mm diameter column, 11 μm diameter anion-exchange resin, and a 35 μL min(-1) flow rate. Using this system, 50 ng of varied elements in a 100 μL feed solution were perfectly separated within 5 h with >400 decontamination factors and >95% yield. In order to evaluate the performance of this system, a reference powdered rock sample was separated using this system. Abundances of objective elements, including 0.23 ng of lutetium, were accurately determined without corrections of chemical recovery yield or subtraction of the process blank. This separation technique saves time and effort for chemical processing, and is useful for ultra-trace quantitative and isotopic analyses of elements in small environmental samples. PMID:25994104

  6. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  7. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS�) and determined to have high

  8. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE PAGESBeta

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in a singlemore » process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  9. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    SciTech Connect

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in a single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).

  10. Challenging conventional f-element separation chemistry--reversing uranyl(VI)/lanthanide(III) solvent extraction selectivity.

    PubMed

    Hawkins, C A; Bustillos, C G; Copping, R; Scott, B L; May, I; Nilsson, M

    2014-08-14

    The water soluble tetradentate Schiff base, N,N'-bis(5-sulfonatosalicylidene)-diaminoethane (H2salen-SO3), will readily coordinate to the uranyl(VI) cation, but not to the same extent to trivalent lanthanide cations. This allows for the reversal of conventional solvent extraction properties and opens the possibility for novel separation processes. PMID:24958394

  11. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    NASA Astrophysics Data System (ADS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-09-01

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM).

  12. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    SciTech Connect

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-09-03

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  13. Polyaminocarboxylic acids as potential candidates for trivalent actinide/lanthanide separations

    NASA Astrophysics Data System (ADS)

    Kissel, Daniel S.

    Nuclear energy, which has historically been considered an alternative energy solution in the United States, is regaining support as an efficient means of energy production. The viability of nuclear energy for the future, however, will remain suspect until issues involving the waste created are fully addressed in the next generation of advanced nuclear fuel cycles. The TALSPEAK process, developed at Oak Ridge National Laboratory, is a classic solvent extraction technique that employs a series of analytical separations in an effort to remove radioactive contaminants from spent nuclear fuel (SNF) and recover uranium in high purity. This separation utilizes a polyaminocarboxylic acid and a phosphorous extractant to separate trivalent actinides (An(III)s) from trivalent lanthanides (Ln(III)s). Conversely, issues with these reagents have hampered TALSPEAK's implementation as an industrial scale solution. The process requires a high concentration of lactic acid to facilitate phase separations, and the An(III)/Ln(III) separation factor is too low to achieve the purity required for artificial transmutation. Artificial transmutation involves steady neutron irradiation, which is impossible in the presence of Ln(III)s because of large neutron capture cross-sections. It is therefore critical to develop superior solvent extractants that effectively separate An(III)s from Ln(III)s. The present study focuses on the design, synthesis, characterization and analysis of advanced polyaminocarboxylic acids and their metal complexes in an effort to identify potential TALSPEAK-type extractants with superior separation properties. A facile, higher yield synthesis of these ligands and their complexation of trivalent metal ions (Co(III), Al(III), Ga(III), and In(III)), and selected lanthanides are reported. The polyaminocarboxylic acids and their trivalent metal complexes were characterized by elemental analysis, mass spectrometry, IR spectroscopy and NMR spectroscopy. Quantum mechanical

  14. Multigram group separation of actinide and lanthanide elements by LiCl-based anion exchange

    SciTech Connect

    Collins, E.D.; Benker, D.E.; Chattin, F.R.; Orr, P.B.; Ross, R.G.

    1980-01-01

    The laboratory-scale LiCl AIX process has been successfully adapted to the multigram scale and has been used effectively in transuranium element production campaigns to separate the lanthanide fission products from the transplutonium actinides and to partition americium and curium from the heavier elements. Corrosion of the tantalum and glass equipment has been negligible. Although radiolytic gas generation has not caused a problem, radiation exposure of the Dowex 1-X10 anion exchange resin does occur significantly. However, the 1.3-L resin bed can be used successfully to process up to 3 batches, each containing 19 g of /sup 244/Cm (54 W of decay heat). The chromatographic elution process is controlled by use of an alpha detector in the column effluent line and by periodic measurement of the neutron profile of the column. The development and use of feed pretreatment and operating methods has enabled effective and dependable operation.

  15. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  16. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect

    Quach, D.L.; Wai, C.M.; Mincher, B.J.

    2013-07-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  17. Probing the difference in covalence by enthalpy measurements: a new heterocyclic N-donor ligand for actinide/lanthanide separation.

    PubMed

    Yang, Yanqiu; Liu, Jun; Yang, Liang; Li, Kun; Zhang, Huabei; Luo, Shunzhong; Rao, Linfeng

    2015-05-21

    Complexation of Am(III), Nd(III), and Eu(III) with a new heterocyclic nitrogen-donor ligand, 2,9-di(quinazolin-2-yl)-1,10-phenanthroline (denoted as BQPhen in this paper), was studied by thermodynamic measurements and theoretical computations. The stability constants of two successive complexes in dimethylformamide, ML(3+) and ML2(3+) where M stands for Nd, Eu, or Am while L stands for the BQPhen ligand, were determined by absorption spectrophotometry. The enthalpy of complexation was determined by microcalorimetry. Results show that BQPhen forms ten times stronger complexes with Am(III) than Eu(III) or Nd(III) under identical conditions, suggesting that BQPhen could be used as an efficient extractant for the separations of trivalent actinides from lanthanides. The higher binding strength of BQPhen towards Am(III) than Nd(III) or Eu(III) is mainly due to the more favourable enthalpy of complexation for Am(III)/BQPhen complexes, implying a higher degree of covalence in the Am(III)/BQPhen complexes than the lanthanide(III)/BQPhen complexes. The thermodynamic trend was corroborated with computational results and validated by solvent extraction experiments that demonstrated BQPhen preferably extracted Am(III) more than Eu(III), with a separation factor of about 10. Discussions have been made to compare BQPhen with other phenanthroline derivatives such as CyMe4-BTPhen, a bis-triazine-phenanthroline derivative that was reported in the literature. Data suggest that, under identical conditions, BQPhen would form stronger complexes with Am(III), Eu(III), and Nd(III) than CyMe4-BTPhen. PMID:25875899

  18. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash; Sue B. Clark; Gregg Lumetta

    2009-09-23

    With increased application of MOX fuels and longer burnup times for conventional fuels, higher concentrations of the transplutonium actinides Am and Cm (and even heavier species like Bk and Cf) will be produced. The half-lives of the Am isotopes are significantly longer than those of the most important long-lived, high specific activity lanthanides or the most common Cm, Bk and Cf isotopes, thus the greatest concern as regards long-term radiotoxicity. With the removal and transmutation of Am isotopes, radiation levels of high level wastes are reduced to near uranium mineral levels within less than 1000 years as opposed to the time-fram if they remain in the wastes.

  19. Synergism and separation factors in lanthanide extraction with mixtures of chelating extractant and amine salts in C{sub 6}H{sub 6}

    SciTech Connect

    Dukov, I.L.; Jordanov, V.M.

    1997-10-01

    The solvent extraction of Pr, Gd, and Yb with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (HP) and an amine salt (AmHA) has been studied. The composition of the extracted species has been determined as (AmH)[LnP{sub 4}]. The values of the synergistic coefficients and separation factors have been calculated. The effect of the amine salt on the extraction and separation of lanthanides has been discussed.

  20. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    NASA Astrophysics Data System (ADS)

    Shaibu, B. S.; Reddy, M. L. P.; Bhattacharyya, A.; Manchanda, V. K.

    2006-06-01

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  1. Multifunctional lanthanide-organic frameworks for fluorescent sensing, gas separation and catalysis.

    PubMed

    Liu, Xiaobin; Lin, Huan; Xiao, Zhenyu; Fan, Weidong; Huang, Ao; Wang, Rongming; Zhang, Liangliang; Sun, Daofeng

    2016-03-01

    Two lanthanide MOFs based on 3,3'-((2,3,6,7-tetramethoxyanthracene-9,10-diyl)bis(4,1-phenylene))diacrylic acid (H2LOMe), [Eu(LOMe)1.5(H2O)2]·3.5DMA·2H2O (1) and [Pr(LOMe)(H2O)4]·2.5DMA·3H2O (2) were synthesized under solvothermal conditions. Complex 1 displayed a 2D net with single nodal 44-sql topology, which further formed a 3D supramolecular architecture by strong π⋯π interaction. Complex 2 featured a 3D open framework with {42·84}-PtS topology. The PL spectrum results showed that 2 has potential application not only in the sensing of small organic molecules, such as DMF and NB, but also in detecting Al3+ and nitroaromatic derivatives. Furthermore, 2 also showed the selective adsorption of CO2 over CH4 and high catalytic activities with the cyanosilylation reaction. PMID:26815197

  2. Theoretical prediction of Am(iii)/Eu(iii) selectivity to aid the design of actinide-lanthanide separation agents.

    PubMed

    Bryantsev, Vyacheslav S; Hay, Benjamin P

    2015-05-01

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. First-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. In this work, we examine the ability of several density functional theory methods to predict selectivity of Am(iii) and Eu(iii) with oxygen, mixed oxygen-nitrogen, and sulfur donor ligands. The results establish a computational method capable of predicting the correct order of selectivities obtained from liquid-liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands. PMID:25824656

  3. Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes.

    PubMed

    Kesava Raju, Ch Siva; Subramanian, M S

    2007-06-25

    A novel grafted polymer for selective extraction and sequential separation of lanthanides, thorium and uranium from high acidic wastes has been developed by grafting Merrifield chloromethylated (MCM) resin with octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) (MCM-CMPO). The grafting process is well characterized using FT-IR spectroscopy, (31)P and (13)C CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNPS elemental analysis. The influence of various physico-chemical parameters during metal ion extraction by the resin phase are studied and optimized by both static and dynamic methods. The resin shows very high sorption capacity values of 0.960mmolg(-1) for U(VI), 0.984mmolg(-1) for Th(IV), 0.488mmolg(-1) for La(III) and 0.502mmolg(-1) for Nd(III) under optimum HNO(3) medium, respectively. The grafted polymer shows faster rate exchange kinetics (<5min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, sequential separation of the analytes is possible with varying eluting agents. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. All the analytical data is based on triplicate analysis and measurements are within 3.5% rsd reflecting the reproducibility and reliability of the developed method. PMID:17178189

  4. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE PAGESBeta

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore » of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  5. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    SciTech Connect

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capable of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.

  6. Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles

    SciTech Connect

    Goff, George S.; Long, Kristy Marie; Reilly, Sean D.; Jarvinen, Gordon D.; Runde, Wolfgang H.

    2012-06-11

    Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

  7. Gadolinium speciation with Tetradentate, N-donor extractants for minor actinide/lanthanide separation: an XRD, mass spectrometry and EPR study

    SciTech Connect

    Whittaker, D.M.; Sharrad, C.A.; Sproules, S.

    2013-07-01

    The hydrophobic organic molecules CyMe{sub 4}-BTPhen (1) and CyMe{sub 4}-BTBP (2) have been developed and tuned over many years to be able to separate the trivalent actinides from the trivalent lanthanides (Ln) selectively in bi-phasic solvent extraction processes for the separation of the long-lived radio-toxic minor actinides from spent nuclear fuel. The ability of these N-donor ligands to perform this separation is poorly understood, as is their speciation with the metal ions when extracted into the organic phase. Our previous work has shown Ln{sup 3+} speciation to be largely 1:2 Ln:L in nature with another small molecule, either water or nitrate, occupying a cavity between the tetradentate bound N-donor ligands. The identity of the small molecule changes across the lanthanide series, and here we continue investigations into this speciation. Complexes of these N-donor ligands with Gd{sup 3+} have been synthesised and characterised by X-ray crystallography, mass spectrometry and EPR spectroscopy. We show that the N-donor ligands have no effect on the electronic configuration of Gd{sup 3+} and that the lanthanide contraction with the steric rigidity of the N-donor ligand appears to determine the size of the cavity between the coordinated ligands. This in turn appears to control the identity of the small molecule on the ninth site in the 1:2 Gd:L species. (authors)

  8. Separation and purification of berkelium(III) from trivalent actinides and lanthanides using 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPBMP)

    SciTech Connect

    Mathur, J.N.; Khepkar, P.K.

    1983-01-01

    A solvent extraction method based on the preferential extraction of Bk(III) by 1-phenyl-3-methyl-4-benzeyl-pyrazolone-5 (HPMBP) has been devised for the separation and purification of Bk from other trivalent actinides and lanthanides. A single cycle purification of Bk(III) from most of the impurities is obtained by this method. An alternate method purification of Bk has been given using extraction chromatography with HPMBP impregnated celite columns wherein decontamination factors of approx. 10/sup 4/ are obtained from other trivalent actinides, lanthanides and inactive impurities like iron(Fe), chromium(Cr), aluminum(Al) and nickel(Ni). For Ce(III) (cerium III) a decontamination factor of approx. 60 is obtained.

  9. The Lanthanide Contraction beyond Coordination Chemistry.

    PubMed

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K; Olvera de la Cruz, Monica; Qiao, Baofu; Ellis, Ross J

    2016-05-10

    The lanthanide contraction is conceptualized traditionally through coordination chemistry. Here we break this mold in a structural study of lanthanide ions dissolved in an amphiphilic liquid. The lanthanide contraction perturbs the weak interactions between molecular aggregates that drive mesoscale assembly and emergent behavior. The weak interactions correlate with lanthanide ion transport properties, suggesting new strategies for rare-earth separation that exploit forces outside of the coordination sphere. PMID:27060294

  10. Secret lanthanides.

    PubMed

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz. PMID:25408760

  11. Secret Lanthanides

    PubMed Central

    Sturza, CM

    2014-01-01

    Abstract Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz. PMID:25408760

  12. New insights into the selectivity of four 1,10-phenanthroline-derived ligands toward the separation of trivalent actinides and lanthanides: a DFT based comparison study.

    PubMed

    Wu, Han; Wu, Qun-Yan; Wang, Cong-Zhi; Lan, Jian-Hui; Liu, Zhi-Rong; Chai, Zhi-Fang; Shi, Wei-Qun

    2016-05-10

    Although many heterocyclic N-donor ligands have shown excellent competence for separating actinides from lanthanides, an explanation for why some ligands work whereas others fail is very fundamental but greatly needs to be addressed for designing novel and efficient extractants. In this work, we systematically investigated four phenanthroline-derived ligands, DHDIPhen, BQPhen, Ph2-BTPhen and CyMe4-BTPhen, and their coordination geometrical properties and formation reactions with Am(iii) and Eu(iii) ions by quasi-relativistic density functional theory. The calculated hardness of ligands, which may help to determine their selectivity toward actinides and lanthanides, yielded an order, from the softest to the hardest, as follows: Ph2-BTPhen < CyMe4-BTPhen < BQPhen < DHDIPhen. It shows that the intramolecular hydrogen bonds and size of a ligand cavity are two dominant factors for metal-ion complexation. Natural population analysis (NPA) reveals that the 5d/6d orbitals of Eu/Am accept significantly more electrons than other orbitals, but partial density of states and molecular orbital analysis prove that the d orbitals with more accepted electrons have little contribution to the metal-ligand bonds. The thermodynamic results suggest that ligand protonation does have a great influence on the complexation of ligands with metal ions but does not change the selectivity of ligands toward metal ions. This work can help in-depth understanding the differences of selectivity of various structurally similar ligands and provide more theoretical insights for designing more innovative ligands for Ln/An separation. PMID:27086653

  13. Photoacoustic spectral studies on lanthanide amino acid complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yue-tao; Zhao, Gui-wen; Zhang, Shu-yi

    2003-01-01

    Several kinds of lanthanide complexes with glycine, alanine, phenylalanine, and tryptophan were synthesized and their photoacoustic (PA) spectra were measured. For the complexes of weakly fluorescent lanthanide ions with amino acids, the PA spectra reflect the influences of the ligands on the energy levels of lanthanide ions, whereas for the complexes of fluorescent lanthanide ions with amino acids, the PA spectra can be used to study the energy transfer from aromatic amino acids to lanthanide ions. At last, separating the overlapping peaks of lanthanide complex with tryptophan using the PA phase resolved method is introduced.

  14. 6-(Tetrazol-5-yl)-2,2'-bipyridine: a highly selective ligand for the separation of lanthanides(III) and actinides(III).

    PubMed

    Kratsch, Jochen; Beele, Björn B; Koke, Carsten; Denecke, Melissa A; Geist, Andreas; Panak, Petra J; Roesky, Peter W

    2014-09-01

    The coordination structure in the solid state and solution complexation behavior of 6-(tetrazol-5-yl)-2,2'-bipyridine (HN4bipy) with samarium(III) was investigated as a model system for actinide(III)/lanthanide(III) separations. Two different solid 1:2 complexes, [Sm(N4bipy)2(OH)(H2O)2] (1) and [Sm(N4bipy)2(HCOO)(H2O)2] (2), were obtained from the reaction of samarium(III) nitrate with HN4bipy in isopropyl alcohol, resuspension in N,N-dimethylformamide (DMF), and slow crystallization. The formate anion coordinated to samarium in 2 is formed by decomposition of DMF to formic acid and dimethylamine. Time-resolved laser fluorescence spectroscopy (TRLFS) studies were performed with curium(III) and europium(III) by using HN4bipy as the ligand. Curium(III) is observed to form 1:2 and 1:3 complexes with increasing HN4bipy concentration; for europium(III), formation of 1:1 and 1:3 complexes is observed. Although the solid-state samarium complexes were confirmed as 1:2 species the 1:2 europium(III) solution complex in ethanol was not identified with TRLFS. The determined conditional stability constant for the 1:3 fully coordinated curium(III) complex species is more than 2 orders of magnitude higher than that for europium(III) (log β3[Cm(N4bipy)3] = 13.8 and log β3[Eu(N4bipy)3] = 11.1). The presence of added 2-bromodecanoic acid as a lipophilic anion source reduces the stability constant for formation of the 1:2 and 1:3 curium(III) complexes, but no ternary complexes were observed. The stability constants for the 1:3 metal ion-N4bipy complexes equate to a theoretical separation factor, SF(Cm(III)/Eu(III)) ≈ 500. However, the low solubility of the HN4bipy ligand in nonpolar solvents typically used in actinide-lanthanide liquid-liquid extractions prevents its use as a partitioning extractant until a more lipophilic HN4bipy-type ligand is developed. PMID:24967733

  15. Separation of actinides(III) from lanthanides(III) by extraction chromatography using new n,n'-dialkyl-n,n'-diphenyl-pyridine-2,6-di-carboxy-amides

    SciTech Connect

    Arisaka, Makoto; Watanabe, Masayuki; Kimura, Takaumi

    2007-07-01

    Four N,N'-dialkyl-N,N'-diphenyl-pyridine-2,6- di-carboxy-amides (R-PDA; R butyl, octyl, decyl, dodecyl) were newly synthesized and were applied to extraction chromatography as extractant to attain the separation of actinides(III) from high level radioactive waste containing lanthanides(III). R-PDA was successfully impregnated into XAD-4 resin. It was found that (i) the leakage of R-PDA from XAD-4 resin was suppressed with an increase of the length of the alkyl groups in R-PDA, while the leakage for each adsorbent resin was promoted with an increase of HNO{sub 3} concentration in the aqueous phase and (ii) Oc-PDA or De-PDA/XAD-4 resin exhibits moderate separation ability of actinides(III) from lanthanides(III) at relatively high HNO{sub 3} concentration. (authors)

  16. ITP of lanthanides in microfluidic PMMA chip.

    PubMed

    Cong, Yongzheng; Bottenus, Danny; Liu, Bingwen; Clark, Sue B; Ivory, Cornelius F

    2014-03-01

    An ITP separation of eight lanthanides on a serpentine PMMA microchip with a tee junction and a 230-mm-long serpentine channel is described. The cover of the PMMA chip is 175 μm thick so that a C(4) D in microchip mode can be used to detect the lanthanides as they migrate through the microchannel. Acetate and α-hydroxyisobutyric acid are used as complexing agents to increase the electrophoretic mobility difference between the lanthanides. Eight lanthanides are concentrated within ∼ 6 min by ITP in the microchip using 10 mM ammonium acetate at pH 4.5 as the leading electrolyte and 10 mM acetic acid at ∼ pH 3.0 as the terminating electrolyte. In addition, a 2D numerical simulation of the lanthanides undergoing ITP in the microchip is compared with experimental results using COMSOL Multiphysics v4.3a. PMID:24258617

  17. Lanthanide-containing polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, Anne K.

    1987-01-01

    The preparation of a variety of lanthanide-containing polyimide films is described, and results of their characterization are presented. The properties investigated include the glass transition temperature, thermooxidative stability, magnetic susceptibility, and electrical conductivity of the polymer. Films containing lanthanide chlorides, fluorides, and sulfides are flexible, but those containing lanthanide nitrates are extremely brittle. The addition of lanthanide acetates and acetylacetonates caused immediate gelation of two of the synthesis-mixture ingredients. It was found that, in general, the addition of lanthanide to the polyimide increases the density and glass transition temperature of the polymer but slightly decreases the thermooxidative stability.

  18. One-dimensional simulation of lanthanide isotachophoresis using COMSOL.

    PubMed

    Dixon, Derek R; Clark, Sue B; Ivory, Cornelius F

    2012-03-01

    Electrokinetic separations can be used to quickly separate rare earth metals to determine their forensic signature. In this work, we simulate the concentration and separation of trivalent lanthanide cations by isotachophoresis. A one-dimensional simulation is developed using COMSOL v4.0a, a commercial finite element simulator, to represent the isotachophoretic separation of three lanthanides: lanthanum, terbium, and lutetium. The binding ligand chosen for complexation with the lanthanides is α-hydroxyisobutyric acid (HIBA) and the buffer system includes acetate, which also complexes with the lanthanides. The complexes formed between the three lanthanides, HIBA, and acetate are all considered in the simulation. We observe that the presence of only lanthanide:HIBA complexes in a buffer system with 10 mM HIBA causes the slowest lanthanide peak (lutetium) to split from the other analytes. The addition of lanthanide:acetate complexes into the simulation of the same buffer system eliminates this splitting. Decreasing the concentration of HIBA in the buffer to 7 mM causes the analyte stack to migrate faster through the capillary. PMID:22522543

  19. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  20. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  1. The Lanthanide Contraction Revisited

    SciTech Connect

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  2. Thermolysis of lanthanide dithiocarbamate complexes

    SciTech Connect

    Boncher, William L.; Regulacio, Michelle D.; Stoll, Sarah L.

    2010-01-15

    Polycrystalline lanthanide sulfide materials were formed at low temperatures using a single-source precursor based on the lanthanide dithiocarbamate complex. The synthesis temperatures are generally lower than standard solid state preparations, avoid toxic sulfurizing gases and provide a convenient route to prepare lanthanide chalcogenide nanoparticles. Depending on the reaction conditions and oxophilicity of the lanthanide, the sulfide material was formed with oxidized products including oxysulfides, oxysulfates and the oxide. - Graphical abstract: Polycrystalline lanthanide sulfide materials were formed at low temperatures using a single-source precursor based on the lanthanide dithiocarbamate complex.

  3. Structure of Glass-Forming Melts - Lanthanide in Borosilicates

    SciTech Connect

    Li, Hong; Li, Liyu; Qian, Morris; Strachan, Denis M.; Wang, Zheming

    2004-05-17

    Over the past few years, we studied several complex Na2O-Al2O3-B2O3-SiO2 glass systems to answer key questions: effects of melt chemistry on solubility of lanthanide oxides; lanthanide solution behavior, and intermediate-range ordering in the melts. This paper summarizes our currently understanding on rare earth elements in borosilicate glasses, covering solution behavior, solubility limits, crystalization and phase separation.

  4. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  5. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N.; Corneillie, Todd M.; Xu, Jide

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  6. Luminescent lanthanide coordination polymers

    SciTech Connect

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  7. Preparation and study of binary compounds of actinides and lanthanides. X. Separation of the TPE and platinum (palladium) by extraction chromatography

    SciTech Connect

    Lebedeva, L.S.; Nezgovorov, N.Yu.; Radchenko, V.M.; Vasil'ev, V.Ya.

    1988-03-01

    The possibility of separation of TPE from compounds bearing platinum or palladium by extraction chromatography using D2EHPA has been explored. It has been found that TPE loss is practically nil. The coefficient of TPE isolation from platinum metals is above 10/sup 3/. It has been shown that macroamounts of platinum can be removed preliminarily by its precipitation as the sparingly soluble salt (NH/sub 4/)/sub 2/PtCl/sub 6/ without a significant loss of TPE. The technique can also be applied for regeneration of platinum group elements from compounds with TPE. The purity of regenerated platinum (palladium) is enough for repeated use as components of compounds with TPE.

  8. A Fluorous Biphasic Solvent Extraction System for Lanthanides with a Fluorophilic β-Diketone Type Extractant.

    PubMed

    Nakamura, Etsuko; Hiruta, Yuki; Watanabe, Takafumi; Iwasawa, Naoko; Citterio, Daniel; Suzuki, Koji

    2015-01-01

    The properties of a fluorous solvent extraction system for trivalent lanthanide metal ions are reported. A fluorinated extractant, 4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-1-(2-thienyl)-1,3-nonanedione, and HFE-7200 (C4F9OC2H5) as the extraction solvent were chosen. With this fluorous extractant/solvent combination, higher extraction ratios and separation factors compared to a conventional organic solvent system (thenoyltrifluoroacetone in CHCl3) were achieved for 5 heavy lanthanide ions (Lu, Yb, Tm, Er and Ho). On the other hand, light lanthanide ions (Nd, Pr, Ce and La) are hardly extracted, therefore enabling the mutual separation of light lanthanides from middle or heavy lanthanide ions. PMID:26353959

  9. The Partitioning of Americium and the Lanthanides Using Tetrabutyldiglycolamide (TBDGA) in Octanol and in Ionic Liquid Solution

    SciTech Connect

    M.E. Mincher; D.L. Quach; Y.J. Liao; B.J. Mincher; C.M. Wai

    2012-11-01

    Separations among the lanthanides and the separation of Am from the lanthanides remain challenging, and research in this area continues to expand. The separation of adjacent lanthanides is of interest to high-tech industries because individual lanthanides have specialized uses and are in short supply. In nuclear fuel cycle applications Am would be incorporated into fast reactor fuels, yet the lanthanides are not desired. In this work the diamide N,N,N',N'-tetrabutyldiglycolamide (TBDGA) was investigated as a ligand for lanthanide and Am solvent extraction in both molecular and room temperature ionic liquid (RTIL) diluents. The RTIL [C4MIM][Tf2N-] showed very high extraction efficiency for these trivalent metals from low nitric acid concentrations, while the molecular diluent 1-octanol showed high extraction efficiency at high acid concentrations. This was attributed to the extraction of ionic nitrate complexes by the RTIL, whereas 1-octanol extracted neutral nitrate complexes. TBDGA in RTIL did not provide adequate separation factors for Am/lanthanide partitioning, but 1-octanol did show reasonable separation possibilities. Lanthanide intergroup separations appeared to be feasible in both diluents, but with higher separation factors from 1-octanol.

  10. Selective removal of lanthanides from natural waters, acidic streams and dialysate.

    PubMed

    Yantasee, Wassana; Fryxell, Glen E; Addleman, R Shane; Wiacek, Robert J; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu, Jide; Raymond, Kenneth N

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 microg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning. PMID:19345006

  11. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate

    SciTech Connect

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu, Jide; Raymond, Kenneth N.

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon. The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.

  12. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    PubMed Central

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu, Jide; Raymond, Kenneth N.

    2009-01-01

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS™), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 µg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning. PMID:19345006

  13. Aromatic triamide-lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Petoud, Stephane; Xu, Jide

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  14. Solvent extraction of lanthanides with N-m-nitrobenzoyl- and N-m-cyanobenzoyl-N-phenylhydroxylamine

    SciTech Connect

    Inoue, Sadanobu

    1995-03-01

    The solvent extraction of lanthanides (Ln) with N-m-nitrobenzoyl- and N-m-cyanobenzoyl-N-phenylhydroxylamine, was investigated. The representative lanthanides (Yb, Ho, Eu, Pr and La) were all found to extract with compounds as self-adducts of the form, LnL{sub 3}(HL){sub 3}, where L and HL denote the ligand anion and neutral ligand, respectively. The extraction constant and separation factor were compared with those of the N-p-octyloxy derivative bof N-benzoyl-N-phenylhydroxylamine previously reported. The correlation between extractability, mutual separability of lanthanides and acidity of the reagent were discussed. 14 refs., 4 figs., 3 tabs.

  15. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  16. On the suitability of lanthanides as actinide analogs

    SciTech Connect

    Raymond, Kenneth; Szigethy, Geza

    2008-07-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  17. On the Suitability of Lanthanides as Actinide Analogs

    SciTech Connect

    Szigethy, Geza; Raymond, Kenneth N.

    2008-04-11

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.

  18. Calibration beads containing luminescent lanthanide ion complexes

    EPA Science Inventory

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  19. Key features of the Talspeak and similar trivalent actinide-lanthanide partitioning processes

    SciTech Connect

    Nash, Kenneth L.

    2008-07-01

    As closing of the nuclear-fuel cycle via the suite of UREX processes under development in the U.S. progresses, the Trivalent Actinide-Lanthanide Separation by Phosphorus Extractants and Aqueous Komplexants (TALSPEAK) process has been selected as the baseline process for partition of trivalent actinides away from fission-product lanthanides. In this report, selected features of the chemistry of the TALSPEAK process and the limited parallel information on other TALSPEAK-like processes are discussed. (author)

  20. Lanthanides: New life metals?

    PubMed

    Chistoserdova, Ludmila

    2016-08-01

    Lanthanides (Ln(3+)) that are Rare Earth Elements, until recently thought to be biologically inert, have recently emerged as essential metals for activity and expression of a special type of methanol dehydrogenase, XoxF. As XoxF enzyme homologs are encoded in a wide variety of microbes, including microbes active in important environmental processes such as methane and methanol metabolism, Ln(3+) may represent some of the key biogeochemical drivers in cycling of carbon and other elements. However, significant gaps in understanding the role of Ln(3+) in biological systems remain as the functions of most of the proteins potentially dependent of Ln(3+) and their roles in specific metabolic networks/respective biogeochemical cycles remain unknown. Moreover, enzymes dependent on Ln(3+) but not related to XoxF enzymes may exist, and these so far have not been recognized. Through connecting the recently uncovered genetic divergence and phylogenetic distribution of XoxF-like enzymes and through elucidation of their activities, metal and substrate specificities, along with the biological contexts of respective biochemical pathways, most parsimonious scenarios for their evolution could be uncovered. Generation of such data will firmly establish the role of Ln(3+) in the biochemistry of Life inhabiting this planet. PMID:27357406

  1. Study of the Interaction between HDEHP and CMPO and Its Effect on the Extraction of Selected Lanthanides

    SciTech Connect

    Tkac, Peter; Vandegrift, George F.; Lumetta, Gregg J.; Gelis, Artem V.

    2012-08-08

    ABSTRACT: Separation of the trivalent actinides from the trivalent lanthanides relevant to used nuclear fuel reprocessing remains still a challenging task. One of the options currently being investigated is the combination of two extraction processes, TRUEX and TALSPEAK.

  2. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. PMID:20547408

  3. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    SciTech Connect

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F.; Mills, J.; Howard, G.; Freiser, H.; Muralidharan, S.

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  4. Lanthanides caged by the organic chelates; structural properties

    NASA Astrophysics Data System (ADS)

    Smentek, Lidia

    2011-04-01

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  5. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  6. La preparacion en ciencia de los candidatos a maestros del nivel elemental primario segun la reforma de la educacion cientifica en Puerto Rico: Una propuesta de secuencia curricular

    NASA Astrophysics Data System (ADS)

    Rodriguez Plaza, Evelyn

    El proposito de esta investigacion fue identificar los componentes de la preparacion en ciencia que deben recibir los estudiantes del Bachillerato en Artes en Educacion Elemental, Nivel Primario, de acuerdo a los documentos que dirigen la reforma de la educacion cientifica en Puerto Rico. Tambien, se identificaron los componentes de los cursos que forman parte de la preparacion en ciencia de estos estudiantes. Se compararon los componentes de la preparacion en ciencia y los componentes de los cursos para determinar congruencias y discrepancias. Con los datos recopilados se identificaron los componentes de los cursos de una secuencia curricular para la preparacion en ciencia de los candidatos a maestros del nivel elemental primario. La secuencia curricular que se propone en esta investigacion incluye cursos de contenido cientifico y de metodologia en la ensenanza de la ciencia disenados para satisfacer las necesidades de los candidatos. Se recomienda que en los procesos para el diseno, la implantacion y la evaluacion de estos cursos participen profesores de ciencia, profesores de educacion y maestros del nivel elemental primario. Todos los cursos de la secuencia curricular deben tener un enfoque constructivista. Las experiencias educativas que se incluyan en los cursos deben aspirar a desarrollar en los candidatos los atributos de la cultura cientifica y actitudes positivas hacia la ciencia y hacia la ensenanza de esta disciplina. El modelaje por parte de los profesores que ensenen los cursos de la secuencia curricular es fundamental en el desarrollo profesional de los candidatos. Se recomienda que en los cursos de contenido cientifico se estudien los conceptos y los conocimientos cientificos que forman parte del curriculo de Kindergarten a tercer grado de forma integrada y con una profundidad universitaria. Estos cursos deben tener un enfoque interdisciplinario e incluir el estudio de la naturaleza de la ciencia y un componente de laboratorio para desarrollar los

  7. Magnetic ordering in lanthanide-molybdenum oxide nanostructure arrays

    NASA Astrophysics Data System (ADS)

    Hagmann, Joseph; Le, Son; Schneemeyer, Lynn; Olsen, Patti; Besara, Tiglet; Siegrist, Theo; Seiler, David; Richter, Curt

    Reduced ternary molybdenum oxides, or bronzes, offer an attractive materials platform to study a wide variety of remarkable physical phenomena in a system with highly varied structural chemistry. Interesting electronic behaviors, such as superconductivity, charge density waves, and magnetism, in these materials arise from the strong hybridization of the 4d states of high-valent Mo with O p orbitals. We investigate a series of molybdenum bronze materials with Lanthanide-Mo16O44 composition that can be described as a three-dimensional array of metallic Mo8O32 nanostructures computationally predicted to contain a single charge with spin 1/2 separated by insulating MoO4 tetrahedra. This study reveals novel magnetic ordering in Lanthanide-Mo16O44 systems arising, not from the inclusion of magnetic elements, but rather from an exchange interaction between cubic Mo8O32 units. Here, we report the magnetometry and transport behaviors of a series of Lanthanide-Mo16O44 materials, emphasizing an observed low-temperature phase transition signifying the onset of antiferromagnetic ordering between the arrayed nanostructures, and relate these behaviors to their experimentally-characterized structures to reveal the intriguing physics of these correlated electronic systems.

  8. Toxicological and cytophysiological aspects of lanthanides action.

    PubMed

    Pałasz, A; Czekaj, P

    2000-01-01

    Lanthanides, also called rare-earth elements, are an interesting group of 15 chemically active, mainly trivalent, f-electronic, silvery-white metals. In fact, lanthanides are not as rare as the name implies, except for promethium, a radioactive artificial element not found in nature. The mean concentrations of lanthanides in the earth's crust are comparable to those of life-important elements like iodine, cobalt and selenium. Many lanthanide compounds show particular magnetic, catalytic and optic properties, and that is why their technical applications are so extensive. Numerous industrial sources enable lanthanides to penetrate into the human body and therefore detailed toxicological studies of these metals are necessary. In the liver, gadolinium selectively inhibits secretion by Kupffer cells and it decreases cytochrome P450 activity in hepatocytes, thereby protecting liver cells against toxic products of xenobiotic biotransformation. Praseodymium ion (Pr3+) produces the same protective effect in liver tissue cultures. Cytophysiological effects of lanthanides appear to result from the similarity of their cationic radii to the size of Ca2+ ions. Trivalent lanthanide ions, especially La3+ and Gd3+, block different calcium channels in human and animal cells. Lanthanides can affect numerous enzymes: Dy3+ and La3+ block Ca2+-ATPase and Mg2+-ATPase, while Eu3+ and Tb3+ inhibit calcineurin. In neurons, lanthanide ions regulate the transport and release of synaptic transmitters and block some membrane receptors, e.g. GABA and glutamate receptors. It is likely that lanthanides significantly and uniquely affect biochemical pathways, thus altering physiological processes in the tissues of humans and animals. PMID:11996100

  9. Controlling energy transfer in ytterbium complexes: oxygen dependent lanthanide luminescence and singlet oxygen formation.

    PubMed

    Watkis, Andrew; Hueting, Rebekka; Sørensen, Thomas Just; Tropiano, Manuel; Faulkner, Stephen

    2015-11-01

    Pyrene-appended ytterbium complexes have been prepared using Ugi reactions to vary the chromophore-lanthanide separation. Formation of the ytterbium(iii) excited state is sensitised via both the singlet and triplet excited states of the chromophore. Energy transfer from the latter is relatively slow, and gives rise to oxygen-dependent luminescence. PMID:26346499

  10. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  11. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    SciTech Connect

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A.

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.

  12. Lanthanides in the frame of Molecular Magnetism

    NASA Astrophysics Data System (ADS)

    Gatteschi, D.

    2014-07-01

    Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  13. SEPARATION OF RARE EARTHS BY SOLVENT EXTRACTION

    DOEpatents

    Peppard, D.F.; Mason, G.W.

    1960-10-11

    A process is given for separating lanthanide rare earths from each other from an aqueous mineral acid solution, e.g., hydrochloric or nitric acid of a concentration of above 3 M, preferably 12 to 16 M, by extraction with a water- immiscible alkyl phosphate, such as tributyl phosphate or a mixture of mono-, di- and tributyl phosphate, and fractional back-extraction with mineral acid whereby the lanthanides are taken up by the acid in the order of increasing atomic number.

  14. The use of Diphonix{sup {trademark}} ion exchange resin as a preconcentration step for the lanthanides and actinides in analytical applications

    SciTech Connect

    Rollins, A.N.; Thakkar, A.H.; Fern, M.J.

    1995-12-01

    Diphonix ion exchange resin is a chelating ion exchange resin containing sulfonic and gemdiphosphonic acid groups. This resin has a high specificity for the lanthanides and actinides, especially at acidities below pH = 3. Currently, we are investigating new ways to use Diphonix resin as a preconcentration step to separate the lanthanides and actinides from interfering elements present in a variety of environmental matrices. Once the lanthanides and actinides have been separated from the interfering matrix constituents, the elements are removed from the resin and passed through subsequent separation schemes. This presentation will outline the use of Diphonix resin with a variety of problem matrices, and demonstrate its usefulness for analysis of the lanthanides and actinides.

  15. Lanthanide humic substances complexation. I. Experimental evidence for a lanthanide contraction effect

    NASA Astrophysics Data System (ADS)

    Sonke, Jeroen E.; Salters, Vincent J. M.

    2006-03-01

    The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L -1 NaNO 3, 1-1000 nmol L -1 Ln, 10-20 mg L -1 HS). Conditional binding constants for REE-HS interaction ( Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ΔLKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ΔLKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ΔLKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.

  16. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  17. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  18. The role of lanthanides in optical materials

    SciTech Connect

    Weber, M.J.

    1995-05-01

    A survey is presented of the use of the lanthanides as chemical components in transmitting optical materials and as activators in materials for luminescent, electro-optic, magneto-optic, and various photosensitive applications.

  19. Lanthanides: Applications in Cancer Diagnosis and Therapy.

    PubMed

    Teo, Ruijie D; Termini, John; Gray, Harry B

    2016-07-14

    Lanthanide complexes are of increasing importance in cancer diagnosis and therapy, owing to the versatile chemical and magnetic properties of the lanthanide-ion 4f electronic configuration. Following the first implementation of gadolinium(III)-based contrast agents in magnetic resonance imaging in the 1980s, lanthanide-based small molecules and nanomaterials have been investigated as cytotoxic agents and inhibitors, in photodynamic therapy, radiation therapy, drug/gene delivery, biosensing, and bioimaging. As the potential utility of lanthanides in these areas continues to increase, this timely review of current applications will be useful to medicinal chemists and other investigators interested in the latest developments and trends in this emerging field. PMID:26862866

  20. Synergism of trivalent actinides and lanthanides

    SciTech Connect

    Mathur, J.N.

    1983-01-01

    The synergism of trivalent actinides and lanthanides has been reviewed critically. Different systems including ..beta..-di-ketones and several other chelating agents with various neutral donors have been discussed. The thermodynamic parameters, effect of diluents, auto-synergism and synergism with eutectic mixtures have been discussed in the case of trivalent actinides and lanthanides. Also the mechanism of synergism and the various possible uses of this phenomenon have been referred to with the possible data available. 160 references, 4 tables.

  1. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  2. Nonaqueous method for dissolving lanthanide and actinide metals

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  3. Thermodynamics of trivalent lanthanide and actinide elements in carbonate solutions

    SciTech Connect

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.

    1995-12-01

    Knowledge of the thermodynamics of actinide and lanthanide elements in various aqueous electrolyte solutions is essential for the development of actinide separation techniques. It is particularly important to understand the thermodynamics of these elements in basic and concentrated electrolyte solutions if the separation techniques are in concentrated electrolytes and to be applied to the treatment of nuclear wastes, since many of these wastes contain concentrated electrolytes and are under strongly basic conditions. Solubility experiments were conducted for neodymium(III) in bicarbonate and carbonate solutions. Experimental results were analyzed with the specific ion-interaction approach of Pitzer. A thermodynamic model was developed to describe the solubilities of corresponding carbonate compounds of neodymium(III) and americium(III) under wide ranges of pH and carbonate concentrations.

  4. Energetic lanthanide complexes: coordination chemistry and explosives applications

    NASA Astrophysics Data System (ADS)

    Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.

    2014-05-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  5. Energetic Lanthanide Complexes: Coordination Chemistry and Explosives Applications

    NASA Astrophysics Data System (ADS)

    Manner, Virginia; Barker, Beau; Sanders, Eric; Laintz, Kenneth; Scott, Brian; Preston, Daniel; Sandstrom, Mary; Reardon, Bettina

    2013-06-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with ``tailor made'' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  6. Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants

    NASA Astrophysics Data System (ADS)

    Basualto, Carlos; Gaete, José; Molina, Lorena; Valenzuela, Fernando; Yañez, Claudia; Marco, Jose F.

    2015-06-01

    In this work, an adsorbent was prepared based on the attachment of organophosphorus acid extractants, namely, D2EHPA, CYANEX 272, and CYANEX 301, to the surface of superparamagnetic magnetite (Fe3O4) nanoparticles. The synthesized nanoparticles were coated with oleic acid, first by a chemisorption mechanism and later by the respective extractant via physical adsorption. The obtained core-shell functionalized magnetite nanoparticle composites were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, thermogravimetry, infrared absorption and vibrating sample magnetometry. All the prepared nanoparticles exhibited a high saturation magnetization capacity that varied between 72 and 46 emu g-1 and decreased as the magnetite nanoparticle was coated with oleic acid and functionalized. The scope of this study also included adsorption tests for lanthanum, cerium, praseodymium, and neodymium and the corresponding analysis of their results. Sorption tests indicated that the functionalized nanoparticles were able to extract the four studied lanthanide metal ions, although the best extraction performance was observed when the sorbent was functionalized with CYANEX 272, which resulted in a loading capacity of approximately 12-14 mgLa/gMNP. The magnetization of the synthesized nanoparticles was verified during the separation of the lanthanide-loaded sorbent from the raffinate by using a conventional magnet.

  7. Switchable sensitizers stepwise lighting up lanthanide emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Jiao, Peng-Chong; Xu, Hai-Bing; Tang, Ming-Jing; Yang, Xiao-Ping; Huang, Shaoming; Deng, Jian-Guo

    2015-03-01

    Analagous to a long-ranged rocket equipped with multi-stage engines, a luminescent compound with consistent emission signals across a large range of concentrations from two stages of sensitizers can be designed. In this approach, ACQ, aggregation-caused quenching effect of sensitizers, would stimulate lanthanide emission below 10-4 M, and then at concentrations higher than 10-3 M, the ``aggregation-induced emission'' (AIE) effect of luminophores would be activated with the next set of sensitizers for lanthanide emission. Simultaneously, the concentration of the molecules could be monitored digitally by the maximal excitation wavelengths, due to the good linear relationship between the maximal excitation wavelengths and the concentrations {lg(M)}. This model, wherein molecules are assembled with two stages (both AIE and ACQ effect) of sensitizers, may provide a practicable strategy for design and construction of smart lanthanide bioprobes, which are suitable in complicated bioassay systems in which concentration is variable.

  8. Curvature of the Lanthanide Contraction: An Explanation

    SciTech Connect

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  9. Switchable sensitizers stepwise lighting up lanthanide emissions.

    PubMed

    Zhang, Yan; Jiao, Peng-Chong; Xu, Hai-Bing; Tang, Ming-Jing; Yang, Xiao-Ping; Huang, Shaoming; Deng, Jian-Guo

    2015-01-01

    Analagous to a long-ranged rocket equipped with multi-stage engines, a luminescent compound with consistent emission signals across a large range of concentrations from two stages of sensitizers can be designed. In this approach, ACQ, aggregation-caused quenching effect of sensitizers, would stimulate lanthanide emission below 10(-4) M, and then at concentrations higher than 10(-3) M, the "aggregation-induced emission" (AIE) effect of luminophores would be activated with the next set of sensitizers for lanthanide emission. Simultaneously, the concentration of the molecules could be monitored digitally by the maximal excitation wavelengths, due to the good linear relationship between the maximal excitation wavelengths and the concentrations {lg(M)}. This model, wherein molecules are assembled with two stages (both AIE and ACQ effect) of sensitizers, may provide a practicable strategy for design and construction of smart lanthanide bioprobes, which are suitable in complicated bioassay systems in which concentration is variable. PMID:25791467

  10. Recovery system containing lanthanide-crosslinked polymers

    SciTech Connect

    Dovan, H.T.; Hutchins, R.D.

    1993-07-13

    A recovery system is described comprising: (a) a subterranean formation; (b) a well bore penetrating at least a portion of the subterranean formation; and (c) a composition capable of forming a gel present in at least a portion of the well bore, wherein the composition comprises: (i) a crosslinkable polymer (CP) selected from the group consisting of heteropolysaccharides obtained by the fermentation of starch-derived sugar, ammonium salts, and alkali metal salts; (ii) a lanthanide; and (iii) an ingredient selected from the group consisting of gel breakers, sequestering agents, proppants for use in hydraulically fracturing, particulate agents for forming a gravel pack, and base precursors selected from the group consisting of ammonium slats, urea, thiourea, and mixtures of these. A second recovery system is described in which the gel composition comprises: (i) a CP selected from the group consisting of acrylic acid-acrylamide copolymers, acrylic acid-methacrylamide copolymers, polyacrylamides, polymethacrylamides, partially hydrolyzed polyacrylamides, partially hydrolyzed polymethacrylamides, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyalkyleneoxides, lignosulfonates, ammonium salts, alkali metal salts, and alkaline earth salts of lignosulfonates; and (ii) a crosslinking agent selected from the group consisting of lanthanides, sequestered lanthanides, and mixtures thereof. A third system is described in which the gel composition comprises: (i) a CP, hydroxyethylcellulose; and (ii) a crosslinking agent selected from the group consisting of lanthanides, sequestered lanthanides, and mixtures thereof. A fourth system is described in which the gel composition comprises: (i) a CP selected from the group consisting of polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyalkyleneoxides, lignosulfonates, ammonium salts, alkali metal salts, and alkaline earth salts of lignosulfonates; and (ii) a lanthanide.

  11. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  12. Method bacterial endospore quantification using lanthanide dipicolinate luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor); Venkateswaran, Kasthuri J. (Inventor); Kirby, James Patrick (Inventor)

    2007-01-01

    A lanthanide is combined with a medium to be tested for endospores. The dipicolinic acid released from the endospores binds the lanthanides, which have distinctive emission (i.e., luminescence) spectra, and are detected using photoluminescence. The concentration of spores is determined by preparing a calibration curve generated from photoluminescence spectra of lanthanide complex mixed with spores of a known concentration. A lanthanide complex is used as the analysis reagent, and is comprised of lanthanide ions bound to multidentate ligands that increase the dipicolinic acid binding constant through a cooperative binding effect with respect to lanthanide chloride. The resulting combined effect of increasing the binding constant and eliminating coordinated water and multiple equilibria increase the sensitivity of the endospore assay by an estimated three to four orders of magnitude over prior art of endospore detection based on lanthanide luminescence.

  13. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    PubMed

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials. PMID:26248311

  14. DISTRIBUTION OF LANTHANIDE AND ACTINIDE ELEMENTS BETWEEN BIS-(2-ETHYLHEXYL)PHOSPHORIC ACID AND BUFFERED LACTATE SOLUTIONS CONTAINING SELECTED COMPLEXANTS

    SciTech Connect

    Rudisill, Tracy S.; Diprete, David P.; Thompson, Major C.

    2013-04-15

    With the renewed interest in the closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, an efficient separation requires tight control of the pH which likely will be difficult to achieve on a large scale. To address this issue, we measured the distribution of lanthanide and actinide elements between aqueous and organic phases in the presence of complexants which were potentially less sensitive to pH control than the diethylenetriaminepentaacetic (DTPA) used in the process. To perform the extractions, a rapid and accurate method was developed for measuring distribution coefficients based on the preparation of lanthanide tracers in the Savannah River National Laboratory neutron activation analysis facility. The complexants tested included aceto-, benzo-, and salicylhydroxamic acids, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and ammonium thiocyanate (NH{sub 4}SCN). The hydroxamic acids were the least effective of the complexants tested. The separation factors for TPEN and NH{sub 4}SCN were higher, especially for the heaviest lanthanides in the series; however, no conditions were identified which resulted in separations factors which consistently approached those measured for the use of DTPA.

  15. Optical properties of actinide and lanthanide ions

    SciTech Connect

    Hessler, J.P.; Carnall, W.T.

    1980-01-01

    This paper reviews some of the recent developments in this area of spectroscopy, emphasizing the optical properties of the tripositive lanthanide and actinide ions. In particular, the single ion properties of line positon, intensity, width, and fluorescence lifetime are discussed. 53 reference, 3 figures, 4 tables.

  16. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

    SciTech Connect

    McLaughlin, Mark F; Woodward, Jonathan; Boll, Rose Ann; Wall, Jonathan; Rondinone, Adam Justin; Kennel, Steve J; Mirzadeh, Saed; Robertson, David J.

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo generators such as 225Ac, which emits four particles in its decay chain, can significantly amplify the radiation dose delivered to the target site. However, renal dose from unbound 213Bi escaping during the decay process limits the dose of 225Ac that can be administered. Traditional chelating moieties are unable to sequester the radioactive daughters because of the high recoil energy from alpha particle emission. To counter this, we demonstrate that an engineered multilayered nanoparticle-antibody conjugate can both deliver radiation and contain the decay daughters of the in vivo -generator 225Ac while targeting biologically relevant receptors. These multi-shell nanoparticles combine the radiation resistance of crystalline lanthanide phosphate to encapsulate and contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established surface chemistry of gold for attachment of nanoparticles to targeting antibodies.

  17. Zirconium(IV)-Benzene Phosphonate Coordination Polymers: Lanthanide and Actinide Extraction and Thermal Properties.

    PubMed

    Luca, Vittorio; Tejada, Juan J; Vega, Daniel; Arrachart, Guilhem; Rey, Cyrielle

    2016-08-15

    Coordination polymers with different P/(Zr + P) molar ratios were prepared by combining aqueous solutions of Zr(IV) and benzenephosphonate derivatives. 1,3,5-Benzenetrisphosphonic acid (BTP) as well as phosphonocarboxylate derivatives in which carboxylate substitutes one or two of the phosphonate groups were chosen as the building blocks. The precipitates obtained on combining the two solutions were not X-ray amorphous but rather were indicative of poorly ordered materials. Hydrothermal treatment did not alter the structure of the materials produced but did result in improved crystalline order. The use of HF as a mineralizing agent during hydrothermal synthesis resulted in the crystallization of at least three relatively crystalline phases whose structure could not be determined owing to the complexity of the diffraction patterns. Gauging from the similarity of the diffraction patterns of all the phases, the poorly ordered precipitates and crystalline materials appeared to have similar underlying structures. The BTP-based zirconium phosphonates all showed a higher selectivity for lanthanides and thorium compared with cations such as Cs(+), Sr(2+), and Co(2+). Substitution of phosphonate groups by carboxylate groups did little to alter the pattern of selectivity implying that selectivity in the system was entirely determined by the -POH group with little influence from the -COOH groups. Samples with the highest phosphorus content showed the highest extraction efficiencies for lanthanide elements, especially the heavy lanthanides such as Dy(3+) and Ho(3+) with separation factors of around four with respect to La(3+). In highly acid solutions (4 M HNO3) there was a pronounced variation in extraction efficiency across the lanthanide series. In situ, nonambient diffraction was performed on ZrBTP-0.8 loaded with Th, Ce, and a complex mixture of lanthanides. In all cases the crystalline Zr2P2O7 pyrophosphate phase was formed at ∼800 °C demonstrating the versatility of

  18. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles.

    PubMed

    Wisser, Michael D; Chea, Maverick; Lin, Yu; Wu, Di M; Mao, Wendy L; Salleo, Alberto; Dionne, Jennifer A

    2015-03-11

    NaYF4:Yb(3+),Er(3+) nanoparticle upconverters are hindered by low quantum efficiencies arising in large part from the parity-forbidden nature of their optical transitions and the nonoptimal spatial separations between lanthanide ions. Here, we use pressure-induced lattice distortion to systematically modify both parameters. Although hexagonal-phase nanoparticles exhibit a monotonic decrease in upconversion emission, cubic-phase particles experience a nearly 2-fold increase in efficiency. In-situ X-ray diffraction indicates that these emission changes require only a 1% reduction in lattice constant. Our work highlights the intricate relationship between upconversion efficiency and lattice geometry and provides a promising approach to modifying the quantum efficiency of any lanthanide upconverter. PMID:25647523

  19. Collection of Lanthanides and Actinides from Natural Waters with Conventional and Nanoporous Sorbents

    SciTech Connect

    Johnson, Bryce E.; Santschi, Peter H.; Chuang, Chia-Ying; Otosaka, Shigeyoshi; Addleman, Raymond S.; Douglas, Matthew; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Davidson, Joseph D.; Fryxell, Glen E.; Schwantes, Jon M.

    2012-10-16

    Effective collection of trace-level lanthanides and actinides is advantageous for recovery and recycling of valuable resources, environmental remediation, chemical separations and in-situ monitoring. Using isotopic tracers, we have evaluated a number of conventional and nanoporous sorbent materials for their ability to capture and remove selected lanthanides (Ce and Eu) and actinides (Th, Pa, U, and Np) from fresh and salt water systems. In general, the nanostructured materials demonstrated a higher level of performance and consistency. Nanoporous silica surface modified with 3,4- hydroxypyridinone provided excellent collection and consistency in both river water and seawater. The MnO2 materials, particular the high surface area small particle material also demonstrated good performance. Other conventional sorbents typically performed at the levels below the nanostructured sorbents and demonstrate a larger variability and matrix dependency.

  20. De Novo Designed Imaging Agents Based on Lanthanide Peptides Complexes.

    PubMed

    Peacock, A F A

    2016-01-01

    Herein are discussed a selection of lanthanide peptide/protein complexes in view of their potential applications as imaging agents, both in terms of luminescence detection and magnetic resonance imaging. Though this chapter covers a range of different peptides and protein, if focuses specifically on the opportunities afforded by the de novo design of coiled coils, miniature protein scaffolds, and the development on lanthanide-binding sites into these architectures. The requirements for lanthanide coordination and the challenges that need to be addressed when preparing lanthanide peptides with a view to their potential adoption as clinical imaging applications, will be highlighted. PMID:27586349

  1. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  2. Giant exchange interaction in mixed lanthanides

    NASA Astrophysics Data System (ADS)

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-04-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction.

  3. Giant exchange interaction in mixed lanthanides

    PubMed Central

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  4. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  5. Giant exchange interaction in mixed lanthanides.

    PubMed

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  6. Optimizing Sensitization Processes in Dinuclear Luminescent Lanthanide Oligomers. Selection of Rigid Aromatic Spacers

    PubMed Central

    Lemonnier, Jean-François; Guénée, Laure; Beuchat, César; Wesolowski, Tomasz A.; Mukherjee, Prasun; Waldeck, David H.; Gogick, Kristy A.; Petoud, Stéphane; Piguet, Claude

    2011-01-01

    This work illustrates a simple approach for optimizing the lanthanide luminescence in molecular dinuclear lanthanide complexes and identifies a particular multidentate europium complex as the best candidate for further incorporation into polymeric materials. The central phenyl ring in the bis-tridentate model ligands L3–L5, which are substituted with neutral (X = H, L3), electronwithdrawing (X = F, L4), or electron-donating (X = OCH3, L5) groups, separate the 2,6-bis(benzimidazol-2-yl)pyridine binding units of linear oligomeric multi-tridentate ligand strands that are designed for the complexation of luminescent trivalent lanthanides, Ln(III). Reactions of L3–L5 with [Ln(hfac)3(diglyme)] (hfac− is the hexafluoroacetylacetonate anion) produce saturated single-stranded dumbbell-shaped complexes [Ln2(Lk)(hfac)6] (k = 3–5), in which the lanthanide ions of the two nine-coordinate neutral [N3Ln(hfac)3] units are separated by 12–14 Å. The thermodynamic affinities of [Ln(hfac)3] for the tridentate binding sites in L3–L5 are average (6.6≤log(β2,1Y,Lk)≤8.4) , but still result in 15–30% dissociation at millimolar concentrations in acetonitrile. In addition to the empirical solubility trend found in organic solvents (L4 > L3 ≫ L5), which suggests that the 1,4-difluorophenyl spacer in L4 is preferable, we have developed a novel tool for deciphering the photophysical sensitization processes operating in [Eu2(Lk)(hfac)6]. A simple interpretation of the complete set of rate constants characterizing the energy migration mechanisms provides straightforward objective criteria for the selection of [Eu2(L4)(hfac)6] as the most promising building block. PMID:21882836

  7. Coordination of lanthanides by two polyamino polycarboxylic macrocycles: formation of highly stable lanthanide complexes

    SciTech Connect

    Loncin, M.F.; Desreux, J.F.; Merciny, E.

    1986-07-16

    The formation constants of a few lanthanide complexes with DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and TETA (1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) have been measured by potentiometric and competition methods. The ligand DOTA forms the most stable lanthanide chelates known so far (log K/sub ML/ = 28.2-29.2) while the stability of the TETA compounds at 80 /sup 0/C (log K/sub ML/ = 14.5-16.5) is comparable to the stability of the EDTA complexes. A competition method with the oxalate anion as a probe had to be used for determining the formation constants of the DOTA lanthanide chelates because of the high stability of these compounds. The relative stability of the DOTA and TETA complexes in accounted for by steric factors with reference to known solution- and solid-state structures. 20 references, 2 tables.

  8. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. PMID:26471940

  9. Switchable sensitizers stepwise lighting up lanthanide emissions

    PubMed Central

    Zhang, Yan; Jiao, Peng-Chong; Xu, Hai-Bing; Tang, Ming-Jing; Yang, Xiao-Ping; Huang, Shaoming; Deng, Jian-Guo

    2015-01-01

    Analagous to a long-ranged rocket equipped with multi-stage engines, a luminescent compound with consistent emission signals across a large range of concentrations from two stages of sensitizers can be designed. In this approach, ACQ, aggregation-caused quenching effect of sensitizers, would stimulate lanthanide emission below 10−4 M, and then at concentrations higher than 10−3 M, the “aggregation-induced emission” (AIE) effect of luminophores would be activated with the next set of sensitizers for lanthanide emission. Simultaneously, the concentration of the molecules could be monitored digitally by the maximal excitation wavelengths, due to the good linear relationship between the maximal excitation wavelengths and the concentrations {lg(M)}. This model, wherein molecules are assembled with two stages (both AIE and ACQ effect) of sensitizers, may provide a practicable strategy for design and construction of smart lanthanide bioprobes, which are suitable in complicated bioassay systems in which concentration is variable. PMID:25791467

  10. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    SciTech Connect

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen; Zhou, Zhao-Hui

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd, 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series

  11. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications.

    PubMed

    Wang, Guofeng; Peng, Qing; Li, Yadong

    2011-05-17

    . These binary nanoparticles can be hybridized with a third DNA (target DNA) molecule and separated with the assistance of a magnetic field. In addition, a novel fluorescence resonance energy transfer (FRET) method for nonenzymatic glucose determination has been developed by using the glucose-modified LaF(3):Ce(3+)/Tb(3+) nanocrystals. By using bioconjugated NaYF(4):Yb(3+)/Er(3+) nanoparticles as the energy donor and bioconjugated gold nanoparticles as the energy acceptor, we successfully developed a simple and sensitive fluorescence resonance energy transfer (FRET) biosensor for avidin. Meanwhile, we also carried out preliminary studies to investigate possible applications of lanthanide-doped nanocrystals in catalysis and in dye-sensitized solar cells. PMID:21395256

  12. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Vuojola, Johanna; Soukka, Tero

    2014-03-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.

  13. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2008-07-29

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  14. Phthalamide lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth M.; Xu, Jide

    2003-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  15. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2002-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  16. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2006-03-28

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  17. Phthalamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth M.; Xu, Jide

    2005-03-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  18. Phthalamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2008-10-28

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  19. Band gap engineering by lanthanide doping in the photocatalyst LaOF: First-principles study

    NASA Astrophysics Data System (ADS)

    Long, Jin-Ping; Wan, Zhou; Yan, Xin-Guo; Huang, Wei-Qing; Huang, Gui-Fang; Peng, Ping

    2014-02-01

    Recent experiment [Xie et al., Catal. Commun., 27, 21 (2012)] reported that LaOF is an active catalyst for water reduction: the catalytic activity per surface area of LaOF is about ten times higher than that of anatase TiO2. First-principles density functional theory (DFT) calculations have been performed on Ln-doped LaOF (Ln = Ce, Pr, Nd and Pm) to evaluate the effect of lanthanide doping on the electronic and optical properties. It is found that the lowest conduction band (CB) edge potential of LaOF is less than zero (versus normal hydrogen electrode (NHE)), confirming it has enough driving force for photocatalytic water splitting. The band gap of LaOF could be reduced significantly by lanthanide doping. Electronic structure analysis shows that the impurity states appear deep inside the band gap of LaOF, which is in favor of the separation center of photogenerated carriers due to large effective mass differences between electron and hole. Moreover, doping both Pm and Nd into LaOF is an effective approach to extend the optical absorption edge to the visible light. These findings suggest that LaOF doped with lanthanide element is a promising candidate for the photocatalytic hydrogen generation from water and pollutant decomposition.

  20. Sensing lanthanide metal content in biological tissues with magnetic resonance spectroscopy.

    PubMed

    Hingorani, Dina V; Gonzalez, Sandra I; Li, Jessica F; Pagel, Mark D

    2013-01-01

    The development and validation of MRI contrast agents consisting of a lanthanide chelate often requires a determination of the concentration of the agent in ex vivo tissue. We have developed a protocol that uses 70% nitric acid to completely digest tissue samples that contain Gd(III), Dy(III), Tm(III), Eu(III), or Yb(III) ions, or the MRI contrast agent gadodiamide. NMR spectroscopy of coaxial tubes containing a digested sample and a separate control solution of nitric acid was used to rapidly and easily measure the bulk magnetic susceptibility (BMS) shift caused by each lanthanide ion and gadodiamide. Each BMS shift was shown to be linearly correlated with the concentration of each lanthanide ion and gadodiamide in the 70% nitric acid solution and in digested rat kidney and liver tissues. These concentration measurements had outstanding precision, and also had good accuracy for concentrations ≥10 mM for Tm(III) Eu(III), and Yb(III), and ≥3 mM for Gd(III), gadodiamide, and Dy(III). Improved sample handling methods are needed to improve measurement accuracy for samples with lower concentrations. PMID:24152931

  1. Conductimetric and spectrophotometric investigation of lanthanide cyclohexaphosphates

    NASA Astrophysics Data System (ADS)

    Ben Nasr, Chérif

    2000-06-01

    The preparation and properties of some lanthanide cyclohexaphosphates Ln 2P 6O 18· nH 2O (Ln=La, Ce, Pr, Nd, Sm, Er and Yb) are described. Conductivity measurements and IR spectra are presented. The comparison with properties of some other salts, Nd (BrO 3) 3·9H 2O, NdP 3O 9·3H 2O and Nd 4 (P 4O 12) 3·13H 2O, suggests that the coordination number of Nd 3+ in the cyclohexaphosphate is nine.

  2. Lanthanides in humic acids of soils, paleosols and cultural horizons (Southern Urals, Russia)

    NASA Astrophysics Data System (ADS)

    Dergacheva, Maria; Nekrasova, Olga

    2013-04-01

    .13 to 0.49 mg/kg, terbium and lutetium - two orders of magnitude. The quantities determined by us for lanthanum is also high at 1,9-3,3 mg/kg. In this case all lanthanides in modern soils have the degree of accumulation in humic acids distinguished from other objects: Ce>La>Sm>Yb>Eu>Tb>Lu. In the paleosols and cultural layer these series are identical: Ce>La>Yb>Sm>Eu>Lu>Tb. There is suggested the approach to direct estimation of share of the lanthanides connected by humic acids in the their total soil pool which includes recalculation of the content of separate elements in humic acid preparations on carbon of soil humic acids (in mg/kg) and the subsequent correlation of their quantities. The content of the total organic carbon in soil, a share of humic acids as a humus part, the lanthanide content and weight carbon percentage in humic acid preparations were considered during recalculations. The results have shown that the highest shares of all elements are found in modern background soils, the lowest - in the soils buried under barrows. The total percentage of all lanthanides in humic acids is 4.63% in relation to their content in modern soil, 1.56% - in CL and 1.36% - in buried paleosols.

  3. Lanthanide Complexes as a Test for Evidence of Life

    NASA Technical Reports Server (NTRS)

    Benavides, Jeannette

    1998-01-01

    The objective of this research is to advance the understanding of the interaction of lanthanide metals with biological organic molecules and to develop a technique to detect these compounds in the solid state and in situ in Mars and other planetary bodies. The detection of these complexes should provide evidence of life past or present. In addition, detection of the metals alone will provide important information about the geological history of a planetary body. Lanthanides were chosen as our focus of interest because they form very stable complexes with organic molecules in solution and they produce intense luminescence in the ultraviolet and visible spectra. The rare earth complexes available are mostly synthetic for diverse applications in medicine. There is not much work done on the complexes that form in nature. Lanthanides have many applications and they are mined aR over the world, however, since the interest has been only in the elements, the analytical techniques employed destroy any organic ligands that may be present. In order to determine if and which lanthanide complexes form in nature and their concentration, soil samples have been collected from areas rich in soluble lanthanide compounds like phosphates and also rich in vegetation. The soil samples will be analyzed and the lanthanide complexes if present will be isolated and characterized. A spectrometer to detect the lanthanide complexes in situ and in the solid state will be designed. In this workshop, the research approach and its implications will be discussed.

  4. Spectral studies of Lanthanide interactions with membrane surfaces

    SciTech Connect

    Karukstis, K.K.; Kao, M.Y.; Savin, D.A.; Bittker, R.A.; Kaphengst, K.J.; Emetarom, C.M.; Naito, N.R.; Takamoto, D.Y.

    1995-03-23

    We have monitored the interactions of the series of trivalent lanthanide cations with the thylakoid membrane surface of spinach chloroplasts using two complementary spectral techniques. Measurements of the fluorescence emission of the extrinsic probe 2-p-toluidinonaphthalene-6-sulfonate (TNS) and the absorbance of the intrinsic chromophore chlorophyll provide two sensitive means of characterizing the dependence of the cation-membrane interaction on the nature of the cation. In these systems, added lanthanide cations adsorb onto the membrane surface to neutralize exposed segments of membrane-embedded protein complexes. The lanthanide-induced charge neutralization increases the proximity of added TNS anion to the membrane surface as evidenced by variations in the TNS fluorescence level and wavelength of maximum emission. Our results reveal a strong dependence of TNS fluorescence parameters on both lanthanide size and total orbital angular momentum L value. Lanthanides with greater charge density (small size and/or low L value) enhance the TNS fluorescence level to a greater extent. A possible origin for the lanthanide-dependent TNS fluorescence levels is suggested in terms of a heterogeneity in the number and type of TNS binding sites. The data are consistent with the proposal that larger lanthanides with smaller enthalpies of hydration induce more significant membrane appression. 59 refs., 9 figs., 2 tabs.

  5. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    SciTech Connect

    Song, Xue-Qin Lei, Yao-Kun; Wang, Xiao-Run; Zhao, Meng-Meng; Peng, Yun-Qiao; Cheng, Guo-Quan

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversities indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.

  6. The Crystal Structure of Lanthanide Zirconates

    NASA Astrophysics Data System (ADS)

    Clements, Richard; Kennedy, Brendan; Ling, Christopher; Stampfl, Anton P. J.

    2010-03-01

    The lanthanide zirconates of composition Ln2Zr2O7 (Ln = La-Gd) are of interest for use in inert matrix fuels and nuclear wasteforms. The series undergoes a pyrochlore to fluorite phase transition as a function of the Ln atomic radii. The phase transition has been attributed to disordering of both the cation and the anion [1]. We have undertaken a synthesis of the lanthanide zirconate series Ln2Zr2O7 (Ln = La-Gd), Ln0.2Zr0.8O1.9 (Ln = Tb-Yb) and NdxHo2-xZr2O7 (0

  7. N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides as donor ligands for separation of rare earth elements with a high and unusual selectivity. DFT computational and experimental studies.

    PubMed

    Ustynyuk, Yu A; Borisova, N E; Babain, V A; Gloriozov, I P; Manuilov, A Y; Kalmykov, S N; Alyapyshev, M Yu; Tkachenko, L I; Kenf, E V; Ustynyuk, N A

    2015-05-01

    N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides (IV) were predicted (DFT simulation) and then were proved experimentally to be efficient donor ligands with high and unusual selectivity for the extraction separation of lanthanides. Distribution coefficients D of lanthanide cations in two-phase aqueous solution-polar organic solvent decrease with increasing Ln(3+) atomic number. The selectivity factors SFLn1/Ln2 for adjacent lanthanide ions were found to be about 3. PMID:25828700

  8. The solution structure of Ln (DOTP) 5- complexxes. A comparison of lanthanide-induced paramagnetic shifts with the MMX energy-minimized structure

    NASA Astrophysics Data System (ADS)

    Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.

    Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.

  9. Some aspects of the geochemistry of yttrium and the lanthanides

    USGS Publications Warehouse

    Fleischer, Michael

    1965-01-01

    Recent data on the relative abundances of the lanthanides and yttrium in meteorites, basaltic rocks, granitic rocks and sedimentary rocks are reviewed. It is shown that the data are inadequate to substantiate or to disprove Taylor's derivation from these data of a 1:1 abundance ratio of basaltic to granitic rocks in the continental crust. Graphs are given to illustrate the variation of lanthanides in minerals with paragenesis. Both the paragenesis and the crystal chemistry of minerals affect the composition of the lanthanides.

  10. Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography.

    PubMed

    Zhang, Li-Shun; Du, Pei-Yao; Gu, Wen; Zhao, Qing-Li; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-08-26

    A new lanthanide metal-organic frameworks NKU-1 have successfully incorporated into poly (BMA-co-EDMA) monolith and evaluated by capillary electrochromatography (CEC). Lanthanide metal-organic frameworks [Eu2(ABTC)1.5(H2O)3(DMA)] (NKU-1) were synthesized by self-assembly of Eu(III) ions and 3,3',5,5'-azo benzene tetracarboxylic acid ligands have been fabricated into poly(BMA-co-EDMA) monoliths. 1-Butyl-3-methylimidazolium tetrafluoroborate and N,N-dimethylformamide were developed as binary porogen obtaining homogeneous dispersibility for NKU-1 and high permeability for monolithic column. The successful incorporation of NKU-1 into poly(BMA-co-EDMA) was confirmed and characterized by FT-IR spectra, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer area scanning, and transmission electron microscopy. Separation ability of the NKU-1-poly (BMA-co-EDMA) monoliths was demonstrated by separating four groups of analytes in CEC, including alkylbenzenes, polycyclic aromatic hydrocarbon, aniline series and naphthyl substitutes. Compared with bare monolithic (column efficiency of 100,000plates/m), the NKU-1-poly (BMA-co-EDMA) monoliths have displayed greater column efficiency (maximum 210,000plates/m) and higher permeability, as well as less peak tailing. The results showed that the NKU-1-poly (BMA-co-EDMA) monoliths are promising stationary phases for CEC separations. PMID:27432788

  11. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    NASA Astrophysics Data System (ADS)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen; Zhou, Zhao-Hui

    2014-11-01

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H3pdta)(H2O)5]n·2Cln·3nH2O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H4pdta=1,3-propanediaminetetraacetic acid, C11H18N2O8) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H2pdta)(H2O)3]n·Cln·2nH2O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H2pdta)(H2O)2]n·Cln·2nH2O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd, 14] were isolated at 70 °C. When the crystals of 1-4 were hydrothermally heated at 180 °C with 1-2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]n·nH2O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H2O)]n·4nH2O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1-5 are soluble in water and 1 was traced by solution 13C{1H} NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature.

  12. Photo-reactive charge trapping memory based on lanthanide complex

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  13. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

    PubMed Central

    McLaughlin, Mark F.; Woodward, Jonathan; Boll, Rose A.; Wall, Jonathan S.; Rondinone, Adam J.; Kennel, Stephen J.; Mirzadeh, Saed; Robertson, J. David

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the 225Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of 225Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties. PMID:23349921

  14. Correlation effects in La, Ce, and lanthanide ions

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.; Safronova, Marianna; Safronova, Ulyana

    2015-05-01

    We carry out a comprehensive study of higher-order correlation effects to the excitation energies of La, La+, Ce, Ce+, Ce2+, and Ce3+. The calculations are carried out using two hybrid approaches that combine configuration interaction with second-order perturbation theory and the linearized coupled-cluster all-order method. Use of two approaches allows us to isolate the effects of third- and higher-order corrections for various configurations. Comparison of results for monovalent and multivalent systems allowed us to separately study the importance of the core-valence and valence-valence correction. We also study the contribution of higher partial waves and investigate methods to extrapolate the effect of omitted partial waves. The effects of the higher partial waves for the monovalent configuration of La2+ and Ce3+ are compared with analogous effects in multivalent configurations of La, La+, Ce, Ce+, and Ce2+. Tests of our extrapolation techniques are carried out for several Cd-like lanthanide ions. The results of the present studies are of particular interest to the development of high-precision methods for treatment of systems with partially filled nf shells that are of current experimental interest for a diverse set of applications.

  15. Photo-reactive charge trapping memory based on lanthanide complex

    PubMed Central

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-01-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices. PMID:26449199

  16. Photo-reactive charge trapping memory based on lanthanide complex.

    PubMed

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L

    2015-01-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices. PMID:26449199

  17. Lanthanide-promoted ethylation of Schiff bases by triethylaluminum.

    PubMed

    Tsvelikhovsky, Dmitry; Gelman, Dmitri; Molander, Gary A; Blum, Jochanan

    2004-06-10

    [reaction: see text] Schiff bases of aromatic aldehydes and anilines that fail to react with triethylaluminum are smoothly alkylated at room temperature in the presence of lanthanide catalysts. The alkylation takes place selectively at the vinylic carbon atom. PMID:15176802

  18. Submicrogram determination of lanthanides through quenching of calcein blue fluorescence

    SciTech Connect

    Brittain, H.G.

    1987-04-15

    It has been found that trace levels of lanthanide ions efficiently quench the fluorescence of calcein blue and that an analytical method based on this quenching is far more sensitive (0.01-0.02 ..mu..g/mL depending on the identity of the lanthanide ion) than existing methods based on absorption spectrophotometry. The sensitivity levels are comparable to those noted for fluorescence observation of the few lanthanides which luminesce directly, but the calcein blue method may be applied equally well to any lanthanide ion. Interference by divalent transition-metal ions has been noted, but the lower degrees of quenching efficiency by these ions ensure that significant interference will exist only at relatively high metal levels.

  19. Extraction Separation of Rare-Earth Ions via Competitive Ligand Complexations between Aqueous and Ionic-Liquid Phases

    SciTech Connect

    Luo, Huimin; Sun, Xiaoqi; Bell, Jason R; Dai, Sheng

    2011-01-01

    The extraction separation of rare earth elements is the most challenging separation processes in hydrometallurgy and advanced nuclear fuel cycles. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) is a prime example of these separation processes. The objective of this paper is to explore the use of ionic liquids (ILs) for the TALSPEAK-like process, to further enhance its extraction efficiencies for lanthanides, and to investigate the potential of using this modified TALSPEAK process for separation of lanthanides among themselves. Eight imidazolium ILs ([Cnmim][NTf2] and [Cnmim][BETI], n=4,6,8,10) and one pyrrolidinium IL ([C4mPy][NTf2]) were investigated as diluents using di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant for separation of lanthanide ions from aqueous solutions of 50 mM glycolic acid or citric acid and 5 mM diethylenetriamine pentaacetic acid (DTPA). The extraction efficiencies were studied in comparison with diisopropylbenzene (DIPB), an organic solvent used as diluent for the conventional TALSPEAK extraction system. Excellent extraction efficiencies and selectivities were found for a number of lanthanide ions using HDEHP as an extractant in these ILs. The effects of different alkyl chain lengths in the cations of ILs and anions on extraction efficiencies and selectivities of lanthanide ions are also presented in this paper.

  20. Production of lanthanide molecular ion beams by fluorination technique

    NASA Astrophysics Data System (ADS)

    Roussière, B.; Deloncle, I.; Barré-Boscher, N.; Cardona, M. A.; Cheikh Mhamed, M.; Corbin, T.; Cottereau, E.; Croizet, H.; Dimitrov, B.; Essabaa, S.; Gavrilov, G.; Gottardo, A.; Goutev, N.; Guillot, J.; Hojman, D.; Lau, C.; Roccia, S.; Tusseau-Nenez, S.; Verney, D.; Yavahchova, M.; the ALTO collaboration

    2016-06-01

    Systematic off-line fluorination studies on all the stable lanthanide isotopes have been performed. The results are presented as a function of various parameters such as the target temperature, the type of ion source used (hot plasma or surface ionization) and the quantity of CF4 introduced. The first on-line measurements allowed us to determine the optimal experimental conditions for producing radioactive lanthanide isotopes.

  1. Lighting up cells with lanthanide self-assembled helicates

    PubMed Central

    Bünzli, Jean-Claude G.

    2013-01-01

    Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthanide luminescent probes illuminating live cells and selectively detecting biomarkers expressed by cancerous human breast cells. PMID:24511387

  2. Non-classical divalent lanthanide complexes.

    PubMed

    Nief, François

    2010-08-01

    The synthesis of non-classical divalent lanthanide complexes, i.e. those not containing the classical samarium(II), europium(II) or ytterbium(II), was once thought impossible. Since 1997, when the first stable complex of thulium(II) was discovered, there has been many more examples of stable coordination and organometallic complexes of lanthanum(II), neodymium(II) and dysprosium(II) in addition to thulium(II), and the influence of the ligand system on the stability of the complexes is beginning to be understood. These non-classical divalent compounds show exceptional reactivity as some of them have been shown to activate dinitrogen at room temperature, together with related reduced divalent-like systems, and to undergo spontaneous intramolecular carbon-hydrogen bond activation. Many more examples of non-classical divalent compounds together with new aspects of their exciting reactivity should be discovered in the near future. PMID:20631944

  3. Polymorphic Lanthanide Phosphonates Showing Distinct Magnetic Behavior.

    PubMed

    Zeng, Dai; Ren, Min; Bao, Song-Song; Cai, Zhong-Sheng; Xu, Chang; Zheng, Li-Min

    2016-06-01

    A series of layered lanthanide phosphonates α-Ln(2-qpH)(SO4)(H2O)2 (α-Ln; Ln = Gd, Tb, Ho, Er) and β-Ln(2-qpH)(SO4)(H2O)2 (β-Ln; Ln = Gd, Tb, Ho, Er, Yb) (2-qpH2 = 2-quinolinephosphonic acid) have been synthesized and characterized. Compounds α-Ln crystallize in monoclinic space group P21/c, while compounds β-Ln crystallize in triclinic space group P1̅. Magnetic studies reveal that dominant ferromagnetic interactions are propagated between the magnetic centers in all cases. Field-induced magnetic relaxation is observed in compounds β-Er and β-Yb. PMID:27183034

  4. Lanthanide clusters with azide capping ligands.

    PubMed

    Moore, Brian F; Emge, Thomas J; Brennan, John G

    2013-05-20

    Weakly binding azide ligands have been used as surface caps in the synthesis of lanthanide oxo and selenido clusters. Addition of NaN3 and Na2O to in situ prepared solutions of Ln(SePh)3 in pyridine results in the formation of (py)18Sm6Na2O2(N3)16 or (py)10Ln6O2(N3)12(SePh)2 (Ln = Ho, Er), with the Sm and Er compounds characterized by low temperature single crystal X-ray diffraction. Attempts to prepare chalcogenido derivatives by ligand-based redox reactions using elemental Se were successful in the preparation of (py)10Er6O2(SeSe)2(N3)10, a diselenido cluster having crystallographic disorder due to some site sharing of both SeSe and N3 ligands. These compounds all detonate when heated. PMID:23639142

  5. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    NASA Astrophysics Data System (ADS)

    Song, Xue-Qin; Lei, Yao-Kun; Wang, Xiao-Run; Zhao, Meng-Meng; Peng, Yun-Qiao; Cheng, Guo-Quan

    2014-10-01

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis{[(2‧-furfurylaminoformyl)phenoxyl]methyl}-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 63, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversities indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of EuIII, TbIII and DyIII complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in EuIII, TbIII and DyIII complexes can be efficiently sensitized by the ligand.

  6. Macroscopic and spectroscopic analysis of lanthanide adsorption to bacterial cells

    NASA Astrophysics Data System (ADS)

    Ngwenya, Bryne T.; Mosselmans, J. Fred W.; Magennis, Marisa; Atkinson, Kirk D.; Tourney, Janette; Olive, Valerie; Ellam, Robert M.

    2009-06-01

    This study was designed to combine surface complexation modelling of macroscopic adsorption data with X-ray Absorption Spectroscopic (XAS) measurements to identify lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were analysed using XAS. Surface complexation modelling was consistent with the light lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure (EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the two approaches yield broadly consistent information with regard to surface site identity and lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based on the best-fitting p Ka site, we infer that the phosphate sites are located on N-acetylglucosamine phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that deprotonate around neutral pH.

  7. Calibration beads containing luminescent lanthanide ion complexes

    NASA Astrophysics Data System (ADS)

    Leif, Robert C.; Jin, Dayong; Piper, James; Vallarino, Lidia M.; Williams, John W.; Yang, Sean; Zucker, Robert M.

    2008-02-01

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including microscopes. Methods: 0.5, 3, and 5 micron (µm) beads containing a luminescent europium-complex were manufactured and the luminescence distribution of the 5 µm beads was measured with a time-delayed luminescence flow cytometer and a timedelayed digital microscope. The distribution of the luminescence intensity from the europium-complex in individual beads was determined on optical sections by confocal microscopy. The emission spectra of the beads under UV excitation were determined with a PARISS® spectrophotometer. The kinetics of the luminescence bleaching caused by UV irradiation were measured under LED excitation with a fluorescence microscope. Results: The kinetics of UV bleaching were very similar for the 0.5, 3, and 5 µm beads. Emission peaks were found at 592, 616, and 685 nanometers (nm). The width of the principal peak at half-maximum (616 nm) was 9.9 nm. The luminescence lifetimes in water and in air were 340 and 460 microseconds (µs), respectively. The distribution of the europium- complex in the beads was homogeneous. Conclusions: The 5 µm beads can be used for spectral calibration of microscopes equipped with a spectrograph, as test particles for time-delayed luminescence flow cytometers, and possibly as labels for macromolecules and cells.

  8. Review Article: The Effects of Radiation Chemistry on Solvent Extraction 3: A Review of Actinide and Lanthanide Extraction

    SciTech Connect

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2009-12-01

    The partitioning of the long-lived ?-emitters and the high-yield fission products from dissolved nuclear fuel is a key component of processes envisioned for the safe recycling of nuclear fuel and the disposition of high-level waste. These future processes will likely be based on aqueous solvent extraction technologies for light water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic, aqueous acidic environment. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used in the third step in the series of separations, for the group extraction of the lanthanides and actinides. This includes traditional organophosphorous reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.

  9. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  10. Theoretical Insights into Covalency Driven f Element Separations

    SciTech Connect

    Lindsay E. Roy; Nicholas J. Bridges; Leigh R. Martin

    2013-02-01

    The lanthanide series, Am, and Cm are predominantly found in the trivalent oxidation state in aqueous solutions making their separation very difficult to achieve. To date, one of the mostly promising separation processes for transplutonium elements from the lanthanides is the TALSPEAK process. Though the mechanism of the TALSPEAK process is not fully understood, it has been demonstrated to provide excellent separation factors between the lanthanides and the trivalent lanthanides. Through Density Function Theory (DFT) calculations of di 2-ethylenetriamine-N,N,N',N”,N”-pentaacetic acid (DTPA), we set out to understand the structures and stabilities of the aqueous phase complexes [MIII(DTPA)-H2O]2- (M = Nd, Am) as well as the changes in Gibbs free energy for complexation in the gas phase and aqueous solution. Mulliken population analysis, Bader’s Atoms-in-Molecules (AIM) approach, and Natural Bond Orbital (NBO) analysis were then used to analyze the bonding in both molecules. The results discussed below suggest that the preference of the DTPA5- ligand for Am over Nd is mainly due to electrostatic and covalent interactions from the oxygen atoms with the nitrogen chelates provide an additional, yet small, covalent interaction. These results question the exclusive use of hard and soft acids and bases (HSAB) concepts for the design of extracting reagents and suggest that hard-soft interactions play more of a role in the separations process than previously thought.

  11. Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides.

    PubMed

    Wang, Cong-Zhi; Lan, Jian-Hui; Wu, Qun-Yan; Zhao, Yu-Liang; Wang, Xiang-Ke; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-06-21

    At present, designing novel ligands for efficient actinide extraction in spent nuclear fuel reprocessing is extremely challenging due to the complicated chemical behaviors of actinides, the similar chemical properties of minor actinides (MA) and lanthanides, and the vulnerability of organic ligands in acidic radioactive solutions. In this work, a quantum chemical study on Am(III), Cm(III) and Eu(III) complexes with N,N,N',N'-tetraoctyl diglycolamide (TODGA) and N,N'-dimethyl-N,N'-diheptyl-3-oxapentanediamide (DMDHOPDA) has been carried out to explore the extraction behaviors of trivalent actinides (An) and lanthanides (Ln) with diglycolamides from acidic media. It has been found that in the 1 : 1 (ligand : metal) and 2 : 1 stoichiometric complexes, the carbonyl oxygen atoms have stronger coordination ability than the ether oxygen atoms, and the interactions between metal cations and organic ligands are substantially ionic. The neutral ML(NO3)3 (M = Am, Cm, Eu) complexes seem to be the most favorable species in the extraction process, and the predicted relative selectivities are in agreement with experimental results, i.e., the diglycolamide ligands have slightly higher selectivity for Am(III) over Eu(III). Such a thermodynamical priority is probably caused by the higher stabilities of Eu(III) hydration species and Eu(III)-L complexes in aqueous solution compared to their analogues. In addition, our thermodynamic analysis from water to organic medium confirms that DMDHOPDA has higher extraction ability for the trivalent actinides and lanthanides than TODGA, which may be due to the steric hindrance of the bulky alkyl groups of TODGA ligands. This work might provide an insight into understanding the origin of the actinide selectivity and a theoretical basis for designing highly efficient extractants for actinide separation. PMID:24769618

  12. Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells

    SciTech Connect

    Goel, Ashutosh; Reddy, Allu Amarnath; Pascual, Maria J.; Gremillard, Laurent; Malchere, Annie; Ferreira, Jose M.

    2012-05-01

    This article reports on the influence of different lanthanides (La, Nd, Gd and Yb) on sintering behavior of alkaline-earth aluminosilicate glass-ceramics sealants for their application in solid oxide fuel cells (SOFC). All the glasses have been prepared by melt-quench technique. The in situ follow up of sintering behavior of glass powders has been done by high temperature - environmental scanning electron microscope (HT-ESEM) and hot-stage microscope (HSM) while the crystalline phase evolution and assemblage has been analyzed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). All the glass compositions exhibit a glass-in-glass phase separation followed by two stage sintering resulting in well sintered glass powder compacts after heat treatment at 850 C for 1 h. Diopside (CaMgSi{sub 2}O{sub 6}) based phases constituted the major crystalline part in glass-ceramics followed by some minor phases. The increase in lanthanide content in glasses suppressed their tendency towards devitrification, thus, resulting in glass-ceramics with high amount of residual glassy phase (50-96 wt.%) which is expected to facilitate their self-healing behavior during SOFC operation. The electrical conductivity of the investigated glass-ceramics varied between (1.19 and 7.33) x 10{sup -7} S cm{sup -1} (750-800 C), and depended on the ionic field strength of lanthanide cations. Further experimentation with respect to the long term thermal and chemical stability of residual glassy phase under SOFC operation conditions along with high temperature viscosity measurements will be required in order to elucidate the potential of these glass-ceramics as self-healing sealants.

  13. Trivalent lanthanide interactions with a terdentate bis(dialkyltriazinyl)pyridine ligand studied by electrospray ionization mass spectrometry.

    PubMed

    Colette, Sonia; Amekraz, Badia; Madic, Charles; Berthon, Laurence; Cote, Gérard; Moulin, Christophe

    2003-04-01

    The 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridines (DATPs) belong to a new family of extracting agents recently developed in the framework of nuclear fuel reprocessing. These molecules exhibit exceptional properties to separate actinides(III) from lanthanides(III) in nitric acid solutions. A previous work showed that electrospray ionization mass spectrometry (ESI-MS) is a reliable technique to provide solution data such as stoichiometries and conditional stability constants of various DATP complexes with europium and evidenced the unusual capability of DiPTP [bis(di-iso-propyltriazinyl)pyridine] ligand to form 1:3 complexes in nitric acid solution. This latter result is further investigated by considering DiPTP complexation features with the complete lanthanide family. As a starting point of the experimental procedure used for stability constant evaluation, the intensity distribution of ions detected by ESI-MS is studied for solutions containing Ln(NO(3))(3) in water/methanol (1:1 v/v) with the pH value set at 2.8 and 4.6 by HNO(3) additions. At pH 2.8, the nitrate anions are found to prevent lanthanides from processes occurring within the ion source: redox phenomena or gas-phase reactions with methanol which give species such as [Ln(MeO)(2)](+). Thus, the total intensity of MS signals from [Ln(NO(3))(2)(H(2)O)(p)(MeOH)(n)](+) ions is found proportional to the metal ion concentration. At pH 4.6, with lower nitrate concentration, the nature of the species identified on mass spectra depends on the electronic properties of the lanthanide elements. It is shown that Ln(III) complexation with DiPTP leads to the exclusive formation of 1:3 complexes with the whole lanthanide series which may be due not only to the hydrophobic exterior of the ligand but also to the unusual electronic density distribution in DATP ligands as compared with other aza-aromatic ligands. The conditional stability constants of the 1:3 lanthanide(III) complexes with DiPTP have been determined at p

  14. {beta}-decay half-lives of new neutron-rich lanthanide isotopes

    SciTech Connect

    Ichikawa, S.; Tsukada, K.; Asai, M.; Nishinaka, I.; Nagame, Y.; Osa, A.; Sakama, M.; Oura, Y.; Kojima, Y.; Shibata, M.; Kawade, K.

    1998-12-21

    New neutron-rich lanthanide isotopes produced in the proton-induced fission of {sup 238}U have been identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The observed K x-rays following the {beta}{sup -}decay of products in the mass separated fraction provided direct isotopic identifications. New isotopes observed, with values of their half-lives given in parentheses, are {sup 159}Pm(2{+-}1 s), {sup 161}Sm(4.8{+-}0.8 s), {sup 165}Gd(10.3{+-}1.6 s), {sup 166}Tb(21{+-}6 s), {sup 167}Tb(19.4{+-}2.7 s) and {sup 168}Tb(8.2{+-}1.3 s). The half-life values are compared to the results of theoretical predictions.

  15. A Simple Empirical Analysis of the Enthalpies of Formation of Lanthanide Halides and Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1986-01-01

    Proposes a simple and general method whereby the lattice energies of lanthanide(II) and (IV) compounds are derived directly from those found experimentally for the corresponding lanthanide(III) compounds. The method is applicable to all lanthanide halides and oxides and involves calculations which can be easily and quickly performed by students.…

  16. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  17. Lanthanide-doped hollow nanomaterials as theranostic agents.

    PubMed

    Kang, Xiaojiao; Li, Chunxia; Cheng, Ziyong; Ma, Ping'an; Hou, Zhiyao; Lin, Jun

    2014-01-01

    The field of theranostics has sprung up to achieve personalized medicine. The theranostics fuses diagnostic and therapeutic functions, empowering early diagnosis, targeted drug delivery, and real-time monitoring of treatment effect into one step. One particularly attractive class of nanomaterials for theranostic application is lanthanide-doped hollow nanomaterials (LDHNs). Because of the existence of lanthanide ions, LDHNs show outstanding fluorescent and paramagnetic properties, enabling them to be used as multimodal bioimaging agents. Synchronously, the huge interior cavities of LDHNs are able to be applied as efficacious tools for storage and delivery of therapeutic agents. The LDHNs can be divided into two types based on difference of component: single-phase lanthanide-doped hollow nanomaterials and lanthanide-doped hollow nanocomposites. We describe the synthesis of first kind of nanomaterials by use of hard template, soft template, template-free, and self-sacrificing template method. For lanthanide-doped hollow nanocomposites, we divide the preparation strategies into three kinds (one-step, two-step, and multistep method) according to the synthetic procedures. Furthermore, we also illustrate the potential bioapplications of these LDHNs, including biodetection, imaging (fluorescent imaging and magnetic resonance imaging), drug/gene delivery, and other therapeutic applications. PMID:24227795

  18. Analysis of Performance of Selected AFC, ATF Fuels, and Lanthanide Transport

    SciTech Connect

    Unal, Cetin; Galloway, Jack D.

    2015-09-29

    We started to look at the performance of ATF concept in LWRs late in FY14 and finish our studies in FY15. The work has been presented in AFC review meetings, ICAPP and TOPFUEL conferences. The final version of the work is accepted for publication in Nuclear Engineering and Science Journal (NES). The copy of ICAPP and NES papers are attached separately to this document as our milestone deliverables. We made an important progress in the modeling of lanthanide transport in FY15. This work produced an ANS Winter Meeting paper and GLOBAL 2015 paper. GLOBAL 2015 paper is also attached as deliverable of FY15. The work on the lanthanide transport is preliminary. We are exploring other potential mechanisms, in addition to “liquid-like” diffusion mechanisms, proposed by Robert Mariani [1] before we analyze data that will be taken by Ohio State University. This year, we concentrate on developing diffusion kernels and principles of modeling. Next year, this work will continue and analyze the Ohio State data and develop approaches to solve multicomponent diffusion. In addition to three papers we attached to this report, we have done some research on coupling and the development of gas release model for metallic fuels in FY15. They are also preliminary in nature; therefore, we give the summary of what we found rather than an extended report that will be done in FY16.

  19. Double liquid membrane system for the removal of actinides and lanthanides from acidic nuclear wastes

    SciTech Connect

    Chiarizia, R.; Danesi, P.R.

    1985-01-01

    Supported liquid membranes (SLM), consisting of an organic solution of n-octyl-(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl-phosphate (TBP) in decalin are able to perform selective separation and concentration of actinide and lanthanide ions from aqueous nitrate feed solutions and synthetic nuclear wastes. In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of nitric acid which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO/sub 3/ from the strip solution. In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HNO/sub 3/ concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion. 15 refs., 10 figs., 1 tab.

  20. Double liquid membrane system for the removal of actinides and lanthanides from acidic nuclear wastes

    SciTech Connect

    Chiarizia, R.; Danesi, P.R.

    1987-01-01

    Supported liquid membranes (SLM), consisting of an organic solution of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl-phosphate (TBP) in decalin are able to perform selective separation and concentration of actinide and lanthanide ions from aqueous nitrate feed solutions and synthetic nuclear wastes. In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of HNO3 which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO3 from the strip solution. In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HNO3 concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion.

  1. Topological aspects of lanthanide-adipate-aqua compounds: Close packed and open framework structures

    NASA Astrophysics Data System (ADS)

    Chowdhuri, Durga Sankar; Kumar Jana, Swapan; Hazari, Debdoot; Zangrando, Ennio; Dalai, Sudipta

    2013-07-01

    A search in the Cambridge Structural Database (CSD) for lanthanide complexes with adipate [OOC(CH2)4COO]2- and aqua ligands retrieved a fair number of compounds. To this dataset a new lanthanum metal-organic framework, {[La2(adip)3(H2O)2] (1) (adipH2=adipic acid), synthesised and structurally characterized in these labs, was included. The crystal structures of these coordination polymers, of general formulation [Ln2(adip)3(H2O)x], exhibit a variety of topologies and dimensionality, which were clustered in different classes and described in detail. It was explored that the majority of these evidences the presence of metal chains or dinuclear Ln2 entities (separated in both cases by 4.0-4.8 Å), where lanthanide ions are differently connected by carboxylate groups with chelating or oxygen-bridging mode. The different amount of coordinated water molecules appear to affect the solid state networks. Moreover the crystal packing of these compounds shows peculiar aspects and examples were reported in the literature where the long alkyl chain of adipate connectors give rise to interpenetrated structures, or to porous material where lattice water or neutral larger molecules are clathrated.

  2. Photoacoustic Spectral Study of Lanthanide Complexes Doped in Silica Matrix

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Gao, B.; Zhang, S. Y.; Liu, X. J.

    2015-06-01

    Lanthanide phenanthroline (phen) complexes and were incorporated into a silica matrix by an ultrasonic assisted sol-gel method. In the region of ligand absorption, the photoacoustic (PA) intensity for a lanthanide complex is the same as in wet gels. Upon heat treatment at 120C, however, the PA intensity of a O-doped sample is much larger than that of a O-doped sample. The characteristic emissions of complex-doped samples were used to interpret the stability of the complex in silica matrices. The luminescence spectra are consistent with the PA results. The study indicates that phen can only coordinate with lanthanide ions in a silica matrix after a suitable heat treatment. Moreover, the covalency parameters and PA bands of f-f transionts of have been used to study the formation of the complex in a silica matrix.

  3. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine

    PubMed Central

    Xu, Wenlong; Bony, Badrul Alam; Kim, Cho Rong; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2013-01-01

    There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI–FI agents. PMID:24220641

  4. Laser ablation synthesis of lanthanide oxide clusters: Mechanisms and chemistry

    SciTech Connect

    Gibson, J.K.

    1995-07-15

    Excimer laser ablation into vacuum of hydrated lanthanide oxalates has produced new lanthanide (Ln) oxide cluster ions which were identified by time-of-flight mass spectrometry. In addition to binary oxide clusters (Ln{sub {ital m}}O{sup +}{sub {ital n}}), mixed lanthanide oxide clusters [Ln{sub {ital m}1}Ln{sub {ital m}2}{sup {prime}}O{sup +}{sub {ital n}} with ({ital m}1+{ital m}2){le}9] were discerned for the following Ln-Ln{prime}: La-Tb, La-Ho, La-Lu, and Ho-Lu. The observed cluster ion stoichiometries, abundance distributions, and hydration systematics provide insights into cluster formation mechanisms and chemistries. Time-variable ion sampling revealed cluster enhancement in the tail of the ablation plume. The body of experimental results support cluster formation by aggregation of small ablated species. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. New quinolone-based thiol-reactive lanthanide luminescent probes

    PubMed Central

    Wirpsza, Laura; Krasnoperov, Lev; Mustaev, Arkady

    2013-01-01

    Luminescent lanthanide ion complexes are distinguished by unique light emitting properties that enable both highly sensitive detection of lanthanide labels attached to biomolecules and contrast imaging of various micro objects (cells, nanoparticles, etc.). Previously, we synthesized amine-reactive cs124-based luminescent lanthanide chelates with improved brightness and metal retention. Here we report the synthesis of new thiol-reactive derivatives of the same compounds including bromoacetamido-, and maleimido- forms of cs124 and cs124CF3 fluorophores. Maleimido-compounds displayed exceptional reactivity instantaneously coupling to thiols at physiological conditions at micromolar probes concentrations. Surprisingly, they displayed strong quenching by adjacent maleimido-group, which was completely eliminated after reaction with thiols, thereby enabling their simple detection by monitoring the light emission of the reaction mixture. This reaction can be used for hyper-sensitive determination of biologically important sulphydryl compounds (e.g. glutathione, co-enzyme A, etc.) in time-resolved mode. PMID:23833545

  6. Extraction study of lanthanide nitrato complexes - the adogen-464NO/sub 3/ - NH/sub 4/NO/sub 3/ system

    SciTech Connect

    Sokolowska, A.; Siekierski, S.

    1983-01-01

    Extraction of lanthanides and yttrium was studied in the interval of ammonium nitrate concentrations from 1 to 10M, and of Adogen-464 nitrate concentrations from 0.00039 to 0.39M. From the aqueous phase separation factor and from the published stability constant for europium (Eu), stability constants for 1:1 complexes of lanthanum (La), neodymium (Nd), gadolinium (Gd), holmium (Ho), thulium (Tm), lutetium (Lu) and yttrium (Y) have been determined, at 1M ammonium nitrate concentration. Results show that stability constant decreases from 2.7 for La to 2.3 for Lu. In the range of Adogen-464 nitrate concentrations employed, lanthanides from La to Nd appear in the organic phase as 1:5 complexes, whereas lanthanides heavier than Nd appear also as 1:4 complexes. Relative values (with regard to lanthanum) of Gibbs energy, enthalpy (from the temperture effect) and entropy for formation of 1:5 complexes, and the position of yttrium within lanthanides have been determined. Conclusions are that the extracted 1:4 and 1:5 complexes are of the inner sphere type, with nitrate ions acting as bidentate ligands, and that the contribution from covalency to bonding is the same in the aquo ion and in the 1:5 nitrato complex. 5 figures, 1 table.

  7. Thermodynamical properties of liquid lanthanides-A variational approach

    SciTech Connect

    Patel, H. P.; Thakor, P. B.; Sonvane, Y. A.

    2015-06-24

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  8. Method for providing oxygen ion vacancies in lanthanide oxides

    DOEpatents

    Kay, D. Alan R.; Wilson, William G.

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  9. Extraction of lanthanides with halogen substituted 4-acyl-pyrazolones

    SciTech Connect

    Huang, C.H.; Freiser, H.

    1983-01-01

    Equilibrium extraction behavior for a series of representative tervalent lanthanide ions, La, Pr, Eu, and Yb, using chloroform solutions containing halogenated derivatives of 4-acyl-1-phenyl-3-methyl-5-pyrazolone have been studied. The results demonstrate that these lanthanides are extracted as simple chelates, LnL/sub 3/. The equilibrium constants of these extraction reactions have been calculated. The relationships between the acid dissociation constants, K/sub a/, determined by a two-phase titration method, distribution constants, K/sub DR/, and the extraction equilibrium constants, K/sub ex/, are discussed. 14 refs., 5 figs., 5 tabs.

  10. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. PMID:26489887

  11. The role of carboxylic acids in TALSQueak separations

    SciTech Connect

    Braley, Jenifer C.; Carter, Jennifer C.; Sinkov, Sergey I.; Nash, Ken L.; Lumetta, Gregg J.

    2012-04-13

    Recent reports have indicated TALSPEAK-type separations chemistry can be improved through the replacement of bis-2-ethyl(hexyl) phosphoric acid (HDEHP) and diethylenetriamine-N,N,N,N,N-pentaacetic acid (DTPA) with the weaker reagents 2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), respectively. This modified TALSPEAK has been provided with an adjusted acronym of TALSQueak (Trivalent Actinide Lanthanide Separation using Quicker Extractants and Aqueous Komplexes). Among several benefits, TALSQueak chemistry provides more rapid phase transfer kinetics, is less reliant on carboxylic acids to mediate lanthanide extraction and allows a simplified thermodynamic description of the separations process that generally requires only parameters available in the literature to describe metal transfer. This manuscript focuses on the role of carboxylic acids in aqueous ternary (M-HEDTA-carboxylate) complexes, americium/lanthanide separations, and extraction kinetics. Spectrophotometry (UV-vis) of the Nd hypersensitive band indicates the presence of aqueous ternary species (K111 = 1.83 {+-} 0.01 at 1.0 M ionic strength, Nd(HEDTA) + Lac <-> Nd(HEDTA)Lac). Varying the carboxylic acid does not have a significant impact on Ln/Am separations or extraction kinetics. TALSqueak separations come to equilibrium in five minutes at the conventional operational pH of 3.6 using only 0.1 M total lactate or citrate.

  12. Detection of Bacterial Spores with Lanthanide-Macrocycle Binary Complexes

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Levine, Dana J.; Manary, Micah J.; Gray, Harry B.; Ponce, Adrian

    2009-01-01

    The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)+ binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb3+ alone, and 10-fold greater than other Ln(DO2A)+ complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb-DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)+, yielding a 3-fold increase in the signal-to-noise ratio over Tb3+. Out of the eight cases investigated, the Tb(DO2A)+ binary complex is best for the detection of bacterial spores. PMID:19537757

  13. Towards multifunctional lanthanide-based metal-organic frameworks.

    PubMed

    Tobin, Gerard; Comby, Steve; Zhu, Nianyong; Clérac, Rodolphe; Gunnlaugsson, Thorfinnur; Schmitt, Wolfgang

    2015-09-01

    We report the synthesis, structure and physicochemical attributes of a new holmium(III)-based metal-organic framework whose 3D network structure gives rise to porosity; the reported structure-type can be varied using a range of different lanthanide ions to tune the photophysical properties and produce ligand-sensitised near-infrared (NIR) and visible light emitters. PMID:26207535

  14. Ratiometric oxygen sensing using lanthanide luminescent emitting interfaces.

    PubMed

    Lehr, Joshua; Tropiano, Manuel; Beer, Paul D; Faulkner, Stephen; Davis, Jason J

    2015-11-14

    Herein we describe the first example of a ratiometric lanthanide luminescent oxygen sensing interface. Immobilisation of terbium and europium cyclen complexes on glass substrates was achieved by a novel aryl nitrene photografting approach. The resulting interfaces demonstrated a ratiometric oxygen response between 0 and 0.2 atm partial oxygen pressure. PMID:26376829

  15. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2013-10-15

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  16. Influencing fatty acid composition of yeasts by lanthanides.

    PubMed

    Kolouchova, Irena; Sigler, Karel; Zimola, Michal; Rezanka, Tomas; Matatkova, Olga; Masak, Jan

    2016-08-01

    The growth of microorganisms is affected by cultivation conditions, concentration of carbon and nitrogen sources and the presence of trace elements. One of the new possibilities of influencing the production of cell mass or lipids is the use of lanthanides. Lanthanides are biologically non-essential elements with wide applications in technology and industry and their concentration as environmental contaminants is therefore increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants but their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements or operate as potent blockers of Ca(2+) channels. We tested the effect of low concentrations of lanthanides on traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii), and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica). Low concentrations of lanthanum and monazite were conducive to an increase in cell mass and lipids and also higher production of palmitoleic acid, commonly used in cosmetics and medicine, and ω6-linoleic acid which is a precursor of thromboxanes, prostaglandins and leucotrienes. PMID:27339307

  17. Ion-assisted deposition of lanthanide trifluorides for VUV applications

    NASA Technical Reports Server (NTRS)

    Lingg, L. J.; Targove, J. D.; Lehan, J. P.; Macleod, H. A.

    1987-01-01

    The lanthanide trifluorides show promise as vacuum ultraviolet (VUV) coating materials. The optical properties of single-layer coatings vary with deposition temperature, and with ion-beam energy and current density. The optical constants, stoichiometry, durability, moisture adsorption, and crystallinity are studied for trifluoride films made under a variety of deposition conditions.

  18. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    SciTech Connect

    Anstey, Mitchell; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves %22Click%22 chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  19. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.; Neiner, Doinita

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.

  20. Enhancement of Anion Binding in Lanthanide Optical Sensors

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Gray, Harry B.; Ponce, Adrian

    2013-01-01

    In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the ‘lock-and-key.’ Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can

  1. Methyltrihydroborate complexes of the lanthanides and actinides

    SciTech Connect

    Shinomoto, R.S.

    1984-11-01

    Reaction of MC1/sub 4/ (M = Zr, Hf, U, Th, Np) with LiBH/sub 3/CH/sub 3/ in chlorobenzene produces volatile, hexane-soluble M(BH/sub 3/CH/sub 3/)/sub 4/. Crystal structures are monomeric, tetrahedral species. Lewis base adducts prepared include U(BH/sub 3/CH/sub 3/)/sub 4/.THT, Th(BH/sub 3/CH/sub 3/)/sub 4/.L (L = THF (tetrahydrofuran), THT (tetrahydrothiophene), SMe/sub 2/, OMe/sub 2/), U(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, pyridine, NH/sub 3/), Th(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, THT, py, NH/sub 3/), M(BH/sub 3/CH/sub 3/)/sub 4/.L-L (M = U, Th; L-L = dme (1,2-dimethoxyethane), bmte (bis(1,2-methylthio)ethane), tmed (N,N,N',N'-tetramethylethylenediamine), dmpe (1,2-dimethylphosphinoethane)) and Th(BH/sub 3/CH/sub 3/)/sub 4/.1/2 OEt/sub 2/. Reaction of MC1/sub 3/ (M = Ho, Yb, Lu) with LiBH/sub 3/CH/sub 3/ in diethyl ether produces volatile, toluene-soluble M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/. Other Lewis base adducts prepared from M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/ include Ho(BH/sub 3/CH/sub 3/)/sub 3/.L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.2L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.tmed, Ho(BH/sub 3/CH/sub 3/)/sub 3/.3/2 L-L (L-L = dmpe, bmte), Yb(BH/sub 3/CH/sub 3/)/sub 3/.3/2 dmpe, Yb(BH/sub 3/Ch/sub 3/).L (L = THF, dme), Yb(BH/sub 3/CH/sub 3/)/sub 3/.2THF, and Lu(BH/sub 3/CH/sub 3/)/sub 3/.THF. By structural criteria, the bonding in actinide and lanthanide methyltrihydroborate complexes is primarily ionic in character even though they display covalent-like physical properties. Spectroscopic measurements indicate that there is some degree of covalent bonding in U(BH/sub 3/CH/sub 3/)/sub 4/.

  2. r-process Lanthanide Production and Heating Rates in Kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka & Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Ye ≳ 0.22-0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Ye, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Ye, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  3. Lanthanide sorption on smectitic clays in presence of cement leachates

    NASA Astrophysics Data System (ADS)

    Galunin, Evgeny; Alba, María D.; Santos, Maria J.; Abrão, Taufik; Vidal, Miquel

    2010-02-01

    Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients ( Kd) were determined in two media: water and 0.02 mol L -1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg -1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers.

  4. Estimation of free acid content in lanthanide salt solutions used for potentiometric determination of stability constant of lanthanide complexes with organic ligands

    SciTech Connect

    Zheltvai, T.I.; Tishchenko, M.A.

    1985-08-20

    This paper studies the possibility of alkalimetric titration of free acid after binding the metal ions by the disodium salt of ethylenediaminetetraacetic (complexone III). The proposed method of free acid determination in lanthanide salt solutions is very simple and helps to avoid gross methodical errors in works involving determination of stability constants of lanthanide complexes.

  5. Lanthanide-to-lanthanide energy-transfer processes operating in discrete polynuclear complexes: can trivalent europium be used as a local structural probe?

    PubMed

    Zaïm, Amir; Eliseeva, Svetlana V; Guénée, Laure; Nozary, Homayoun; Petoud, Stéphane; Piguet, Claude

    2014-09-15

    This work, based on the synthesis and analysis of chemical compounds, describes a kinetic approach for identifying intramolecular intermetallic energy-transfer processes operating in discrete polynuclear lanthanide complexes, with a special emphasis on europium-containing entities. When all coordination sites are identical in a (supra)molecular complex, only heterometallic communications are experimentally accessible and a Tb → Eu energy transfer could be evidenced in [TbEu(L5)(hfac)6] (hfac = hexafluoroacetylacetonate), in which the intermetallic separation amounts to 12.6 Å. In the presence of different coordination sites, as found in the trinuclear complex [Eu3(L2)(hfac)9], homometallic communication can be induced by selective laser excitation and monitored with the help of high-resolution emission spectroscopy. The narrow and non-degenerated character of the Eu((5)D0 ↔ (7)F0) transition excludes significant spectral overlap between donor and acceptor europium cations. Intramolecular energy-transfer processes in discrete polynuclear europium complexes are therefore limited to short distances, in agreement with the Fermi golden rule and with the kinetic data collected for [Eu3(L2)(hfac)9] in the solid state and in solution. Consequently, trivalent europium can be considered as a valuable local structural probe in discrete polynuclear complexes displaying intermetallic separation in the sub-nanometric domain, a useful property for probing lanthanido-polymers. PMID:25099883

  6. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    SciTech Connect

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-15

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)

  7. Extraction of trivalent lanthanides and actinides by ``CMPO-like`` calixarenes

    SciTech Connect

    Delmau, L.H.; Simon, N.; Schwing-Weill, M.J.

    1999-04-01

    Extractive properties of calix[4]arenes bearing carbamoylmethylphosphine oxide moieties on their upper rim toward trivalent lanthanide and actinide cations were investigated. The study revealed that these molecules selectively extract light lanthanides and actinides from heavy lanthanides. All parameters present in the extraction system were varied to determine the origin of the selectivity. It was found that this selectivity requires a calix[4]arene platform and acetamidophosphine oxide groups containing phenyl substituents on the four phosphorus atoms.

  8. Inductively coupled plasma mass spectrometry in comparison with neutron activation and ion chromatography with UV/VIS detection for the determination of lanthanides in plant materials.

    PubMed

    Bulska, Ewa; Danko, Bożena; Dybczyński, Rajmund S; Krata, Agnieszka; Kulisa, Krzysztof; Samczyński, Zbigniew; Wojciechowski, Marcin

    2012-08-15

    Analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for determination of lanthanides in plant materials was investigated and compared with neutron activation analysis (NAA) as well as ion chromatography (IC) with UV-VIS detection. Two sample preparation protocols were tested: (i) microwave assisted digestion by concentrated nitric acid; (ii) microwave digestion involving silica and fluoride removal, followed by the selective and quantitative lanthanides group separation from the plant matrix. Several Certified Reference Materials (CRM) of plant origin were used for the evaluation of the accuracy of the applied analytical procedures. The consistency of results, obtained by various methods, enabled to establish the tentative recommended values (TRV) for several missing elements in one of CRMs. The ICP-MS, due to its very high sensitivity, has the potential to contribute to this aim. The discrepancy of the results obtained by various methods was discussed in a view of possible matrix effects related to the composition of investigated materials. PMID:22841084

  9. Reliable Electronic Structure Calculations for Heavy Element Chemistry: Molecules Containing Actinides, Lanthanides, and Transition Metals

    SciTech Connect

    Marino, Maria, M.; Ermler, Walter C

    2006-01-27

    , allowing limited experimental data to be extrapolated to many other regimes of interest. The program objectives will be attained through a multi-site collaboration from PNNL, Ohio State University, University of Memphis and Eloret that includes leading researchers in the areas of high-performance computational chemistry and relativistic theoretical chemistry. The new tools can be used to study, for example, the interaction of actinides with organic complexing agents present in tank wastes and with natural aqueous systems (carbonates) in order to better understand their fate and transport in the environment, as well as interactions with new materials such as phosphates and amides for the design of innovative in situ remediation technologies and separation materials. In addition, the proposed work will allow scientists to tackle the complexity of excited states in heavy element compounds especially those comprised of actinide, lanthanide, and heavy transition metal atoms.

  10. The lanthanides and yttrium in minerals of the apatite group; a review

    USGS Publications Warehouse

    Fleischer, Michael; Altschuler, Z.S.

    1982-01-01

    More than 1000 analyses have been tabulated of the distribution of the lanthanides and yttrium in minerals of the apatite group, recalculated to atomic percentages. Average compositions have been calculated for apatites from 14 types of rocks. These show a progressive change of composition from apatites of granitic pegmatites, highest in the heavy lanthanides and yttrium, to those from alkalic pegmatites, highest in the light lanthanides and lowest in yttrium. This progression is clearly shown in plots of S (= at % La+Ce+Pr) vs the ratio La/Nd and of S vs the ratio 100Y/(Y+Ln), where Ln is the sum of the lanthanides. Apatites of sedimentary phosphorites occupy a special position, being relatively depleted in Ce and relatively enriched in yttrium and the heavy lanthanides, consequences of deposition from sea water. Apatites associated with iron ores are close in composition to apatites of carbonatites, alkalic ultramafic, and ultramafic rocks, being enriched in the light lanthanides and depleted in the heavy lanthanides. Their compositions do not support the hypothesis of Parak that the Kiruna-type ores are of sedimentary origin. Table 9 and Figures 1-3 show the dependence of lanthanide distribution on the nature of the host rock. Although a given analysis of the lanthanides does not unequivocally permit certain identification of the host rock, it can indicate a choice of highly probable host rocks.

  11. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    SciTech Connect

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  12. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    SciTech Connect

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  13. Deep-UV biological imaging by lanthanide ion molecular protection.

    PubMed

    Kumamoto, Yasuaki; Fujita, Katsumasa; Smith, Nicholas Isaac; Kawata, Satoshi

    2016-01-01

    Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. PMID:26819825

  14. Magnetic hysteresis in a lanthanide molecular magnet dimer system

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Cebulka, Rebecca; Del Barco, Enrique; Roubeau, Olivier; Velasco, Veronica; Barrios, Leo; Aromi, Guillem

    Molecular magnets present a wonderful means for studying the dynamics of spin. Often synthesized as a crystal lattice of identical systems, ensemble measurements enable thorough detailing of the internal degrees of freedom. Here we present the results of characterization performed on a dimer system, CeTm(HL)2(H2L)NO3pyH2O (L = ligand, C45H31O15N3), consisting of two lanthanide spins (Cerium and Thulium) with expected local axial anisotropies tilted with respect to each other. Microwave EPR spectroscopy at low temperature reveals hysteresis in observed absorption features, with angle dependence studies indicating the presence of several ``easy axis'' orientations. We attempt to understand this system through modelling via a spin Hamiltonian, and to determine the strength and nature of the coupling between the lanthanide centers. This research was funded through NSF Grant # 24086159.

  15. A self-assembling lanthanide molecular nanoparticle for optical imaging†

    PubMed Central

    Brown, Katherine A.; Yang, Xiaoping; Schipper, Desmond; Hall, Justin W.; DePue, Lauren J.; Gnanam, Annie J.; Arambula, Jonathan F.; Jones, Jessica N.; Swaminathan, Jagannath; Dieye, Yakhya; Vadivelu, Jamuna; Chandler, Don J.; Marcotte, Edward M.; Sessler, Jonathan L.; Ehrlich, Lauren I. R.; Jones, Richard A.

    2015-01-01

    Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide “nano-drums”, are homogeneous 4d–4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu8Cd24L12(OAc)48] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms. PMID:25512085

  16. Nanoporous lanthanide-carboxylate frameworks based on 5-nitroisophthalic acid.

    PubMed

    Chen, San-Ping; Ren, Yi-Xia; Wang, Wei-Tao; Gao, Sheng-Li

    2010-02-14

    The reactions of lanthanide nitrates with 5-nitroisophthalic acid (ab. 5-H(2)nip) in DMF and ethanol (1 : 1) mixed solution gave rise to three nanoporous lanthanide polymers, {[Ln(2)(5-nip)(3)(DMF)(4)](DMF)(2)}(n) (Ln = Nd (), Dy (), Ho (), 5-nip = 5-nitroisophthalate). Single-crystal X-ray diffraction analyses reveal that they are isomorphous and feature three-dimensional metal-organic frameworks with two-dimensional intersecting channels occupied by guest DMF molecules constructed from the linkage of dimer Ln(2)C(6)O(12) SBUs and 5-nip ligands. The guest DMF molecules can be reversibly removed from as identified using TGA-DSC and PXRD. The heat of adsorption of the guest-free sample of with DMF was measured with a value of 10.3 kJ mol(-1) by an RD496-III type microcalorimeter. In addition, the photoluminescent property of was investigated. PMID:20104317

  17. Deep-UV biological imaging by lanthanide ion molecular protection

    PubMed Central

    Kumamoto, Yasuaki; Fujita, Katsumasa; Smith, Nicholas Isaac; Kawata, Satoshi

    2015-01-01

    Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. PMID:26819825

  18. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    DOEpatents

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  19. A Synchrotron Investigation Of The Electronic Structure Of Lanthanide Zirconates

    NASA Astrophysics Data System (ADS)

    Clements, Richard; Kennedy, Brendan; Ling, Christopher; Stampfl, Anton P. J.

    2010-03-01

    abstract- The lanthanide zirconates are of interest for use in inert matrix fuels and nuclear wasteforms. For use in these applications, the material's structure must be resistant to radiation damage and its thermal, thermodynamic and mechanical properties must be known. The rare earth zirconates are interesting model systems to explore such problems. In such materials the f-electrons may play a localized valence decisive role in determining their thermo-mechanical properties. We have undertaken a synthesis of the full range of the lanthanide zirconate series using solid state techniques. We have performed X-ray photoemission spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES) with synchrotron radiation on a selection of the series, in conjunction with a density functional theory (DFT) determination of the electronic structure. -

  20. Low-Energy Electron Elastic Cross Sections for Lanthanide Atoms

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2009-05-01

    Dramatically sharp resonances characterize the near-threshold electron elastic scattering total cross sections for the lanthanide atoms, whose energy positions are identified with the binding energies (BEs) of the negative ions formed during the collisions as Regge resonances. The recently developed Regge-pole methodology which naturally embodies the crucial electron correlation effects together with a Thomas-Fermi type potential incorporating the vital core-polarization interaction are used for the calculations[1]. The extracted BEs of the lanthanide negative ions vary from 0.016 eV for Tm^- to 0.631 eV for Pr^-. All the negative ions of the lanthanides can be classified as weakly bound (BEs < 1.0 eV), while only three are tenuously bound (BEs < 0.1 eV) [2]. Ramsauer-Townsend minima, shape resonances and the Wigner threshold behavior for these lanthanides are also determined. Extracted EAs for La and the open d- and f- sub-shell Ce atoms agree excellently with the measured data [3, 4] while for Nd and Eu the agreement with calculated values [5] is outstanding. [1] D. Sokolovski et al, Phys. Rev. A76, 012705 (2007) [2] Z. Felfli et al, Phys. Rev. A 79, At Press (2009) [3] A. M. Covington et al, J. Phys. B 31, L855 (1998) [4] C.W. Walter et al, Phys. Rev. A 76, 052702 (2007) [5] S.M. O'Malley and D.R. Beck, Phys. Rev. A78, 012510 (2008) Supported by U.S. DOE, Division of Chemical Sciences.

  1. Ultracold lanthanides: from optical clock to a quantum simulator

    NASA Astrophysics Data System (ADS)

    Vishnyakova, G. A.; Golovizin, A. A.; Kalganova, E. S.; Sorokin, V. N.; Sukachev, D. D.; Tregubov, D. O.; Khabarova, K. Yu; Kolachevsky, N. N.

    2016-02-01

    We review the current research on precision spectroscopy and quantum optics applications of laser-cooled lanthanides. We discuss the specific electronic structure of hollow atoms, which determine prospects for application in optical frequency standards and in quantum simulators based on spin interactions in optical lattices. Using the example of the thulium atom, we describe the specifics of laser cooling, optical lattice trapping techniques, and clock transition spectroscopy using spectrally narrow lasers.

  2. Strong exchange coupling in lanthanide bis-(phthalocyaninato) sandwich compounds

    SciTech Connect

    Trojan, K.L.; Hatfield, W.E.; Kepler, K.D.; Kirk, M.L. )

    1991-04-15

    Bis (phthalocyaninato) lanthanide sandwich compounds, which have the formula Pc{sup 2-}LnPc{sup 1-}, have been synthesized for Ln=terbium, holmium, and lutecium. Low-temperature magnetic susceptibility data for Ho(Pc){sub 2} and Tb(Pc){sub 2} show a reduction in moment from that which is expected for the lanthanide free ion value, which correlates with an antiferromagnetic exchange between the lanthanide {ital f} electrons and the phthalocyaninato ligand radical electron. The {ital g} factors determined from least-squares fitting of the Curie--Weiss law to the magnetic data show excellent agreement to the {ital g} factors calculated for the strongly coupled state. Magnetic moments calculated from the experimentally determined Curie constants are also in good agreement with those expected for the strongly coupled state. Low-temperature magnetic susceptibility data for Lu(Pc){sub 2} follows the Curie--Weiss law with a limiting moment of 1.8 {mu}{sub {ital B}} at 100 K. Since lutecium has a {sup 1}{ital S}{sub 0} ground state, only the phthalocyanine(1-) ligand would be expected to contribute to the magnetic susceptibility in this system. Room-temperature electron paramagnetic resonance measurements show no transitions at or near {ital g}=2, indicative of a free radical, due to the strong antiferromagnetic coupling of the ligand radical electron with the lanthanide {ital f} electrons. In the case of LuPc{sub 2}, where no unpaired {ital f} electrons exist, a transition at {ital g}=2.00 is present.

  3. Development and Testing of Diglycolamide Functionalized Mesoporous Silica for Sorption of Trivalent Actinides and Lanthanides.

    PubMed

    Shusterman, Jennifer A; Mason, Harris E; Bowers, Jon; Bruchet, Anthony; Uribe, Eva C; Kersting, Annie B; Nitsche, Heino

    2015-09-23

    Sequestration of trivalent actinides and lanthanides present in used nuclear fuel and legacy wastes is necessary for appropriate long-term stewardship of these metals, particularly to prevent their release into the environment. Organically modified mesoporous silica is an efficient material for recovery and potential subsequent separation of actinides and lanthanides because of its high surface area, tunable ligand selection, and chemically robust substrate. We have synthesized the first novel hybrid material composed of SBA-15 type mesoporous silica functionalized with diglycolamide ligands (DGA-SBA). Because of the high surface area substrate, the DGA-SBA was found to have the highest Eu capacity reported so far in the literature of all DGA solid-phase extractants. The sorption behavior of europium and americium on DGA-SBA in nitric and hydrochloric acid media was tested in batch contact experiments. DGA-SBA was found to have high sorption of Am and Eu in pH 1, 1 M, and 3 M nitric and hydrochloric acid concentrations, which makes it promising for sequestration of these metals from used nuclear fuel or legacy waste. The kinetics of Eu sorption were found to be two times slower than that for Am in 1 M HNO3. Additionally, the short-term susceptibility of DGA-SBA to degradation in the presence of acid was probed using (29)Si and (13)C solid-state NMR spectroscopy. The material was found to be relatively stable under these conditions, with the ligand remaining intact after 24 h of contact with 1 M HNO3, an important consideration in use of the DGA-SBA as an extractant from acidic media. PMID:26334933

  4. Selective Extraction of Heavy and Light Lanthanides from Aqueous Solution by Advanced Magnetic Nanosorbents.

    PubMed

    Zhang, Huijin; McDowell, Rocklan G; Martin, Leigh R; Qiang, You

    2016-04-13

    Rare earth elements (REEs) make unique and vital contributions to our current world of technology. Separating and recycling REEs is of great importance to diversify the sources of REEs and advance the efficient use of REE resources when the supply is limited. In light of separation nanotechnology, diethylenetriamine-pentaacetic acid (DTPA) functionalized magnetic nanosorbents have been synthesized and investigated for the highly selective extraction of heavy (Sm-Ho) and light (La-Nd) lanthanides (Ln) from aqueous solutions. The results demonstrated that the separation factor (SF) between heavy-Ln and light-Ln groups reached the maximal value of 11.5 at low pH value of 2.0 in 30 min. For example, the SFs of Gd/La and Dy/La pairs were up to 10 times higher than that reported by other studies. Besides the excellent selectivity, our double-coated magnetic nanoparticles coupled with diethylenetriaminepentaacetic acid (dMNP-DTPA) nanosorbents are more advantageous in that the Ln(III) sorption was effectively and quickly (in 30 min) achieved in acid solutions with pH values as low as 2.0. Such attributes ensure a stronger adaptability to the harsh environments of REE recycling processes. Displacement phenomena were subsequently observed between the heavy-Ln and light-Ln ions that were coexisting in solution and competing for the same sorption sites, causing the increase in sorption capacity of heavy Ln on the surface of nanosorbents with time. The order of affinity of Ln(III) to DTPA-functionalized magnetic nanosorbents perfectly followed the corresponding stability constants between Ln(III) and nonimmobilized DTPA. Displacement phenomena and lanthanide contraction, as well as the surface nanostructures of DTPA-functionalized nanosorbents, significantly improved the separation factors of heavy-Ln/light-Ln pairs. The Ln(III) interaction with DTPA-functionalized magnetic nanosorbents followed the pseudo-second-order kinetics with a correlation coefficient extremely high and

  5. Valence calculations of lanthanide anion binding energies: a comprehensive study

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2009-05-01

    We have applied a methodology of universal jls restrictions on the 4f^n subgroup of relativistic configuration-interaction calculations of progressively more complex lanthanide anionsootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A 77, 012505 (2008).^,ootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A 78, 012510 (2008).^,ootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A, in press.. Our completed study of the row predicts bound 6p attachments to all lanthanide ground state configurations except Yb, additional 6p attachments to excited opposite parity configurations in Tb and Lu, and 6s attachments to excited open-6s thresholds in La, Ce, Pr, and Gd. In total we predict more than 100 bound states for the lanthanide anions, and we hope this comprehensive study encourages further experimentalootnotetexte.g. V. T. Davis et al., Nucl. Instrum. Methods Phys. Res. B 241, 118 (2005).^,ootnotetexte.g. C. W. Walter et al., Phys. Rev. A 76, 052702 (2007). interest in these anions. Such measurements will be useful in ``fine tuning'' these ab initio binding energies to account for missing core-valence correlation and the approximations that were necessary in these complex calculations.

  6. Energy level modeling of lanthanide materials: review and uncertainty analysis.

    PubMed

    Joos, Jonas J; Poelman, Dirk; Smet, Philippe F

    2015-07-15

    Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared. PMID:26129935

  7. Characterization and Classification of Lanthanides by Multivariate-Analysis Methods

    NASA Astrophysics Data System (ADS)

    Horovitz, Ossi; Sârbu, Costel

    2005-03-01

    A chemometric study was conducted on a data set consisting of 18 characteristics, mainly physical properties of the 14 lanthanides and lanthanum, including Sc and Y. Classical methods of multivariate analysis, namely, principal component analysis (PCA) and cluster analysis (CA) were applied. The results obtained by using the Statistica software package are presented and discussed concerning the correlations between the properties and those between the elements themselves. The discussion and findings are based on the tables of correlation, the eigenvectors and eigenvalues of PCA, the 2D- and 3D-representations of the loadings of variables and scores of the elements corresponding to the first principal components, including also the dendrograms obtained by using CA. Loadings scatterplots are used as a display tool for examining the relationships between properties, looking for trends, grouping, or outliers. In the same way, the scatterplots of scores emphasized the difference between La and the lanthanides on the one side and Sc and Y on the other and support setting Lu as their homologue, rather than La. On the basis of these findings, a ”periodic system“ of the lanthanides is suggested that agrees well with chemical intuition.

  8. Americium separation from nuclear fuel dissolution using higher oxidation states.

    SciTech Connect

    Bruce J. Mincher

    2009-09-01

    Much of the complexity in current AFCI proposals is driven by the need to separate the minor actinides from the lanthanides. Partitioning and recycling Am, but not Cm, would allow for significant simplification because Am has redox chemistry that may be exploited while Cm does not. Here, we have explored methods based on higher oxidation states of Am (AmV and AmVI) to partition Am from the lanthanides. In a separate but related approach we have also initiated an investigation of the utility of TRUEX Am extraction from thiocyanate solution. The stripping of loaded TRUEX by Am oxidation or SCN- has not yet proved successful; however, the partitioning of inextractable AmV by TRUEX shows promise.

  9. Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, Tashi

    Ordered mesoporous materials are porous solids with a regular, patterned structure composed of pores between 2 and 50 nm wide. Such materials have attracted much attention in the past twenty years because the chemistry of their synthesis allows control of their unique physicochemical properties, which can be tuned for a variety of applications. Generally, ordered mesoporous materials have very high specific surface areas and pore volumes, and offer unique structures that are neither crystalline nor amorphous. The large tunable interface provided by ordered mesoporous solids may be advantageous in applications involving sequestration, separation, or detection of actinides and lanthanides in solution. However, the fundamental chemical interactions of actinides and lanthanides must be understood before applications can be implemented. This dissertation focuses primarily on the fundamental interactions of plutonium with organically modified mesoporous silica, as well as several different porous carbon materials, both untreated and chemically oxidized. A method for functionalizing mesoporous silica by self assembly and molecular grafting of functional organosilane ligands was optimized for the 2D-hexagonal ordered mesoporous silica known as SBA-15 (Santa Barbara amorphous silica). Four different organically-modified silica materials were synthesized and characterized with several techniques. To confirm that covalent bonds were formed between the silane anchor of the ligand and the silica substrate, functionalized silica samples were analyzed with 29Si nuclear magnetic resonance spectroscopy. Infrared spectroscopy was used in combination with 13C and 31P nuclear magnetic resonance spectroscopy to verify the molecular structures of the ligands after they were synthesized and grafted to the silica. The densities of the functional silane ligands on the silica surface were estimated using thermogravimetric analysis. Batch sorption experiments were conducted with solutions of

  10. Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945