Science.gov

Sample records for lap adhesive composite

  1. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  2. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  3. Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Kim, Won T.; Lee, Dai G.; Jun, Eui J.

    The effects of the adhesive thickness and the adherend surface roughness on the fatigue strength of a tubular adhesive-bonded single lap joint were investigated using fatigue test specimens whose adherends were made of S45C carbon steel. Results of fatigue tests showed that the optimal arithmetic surface roughness of the adherends is about 2 microns and the optimal adhesive thickness is about 0.15 mm. Using these values, the prototype torsional adhesive joints were manufactured for power transmission shafts of an automotive vehicle or a small helicopter, and static tests under torque were performed on a single-lap joint, a single-lap joint with scarf, a double-lap joint, and a double-lap joint with scarf. It was found that the double-lap joint was superior among the joints, in terms of torque capacity and manufacturing cost.

  4. Multitechnique monitoring of fatigue damage in adhesively bonded composite lap-joints

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Dib, Gerges; Haq, Mahmoodul; Udpa, Lalita

    2015-03-01

    The requirement for reduced structural weight has driven the development of adhesively bonded joints. However, a major issue preventing their full acceptance is the initiation of premature failure in the form of a disbond between adherends, mainly due to fatigue, manufacturing flaws or impact damage. This work presents the integrated approach for in-situ monitoring of degradation of the adhesive bond in the GFRP composite lap-joint using ultrasonic guided waves and dynamic measurements from strategically embedded FBG sensors. Guided waves are actuated with surface mounted piezoelectric elements and mode tuning is used to provide high sensitivity to the degradation of the adhesive layer parameters. Composite lap-joints are subjected to fatigue loading, and data from piezoceramic transducers are collected at regular intervals to evaluate the progression of damage. Results demonstrate that quasi-static loading affects guided wave measurements considerably, but FBG sensors can be used to monitor the applied load levels and residual strains in the adhesive bond. The proposed technique shows promise for determining the post-damage stiffness of adhesively bonded joints.

  5. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  6. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  7. Review on failure prediction techniques of composite single lap joint

    NASA Astrophysics Data System (ADS)

    Ab Ghani A., F.; Rivai, Ahmad

    2016-03-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  8. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  9. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  10. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  11. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  12. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  13. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  14. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  15. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  16. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  17. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  18. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    NASA Astrophysics Data System (ADS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  19. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  20. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  1. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    SciTech Connect

    Patton, T.

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled data acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.

  2. Testing composite-to-metal tubular lap joints

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Slavin, A.M.

    1993-11-01

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  3. Testing composite-to-metal tubular lap joints

    NASA Astrophysics Data System (ADS)

    Guess, T. R.; Reedy, E. D., Jr.; Slavin, A. M.

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  4. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  5. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    NASA Astrophysics Data System (ADS)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  6. Composition of matrix in the CR chondrite LAP 02342

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Rubin, Alan E.

    2009-03-01

    We report evidence of interchondrule matrix heterogeneity on a scale of ˜50 μm in the well-preserved CR2 chondrite LAP 02342. Despite minor effects resulting from asteroidal aqueous alteration, the matrix in this CR chondrite seems to preserve much of the compositional record of nebular fines. We carried out electron-microprobe studies using a 3-μm-diameter beam; we analyzed 10 elements in 36- or 49-point grids on 11 ca. 50 × 50-μm rectangular areas of matrix. Each grid area has a distinct composition, inconsistent with a simple model of matrix material having a uniform composition throughout the nebular formation region of the CR chondrites. On S-Fe, Mg-Si, K-Na and K-Al scatter diagrams, the grid areas (i.e., different matrix patches) are largely separated from each other; plots of means with 95% confidence limits demonstrate that the compositions are resolvable. Five matrix areas were analyzed again in duplicate runs; excellent agreement was observed between duplicate studies. LAP 02342 experienced two forms of mild aqueous alteration - as patchy enrichments in Ca (inferred to reflect CaCO 3) and as regions in which sulfide laths are embedded within phyllosilicates. Despite this evidence of aqueous transport, the effect on the composition of matrix is not resolvable. For example, matrix points that were adjacent to points with high CaCO 3 contents show elemental concentrations similar to those in regions having only one or two points with a Ca enrichment. It appears that secondary minerals are found in areas where there are suitable precursor phases and voids into which new phases could grow unimpeded. Calcium appears to be unique in forming a phase that greatly lowers the Ca ++ content of the aqueous medium, thus enhancing the rate of diffusion. Because chondrules vary widely in bulk composition, the formation of chondrules in small sets (100 or less) could generate "smoke" and mesostasis spray with compositions unique to each set. However, if these

  7. Evaluation of adhesives for adhering carbon/epoxy composites to various metallic substrates

    SciTech Connect

    Bonk, R.B.; Osterndorf, J.F.; Ambrosio, A.M.; Pettenger, B.L.

    1996-12-31

    The strength properties of composite matrix resins and adhesive are dependent on time, temperature, environment, and stress factors. All of these conditions combine to influence the properties of adhesives and composites in ways that are not yet fully known or quantifiable. Therefore, it is important to know the service conditions that structural adhesive bonded composite joints will encounter prior to fielding. This paper details an evaluation of five epoxy adhesives used to adhere a carbon/epoxy composite to 7075-T6 aluminum, 4340 steel and aluminum coated steel. Test results indicate that certain paste adhesives are capable of better lap-shear and peel performance than film adhesives, especially at elevated temperatures.

  8. Propagation of ultrasonic guided waves in lap-shear adhesive joints

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Rizzo, Piervincenzo; Marzani, Alessandro

    2004-07-01

    This paper deals with the propagation of ultrasonic guided waves in adhesively-bonded lap-shear joints. The topic is relevant to ultrasonic bond inspection in aerospace components. Specifically, the propagation of the lowest-order, antisymmetric a0 mode through the joint is examined. This mode can be easily generated and detected in the field due to the predominant out-of-plane displacements at the surface of the test piece. An important aspect is the mode conversion at the boundaries between the single-plate adherends and the multilayer overlap. The a0 strength of transmission is studied for three different bond states in aluminum joints, namely a fully cured adhesive bond, a poorly cured adhesive bond, and a slip bond. Theoretical predictions based on the Global Matrix Method indicate that the dispersive behavior of the guided waves in the multilayer overlap is highly dependent on bond state. Experimental tests of the joints are conducted by a hybrid, broadband laser/air-coupled ultrasonic setup in a through-transmission configuration. This system does not require any wet coupling and it can be moved flexibly across the test piece. The Gabor Wavelet transform is employed to extract energy transmission coefficients in the 100 kHz - 1.4 MHz range for the three different bond states examined. The cross-sectional mode shapes of the guided waves are shown to have a substantial role in the energy transfer through the joint. A rationale for the selection of the a0 excitation frequencies highly sensitive to bond state will be given.

  9. Comparison of Peritoneal Adhesion Formation in Bowel Retraction by Cotton Towels Versus the Silicone Lap Pak Device in a Rabbit Model

    PubMed Central

    Liu, Brian G.; Ruben, Dawn S.; Renz, Wolfgang; Santillan, Antonio; Kubisen, Steven J.; Harmon, John W.

    2011-01-01

    Objective: Manipulation of cotton operating room towels within the abdominal cavity in open abdominal surgery has been associated with the formation of peritoneal adhesions. In a rabbit model, the use of standard cotton operating room towels is compared to the Lap Pak, a silicone bowel-packing device, to determine the potential for reducing the risk of adhesions. Methods: Thirty rabbits were randomly assigned to 3 groups. The rabbits underwent a sham surgery with incision only (n = 10), placement of operating room towels (n = 10), or placement of a Lap Pak (n = 10). After 14 days, the rabbits were sacrificed and the peritoneal cavity explored for adhesions. The number, tenacity, ease of dissection, and density of adhesions were recorded, and the adhesions quantitatively graded using a Modified Hopkins Adhesion scoring system. Results: The operating room towel group had an average adhesion score of 2.5, and 8 (80%) rabbits developed adhesions. The sham group had an average adhesion score of 0.3 and one rabbit (10%) developed adhesions. The Lap Pak group had an average adhesion score of 0.2 and 1 rabbit (10%) developed adhesions. The frequency and severity of adhesions in the operating room towel group were significantly greater from that of the baseline sham group. There was no significant difference between the Lap Pak and sham groups. Conclusions: In this rabbit laparotomy model, the use of the Lap Pak to retract the bowels resulted in significantly fewer adhesions compared to cotton operating room towels. Lap Pak may be beneficial for bowel packing in general abdominal surgeries. PMID:22096614

  10. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  11. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  12. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  13. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  14. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  15. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  16. Ultrasonic Guided Wave Inspection of Adhesive Joints: a Parametric Study for a Step-Lap Joint

    NASA Astrophysics Data System (ADS)

    Puthillath, Padma Kumar; Kannajosyula, Haraprasad; Lissenden, Cliff J.; Rose, Joseph L.

    2009-03-01

    Adhesively bonded joints are used to connect structural members in aircraft. When subject to loads and environmental conditions these joints undergo deterioration. Being load bearing members, it becomes critical to develop reliable and non-destructive methods for inspecting these adhesive joints. Ultrasonic guided waves, with their mode and frequency tuning possibilities, form an attractive tool for such inspections. Guided wave behavior as observed through dispersion phenomena is dependent on the waveguide dimensions. Since actual structural joints in aircraft involve adherends of different thicknesses and materials, and joints of varied overlap lengths, a robust inspection methodology needs to be tunable for all conditions. A parametric study showing the effect that some key joint parameters, that is the thickness of the adhesive, overlap length, and material parameters, have on the ultrasonic guided wave behavior is presented in this paper. In addition, the influence of defects like cohesive weakness, delamination and kissing bonds and their location on guided wave propagation is investigated. The transmission of ultrasonic guided wave energy is used as a guideline to select optimal conditions for joint inspection.

  17. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis.

    PubMed

    Dobritsa, Anna A; Lei, Zhentian; Nishikawa, Shuh-Ichi; Urbanczyk-Wochniak, Ewa; Huhman, David V; Preuss, Daphne; Sumner, Lloyd W

    2010-07-01

    Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production. PMID:20442277

  18. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  19. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  20. Adhesives for the composite wood panel industry

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1987-01-01

    This book presents a market and technology analysis of current fossil-fuel-based adhesives for the composite wood panel industry. It is also a study of the potential for, and technology of, less-energy-intensive biomass-derived adhesives for use in the industry. Adhesives manufacturer and production account for a significant portion of overall wood panel industry energy use as well as overall production costs, and the wood panel industry consumes about 25% of the total U.S. adhesives production. Significant savings might be realized if current fossil-fuel-based resins could be replaced with alternative biomass-derived adhesives.

  1. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  2. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    NASA Astrophysics Data System (ADS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-10-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test.

  3. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  4. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    carboxyl groups, on the polymer surface after plasma treatment. The resulting strength of the bond based on lap-shear and T-peel tests correlates well with the concentration of oxygen on the polymer surface. The failure modes observed for lap-shear and T-peel tests changed from interfacial to cohesive after the plasma activation. Treating carbon-fiber-reinforced epoxy composites with the atmospheric plasma resulted in the removal of fluorinated contaminants in shallow surface layers. For contaminants that diffused deeply into the composite surface, mechanical abrasion was needed in addition to the plasma treatment to remove the impurities. While cleaning the composite, plasma also generated active oxygen groups on the substrate surface. The presence of these groups improved the adhesive bonding strength of the composite even in the presence of residual fluorine contaminants. Thus, it was speculated that plasma treatment can promote better polymer adhesion with or without fluorine contamination. Carbon nanotube sheets were also treated by the helium oxygen plasma, and the CNT surface turn from super hydrophobic to hydrophilic after a few seconds of exposure. The nanotube surface contained 15% of oxygen in the form of hydroxyl groups. Chemical coupling agents were added to the plasma activated CNT surfaces in order to crosslink the CNTs and to create bonding sites for the resin matrix. Stretched, activated and functionalized CNT was cured with dicyclopentadiene (DCPD) to produce a sheet composite with a tensile strength of 636 MPa, a modulus of 28 GPa, and a density of 1.4 g/cm 3. This may be compared to aerospace-grade aluminum with tensile strength of 572 MPa, modulus of 72 GPa, and density of 2.7 g/cm3. This work demonstrates that new high-strength composite can be produced with the use of atmospheric plasma activation and chemical crosslinking of the fiber matrix.

  5. Measurement of longitudinal strain and estimation of peel stress in adhesive-bonded single-lap joint of CFRP adherend using embedded FBG sensor

    NASA Astrophysics Data System (ADS)

    Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.

    2012-04-01

    In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.

  6. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  7. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  8. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  9. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  10. The analysis of adhesively bonded advanced composite joints using joint finite elements

    NASA Astrophysics Data System (ADS)

    Stapleton, Scott E.

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  11. A novel composite-to-composite adhesive bond mechanism.

    PubMed

    Akimoto, Naotake; Sakamoto, Tominori; Kubota, Yuya; Kondo, Yoshie; Momoi, Yasuko

    2011-01-01

    The purpose of this study was to determine if adhesion between various resin composites can occur by a chelation reaction of elemental ions. The surface composition of four commercially available resin composites (Beautifil II, Clearfil AP-X, Estelite Σ Quick and Solare) were measured by X-ray fluorescence analysis. Composite-to-composite adhesion with conventional silane coupling treatment was compared to self-etching primer treatment and evaluated by conventional shear bond strength testing. Our results detected Strontium and Barium (alkaline metallic earth ions) on the surface of Beautifil II and Clearfil AP-X resins. The shear bond strength values of self-etching primer treatments of Beautifil II and Clearfil AP-X was significantly higher than Estelite Σ Quick and Solare. Our data suggest that self-etching primer treatment is effective for adhesion of resin composites, depending on their filler composition, due to the chelation adhesion reaction between the acidic monomer and incorporated alkaline metal ions. PMID:21778602

  12. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  13. Extended Maxwell Garnett formalism for composite adhesives for microwave-assisted adhesion of polymer surfaces

    SciTech Connect

    Shanker, B.; Lakhtakia, A. )

    1993-01-01

    Adhesives with dielectric loss are needed for microwave-assisted joining of polymeric substances. The dielectric loss in an otherwise suitable adhesive may be enhanced by doping it with fine metallic particles. Here we use a recently extended Maxwell Garnett formalism to estimate the complex dielectric constant of a metal-doped composite adhesive, with specific focus on the imaginary part of the dielectric constant of the composite adhesive. 14 refs.

  14. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  15. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  16. Integrating electrostatic adhesion to composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  17. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    NASA Astrophysics Data System (ADS)

    Stahl, James Joseph, III

    fiber nonwoven. A SPS falls into a short fiber nonwoven and is studied as a non-infused, infused, and infused functionalized interleaf in unidirectional carbon fiber composites for GIC improvement over non-interleaved samples. As with traditional interleaving studies it is possible to decrease delamination fracture toughness as well as increase, and the reasons for either are not always clear. While the SPS interleaves are promising to resist delamination, the scatter of the results make it an unreliable method of improvement. While these studies showed significant variability in effect of the interleaf, given the correct morphology of the SPS and precise measurement during the DCB testing it is possible to improve fracture toughness significantly with all SPS interleaves. A unique fabrication method is used to incorporate the SPS interleaves into lap joint and double strap joint geometries using a prepreg lay-up fabrication similar to forming the DCB specimens. This allowed study of the use of the SPS interleaf as an adhesive layer without the need to develop a SPS adhesive film that would not fail prematurely due to poor adhesion to cured composite panels. Results showed that improvement in GIC is not directly translated into improvement in joint strength. Lap joints showed a higher relationship between GIC than double strap joints likely due to the specimen geometry that results in the adhesive layer of lap joints failing in tension rather than shear.

  18. Environmental Aging of Scotch-Weld(TradeMark) AF-555M Structural Adhesive in Composite to Composite Bonds

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Miner, Gilda A.; Lowther, Sharon E.; Connell, John W.; Baughman, James M.

    2010-01-01

    Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance is not well established. In this study, adhesive bonds were prepared by the secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to determine thickness and inspected visually for voids. A three-year environmental aging plan for the SLS specimens at 82 C and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The aging results of strength retention and failure modes to date are reported.

  19. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  20. Evaluation of a high temperature adhesive for fabricating graphite/PMR-15 polyimide structures

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Cushman, J. B.

    1985-01-01

    Tests are conducted to measure shear strength, shear modulus and flatwise tensile strength of the A7F (amide-imide modified LARC-13) adhesive system. An investigation is also conducted to determine the effect of geometric material parameters, and elevated temperature on the static strength of standard joints. Single-lap and double-lap composite joints, and single, double and step lap composite to metal joints are characterized. A series of advanced joints consisting of preformed adherends, adherends with scalloped edges and joints with hybrid interface plies are tested and compared to baseline single and double-lap designs.

  1. Universal adhesive (glue composition) for electrical porcelain products

    SciTech Connect

    Khristoforov, K.K.; Belen'kaya, E.S.; Omel'chenko, Y.A.; Vinogradova, T.K.

    1986-05-01

    The aim of this work is to develop an adhesive for porcelain insulators that exhibits high physicomechanical properties and increased resistance to the simultaneous action of heat and moisture. One method of solving this problem is to introduce special additives possessing hydrophobic (waterrepelling) properties into the adhesive composition during the process of its preparation. The adhesive based on the ED-20 epoxy resin and TEA hardened with 5 parts of AF-2 additive possesses higher resistance to the action of heat and moisture as compared to the adhesive used at the present time for assembling insulators. The improved and stable physiomechanical properties of the developed adhesive permit its use in any climactic conditions.

  2. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  3. Adhesion study of thermoplastic polyimides with Ti-6Al-4V alloy and PEEK-graphite composites

    SciTech Connect

    Yoon Taeho.

    1991-01-01

    High glass transition (e.g. 360C) melt processable thermoplastic polyimide homopolymers and poly(imide-siloxane) segmented copolymers were prepared from a number of diamines and dianhydrides via solution imidization, polydimethylsilxane segment incorporation and molecular weight control with non-reactive phthalimide end-groups. The adhesive bond performance of these polyimides was investigated as a function of molecular weight, siloxane incorporation, residual solvent, test temperature, and polyimide structure via single-lap shear samples prepared from treated Ti-6Al-4V alloy adherends and compression-molded film adhesives of scrim-cloth adhesives. The adhesive bond strengths increased greatly with siloxane-segment incorporation at 10, 20 and 30 wt% and decreased slightly with total polymer molecular weight. As the test temperature was increased, adhesive bond strength increased, decreased or showed a maximum at some temperatures depending on the polyimide structure and siloxane content. The poly(imide-30% siloxane) segmented copolymer and a miscible poly(ether-imide) also demonstrated excellent adhesive bond strength with poly(arylene ether ketone) PEEK{reg sign}-graphite composites.

  4. A comprehensive assessment of adhesively bonded joints between sandwich composite beams

    NASA Astrophysics Data System (ADS)

    Shahin, Khaled Omar

    Assessment of adhesively bonded joints between sandwich composite beams are presented in this thesis in three parts, each is concerned with a distinct aspect of the joint behaviour. In physical order, these include the deformations of the entire joint assembly, the state of stress in the joint overlap region, and the strain energy release at the crack-tip at the end of the overlap. Analytical models developed in this thesis, however, are not limited in their application to adhesive joint between sandwich beams. In each part of this thesis, the integrity of the proposed analytical models are tested against geometrically non-linear finite element models. In this first part of this thesis, an analytical asymptotic model is presented for the analysis of balanced and unbalanced adhesively bonded joints. The model takes advantage of the asymptotic nature of the adhesive stress functions by eliminating exponentially small terms. Analysis of balanced and unbalanced adhesive joints is greatly simplified with negligible loss in accuracy. Accurate closed-form solutions for both adhesive peel and shear stresses are presented, providing an efficient analysis and design tool and a significant contribution to the literature on unbalanced adhesively bonded joints. In the second part, the asymptotic model is extended to the analysis of strain energy release rates in adhesively bonded joints, using the crack closure concept. Closed-form expressions are presented for various joint types. The shear force and adhesive layer effects are included in the analysis, thus improving on currently available works in the literature. In joints with a long crack and a thin adhesive layer, the asymptotic model is shown to be in good agreement with classical beam theory models. In the third part, deformations in adhesively bonded joints between sandwich beams are studied. Adherends are modeled as cylindrically bent plates on elastic foundations and the overlap section is treated as a single

  5. Probabilistic assessment of failure in adhesively bonded composite laminates

    SciTech Connect

    Minnetyan, L.; Chamis, C.C.

    1997-07-01

    Damage initiation and progressive fracture of adhesively bonded graphite/epoxy composites is investigated under tensile loading. A computer code is utilized for the simulation of composite structural damage and fracture. Structural response is assessed probabilistically during degradation. The effects of design variable uncertainties on structural damage progression are quantified. The Fast Probability Integrator is used to assess the response scatter in the composite structure at damage initiation. Sensitivity of the damage response to design variables is computed. Methods are general purpose in nature and are applicable to all types of laminated composite structures and joints, starting from damage initiation to unstable damage propagation and collapse. Results indicate that composite constituent and adhesive properties have a significant effect on structural durability. Damage initiation/progression does not necessarily begin in the adhesive bond. Design implications with regard to damage tolerance of adhesively bonded joints are examined.

  6. Microtubule-dependent modulation of adhesion complex composition.

    PubMed

    Ng, Daniel H J; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Humphries, Martin J

    2014-01-01

    The microtubule network regulates the turnover of integrin-containing adhesion complexes to stimulate cell migration. Disruption of the microtubule network results in an enlargement of adhesion complex size due to increased RhoA-stimulated actomyosin contractility, and inhibition of adhesion complex turnover; however, the microtubule-dependent changes in adhesion complex composition have not been studied in a global, unbiased manner. Here we used label-free quantitative mass spectrometry-based proteomics to determine adhesion complex changes that occur upon microtubule disruption with nocodazole. Nocodazole-treated cells displayed an increased abundance of the majority of known adhesion complex components, but no change in the levels of the fibronectin-binding α5β1 integrin. Immunofluorescence analyses confirmed these findings, but revealed a change in localisation of adhesion complex components. Specifically, in untreated cells, α5-integrin co-localised with vinculin at peripherally located focal adhesions and with tensin at centrally located fibrillar adhesions. In nocodazole-treated cells, however, α5-integrin was found in both peripherally located and centrally located adhesion complexes that contained both vinculin and tensin, suggesting a switch in the maturation state of adhesion complexes to favour focal adhesions. Moreover, the switch to focal adhesions was confirmed to be force-dependent as inhibition of cell contractility with the Rho-associated protein kinase inhibitor, Y-27632, prevented the nocodazole-induced conversion. These results highlight a complex interplay between the microtubule cytoskeleton, adhesion complex maturation state and intracellular contractile force, and provide a resource for future adhesion signaling studies. The proteomics data have been deposited in the ProteomeXchange with identifier PXD001183. PMID:25526367

  7. Tubular lap joints for wind turbine applications

    SciTech Connect

    Reedy, E.D. Jr.; Guess, T.R.

    1990-01-01

    A combined analytical/experimental study of the strength of thick- walled, adhesively bonded PMMA-to-aluminum and E-glass/epoxy composite-to-aluminum tubular lap joints under axial load has been conducted. Test results include strength and failure mode data. Moreover, strain gages placed along the length of the outer tubular adherend characterize load transfer from one adherend to the other. The strain gage data indicate that load transfer is nonuniform and that the relatively compliant PMMA has the shorter load transfer length. Strains determined by a finite element analysis of the tested joints are in excellent agreement with those measured. Calculated bond stresses are highest in the region of observed failure, and extensive bond yielding is predicted in the E- glass/epoxy composite-to-aluminum joint prior to joint failure. 4 refs., 13 figs., 1 tab.

  8. A study of the compatibility of adhesives with composites.

    PubMed

    Suh, Byoung I

    2003-08-01

    A decade ago, the revolution in adhesion dentistry brought the profession to the basic three-step adhesives, such as ALL-BOND 2 and Adper Scotchbond MP, which were at the time deemed as fourth generation. However, the recent trend in adhesive products is to simplify the steps into two steps or even a single step to make them, possibly, more user-friendly and time saving. Subsequent naming led to a "generation battle." Is this the right track? Does this achieve simplification without compromising performance? Perhaps the best way to classify adhesives is to indicate the number of steps required. This article describes the results of a compatibility study of modern adhesive systems with composites in the fabrication of long-lasting and esthetic restorations. PMID:14692212

  9. Achieving enhanced and tunable adhesion via composite posts

    NASA Astrophysics Data System (ADS)

    Minsky, H. K.; Turner, K. T.

    2015-05-01

    Surfaces with enhanced and tunable adhesion have a variety of applications, including microtransfer printing of semiconductor elements, material handling in manufacturing, and gripping surfaces on climbing robots. Traditionally, schemes to achieve tunable adhesion have relied on fabricating arrays of posts or fibers with complex geometries, such as angled posts terminated by wider caps. Here, we describe an alternative to post structures with complex geometries through the use of composite posts that consist of a stiff core and a compliant shell. Posts consisting of a stiff core and compliant shell have enhanced adhesion under normal loading, and the pull-off can be reduced via the application of shear. The adhesion mechanics of composite posts are demonstrated here through a combination of finite element simulations and experimental measurements on individual millimeter-scale posts.

  10. Surface modifications of nylon/carbon fiber composite for improving joint adhesion

    SciTech Connect

    Wu, R.; Liao, S.L.; Tong, T.S.; Young, J.T.

    1996-12-31

    Various methods were used to modify the nylon/carbon fiber composite surfaces, including grit blasting, flame and plasma pretreatments. The surfaces of nylon composites after pretreatments were characterized by contact angle measurements, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that several functional groups were formed after plasma and flame pretreatments. The scanning electron microscope (SEM) photographs suggest that the blasting pretreatment increased the surface roughness of nylon composites. All these surface pretreatments dramatically increased the lap shear strength if proper operation conditions were used. The reasons for the increase of lap shear strength were explained.

  11. Characterization of adhesive from oysters: A structural and compositional study

    NASA Astrophysics Data System (ADS)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  12. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  13. Adhesive and Composite Properties of a New Phenylethynyl Terminated Imide

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Connell, J. W.; Hergenrother, P. M.

    2002-01-01

    A relatively new phenylethynyl terminated imide oligomer (PETI) from the reaction of 2,3,',4'- biphenyltetracarboxylic dianhydride, 4,4'-oxydianiline and endcapped with 4- phenylethynylphthalic anhydride at a calculated number average molecular weight of 5000 g/mole was evaluated as an adhesive and composite matrix. The asymmetric dianhydride imparts a low melt viscosity to the oligomer and a high glass transition temperature to the cured resin. Preliminary adhesive work with titanium (6Al-4V) adherend gave good room temperature (RT) tensile shear strengths and excellent retention of RT strength at 260 C. Preliminary composite work using unsized IM7 carbon fiber provided moderate to high mechanical properties. The chemistry, mechanical, and physical properties of the new PETI in neat resin, adhesive and composite form are presented.

  14. Status of high-temperature laminating resins and adhesives

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Johnston, N. J.

    1980-01-01

    High-temperature polymers now being developed as adhesives and composite matrices are reviewed, including aromatic polyimides, polybenzimidazoles, polyphenylquinoxalines, nadic end-capped imide oligomers, maleimide end-capped oligomers, and acetylene-terminated imide oligomers. The mechanical properties of laminates based on these resins are reported together with preliminary test results on the adhesive properties for titanium-to-titanium and composite-to-composite lap shear specimens.

  15. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  16. Analysis and design of advanced composite bounded joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Advances in the analysis of adhesive-bonded joints are presented with particular emphasis on advanced composite structures. The joints analyzed are of double-lap, single-lap, scarf, stepped-lap and tapered-lap configurations. Tensile, compressive, and in-plane shear loads are covered. In addition to the usual geometric variables, the theory accounts for the strength increases attributable to adhesive plasticity (in terms of the elastic-plastic adhesive model) and the joint strength reductions imposed by imbalances between the adherends. The solutions are largely closed-form analytical results, employing iterative solutions on a digital computer for the more complicated joint configurations. In assessing the joint efficiency, three potential failure modes are considered. These are adherend failure outside the joint, adhesive failure in shear, and adherend interlaminar tension failure (or adhesive failure in peel). Each mode is governed by a distinct mathematical analysis and each prevails throughout different ranges of geometric sizes and proportions.

  17. Structural Health Monitoring of Adhesively Bonded Composite Joints

    NASA Astrophysics Data System (ADS)

    Habib, Fady

    In recent years, many aerospace organizations have researched and implemented composite materials to achieve better fuel efficiency as well as reduced maintenance cost. In addition to the use of composites, manufacturers are investigating the use of adhesive bonded joints and composite patch bonded repairs to extend the life of their in-service aircraft. Adhesive joints are superior to traditional mechanical fasteners as they reduce stress concentration zones and overall part count. However, the integrity of an adhesive joint is difficult to inspect. Inspection of adhesive joints may be carried out using interrogation technology such as Structural Health Monitoring (SHM). This thesis focuses on the evaluation of Acoustic-Ultrasonic (AU) SHM technique for the detection of crack and disbond growth. In addition to AU, Capacitance Disbond Detection Technique (CDDT) and the Surface Mountable Crack Detection System (SMCDS) were evaluated for the detection disbonds. Results of the AU system demonstrated that AU technology may be used to detect and quantify crack and disbond growth. It was also found that SMCDS and CDDT both complement each other, as SMCDS identified the location of disbond while CDDT quantify disbond.

  18. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  19. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  20. Cariogenic bacteria degrade dental resin composites and adhesives.

    PubMed

    Bourbia, M; Ma, D; Cvitkovitch, D G; Santerre, J P; Finer, Y

    2013-11-01

    A major reason for dental resin composite restoration replacement is related to secondary caries promoted by acid production from bacteria including Streptococcus mutans (S. mutans). We hypothesized that S. mutans has esterase activities that degrade dental resin composites and adhesives. Standardized specimens of resin composite (Z250), total-etch (Scotchbond Multipurpose, SB), and self-etch (Easybond, EB) adhesives were incubated with S. mutans UA159 or uninoculated culture medium (control) for up to 30 days. Quantification of the BisGMA-derived biodegradation by-product, bishydroxy-propoxy-phenyl-propane (BisHPPP), was performed by high-performance liquid chromatography. Surface analysis of the specimens was performed by scanning electron microscopy (SEM). S. mutans was shown to have esterase activities in levels comparable with those found in human saliva. A trend of increasing BisHPPP release throughout the incubation period was observed for all materials and was more elevated in the presence of bacteria vs. control medium for EB and Z250, but not for SB (p < .05). SEM confirmed the increased degradation of all materials with S. mutans UA159 vs. control. S. mutans has esterase activities at levels that degrade resin composites and adhesives; degree of degradation was dependent on the material's chemical formulation. This finding suggests that the resin-dentin interface could be compromised by oral bacteria that contribute to the progression of secondary caries. PMID:24026951

  1. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition.

    PubMed

    Horton, Edward R; Humphries, Jonathan D; Stutchbury, Ben; Jacquemet, Guillaume; Ballestrem, Christoph; Barry, Simon T; Humphries, Martin J

    2016-02-01

    Integrin adhesion complexes (IACs) form mechanochemical connections between the extracellular matrix and actin cytoskeleton and mediate phenotypic responses via posttranslational modifications. Here, we investigate the modularity and robustness of the IAC network to pharmacological perturbation of the key IAC signaling components focal adhesion kinase (FAK) and Src. FAK inhibition using AZ13256675 blocked FAK(Y397) phosphorylation but did not alter IAC composition, as reported by mass spectrometry. IAC composition was also insensitive to Src inhibition using AZD0530 alone or in combination with FAK inhibition. In contrast, kinase inhibition substantially reduced phosphorylation within IACs, cell migration and proliferation. Furthermore using fluorescence recovery after photobleaching, we found that FAK inhibition increased the exchange rate of a phosphotyrosine (pY) reporter (dSH2) at IACs. These data demonstrate that kinase-dependent signal propagation through IACs is independent of gross changes in IAC composition. Together, these findings demonstrate a general separation between the composition of IACs and their ability to relay pY-dependent signals. PMID:26833789

  2. Adhesive defect detection in composite adhesive joints using phased array transducers

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2015-03-01

    Composite materials are widely used in aircraft structures due to their high specific stiffness and strength. The laminated nature of composite structures makes them subject to disbond and delamination. These types of defects will compromise the integrity of the structure and therefore need to be monitored. To monitor aircraft structures, light weight transducers capable of large area coverage are beneficial. Ultrasonic guided waves are able to travel long distance and are sensitive to localized defects. The multi-modal characteristic of propagating guided waves requires optimal mode selection and excitation. Phased array transducers provide good versatility for optimal mode excitation since they can excite different guided wave modes preferentially. Phased array transducers designed for structural health monitoring (SHM) applications are employed in this work to study the interaction between adhesive defects and guided wave modes. Amplitude ratios and wave packet composition are utilized as defect indicators that are uniquely available due to the phased array transducers.

  3. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (∼2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  4. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent. PMID:22414513

  5. Adhesive and composite evaluation of acetylene-terminated phenylquinoxaline resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1981-01-01

    A series of acetylene-terminated phenylquinoxaline (ATPQ) oligomers of various molecular weights were prepared and subsequently chain extended by the thermally induced reaction of the ethynyl groups. The processability and thermal properties of these oligomers and their cured resins were compared with that of a relatively high molecular weight linear polyphenylquinoxaline (PPQ) with the same chemical backbone. The ATPQ oligomers exhibited significantly better processability than the linear PPQ but the PPQ displayed substantially better thermooxidative stability. Adhesive (Ti/Ti) and composite (graphite filament reinforcement) work was performed to evaluate the potential of these materials for structural applications. The PPQ exhibited better retention of adhesive and laminate properties than the ATPQ resins at 260 C after aging for 500 hr at 260 C in circulating air.

  6. Surface analysis in composite bonding

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Wightman, J. P.

    1983-01-01

    X ray photoelectron spectroscopy and contact angle measurements on graphite fiber composites pretreated in a number of different ways including mechanical, chemical, and light irradiation were analyzed. Data acquired on surface contamination as a result of fabrication techniques provides answers to the strength and durability of adhesively bonded composites. These techniques were shown to provide valuable information on surface analysis of pretreated composites prior to adhesive bonding and following lap shear fracture.

  7. Dechlorination of Chloral Hydrate Is Influenced by the Biofilm Adhesin Protein LapA in Pseudomonas putida LF54

    PubMed Central

    Zhang, Wanjun; Huhe; Pan, Yuanbai; Toyofuku, Masanori; Nomura, Nobuhiko; Nakajima, Toshiaki

    2013-01-01

    LapA is the largest surface adhesion protein of Pseudomonas putida that initiates biofilm formation. Here, by using transposon insertion mutagenesis and a conditional lapA mutant, we demonstrate for the first time that LapA influences chloral hydrate (CH) dechlorination in P. putida LF54. PMID:23603683

  8. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  9. Mimicking mussel adhesion to improve interfacial properties in composites

    PubMed Central

    Hamming, L. M.; Fan, X. W.; Messersmith, P. B.; Brinson, L. C.

    2009-01-01

    The macroscale properties of polymer-matrix composites depend immensely on the quality of the interaction between the reinforcement phase and the bulk polymer. This work presents a method to improve the interfacial adhesion between metal-oxides and a polymer matrix by performing surface-initiated polymerization (SIP) by way of a biomimetic initiator. The initiator was modeled after 3,4-dihydroxy-L-phenylalanine (dopa), an amino acid that is highly concentrated in mussel foot adhesive proteins. Mechanical pull out tests of NiTi and Ti-6Al-4V wires from poly (methyl methacrylate) (PMMA) were performed to directly test the interfacial adhesion. These tests demonstrated improvements in maximum interfacial shear stress of 116% for SIP-modified NiTi wires and 60% for SIP-modified Ti-6Al-4V wires over unmodified specimens. Polymer chain growth from the metal oxides was validated using x-ray photoemission spectroscopy (XPS), ellipsometry, scanning electron microscopy (SEM), and contact angle analysis. PMID:19578545

  10. Ultrasonic inspection of adhesive joints of composite pipelines

    NASA Astrophysics Data System (ADS)

    de Almeidaa, Priscila Duarte; Alcoforado Rebello, João Marcos; Pereira, Gabriela Ribeiro; Soares, Sérgio Damasceno; Fernandez, Roman

    2014-02-01

    Composite pipelines are an attractive solution when traditional materials are not suitable for this purpose, which happens frequently at aggressive environments and also where the structural weight is a limiting factor. This work studies the application of the ultrasonic technique at the detection of defects as lack of adhesive and lack of adhesion, commonly found in adhesive joints of glass fiber reinforced plastic (GFRP) pipelines applied at onshore and offshore facilities. Computational simulations were conducted in CIVA 11software (beta version) in order to obtain the best possible configuration for the inspections, applying the pulse-echo technique. Experimental results were compared to these simulations and several transducers were tested. An inspection methodology and reference blocks were developed for the calibration of the inspections. Some samples were selected for cutting in order to compare the ultrasonic results and the real condition of the joints. Results show that smaller frequencies are suitable for the inspection of this material and focused probes present more accurate results.

  11. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  12. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  13. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  14. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116K (-250 F), 294K (70 F) and 561K (550 F). Joint parameters evaluated were lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Tests of advanced joint concepts were also conducted to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. Special tests were conducted to establish material properties of the high temperature adhesive, designated A7F, used for bonding. Most of the bonded joint tests resulted in interlaminar shear or peel failures of the composite. There were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  15. Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion.

    PubMed

    Nicolini, Ariana M; Toth, Tyler D; Yoon, Jeong-Yeol

    2016-09-01

    This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants. In the unconventional RP, the charged colloidal particles and surfactants were shown to have an exaggerated effect on Taylor cone morphology and fiber diameter caused by the changes in charge density and surface tension of the bulk solution. The RP mode was shown to lead to a decrease in fiber diameter from 1200±100nm (diameter±SE) for the nanofibers made with PCL alone to 440±80nm with the incorporation of colloidal particles, compared to the PP mode ranging from 530±90nm to 350±50nm, respectively. The nanoparticle-nanofiber composite substrates were cultured with human umbilical vein endothelial cells (HUVECs) and evaluated for cellular viability and adhesion for up to 5 days. Adhesion to the nanofibrous substrates was improved by 180±10% with the addition of carboxylated particles and by 480±60% with the functionalization of an RGD ligand compared to the PCL nanofibers. The novel approach of electrospinning in the RP mode with the addition of colloids in order to alter charge density and surface tension could be utilized towards many applications, one being implantable biomaterials and tissue engineered scaffolds as demonstrated in this work. PMID:27315331

  16. Nondestructive inspection of CFRP adhesively bonded joints using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Webb, S.; Shin, P.; Peters, K.; Selfridge, R.; Schultz, S.

    2013-05-01

    One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. In this work we demonstrate that dynamic, full spectral scanning of FBG sensors embedded in the adhesive bond can identify changes in bond quality through the measurement of non-linear dynamics of the joint. Eighteen lap joint specimens were fabricated with varying manufacturing quality. Ten samples also included fiber Bragg grating (FBG) sensors embedded in the adhesive bond for real-time inspection during a simulated flight condition of these single-lap joints. Prior to testing, pulse phase thermography imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. The lap joint specimens were then subjected to fatigue loading, with regular interrogation of the FBG sensors at selected load cycle intervals. The FBG data was collected during vibration loading of the lap joint to represent an in-flight environment. Changes in the lap joint dynamic response, including the transition to non-linear responses, were measured from both the full-spectral and peak wavelength FBG data. These changes were correlated to initial manufacturing defects and the progression of fatigue-induced damage independently measured with pulse phase imaging and visual inspections of the failure surfaces.

  17. Further understanding of aged composite and adhesively bonded structures

    NASA Astrophysics Data System (ADS)

    Heslehurst, Rikard B.; Baird, John P.

    1996-11-01

    As the application of advanced composite materials and adhesively bonded components becomes increasingly numerous in aircraft structures, so is the number of aircraft containing such structures that can be classified in the aging aircraft category. The effect of environmental and in- service aging of such structures is not well known or understood, neither have NDE techniques been able to satisfactorily qualify and quantify the loss of structural integrity due to the aging process. This paper will present the latest developments in the practical use of a field portable holographic interferometric testing system. The system results, known as holographic interferograms, provide a better understanding of how a structure is behaving under realistic loads in the presence of defects, damage and material property aging. The system has been applied to a variety of defects in composite and adhesive bondlines, as well as artificial environmental aging of these materials. The holographic interferograms produced form these investigations will be briefly reviewed and their impact on structural integrity of the component discussed.

  18. Chemistry, Adhesive and Composite Properties of Low Molecular Weight Phenylethynyl Terminated Oligomers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    2004-01-01

    PETI-5 (1250 and 2500 g/mole) were prepared and characterized. Neat resin, adhesive and composite properties were determined and compared with those of PETI-5 (5000 g/mole). Relative to PETI-5 (5000 g/mole), PETI-5 (2500 g/mole) exhibited improved processability and equivalency in the adhesive and composite properties measured thus far. This resin, in both adhesive film and prepreg form, has the potential to offer significant improvements in the processing of complex structural composite parts.

  19. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  20. Adhesives for the composite wood panel industry. Final report

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1986-01-13

    Significant energy savings could be realized if current fossil fuel-based resins could be replaced with alternative biomass-derived adhesives. Hence, a program was performed to analyze the current wood panel adhesives market, identify both domestic and international R and D efforts in the area of biomass-derived alternative adhesives that might serve as substitutes for conventional fossil fuel-based adhesives, and assess the technical and economic factors that will influence commercial success of these alternative adhesives.

  1. Experimental determination of the effects of moisture on composite-to-composite adhesive joints

    NASA Technical Reports Server (NTRS)

    Deiasi, R. J.; Schulte, R. L.

    1981-01-01

    The primary mode of moisture ingress into bonded composite joints is determined using a nuclear probe for deuterium (NPD) to measure the localized D2O content along the length of the adhesive (FM-300 and EA-9601) and through the thickness of bonded composite speciments. Calculated diffusivities and NPD measured equilibrium moisture contents are used to predict the moisture profiles along the length of the adhesives as a function of exposure time, temperature, and relative humidity. These results are compared with the observed moisture profiles to evaluate the extent of enhanced edge diffusion. The FM-300 adhesive exhibits good agreement between measured and predicted profiles at 49 C, 70% and 90% RH, and 77 C, 70% RH. At 77 C, 90% RH, the measured moisture content near the adhesive edge is substantially larger than the predicted level. The EA-9601 adhesive also shows good agreement at 49 C, 70% and 90% RH, but at 77 C, the concentration of D20 near the edges is enhanced at each humidity level. The effect of moisture content on the bond shear strength at room temperature and at elevated temperature is evaluated.

  2. Nondestructive inspection in adhesive-bonded joint CFRP using pulsed phase thermography

    NASA Astrophysics Data System (ADS)

    Shin, P. H.; Webb, S. C.; Peters, K. J.

    2013-05-01

    Many forms of damages in fiber reinforcement polymer (FRP) composites are difficult to detect because they occurs in subsurface layers of the composites. One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. This paper investigates pulsed phase thermography (PPT) imaging of fatigue damage in these adhesively bonded joints. Simulated defects were created to calibrate parameters for fatigue loading conditions, PPT imaging parameters, and a damage sizing algorithm for carbon fiber reinforced polymer (CFRP) single lap joints. Afterwards, lap joint specimens were fabricated with varying quality of manufacturing. PPT imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. Next, fatigue testing was performed and acquired PPT imaging data identified fatigue induced damage prior to final failure cycles. After failure of each sample, those images were confirmed by visual inspections of failure surface.

  3. Permeability testing of composite material and adhesive bonds for the DC-XA composite feedline program

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1995-01-01

    Hercules IM7/8552 carbon/epoxy and Hysol EA 9394 epoxy adhesive bonded between composite/titanium were tested for permeability after various numbers of thermal cycles between 100 C and liquid nitrogen (-196 C). The specimens were quenched from the 100 C temperature into liquid nitrogen to induce thermal shock into the material. Results showed that the carbon/epoxy system was practically impermeable even after 12 thermal cycles. The EA 9394 adhesive bondline was more permeable than the carbon/epoxy, but vacuum mixing minimized the permeability and kept it within allowable limits. Thermal cycling had little effect on the permeability values of the bondline specimens.

  4. Influence of interphase morphology on adhesion and composite durability in semicrystalline polymer matrix composites

    SciTech Connect

    Clark, R.L. Jr.; Kander, R.G.

    1996-12-31

    The microstructure of the interphase in semicrystalline polymer matrix composites has a dramatic influence on their mechanical properties. Studies have been performed to alter this region and to correlate various interphase morphologies with changes in fiber-matrix adhesion. A reinforced nylon 66 composite, when subjected to specific thermal histories, contains an interphase composed of transcrystallinity. This region has been altered by coating fibers with a diluent, poly(vinyl pyrrolidone), and/or adding the diluent to the matrix material in very small quantities. Interphase morphology was investigated with optical microscopy, and adhesion was measured using a modified fiber pull-out test. It was found that transcrystallinity increases the interfacial shear strength. The effect different interphase morphologies have on the durability of bulk composite samples is currently under investigation.

  5. Interfacial adhesion in rayon/nylon sheath/core composite fibers

    SciTech Connect

    Tao Weiying.

    1991-01-01

    The fibers with enhanced adhesion were produced using a wire coating type process. One objective was to determine an effective coupling agent and the most-appropriate application conditions for maximum interfacial adhesion in the rayon/nylon bicomponent fibers. The second objective was to characterize the interfacial adhesion between the core fiber and the rayon skin. After removal of the spin finish by water washing, the nylon core fibers were pretreated with fumaric acid (FA) as an adhesion promoter and then were coated with viscose rayon. The results indicated that the interfacial adhesion in the rayon/nylon composite fibers was significantly improved under the application conditions of 1.0% with 36 second pretreatment time, 1.5% with 18 second pretreatment, and 2% with 9 second pretreatment time. A fiber pull adhesion test method was developed to test the interfacial adhesion. This method effectively determined the adhesion between the core and the skin.

  6. New primers for adhesive bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Burrell, B. W.; Port, W. S.

    1971-01-01

    Synthetic polypeptide adhesive primers are effective, with high temperature epoxy resins, at temperatures from 100 deg to 300 deg C. Lap-shear failure loads and lap-shear strength of both primers are discussed.

  7. AMORPHOUS CALCIUM PHOSPHATE COMPOSITES AND THEIR EFFECT ON COMPOSITE-ADHESIVE-DENTIN BONDING

    PubMed Central

    Antonucci, J.M.; O’Donnell, J.N.R.; Schumacher, G.E.; Skrtic, D.

    2009-01-01

    This study evaluates the bond strength and related properties of photo-polymerizable, remineralizing amorphous calcium phosphate (ACP) polymeric composite-adhesive systems to dentin after various periods of aqueous aging at 37 °C. An experimental ACP base and lining composite was made from a photo-activated resin comprising 2,2-bis[p-(2’-hydroxy-3’-methacryloxypropoxy)phenyl]propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and zirconyl dimethacrylate (ZrDMA); designated BTHZ. An experimental orthodontic composite was formulated from a photo-activated resin comprising ethoxylated bisphenol A dimethacrylate (EBPADMA), TEGDMA, HEMA and methacryloxyethyl phthalate (MEP); designated ETHM. In both composite series three fillers were compared: 1) freshly precipitated zirconium-modified ACP freshly precipitated (as-prepared Zr-ACP), 2) milled Zr-ACP and 3) an ion-leachable fluoride glass. In addition to the shear bond strength (SBS), work to fracture and failure modes of the orthodontic composites were determined. The SBS of the base and lining ACP composites appeared unaffected by filler type or immersion time. In the orthodontic ACP composite series, milled ACP composites showed initial mechanical advantages over as-prepared ACP composites, and produced higher incidence of a failure mode consistent with stronger adhesion. After six months of aqueous exposure, 80 % of specimens failed at the dentin-primer interface, with a 42 % overall reduction in bond strength. BTHZ and ETHM based ACP composites are potentially effective anti-demineralizing-remineralizing agents with possible clinical utility as protective base-liners and orthodontic cements, respectively. The analysis of the bond strength and failure modalities suggests that milled ACP composites may offer greater potential in clinical applications. PMID:19696914

  8. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  9. The effect of delayed placement of composite and double application of single-bottle adhesives on microleakage of composite restorations.

    PubMed

    Shafiei, Fereshteh; Kiomarsi, Nazanin; Alavi, Ali Asghar

    2011-01-01

    This study evaluated the effect of delayed placement of composite and double application of adhesive on microleakage of two-step, total-etch (single-bottle) adhesives. Standard Class V cavities were prepared in 140 sound premolars and randomly assigned into 10 groups (n = 14). Excite, Optibond Solo Plus, and Adper Scotchbond Multi-Purpose (as a control) were used. After the first layer of single-bottle adhesive was photocured, the adhesive was reapplied and photocured in four of the groups. A microhybrid composite was applied in five of the groups immediately after the adhesive was photocured; in the other five groups, the composite was placed after a three-minute delay. After 24 hours of storage in distilled water and thermocycling, the samples were placed in 1% methylene blue. All samples then were sectioned longitudinally and evaluated for microleakage at the occlusal and gingival margins under a stereomicroscope at 20x magnification. Data were analyzed using nonparametric tests. Delayed placement of composite significantly increased leakage at the gingival margins when single-bottle adhesives were used (p < 0.05). Double application of the single-bottle adhesives significantly reduced leakage at the gingival margin when placement of the composite was delayed. There was no significant difference between single and double application when the composite was placed immediately (p < 0.05). PMID:21613038

  10. Damage analysis in composite materials and design of adhesive joints for composite structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    design of adhesive joints for composite structures . A new approach was explored for joining of thick, woven E-glass/vinyl ester composite laminated plates to steel or composite plates, with applications in naval ship structures. Adhesive was applied along through-the-thickness contoured interfaces, employing tongue-and-groove geometry. Both experimental and finite element modeling results were presented. They showed that adhesively bonded tongue-and-groove joints between steel and composite plates loaded in monotonically increasing longitudinal tension are stronger than conventional strap joints even in relatively thin plates. In particular, a single 0.25 in. wide and 8 or 12 in. long steel tongue, bonded by the Dexter-Hysol 9339 adhesive to a groove in a 0.5 in. thick laminated plate, can support a 20,000 lbs tension force. This force was expected to increase in proportion to plate thickness. Simple design rules indicate that the adhesive bond can be made stronger than that of the tongues, so that failure was transferred from the adhesive to the adherends. High joint efficiency can be achieved for any thickness of the joined plates.

  11. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  12. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple

  13. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  14. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.

    PubMed

    Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei

    2015-03-11

    Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance. PMID:25676143

  15. Adhesive strength of paint-on resins to crown and bridge composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-12-01

    This paper examined the adhesive strength of paint-on resin to crown and bridge composites after soaking in water and thermal-cycling. Three shades of paint-on resin were coated on three kinds of crown and bridge composite under four surface treatment conditions (a combination of sandblaster and pretreatment liquid). These specimens were soaked in water at 37 degrees C for 1 day, 1 month, and 1 year, and at 4 degrees C and 60 degrees C alternatively for 1-minute periods for 10,000 cycles by thermal-cycling machine. The adhesive strengths were obtained by shear test. There were no significant differences among the adhesive strengths of three shades of paint-on resin to three composites after storage (p > 0.05). The adhesive strengths to composites with sandblasting showed higher values than those without it (p < 0.01). PMID:15693161

  16. Characterization of mode I and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1986-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  17. Composition and Humidity Response of the Black Widow Spider's Gumfoot Silk and its Implications on Adhesion

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Zhang, Ci; Cool, Lydia Rose; Blackledge, Todd. A.; Wesdemiotis, Chrys; Miyoshi, Toshikazu; Dhinojwala, Ali

    Humidity plays an important part in the performance of biomaterials such as pollen, gecko toe, wheat awns, bird feathers and dragline silk. Capture silk produced by web building spiders form an interesting class of humidity responsive biological glues. The adhesive properties of the widely studied `viscid silk' produced by orbweb-weaving spiders is highly humidity sensitive. On the other hand, relatively less is known about the dependence of composition and humidity response towards adhesion for `gumfoot' silk produced by cobweb-weaving spiders. In the present study, we investigate the gumfoot silk produced by Black Widow using adhesion mechanics, microscopy and spectroscopic methods. The results show the presence of hygroscopic salts, glycoproteins and previously known spider coating peptides in silk and their importance in the humidity response and adhesion. The current study elucidates the role of constituents of capture silk in its adhesion mechanism and offers insights to novel ways for fabricating bio-inspired adhesives.

  18. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  19. Structural and compositional characterization of the adhesive produced by reef building oysters.

    PubMed

    Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J

    2015-04-29

    Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem. PMID:25843147

  20. Analysis of the Static and Fatigue Strenght of a Damage Tolerant 3D-Reinforced Joining Technology on Composite Single Lap Joints

    NASA Astrophysics Data System (ADS)

    Nogueira, A. C.; Drechsler, K.; Hombergsmeier, E.

    2012-07-01

    The increasing usage of carbon fiber reinforced plastics (CFRP) in aerospace together with the constant drive for fuel efficiency and lightweight design have imposed new challenges in next generation structural assemblies and load transfer efficient joining methods. To address this issue, an innovative technology, denominated Redundant High Efficiency Assembly (RHEA) joints, is introduced as a high-performance lightweight joint that combines efficient load transfer with good damage tolerance. A review of the ongoing research involving the RHEA joint technology, its through-thickness reinforcement concept and the results of quasi-static and fatigue tensile investigations of single lap shear specimens are exposed and discussed. Improvements in ultimate static load, maximum joint deformation, damage tolerance and fatigue life are encountered when comparing the performance of the RHEA lap shear joints to co-bonded reference specimens.

  1. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    NASA Technical Reports Server (NTRS)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  2. Effect of thermal shock loadings on stability of dentin-composite polymer material adhesive interfaces

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Gribov, Andrey N.

    2015-03-01

    In the past several decades the problem of longevity and durability of adhesive interfaces between hard tooth tissues and composite resin-based materials are of great interest among dental researchers and clinicians. These parameters are partially determined by adhesive system mechanical properties. In the present research project nanoindentation has been examined to test hardness of dental adhesive systems. A series of laboratory experiments was performed to study the effect of light curing time and oxygen inhibition phenomenon on light-cured adhesive material hardness. An adhesive system AdperTM Single Bond (3M ESPE) was selected as a material for testing. The analysis of experimental data revealed that the maximum values of hardness were observed after the material had been light-cured for 20 seconds, as outlined in guidelines for polymerization time of the adhesive system. The experimental studies of oxygen inhibition influence on adhesive system hardness pointed out to the fact that the dispersive layer removal led to increase in adhesive system hardness. A long - time exposure of polymerized material of adhesive system at open air at room temperature resulted in no changes in its hardness, which was likely to be determined by the mutual effect of rival processes of air oxygen inhibition and directed light curing.

  3. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  4. Shear bond strength evaluation of resin composite bonded to GIC using three different adhesives.

    PubMed

    Gopikrishna, V; Abarajithan, M; Krithikadatta, J; Kandaswamy, D

    2009-01-01

    The current study evaluated the bonding ability of composite to glass ionomer cement (GIC) using three different bonding systems. One hundred samples of composites bonded to GIC were prepared and divided into five groups. In Group A, the composite was bonded to GIC after the initial setting of the GIC being employed as a total-etch adhesive. In Group B, the self-etch primer was employed to bond composite to GIC before the initial setting of the GIC. In Group C, the self-etch primer was employed to bond composite to the GIC after the initial setting of the GIC. In Group D, the GIC-based adhesive was employed to bond composite to the GIC before the initial setting of the GIC. In Group E, the GIC-based adhesive was employed to bond composite to the GIC after the initial setting of the GIC. Shear bond strength analysis was performed at a crosshead speed of 0.5 mm/minute. The results were tabulated and the statistical analysis was performed with one-way ANOVA; the Tukey's test showed that the bond strength of composite to GIC was significantly higher for the self-etch primer group employed on unset GIC and the GIC-based adhesive group employed on the set GIC for bonding composite to GIC. PMID:19678453

  5. Effect of interfacial chemical bonding and surface topography on adhesion in carbon fiber/epoxy composites

    SciTech Connect

    Drzal, L.T.; Sugiura, N.; Hook, D. |

    1994-12-31

    A series of PAN-based IM6 carbon fibers having varying amounts of surface treatment were, pretreated with compounds representing the constituents encountered in epoxy composites to pre-react any groups on the fiber surface before composite fabrication in order to determine the effect of chemical bonding on fiber-matrix adhesion. Chemical bonding was quantified using XPS. Chemical bonding between reactive groups in amine cured epoxy matrices and the surface groups present on IN46 carbon fibers as a result of commercial surface treatments has been detected although the absolute amount of chemical bonding is low (1-3%). It was found that reaction with monofunctional epoxy groups having hydrocarbon functionalities blocked the surface from further reaction and reduced the adhesion that could be attained to its lowest value. Prereaction with difunctional amines had little effect on adhesion when compared to normal composite fabrication procedures. Prereaction with difunctional epoxy groups did enhance adhesion levels over the level attained in normal composite fabrication methods. These results showed that chemical bonding between epoxy and the carbon fiber surface could increases the adhesion between fiber and matrix about 25% while between the amino group and the carbon fiber surface about 15%. Quantitative measurements of the fiber surface microtopography were made with scanning tunneling microscopy. An increase in roughness was detected with increasing surface treatment. It was concluded that surface roughness also accounted for a significant increase in fiber-matrix adhesion.

  6. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  7. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  8. Effect of laser preparation on adhesion of a self-adhesive flowable composite resin to primary teeth.

    PubMed

    Memarpour, Mahtab; Shafiei, Fereshteh; Razmjoei, Faranak; Kianimanesh, Nasrin

    2016-04-01

    The aim of the study was to evaluate the adhesion of a self-adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All-In-One + Premise Flowable composite, OptiBond All-In-One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment. PMID:26888173

  9. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  10. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  11. Film/Adhesive Processing Module for Fiber-Placement Processing of Composites

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2007-01-01

    An automated apparatus has been designed and constructed that enables the automated lay-up of composite structures incorporating films, foils, and adhesives during the automated fiber-placement process. This apparatus, denoted a film module, could be used to deposit materials in film or thin sheet form either simultaneously when laying down the fiber composite article or in an independent step.

  12. Deformations and strains in a thick adherend lap joint

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J. D.; Joh, D.

    1988-01-01

    Displacement fields in a thick adherend lap joint were measured by high-sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherend surfaces. Loads ranged from a modest load to a near-failure load. Quantitative results are given for displacements and strains in the adhesive and along the adhesive/adherend boundary lines. The results show nearly constant shear strain in the adhesive, nonlinear strains as a function of load or average shear stress, and viscoelastic or time-dependent response. Longitudinal normal strains in the adhesive are nearly two orders of magnitude less than the shear strains. With its subwavelength displacement resolution and high spatial resolution, moire interferometry is especially well suited for deformation studies of adhesive joints.

  13. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed Central

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  14. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    PubMed

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  15. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  16. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  17. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    PubMed Central

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho

    2015-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin. PMID:25671209

  18. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. PMID:26037704

  19. New restoration and direct pulp capping systems using adhesive composite resin.

    PubMed

    Kashiwada, T; Takagi, M

    1991-12-01

    There have been many arguments on the irritating mechanisms of the composite resin on the dental pulp. While the direct irritative effect of the resin has been preferred, some authors considered that the marginal microleakage and the resulting bacterial infection play a more important role in inducing the complicating pulp irritation. We developed a new filling technique, called the direct inlay restoration method, which could prevent the marginal leakage associated with the polymerization shrinkage of the adhesive composite resin. In this study, we tried to apply our method clinically. None of the 440 cases which were filled with the adhesive composite resin and 60 cases out of 64 cases in which the pulps were directly capped with the adhesive composite resin developed any signs and symptoms of pulp irritation. The other 4 cases developed signs of pulp irritation. Two of those 4 cases were pulpectomized due to spontaneous pain and the other 2 cases turned out to be well after re-restoration. With the informed consent of the patients, the direct pulp capping using the adhesive composite resin was experimentally performed on 6 caries-free 3rd molars and the histopathological examination of these capped molars revealed that neither significant degenerative nor inflammatory changes were brought about in the dental pulp. These clinical and histopathological observation suggest that the dental pulp irritation after resin filling is not induced by the composite resin itself. PMID:1764760

  20. Effect of service environments on adhesively bonded joints in composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Chamis, C. C.; Murthy, P. L. N.

    1992-01-01

    The models employed in the present computational methods for evaluating severe service-environment effects on adhesively bonded joints in composites are based on composite analyses and structural mechanics, encompassing nonlinear environmental degradation. The methods are demonstrated for the case of a butt joint with a single doubler, subjected to the environmental effects as well as static and cyclic loads. The highest joint strength is noted to be required in the case of cyclic loads and hygrothermal service environments; margins of safety for adhesive material stresses decline rapidly in such cases.

  1. Influence of superconductor film composition on adhesion strength of coated conductors

    SciTech Connect

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  2. Materials research for High Speed Civil Transport and generic hypersonics: Adhesive durability

    NASA Technical Reports Server (NTRS)

    Allen, Mark R.

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of adhesives for the High Speed Civil Transport (HSCT) program. Candidate HSCT adhesives need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate an understanding of the behavior of candidate HSCT materials when subjected to combined mechanical and thermal loads. Two adhesives (K3A and FM57) and two adherends (IM7/K3B polymeric composite and the titanium alloy Ti-6Al-4V) were used to fabricate thick adherend lap shear specimens. Due to processing problems, only the FM57/titanium bonds could be fabricated successfully. These are currently undergoing thermomechanical fatigue (TMF) testing. There is an acute need for an adhesive to secondarily bond polymeric composite adherends or, alternately, polymeric composites that remain stable at the processing temperatures of today's adhesives.

  3. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  4. Installation of adhesively bonded composites to repair carbon steel structure.

    SciTech Connect

    Roach, Dennis Patrick; Dunn, Dennis P.; Rackow, Kirk A.

    2003-02-01

    In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the viability and durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, efforts are underway to adapt bonded composite repair technology to civil structures. This paper presents a study in the application of composite patches on large trucks and hydraulic shovels typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. It is believed that the use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, will help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel structure and accommodating large repairs on extremely thick structures. This paper will focus on the first phase of this study which evaluated the performance of different mechanical and chemical surface preparation techniques. The factors influencing the durability of composite patches in severe field environments will be discussed along with related laminate design and installation issues.

  5. Fiber/matrix adhesion in graphite/PEKK composites

    NASA Technical Reports Server (NTRS)

    Bucher, R. A.; Hinkley, J. A.

    1992-01-01

    Experiments with poly ether ketone ketone (PEKK) resin and AS-4, IM-7, and G30-500 fibers showed excellent correlation between resin/fiber contact angle and composite transverse flexural strength as measures of resin/fiber interfacial strength. Both tests indicate the strongest interface for G30-500/PEKK followed by IM-7/PEKK and AS-4/PEKK. Also discussed are fiber effects on interlaminar fracture and on the in situ crystallization of the matrix during composite fabrication.

  6. Hemp-Fiber-Reinforced Unsaturated Polyester Composites: Optimization of Processing and Improvement of Interfacial Adhesion

    SciTech Connect

    Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.; Simmons, Kevin L.; Li, Kaichang

    2011-02-25

    The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated that treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.

  7. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    PubMed Central

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  8. Synthesis of imide/arylene ether copolymers for adhesives and composite matrices

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    A series of imide/arylene ether copolymers were prepared from the reaction of an amorphous arylene ether oligomer and a semi-crystalline imide oligomer. These copolymers were thermally characterized and mechanical properties were measured. One block copolymer was endcapped and the molecular weight was controlled to provide a material that displayed good compression moldability and attractive adhesion and composite properties.

  9. Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF

    PubMed Central

    Martínez-Gil, Marta; Ramos-González, María Isabel

    2014-01-01

    LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida. PMID:24488315

  10. Work of Adhesion in Al/SiC Composites with Alloying Element Addition

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Fan, Tongxiang; Zhang, Di

    2013-11-01

    In the current work, a general methodology was proposed to demonstrate how to calculate the work of adhesion in a reactive multicomponent alloy/ceramic system. Applying this methodology, the work of adhesion of Al alloy/SiC systems and the influence of different alloying elements were predicted. Based on the thermodynamics of interfacial reaction and calculation models for component activities, the equilibrium compositions of the melts in Al alloy/SiC systems were calculated. Combining the work of adhesion models for reactive metal/ceramic systems, the work of adhesion in Al alloy/SiC systems both before and after the reaction was calculated. The results showed that the addition of most alloying elements, such as Mg, Si, and Mn, could increase the initial work of adhesion, while Fe had a slightly decreasing effect. As for the equilibrium state, the additions of Cu, Fe, Mn, Ni, Ti, and La could increase the equilibrium work of adhesion, but the additions of Mg and Zn had an opposite effect. Si was emphasized due to its suppressing effect on the interfacial reaction.

  11. Structural and in vitro adhesion analysis of a novel covalently coupled bioactive composite.

    PubMed

    Khan, Abdul S; Hassan, Khawaja R; Bukhari, Syeda F; Wong, Ferranti S L; Rehman, Ihtesham U

    2012-01-01

    The interfacial adhesion between a restorative composite and tooth is one of the major factors that determine the ultimate performance of composite restoration. A novel polyurethane (PU) composite material was prepared by chemically binding the nano-hydroxyapatite (nHA) to the diisocyanate component in the PU backbone by utilizing solvent polymerization. The procedure involved stepwise addition of monomeric units of the PU and optimizing the reagent concentrations. The resultant materials were characterized structurally (Raman Spectroscopy) and in vitro bioactive analysis was conducted in modified-simulated body fluid for periodical time intervals. The in vitro study evaluated the push-out bond strength of existing obturating material and novel covalently linked PU/nHA composites to dentin after long-term storage in deionized water and artificial saliva. Human extracted molar roots were filled with experimental samples and analyzed at predetermined time intervals. The shear bond strength of samples was measured and surface morphologies were evaluated. Covalent bond formation was achieved between PU and nHA without intermediate coupling agent. With the increase in concentration of nHA, the composite showed more bioactivity and adhesion toward tooth structure. Bond strength of this new composite were in accordance with obutrating material, therefore, the material can be used as an obturating material because of its direct adhesion with tooth structure. PMID:22102537

  12. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  13. Human cartilage repair with a photoreactive adhesive-hydrogel composite.

    PubMed

    Sharma, Blanka; Fermanian, Sara; Gibson, Matthew; Unterman, Shimon; Herzka, Daniel A; Cascio, Brett; Coburn, Jeannine; Hui, Alexander Y; Marcus, Norman; Gold, Garry E; Elisseeff, Jennifer H

    2013-01-01

    Surgical options for cartilage resurfacing may be significantly improved by advances and application of biomaterials that direct tissue repair. A poly(ethylene glycol) diacrylate (PEGDA) hydrogel was designed to support cartilage matrix production, with easy surgical application. A model in vitro system demonstrated deposition of cartilage-specific extracellular matrix in the hydrogel biomaterial and stimulation of adjacent cartilage tissue development by mesenchymal stem cells. For translation to the joint environment, a chondroitin sulfate adhesive was applied to covalently bond and adhere the hydrogel to cartilage and bone tissue in articular defects. After preclinical testing in a caprine model, a pilot clinical study was initiated where the biomaterials system was combined with standard microfracture surgery in 15 patients with focal cartilage defects on the medial femoral condyle. Control patients were treated with microfracture alone. Magnetic resonance imaging showed that treated patients achieved significantly higher levels of tissue fill compared to controls. Magnetic resonance spin-spin relaxation times (T(2)) showed decreasing water content and increased tissue organization over time. Treated patients had less pain compared with controls, whereas knee function [International Knee Documentation Committee (IKDC)] scores increased to similar levels between the groups over the 6 months evaluated. No major adverse events were observed over the study period. With further clinical testing, this practical biomaterials strategy has the potential to improve the treatment of articular cartilage defects. PMID:23303605

  14. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    PubMed Central

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels, however bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examined the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) were distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to cyanoacrylate “Krazy” or “Super” glue. Performance was also examined using low (e.g., plastics) and high (e.g., metals, wood) energy surfaces. Adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  15. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    PubMed

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  16. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  17. Comparison of bond strength of three adhesives: composite resin, hybrid GIC, and glass-filled GIC.

    PubMed

    Rix, D; Foley, T F; Mamandras, A

    2001-01-01

    The objective of this study was to compare 3 orthodontic adhesives in the areas of shear-peel bond strength, location of adhesive failure, and extent of enamel cracking before bonding and after debonding of orthodontic brackets. The adhesives included a composite resin control (Transbond XT; 3M/Unitek, St Paul, Minn), a resin-modified glass ionomer cement (Fuji Ortho LC; GC America Corp, Alsip, Ill), and a polyacid-modified composite resin under dry and saliva-contaminated conditions (Assure; Reliance Orthodontic Products Inc, Itasca, Ill). Metal brackets were bonded to the buccal surfaces of 160 (4 groups of 40) human premolars. The bonded teeth were stored in deionized water at 37 degrees C for 30 days and thermocycled for 24 hours before debonding with a Universal Instron (Instron Corp, Canton, Mass) testing machine. The extent of cracking in the buccal surfaces was evaluated under 16x magnification before bonding and after debonding. Although the bond strength of the composite resin control (20.19 MPa) was significantly greater (P <.05) than that of the adhesives in the other groups, clinically acceptable shear-peel bond strengths were found for all adhesives (Fuji Ortho LC = 13.57 MPa, Assure-dry = 10.74 MPa, Assure-wet = 10.99 MPa). The bond strength for the Assure adhesive was not significantly affected by saliva contamination. The sample of extracted premolars used in this study displayed a greater frequency of buccal surface enamel cracking (46.7%) than that reported in the literature for in vivo premolars (7.8%-10.2%), which was possibly due to the extraction process. The frequency of enamel cracking in a subset of this sample (n = 34) increased from 46.4% at prebonding to 62.4% at postdebonding as a result of the forces of debonding. PMID:11174538

  18. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  19. Elastomer toughened polyimide adhesives. [bonding metal and composite material structures for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1985-01-01

    A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.

  20. Purification, composition, and structure of macrophage adhesion molecule

    SciTech Connect

    Remold-O'Donnell, E.; Savage, B.

    1988-01-12

    Macrophage adhesion molecule (MAM) is a surface heterodimer consisting of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-..cap alpha..) and the glycopeptide gp93 (MAM-..beta..). MAM, which is the guinea pig analog of Mo1 and Mac-1, was purified from detergent lysates of peritoneal neutrophils by lentil lectin chromatography and M2-antibody chromatography. The pure heterodimer molecule was dissociated by acidic conditions (pH 3.5), and MAM-..cap alpha.. and MAM-..beta.. were separated by M7-antibody chromatography. MAM-..beta.. is an approx. 640 amino acid residue polypeptide with exceptionally high cysteine content. At 7.2 residues per 100 amino acids, Cys/2 of MAM-..beta.. is more than 3 times the mean for 200 purified proteins. Reactivity with six ..beta..-subunit-specific /sup 125/I-labeled monoclonal antibodies recognizing at least four epitopes demonstrated that intrapeptide disulfide bonds are required to maintain the structure of MAM-..beta... All six antibodies failed to react when MAM-..beta.. was treated with reducing agents. MAM-..beta.. is 18% carbohydrate; the major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid. MAM-..beta.. is estimated to contain five to six N-linked carbohydrate units. MAM-..cap alpha.. is an approx. 1100-residue polypeptide with lower Cys/2 content (2.0 residues per 100 amino acid residues). MAM-..cap alpha.. is 21% carbohydrate. The major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid; the mannose content is higher in MAM-..cap alpha.. than MAM-..beta.. is estimated to contain 12 N-linked carbohydrate units.

  1. Adhesively bonded steel and composites-durability in substitute ocean water

    SciTech Connect

    Aartun, L.; Dillard, J.G.

    1996-12-31

    Ocean water, marine life and certain oil-well fluids constitute a highly aggressive environment for most metals. In the offshore oil industry, the economic driving force to seek new materials points towards polymeric composites which offer reduction of weight and elimination of corrosion. However, a combined use of steel and composites creates a joining problem. Exposure to humid air and liquid water affects adhesive bonds in a negative manner, and adhesively bonded metal systems are even less durable in marine than in non-ocean environments. In marine environments and sea coast atmospheres, marine life and salts can contribute to the degradation process. On an operating oil rig, repair and replacements involving adhesive bonding are forced to be carried out under non-ideal conditions because of environmental regulations (affecting surface treatments) and safety requirements (affecting the curing method). The objective of this work is to develop environmentally friendly surface preparations and to study, the influence of salt water on the durability of adhesively bonded steel/composite systems.

  2. Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review.

    PubMed

    D'Arcangelo, Camillo; Vanini, Lorenzo; Casinelli, Matteo; Frascaria, Massimo; De Angelis, Francesco; Vadini, Mirco; D'Amario, Maurizio

    2015-09-01

    The authors conducted a literature review focused on materials and techniques used in adhesive cementation for indirect composite resin restorations. It was based on English language sources and involved a search of online databases in Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus using related topic keywords in different combinations; it was supplemented by a traditional search of peer-reviewed journals and cross-referenced with the articles accessed. The purpose of most research on adhesive systems has been to learn more about increased bond strength and simplified application methods. Adherent surface treatments before cementation are necessary to obtain high survival and success rates of indirect composite resin. Each step of the clinical and laboratory procedures can have an impact on longevity and the esthetic results of indirect restorations. Cementation seems to be the most critical step, and its long-term success relies on adherence to the clinical protocols. The authors concluded that in terms of survival rate and esthetic long-term outcomes, indirect composite resin techniques have proven to be clinically acceptable. However, the correct management of adhesive cementation protocols requires knowledge of adhesive principles and adherence to the clinical protocol in order to obtain durable bonding between tooth structure and restorative materials. PMID:26355440

  3. Damage state evaluation of adhesive composite joints using chaotic ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fasel, Timothy R.; Todd, Michael D.; Park, Gyuhae

    2009-03-01

    Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine the capability of this damage detection scheme to identify disbonds and poorly cured bonds in a composite-to-composite adhesive joint. The test structure consists of a carbon fiber reinforced polymer (CFRP) plate that has been bonded to a CFRP rectangular tube/spar with several sizes of disbond as well as a poorly cured section. Each excitation signal is imparted to the CFRP plate through a macro-fiber composite (MFC) patch on one side of the adhesive joint and sensed using an equivalent MFC patch on the opposite side of the joint. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence. Temperature dependence of this newly developed feature will also be examined.

  4. Physical gas discharge procedure for adhesive surface pretreatment of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Hahn, O.; Huesgen, B.

    The effects of corona discharge and low-pressure plasma treatments are examined with respect to the preparation of the adhesive surfaces of polymer composites. A glass-fiber-reinforced polyamide and an epoxy-based structural adhesive are employed and treated with the physical gas-discharge procedure. Attention is given to the wettability of the polymer surface and to the adhesive strengths of the joints for the two pretreatment procedures. Diagrams show the dependence of bonding strength and constant contact angle on the duration, performance, and storage times of the corona and plasma treatments. SEM is used to study the surface characteristics of the materials, and decomposition products are noted in the surfaces of the joints. Plasma treatments generally lead to more effective bonds in the polyamide specimens, and the corona-discharge treatment leads to good bonds with some surface modifications.

  5. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  6. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  7. Effect of different adhesive systems on microleakage at the amalgam/composite resin interface.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R; Elbadrawy, H E

    1993-01-01

    The objective of this study was to evaluate the effect of different bonding systems on teh microleakage at the amalgam/composite interface. The microleakage at the amalgam/composite resin interface was evaluated with a quantitative dye penetration method. Amalgam cylinders were made and a 2 mm composite base was added after the application of five different bonding systems to the roughened interface of the amalgam cylinders. The cylinders were filled with an exact volume of 0.05% fuchsin solution, and the total weight of the sample was measured. The cylinders were placed on a filter paper with the composite base down and evaluated for leakage after 1, 3, 6, and 24 hours. Weight loss and coloring of the filter paper represented microleakage. The results indicated that the application of Prisma Universal Bond 2 adhesive, Cover Up II, or Amalgambond (groups E, F, and G) reduced the amount of microleakage significantly as compared to the groups in which no adhesive system, 3M Porcelain Repair Kit (with and without acid etching of the amalgam surface), or Prisma Universal Bond 2 primer and adhesive (groups A, B, C or D) was applied. PMID:8332537

  8. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    NASA Astrophysics Data System (ADS)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  9. Influence of Copolyester Composition on Adhesion to Soda-Lime Glass via Molecular Dynamics Simulations.

    PubMed

    Hanson, Ben; Hofmann, John; Pasquinelli, Melissa A

    2016-06-01

    Copolyesters are a subset of polymers that have the desirable properties of strength and clarity while retaining chemical resistance, and are thus potential candidates for enhancing the impact resistance of soda-lime glass. Adhesion between the polymer and the glass relates to the impact performance of the system, as well as the longevity of the bond between the polymer and the glass under various conditions. Modifying the types of diols and diacids present in the copolyester provides a method for fine-tuning the physical properties of the polymer. In this study, we used molecular dynamics (MD) simulations to examine the influence of the chemical composition of the polymers on adhesion of polymer film laminates to two soda-lime glass surfaces, one tin-rich and one oxygen-rich. By calculating properties such as adhesion energies and contact angles, these results provide insights into how the polymer-glass interaction is impacted by the polymer composition, temperature, and other factors such as the presence of free volume or pi stacking. These results can be used to optimize the adhesion of copolyester films to glass surfaces. PMID:27206103

  10. Microleakage of Posterior Composite Restorations with Fiber Inserts Using two Adhesives after ging

    PubMed Central

    Sharafeddin, F; Yousefi, H; Modiri, Sh; Tondari, A; Safaee Jahromi, SR

    2013-01-01

    Statement of Problem: Microleakage is one of the most frequent problems associated with resin composites, especially at the gingival margin of posterior restorations. Insertion of fibers in composite restorations can reduce the total amount of composite and help to decrease the shrinkage. Purpose: The aim of this study was to evaluate the effect of polyethylene fiber inserts on gingival microleakage of class II composite restorations using two different adhesive systems. Materials and Method: In this experimental study, class II cavities were prepared on 60 premolars. The gingival floor was located 1.0 mm below the CEJ. Dimension of each cavity were 3 mm buccolingually and 1.5 mm in axial depth. The specimens were divided into 4 groups according to the adhesive type and fiber insert (n=4). Single bond and Clearfill SE bond and Filtek p60 were used to restore the cavities. In groups without fiber inserts composite was adapted onto cavities using layering technique. For cavities with fiber inserts, 3 mm piece of fiber insert was placed onto the composite increment and cured. The specimens were stored in distilled water at 37oC for 6 months. All specimens were subjected to 3000 thermo-cycling. The tooth surfaces except for 1 mm around the restoration margins covered with two layers of nail varnish .The teeth were immersed in 2% Basic Fuchsin for 24 hours, then rinsed and sectioned mesiodistally. The microleakage was determined under a stereomicroscope (40X). Data were statistically analyzed by Kruskal-wallis and Mann-Whitney U tests (p< 0.05). Results: The Kruskal-Wallis test revealed no significant differences in mean microleakage scores among all groups (p= 0.281). Conclusion: Use of polyethylene fiber inserts and etch-and-rinse and self-etch adhesives had no effect on microleakage in class II resin composite restorations with gingival margins below the CEJ after 6- month water storage. PMID:24724129

  11. ADHESION OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES BONDED TO DENTIN: A STUDY IN FAILURE MODALITY

    PubMed Central

    O’Donnell, J.N.R.; Schumacher, G.E.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Aims As a bioactive filler capable of remineralizing tooth structures, the main disadvantage of as-made amorphous calcium phosphate (am-ACP) are its large agglomerates. The objective of this study was to mill ACP, and compare the adhesive strength to dentin, work to fracture, and failure modes of both groups to glass-filled composites and one commercial compomer after 24 h, 1 week, 1, 3 and 6 months of exposure to simulated saliva solution (SLS). Flat dentin surfaces were acid-etched, primed, and photopolymerized. Composites were applied, photo-cured, and debonded in shear. The resin used in each composite was identical: ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate. Fillers consisted of am-ACP and milled ACP (m-ACP), and a strontium-containing glass (Sr-glass) at respective mass fractions of (40, 60, and 75) %. Findings 90 % of the fracture surfaces in this study showed adhesive failure, with most of these occurring at the dentin/primer interface. 52 % of failures after 24 h immersion occurred at the primer/composite interface. After six months of SLS exposure, 80 % of specimens failed at the dentin/primer interface, with a 42 % overall reduction in bond strength. Conclusions Milled ACP composites showed initial mechanical advantages over am-ACP composites and the compomer, and produced a higher incidence of a failure mode consistent with stronger adhesion. Evidence is provided which suggests that milled ACP composites may offer enhanced potential in clinical bonding applications. PMID:19107798

  12. Dentin bond strengths of three adhesive/composite core systems using different curing units.

    PubMed

    Ariyoshi, Meu; Nikaido, Toru; Okada, Ayako; Foxton, Richard M; Tagami, Junji

    2008-03-01

    This study evaluated the tensile bond strengths of three adhesive/composite core materials to bovine dentin using three different curing units. Bovine dentin surfaces were ground with 600-grit SiC paper. Bonding area was demarcated with a vinyl tape (4-mm-diameter hole). Three adhesive/composite core systems--S6054 (experimental), UniFil Core, and Clearfil DC Core Automix--were used with three curing units--Curing Light XL3000 (quartz-tungsten-halogen), Hyper Lightel (high-power quartz-tungsten-halogen), and LEDemetronl (blue light-emitting diode)--according to manufacturers' instructions. After 24 hours of storage in water at 37 degrees C, tensile bond strengths were measured at a crosshead speed of 2 mm/min. Results were statistically analyzed with one-way ANOVA and Tukey's HSD test (p < 0.05). Highest tensile bond strength was obtained using Clearfil DC Core Automix with Hyper Lightel. PMID:18540391

  13. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite.

    PubMed

    Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  14. Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

    PubMed Central

    Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  15. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  16. The Effect of Composite Patches on the Failure of Adhesively-Bonded Joints Under Bending Moment

    NASA Astrophysics Data System (ADS)

    Akpinar, Salih

    2013-12-01

    In this study, it was aimed to compare mechanical behavior of double-strap joints with aluminum (AA2024-T3) or 16-ply laminate of carbon/epoxy composite (T300/934) patches of different orientation angles at their overlap area subjected to bending moment. For this purpose, AA2024-T3 aluminum was used as adherend, while the adhesive was a two-part paste (DP 460). Six different types of joint samples were subjected to bending moment. The effect of patch material on failure load and stress distribution was examined experimentally and numerically. In the numerical analysis, the composite patches were assumed to behave linearly elastic, while adherend and adhesive layers were assumed to be nonlinear. It was found that the data obtained from 3-D finite element analysis were coherent with experimental results. Meanwhile, experiments showed that fiber orientation angles of the patches markedly affected the failure load of joints, failure mode and stress distributions appeared in adhesive and composite.

  17. Flame Sprayed Al-12Si Coatings for the Improvement of the Adhesion of Composite Casting Profiles

    NASA Astrophysics Data System (ADS)

    Voyer, Joël; Peterlechner, Christian; Noster, Ulf

    2008-12-01

    In this study, flame sprayed Al-12Si coatings were produced on the surface of inlays (aluminum profiles) of composite castings parts. The aim was to enhance the strength between the joining partners inlay and cast. Due to the high surface roughness and the presence of pores in the coatings, combined with the formation of an intermetallic phase at the interface, the adhesion of flame sprayed inlays could be enhanced by a factor of 2 compared to blank inlays and by a factor of 1.3 when compared to sand-blasted inlays. However, results also show that gaps are present, mostly at the interface between the inlays and the flame sprayed coatings, and these gaps have a negative effect on the joining strength of the composite casting parts. Therefore, optimizing the adhesion of the coating on the Al profiles via an improvement in both the sand-blasting and the flame spraying parameters would be beneficial for further enhancement of the adhesion of composite casting parts.

  18. Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter.

    PubMed

    Kim, Jae-Pil; Yoon, Tae-Ho; Mun, Sung-Phil; Rhee, Jong-Moon; Lee, Jae-Suk

    2006-02-01

    Saw dust-reinforced linear low density polyethylene (LLDPE) (1:1) composites were prepared by using ethylene-vinyl alcohol copolymer (EVAL) as adhesion promoter to improve mechanical strength. To evaluate the optimum vinylalcohol (VA) content in EVAL, various EVAL samples containing different contents of VA were used. The tensile properties of saw dust-LLDPE composites were improved by using EVAL as adhesion promoter in place of ethylene-vinyl acetate copolymer (EVAc). The saw dust-LLDPE composites prepared with EVAL containing 15 mol% VA showed the maximum yield stress and modulus. The tensile stress increased with addition of EVAL up to 3wt% on the wood filler, and then leveled off in the range of 3-10 wt%. However, the elongation was decreased with increasing VA content. Hydrogen bonding interaction between saw dust and EVAL was detected by FT-IR spectra. When EVAL consisting with 15 mol% VA was used, good adhesion between saw dust and LLDPE matrix was confirmed by SEM fractography. PMID:15882942

  19. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  20. An investigation of adhesive/adherend and fiber/matrix interactions. Part B: SEM/ESCA analysis of fracture surfaces

    NASA Technical Reports Server (NTRS)

    Beck, B.; Widyani, E.; Wightman, J. P.

    1983-01-01

    Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.

  1. Ultrasonic Evaluation of Thermal Degradation in Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Mal, Ajit K.; Bar-Cohen, Yoseph

    1994-01-01

    The critical role played by adhesive bonds in lap joints is well known. A good knowledge of the mechanical properties of adhesive bonds in lap joints is a prerequisite to the design and reliable prediction of the performance of these bonded structures. Furthermore, the lap joint may be subject to high-temperature environments in service. Early detection of the degree of thermal degradation in adhesive bonds is required under these circumstances. A variety of ultrasonic nondestructive evaluation (NDE) techniques can be used to determine the thickness and the elastic moduli of adhesively bonded joints. In this paper we apply a previously developed technique based on the leaky Lamb wave (LLW) experiment to investigate the possibility of characterizing the thermal degradation of adhesive bonds in lap joints. The degradation of the adhesive bonds is determined through comparison between experimental data and theoretical calculations.

  2. Effect of curing unit and adhesive system on marginal adaptation of composite restorations.

    PubMed

    Casselli, Denise Sa Maia; Faria-e-Silva, Andre Luis; Casselli, Henrique; Martins, Luis Roberto Marcondes

    2012-01-01

    This study sought to evaluate how a curing unit and adhesive system affected the marginal adaptation of resin composite restorations. Class V cavities were prepared in bovine teeth with a gingival margin in dentin and an incisal margin in enamel. The cavities were restored with a micro-hybrid resin composite using one of four adhesives: Single Bond 2, Prime & Bond NT, Clearfil SE Bond, Xeno IV. The light-activations were performed using a quartz-tungsten-halogen (QTH) lamp or a second-generation light-emitting diode (LED). Restorations were finished and polished and epoxy replicas were prepared. Marginal adaptation was analyzed by using scanning electronic microscopy (magnification 500X). The widest gaps in each margin were recorded, and data were submitted to Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests (α = 0.05). Differences between the adhesives were observed only when the dentin margins were evaluated: Clearfil SE Bond demonstrated better marginal adaptation than Prime & Bond NT or Single Bond 2 (which demonstrated the widest gaps in the dentin margin). The type of curing unit only affected the results for Xeno IV when the enamel margin was analyzed; the LED lamp promoted smaller gaps than the QTH lamp. PMID:23220321

  3. Laser abrading of carbon fibre reinforced composite for improving paint adhesion

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Cheetham, Simon; Dilworth, Steve; Li, Lin

    2014-06-01

    Surface contaminations (originating from manufacturing processes), smooth surface, and poor wettability of carbon fiber reinforced polymer (CFRP) composite impair its successful paint adhesion. Surface pre-treatment of composite materials is often required. Previous approaches of using manual sand-papering result in non-uniform surface conditions and occasional damages to the fibres. Furthermore, the process is labour intensive, slow and can be hazardous to the workers if protections are not appropriate. This paper reports an investigation into a new surface treatment method based on laser multi-tasking surface abrading and surface cleaning/texturing for the improvement of paint adhesion. A KrF Excimer laser with a wavelength of 248 nm is used as the laser source. Significant improvement in paint adhesion has been demonstrated compared with as-received and sand-papered samples. This improvement is achieved by eliminating surface contaminants, minimizing chain scission and increasing in surface active functional groups as well as increasing in surface roughness. The former two play dominant roles.

  4. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters.

    PubMed

    Eich, Christina; Manzo, Carlo; de Keijzer, Sandra; Bakker, Gert-Jan; Reinieren-Beeren, Inge; García-Parajo, Maria F; Cambi, Alessandra

    2016-01-01

    Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion. PMID:26869100

  5. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters

    PubMed Central

    Eich, Christina; Manzo, Carlo; Keijzer, Sandra de; Bakker, Gert-Jan; Reinieren-Beeren, Inge; García-Parajo, Maria F.; Cambi, Alessandra

    2016-01-01

    Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion. PMID:26869100

  6. Influence of adhesive system and bevel preparation on fracture strength of teeth restored with composite resin.

    PubMed

    Coelho-de-Souza, Fábio Herrmann; Rocha, Analice da Cunha; Rubini, Alessandro; Klein-Júnior, Celso Afonso; Demarco, Flávio Fernando

    2010-01-01

    The aim of this study was to evaluate the fracture strength of teeth with different cavosurface margin cavity preparations and restored with composite resin and different adhesive systems. Eighty premolars were randomly divided in 8 groups, as follow: G1- sound teeth; G2- MOD preparation (no restoration); G3- Adper Single Bond without bevel preparation (butt joint); G4- Adper Single Bond with bevel preparation; G5- Adper Single Bond with chamfer preparation; G6- Clearfil SE Bond without bevel (butt joint); G7- Clearfil SE Bond with bevel preparation; G8- Clearfil SE Bond with chamfer preparation. The adhesive systems were applied according to manufacturers' instructions. Composite resin (Filtek Z250) was incrementally placed in all cavities. After 24 h, the specimens were tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (fracture strength) and Fisher's exact test (fracture pattern). The confidence level was set at 95% for all tests. Prepared and non-restored teeth showed the worst performance and G4 exhibited the highest fracture strength among all groups (p<0.05). In conclusion, all restorative treatments were able to recover the fracture strength of non-restored teeth to levels similar to those of sound teeth. Using a total-etch adhesive system with bevel preparation significantly improved the resistance to fracture. PMID:20976383

  7. How Tongue Size and Roughness Affect Lapping

    NASA Astrophysics Data System (ADS)

    Hubbard, M. J.; Hay, K. M.

    2012-10-01

    The biomechanics of domestic cat lapping (Felis catus) and domestic dog lapping (Canis familiaris) is currently under debate. Lapping mechanics in vertebrates with incomplete cheeks, such as cats and dogs, is a balance of inertia and the force of gravity likely optimized for ingestion and physical necessities. Physiology dictates vertebrate mass, which dictates vertebrate tongue size, which dictates lapping mechanics to achieve optimum liquid ingestion; with either touch lapping, scooping, or a hybrid lapping method. The physics of this optimized system then determines how high a column of liquid can be raised before it collapses due to gravity, and therefore, lapping frequency. Through tongue roughness model variation experiments it was found that pore-scale geometrical roughness does not appear to affect lapping or liquid uptake. Through tongue size model variation experiments it was found that there is a critical tongue radius in the range of 25 mm to 35 mm above which touch lapping is no longer an efficient way to uptake liquid. Vertebrates with incomplete cheeks may use a touch lapping method to ingest water if their tongue radius is less than this critical radius and use an alternative ingestion method if their tongue radius is larger.

  8. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  9. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.

    PubMed

    Yu, Hsiu-Yu; Eckmann, David M; Ayyaswamy, Portonovo S; Radhakrishnan, Ravi

    2015-05-01

    We present a composite generalized Langevin equation as a unified framework for bridging the hydrodynamic, Brownian, and adhesive spring forces associated with a nanoparticle at different positions from a wall, namely, a bulklike regime, a near-wall regime, and a lubrication regime. The particle velocity autocorrelation function dictates the dynamical interplay between the aforementioned forces, and our proposed methodology successfully captures the well-known hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory behavior due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of hydrodynamic variables on the particle trajectory and characterize the transient kinetics of a particle crossing a predefined milestone. The results suggest that both wall-hydrodynamic interactions and adhesion strength impact the particle kinetics. PMID:26066173

  10. In situ synthesis of mesoporous polyvinyl alcohol/hydroxyapatite composites for better biomedical coating adhesion

    NASA Astrophysics Data System (ADS)

    Hussain, Riaz; Tabassum, Sobia; Gilani, Mazhar Amjad; Ahmed, Ejaz; Sharif, Ahsan; Manzoor, Faisal; Shah, Asma Tufail; Asif, Anila; Sharif, Faiza; Iqbal, Farasat; Siddiqi, Saadat Anwar

    2016-02-01

    Hydroxyapatite (HA) shows diverse biomedical applications as bone filler and coating material for metal implants to enhance osteoconduction. Four different PVAHA composites were synthesized in situ by an economical co-precipitation wet methodology. The FTIR spectra of PVAHA composites showed characteristic signals of HA and PVA. The BET surface area of PVAHA composites were in range of 41.3-63.7 m2/g. The composites showed type IV nitrogen adsorption/desorption isotherm, a characteristic for mesoporous material. The pore diameter range (6.3-8.1 nm) of PVAHA composites also confirmed their mesoporous nature. The Barrett-Joyner-Halenda (BJH) pore size distribution curves indicated a narrow pore size distribution. To obtain a homogeneous crack free coating with EPD on stainless steel (SS) plates, different parameters such as PVA percentages in PVAHA composites, solvent, deposition time and voltage were optimized. The PVAHA composites were stable after EPD as confirmed by FTIR spectra recorded before and after EPD. The SEM images of the coating showed a homogeneous morphology. The thickness of the coating was controlled by varying voltage and time. The best results were obtained with c-PVAHA composite at 30 volts for 5-10 min and current density was around 4.5 to 5 mA. The adhesion strength of c-PVAHA coating was measured by using ASTM standard F1044-99. The average value was approximately 9.328 ± 1.58 MPa.

  11. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    PubMed

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-02-01

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. PMID:25634298

  12. Develop, demonstrate, and verify large area composite structural bonding with polyimide adhesives. [adhesively bonding graphite-polyimide structures

    NASA Technical Reports Server (NTRS)

    Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.

    1982-01-01

    The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.

  13. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  14. Repairs of composite structures

    NASA Astrophysics Data System (ADS)

    Roh, Hee Seok

    Repair on damaged composite panels was conducted. To better understand adhesively bonded repair, the study investigates the effect of design parameters on the joint strength. The design parameters include bondline length, thickness of adherend and type of adhesive. Adhesives considered in this study were tested to measure their tensile material properties. Three types of adhesively bonded joints, single strap, double strap, and single lap joint were considered under changing bondline lengths, thickness of adherend and type of adhesive. Based on lessons learned from bonded joints, a one-sided patch repair method for composite structures was conducted. The composite patch was bonded to the damaged panel by either film adhesive FM-73M or paste adhesive EA-9394 and the residual strengths of the repaired specimens were compared under varying patch sizes. A new repair method using attachments has been suggested to enhance the residual strength. Results obtained through experiments were analyzed using finite element analysis to provide a better repair design and explain the experimental results. It was observed that the residual strength of the repaired specimen was affected by patch length. Method for rapid repairs of damaged composite structures was investigated. The damage was represented by a circular hole in a composite laminated plate. Pre-cured composite patches were bonded with a quick-curing commercial adhesive near (rather than over) the hole. Tensile tests were conducted on specimens repaired with various patch geometries. The test results showed that, among the methods investigated, the best repair method restored over 90% of the original strength of an undamaged panel. The interfacial stresses in the adhesive zone for different patches were calculated in order to understand the efficiencies of the designs of these patch repairs. It was found that the composite patch that yielded the best strength had the lowest interfacial peel stress between the patch and

  15. Micro-measurements of mechanical properties for adhesives and composites using digital imaging technology

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.

    1994-01-01

    The need for a constituent based durability or accelerated life prediction procedure to be used for the engineering design of polymer matrix composites is discussed in the light of current plans for the High Speed Civil Transport (HSCT) concerns about the U.S. infrastructure (bridges, pipelines, etc.) and other technological considerations of national concern. It is pointed out that good measurement procedures for insitu resin properties are needed for both adhesives and composites. A double cantilever beam (DCB) specimen which shows promise for the easy determination of adhesive shear properties is presented and compared with measurements of strains within the bondline using a new optical digital imaging micro-measurement system (DIMMS). The DCB specimen is also used to assess damage in a bonded joint using a dynamic mechanical thermal analysis system (DMTA). The possible utilization of the same DIMMS and DMTA procedures to determine the insitu properties of the resin in a composite specimen are discussed as well as the use of the procedures to evaluate long term mechanical and physical aging. Finally, a discussion on the state-of-the art of the measurement of strains in micron and sub-micron domains is given.

  16. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  17. Synthesis and characterization of high temperature curable poly(arylene ether) structural adhesive and composite matrices

    SciTech Connect

    Mecham, S.J.; Jayaraman, S.; Bobbitt, M.M.

    1996-12-31

    Crosslinked poly(arylene ether) systems are projected to display many desirable properties suitable for aerospace structural adhesive and composite matrix applications. The synthesis and characterization of a series of processable high temperature curing poly(arylene ether) oligomers incorporating terminally reactive phenylethynyl endgroups will be discussed. Characterization of the oligomers includes NMR, intrinsic viscosity, parallel plate rheological behavior, TGA, and DSC. Curing of these oligomers was conducted at or above 380{degrees}C, providing a large processing window. Thermal stability is very good and the melt viscosity of the oligomers in the processing temperature range is exceptionally low.

  18. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions.

    PubMed

    Buruiana, Tinca; Melinte, Violeta; Aldea, Horia; Pelin, Irina M; Buruiana, Emil C

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1-F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and (1)H ((13)C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm(-3) (F1) and 40.52 μg mm(-3) (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82-49.14 μg mm(-3) (F1-F3-HAP) and 34.58-45.56 μg mm(-3), respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. PMID:26952402

  19. Stem cell adhesion and proliferation on hydrolyzed poly(butylene succinate)/β-tricalcium phosphate composites.

    PubMed

    Patntirapong, Somying; Singhatanadgit, Weerachai; Meesap, Preeyapan; Theerathanagorn, Tharinee; Toso, Montree; Janvikul, Wanida

    2015-02-01

    Although poly(butylene succinate)/β-tricalcium phosphate (PBSu/TCP) composites are biocompatible and allow the growth and osteogenic differentiation of stem cells, cell attachment and adhesion to the PBSu-based substrates is often limited. To enhance cell adhesion and proliferation, we used a sodium hydroxide (NaOH) hydrolysis technique to generate a different degree of roughness on PBSu/TCP substrates with different PBSu:TCP ratios. The results showed that NaOH hydrolysis increased surface roughness of PBSu/TCP substrates in a concentration-dependent manner. Substrates with higher ratios of TCP:PBSu provided more porous topography after NaOH hydrolysis, with a substrate containing 40 wt % TCP (PBSu/TCP-6040) hydrolyzed with 1.5M NaOH (HPBSu/TCP-6040-1.5) showing the highest degree of roughness. As with the roughness, PBSu/TCP surface hydrophilicity was positively affected by the increasing NaOH concentration and TCP incorporation. Stem cells adhered best on HPBSu/TCP-6040-1.5 with three-dimensionally elongated cell extensions. Moreover, the HPBSu/TCP-6040-1.5 substrate most significantly facilitated stem cell actin cytoskeleton reorganization and vinculin-positive focal adhesion formation when compared with the other substrates tested. HPBSu/TCP-6040-1.5 also demonstrated the greatest increase in cell proliferation when compared with the other substrates studied. In conclusion, the results have shown that among various substrates tested, HPBSu/TCP-6040-1.5 provided the best support for stem cell adhesion and proliferation, suggesting its potential use in bone engineering. PMID:24788123

  20. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    PubMed Central

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  1. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations.

    PubMed

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  2. Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.

    2004-01-01

    Lunar meteorite LAP 02205 is a 1.23 kg basalt collected during the 2002 field season in the La- Paz ice field, Antarctica [1]. We present a petrographic description including mineral modes and compositions, and the major-element composition of the bulk meteorite. LAP 02205 is an Fe-rich, moderately low-Ti mare basalt that is similar in composition, mineralogy, and mineral chemistry to the NWA 032 basaltic lunar meteorite. LAP 02205 is yet another of the moderately low- Ti basaltic meteorites that are underrepresented among Apollo and Luna samples but that appear from remote sensing to be the most common basalt type on the Moon.

  3. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  4. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  5. Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Yih; Yu, Tsung-Han; Hu, Yuh-Chung

    2007-06-01

    A manufacturing process of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology is reported here. The thickness of JSR THB-151N resist coated on an aluminum alloy substrate for micro lithography can reach up to 110 µm. During the lithography, different geometrical photomasks were used to create specific design patterns of the resist mold on the substrate. Micro roots, made by electrolytic machining on the substrate with guidance of the resist mold, can improve the adhesion of micro nickel abrasive pellets electroplated on the substrate. During the composite electroforming, the desired hardness of the nickel matrix inside the micro diamond abrasive pellets can be obtained by the addition of leveling and stress reducing agents. At moderate blade agitation and ultrasonic oscillation, higher concentration and more uniform dispersion of diamond powders deposited in the nickel matrix can be achieved. With these optimal experiment conditions of this fabrication process, the production of micro nickel/diamond abrasive pellet array lapping tools is demonstrated.

  6. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.; St. Clair, T. L.

    1983-01-01

    The nadic-encapped LARC-43 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples. Previously announced in STAR as N83-18910

  7. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  8. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens

    PubMed Central

    Ivanov, Ivan E.; Boyd, Chelsea D.; Newell, Peter D.; Schwartz, Mary E.; Turnbull, Lynne; Johnson, Michael S.; Whitchurch, Cynthia B.; O’Toole, George A.; Camesano, Terri A.

    2012-01-01

    Pseudomonas fluorescence Pf0-1 requires the large repeat protein LapA for stable surface attachment. This study presents direct evidence that LapA is a cell-surface-localized adhesin. Atomic force microscopy (AFM) revealed a significant twofold reduction in adhesion force for mutants lacking the LapA protein on the cell surface compared to the wild-type strain. Deletion of lapG, a gene encoding a periplasmic cysteine protease that functions to release LapA from the cell surface, resulted in a twofold increase in the force of adhesion. Three-dimensional structured illumination microscopy (3D-SIM) revealed the presence of the LapA protein on the cell surface, consistent with its role as an adhesin. The protein is only visualized in the cytoplasm for a mutant of the ABC transporter responsible for translocating LapA to the cell surface. Together, these data highlight the power of combining the use of AFM and 3D-SIM with genetic studies to demonstrate that LapA, a member of a large group of RTX-like repeat proteins, is a cell-surface adhesin. PMID:23064158

  9. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model

    NASA Astrophysics Data System (ADS)

    Hoffman, Grant T.; Soller, Eric C.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Gilmour, Travis M.; Gonnerman, Krista N.; McNally-Heintzelman, Karen M.

    2004-07-01

    Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.

  10. Micro-Energy Rates for Damage Tolerance and Durability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    In this paper, the adhesive bond strength of lap-jointed graphite/aluminum composites is examined by computational simulation. Computed micro-stress level energy release rates are used to identify the damage mechanisms associated with the corresponding acoustic emission (AE) signals. Computed damage regions are similarly correlated with ultrasonically scanned damage regions. Results show that computational simulation can be used with suitable NDE methods for credible in-service monitoring of composites.

  11. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems.

    PubMed

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  12. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  13. Quadruple Lap Shear Processing Evaluation

    NASA Technical Reports Server (NTRS)

    Thornton, Tony N.; McCool, A. (Technical Monitor)

    2000-01-01

    The Thiokol, Science and Engineering Huntsville Operations (SEHO) Laboratory has previously experienced significant levels of variation in testing Quadruple Lap Shear (QLS) specimens. The QLS test is used at Thiokol / Utah for the qualification of Reusable Solid Rocket Motor (RSRM) nozzle flex bearing materials. A test was conducted to verify that process changes instituted by SEHO personnel effectively reduced variability, even with normal processing variables introduced. A test matrix was designed to progress in a series of steps; the first establishing a baseline, then introducing additional solvents or other variables. Variables included normal test plan delay times, pre-bond solvent hand-wipes and contaminants. Each condition tested utilized standard QLS hardware bonded with natural rubber, two separate technicians and three replicates. This paper will report the results and conclusions of this investigation.

  14. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  15. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  16. Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.

    2013-01-01

    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.

  17. Behavior of adhesively bonded concrete-graphite/epoxy composite bridge girders

    SciTech Connect

    Gordaninejad, F.; Saiidi, M.S.; Wehbe, N. )

    1994-01-01

    The focus of this paper is on the behavior of composite bridge girders constructed from carbon fiber reinforced plastic sections and concrete slabs. The study examined four-point bending of three beams, one bare, I-type, graphite/epoxy beam, and two constructed from concrete slab and graphite/epoxy sections. The concrete slab and graphite/epoxy section were adhesively bonded and no shear connectors were used. All three beams are approximately one-eighth scale models of bridge girders. The sections are geometrically symmetric and have the same symmetric lamination schemes. Theoretical and experimental studies were performed on the bare I-sections to develop basic understanding of the bending behavior. The analyses and tests were then extended to the composite girders. The theoretical and experimental results for the failure loads were in close agreement. It was found that the slip at the interface of the concrete slab and the graphite/epoxy beam had minor effects on the failure load, but it significantly reduced the stiffness of the composite sections. 8 refs., 14 figs., 2 tabs.

  18. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  19. Effect of Atmospheric Pressure Plasma Treatment on Surface Characteristics and Adhesive Bond Quality of Peel Ply Prepared Composites

    NASA Astrophysics Data System (ADS)

    Tracey, Ashley C.

    The purpose of this research was to investigate if atmospheric pressure plasma treatment could modify peel ply prepared composite surfaces to create strong adhesive bonds. Two peel ply surface preparation composite systems previously shown to create weak bonds (low fracture energy and adhesion failure) that were potential candidates for plasma treatment were Toray T800/3900-2 carbon fiber reinforced polymer (CFRP) prepared with Precision Fabrics Group, Inc. (PFG) 52006 nylon peel ply and Hexcel T300/F155 CFRP prepared with PFG 60001 polyester peel ply. It was hypothesized that atmospheric pressure plasma treatment could functionalize and/or remove peel ply remnants left on the CFRP surfaces upon peel ply removal. Surface characterization measurements and double cantilever beam (DCB) testing were used to determine the effects of atmospheric pressure plasma treatment on surface characteristics and bond quality of peel ply prepared CFRP composites. Previous research showed that Toray T800/3900-2 carbon fiber reinforced epoxy composites prepared with PFG 52006 peel ply and bonded with Cytec MetlBond 1515-3M structural film adhesive failed in adhesion at low fracture energies when tested in the DCB configuration. Previous research also showed that DCB samples made of Hexcel T300/F155 carbon fiber reinforced epoxy composites prepared with PFG 60001 peel ply and bonded with Henkel Hysol EA 9696 structural film adhesive failed in adhesion at low fracture energies. Recent research suggested that plasma treatment could be able to activate these "un-bondable" surfaces and result in good adhesive bonds. Nylon peel ply prepared 177 °C cure and polyester peel ply prepared 127 °C cure CFRP laminates were treated with atmospheric pressure plasma after peel ply removal prior to bonding. Atmospheric pressure plasma treatment was capable of significantly increasing fracture energies and changing failure modes. For Toray T800/3900-2 laminates prepared with PFG 52006 and bonded with

  20. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.

    PubMed

    Hu, Mingjun; Cai, Xiaobing; Guo, Qiuquan; Bian, Bin; Zhang, Tengyuan; Yang, Jun

    2016-01-26

    In this article, we describe a writable particle-free ink for fast fabrication of highly conductive stretchable circuits. The composite ink mainly consists of soluble silver salt and adhesive rubber. Low toxic ketone was employed as the main solvent. Attributed to ultrahigh solubility of silver salt in short-chain ketone and salt-assisted dissolution of rubber, the ink can be prepared into particle-free transparent solution. As-prepared ink has a good chemical stability and can be directly filled into ballpoint pens and use to write on different substrates to form well adhesive silver salt-based composite written traces as needed. As a result of high silver salt loading, the trace can be converted into highly conductive silver nanoparticle-based composites after in situ reduction. Because of the introduction of adhesive elastomeric rubber, the as-formed conductive composite written trace can not only maintain good adhesion to various substrates but also show good conductivity under various deformations. The conductivity of written traces can be enhanced by repeated writing-reduction cycles. Different patterns can be fabricated by either direct handwriting or hand-copying. As proof-of-concept demonstrations, a typical handwriting heart-like circuit was fabricated to show its capability to work under different deformations, and a pressure-sensitive switch was also manufactured to present pressure-dependent change of resistance. PMID:26624508

  1. Effect of lining with a flowable composite on internal adaptation of direct composite restorations using all-in-one adhesive systems.

    PubMed

    Yahagi, Chika; Takagaki, Tomohiro; Sadr, Alireza; Ikeda, Masaomi; Nikaido, Toru; Tagami, Junji

    2012-01-01

    The purpose of this study was to evaluate the effect of lining with a flowable composite on internal adaptation of composite restorations using three all-in-one adhesive systems; Bond Force (BF), G-Bond Plus (GP), and OptiBond All-in-one (OP), and a two-step self-etching adhesive system; Clearfil SE Bond (SE). They were applied to each cylindrical cavity prepared on the human dentin. The cavity surface was lined with/without a flowable resin composite prior to filling with a resin composite (FL/NL). After water storage for 24 h, the specimens were sectioned and polished, and internal adaptation of the restorations was assessed using a confocal laser scanning microscopy. For SE, a perfect cavity adaptation was recognized in both FL and NL. For BF, GP and OP, cavity adaptation was material dependent in NL, whereas no gap formation was observed in FL. However, voids formation was observed at the composite-adhesive-dentin interface in every all-in-one adhesive system. PMID:22673475

  2. The effect of oxalate desensitizers on the microleakage of resin composite restorations bonded by etch and rinse adhesive systems.

    PubMed

    Shafiei, Fereshteh; Motamedi, Mehran; Alavi, Ali Asghar; Namvar, Babak

    2010-01-01

    This in vitro study evaluated the effect of an oxalate desensitizer (OX) on the marginal microleakage of resin composite restorations bonded by two three-step and two two-step etch and rinse adhesives. Class V cavities were prepared on the buccal surfaces of 126 extracted premolars at the cementoenamel junction and randomly divided into nine groups of 14 each. In the control groups (1-4), four adhesives were applied, respectively, including Adper Scotchbond Multi-Purpose (SBMP), Optibond FL (OBFL), One-Step Plus (OS) and Excite (EX). In the experimental groups (5-8), the same adhesives, in combination with OX (BisBlock), were applied. And, in one group, OX was applied without any adhesive, as the negative control group (9). All the groups were restored with a resin composite. After 24 hours of storage in distilled water and thermocycling, the samples were placed in 1% methylene blue dye solution. The dye penetration was evaluated using a stereomicroscope. The data were analyzed using non-parametric tests. The OX application, in combination with OBFL and EX, resulted in significantly increasing microleakage at the gingival margins (p < 0.05), while it had no effect on OS and SBMP (p > 0.05). At the occlusal margins, no significant difference in microleakage was observed after OX application for each of four adhesives (p > 0.05). PMID:21180008

  3. Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites.

    PubMed

    Tanner, Johanna; Carlén, Anette; Söderling, Eva; Vallittu, Pekka K

    2003-07-15

    The use of fiber-reinforced composites (FRC) in dentistry has increased during recent years. In marginal areas of crowns and removable partial dentures the fibers may become exposed and come into contact with oral tissues, saliva, and microbes. To date, few articles have been published on oral microbial adhesion to FRCs. The aim of this study was to compare different FRCs, their components, and conventional restorative materials with respect to S. mutans ATCC 21752 adhesion and adsorption of specific S. mutans binding proteins. Surface roughness of the materials was also determined. Four different FRCs, a restorative composite, and a high-leucite ceramic material were studied. Polyethylene FRC was found to be significantly rougher than all other materials. Aramid FRC also showed higher surface roughness in comparison with all materials but polyethylene FRC. Without a saliva pellicle, adhesion of S. mutans coincided with surface roughness and polyethylene and aramid FRC promoted S. mutans adhesion better than the other smoother materials. In the presence of salivary pellicle, ceramic and polyethylene FRC bound more bacteria than the other materials studied. Higher quantities of S. mutans binding proteins in the pellicles may in part account for the higher S. mutans adhesion to saliva-coated ceramic and polyethylene FRC. PMID:12808599

  4. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  5. Microleakage of Dual-Cured Adhesive Systems in Class V Composite Resin Restorations

    PubMed Central

    Kasraie, S.; Azarsina, M.; Khamverdi, Z.; Shokraneh, F.

    2012-01-01

    Objective: Microleakage is a major factor affecting longevity of composite restorations. This study evaluated the effect of polymerization mode of bonding agent on microleakage of composite restorations. Materials and Methods: Forty-eight Class V cavities were prepared on buccal and lingual surfaces of 24 extracted human premolars. Occlusal and gingival margins were placed in the enamel and dentin, respectively. Teeth were divided into four groups as follows: Group I: Optibond Solo Plus (light-cured); Group II: Optibond Solo Plus (dual-cured); Group III: Prime & Bond NT (light-cured), Group IV: Prime & Bond NT (dual-cured). Teeth were restored using Z250 composite in three increments. After polishing the restorations, samples were thermocycled for 1000 cycles and stored in distilled water for 3 months. Then they were placed in 2% fuchsine solution for 48 hours. The samples were sectioned longitudinally and evaluated for microleakage under a stereomicroscope at ×40 magnification. Dye penetration was scored on a 0–3 ordinal scale. Data were analyzed using Kruskal-Wallis, Bonferroni and Wilcoxon signed ranks test. Results: Microleakage was significantly lower in enamel margins compared to dentin margins (P<0.05); multiple comparisons by Bonferroni tests revealed that the only factor with significant effect on leakage of the restoration is location of the restoration margin. Mode of adhesive polymerization had no significant influence on microleakage (P>0.05). Prime & Bond NT had less microleakage compared to Optibond SoloPlus, but the difference was not significant (P>0.05). Conclusion: There was no difference in the amount of microleakage in Class V composite restorations using light-cured and dual-cured bonding systems. Dentinal margins of restorations exhibited more microleakage than enamel margins. PMID:23066474

  6. An experimental study on infrared drying kinetics of an aqueous adhesive supported by polymer composite

    NASA Astrophysics Data System (ADS)

    Allanic, Nadine; Le Bideau, Pascal; Glouannec, Patrick; Deterre, Rémi

    2016-04-01

    The infrared drying of an aqueous polymer emulsion spread on a thin composite flat film is experimentally studied. The composite film is composed of polyamide fibers supported by a poly(vinyl fluoride) film. The aqueous polymer is an Ethylene Vinyl Acetate emulsion playing the role of adhesive. It is spread over the film with a low thickness, about one hundred micrometers. The aim of this work is to understand the effects of the presence of fibers on the drying of this thin-layer product. With this in mind, a specific laboratory set up composed of a near infrared heater is used in order to get the drying kinetics. First, incident heat fluxes received at the product surface and transmittances of materials (semi-transparent medium) are measured with an ad-hoc heat flux sensor. Then, many experiments are performed with and without fibers. For linking the final moisture content to the fibers thermal and hydric behavior, a microscopic analysis of the dried samples is investigated. This analysis is performed for two thicknesses of polymer corresponding to two covering rates of fibers.

  7. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  8. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  9. Effect of food and oral simulating fluids on structure of adhesive composite systems.

    PubMed

    Lee, S Y; Greener, E H; Mueller, H J

    1995-02-01

    This work evaluates the degradation of three adhesive/composite systems (Tenure/Marathon One. Scotchbond Multi-Purpose/Z100 and Optibond/Herculite XRV) upon immersion in 75% ethanol solution and in an artificial saliva (Moi-Stir). Shear bond strength (SBS) and diametral tensile strength (DTS) specimens were employed for this study. For the SBS specimens, the bonded interface and composite were exposed to food and oral simulating fluids at 37 degrees C for up to 30 days. A similar control series was stored in air. DTS specimens were stored in 75% ethanol at 37 degrees C for up to 30 days. The SBS specimens were sheared to failure. Small quantities of bonding resin were removed from the tooth side of the fractured surface and from the non-fractured fractured end of the composite for Fourier transform infrared microscopic evaluation. Similar scrapings were taken from DTS specimen surfaces. The infrared absorbance intensity (AI) of the major peaks was measured as a function of storage time and ratioed against the aromatic C = C (1609.4 cm-1) peak. The data were analysed using ANOVA and the Tukey LSD test. The AI of major peaks was similar for the materials stored either in air or in Moi-Stir for all testing periods. Storage in ethanol caused the AI of aliphatic C = C (1638 cm-1) and of O-H (approximately 3500 cm-1) bonds to significantly decrease (30-50%) for specimens of bonding resin while the AI of C = O bonds (1730 cm-1) increased (60-120%).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7876413

  10. Effect of adhesive debond on stress-intensity factors in bonded composite panels

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    Stress-intensity factors are calculated for a cracked infinite sheet adhesively bonded to a stringer, and debonding of the adhesive layer is predicted. The stringer is modeled as a semiinfinite sheet. Adhesive nonlinearity is also included. Both the sheet and stringer are treated as homogeneous, orthotropic materials, a set of integral equations is formulated and solved to obtain the adhesive shear stresses and crack-tip stress-intensity factors. Adhesive debonding is predicted using a rupture criterion based on the combined adhesive stresses. A through-the-thickness crack is located in the infinite sheet perpendicular to the edge of the stringer. When the crack is not under the stringer, the debond extends along the edge of the stringer. When the crack tip is beneath the stringer, the debond extends to the crack tip, then along the edge of the stringer. Stress levels required for debond initiation decrease as the crack tip is moved beneath the stringer. With a nonlinear adhesive, the debond initiates at higher applied stress levels than in linear adhesive cases. Compared with the linear adhesive solution, modeling a nonlinear adhesive causes the stress-intensity factor to decrease when debonding is included.

  11. A Diagram for Evaluating Delamination of GFRP/Stainless-steel Adhesive Joints by Using Stress Singularity Parameters

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    Static tests on double-lap and T-type adhesive joints were performed. We developed a device that applies contact pressure to glass-fiber reinforced plastics/stainless-steel double-lap adhesive joints. The device contains a bolt with which a strain gauge is bonded for controlling contact pressure. Using this device, we investigated the effect of contact pressure on the delamination strength of double-lap adhesive joints. We applied tensile shear loading to double-lap adhesive joints under contact pressure to their adhesive interfaces. We found that the delamination strength of the double-lap adhesive joints increased with increasing contact pressure. On the contrary, when we applied compressive shear stress to them, the delamination strength stayed constant. Therefore the delamination strength of double-lap adhesive joints is dominated by normal stress when contact pressure under tensile shear loading is applied. On the other hand, it was dominated by shear stress when contact pressure under compressive shear loading was applied. Then stress singularity parameters for double-lap and T-type adhesive joints were performed by the FEM. Stress distributions near the bonding edge could be expressed by the stress singularity parameters. Finally, a delamination evaluation diagram using stress singularity parameters was developed. This diagram enables us to evaluate the delamination strength of adhesive joints.

  12. Effect of inter-laminar adhesive on yielding behavior of aluminum fiber-reinforced thermoplastic composite laminates

    SciTech Connect

    Sun, W.

    1994-12-31

    An adhesive stress-release model is proposed to predict the thermal residual stress released due to the presence of adhesive layer in hybrid aluminum fiber/polymer laminate. The model is developed based on the thermal curing temperature and composite constituent properties, and is used to determine the laminate initial yielding and deformation behavior. The adhesive layer functions as a compliant layer to release the thermal residual stresses and to delay the yield occurrence, thus enhances the laminates deformation behavior. Compared with available experimental data for graphite/PPS and glass/PPS with 2024-T3 or 7075-T6 aluminum hybrid thermoplastic laminates, the proposed model presents a better prediction than some other commonly used models.

  13. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  14. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  15. Experimental and computational models to investigate the effect of adhesion on the mechanical properties of bone-cement composites.

    PubMed

    Helgason, B; Stirnimann, P; Widmer, R; Ferguson, S J

    2011-10-01

    A generic finite element approach was developed to study the effect of adhesion on the mechanical response of bone cement composites and validated against literature data. The results showed that a zero friction bone-cement (PMMA) interface conditions captured the results of the experimental testing better than assuming a fully bonded interface. An experimental model for studying the effect of interface adhesion in a bone-cement like composite was also developed in the present study. The results using this model indicate that the difference in Young's modulus and ultimate strength between a fully bonded interface and unbonded interface is approximately 30% for bone volume fraction similar to what can be found in osteoporotic vertebrae. Apart from concluding that bone to cement adhesion is a major contributor to the mechanical response of bone-cement composites, our studies based on the generic FE approach also indicate that the mechanical properties of the cement is the most important contributor to the resulting mechanical properties of the composite at bone volume fraction relevant in terms of vertebroplasty treatment. PMID:21714083

  16. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhuang, Hao; Jiang, Xin

    2015-12-01

    Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co2Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  17. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    PubMed Central

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375

  18. Effect of adherend thickness and mixed mode loading on debond growth in adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mangalgiri, P. D.; Johnson, W. S.; Everett, R. A., Jr.

    1986-01-01

    Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of: (1) adherend thickness, and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16, or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.

  19. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  20. Aminophenoxycyclotriphosphazene cured epoxy resins and the composites, laminates, adhesives and structures thereof

    NASA Technical Reports Server (NTRS)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1977-01-01

    Aminophenoxy cyclotriphosphazenes such as hexakis (4-aminophenoxy) cyclotriphosphazene and tris (4-aminophenoxy)-tris phenoxy cyclotriphosphazene are used as curing agents for epoxy resins. These 1,2-epoxy resins are selected from di- or polyepoxide containing organic moieties of the formula (CH2-CHO-CH2) m-W-R-W- (CH2CH-CH2O)m where R is diphenyl dimethylmethane, diphenylmethane; W is a nitrogen or oxygen atom; and m is 1 when W is oxygen and 2 when W is nitrogen. The resins are cured thermally in stages at between about 110 to 135 C for between about 1 and 10 min, then at between about 175 to 185 C for between 0.5 to 10 hr and post cured at between about 215 and 235 C for between 0.1 and 2 hr. These resins are useful for making fire resistant elevated temperature stable composites, laminates, molded parts, and adhesives and structures, usually for aircraft secondary structures and for spacecraft construction.

  1. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    NASA Astrophysics Data System (ADS)

    Li, Ying; Manolache, Sorin; Qiu, Yiping; Sarmadi, Majid

    2016-02-01

    In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  2. Clinical biocompatibility of an experimental dentine-enamel adhesive for composites.

    PubMed

    Bowen, R L; Rupp, N W; Eichmiller, F C; Stanley, H R

    1989-12-01

    Previous studies have shown that sequential application of an acidified solution of ferric oxalate, N-phenylglycine and PMDM (the reaction product of pyromellitic dianhydride and hydroxyethyl methacrylate) yields strong adhesive bonding of composite resins to both dentine and enamel. The purpose of this study was to evaluate the clinical characteristics and the biocompatibility of this system in human teeth scheduled for extraction in the course of orthodontic treatment. Controls were light-cured Scotch-bond or ZOE in contralateral teeth. Evaluation criteria, which included clinical feasibility, patient acceptability, retention, margin aesthetics and human pulp response, were met. Within the 4-241 day observation periods, there was no postoperative sensitivity, pain, loss of retention, staining or discolouration. All pulp responses (double-blind pulp analysis including all teeth) were acceptable. With mean (+/- SD) remaining dentine thickness (RDT) of 0.67 +/- 0.35 mm, all indicators of pulp inflammation (displacement, superficial response, deep response etc.) averaged between none and slight, under 1 on a 0-4 scale. Both controls gave similar results. Linear regression analysis indicated low responses at all RDTs. The experimental material is safe and effective; further unrestricted clinical evaluations in teeth to be retained are indicated. PMID:2532624

  3. Skull Base Cerebrospinal Fluid Leakage Control with a Fibrin-Based Composite Tissue Adhesive

    PubMed Central

    Rock, Jack P.; Sierra, David H.; Castro-Moure, Frederico; Jiang, Feng

    1996-01-01

    Cerebrospinal fluid (CSF) leaks can be responsible for significant patient morbidity and mortality. While the majority of leaks induced after head trauma will seal without intervention, spontaneous or surgically-induced leaks often require operative repair. Many modifications on standard surgical technique are available for repair of CSF fistulae, but none assures adequate closure. We have studied the efficacy of a novel fibrin-based composite tissue adhesive (CTA) for closure of experimentally-induced CSF leaks in rats. Fistulae were created in two groups of animals. Two weeks after creation of the leaks, the animals were sacrificed and analyzed for persistence of leak. A 58% leakage rate was noted in the control group (n = 12), and no leaks were noted in the experimental group closed after application of CTA to the surgical defect followed by skin closure (n = 11). Comparing the control group to the experimental group, results were statistically significant (p = 0.015). These data suggest that CTA may be effective as an adjunct for the closure of CSF fistulae. ImagesFigure 2Figure 3 PMID:17170969

  4. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  5. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.

    PubMed

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375

  6. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives.

    PubMed

    Yokokawa, Miho; Rikuta, Akitomo; Tsujimoto, Akimasa; Tsuchiya, Kenji; Shibasaki, Syo; Matsuyoshi, Saki; Miyazaki, Masashi

    2015-02-01

    The influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives was investigated. The surface free-energies were determined by measuring the contact angles of test liquids placed on composites that had been immersed in different concentrations of methyl mercaptan (0.01, 0.1, and 1.0 M). To determine the repair bond strength, self-etch adhesives were applied to the aged composite, and then newly added composites were condensed. Ten samples of each specimen were subjected to shear testing at a crosshead speed of 1.0 mm min(-1). Samples were analyzed using two-way ANOVA followed by Tukey's honestly significant difference (HSD) test. Although the dispersion force of the composites remained relatively constant, their polar force increased slightly as the concentration of methyl mercaptan increased. The hydrogen-bonding forces were significantly higher after immersion in 1.0 M methyl mercaptan, leading to higher surface-free energies. However, the repair bond strengths for the repair restorations prepared from composites immersed in 1.0 M methyl mercaptan were significantly lower than for those immersed in 0.01 and 0.10 M methyl mercaptan. Considering the results of this study, it can be concluded that the repair bond strengths of both the aged and newly added composites were affected by immersion in methyl mercaptan solutions. PMID:25545663

  7. Highly Multiplexed Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions.

    PubMed

    Harizanova, Jana; Fermin, Yessica; Malik-Sheriff, Rahuman S; Wieczorek, Jakob; Ickstadt, Katja; Grecco, Hernán E; Zamir, Eli

    2016-01-01

    Integrin adhesome proteins bind each other in alternative manners, forming within the cell diverse cell-matrix adhesion sites with distinct properties. An intriguing question is how such modular assembly of adhesion sites is achieved correctly solely by self-organization of their components. Here we address this question using high-throughput multiplexed imaging of eight proteins and two phosphorylation sites in a large number of single focal adhesions. We found that during the assembly of focal adhesions the variances of protein densities decrease while the correlations between them increase, suggesting reduction in the noise levels within these structures. These changes correlate independently with the area and internal density of focal adhesions, but not with their age or shape. Artificial neural network analysis indicates that a joint consideration of multiple components improves the predictability of paxillin and zyxin levels in internally dense focal adhesions. This suggests that paxillin and zyxin densities in focal adhesions are fine-tuned by integrating the levels of multiple other components, thus averaging-out stochastic fluctuations. Based on these results we propose that increase in internal protein densities facilitates noise suppression in focal adhesions, while noise suppression enables their stable growth and further density increase-hence forming a feedback loop giving rise to a quality-controlled assembly. PMID:27519053

  8. Highly Multiplexed Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions

    PubMed Central

    Harizanova, Jana; Fermin, Yessica; Malik-Sheriff, Rahuman S.; Wieczorek, Jakob; Ickstadt, Katja; Grecco, Hernán E.; Zamir, Eli

    2016-01-01

    Integrin adhesome proteins bind each other in alternative manners, forming within the cell diverse cell-matrix adhesion sites with distinct properties. An intriguing question is how such modular assembly of adhesion sites is achieved correctly solely by self-organization of their components. Here we address this question using high-throughput multiplexed imaging of eight proteins and two phosphorylation sites in a large number of single focal adhesions. We found that during the assembly of focal adhesions the variances of protein densities decrease while the correlations between them increase, suggesting reduction in the noise levels within these structures. These changes correlate independently with the area and internal density of focal adhesions, but not with their age or shape. Artificial neural network analysis indicates that a joint consideration of multiple components improves the predictability of paxillin and zyxin levels in internally dense focal adhesions. This suggests that paxillin and zyxin densities in focal adhesions are fine-tuned by integrating the levels of multiple other components, thus averaging-out stochastic fluctuations. Based on these results we propose that increase in internal protein densities facilitates noise suppression in focal adhesions, while noise suppression enables their stable growth and further density increase—hence forming a feedback loop giving rise to a quality-controlled assembly. PMID:27519053

  9. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  10. Effect of postoperative peroxide bleaching on the marginal seal of composite restorations bonded with self-etch adhesives.

    PubMed

    Roubickova, A; Dudek, M; Comba, L; Housova, D; Bradna, P

    2013-01-01

    The aim of this study was to determine the effect of peroxide bleaching on the marginal seal of composite restorations bonded with several adhesive systems. Combined cylindrical Class V cavities located half in enamel and half in dentin were prepared on the buccal and lingual surfaces of human molars. The cavities were bonded with the self-etch adhesives Clearfil SE-Bond (CLF), Adper Prompt (ADP), and iBond (IBO) and an etch-and-rinse adhesive Gluma Comfort Bond (GLU) and restored with a microhybrid composite Charisma. Experimental groups were treated 25 times for eight hours per day with a peroxide bleaching gel Opalescence PF 20, while the control groups were stored in distilled water for two months and then subjected to a microleakage test using a dye penetration method. Scanning electron microscopy was used to investigate the etching and penetration abilities of the adhesives and morphology of debonded restoration-enamel interfaces after the microleakage tests. Statistical analyses were performed using nonparametric Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests at p=0.05. The microleakage of all GLU groups was low and not significantly affected by peroxide bleaching. Low microleakage was recorded for CLF control groups, but after bleaching, a small but significant increase in microleakage at the enamel margin indicated its sensitivity to peroxide bleaching. For ADP and IBO control groups, the microleakage at the enamel margins was significantly higher than for GLU and CLF and exceeded that at the dentin margins. Bleaching did not induce any significant changes in the microleakage. Electron microscopy analysis indicated that in our experimental setup, decreased adhesion and mechanical resistance of the ADP- and IBO-enamel interfaces could be more important than the chemical degradation effects induced by the peroxide bleaching gel. PMID:23570299