Science.gov

Sample records for large aperture laser

  1. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  2. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  3. Performance results for Beamlet: A large aperture multipass Nd glass laser

    SciTech Connect

    Campbell, J.H.; Barker, C.E.; VanWonterghem, B.M.; Speck, D.R.; Behrendt, W.C.; Murray, J.R.; Caird, J.A.; Decker, D.E.; Smith, I.C.

    1995-04-11

    The Beamlet laser is a large aperture, flashlamp pumped Nd: glass laser that is a scientific prototype of an advanced Inertial Fusion laser. Beamlet has achieved third harmonic, conversion efficiency of near 80% with its nominal 35cm {times} 35cm square beam at mean 3{omega} fluences in excess of 8 J/cm{sup 2}(3-ns). Beamlet uses an adaptive optics system to correct for aberrations and achieve less than 2 {times} diffraction limited far field spot size.

  4. Development of large-aperture electro-optical switch for high power laser at CAEP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing

    2015-02-01

    Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.

  5. Simple mathematical model for designing laser diode focusing optics with a large numerical aperture

    NASA Astrophysics Data System (ADS)

    Sun, Haiyin

    2014-10-01

    A simple mathematical model is derived for conveniently designing laser diode focusing optics with a large numerical aperture. The astigmatism of laser diode beams and the lens truncation effects are considered in the model. The linearly polarized nature of laser diode beams is also included. Two design examples using this model are presented. Design results show that the lens truncation will increase the size of the focused spot and the value of the M2 factor, and the lens truncation caused a focal shift, which is not enough to correct laser diode beam astigmatism.

  6. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers.

    PubMed

    Murray, J E; Downs, D C; Hunt, J T; Hermes, G L; Warren, W E

    1981-03-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage. PMID:20309212

  7. Partial feedback unstable resonator on small scale supersonic large aperture chemical laser

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Wang, Rui; Li, Lei

    2015-05-01

    There is always a challenge on large aperture medium power laser's resonator design, stable resonator would supports significant higher order transverse modes, folded and telescope stable resonator are too complex and not preferred by engineers, unstable resonator need rather large round trip gain to compensate its high geometric out-coupling, which is difficult for this kind of laser since its gain length is limited due to the power level and large aperture. Partial feedback unstable resonator had been proposed to tackle this difficulty since the early days of laser development, however, the debates of its effect never stopped even with those distinguished optical resonator scientists such as Siegman, Anan'ev, and Weber. Recently integrated partial feedback unstable resonator design had been successfully demonstrated on a medium size chemical oxygen iodine laser. In this paper, we carry this resonator configuration on a small scale discharge driven supersonic nozzle array Hydrogen Fluoride chemical laser, a typical large aperture short gain length device. With magnification equals 4/3, we successfully get ten Watts level ring beam output.

  8. Fast inspection of bulk and surface defects of large aperture optics in high power lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan'an; Hu, Guohang; Liu, Shijie; Yi, Kui; Shao, Jianda

    2015-05-01

    Laser induced damage for nanosecond pulse duration is attributed to the existence of defects. The growth and polishing, as well as coating deposition, may induce versatile kinds of defects, including dig, scratch and inclusion. It is special important to get the information of the defects, such as size and location, which is the basis to know the origin of the defects and figures out effective techniques to eliminate it. It is quite easy to get the information of the defects with micron-level resolution, but it is time-consuming and is not suitable for fast inspection of the large aperture (hundreds of millimeters). In this work, on-the-fly image capture technique was employed to realize fast inspection of large aperture optics. A continuous green laser was employed as illumination source to enhance and enlarge the image of bulk defects. So it could detect the submicron-scale defects. A transmission microscopy with white light illumination was employed to detect the surface defect. Its field of view was about 2.8mm×1.6mm. The sample was raster scanned driving by a stepper motor through the stationary illumination laser and digital camera, and the speed to scan the sample was about 10mm/s. The results of large aperture optics proved the functions of this fast inspection technique.

  9. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  10. Electro-optic harmonic conversion switch for large-aperture multipass laser systems

    SciTech Connect

    Henesian, M.A.; Goldhar, J.; Haas, R.A.

    1984-08-01

    The authors have demonstrated electro-optically tuned second-harmonic generation using Type I KDP inside a plasma-electrode discharge cell. An axial voltage of +/- 52 kV is required to switch a 1.064-..mu..m beam by conversion to 0.53 ..mu..m, in agreement with theory. Electro-optically tuned harmonic generation may be combined with a recently developed transparent plasma electrode to produce a large-aperture switch for multipass laser systems. 7 references, 4 figures, 1 table.

  11. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers

    SciTech Connect

    Rhodes, M.A.; Woods, B.; DeYoreo, J.J.; Roberts, D.; Atherton, L.J.

    1995-08-20

    We describe the design and performance of large-aperture ({lt}30 cm {times} 30 cm) optical switches that have demonstrated, for the first time to our knowledge, active switching of a high-energy ({lt}5 kJ) optical pulse in an inertial-confinement fusion laser. These optical switches, which consist of a plasma-electrode Pockels cell (PEPC) and a passive polarizer, permit the design of efficient, multipass laser amplifiers. In a PEPC, plasma discharges on the faces of a thin (1-cm) electro-optic crystal (KDP or KD{bold |}P) act as highly conductive and transparent electrodes. These plasma electrodes facilitate rapid ({lt}100 ns) and uniform charging of the crystal to the half-wave voltage and discharging back to 0 V. We discuss the operating principles, design, optical performance, and technical issues of a 32 cm {times} 32 cm prototype PEPC with both KDP and KD{bold |}P crystals, and a 37 cm {times} 37 cm PEPC with a KDP crystal for the Beamlet laser. This PEPC recently switched a 6-kJ, 3-ns pulse in a four-pass cavity.

  12. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations. PMID:27607276

  13. Apodizer aperture for lasers

    DOEpatents

    Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.

    1976-11-09

    An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.

  14. A novel measurement scheme for the radial group delay of large-aperture ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Li, Zhaoyang; Li, Wenkai; Lu, Jun; Wang, Cheng; Li, Yanyan; Liu, Yanqi; Lu, Xiaoming; Peng, Yujie; Wang, Ding; Leng, Yuxin; Li, Ruxin

    2016-05-01

    In femtosecond high-peak-power laser system, the radial group delay (RGD) of the pulse front introduced by conventional lens-based beam expanders can significantly decrease the achievable focal intensity, especially when it is larger than the pulse duration. In order to quantitatively analyze and compensate the RGD, a novel measurement scheme based on self-reference and second-order cross-correlation technology is proposed and applied to measure the RGD of the large-aperture ultra-short laser pulses directly. The measured result of the RGD in a 200 TW Ti:sapphire laser system is in good agreement with the theoretical calculation. To our knowledge, it is the first time to realize the direct RGD measurement of large-aperture ultra-short laser pulses.

  15. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    SciTech Connect

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  16. Coherent polarization stabilization in large-aperture rectangular post bottom-emitting vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ning, Y. Q.; Tian, Z. H.; Zhang, X.; Shi, J. J.; Wang, Z. F.; Zhang, L. S.; Zhang, Y.; Liu, Y.; Qin, L.; Wang, L. J.

    2011-03-01

    The output characteristics of large-aperture rectangular post bottom-emitting vertical-cavity surface-emitting lasers (VCSELs) were investigated. It was shown that the output power of the rectangle VCSELs can be up to 660 mW at a current of 5 A. Both H-polarization (horizontal) and V-polarization (vertical) demonstrated a coherent stabilization over the entire range of operation current, and coherent spectrum blue-shift of H-polarization light occurred with respect to V-polarization light at three different injected currents. The polarization states of output light were stabilized in the two orthogonal directions and H-polarization was the most principal polarization which was parallel to the longer side of the rectangular aperture. From the relationship between polarization ratio and aspect ratio of the oxidation confinement aperture (OCA), it was found that the highest polarization ratio (about 2:1) took place when the appropriate aspect ratio was 5:3, which meant better polarization stabilization in large-aperture VCSELs.

  17. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  18. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  19. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  20. Industrial large-aperture XeCl laser for surface processing

    NASA Astrophysics Data System (ADS)

    Letardi, Tommaso; Baldesi, Alessandro; Bollanti, Sarah; Bonfigli, Francesca; Di Lazzaro, Paolo; Flora, Francesco; Giordano, Gualtiero; Marinai, Alessandro; Murra, Daniele; Schina, Giovanni; Zheng, Cheng En

    2000-02-01

    In the frame of a large project on new materials technologies for photovoltaic and microelectronic applications (FOTO), the process of amorphous silicon (a-Si) transformation into polycrystalline silicon (poly-Si) by means of laser irradiation has been tested with a long-pulse (160 ns), 8 J/p XeCl source. Following the positive results, a laser source, having design parameters of 10 J/p, 120 ns, 10 Hz, has been designed and built, with the aim of realizing a laboratory line for the production of thin film transistors (TFTs) devices.

  1. Aperture combined Raman laser

    SciTech Connect

    Woods, C.; Tang, K.; Howton, C.; Muller, D.; Hunter, R.O. Jr.

    1983-01-01

    Excimer lasers, while able to produce large powers and energies, are limited to a few discrete wavelengths. Efficient Raman shifting promises the availability of a much broader wavelength range. A method was developed which both Raman shifts and allows for multiple pump beams.

  2. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  3. A flat laser array aperture

    NASA Astrophysics Data System (ADS)

    Papadakis, Stergios J.; Ricciardi, Gerald F.; Gross, Michael C.; Krill, Jerry A.

    2010-04-01

    We describe a design concept for a flat (or conformal) thin-plate laser phased-array aperture. The aperture consists of a substrate supporting a grid of single-mode optical waveguides fabricated from a linear electro-optic material. The waveguides are coupled to a single laser source or detector. An arrangement of electrodes provides for two-dimensional beam steering by controlling the phase of the light entering the grid. The electrodes can also be modulated to simultaneously provide atmospheric turbulence modulation for long-range free-space optical communication. An approach for fabrication is also outlined.

  4. A large aperture electro-optic deflector

    NASA Astrophysics Data System (ADS)

    Bosco, A.; Boogert, S. T.; Boorman, G. E.; Blair, G. A.

    2009-05-01

    An electro-optic laser beam deflector with a clear optical aperture of 8.6 mm has been designed, realized, and tested. The electro-optic material used to implement the device was a MgO:LiNbO3 crystal. The exceptionally large aperture makes the device suitable for applications where fast scanning of high power laser beams is needed. The measured deflection angle was 120 μrad/kV for a total length of electro-optic material of 90 mm. A mode quality analysis of the laser beam revealed that the M2 of the laser is affected by less than 4% during scan operation when maximum driving voltage is applied.

  5. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses.

    PubMed

    Chu, Yuxi; Gan, Zebiao; Liang, Xiaoyan; Yu, Lianghong; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Xu, Lu; Lu, Haihe; Yin, Dingjun; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2015-11-01

    We report on the generation of 192.3 J centered at 800 nm wavelength from a chirped-pulse amplification (CPA) Ti:sapphire laser system. The experimental results demonstrate that parasitic lasing can be suppressed successfully in the final amplifier based on a Ti:sapphire crystal of 150 mm in diameter. An over 50% pump-to-signal conversion efficiency was measured for the final amplifier by optimizing the time delay of two pump pulses and enhancing the injected seed energy. With 72% compressor throughput efficiency and 27 fs long compressed pulse duration obtained at a lower energy level, this laser could potentially support a compressed laser pulse of 5.13 PW peak power. The experimental results represent notable progress regarding the CPA laser. PMID:26512506

  6. Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings

    NASA Astrophysics Data System (ADS)

    Smith, Douglas J.; McCullough, Mike; Smith, Claire; Mikami, Takuya; Jitsuno, Takahisa

    2008-10-01

    Large aperture laser pulse compressor designs use several diffraction gratings in series and sometimes tiled together to compress an amplified 1 to 10 ns pulse to 0.1 to 10 ps. The wavefront of the compressed pulse must be well controlled to allow focusing to a small spot on a target. Traditionally, multilayer dielectric gratings (MLDG) have been fabricated onto high thermal expansion substrates such as BK7 glass to prevent crazing and excessive bending due to tensile coating stress when operated in high vacuum. However, the high CTE of the BK7 can cause wavefront distortion and changes in the period of the grating. This work uses ion-assisted deposition of HfO2/SiO2 films to increase the compressive stress in MLD layers to allow use of silica substrates in the compressor vacuum environment. Stress, coating uniformity, and damage results are reported. The process was scaled to full size (91cm × 42cm) MLD gratings for use in the Osaka University LFEX laser system. Diffracted wavefront results from the full scale gratings is presented.

  7. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  8. Thermo-optical simulation and experiment for the assessment of single, hollow, and large aperture retroreflector for lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Araki, Hiroshi; Kashima, Shingo; Noda, Hirotomo; Kunimori, Hiroo; Chiba, Kouta; Mashiko, Hitomi; Kato, Hiromasa; Otsubo, Toshimichi; Matsumoto, Yoshiaki; Tsuruta, Seiitsu; Asari, Kazuyoshi; Hanada, Hideo; Yasuda, Susumu; Utsunomiya, Shin; Takino, Hideo

    2016-06-01

    A single aperture and hollow retroreflector [corner-cube mirror (CCM)] that in principle has no internal optical path difference is a key instrument for achieving lunar laser ranging one order or more accurate than the current level (~2 cm). We are developing CCM whose aperture is 20 cm with optimized dihedral angles. The 20-cm CCM yields two times peak height for returned laser pulse compared with Apollo 15's retroreflector. Two investigations were conducted to confirm the feasibility of the 20-cm aperture CCM. The first is thermo-optical simulation and evaluation of the 20-cm CCM in the lunar thermal environment. Through this simulation, it has turned out for the first time that 20-cm aperture CCM made of single-crystal Si or "ultra-low expansion glass-ceramics" such as CCZ-EX® (OHARA Inc.) can be used for CCM with no thermal control, if the perfectly fixed point of CCM is limited to one. The second is annealing and shear loading experiments of single-crystal silicon (Si) samples. Through these experiments, high-temperature annealing from 100 to 1000 °C is confirmed to be effective for the enhancement of the adhesive strength between optically contacted surfaces with no optical damage in roughness and accuracy, indicating that this annealing process would enhance the rigidity of CCM fabricated by the optically contacted plates.

  9. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  10. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    SciTech Connect

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-03-13

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-{mu}m output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 {times} 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs.

  11. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  12. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  13. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  14. HI-CLASS on AEOS: a large-aperture laser radar for space surveillance/situational awareness investigations

    NASA Astrophysics Data System (ADS)

    Kovacs, Mark A.; Dryden, Gordon L.; Pohle, Richard H.; Ayers, Kirstie; Carreras, Richard A.; Crawford, Linda L.; Taft, Russell

    2001-12-01

    The Air Force Research Laboratory/Directed Energy Directorate (AFRL/DE) via the ALVA (Applications of Lidars for Vehicles with Analysis) program installed in late 2000 a wideband, 12 J 15 Hz CO2 laser radar (ladar) on the 3.67 meter aperture AEOS (Advanced Electro-Optics System) telescope. This system is part of the Maui Space Surveillance System (MSSS), on the summit of Haleakala, Maui, HI. This ladar adopts the technology successfully demonstrated by the first generation HI-CLASS (High Performance CO2) Ladar Surveillance Sensor) operating on the nearby 0.6 meter aperture Laser Beam Director (LBD) and developed under the Field Ladar Demonstration program, jointly sponsored by AFRL/DE and the Army's Space and Missile Defense Command. The moderate power (approximately 180 watts) HI-CLASS/AEOS system generates multiple, coherent waveforms for precision satellite tracking and characterization of space objects for 1 m2 targets at ranges out to 10,000 km. This system also will be used to track space objects smaller than30 cm at ranges to 2,000 km. A third application of this system is to provide data for developing satellite identification, characterization, health and status techniques. This paper will discuss the operating characteristics and innovative features of the new system. The paper will also review recent results in support of AF needs, demonstrations, experiments, as well as planned activities that directly support applications in the DoD, scientific, and commercial arenas.

  15. Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion

    SciTech Connect

    Van Wonterghem, B.M.; Murray, J.R.; Campbell, J.H.; Speck, D.R.; Barker, C.E.; Smith, I.C.; Browning, D.F.; Behrendt, W.C.

    1997-07-01

    The Beamlet is a single-beam prototype of future multibeam megajoule-class Nd:glass laser drivers for inertial confinement fusion. It uses a multipass main amplifier, adaptive optics, and efficient, high-fluence frequency conversion to the third harmonic. The Beamlet amplifier contains Brewster-angle glass slabs with a clear aperture of 39 cm{times}39 cm and a full-aperture plasma-electrode Pockels cell switch. It has been successfully tested over a range of pulse lengths from 1{endash}10 ns up to energies at 1.053 {mu}m of 5.8 kJ at 1 ns and 17.3 kJ at 10 ns. A 39-actuator deformable mirror corrects the beam quality to a Strehl ratio of as much as 0.4. The 1.053-{mu}m output has been converted to the third harmonic at efficiencies as high as 80{percent} and fluences as high as 8.7 J/cm{sup 2} for 3-ns pulses. {copyright} 1997 Optical Society of America

  16. Fabrication and applications of large aperture diffractive optics

    SciTech Connect

    Dixit, S; Britten, J B; Hyde, R; Rushford, M; Summers, L; Toeppen, J

    2002-02-19

    Large aperture diffractive optics are needed in high power laser applications to protect against laser damage during operation and in space applications to increase the light gathering power and consequently the signal to noise. We describe the facilities we have built for fabricating meter scale diffractive optics and discuss several examples of these.

  17. Low-Cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, 0.5-1 meter ground apertures are required for near-Earth laser communications. Low-cost ground apertures with equivalent diameters greater than 10 meters are desired for deep-space communications. This presentation focuses on identifying schemes to lower the cost of constructing networks of large apertures while continuing to meet the requirements for laser communications. The primary emphasis here is on the primary mirror. A slumped glass spherical mirror, along with passive secondary mirror corrector and active adaptive optic corrector show promise as a low-cost alternative to large diameter monolithic apertures. To verify the technical performance and cost estimate, development of a 1.5-meter telescope equipped with gimbal and dome is underway.

  18. Finite-aperture tapered unstable resonator lasers

    NASA Astrophysics Data System (ADS)

    Bedford, Robert George

    The development of high power, high brightness semiconductor lasers is important for applications such as efficient pumping of fiber amplifiers and free space communication. The ability to couple directly into the core of a single-mode fiber can vastly increase the absorption of pump light. Further, the high mode-selectivity provided by unstable resonators accommodates single-mode operation to many times the threshold current level. The objective of this dissertation is to investigate a more efficient semiconductor-based unstable resonator design. The tapered unstable resonator laser consists of a single-mode ridge coupled to a tapered gain region. The ridge, aided by spoiling grooves, provides essential preparation of the fundamental mode, while the taper provides significant amplification and a large output mode. It is shown a laterally finite taper-side mirror (making the laser a "finite-aperture tapered unstable resonator laser") serves to significantly improve differential quantum efficiency. This results in the possibility for higher optical powers while still maintaining single-mode operation. Additionally, the advent of a detuned second order grating allows for a low divergent, quasicircular output beam emitted from the semiconductor surface, easing packaging tolerances, and making two dimensional integrated arrays possible. In this dissertation, theory, design, fabrication, and characterization are presented. Material theory is introduced, reviewing gain, carrier, and temperature effects on field propagation. Coupled-mode and coupled wave theory is reviewed to allow simulation of the passive grating. A numerical model is used to investigate laser design and optimization, and effects of finite-apertures are explored. A microfabrication method is introduced to create the FATURL in InAlGaAs/-InGaAsP/InP material emitting at about 1410 nm. Fabrication consists of photolithography, electron-beam lithography, wet etch and dry etching processes, metal and

  19. Eyeglass. 1. Very large aperture diffractive telescopes.

    PubMed

    Hyde, R A

    1999-07-01

    The Eyeglass is a very large aperture (25-100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Deltalambda/lambda approximately 0.1), multiband, or continuous spectral coverage. PMID:18323902

  20. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  1. Manufacture of Large-Aperture Diffractive Optics and Ultrathin Optics for High-Power Laser and Space Applications

    SciTech Connect

    Britten, J A

    2002-01-18

    We have developed equipment and technology for fabricating submicron pitch, high-efficiency diffraction gratings over meter-scale apertures that are used for pulse compression in ultrafast systems around the world. We have also developed wet-etch figuring (WEF) to generate arbitrary continuous contours on ultrathin glass substrates in a closed loop process. The current and future states of these technologies will be discussed.

  2. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  3. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Vannoni, M.; Freijo Martín, I.

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ṡ 1025 (photons s-1 mm-2 mrad-2)/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  4. Design of large aperture focal plane shutter

    NASA Astrophysics Data System (ADS)

    Hu, Jia-wen; Ma, Wen-li; Huang, Jin-long

    2012-09-01

    To satisfy the requirement of large telescope, a large aperture focal plane shutter with aperture size of φ200mm was researched and designed to realize, which could be started and stopped in a relative short time with precise position, and also the blades could open and close at the same time at any orientation. Timing-belts and stepper motors were adopted as the drive mechanism. Velocity and position of the stepper motors were controlled by the PWM pulse generated by DSP. Exponential curve is applied to control the velocity of the stepper motors to make the shutter start and stop in a short time. The closing/open time of shutter is 0.2s, which meets the performance requirements of large telescope properly.

  5. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  6. Intracavity Herriott-cell testbed for large-aperture femtosecond optics

    NASA Astrophysics Data System (ADS)

    Rácz, Péter; Nagy, Benedek J.; Ferencz, Kárpát; Dombi, Péter

    2014-12-01

    We demonstrate a versatile test method of large-aperture femtosecond mirrors inside a long-cavity Ti:sapphire laser oscillator. The Herriott-cell inside the cavity is utilized for the purpose of carrying out full-aperture testing. The method is highly sensitive to the homogeneity of mirror reflectivity and group delay dispersion over the whole mirror surface and it is suitable for testing both high reflector and chirped mirrors starting from 2” size up to arbitrarily large apertures.

  7. U-turn alternative to the large aperture switch

    SciTech Connect

    Vann, C.S.

    1994-03-09

    The primary alternative laser architecture is the U-turn design. The U-turn has significantly different cost and performance risks than the full-aperture switch, which makes it a highly desirable alternative. The U-turn was conceived at LLNL in 1992. A similar concept, the L-turn had already been discovered by the French at CEL-V. Both concepts are based on the multipass glass amplifier design, but the full-aperture Pockels cell and polarizer are replaced with smaller and less expensive optics. Eliminating the large switch and polarizer not only reduces component costs, it also provides options for shortening the laser which, in turn, could reduce the size and cost of the laser building. Efficient use of the amplifier aperture (small vignetting allowance) requires that the U-turn have a long transport spatial filter; however, this is not a disadvantage if a long spatial filter is already required for image relaying to the frequency converter. Given a long spatial filter, the U-turn is potentially more efficient because losses in the switch and polarizer are avoided.

  8. Large-aperture, high-damage-threshold optics for beamlet

    SciTech Connect

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  9. Temperature characteristic of 808nm VCSELs with large aperture

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Feng, Dawei; Hao, Yongqin; Wang, Yong; Yan, Changling; Lu, Peng; Li, Yang

    2015-03-01

    In order to study the output characteristics of 808nm vertical cavity surface emitting laser(VCSEL) with large aperture at different temperature, 808nm VCSEL with 500μm emitting diameter are fabricated with Reticular Electrode Structure(RES). Lasing wavelength, optical power and the threshold current are measured by changing the temperature of heat sink. And an output power of 0.42W is achieved at 1.3A at room temperature under continuous wave operation. The central wavelength is 803.32nm, and the full width at half maximum is 0.16nm, the temperature shift is 0.06nm/°, the thermal resistance is 0.098°/mW. The testing results show that 808nm VCSEL with large aperture is good temperature characteristic.

  10. Large-aperture broadband sapphire windows for common aperture, target acquisition, tracking, and surveillance systems

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel

    1997-06-01

    State of the art optical sensing systems performing target acquisition/tracking and surveillance functions are being designed to incorporate a number of sensors into one package. These include visual and MWIR cameras, FLIRs, and laser range finders. These combined systems are being configured to view through a common aperture window. Typical window diameters are to eleven inches, but some surveillance applications have windows approaching twenty inches in diameter. These sensor windows typically operate in hostile environments including very high pressure differentials, large thermal gradients, and severe rain and sand abrasion. EMI/EMC protection and de-icing capabilities are also commonly required. For airborne applications and to minimize thermal gradients, thinner, lightweight, high strength windows are also necessary. Sapphire is an ideal window material to satisfy these requirements due to its high strength, UV-MWIR bandpass, minimal optical scatter, excellent index of refraction homogeneity and very high scratch/impact resistance. Associated optical fabrication, grid lithography and optical coating processes have been developed at Hughes Danbury for sapphire windows. This paper addresses the development of a family of large aperture, broadband sapphire windows which also provide EMI/EMC protection and de-icing capabilities. The resulting design configuration and performance characteristics are also addressed. Future technology development requirements are also discussed.

  11. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  12. Testing the large aperture optical components by the sub-aperture stitching interferometer

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Zhao-xuan; Wang, Qing; Ji, Bo

    2008-03-01

    Nowadays many large aperture optical components are widely used in the high-tech area, how to test them become more and more important. Here describes a new method to test the large aperture optical components using the small aperture interferometer, deduce how to get the aperture number and the concrete process of the stitching parameter in a systematic way, finally get the best plan to choose the sub-aperture of the square and circular optical plane. To specify the stability of the method we operate an experiment, the result shows that the stitching accuracy can reach λ/10, it meet the need of the inertia constraint fusion etc, that is good enough to be used in the high-tech area.

  13. Study on test metrology of large aperture optical system wavefront

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying; Fu, Yuegang; Gao, Tianyuan; Wang, Zhijian

    2009-05-01

    Large aperture optical system test has been a key problem for a long time. It could be solved by sub-aperture stitching method after the sub-apertures are tested. Sub-aperture stitching technology is a feasible method for testing large diameter optical system with small diameter interferometer sub-aperture stitching. Auto-collimating component will be needed with interferometer stitching method. Auto-collimating component is defined that the image could be kept stable when the optical component rotates about any axis in space. And the beam could be back along original optical path. By this means, auto collimation could be realized. The auto-collimating component is smaller than the test system. The whole wavefront of large aperture system could be tested through the method that the auto-collimating component moves along the guide rail and rotates about optical axis. A right angle roof prism is chosen as the auto-collimating component due to its character of easier manufacture. The active matrix, characteristic orientation and extreme axial is deduced with dynamic optics. The sub-aperture stitching testing process is simulated by ZEMAX in detail. The test result by stitching method is compared with that by directive test method for large aperture optical system. It is shown that the relative test error is less than 4.3λ 0/00. The sub -aperture stitching test method is verified.

  14. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  15. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  16. A review of large aperture Schlieren photography technique

    NASA Astrophysics Data System (ADS)

    Xu, Song-bo; Xie, Yong-jun; Chen, Lei

    2016-01-01

    Schlieren photography is a visual process to display the flow of fluids of varying density. It is widely used in wind tunnel tests to photograph the flow of air around objects. To achieve schlieren images with high sensitivity and high resolution, and satisfy the requirements of the large-scale wind tunnel tests, it is urgent to develop schlieren photographers with large aperture primary mirrors. However, the application of large aperture primary mirrors may bring many challenges in the design of the schlieren system. First, the surface figure of large aperture primary mirrors is difficult to control so that the support structure may need more strategical design. Second, because the schlieren system works under some severe environments of the wind tunnel test including the air disturbance, wind-induced ground vibration and high ambient pressure, it has to withstand serious instability risks to ensure a good schlieren image quality. In this work, the current status of the development in the large aperture schlieren systems is reviewed. Several advanced methods, for example, active damping control technique, focal spot monitoring technique, 18-points whilffletree support technique, etc.., are introduced to deal with the challenges of the large aperture schlieren system. This work aims at improving the technical development of large aperture schlieren photographer, which may contribute to the acquisition of the high sensitive and high resolution schlieren images and the improvement of the testing capability in wind tunnel experiments.

  17. New LGS for large aperture telescope

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir; Bolbasova, Lidia

    2007-10-01

    The image quality is analyzed of an extraterrestrial object formed by astronomical optical system through the turbulent atmosphere. Relative increase the Strehl parameter is calculated under adaptive correction based on the laser guide star technique. The efficiency of adaptive correction of distortions for different type of the guide sources is compared. A special wave front sensor is applied, which operates using the broad laser beam as a reference wave. The calculations are performed for different models of the vertical variations of the structural parameter of the refractive index of the turbulent atmosphere. The wave front sensor was used, which enables to reconstruct the continuous phase of the reference wave. As the estimates show, the parameters of the formed field are quite close to that plane wave. So the higher correction and big increase of the Strehl parameter are obtained, that is indirect evidence of the good correction of the higher mode components, which are badly corrected using the traditional techniques for formation of LGS by means of a focused laser beam. As comparative calculations for different models of vertical variations of the structural parameter of the refractive index have shown, there are serious differences in the behaviors of the correlation radii for the plane and spherical waves.

  18. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching. PMID:27410061

  19. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array.

  20. Enhancing efficiency of single, large-aperture antennas

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Grimes, D. E.; Littlepage, R. S.

    1971-01-01

    Numerical analysis method provides means of describing energy distribution in focal plane of parabolic surface in terms of phase and wavelength. Two approaches for enhancing antenna efficiency include single, large reflector focused to feeding element, and array of smaller apertures whose individual outputs are summed.

  1. Operational aspects of the Main Injector large aperture quadrupole (WQB)

    SciTech Connect

    Chou, W.; Bartelson, L.; Brown, B.; Capista, D.; Crisp, J.; DiMarco, J.; Fitzgerald, J.; Glass, H.; Harding, D.; Johnson, D.; Kashikhin, V.; /Fermilab

    2007-06-01

    A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. [1] Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40{pi} to 60{pi} mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref [2].

  2. Imaging with Concave Large-Aperture Therapeutic Ultrasound Arrays Using Conventional Synthetic-Aperture Beamforming

    PubMed Central

    Wan, Yayun; Ebbini, Emad S.

    2009-01-01

    Several dual-mode ultrasound array (DMUA) systems are being investigated for potential use in image-guided surgery. In therapeutic mode, DMUAs generate pulsed or continuous-wave (CW) high-intensity focused ultrasound (HIFU) beams capable of generating localized therapeutic effects within the focal volume. In imaging mode, pulse-echo data can be collected from the DMUA elements to obtain B-mode images or other forms of feedback on the state of the target tissue before, during, and after the application of the therapeutic HIFU beam. Therapeutic and technological constraints give rise to special characteristics of therapeutic arrays. Specifically, DMUAs have concave apertures with low f-number values and are typically coarsely sampled using directive elements. These characteristics necessitate pre- and post-beamforming signal processing of echo data to improve the spatial and contrast resolution and maximize the image uniformity within the imaging field of view (IxFOV). We have recently developed and experimentally validated beamforming algorithms for concave large-aperture DMUAs with directive elements. Experimental validation was performed using a 1 MHz, 64-element, concave spherical aperture with 100 mm radius of curvature. The aperture was sampled in the lateral direction using elongated elements 1−λ×33.3‒ with 1.333‒−λ center-to-center spacing (λ is the wavelength). This resulted in f-number values of 0.8 and 2 in the azimuth and elevation directions, respectively. In this paper, we present a new DMUA design approach based on different sampling of the shared concave aperture to improve image quality while maintaining therapeutic performance. A pulse-wave (PW) simulation model using a modified version of the Field II program is used in this study. The model is used in generating pulse-echo data for synthetic-aperture (SA) beamforming for forming images of a variety of targets, e.g., wire arrays and speckle-generating cyst phantoms. To provide

  3. Self-Referencing Hartmann Test for Large-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Korechoff, Robert P.; Oseas, Jeffrey M.

    2010-01-01

    A method is proposed for end-to-end, full aperture testing of large-aperture telescopes using an innovative variation of a Hartmann mask. This technique is practical for telescopes with primary mirrors tens of meters in diameter and of any design. Furthermore, it is applicable to the entire optical band (near IR, visible, ultraviolet), relatively insensitive to environmental perturbations, and is suitable for ambient laboratory as well as thermal-vacuum environments. The only restriction is that the telescope optical axis must be parallel to the local gravity vector during testing. The standard Hartmann test utilizes an array of pencil beams that are cut out of a well-corrected wavefront using a mask. The pencil beam array is expanded to fill the full aperture of the telescope. The detector plane of the telescope is translated back and forth along the optical axis in the vicinity of the nominal focal plane, and the centroid of each pencil beam image is recorded. Standard analytical techniques are then used to reconstruct the telescope wavefront from the centroid data. The expansion of the array of pencil beams is usually accomplished by double passing the beams through the telescope under test. However, this requires a well-corrected, autocollimation flat, the diameter or which is approximately equal to that of the telescope aperture. Thus, the standard Hartmann method does not scale well because of the difficulty and expense of building and mounting a well-corrected, large aperture flat. The innovation in the testing method proposed here is to replace the large aperture, well-corrected, monolithic autocollimation flat with an array of small-aperture mirrors. In addition to eliminating the need for a large optic, the surface figure requirement for the small mirrors is relaxed compared to that required of the large autocollimation flat. The key point that allows this method to work is that the small mirrors need to operate as a monolithic flat only with regard to

  4. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    SciTech Connect

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage threshold but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite

  5. Mission definition for a large-aperture microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.

    1981-01-01

    An Earth-observation measurements mission is defined for a large-aperture microwave radiometer spacecraft. This mission is defined without regard to any particular spacecraft design concept. Space data application needs, the measurement selection rationale, and broad spacecraft design requirements and constraints are described. The effects of orbital parameters and image quality requirements on the spacecraft and mission performance are discussed. Over the land the primary measurand is soil moisture; over the coastal zones and the oceans important measurands are salinity, surface temperature, surface winds, oil spill dimensions and ice boundaries; and specific measurement requirements have been selected for each. Near-all-weather operation and good spatial resolution are assured by operating at low microwave frequencies using an extremely large aperture antenna in a low-Earth-orbit contiguous mapping mode.

  6. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  7. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  8. Phase retrieval in situ measurement for large aperture parabolic mirror

    NASA Astrophysics Data System (ADS)

    Ding, Lingyan; Wu, Yulie; Li, Shengyi; Liao, Yang; Shu, Yong

    2010-10-01

    Phase retrieval is a promising method for in-situ metrology and has been applied to spherical mirror surface metrology successfully. To meet the requirement of in-situ measurement in manufacturing large aperture parabolic mirror, a new method using phase retrieval technology is developed. In this method, an approximately parallel beam is used to illuminate the large parabolic mirror. The beam is produced by a point light source far away from the tested mirror. Then, intensity of diffraction patterns near the focus is measured by CCD. The experiment of testing a parabolic mirror with aperture 400mm and radius of curvature at vertex 2789.7mm is described. And some advices of improving the setup are presented. Errors brought by the approximately parallel beam are compensated by an algorithm derived from GS iterative algorithm. Phase retrieval result is consistent with that measured by interferometer sub-aperture stitching in error distribution, PV value and RMS value. The experiment shows that this method features simple optical path, good anti-vibration ability and acceptable accuracy.

  9. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  10. A future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  11. Silicon Powder Filters for Large-Aperture Cryogenic Receivers

    NASA Astrophysics Data System (ADS)

    Boone, Fletcher; Essinger-Hileman, T.; Bennett, C. L.; Marriage, T.; Xu, Z.

    2014-01-01

    Upcoming experiments probing for the existence of B-mode polarization in the cosmic microwave background (CMB) will require large arrays of background-limited detectors. This will necessitate the use of cryogenic receivers with large-aperture vacuum windows and correspondingly large low-pass infrared-blocking filters to minimize thermal load. Large-diameter filters composed of absorptive dielectrics are difficult to conductively cool adequately, and thus tend to heat up and re-radiate towards the focal plane. Reflective metal-mesh filters are challenging to manufacture at such large apertures and with feature sizes small enough to effectively block 300K thermal radiation. In order to overcome these difficulties, we have developed a novel type of thermal filter that scatters, rather than reflects or absorbs, unwanted infrared radiation. Comprised of ultra-pure silicon powder distributed within a polymethylpentene (PMP) substrate, these filters are not absorptive in the infrared while being transparent to microwaves, and are comparatively straightforward to produce. By adjusting the size of the silicon particles, the frequency cut-off of these low-pass filters is fully tunable. Small scale (70mm diameter, 3mm thickness) prototypes have exhibited <10% transmission throughout the infrared spectrum and <1% transmission at the peak of the 300K blackbody spectrum, while maintaining an estimated 97% transmission in the microwave regime.

  12. Research on 2x1 plasma electrode electro-optical switch with large aperture

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong Jun; Zheng, Kui Xing; Feng, B.; Wu, D. S.; Lu, J. P.; Tian, X. L.; Jin, F.; Sui, Zhan; Wei, Xiaofeng; Zhang, Xiaomin

    2005-01-01

    In conceptual design of the prototype for SG-III facility, a full aperture electro-optical switch was placed between the cavity mirror and the main amplifier to isolate the reflected beams. The beam on the cavity mirror is 240mm×240mm square. Pockells cells of conversional design with coaxial ring electrodes can not scale to such large square aperture. In the 1980s, a plasma electrode Pockels cell (PEPC) concept was invented at LLNL. It uses transparent plasma electrode formed through gas discharge as the electrodes to apply the voltage across switching crystal to rotate the polarization of a transmitted laser beam. And it can be scaled to large aperture with thin crystal. So the switch which would be used in SG-III is based on this technology. The technical integration line as a prototype of SG-III laser is actually a 4×2 beam bundle. And the full aperture optical switch is mechanically designed four apertures as a removable unit, and electrically two 2×1 PEPC putting together. So we built a 2×1 PEPC to develop the technology first. The 2×1 PEPC is a sandwich structure made of an insulating mid plane between a pair of plasma chambers. The frame of both plasma chambers are machining in duralumin. Each chamber is installed with a planar magnetic cathode and four segments spherical anodes made from stainless steel. The cathode and anode are insulated from the housing with a special shell made from plastic, and plasma is insulated from the housing by an 80-μm-thick anodic coating on the duralumin. The two plasma chambers are separated by a mid plane of glass frame with two square holes. The two holes are filled by two electro-optical crystals with a 240-mm square aperture. With the optimized operating pressure and the electrical parameters, a very good homogeneity and low resistivity plasma electrode is obtained. Finally we tested its switching performance to simulate the case that it will be used in the SG-III prototype facility. It works with a quarter wave

  13. Average patterns and coherent phenomena in wide aperture lasers

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; Papoff, F.; Louvergneaux, E.; Glorieux, P.

    2004-06-01

    Using a realistic model of wide aperture, weakly astigmatic lasers we develop a framework to analyze experimental average intensity patterns. We use the model to explain the appearance of patterns in terms of the modes of the cavity and to show that the breaking of the symmetry of the average intensity patterns is caused by overlaps in the frequency spectra of nonvanishing of modes with different parity. This result can be used even in systems with very fast dynamics to detect experimentally overlaps of frequency spectra of modes.

  14. Extracting spatial information from large aperture exposures of diffuse sources

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.

    1981-01-01

    The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.

  15. Large aperture spatial heterodyne imaging spectrometer: Principle and experimental results

    NASA Astrophysics Data System (ADS)

    Xiangli, Bin; Cai, Qisheng; Du, Shusong

    2015-12-01

    A large aperture spatial heterodyne imaging spectrometer (LASHIS) is proposed. It is a kind of pushbroom Fourier transform ultraspectral imager with no moving parts. This imaging spectrometer, based on a Sagnac lateral shearing interferometer combined with a pair of gratings, has the advantages of high spectral resolution, high throughput and robustness. The principle of LASHIS and its spectral retrieval method are introduced. The processing chain to convert raw images to ultraspectral datacube is also described. Experimental results demonstrate the high resolving power of LASHIS with the emission spectrum of a low pressure sodium lamp.

  16. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  17. Large-aperture interferometer using local reference beam

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1982-01-01

    A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed.

  18. Design of large aperture, low mass vacuum windows

    SciTech Connect

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions.

  19. Design of large aperture, low mass vacuum windows

    SciTech Connect

    Leonhardt, W.J.; Mapes, M.

    1993-07-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions.

  20. Simulating aperture masking at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Stürmer, Julian; Quirrenbach, Andreas

    2012-07-01

    Preliminary investigations for an Aperture Masking Experiment at the Large Binocular Telescope (LBT) and its application to stellar surface imaging are presented. An algorithm is implemented which generates non redundant aperture masks for the LBT. These masks are adapted to the special geometrical conditions at the LBT. At the same time, they are optimized to provide a uniform UV-coverage. It is also possible to favor certain baselines to adapt the UV-coverage to observational requirements. The optimization is done by selecting appropriate masks among a large number (order 109) of randomized realizations of non-redundant (NR) masks. Using results of numerical simulations of the surface of red supergiants, interferometric data is generated as it would be available with these masks at the LBT while observing Betelgeuse. An image reconstruction algorithm is used to reconstruct images from Squared Visibility and Closure Phase data. It is shown that a number of about 15 holes per mask is sufficient to retrieve detailed images. Additionally, noise is added to the data in order to simulate the influence of measurement errors e.g. photon noise. Both the position and the shape of surface structures are hardly influenced by this noise. However, the flux of these details changes significantly.

  1. Optimal strategy for fabrication of large aperture aspheric surfaces.

    PubMed

    Feng, Yunpeng; Cheng, Haobo; Wang, Tan; Dong, Zhichao; Tam, Hon-Yuen

    2014-01-01

    Aspheric surfaces are widely used because of their desirable characteristics. Such a surface can obtain nearly perfect imaging quality with fewer optical elements and reduce the size and mass of optical systems. Various machine systems have been developed based on modern deterministic polishing technologies for large aperture aspheric surfaces. Several factors affect the final precision of large aperture aspheric surfaces, such as the velocity limit of the machine and the path design. Excess velocity, which will be truncated automatically by the computer numerical control system, may cause the dwell time to deviate from the desired time. When a path designed on a two-dimensional surface map with equidistant pitch is projected onto an aspheric surface, the pitch changes as a result of the varied curvature of the aspheric surface. This may affect the removal map and cause some ripple errors. A multiregion distribution strategy, which includes velocity checking, is proposed in this study to avoid exceeding the velocity limits. The strategy can be used to modify local errors and edge effects. A three-dimensional spiral path generation method is also presented using an iterative method to ensure uniformity in the space length of the adjacent circle of the spiral path. This process can reduce the ripple error caused by the overlapping of tool paths. A polishing experiment was conducted, and the results proved the validity of the proposed strategies. PMID:24514001

  2. A Future Large-Aperture UVOIR Space Observatory: Study Overview

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Thronson, Harley A.; Feinberg, Lee; Redding, David; Stahl, H. Philip

    2015-01-01

    The scientific drivers for very high angular resolution coupled with very high sensitivity and wavefront stability in the UV and optical wavelength regime have been well established. These include characterization of exoplanets in the habitable zones of solar type stars, probing the physical properties of the circumgalactic medium around z < 2 galaxies, and resolving stellar populations across a broad range of galactic environments. The 2010 NRC Decadal Survey and the 2013 NASA Science Mission Directorate 30-Year Roadmap identified a large-aperture UVOIR observatory as a priority future space mission. Our joint NASA GSFC/JPL/MSFC/STScI team has extended several earlier studies of the technology and engineering requirements needed to design and build a single filled aperture 10-meter class space-based telescope that can enable these ambitious scientific observations. We present here an overview of our new technical work including a brief summary of the reference science drivers as well as in-depth investigations of the viable telescope architectures, the requirements on thermal control and active wavefront control systems, and the range of possible launch configurations.

  3. Optical system design for lens with large relative aperture

    NASA Astrophysics Data System (ADS)

    Zhang, Kaisheng; Zhang, Zhi; Zhang, Zhaohui; Wang, Zefeng; Yan, Aqi; Fei, Jiaqi; Mei, Chao; Zhang, Gaopeng

    2015-10-01

    As the space remote sensing technology progresses, the developing trend of telescope is larger and larger aperture, higher and higher resolution. An Optical system with the relative aperture of 1:2 is introduced. The primary optical properties are: focal length of 120mm, F number of 2, field angle of 7.4°. It has the advantages of large high resolution, small size and excellent image quality. Several kinds of aberration curves and the MTF curve are given. Its imaging quality is nearly diffraction limited so that the spatial frequency is greater than 70lp/mm when its modulated transfer function (MTF) value of the optical system is equal to 0.8,and the optical system distortion is less than 1%. At last, the stray light is analyzed and the baffle of the telescope is designed. The solid model of the Optical system was constructed in Tracepro software, the point sources transmittance (PST) cure was given at different off-axis angle between 7.4°~80° the analysis result indicates that the PST values are less than 10-6 when off-axis angle are larger than soar critical angle. So the system is suitable for observation or photography of deep sky objects.

  4. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  5. Factors affecting the performance of large-aperture microphone arrays.

    PubMed

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment. PMID:12051434

  6. Factors affecting the performance of large-aperture microphone arrays

    NASA Astrophysics Data System (ADS)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  7. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    SciTech Connect

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  8. Optical simulation of large aperture spatial heterodyne imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Xiangli, Bin; Fang, Yu

    2016-05-01

    Large aperture spatial heterodyne imaging spectrometer (LASHIS) is a new pushbroom Fourier transform ultraspectral imager with no moving parts. It is based on a Sagnac interferometer combined with a pair of gratings. In this paper, the basic principle of LASHIS is reviewed and an optical LASHIS model is set up in ZEMAX. Three interference images are presented, one is calculated according to the basic theory, one is simulated using the optical model in ZEMAX, and the other is generated by the experimental device set up in our laboratory. These three interference images show a good agreement with each other that demonstrate the correctness of the optical model. Using this model, we can simulate the interference image quickly. This image gives a visualized evaluation of the system performance, and it will be more convenient for system design or tolerance analysis of LASHIS.

  9. Large-aperture interferometer with local reference beam

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1984-01-01

    A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed. Previously announced in STAR as N83-13979

  10. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  11. APPLICATION OF LARGE APERTURE EMATS TO WELD INSPECTION

    SciTech Connect

    Maclauchlan, D. T.; Clark, S. P.; Hancock, J. W.

    2008-02-28

    One of the most significant developments in EMAT operation is the incorporation of phased array techniques. Phased array EMATs enable electronic beam steering and focusing while operating with temporally short pulses for good range resolution. Using phased array EMAT operation, multiple high powered pulsers are combined in the generation of the ultrasonic wave and multiple elements are combined in the reception of the ultrasonic wave, for improved sensitivity. EMATs make it practical to operate with shear horizontal (SH) waves and scan over a metal part's surface. An EMAT generated line force at the surface launches shear horizontal waves with uniform amplitude for beam angles from -90 deg. to 90 deg. Shear horizontal waves also reflect without mode conversion from surfaces that are parallel to the polarization of the shear wave displacements. The combination of these advantages makes phased array EMATs well suited for weld inspection. Recently, BWXT Services has developed a 32 active channel EMAT phased array system for operation up to 5 MHz. In addition, each element can be constructed with several sub-elements, alternating in polarity, to effectively multiply the number of active elements for a restricted range of beam angles. For example by using elements comprised of 4 sub elements, a 128 active element aperture designed for operation with a nominal 60 deg. beam angle provides good beam steering and focusing performance for 45 deg. to 70 deg. beam angles. The large active apertures allow the use of highly focused beams for good defect detection and high resolution imaging of weld defects. Application of this system to weld inspections has verified that good defect detection and imaging is possible. In addition, operation with SH waves has proven to provide improved detection of lack of fusion at the cap and root of the weld for certain weld geometries. The system has also been used to demonstrate the inspection of submerged metal arc welds while welding.

  12. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope

    NASA Astrophysics Data System (ADS)

    Atcheson, Paul; Domber, Jeanette; Whiteaker, Kevin; Britten, Jerald A.; Dixit, Shamasundar N.; Farmer, Brandon

    2014-08-01

    The desire to field space-based telescopes with apertures in excess of 10 meter diameter is forcing the development of extreme lightweighted large optomechanical structures. Sparse apertures, shell optics, and membrane optics are a few of the approaches that have been investigated and demonstrated. Membrane optics in particular have been investigated for many years. The MOIRE approach in which the membrane is used as a transmissive diffractive optical element (DOE) offers a significant relaxation in the control requirements on the membrane surface figure, supports extreme lightweighting of the primary collecting optic, and provides a path for rapid low cost production of the primary optical elements. Successful development of a powered meter-scale transmissive membrane DOE was reported in 2012. This paper presents initial imaging results from integrating meter-scale transmissive DOEs into the primary element of a 5- meter diameter telescope architecture. The brassboard telescope successfully demonstrates the ability to collect polychromatic high resolution imagery over a representative object using the transmissive DOE technology. The telescope includes multiple segments of a 5-meter diameter telescope primary with an overall length of 27 meters. The object scene used for the demonstration represents a 1.5 km square complex ground scene. Imaging is accomplished in a standard laboratory environment using a 40 nm spectral bandwidth centered on 650 nm. Theoretical imaging quality for the tested configuration is NIIRS 2.8, with the demonstration achieving NIIRS 2.3 under laboratory seeing conditions. Design characteristics, hardware implementation, laboratory environmental impacts on imagery, image quality metrics, and ongoing developments will be presented.

  13. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  14. Design considerations for a large aperture high field superconducting dipole

    SciTech Connect

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  15. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  16. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    NASA Astrophysics Data System (ADS)

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  17. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    PubMed Central

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  18. Subarray partitions of large aperture planar towed arrays

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer A.; Baggeroer, Arthur B.; Zurk, Lisa M.; Tracey, Brian H.

    2002-05-01

    The current focus of passive detection and localization is in littoral regions where acoustic propagation becomes complicated by severe bottom interaction. The resultant high-transmission loss motivates the need for high-array gain for effective performance over long ranges. Large planar seismic arrays, with aperture dimensions upwards of 3 km×0.5 km, have potential to achieve high gain and good resolution when using matched field processing. In realistic environments, however, large arrays are suceptible to signal gain degradation mechanisms, particularly due to spatial decorrelation of the signal and non-stationary environments. One approach to overcoming this is partitioning the array. Subarray processing reduces stationarity requirements and extracts optimum coherent gain, thus achieving higher gain than that of smaller arrays. This work examines criteria for partitioning planar arrays to perform localization using MFP. Trade-offs between spatial resolution, array gain, and resilience to motion will be quantified and discussed. Performance of different subarray geometries will be presented using adaptive and conventional MFP. [Work sponsored by DARPA under Air Force Contract No. F1962800-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense. AB's work was supported by ONR through the SECNAV CNO Chair.

  19. Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens.

    PubMed

    Shin, Dong-Hak; Lee, Byoungho; Kim, Eun-Soo

    2006-10-01

    We propose a curved integral imaging system with large depth achieved by the additional use of a large-aperture lens in a conventional large-depth integral imaging system. The additional large-aperture lens provides a multidirectional curvature effect and improves the viewing angle. The proposed system has a simple structure due to the use of well-fabricated, unmodified flat devices. To calculate the proper elemental images for the proposed system, we explain a modified computer-generated pickup technique based on an ABCD matrix and analyze an effective viewing zone in the proposed system. From experiments, we show that the proposed system has an improved viewing angle of more than 7 degrees compared with conventional integral imaging. PMID:16983427

  20. Error analysis of large aperture static interference imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zhang, Guo

    2015-12-01

    Large Aperture Static Interference Imaging Spectrometer is a new type of spectrometer with light structure, high spectral linearity, high luminous flux and wide spectral range, etc ,which overcomes the contradiction between high flux and high stability so that enables important values in science studies and applications. However, there're different error laws in imaging process of LASIS due to its different imaging style from traditional imaging spectrometers, correspondingly, its data processing is complicated. In order to improve accuracy of spectrum detection and serve for quantitative analysis and monitoring of topographical surface feature, the error law of LASIS imaging is supposed to be learned. In this paper, the LASIS errors are classified as interferogram error, radiometric correction error and spectral inversion error, and each type of error is analyzed and studied. Finally, a case study of Yaogan-14 is proposed, in which the interferogram error of LASIS by time and space combined modulation is mainly experimented and analyzed, as well as the errors from process of radiometric correction and spectral inversion.

  1. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Pascale, E.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N.; Truch, M. D. P.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2008-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 μm. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30'' at 250 μm. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of ~30''; postflight pointing reconstruction to lesssim5'' rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hr flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hr, circumpolar flight from McMurdo Station, Antarctica, in 2006 December.

  2. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Semisch, Christopher; BLAST Collaboration

    2007-12-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250µm, 350µm, and 500µm. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250µm. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of 30"; post-flight pointing reconstruction to < 5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. Since a test-flight in 2003, BLAST has made two scientifically productive long-duration balloon flights: a 100-hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in June 2005, and a 250-hour, circumpolar-flight from McMurdo Station, Antarctica, in December 2006.

  3. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  4. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  5. Large-pitch steerable synthetic transmit aperture imaging (LPSSTA)

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kolios, Michael C.; Xu, Yuan

    2016-04-01

    A linear ultrasound array system usually has a larger pitch and is less costly than a phased array system, but loses the ability to fully steer the ultrasound beam. In this paper, we propose a system whose hardware is similar to a large-pitch linear array system, but whose ability to steer the beam is similar to a phased array system. The motivation is to reduce the total number of measurement channels M (the product of the number of transmissions, nT, and the number of the receive channels in each transmission, nR), while maintaining reasonable image quality. We combined adjacent elements (with proper delays introduced) into groups that would be used in both the transmit and receive processes of synthetic transmit aperture imaging. After the M channels of RF data were acquired, a pseudo-inversion was applied to estimate the equivalent signal in traditional STA to reconstruct a STA image. Even with the similar M, different choices of nT and nR will produce different image quality. The images produced with M=N2/15 in the selected regions of interest (ROI) were demonstrated to be comparable with a full phased array, where N is the number of the array elements. The disadvantage of the proposed system is that its field of view in one delay-configuration is smaller than a standard full phased array. However, by adjusting the delay for each element within each group, the beam can be steered to cover the same field of view as the standard fully-filled phased array. The LPSSTA system might be useful for 3D ultrasound imaging.

  6. Injection locking of wide-aperture TEA CO/sub 2/ lasers

    SciTech Connect

    Tratt, D.M.; Kar, A.K.; Mathew, J.G.H.; Harrison, R.G.

    1983-01-15

    The performance and operation of a TEA CO/sub 2/ laser is described and the single longitudinal mode (SLM) TEM/sub 00/ pulses are analyzed. The wide-aperture SLM output was reproducible 98% of the time. (AIP)

  7. Wide-aperture laser beam measurement using transmission diffuser: errors modeling

    NASA Astrophysics Data System (ADS)

    Matsak, Ivan S.

    2015-06-01

    Instrumental errors of measurement wide-aperture laser beam diameter were modeled to build measurement setup and justify its metrological characteristics. Modeled setup is based on CCD camera and transmission diffuser. This method is appropriate for precision measurement of large laser beam width from 10 mm up to 1000 mm. It is impossible to measure such beams with other methods based on slit, pinhole, knife edge or direct CCD camera measurement. The method is suitable for continuous and pulsed laser irradiation. However, transmission diffuser method has poor metrological justification required in field of wide aperture beam forming system verification. Considering the fact of non-availability of a standard of wide-aperture flat top beam modelling is preferred way to provide basic reference points for development measurement system. Modelling was conducted in MathCAD. Super-Lorentz distribution with shape parameter 6-12 was used as a model of the beam. Using theoretical evaluations there was found that the key parameters influencing on error are: relative beam size, spatial non-uniformity of the diffuser, lens distortion, physical vignetting, CCD spatial resolution and, effective camera ADC resolution. Errors were modeled for 90% of power beam diameter criteria. 12-order Super-Lorentz distribution was primary model, because it precisely meets experimental distribution at the output of test beam forming system, although other orders were also used. The analytic expressions were obtained analyzing the modelling results for each influencing data. Attainability of <1% error based on choice of parameters of expression was shown. The choice was based on parameters of commercially available components of the setup. The method can provide up to 0.1% error in case of using calibration procedures and multiple measurements.

  8. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  9. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    SciTech Connect

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  10. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Lee, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2016-01-01

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ˜22 kA/cm2 (25 mA), with a peak output power of ˜180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP12,1), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  11. Optical system of large relative aperture and wide field using aspheric corrector for detecting

    NASA Astrophysics Data System (ADS)

    Ming, Ming; Wang, Jianli; Zhang, Jingxu

    2009-05-01

    The magnitude requirement of space target detecting determines that the image of detecting telescope should have several performances: small spots, small 80% encircled energy diameter and good MTF(Modulation transfer function). So the aperture and field of view of optical system have some demands accordingly. The larger aperture, the more energy that telescope collects and higher magnitude the telescope detects; the wider field of view, the more extensive range which the telescope searches. Now most of ground telescopes whose apertures are from 500mm to 1000mm is on-axis optical system, so wide field of view becomes the most importance problem. To obtain large relative aperture and wide field of view, the paper introduces a catadioptric telescope with small aperture aspheric refractive corrector, whose conic surface will be used to remove the aberrations due to large relative aperture and wide field of view. As to the optical system, there is only one aspheric refractive corrector, and it is relatively easy for manufacturing because of its concave figure and normal material. The paper gives the example, and optimizes this optical system with ZEMAX program. And then the paper provides a specific analysis program for testing the aspheric refractive corrector. The aperture of this optical system is 750mm, and its relative aperture is 0.82, and the field of view is 3.6° diameter(diagonal). Its structure is simple and the image quality is also very good.

  12. Characterisation of a large aperture steep concave parabolic mirror using SASI based on auto-collimation theory

    NASA Astrophysics Data System (ADS)

    Liu, Bingcai; Li, Bing; Tian, Ailing; Yang, Haoyu; Gao, Fen; Chen, Lei

    2015-01-01

    To characterise a large aperture steep concave parabolic mirror, a new sub-aperture stitching interferometry measurement technology (SASI) based on auto-collimation is proposed. The principle of the stitching process is analysed, and the sub-aperture partitioning for a full aperture of a paraboloid is discussed. Next, the overlapped sampled points between sub-apertures are rectified through sampled points realigned in mesh grids. Finally, two experiments, the SASI based on auto-collimation and the full aperture test, were implemented for a parabolic mirror. The stitching result exhibits good agreement with the full-aperture result.

  13. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  14. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  15. The scaling relationship between telescope cost and aperture size for very large telescopes

    NASA Technical Reports Server (NTRS)

    van Belle, Gerard T.; Meinel, Aden Baker; Meinel, Marjorie Pettit

    2004-01-01

    Cost data for ground-based telescopes of the last century are analyzed for trends in the relationship between aperture size and cost. We find that for apertures built prior to 1980, costs scaled as aperture size to the 2.8 power, which is consistent with the precious finding of Meinel (1978). After 1980, 'traditional' monolithic mirror telescope costs have scaled as aperture to the 2.5 power. The large multiple mirror telescopes built or in construction during this time period (Keck, LBT, GTC) appear to deviate from this relationship with significant cost savings as a result, although it is unclear what power law such structures follow. We discuss the implications of the current cost-aperture size data on the proposed large telescope projects of the next ten to twenty years. Structures that naturally tend towards the 2.0 power in the cost-aperture relationship will be the favorable choice for future extremely large apertures; out expectation is that space-based structures will ultimately gain economic advantage over ground-based ones.

  16. Wide-aperture laser diode array in the external V-shaped cavity

    SciTech Connect

    Svetikov, V V; Nurligareev, D Kh

    2014-09-30

    The operation of a wide-aperture laser diode array with the radiation wavelength 980 nm in external V-shaped symmetric and asymmetric cavities is experimentally studied. The regimes of stable oscillation are studied as functions of the feedback beam direction. The spectra and the intensity distribution of radiation in the far zone are presented for the laser diode in symmetric and asymmetric cavities. Tuning of the radiation wavelength is demonstrated using the Littman geometry in the asymmetric cavity. (lasers)

  17. Improving 351-nm Damage Performance of Large-Aperture Fused Silica and DKDP Optics

    SciTech Connect

    Burnham, A K; Hackel, L; Wegner, P; Parham, T; Hrubesh, L; Penetrante, B; Whitman, P; Demos, S; Menapace, J; Runkel, M; Fluss, M; Feit, M; Key, M; Biesiada, T

    2002-01-07

    A program to identify and eliminate the causes of UV laser-induced damage and growth in fused silica and DKDP has developed methods to extend optics lifetimes for large-aperture, high-peak-power, UV lasers such as the National Ignition Facility (NIF). Issues included polish-related surface damage initiation and growth on fused silica and DKDP, bulk inclusions in fused silica, pinpoint bulk damage in DKDP, and UV-induced surface degradation in fused silica and DKDP in a vacuum. Approaches included an understanding of the mechanism of the damage, incremental improvements to existing fabrication technology, and feasibility studies of non-traditional fabrication technologies. Status and success of these various approaches are reviewed. Improvements were made in reducing surface damage initiation and eliminating growth for fused silica by improved polishing and post-processing steps, and improved analytical techniques are providing insights into mechanisms of DKDP damage. The NIF final optics hardware has been designed to enable easy retrieval, surface-damage mitigation, and recycling of optics.

  18. Reflective Schmidt-Cassegrain system for large-aperture telescopes.

    PubMed

    Brychikhin, M N; Chkhalo, N I; Eikhorn, Ya O; Malyshev, I V; Pestov, A E; Plastinin, Yu A; Polkovnikov, V N; Rizvanov, A A; Salashchenko, N N; Strulya, I L; Toropov, M N

    2016-06-01

    A reflective modification of the Schmidt-Cassegrain system was built and tested. Ultraviolet (UV) and soft x-ray applications are discussed. The system consists of a planoid mirror with an aspheric profile and prime concave and secondary convex spherical mirrors. Spherical aberration in a wide field of view and astigmatism are compensated by the aspheric profile of the planoid. The main parameters of the scheme are as follows: an entrance aperture of 180 mm, a focal ratio F/3.2, an angular resolution better than 3'' (corresponding to a pixel size of a back-side illuminated CCD), a field of view of ±1.5° (2ω=3°) and a flat image field with a diameter of 30.4 mm. Due to the absence of chromatic aberrations and wide field of view, the scheme is of considerable interest for hyperspectral instruments. In particular, the operating range of the instruments can be expanded into vacuum UV and UV regions. PMID:27411199

  19. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  20. CAMERA: a compact, automated, laser adaptive optics system for small aperture telescopes

    NASA Astrophysics Data System (ADS)

    Britton, Matthew; Velur, Viswa; Law, Nick; Choi, Philip; Penprase, Bryan E.

    2008-07-01

    CAMERA is an autonomous laser guide star adaptive optics system designed for small aperture telescopes. This system is intended to be mounted permanently on such a telescope to provide large amounts of flexibly scheduled observing time, delivering high angular resolution imagery in the visible and near infrared. The design employs a Shack Hartmann wavefront sensor, a 12x12 actuator MEMS device for high order wavefront compensation, and a solid state 355nm ND:YAG laser to generate a guide star. Commercial CCD and InGaAs detectors provide coverage in the visible and near infrared. CAMERA operates by selecting targets from a queue populated by users and executing these observations autonomously. This robotic system is targeted towards applications that are diffcult to address using classical observing strategies: surveys of very large target lists, recurrently scheduled observations, and rapid response followup of transient objects. This system has been designed and costed, and a lab testbed has been developed to evaluate key components and validate autonomous operations.

  1. Analysis of fratricide effect observed with GeMS and its relevance for large aperture astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Neichel, Benoit; Wang, Lianqi; Boyer, Corinne; Ellerbroek, Brent; Rigaut, François

    2013-12-01

    Large aperture ground-based telescopes require Adaptive Optics (AO) to correct for the distortions induced by atmospheric turbulence and achieve diffraction limited imaging quality. These AO systems rely on Natural and Laser Guide Stars (NGS and LGS) to provide the information required to measure the wavefront from the astronomical sources under observation. In particular one such LGS method consists in creating an artificial star by means of fluorescence of the sodium atoms at the altitude of the Earth's mesosphere. This is achieved by propagating one or more lasers, at the wavelength of the Na D2a resonance, from the telescope up to the mesosphere. Lasers can be launched from either behind the secondary mirror or from the perimeter of the main aperture. The so-called central- and side-launch systems, respectively. The central-launch system, while helpful to reduce the LGS spot elongation, introduces the so-called "fratricide" effect. This consists of an increase in the photon-noise in the AO Wave Front Sensors (WFS) sub-apertures, with photons that are the result of laser photons back-scattering from atmospheric molecules (Rayleigh scattering) and atmospheric aerosols (dust and/or cirrus clouds ice particles). This affects the performance of the algorithms intended to compute the LGS centroids and subsequently compute and correct the turbulence-induced wavefront distortions. In the frame of the Thirty Meter Telescope (TMT) project and using actual LGS WFS data obtained with the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS), we show results from an analysis of the temporal variability of the observed fratricide effect, as well as comparison of the absolute magnitude of fratricide photon-flux level with simulations using models that account for molecular (Rayleigh) scattering and photons backscattered from cirrus clouds.

  2. Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning

    NASA Astrophysics Data System (ADS)

    Witomski, Arnaud; Lacot, Eric; Hugon, Olivier; Jacquin, Olivier

    2008-02-01

    We have improved the resolution of our laser optical feedback imaging (LOFI) setup by using a synthetic aperture (SA) process. We report a two-dimensional (2D) SA LOFI experiment where the unprocessed image (i.e., the classical LOFI image) is obtained point by point, line after line using full 2D galvanometric scanning. The 2D superresolved image is then obtained by successively computing two angular SA operations while a one-dimensional angular synthesis is preceded by a frequency synthesis to obtain a 2D superresolved image conventionally in the synthetic aperture radar (SAR) method and their corresponding laser method called synthetic aperture ladar. The numerical and experimental results are compared.

  3. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  4. Synthesis of a large communications aperture using small antennas

    NASA Technical Reports Server (NTRS)

    Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.

    1994-01-01

    In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.

  5. The measurement and analysis of wavefront structure from large aperture ICF optics

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.

    1995-05-30

    This paper discusses the techniques, developed over the past year, for high spatial resolution measurement and analysis of the transmitted and/or reflected wavefront of large aperture ICF optical components. Parts up to 400 mm {times} 750 mm have been measured and include: laser slabs, windows, KDP crystals and lenses. The measurements were performed using state-of-the-art commercial phase shifting interferometers at a wavelength of 633 {mu}m. Both 1 and 2-D Fourier analysis have been used to characterize the wavefront; specifically the Power Spectral Density, (PSD), function was calculated. The PSDs of several precision optical components will be shown. The PSD(V) is proportional to the (amplitude){sup 2} of components of the Fourier frequency spectrum. The PSD describes the scattered intensity and direction as a function of scattering angle in the wavefront. The capability of commercial software is limited to 1-D Fourier analysis only. We are developing our own 2-D analysis capability in support of work to revise specifications for NIF optics. 2-D analysis uses the entire wavefront phase map to construct 2D PSD functions. We have been able to increase the signal-to-noise relative to 1-D and can observe very subtle wavefront structure.

  6. Zinc selenide-based large aperture photo-controlled deformable mirror.

    PubMed

    Quintavalla, Martino; Bonora, Stefano; Natali, Dario; Bianco, Andrea

    2016-06-01

    Realization of large aperture deformable mirrors with a large density of actuators is important in many applications, and photo-controlled deformable mirrors (PCDMs) represent an innovation. Herein we show that PCDMs are scalable realizing a 2-inch aperture device based on a polycrystalline zinc selenide (ZnSe) as the photoconductive substrate and a thin polymeric reflective membrane. ZnSe is electrically characterized and analyzed through a model that we previously introduced. The PCDM is then optically tested, demonstrating its capabilities in adaptive optics. PMID:27244417

  7. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.

    PubMed

    Reid, Matthew; Fedosejevs, Robert

    2005-01-01

    InAs has previously been reported to be an efficient emitter of terahertz radiation at low excitation fluences by use of femtosecond laser pulses. The scaling and saturation of terahertz emission from a (100) InAs surface as a function of excitation fluence is measured and quantitatively compared with the emission from a GaAs large-aperture photoconductive switch. We find that, although the instantaneous peak radiated terahertz field from (100) InAs exceeds the peak radiated signals from a GaAs large-aperture photoconductive switch biased at 1.6 kV/cm, the pulse duration is shorter. For the InAs source the total energy radiated is less than can be obtained from a GaAs large-aperture photoconductive switch. PMID:15662896

  8. Annular sub-aperture stitching interferometry for testing of large aspherical surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-kun; Wang, Li-hui; Zheng, Li-gong; Deng, Wei-jie; Zhang, Xue-jun

    2008-03-01

    Annular subaperture stitching interferometric technology can test large-aperture, high numerical aperture aspheric surfaces with high resolution, low cost and high efficiency without auxiliary null optics. In this paper, the basic principle and theory of the stitching method are introduced, the reasonable mathematical model and effective splicing algorithm are established based on simultaneous least-squares method and Zernike polynomial fitting. The translation errors are eliminated from each subaperture through the synthetical optimization stitching mode, it keeps the error from transmitting and accumulating. The numerical simulations have been carried on by this method. As results, the surface map of the full aperture after stitching is consistent to the input surface map, the difference of PV error and RMS error between them is -0.0074 λ and -0.00052 λ (λ is 632.8nm), respectively; the relative error of PV and RMS is -0.53% and -0.31%; and the PV and RMS of residual error of the full aperture phase distribution is 0.027 λ and 0.0023 λ, respectively. The results conclude that this splicing model and algorithm are accurate and feasible. So it provides another quantitive measurement for test aspheric surfaces especially for large aperture aspheres besides null-compensation.

  9. π/K/p identification with a large-aperture ring-imaging cherenkov counter

    NASA Astrophysics Data System (ADS)

    Adams, M.; Bastin, A.; Coutrakon, G.; Glass, H.; Jaffe, D.; Kirz, J.; McCarthy, R.; Hubbard, J. R.; Mangeot, Ph.; Mullie, J.; Peisert, A.; Tichit, J.; Bouclier, R.; Charpak, G.; Santiard, J. C.; Sauli, F.; Crittenden, J.; Hsiung, Y.; Kaplan, D.; Brown, C.; Childress, S.; Finley, D.; Ito, A.; Jonckheere, A.; Jöstlein, H.; Lederman, L.; Orava, R.; Smith, S.; Sugano, K.; Ueno, K.; Maki, A.; Hemmi, Y.; Miyake, K.; Nakamura, T.; Sasao, N.; Sakai, Y.; Gray, R.; Plaag, R.; Rothberg, J.; Rutherfoord, J.; Young, K.

    1983-11-01

    The operating large aperture ring-imaging Cherenkov detector from the FNAL experiment E605 is described. Cherenkov ultraviolet photons are detected with a multi-step avalanche chamber using a He/TEA gas mixture and π/K/p separation is obtained from 50 to 200 GeV/ c.

  10. Large aperture vibrating wire monitor with two mechanically coupled wires for beam halo measurements

    SciTech Connect

    Arutunian, S. G.; Avetisyan, A. E.; Davtyan, M. M.; Harutyunyan, G. S.; Vasiniuk, I. E.; Chung, M.; Scarpine, V.

    2014-03-01

    Development of a new type of Vibrating Wire Monitor (VWM), which has two mechanically coupled wires (vibrating and target), is presented. The new monitor has a much larger aperture size than the previous model of the VWM, and thus allows us to measure transverse beam halos more effectively. A prototype of such a large aperture VWM with a target wire length of 60 mm was designed, manufactured, and bench-tested. Initial beam measurements have been performed at the Fermilab High Intensity Neutrino Source (HINS) facility, and key results are presented.

  11. A systematic investigation of large-scale diffractive coded aperture designs

    NASA Astrophysics Data System (ADS)

    Gottesman, Stephen R.; Shrekenhamer, Abraham; Isser, Abraham; Gigioli, George

    2012-10-01

    One obstacle to optimizing performance of large-scale coded aperture systems operating in the diffractive regime has been the lack of a robust, rapid, and efficient method for generating diffraction patterns that are projected by the system onto the focal plane. We report on the use of the 'Shrekenhamer Transform' for a systematic investigation of various types of coded aperture designs operating in the diffractive mode. Each design is evaluated in terms of its autocorrelation function for potential use in future imaging applications. The motivation of our study is to gain insight into more efficient optimization methods of image reconstruction algorithms.

  12. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  13. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  14. Detection optimization using linear systems analysis of a coded aperture laser sensor system

    SciTech Connect

    Gentry, S.M.

    1994-09-01

    Minimum detectable irradiance levels for a diffraction grating based laser sensor were calculated to be governed by clutter noise resulting from reflected earth albedo. Features on the earth surface caused pseudo-imaging effects on the sensor`s detector arras that resulted in the limiting noise in the detection domain. It was theorized that a custom aperture transmission function existed that would optimize the detection of laser sources against this clutter background. Amplitude and phase aperture functions were investigated. Compared to the diffraction grating technique, a classical Young`s double-slit aperture technique was investigated as a possible optimized solution but was not shown to produce a system that had better clutter-noise limited minimum detectable irradiance. Even though the double-slit concept was not found to have a detection advantage over the slit-grating concept, one interesting concept grew out of the double-slit design that deserved mention in this report, namely the Barker-coded double-slit. This diffractive aperture design possessed properties that significantly improved the wavelength accuracy of the double-slit design. While a concept was not found to beat the slit-grating concept, the methodology used for the analysis and optimization is an example of the application of optoelectronic system-level linear analysis. The techniques outlined here can be used as a template for analysis of a wide range of optoelectronic systems where the entire system, both optical and electronic, contribute to the detection of complex spatial and temporal signals.

  15. Rapid discharge-pumped wide aperture X-ray preionized KrF laser

    NASA Astrophysics Data System (ADS)

    Mizoguchi, H.; Endoh, A.; Jethwa, J.; Rácz, B.; Schäfer, F. P.

    1991-03-01

    A wide aperture X-ray preionized discharge-pumped KrF excimer laser has been constructed. A flat plate pulse-forming line (36 nF, 340 kV) charges a peaking capacitor (6 nF) through a rail-gap to facilitate a rapid discharge in the laser head. Collimated X-ray preionization is employed to obtain a wide and uniform discharge. The laser is intended to be used as a short pulse amplifier and results are presented when characterized as an oscillator. The active cross-section of the laser beam is 10×8 cm2 with 50 cm effective electrode length. The laser pulse energy exceeds 4.7 J in a 28 ns pulse (FWHM).

  16. Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser.

    PubMed

    Lui, H S; Taimre, T; Bertling, K; Lim, Y L; Dean, P; Khanna, S P; Lachab, M; Valavanis, A; Indjin, D; Linfield, E H; Davies, A G; Rakić, A D

    2014-05-01

    We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit. PMID:24784063

  17. Distributed aperture effect in laser rods with negative lenses A discussion

    NASA Astrophysics Data System (ADS)

    Shie, C.-D.; Peng, K.-S.

    1980-01-01

    The difference between a ray transfer matrix in a lenslike medium and a section of lenslike medium immersed in vacuum is demonstrated. The distributed aperture and useful volume are calculated for a laser rod with negative lenses ground on the ends, using a multiplication of ray transfer matrices and the deductive method used by Barnes and Scalise. The results we obtained are different from their results.

  18. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  19. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  20. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  1. Large-aperture prism-array lens for high-energy X-ray focusing.

    PubMed

    Zhang, Weiwei; Liu, Jing; Chang, Guangcai; Shi, Zhan; Li, Ming; Ren, Yuqi; Zhang, Xiaowei; Yi, Futing; Liu, Peng; Sheng, Weifan

    2016-09-01

    A new prism-array lens for high-energy X-ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin-lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife-edge scan method at the X-ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X-ray energy of 50 keV. PMID:27577761

  2. Active polishing technology for large aperture aspherical mirror and ultra thin mirror

    NASA Astrophysics Data System (ADS)

    Cui, Xaingqun; Gao, Bilie; Li, Xinnan

    2006-02-01

    Some results on active polishing technology for large aperture aspherical mirrors and ultra thin mirrors, which have been developed in recent years in Nanjing Institute of Astronomical Optics and Technology, CAS, are presented in this paper. There are two polishing methods developed for the large aperture ultra thin mirrors with two different trial mirrors respectively. One is a hexagonal mirror with diagonal size of 1100mm, and thickness of 25mm by no-separate support method specially for polish the sub-mirror of Schmidt corrector of LAMOST, which is a national large scientific project of China. Another is a circular mirror with 1035mm in diameter and 26mm in thickness by active support method. The active stressed polishing technology developed for large aperture aspherical mirror with fast f ratio, and a paraboloidal mirror with a diameter of 910mm and an f ratio 2 as was successfully polished. The computer controlled polishing is also different from the normal way in the system. Some complicated aspects were added. The results showed the final surface accuracy of all these trial mirrors is better than expected requirements for normal application in astronomical telescopes.

  3. Large aperture and polarizer-free liquid crystal lenses for ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Hung-Shan; Chang, Chia-Ming; Wang, Yu-Jen

    2014-10-01

    Large aperture and polarizer-free liquid crystal lenses (LC lenses) based on a double-layered structure for ophthalmic applications are demonstrated. The polarizer-free LC lens functions as both of a positive lens and a negative lens with large aperture size of 10mm. The lens power is electrically and continuously tunable ranging from -1.32 Diopter to 1.83 Diopter. To demonstrate the polarization independency, the wavefronts of the LC lenses under different polarized light were measured and discussed. The detail operations of the applied voltage and frequency are also discussed. The imaging performance of the LC lens is also evaluated. This study provide a detail understanding of the polarizer-free LC lenses based on a double-layered structure.

  4. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  5. High-power narrow-band terahertz generation using large-aperture photoconductors

    SciTech Connect

    Park, S.G.; Weiner, A.M.; Melloch, M.R. . School of Electrical and Computer Engineering); Siders, C.W.; Siders, J.L.W.; Taylor, A.J. )

    1999-08-01

    Large-aperture biased photoconductive emitters which can generate high-power narrow-band terahertz (THz) radiation are developed. These emitters avoid saturation at high fluence excitation and achieve enhanced peak power spectral density by employing a thick layer of short-lifetime low-temperature-grown GaAs (LT-GaAs) photoconductor and multiple-pulse excitation. THz waveforms are calculated from the saturation theory of large-aperture photoconductors, and a comparison is made between theory and measurement. A direct comparison of the multiple-pulse saturation properties of THz emission from semi-insulating GaAs and LT-GaAs emitters reveals a strong dependence on the carrier lifetime. In particular, the data demonstrate that saturation is avoided only when the interpulse spacing is longer than the carrier lifetime.

  6. Comparison of full-aperture interferometry to sub-aperture stitched interferometry for a large diameter fast mirror

    NASA Technical Reports Server (NTRS)

    Catanzaro, B.; Thomas, J.; Cohen, E.

    2001-01-01

    The Herschel Space Observatory (formerly known as FIRST) consists of a 3.5 m space telescope. Stitching sub aperture interferograms may offer considerable cost savings during testing of the flight telescope as compared to other techniques. A comparative demonstration is presented of interferogram stitching techniques that enable a composite map of a 3-D surface to be assembled from a sequence of sub-aperture measurements. This paper describes the fundamental procedures for stitching together component data sets and demonstrates such techniques with real data sets.

  7. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-07-01

    We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406 nm nonpolar VCSEL with a low threshold current density (˜16 kA/cm2), a peak output power of ˜12 μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  8. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  9. Application of Modern Aperture Integration (AI) and Geometrical Theory of Diffraction (GTD) Techniques for Analysis of Large Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Rudduck, R. C.

    1985-01-01

    The application of aperture integration (AI) and geometrical theory of diffraction (GTO) techniques to analyze large reflector antennas is outlined. The following techniques were used: computer modeling, validation of analysis and computer codes, computer aided design modifications, limitation on the conventional aperture integration (AIC) method, extended aperture integration (AIE) method, the AIE method for feed scattering calculations, near field probing predictions for 15 meter model, limitation on AIC for surface tolerance effects, aperture integration on the surface (AIS) method, and AIC and GTD calculations for compact range reflector.

  10. Fabrication of Efficient, Large Aperture Transmission Diffraction Gratings by Ion-Beam Etching

    SciTech Connect

    Nguyen, H T; Bryan, S R; Britten, J A; Perry, M D

    2000-09-14

    The utilization of high-power short pulse laser employing chirped-pulse amplification (CPA) for material processing and inertial confinement research is widely increasing. The performance of these high-power CPA laser system continues to be limited by the ability of the pulse compression gratings to hold up to the high-average-power or high-peak-power of the laser. Pulse compression gratings used in transmission and fabricated out of bulk fused silica have intrinsically the highest laser damage threshold when compared with metal or multilayer dielectric gratings that work in reflection. LLNL has developed processing capability to produce high efficiency fused silica transmission gratings at sizes useful to future Petawatt-class systems, and has demonstrated high efficiency at smaller aperture. This report shows that fused silica diffraction exhibiting >95% efficiency into the -1 diffraction order in transmission (90{sup o} deflection of the incident light, at an incidence angle of 45{sup o} to the grating face). The microstructure of this grating consisted of grooves ion-beam etched to a depth of 1.6 microns with a pitch of 0.75 microns, using a holographically produced photoresist mask that was subsequently stripped away in significance to the fabrication of the small scale high efficiency grating was the development of the processing technology and infrastructure for production of such gratings at up to 65 cm diameter. LLNL is the currently the only location in the world with the ability to coat, interferometrically expose, and ion etch diffractive optics at this aperture. Below, we describe the design, fabrication, performance and, the scaleup process for a producing a high-efficiency transmission grating on a 65 cm fused silica substrate.

  11. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  12. Research on the support structure of the primary mirror of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Jingxu

    2007-12-01

    Large-aperture telescope can be used in surveying battlefield, researching landform, searching object, real-time monitoring, imaging, detecting and identifying spatial targets and so on. A large-aperture telescope for achieving high resolution power is designed to monitor spatial target and image in real time. Real-time monitoring plays an important role in military conflicts. The orbit parameter of object, quantity, geometrical shape parameter and so on can be obtained by detect spatial target. With the development of optical technology, people require larger aperture in optics-electronic (O-E) system. By increasing optical aperture, the ability of collecting light and resolution power in the system can be enhanced. But the support structure of the primary mirror of large-aperture telescope will be a very difficult problem. With the increase of primary mirror aperture, the weight of the primary mirror will become larger than before. The root mean square (rms) of the primary mirror is affected by many factors, such as deadweight, deformation of heat, environment and so on. Due to the primary mirror of telescope is an important component of telescope system. By reducing the weight of primary mirror, precision of the system is ensured. During the designing phase, one can consider the supporting project of the primary mirror synthetically and analyze it roundly according to technical requirement of optical system and the effect factors. The final structural design can be reasonable. In an astronomical telescope, the surface of reflector is an important part for collecting dark radiation of celestial bodies. Its surface shape will have an effect on collecting efficiency of telescope radiant energy directly. So the rms must be very high. Optical system of large aperture, small wavelength and small focus can receive maximal light intensity. For ground-based optical astronomical telescope, the design proposed in the paper can satisfy the requirement of the possible

  13. Split-aperture laser pulse compressor design tolerant to alignment and line-density differences.

    PubMed

    Rushford, Michael C; Britten, Jerald A; Barty, Christopher P J; Jitsuno, Takahisa; Kondo, Kiminori; Miyanaga, Noriaki; Tanaka, Kazuo A; Kodama, Ryosuke; Xu, Guang

    2008-08-15

    We introduce a four-pass laser pulse compressor design based on two grating apertures with two gratings per aperture that is tolerant to some alignment errors and, importantly, to grating-to-grating period variations. Each half-beam samples each grating in a diamond-shaped compressor that is symmetric about a central bisecting plane. For any given grating, the two half-beams impinge on opposite sides of its surface normal. It is shown that the two split beams have no pointing difference from paired gratings with different periods. Furthermore, no phase shift between half-beams is incurred as long as the planes containing a grating line and the surface normal for each grating of the pair are parallel. For grating pairs satisfying this condition, gratings surfaces need not be on the same plane, as changes in the gap between the two can compensate to bring the beams back in phase. PMID:18709127

  14. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Montgomery, Edward E.; Lindner, Jeff

    2000-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include an improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  15. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  16. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  17. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  18. Simulation analysis of on-orbit adjustment and compensation for large aperture optical system

    NASA Astrophysics Data System (ADS)

    Liu, Jianfeng; Li, Bo; Sun, Dewei; Ruan, Ningjuan; Zhou, Feng

    2014-09-01

    With the uprating requirements of space remote sensing, the aperture of the optical remote sensor is getting larger and larger. The influences of both the support of optical elements and gravity deformation on the optical system are difficult to conquer. Therefore, it is necessary to compensate the descending optical performance which is caused by the surface error of primary mirror by means of adjusting the position parameters of the optical elements on-orbit. A large aperture coaxial three-mirror optical system is introduced in the paper. Matlab and MetroPro are used to simulate the surface error of the primary mirror. The surface error of the primary mirror is compensated by adjusting the position freedoms of the secondary mirror. The results show that the adjustment of the position freedoms of the secondary mirror can compensate both the coma and some astigmatism of the primary mirror, but not the spherical aberration.

  19. Source-Search Sensitivity of a Large-Area, Coded-Aperture, Gamma-Ray Imager

    SciTech Connect

    Ziock, K P; Collins, J W; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W; Smith, E; Woodring, M L

    2004-10-27

    We have recently completed a large-area, coded-aperture, gamma-ray imager for use in searching for radiation sources. The instrument was constructed to verify that weak point sources can be detected at considerable distances if one uses imaging to overcome fluctuations in the natural background. The instrument uses a rank-19, one-dimensional coded aperture to cast shadow patterns onto a 0.57 m{sup 2} NaI(Tl) detector composed of 57 individual cubes each 10 cm on a side. These are arranged in a 19 x 3 array. The mask is composed of four-centimeter thick, one-meter high, 10-cm wide lead blocks. The instrument is mounted in the back of a small truck from which images are obtained as one drives through a region. Results of first measurements obtained with the system are presented.

  20. ATLAST-9.2m: a Large-Aperture Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Oergerle, William; Feinberg, Lee D.; Purves, Lloyd R.; Hyde, T. Tupper; Thronson, Harley A.; Townsend, Jacqueline A.; Postman, Marc; Bolear, Matthew R.; Budinoff, Jason G.; Dean, Bruce H.; Clampin, Mark C.; Ebbets, Dennis C.; Gong, Qian; Gull, Theodore R.; Howard, Joseph M.; Jones, Andrew L.; Lyon, Richard G.; Pasquale, Bert A.; Perrygo, Charles; Smith, Jeffrey S.; Thompson, Patrick L.; Woodgate, Bruce E.

    2010-01-01

    We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope (ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36 hexagonal 1.315 m (flat to flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing and control, pointing and thermal control, and in-space servicing options.

  1. New multiplexed all solid state pulser for high power wide aperture kinetically enhanced copper vapor laser.

    PubMed

    Ghodke, D V; Muralikrishnan, K; Singh, Bijendra

    2013-11-01

    A novel multiplexed scheme is demonstrated to combine two or more pulsed solid state pulsers of moderate capabilities. Pulse power supply comprising of two solid state pulsers of ~6 kW rating each in multiplexed mode with common magnetic pulse compression stage was demonstrated and optimized for operating with a wide aperture kinetically enhanced copper vapor laser. Using this new configuration, the multiplexed pulsed power supply was capable of operating efficiently at net repetition-rate of ~13 kHz, 12 kW (wall plug average power), 18-20 kV discharge voltage and pulse rise-time of ~80 ns. The laser under multiplexed configuration delivered un-interrupted output power of about ~80 W with scope of further increase in laser output power in excess of 100 W. PMID:24289383

  2. The laser linewidth effect on the image quality of phase coded synthetic aperture ladar

    NASA Astrophysics Data System (ADS)

    Cai, Guangyu; Hou, Peipei; Ma, Xiaoping; Sun, Jianfeng; Zhang, Ning; Li, Guangyuan; Zhang, Guo; Liu, Liren

    2015-12-01

    The phase coded (PC) waveform in synthetic aperture ladar (SAL) outperforms linear frequency modulated (LFM) signal in lower side lobe, shorter pulse duration and making the rigid control of the chirp starting point in every pulse unnecessary. Inherited from radar PC waveform and strip map SAL, the backscattered signal of a point target in PC SAL was listed and the two dimensional match filtering algorithm was introduced to focus a point image. As an inherent property of laser, linewidth is always detrimental to coherent ladar imaging. With the widely adopted laser linewidth model, the effect of laser linewidth on SAL image quality was theoretically analyzed and examined via Monte Carlo simulation. The research gives us a clear view of how to select linewidth parameters in the future PC SAL systems.

  3. Detection of and compensation for blocked elements using large coherent apertures: ex vivo studies

    NASA Astrophysics Data System (ADS)

    Jakovljevic, Marko; Bottenus, Nick; Kuo, Lily; Kumar, Shalki; Dahl, Jeremy; Trahey, Gregg

    2016-04-01

    When imaging with ultrasound through the chest wall, it is not uncommon for parts of the array to get blocked by ribs, which can limit the acoustic window and significantly impede visualization of the structures of interest. With the development of large-aperture, high-element-count, 2-D arrays and their potential use in transthoracic imaging, detecting and compensating for the blocked elements is becoming increasingly important. We synthesized large coherent 2-D apertures and used them to image a point target through excised samples of canine chest wall. Blocked elements are detected based on low amplitude of their signals. As a part of compensation, blocked elements are turned off on transmit (Tx) and receive (Rx), and point-target images are created using: coherent summation of the remaining channels, compounding of intercostal apertures, and adaptive weighting of the available Tx/Rx channel-pairs to recover the desired k-space response. The adaptive compensation method also includes a phase aberration correction to ensure that the non-blocked Tx/Rx channel pairs are summed coherently. To evaluate the methods, we compare the point-spread functions (PSFs) and near-field clutter levels for the transcostal and control acquisitions. Specifically, applying k-space compensation to the sparse aperture data created from the control acquisition reduces sidelobes from -6.6 dB to -12 dB. When applied to the transcostal data in combination with phase-aberration correction, the same method reduces sidelobes only by 3 dB, likely due to significant tissue induced acoustic noise. For the transcostal acquisition, turning off blocked elements and applying uniform weighting results in maximum clutter reduction of 5 dB on average, while the PSF stays intact. Compounding reduces clutter by about 3 dB while the k-space compensation increases clutter magnitude to the non-compensated levels.

  4. High resolution beamforming on large aperture vertical line arrays: Processing synthetic data

    NASA Astrophysics Data System (ADS)

    Tran, Jean-Marie Q.; Hodgkiss, William S.

    1990-09-01

    This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.

  5. Blue laser and high-numerical-aperture optical disk system for digital video recording (DVR)

    NASA Astrophysics Data System (ADS)

    van Houten, Henk

    2001-02-01

    Based on a blue diode laser (405 nm wavelength) and a two- element objective lens with a numerical aperture of 0.85, a third generation optical recording system has been developed that is able to record 22.5 GB on a single sided 12 cm diameter disc, at a user data rate of 50 Mb/s. The system is referred to by the technical name DVR for high definition Digital Video Recording. In this paper, we review the physical and the system concept, the phase change media, the optical pick up unit, and the drive implementation.

  6. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials

    PubMed Central

    Vitek, Dawn N.; Adams, Daniel E.; Johnson, Adrea; Tsai, Philbert S.; Backus, Sterling; Durfee, Charles G.; Kleinfeld, David; Squier, Jeffrey A.

    2010-01-01

    Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (~1 mm) features with parallel sidewalls are ablated at high material removal rates (25 µm3 per 80 µJ pulse) at 0.04-0.05 NA. This technique is applied to the fabrication of microfluidic devices by ablation through the back surface of thick (6 mm) fused silica substrates. It is also used to ablate bone under aqueous immersion to produce craniotomies. PMID:20721196

  7. Large Coded Aperture Mask for Spaceflight Hard X-ray Images

    NASA Technical Reports Server (NTRS)

    Vigneau, Danielle N.; Robinson, David W.

    2002-01-01

    The 2.6 square meter coded aperture mask is a vital part of the Burst Alert Telescope on the Swift mission. A random, but known pattern of more than 50,000 lead tiles, each 5 mm square, was bonded to a large honeycomb panel which projects a shadow on the detector array during a gamma ray burst. A two-year development process was necessary to explore ideas, apply techniques, and finalize procedures to meet the strict requirements for the coded aperture mask. Challenges included finding a honeycomb substrate with minimal gamma ray attenuation, selecting an adhesive with adequate bond strength to hold the tiles in place but soft enough to allow the tiles to expand and contract without distorting the panel under large temperature gradients, and eliminating excess adhesive from all untiled areas. The largest challenge was to find an efficient way to bond the > 50,000 lead tiles to the panel with positional tolerances measured in microns. In order to generate the desired bondline, adhesive was applied and allowed to cure to each tile. The pre-cured tiles were located in a tool to maintain positional accuracy, wet adhesive was applied to the panel, and it was lowered to the tile surface with synchronized actuators. Using this procedure, the entire tile pattern was transferred to the large honeycomb panel in a single bond. The pressure for the bond was achieved by enclosing the entire system in a vacuum bag. Thermal vacuum and acoustic tests validated this approach. This paper discusses the methods, materials, and techniques used to fabricate this very large and unique coded aperture mask for the Swift mission.

  8. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  9. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  10. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott.; Kirk, Charles S.; Postman, Mark

    2013-01-01

    An advanced large aperture UV/optical UVO space telescope is required for the next generation of astrophysics and exoplanet science. The science requirements of proposed exoplanet and astrophysics missions were used to determine the encircled energy, point spread function stability and thermal environment requirements. These requirements then determine the optical wavefront specification for potential telescope assemblies which can fit inside current and planned launch vehicles. The optical wavefront specification becomes the top level of the error budget that is split into various sources that control the structural, thermal and optical design.

  11. Spacecraft conceptual design for the 8-meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Astrophysics Data System (ADS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David; Mosier, Gary; Stahl, H. Philip; Thomas, Dan; Thompson, Kevin S.

    2010-07-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8- meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  12. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  13. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  14. Current Aperture III-Nitride Edge-emitting Blue Laser Diode

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    This work presents the first Nitride non polar Current Aperture Edge Emitting Blue Laser Diode (CA-LD) fabricated using the Photo-Electro-Chemical Etching (PECE) technique. The main features of this design are represented by the deep etching of the laser diode ridge through the active region, the controlled etching of the active region by PECE and the increase of the p-contact area with respect to the active region area. Preliminary experiments manifest that CA-LD has similar threshold current density, slope efficiency and peak output power of the more commonly used shallow etch ridge design and it has also shown a reduction in the series resistance down to ˜40% with respect to the shallow-etch LDs indicating the potential of the CA-LD design in high-efficient, high-power, high-frequency LD applications.

  15. Design and fabrication of sub-wavelength annular apertures for femtosecond laser machining

    NASA Astrophysics Data System (ADS)

    Hsu, Kuan-Yu; Tung, Yen-Chun; Chung, Ming-Han; Lee, Chih-Kung

    2015-03-01

    Many research teams have begun pursuing optical micromachining technology in recent years due to its associated noncontact and fast speed characteristics. However, the focal spot sizes and the depth of focus (DOF) strongly influenced the design requirements of the micromachining system. The focal spot size determines the minimum features can be fabricated, which is inversely proportional to the DOF. That is, smaller focal spot size led to shorter DOF. However, the DOF of the emitted visible or near-infrared light beam is typically limited to tens of nanometers for traditional optic system. The disadvantages of using nanosecond laser for micromachining such as burrs formation and surface roughness were found to further influence the accuracy of machined surfaces. To alleviate all of the above-mentioned problems, sub-wavelength annular aperture (SAA) illuminated with 780 nm femtosecond laser were integrated to develop the new laser micromachining system presented in this paper. We first optimized the parameters for high transmittance associated with the SAA structure for the 780 nm femtosecond laser used by adopting the finite difference time domain simulations method. A lateral microscope was modified from a traditional microscope to facilitate the measurement of the emitted light beam optical energy distribution. To verify the newly developed system performance the femtosecond laser was used to illuminate the SAA fabricated on the metallic film to produce the Bessel light beam so as to perform micromachining and process on silicon, PCB board and glass. Experimental results were found to match the original system design goals reasonably well.

  16. Spatial mode dynamics in wide-aperture quantum-dot lasers

    SciTech Connect

    Mukherjee, Jayanta; McInerney, John G.

    2009-05-15

    We present a systematic theoretical study of spatial mode dynamics in wide-aperture semiconductor quantum-dot lasers within the Maxwell-Bloch formalism. Our opto-electro-thermal model self-consistently captures the essential dynamical coupling between field, polarization, and carrier density in both thermal and nonthermal regimes, providing detailed description of the complex spatiotemporal modal intensity structure and spectra in these novel devices and broad area edge-emitting lasers in general. Using linear stability analysis and high resolution adaptive-grid finite element numerical simulation, we show that in the nonthermal regime, the presence of inhomogeneous broadening in quantum-dot active media leads to suppressed filamentation and enhanced spatial coherence compared to conventional quantum well devices with comparable phase-amplitude coupling (alpha parameter). Increasing the degree of inhomogeneous broadening in the active medium leads to further improvement in spatial coherence. In the thermal regime, there is further suppression of filamentation in the inhomogeneously broadened quantum-dot active medium; however, the spatial coherence aided by inhomogeneous broadening is partly lost due to the effect of temperature on cavity detuning. We propose that device designs based on optimized inhomogeneous broadening of quantum-dot gain medium could ultimately lead to diffraction-limited outputs in the quasi-cw regime which are still very difficult to achieve in conventional wide-aperture designs.

  17. A conceptual design of a large aperture microwave radiometer geostationary platform

    NASA Technical Reports Server (NTRS)

    Garn, Paul A.; Garrison, James L.; Jasinski, Rachel

    1992-01-01

    A conceptual design of a Large Aperture Microwave Radiometer (LAMR) Platform has been developed and technology areas essential to the design and on-orbit viability of the platform have been defined. Those technologies that must be developed to the requirement stated here for the LAMR mission to be viable include: advanced radiation resistant solar cells, integrated complex structures, large segmented reflector panels, sub 3 kg/m(exp 2) areal density large antennas, and electric propulsion systems. Technology areas that require further development to enhance the capabilities of the LAMR platform (but are not essential for viability) include: electrical power storage, on-orbit assembly, and on-orbit systems checkout and correction.

  18. Large-Optics white light interferometer for laser wavefront test: apparatus and application

    NASA Astrophysics Data System (ADS)

    Luan, Zhu; Liu, Liren; Wang, Lijuan; Liu, De'an

    2008-08-01

    There is transmitting optics of 250mm aperture with about 8 microradians in SILEX system. This is often large aperture and diffraction-limited laser beam in the laser communications. Large-Optics white light interferometer using double-shearing structure has been submitted to analysis the laser wavefront before. Six optical plates of 490 millimeters apertures are manufactured now one of which is also aperture-divided so that the precision of measured wave front is higher than the full aperture design. It is suitable for measurement of minimum diffraction-limited laser wave front and any wavelength. The interference is happened between equal optical path of the reflection and the other. The plates are the basic structures which are precisely parallel or perpendicular needed for either two plates. There are several tools equipped with the interferometer including white light test source and collimators and so on to confirm the precision of several seconds angle. The apparatus and application is explained in detail in this paper. The adjustment is important for the realization of white light test.

  19. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope. PMID:26974631

  20. Radiometric calibration method for large aperture infrared system with broad dynamic range.

    PubMed

    Sun, Zhiyuan; Chang, Songtao; Zhu, Wei

    2015-05-20

    Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400  mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield. PMID:26192499

  1. Optimization analysis of primary mirror in large aperture telescope based on workbench

    NASA Astrophysics Data System (ADS)

    Feng, Zhengsen; Wang, Guomin

    2015-10-01

    With the diameter increasing for large aperture telescope primary mirror, the gravity caused by the increased of surface size will directly affect the quality of optical imaging, the adjustment of large aperture primary mirror will be frequent according to the requirement of observation. As the angle and the azimuth's transformation of primary mirror influences the surface shape accuracy immediately, the rational design of the primary mirror supporting structure is of crucial importance. Now the general method is to use ANSYS APDL programming, which is inconvenient and complex to fit for the different components, the calculation require much time and the analysis is lack of efficient. Taking the diameter of 1.12 m telescope primary mirror as the research objection, the paper combine the actual design parameters of SONG telescope, respectively using ANSYS WORKBENCH to employ the primary mirror axial and lateral support model in finite element method, the optimal solution is obtained by optimization design and the change rule of mirror surface deformation under inclined condition is studied. The optimization results according with the requirements of the primary mirror comprehensive error proves that the optimization analysis method is available and applicable.

  2. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    SciTech Connect

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  3. Large aperture tunable-focus liquid lens using shape memory alloy spring.

    PubMed

    Hasan, Nazmul; Kim, Hanseup; Mastrangelo, Carlos H

    2016-06-13

    A tunable-focus large aperture liquid lens is constructed using shape memory alloy (SMA) springs as actuators. The lens mainly consists of a shallow liquid-filled cylindrical cavity bound by a thin compressible annular rim and encapsulated by a flexible circular membrane on the top of the rim and a rigid circular plate at the rim bottom. The lens optical power is adjusted by a controlled compression of the annular rim via actuation of the three shape-memory alloy (SMA) springs. Since the volume of the cavity liquid is constant, the rim compression bulges the flexible membrane outward thus reducing its radius of curvature and the lens focal length. The fabricated tunable lens demonstrated an optical power range of 0-4 diopters utilizing a driving voltage less than 3V. Lens optical wavefront profiling was done using a Shack-Hartmann sensor displaying a RMS wave front error of 0.77 µm and 1.68 µm at 0 D and + 4 D. The aperture diameter and thickness of the fabricated lens are 34 mm and 9 mm, respectively, while weighing 16.7 g. PMID:27410350

  4. An electrically triggered 200 kV rail-gap switch for wide aperture excimer lasers

    NASA Astrophysics Data System (ADS)

    Endoh, A.; Watanabe, S.; Watanabe, M.

    1984-03-01

    A wide aperture (7 x 7 sq cm), high output energy (5 J in KrF and 13.8 J in XeCl), UV preionized excimer laser is described. A self-breakdown rail gap was employed as an output switch with the maximum voltage and current up to 230 kV and 300 kA, respectively. To solve the switching jitter problem associated with the self-breakdown, an electrical triggering was investigated. The measured minimum switching time delay and gap closing time were 40 and 10 ns, respectively. The number of channels up to 50 was observed with a uniform distribution over the 80-cm electrode length. The triggering jitter was measured to be less than a nanosecond. The maximum operation voltage of the triggered rail gap was 200 kV. The successful trigger operation was obtained in the range 30-98 percent of the self-breakdown voltage.

  5. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  6. Data correction techniques for the airborne large-aperture static image spectrometer based on image registration

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Shi, Dalian; Wang, Shuang; Yu, Tao; Hu, Bingliang

    2015-01-01

    We propose an approach to correct the data of the airborne large-aperture static image spectrometer (LASIS). LASIS is a kind of stationary interferometer which compromises flux output and device stability. It acquires a series of interferograms to reconstruct the hyperspectral image cube. Reconstruction precision of the airborne LASIS data suffers from the instability of the plane platform. Usually, changes of plane attitudes, such as yaws, pitches, and rolls, can be precisely measured by the inertial measurement unit. However, the along-track and across-track translation errors are difficult to measure precisely. To solve this problem, we propose a co-optimization approach to compute the translation errors between the interferograms using an image registration technique which helps to correct the interferograms with subpixel precision. To demonstrate the effectiveness of our approach, experiments are run on real airborne LASIS data and our results are compared with those of the state-of-the-art approaches.

  7. Dual FOV infrared lens design with the laser common aperture optics

    NASA Astrophysics Data System (ADS)

    Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo

    2015-02-01

    With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.

  8. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  9. OASIS 1.0: Very Large-Aperture High-Power Lidar for Exploring Geospace

    NASA Astrophysics Data System (ADS)

    Chu, X.; Smith, J. A.; Chen, C.; Zhao, J.; Yu, Z.; Gardner, C. S.

    2015-12-01

    A new initiative, namely OASIS (the Observatory for Atmosphere Space Interaction Studies), has called for a very large-aperture high-power (VLAHP) lidar as its first step forward to acquire the unprecedented measurement capabilities for exploring the space-atmosphere interaction region (SAIR). Currently, there exists a serious observational gap of the Earth's neutral atmosphere above 100 km. Information on neutral winds and temperatures and on the plasma-neutral coupling in the SAIR, especially between 100 and 200 km, is either sparse or nonexistent. Fully exploring the SAIR requires measurements of the neutral atmosphere to complement radar observations of the plasma. Lidar measurements of neutral winds, temperatures and species can enable these explorations. Many of these topics will be addressed with the VLAHP lidar. Discoveries of thermospheric neutral Fe, Na and K layers up to nearly 200 km at McMurdo, Antarctica and other locations on Earth, have opened a new door to observing the neutral thermosphere with ground-based instruments. These neutral metal layers provide the tracers for resonance Doppler lidars to directly measure the neutral temperatures and winds in the thermosphere, thus enabling the VLAHP lidar dream! Because the thermospheric densities of these metal atoms are many times smaller than the layer peak densities near 90 km, high power-aperture product lidars, like the VLAHP lidar, are required to derive scientifically useful measurements. Furthermore, several key technical challenges for VLAHP lidar have been largely resolved in the last a few years through the successful development of Fe and Na Doppler lidars at Boulder. By combining Rayleigh and Raman with resonance lidar techniques and strategically operating the VLAHP lidar next to incoherent scatter radar and other complementary instruments, the VLAHP lidar will enable new cutting-edge exploration of the geospace. These new concepts and progresses will be introduced in this paper.

  10. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration. PMID:25608076

  11. Distributed Bragg reflector ring oscillators: A large aperture source of high single-mode optical power

    SciTech Connect

    Dzurko, K.M.; Hardy, A.; Scifres, D.R.; Welch, D.F.; Waarts, R.G.; Lang, R.J. )

    1993-06-01

    Distributed Bragg reflector (DBR) ring oscillators are the first monolithic semiconductor lasers containing broad-area active regions which operate in a single mode to several times their threshold current. Orthogonally oriented diffraction gratings surrounding an unpatterned active region select a single spatial and temporal mode of oscillation. This paper presents both analytic and experimental verification of single mode operation for active dimensions up to 368 [times] 1000 [mu]m. Threshold current densities under 200 A/cm[sup 2] and total differential efficiencies greater than 60% have been measured. DBR ring oscillators have demonstrated over 1 W of single frequency output power, 460 mW of spatially coherent, single frequency output power, and nearly circular diffraction limited output to 4 [times] I[sub th]. The performance potential of these devices is enormous, considering that the output apertures are nearly two orders of magnitude wider than conventional single mode sources which generate up to 0.2 W of coherent output.

  12. A CLOSE COMPANION SEARCH AROUND L DWARFS USING APERTURE MASKING INTERFEROMETRY AND PALOMAR LASER GUIDE STAR ADAPTIVE OPTICS

    SciTech Connect

    Bernat, David; Bouchez, Antonin H.; Cromer, John L.; Dekany, Richard G.; Moore, Anna M.; Ireland, Michael; Tuthill, Peter; Martinache, Frantz; Angione, John; Burruss, Rick S.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; Kibblewhite, Edward; McKenna, Daniel L.; Petrie, Harold L.; Roberts, Jennifer; Shelton, J. Chris; Thicksten, Robert P.; Trinh, Thang

    2010-06-01

    We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of {Delta}K {approx} 2.3 for separations between 1.2 {lambda}/D-4{lambda}/D and {Delta}K {approx} 1.4 at 2/3 {lambda}/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored.

  13. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  14. Performance of a Fieldable Large-Area, Coded-Aperture, Gamma Imager

    SciTech Connect

    Habte Ghebretatios, Frezghi; Cunningham, Mark F; Fabris, Lorenzo; Ziock, Klaus-Peter

    2007-01-01

    We recently developed a fieldable large-area, coded-aperture, gamma imager (the Large Area Imager - LAI). The instrument was developed to detect weak radiation sources in a fluctuating natural background. Ideally, the efficacy of the instrument is determined using receiver-operator statistics generated from measurement data in terms of probability of detection versus probability of false alarm. However, due to the impracticality of hiding many sources in public areas, it is difficult to measure the data required to generate receiver-operator characteristic (ROC) curves. Instead, we develop a high statistics "model source" from measurements of a real point source and then inject the model source into data collected from the world at large where, presumably, no source exists. In this paper we have applied this "source injection" technique to evaluate the performance of the LAI. We plotted ROC curves obtained for different source locations from the imager and for different source strengths when the source is injected at 50 m from the imager. The result shows that this prototype instrument provides excellent performance for a 1-mCi source at a distance of 50 m from the imager in a single pass at 25 mph.

  15. Large-aperture two-dimensional x-ray refractive mosaic lenses.

    PubMed

    Nazmov, Vladimir; Reznikova, Elena; Mohr, Juergen; Saile, Volker; Tajiri, Hiroo; Voigt, Anja

    2016-09-01

    Lenses with high numerical aperture are required for images with very high spatial resolution, which is difficult to realize in the x-ray range because of low-refraction-index decrement and relatively high absorption of x-rays in the material. However, such an aperture can be realized by means of a mosaic lens, as shown in this work. PMID:27607293

  16. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths.

    PubMed

    Datta, R; Munson, C D; Niemack, M D; McMahon, J J; Britton, J; Wollack, E J; Beall, J; Devlin, M J; Fowler, J; Gallardo, P; Hubmayr, J; Irwin, K; Newburgh, L; Nibarger, J P; Page, L; Quijada, M A; Schmitt, B L; Staggs, S T; Thornton, R; Zhang, L

    2013-12-20

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n=3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30° with low cross polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth. PMID:24513939

  17. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; Shaklan, Stuart B.; Stahl, H. Philip; Thronson, Harley A.

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  18. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, M. A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  19. Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, Manuel A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  20. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  1. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; Shaklan, S.; Stahl, P.; Thronson, H.

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  2. Large-explosive source, wide-recording aperture, seismic profiling on the Columbia Plateau, Washington

    SciTech Connect

    Jarchow, C.M. . Dept. of Geophysics); Catchings, R.D.; Lutter, W.J. )

    1994-02-01

    Clear subsurface seismic images have been obtained at low cost on the Columbia Plateau, Washington. The Columbia Plateau is perhaps the most notorious of all bad-data'' areas because large impedance contrasts in surface flood basalts severely degrade the seismic wavefield. This degradation was mitigated in this study via a large-explosive source, wide-recording aperture shooting method. The shooting method emphasizes the wide-angle portion of the wavefield, where Fermat's principle guarantees reverberation will not interfere with the seismic manifestations of crucial geologic interfaces. The basalt diving wave, normally discarded in standard common midpoint (CMP) seismic profiling, can be used to image basalt velocity structure via travel-time inversion. Maximum depth-penetration of the diving wave tightly constrains basalt-sediment interface depth. An arrival observed only at shot-receiver offsets greater than 15 km can be used to determine the velocity and geometry of basement via simultaneous inversion. The results from this study suggest that previous geologic hypotheses and hydrocarbon play concepts for the Columbia Plateau may have been in error.

  3. Application of image entropy evaluation function for the leveling of large aperture components in auto defects detecting

    NASA Astrophysics Data System (ADS)

    Cao, Pin; Liu, Dong; Zhao, Peng; Yang, Yong-ying; Wang, Shi-tong

    2012-10-01

    In large aperture component's dark-field scattering defects imaging system, the component's size is large and part with a wedge. When the component is in the completely level position, the surface defects image can be clearly acquired by a high magnification microscope. Otherwise, fuzzy defects image would be gained because of defocusing which makes digital identification can't be able to be done. For the problem of leveling large aperture, wedge component, this paper proposes a method that using image information entropy as focusing evaluation function for leveling large aperture components. Firstly, in three different points of component surface acquiring multi-images by the same continuous steps. Then calculating the images' entropy and fitting a curve to it. Based on minimum image information entropy value criterion, the focal plane can be found and each point's defocusingamount of the fist acquisition position can be gained. Relay on the relation model of acquisition points, adjust points and defocusingamount that has been built, each adjust point's adjustment can be got. The component's level position can be achieved by adjusting the adjust points. In the experiment that using a high magnification (of 16) microscope scans over the whole surface of the component with the size of 430mm×430mm. The image microscope is always in the depth of focus which shows that the leveling precision has achieved 20μm. Until now, this method has been successfully used in large aperture component's dark-field scattering defects imaging system.

  4. Excimer lasers drive large-area microprocessing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Tapié, Jean-Luc

    2012-09-01

    Excimer lasers emitting in the UV to far UV region are by nature the laser sources enabling the highest optical resolution and strongest material-photon interaction. At the same time, excimer lasers deliver unmatched UV pulse energies and output powers up to the kilowatt range. Thus, they are the key to fast and effective large area processing of smallest structures with micron precision. As a consequence, excimer lasers are the UV technology of choice when it comes to high-performance microstructuring with unsurpassed quality and process repeatability in applications such as drilling advanced ink jet nozzles or patterning biomedical sensor structures.

  5. Analysis of aperture averaging measurements. [laser scintillation data on the effect of atmospheric turbulence on signal fluctuations

    NASA Technical Reports Server (NTRS)

    Fried, D. L.

    1975-01-01

    Laser scintillation data obtained by the NASA Goddard Space Flight Center balloon flight no. 5 from White Sands Missile Range on 19 October 1973 are analyzed. The measurement data, taken with various size receiver apertures, were related to predictions of aperture averaging theory, and it is concluded that the data are in reasonable agreement with theory. The following parameters are assigned to the vertical distribution of the strength of turbulence during the period of the measurements (daytime), for lambda = 0.633 microns, and the source at the zenith; the aperture averaging length is d sub o = 0.125 m, and the log-amplitude variance is (beta sub l)2 = 0.084 square nepers. This corresponds to a normalized point intensity variance of 0.40.

  6. A New Type of X-ray Condenser Lenses with Large Apertures Fabricated by Rolling of Structured Films

    SciTech Connect

    Simon, M.; Reznikova, E.; Nazmov, V.; Grund, T.; Last, A.

    2010-04-06

    In order to meet the demand for X-ray lenses with large apertures and, hence, photon flux, a new type of X-ray lenses has been developed: Rolled prismatic X-ray lenses feature a vast number of refracting surfaces to increase transparency and aperture, respectively. Prototypes of such lenses have been fabricated by molding and rolling of a structured polyimide film. In this work, rolled prismatic X-ray lenses are pictured, and results of first tests performed at the ANKA storage ring in Karlsruhe are presented.

  7. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  8. [Modeling and simulation of effect of optical distortion on the large aperture static imaging spectrometer].

    PubMed

    Lü, Qun-bo; Xiangli, Bin; Yao, Tao; Jing, Juan-juan; Wang, Zhong-hou

    2010-01-01

    As a new type Fourier transform imaging spectrometry, large aperture static imaging spectrometry (LASIS) has come forth in recent years, which has many advantages such as simple principle, high stability and so on. However, the requirement for the optical system design of LASIS was very harsh. As one of the optical aberrations, optical distortion degrades the data quality acquired by LASIS, consequently limits its applications. According to the analysis of the data acquisition principle of LASIS, the data model with the effect of optical distortion was presented, which could be used for LASIS performance pre-evaluation. Finally, the computer simlulation of the data model was achieved with supposed parameters. The simulation results indicated that the relative error more than 5% was induced in the recovery spectrum, and approximate 8 nm spectral line deviation was occurred at the long wavelength region. The results show that the 4% optical distortion was inapplicable for LASIS although it is acceptant for common optical imaging system. PMID:20302101

  9. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  10. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2014-03-01

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  11. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  12. Origins of high-frequency scattered waves near PKKP from large aperture seismic array data

    USGS Publications Warehouse

    Earle, P.S.

    2002-01-01

    This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.

  13. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  14. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    NASA Astrophysics Data System (ADS)

    Köster, Oliver; Fiscarelli, Lucio; Russenschuck, Stephan

    2016-05-01

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  15. Study on the method to test large-aperture hyperboloid convex mirror

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Dong, Huiwen; Guo, Wen; Wang, Huijun

    2014-08-01

    There are numerous reflecting optical system designs that call for large-aperture convex surfaces, such as secondary mirror in on-axis three mirror anastigmatic (TMA). Several methods to test high accuracy hyperboloid convex surfaces are introduced separately in this paper. A kind of arrangement is chosen to test a surface with diameter of 420mm, radius of 1371mm, and conic K -2.1229. The CGH compensator for testing is designed, which is made up of illumination lens and hologram test plate with designed residual wavefront aberration less than 0.001λ (RMS). The second transmitted method that is equipped with a technical flat surface coating by Ag film in the bottom of surface mirror under test, which form an auto-collimation optical system to eliminate the aberration. The Hindle-Simpson test that requires a larger meniscus lens to compensate the optical aberration, and the designed result of optical test system is less than 0.0016λ. Contrasting the CGH compensator and the second transmitted method, the Hindle-Simpson testing method has the advantage of it is easily to manufacture and adjust; meanwhile the test result is stable and has been less affected by the environment. It has been found that the method is rational and reliable, and it can fulfill the requirement of manufacturing and testing process for hyperboloid convex mirrors.

  16. Tracking marine mammals and ships with small and large-aperture hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Gassmann, Martin

    Techniques for passive acoustic tracking in all three spatial dimensions of marine mammals and ships were developed for long-term acoustic datasets recorded continuously over months using custom-designed arrays of underwater microphones (hydrophones) with spacing ranging from meters to kilometers. From the three-dimensional tracks, the acoustical properties of toothed whales and ships, such as sound intensity and directionality, were estimated as they are needed for the passive acoustic abundance estimation of toothed whales and for a quantitative description of the contribution of ships to the underwater soundscape. In addition, the tracks of the toothed whales reveal their underwater movements and demonstrate the potential of the developed tracking techniques to investigate their natural behavior and responses to sound generated by human activity, such as from ships or military SONAR. To track the periodically emitted echolocation sounds of toothed whales in an acoustically refractive environment in the upper ocean, a propagation-model based technique was developed for a hydrophone array consisting of one vertical and two L-shaped subarrays deployed from the floating instrument platform R/P FLIP. The technique is illustrated by tracking a group of five shallow-diving killer whales showing coordinated behavior. The challenge of tracking the highly directional echolocation sounds of deep-diving (< 1 km) toothed whales, in particular Cuvier's beaked whales, was addressed by embedding volumetric small-aperture (≈ 1 m element spacing) arrays into a large-aperture (≈ 1 km element spacing) seafloor array to reduce the minimum number of required receivers from five to two. The capabilities of this technique are illustrated by tracking several groups of up to three individuals over time periods from 10 min to 33 min within an area of 20 km2 in the Southern California Bight. To track and measure the underwater radiated sound of ships, a frequency domain beamformer was

  17. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  18. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  19. HI at z 20: The Large Aperture Experiment to Detect the Dark Ages

    NASA Astrophysics Data System (ADS)

    Greenhill, Lincoln J.; Werthimer, D.; Taylor, G.; Ellingson, S.; LEDA Collaboration

    2012-05-01

    When did the first stars form? Did supermassive black holes form at the same time, earlier, or later? One of the great challenges of cosmology today is the study of these first generation objects. The Large Aperture Experiment to Detect the Dark Ages (LEDA) project seeks to detect, in total-power, emission from neutral Hydrogen (21 cm rest wavelength) in the intergalactic medium about 100 million years after the Big Bang (redshifts 20). Detection would deliver the first observational constraints on models of structure formation and the first pockets of star and black holes formation in the Universe. LEDA will develop and integrate by 2013 signal processing instrumentation into the new first station of the Long Wavelength Array (LWA). This comprises a large-N correlator serving all 512 dipole antennas of the LWA1, leveraging a packetized CASPER architecture and combining FPGAs and GPUs for the F and X stages. Iterative calibration and imaging will rely on warped snapshot imaging and be drawn from a GPU-enabled library (cuWARP) that is designed specifically to support wide-field full polarization imaging with fixed dipole arrays. Calibration techniques will include peeling, correction for ionospheric refraction, direction dependent dipole gains, deconvolution via forward modeling, and exploration of pulsar data analysis to improve performance. Accurate calibration and imaging will be crucial requirements for LEDA, necessary to subtract the bright foreground sky and detect the faint neutral Hydrogen signal. From the computational standpoint, LEDA is a O(100) TeraFlop per second challenge that enables a scalable architecture looking toward development of radio arrays requiring power efficient 10 PetaFlop per second performance. Stage two of the Hydrogen Epoch of Reionization Array (HERA2) is one example.

  20. LCLS X-ray mirror measurements using a large aperture visible light interferometer

    SciTech Connect

    McCarville, T; Soufli, R; Pivovaroff, M

    2011-03-02

    Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments

  1. Determining suitability of Large Aperture Scintillometer for validating remote sensing based evapotranspiration maps

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.

    2013-12-01

    Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The

  2. [Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer].

    PubMed

    Wang, Shuang; Li, Li-Bo; Pi, Hai-Feng

    2014-03-01

    The process of acquiring hyperspectral data cube of a Large Aperture Static Imaging Spectrometer (LASIS) includes several vital and essential steps, such as interferometer modulation, rectangular convolution sampling by pixels of detector and spectra retrieving. In this process, how to precisely evaluate the Signal-Noise Ratio (SNR) of spectra and how to wholly establish a related evaluation model were both generally very complicated. After a full consideration of the transmission process, utilizing the theory of rectangular convolution sampling and the spectral retrieving method regarding the computation of real part of the discrete Fourier transform of interferogram, formulas of both spectral signal and spectral noise were deduced theoretically, and then a evaluation model regarding the spectral SNR of LASIS was established. By using this model and other design factors of LASIS involving the wavenumber related optical transmittance, the interferometer beam splitter efficiency, the detector quantum efficiency and the main circuit noise, a simulation of spectral SNR was implemented. The simulation result was compared with the measurement result of the SNR of a LASIS instrument. The SNR lines and trends of the two match each other basically in single spectral band. The average deviation between them is proved to be 3.58%. This comparison result demonstrates the feasibility and effectiveness of the evaluation model. This SNR evaluation model consisting of the main technical aspects of typical LASIS instrument from the input spectral radiation to the output spectrum data is possible to be applied widely in practical design and implement of LASIS, as well as may provide valuable reference on SNR calculation and evaluation for other imaging spectrometers. PMID:25208427

  3. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  4. Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    PubMed Central

    Rambikur, Evan H.; Chávez, José L.

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies. PMID:24473285

  5. Long-wavelength vertical-cavity surface-emitting lasers with selectively etched thin apertures

    NASA Astrophysics Data System (ADS)

    Feezell, Daniel F.

    Long-wavelength vertical-cavity surface-emitting lasers (VCSELs) emitting in the 1300--1600nm wavelength window are attractive light sources for short to mid-range optical fiber communications. These devices target low-loss and low-dispersion minima in standard optical fibers and are expected to provide a low-cost alternative to the existing edge-emitting infrastructure. With low-power consumption, on wafer testing; simple packaging, and high fiber-coupling efficiency, VCSELs are ideal transmitters for CWDM, metro, local area, and storage area networks. Recently, much attention has been devoted to a rich variety of approaches to long-wavelength VCSELs. One underlying problem, however, has been the need to match a reliable high-gain active region with high-index-contrast distributed Bragg reflectors (DBRs) over the full 1300--1600nm wavelength range. One solution to this problem is to utilize well-established InAlGaAs active-region technology coupled with AlGaAsSb DBRs. This combination facilitates monolithic all-epitaxial InP-based devices spanning the entire 1300--1600nm wavelength range. Previously, Dr. Shigeru Nakagawa and Dr. Eric Hall have demonstrated long-wavelength VCSELs with Sb-based technology operating at 1550nm. This dissertation demonstrates the first high-performance InP-based VCSELs with Sb-based DBRs operating at 1310nm, thus solidifying Sb-based technology as a wavelength flexible platform for long-wavelength devices. Also developed is a novel and efficient tunnel-junction aperturing technology for generating extremely low-loss optical and electrical confinement. Lastly, it is shown that the benefits from such an aperturing scheme produce marked improvements in device operation versus previously demonstrated Sb-based VCSELs. The devices from this research generated over 1.6mW single-mode continuous-wave (CW) output power at room temperature (>2mW multi-mode), displayed threshold currents down to 1mA, and operated CW up to 90°C. Furthermore, world

  6. ExoEarth Yield Estimates for a Future Large Aperture Direct Imaging Mission

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Domagal-Goldman, Shawn; Stapelfeldt, Karl R.; Robinson, Tyler

    2015-01-01

    ExoEarth yield is a critical science metric that will constrain the required aperture of a future exoplanet-imaging mission. I will present a numerically efficient method for maximizing the yield of exoEarth candidates by simultaneously optimizing the exposure time of every star, number of visits per star, and delay time between visits, while maximally adapting the target list to the mission's capabilities. This method can potentially double the exoEarth candidate yield compared to previous methods. I will show how the yield scales with mission parameters, including aperture size and high level coronagraph parameters, and address the impact of astrophysical uncertainties on exoEarth yield.

  7. Test results of a single aperture 10 tesla dipole model magnet for the Large Hadron Collider

    SciTech Connect

    Yamamoto, Akira; Shintomi, Takakazu; Kimura, Nobuhiro

    1996-07-01

    A single aperture dipole magnet has been developed with a design magnetic field of 10 tesla by using Nb-Ti/Cu conductor to be operated at 1.8 K in pressurized super fluid helium. The magnet features double shell coil design by using high keystone Rutherford cable and compact non-magnetic steel collars to be adaptable in split/symmetric coil/collar design for twin aperture dipoles. A design central magnetic field of 10 tesla has been successfully achieved in excitation at 1.95 K in pressurized superfluid helium. Test results of the magnet with a summary of the design and fabrication will be presented.

  8. [Design of a dual-channel Mach-Zehnder lateral shearing interferometer for the large aperture static imaging spectrometer].

    PubMed

    Fu, Qiang; Xiangli, Bin; Lü, Qun-bo; Jing, Juan-juan

    2012-02-01

    Large aperture static imaging spectrometry (LASIS) is a kind of joint temporally and spatially modulated Fourier transform imaging spectrometry. In such instruments, lateral shearing interferometer is a key element, the most frequently used type of which is the Sagnac interferometer. In this configuration, one half of the light entering the interferometer backtracks and causes a great decrease in energy efficiency. The present paper proposes a modified Mach-Zehnder lateral shearing interferometer structure to tackle this problem. With the ability to produce the same lateral shear, it features the advantage of dual channel output. We present a ray tracing procedure to induce the general expression of the lateral shear as well as analyze the contributions of error sources to the shear accuracy. The results serve as a new idea for the design of large aperture static imaging spectrometers and can be used to instruct the design and optimization of this kind of imaging spectrometer. PMID:22512210

  9. Closed laser-beam trajectories in plano-spherical resonators with Gaussian apertures

    SciTech Connect

    Malyutin, A A

    2008-02-28

    The closed trajectories of a Gaussian beam in plano-spherical degenerate and nondegenerate resonators with two Gaussian apertures (with two pump regions with the Gaussian distribution of the gain) are described analytically and the existence conditions are found for such trajectories. It was assumed that Gaussian apertures (gain regions) were located in the plane of a flat mirror at equal distances on both sides of the resonator axis and the size of apertures restricted their action by the corresponding half-plane. (beams, resonators)

  10. X-ray refractive large aperture rolled prism lenses as condensers for x-ray tubes

    NASA Astrophysics Data System (ADS)

    Vogt, H.; Simon, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Eisenhower, R.; Mettendorf, K. U.

    2011-10-01

    At the Institute of Microstructure Technology (IMT) at Karlsruhe Institute of Technology (KIT), refractive X-ray optics are developed. These optics are proposed to be used as condenser optics in X-Ray spectroscopy and microscopy applications with an X-ray tube as a source. To produce the lenses, a thin structured foil with equidistant fins in triangular form is casted from a structured silicon wafer. The foil is then wound around a glass fibre core. Due to this fabrication method, it is possible to produce large-aperture lenses with low absorption in comparison to other types of refractive X-Ray optics, like X-ray lenses with continuous parabolic shape or prism lenses. The first are limited due to their absorption while the latter are limited due to their mechanical stability of the prism columns. The optimisation of the so called X-Ray rolled prism lenses (RXPL) is underway at the institute and involves several parameters. One important property of the lenses is the correct form of the wound foil layers. This determines the number of necessary refractive elements at a given radius, which in turn determines the refracted slope and focal position of the transmitted beam. The spatial extent of the x-ray source is also being accounted for in the lens design. Another important point is the diameter of the winding core, which should be as small as possible due to the fact that the winding core reduces the active area of the lens. The rolling process itself is also revised to produce lenses with the above-mentioned small diameter winding cores and bend foil layers while sustaining a tight- fitting foil bundle. The lenses are studied at different energies and types of X-Ray tubes, as well as synchrotron sources, to gain additional information of the internal structure of the lens after the winding process. In this paper the current status of the lens development and results at X-Ray tube sources for use in diffractometers is presented.

  11. The effect of air flow on the temperature distribution and the harmonic conversion efficiency of the ADP crystal with large aperture in the temperature control scheme

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Lu, Lihua; Xiang, Yong; Bai, Qingshun

    2016-03-01

    This paper presented a temperature control scheme for ammonium dihydrogen phosphate (ADP) crystal of Ф80 mm in diameter, and the influence of the air flow was also studied. This research aims to obtain the high energy, high frequency laser with large aperture under the non-critical phase matching (NCPM). Firstly, thermal analysis was carried out to investigate the air flow property in the cavity, as well as the effect of ambient temperature was analyzed. Secondly, the temperature distributions of air flow were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results. Finally, the effect of air flow in the cavity was obtained from the heating method, and the variation of harmonic conversion efficiency caused by the ambient temperature was also highlighted.

  12. High Energy, Narrow Linewidth 1572nm Eryb-Fiber Based MOPA for a Multi-Aperture CO2 Trace-Gas Laser Space Transmitter

    NASA Technical Reports Server (NTRS)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-01-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.

  13. Design and construction of a large aperture quadrupole electromagnet for ILSE

    SciTech Connect

    Fawley, W.M.; Vella, M.C.; Peters, C.; Stuart, M.; Faltens, A.

    1995-08-01

    We are currently constructing a prototype quadrupole electromagnet for the proposed Induction Linac Systems Experiment (ILSE) at LBNL. ILSE will address many physics and engineering issues relevant to the design of a heavy-ion fusion driver accelerator. The pulsed electromagnet has two layers of current windings and will produce a field gradient of 28 T/m, wi a usable aperture of 6 cm. It operates at a repetition rate of 1 Hz, steady-state. In this paper, we discuss how the interaction of various concerns such as maximum dynamic aperture, short lattice period, field quality, iron yoke weight, heat transfer, and voltage standoff have led to our particular design choices. We also present 2- and 3-D numerical calculations concerning field topography and the results of transport simulations of space-charge dominated ion beams with ILSE parameters.

  14. A high-resolution detecting system based on machine vision for defects on large aperture and super-smooth surface

    NASA Astrophysics Data System (ADS)

    Yang, Yongying; Zhao, Limin; Wang, Shitong; Cao, Pin; Liu, Dong; Li, Lu; Yan, Lu; Li, Chen; Xie, Shibing; Li, Yang; Chen, Yangjie

    2015-02-01

    The high-resolution detecting system based on machine vision for defects on large aperture and super-smooth surface uses a novel ring telecentric lighting optical system detecting the defects on the sample all round and without blind spots. The scattering light induced by surface defects enters the adaptive and highly zoom microscopic scattering dark-field imaging system for defect detecting and then forms digital images. Sub-aperture microscopic scanning sampling and fast stitching on the surface is realized by using precise multi-axis shifting guided scanning system and a standard comparison board based upon binary optics is used to implement fast calibration of micron-dimension defects detected actually. The pattern recognition technology of digital image processing which can automatically output digitalized surface defects statements after scaling is established to comprehensively evaluate defects. This system which can reach micron-dimension defect resolution can achieve detections of large aperture components of 850 mm × 500 mm, solve the durable problem of subjective uncertainty brought in by human visual detection of defects and achieve quantitative detection of defects with machine vision.

  15. Effect of Internal Aperture Variability on Tracer Transport in Large Discrete Fracture Networks (DFN)

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Hyman, J.; Karra, S.; Gable, C. W.; Viswanathan, H. S.

    2015-12-01

    Aperture variability within individual fractures is usually neglected in modeling flow and transport through fractured media. Typically, individual fractures are assumed to be homogeneous. However, in reality, individual fractures are heterogeneous, which may affect flow and transport in fractured media. The relative importance of including in-fracture variability in flow and transport modeling has been under debate for a long time. Previous studies have shown flow channeling on an individual fracture with internal variability, where the fracture is considered isolated from the rest of the fracture network. Although these studies yield some clear insights into the process, the boundary conditions are impractical for field-scale networks, where the realistic boundary conditions are determined by fracture connections in the network. Therefore, flow in a single fracture is controlled not only by in-fracture variability but also by boundary conditions. In order to address the question of the importance of in-fracture variability, the internal heterogeneity of every individual fracture is incorporated into a three-dimensional fracture network, represented by a composition of intersecting fractures. The new DFN simulation capability, dfnWorks, is used to generate a kilometer scale DFNs similar to the Forsmark, Sweden site. In our DFN model, the in-fracture aperture variability is scattered over each cell of the computational mesh along the fracture, representing by a stationary Gaussian random field with various correlation lengths. The Lagrangian particle tracking is conducted in multiple DFN realizations and the flow-dependent Lagrangian parameters, non-reacting travel time, τ, and cumulative reactivity parameter, β, are obtained along particles streamlines. It is shown that early particle travel times are more sensitive to in-fracture aperture variability than tails of travel time distributions, where no significant effect of the aperture variations and spatial

  16. Operation of a DC large aperture volume-production H sup minus source

    SciTech Connect

    Kwan, J.W.; Ackerman, G.D.; Anderson, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Leung, K.N.; Lietzke, A.F.; Steele, W.F.

    1989-04-01

    In testing a multicusp volume-production H{sup {minus}} ion source (20 cm diameter, 23 cm long), we optimized the gas pressure, the plasma electrode bias potential and the magnetic filter. At the optimum pressure of 9 mT, the H{sup {minus}} beam output increased linearly with discharge power. The maximum H{sup {minus}} beam, measured with a current transformer downstream of the accelerator, was 100 mA while using a 6.67 cm{sup 2} aperture. Presently we are limited by overheating of the cathodes by the plasma ions. Under similar discharge conditions the maximum H{sup {minus}} current density was found to vary as a{sup {minus}0.7} where a is the aperture radius. Results from emittance measurements showed that the effective H{sup {minus}} ion temperature increased with a for a {gt} 0.8 cm. Thus the brightness of the beam decreased with increasing aperture radius. Operating the source with cesium would increase the H{sup {minus}} output however our accelerator must be improved to avoid breakdowns caused by the cesium contamination. 8 refs., 6 figs.

  17. Large vessel sealing with the argon laser.

    PubMed

    White, R A; Kopchok, G; Donayre, C; Lyons, R; White, G; Klein, S R; Pizzurro, D; Abergel, R P; Dwyer, R M; Uitto, J

    1987-01-01

    This study compared the histology, biochemistry, and tensile strength of laser-welded and sutured canine venotomies, arteriotomies, and arteriovenous fistulas. Twelve animals had bilateral femoral vessels studied, with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralateral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks (four animals for each type of repair), and were evaluated histologically by hematoxylin and eosin, elastin, and trichrome stains; biochemically by the formation of [3H]hydroxyproline as an index of collagen synthesis; and mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms, or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welding may be an alternative to sutures for repair of large-diameter venotomies, arteriotomies, and arteriovenous fistulas, as healing is comparable to that seen with suture repairs up to 4 weeks postoperatively. PMID:3306233

  18. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  19. Optical Design for the Optimum Solid Immersion Lens with High Numerical Aperture and Large Tolerance

    NASA Astrophysics Data System (ADS)

    Choi, Narak; Shim, Seongbo; Milster, Tom D.; Kim, Jaisoon

    2007-06-01

    Super hemispherical solid immersion lens system becomes a matter of interest due to its high numerical aperture (NA) gain. However, because of the instability of the aplanatic condition, even small amount of alignment error can easily lower the optical performance. To overcome the instability while maintaining high NA gain, we suggest an optimum solid immersion lens (opti-SIL) system which combines the advantages of both super hemispherical SIL (hyper-SIL) and hemispherical SIL (hemi-SIL). Exemplary designs and simulation results of the tolerance analysis show that opti-SIL system has much higher tolerances to various performance-lowering factors than hyper-SIL, even with relatively small NA resignation.

  20. Computation of scalar far-field patterns of large-aperture antennas

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1976-01-01

    In computer programs used for evaluating the performance of high-gain antennas, efficient numerical methods for calculating the far-field patterns must be used since the majority of computer time and storage requirements may be attributed to this phase of the program. The numerical method most frequently used is the Fast Fourier Transform (FFT), which computes the far field as the Fourier transform of the field distribution in the antenna aperture. A new numerical method that in many applications is superior to the FFT in terms of reducing computer time and storage requirements is described.

  1. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing.

    PubMed

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  2. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  3. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  4. Amplification of femtosecond pulses to above 1 J with large aperture Cr:LiSrAIF{sub 6} amplifiers

    SciTech Connect

    Ditmire, T.; Perry, M.D.

    1995-01-01

    The authors have developed a chirped pulse amplification system capable of producing femtosecond pulses with energy above one joule. This is accomplished by using a large aperture, flashlamp pumped Cr-LiSrAlF{sub 6} (Cr:LiSAF) amplifier. Optimum design of the 19 mm diameter amplifier results in a single pass gain of 5 with good beam quality. This amplifier produces 1.05 J pulses after compression with a width of < 125 fs at a repetition rate of 0.05 Hz.

  5. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment

    NASA Astrophysics Data System (ADS)

    Koch, Barbara

    2010-11-01

    This is a review of the latest developments in different fields of remote sensing for forest biomass mapping. The main fields of research within the last decade have focused on the use of small footprint airborne laser scanning systems, polarimetric synthetic radar interferometry and hyperspectral data. Parallel developments in the field of digital airborne camera systems, digital photogrammetry and very high resolution multispectral data have taken place and have also proven themselves suitable for forest mapping issues. Forest mapping is a wide field and a variety of forest parameters can be mapped or modelled based on remote sensing information alone or combined with field data. The most common information required about a forest is related to its wood production and environmental aspects. In this paper, we will focus on the potential of advanced remote sensing techniques to assess forest biomass. This information is especially required by the REDD (reducing of emission from avoided deforestation and degradation) process. For this reason, new types of remote sensing data such as fullwave laser scanning data, polarimetric radar interferometry (polarimetric systhetic aperture interferometry, PolInSAR) and hyperspectral data are the focus of the research. In recent times, a few state-of-the-art articles in the field of airborne laser scanning for forest applications have been published. The current paper will provide a state-of-the-art review of remote sensing with a particular focus on biomass estimation, including new findings with fullwave airborne laser scanning, hyperspectral and polarimetric synthetic aperture radar interferometry. A synthesis of the actual findings and an outline of future developments will be presented.

  6. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  7. Large-aperture deformable mirror correction of tiled-grating wavefront error

    NASA Astrophysics Data System (ADS)

    Kruschwitz, B. E.; Jungquist, R.; Qiao, J.; Abbey, S.; Dean, S. E.; Maywar, D. N.; Moore, M. D.; Waxer, L. J.; Wilson, M. E.

    2006-06-01

    When tiling three gratings, with each individually exhibiting astigmatism and power due to holographic errors and coating stress, the resulting wavefront aberrations contain high-frequency components as well as the fundamental frequency, which is nearly three cycles across the aperture in the tiling direction. A deformable mirror (DM) that was designed to compensate for much slower errors (e.g., those arising from distortion in amplifier disks) is being used to compensate for this tiling-induced error. This investigation studies the effectiveness of compensating only the fundamental frequency of the tiled aberration, and shows that this provides a significant improvement that is adequate for a range of expected aberrations. Limitations of the DM correction technique are also studied.

  8. Astrometric plates obtained at the primary focus of large aperture reflectors

    NASA Technical Reports Server (NTRS)

    Markos, A.

    1984-01-01

    Coma, astigmatism, and great differences in stellar magnitudes between photographed object and reference stars constitute the main sources of errors in measuring positional plates. These three sources of error can easily be eliminated by the method used at the Klet Observatory for obtaining precise observations of faint objects. The astrometric plates are taken by the method of two diaphragms. The first diaphragm, with a small central aperture; is located in front of the photographic plate. The second diaphragm is situated in front of the mirror. By a very short (of the order of tens of seconds) exposure a sufficient number of reference stars can be obtained throughout the entire plate. The stars are very well defined to the very edge of the plate and are easy to measure. Moreover, this method makes it possible to use plates of larger dimensions than usual so that it is always possible to find the necessary reference stars.

  9. Alternative Beam Efficiency Calculations for a Large-aperture Multiple-frequency Microwave Radiometer (LAMMR)

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1979-01-01

    The fundamental definition of beam efficiency, given in terms of a far field radiation pattern, was used to develop alternative definitions which improve accuracy, reduce the amount of calculation required, and isolate the separate factors composing beam efficiency. Well-known definitions of aperture efficiency were introduced successively to simplify the denominator of the fundamental definition. The superposition of complex vector spillover and backscattered fields was examined, and beam efficiency analysis in terms of power patterns was carried out. An extension from single to dual reflector geometries was included. It is noted that the alternative definitions are advantageous in the mathematical simulation of a radiometer system, and are not intended for the measurements discipline where fields have merged and therefore lost their identity.

  10. Design and construction of a large aperture, quadrupole electromagnet prototype for ILSE

    SciTech Connect

    Stuart, M.; Faltens, A.; Fawley, W.M.; Peters, C.; Vella, M.C.

    1995-04-01

    We are currently constructing a prototype quadrupole electromagnet for the proposed Induction Linac Systems Experiment (ILSE) at LBL. ILSE will address many physi and engineering issues relevant to the design of a heavy-ion fusion driver accelerator. The pulsed electromagnet has two layers of current windings and will produce a field gradient exceeding 25 T/m at a repetition rate of 1 Hz steady-state. In this paper, we discuss how the interaction of various concerns such as maximum dynamic aperture, short lattice period, field quality, iron yoke weight, heat transfer, and voltage standoff have led to our particular design choices. We also present 2- and 3-D numerical calculations concerning field topography and the results of transport simulations of space-charge dominated ion beams with ILSE parameters.

  11. Enhancement of conversion efficiency and spatial coherence of high order harmonics generated from pre-formed plasma plumes using an apertured laser beam

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Chakravarty, U.; Rathore, R.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2016-04-01

    The effect of laser beam aperturing (Ti: sapphire laser; 800 nm, 45 fs) on the conversion efficiency (CE), harmonic yield and spatial coherence of high order harmonics generated from a low excited plasma plume of carbon (neutral and singly charged ions) is studied. The optimization of CE by varying the aperture size in combination with different laser and plasma plume parameters was carried out. The CE of the 15th harmonic is enhanced from ˜10-7 for an unapertured laser beam to ˜10-6 for ˜¼ times the unapertured beam diameter, at same laser energy in both cases. Further, it was found that, at a given aperture size, there is an optimum prepulse intensity for maximum CE. The results are explained by taking into account the theoretical consideration of phase matching issues in plasma plumes. The study shows that tuning the prepulse intensity and aperture size gives an easy handle to increase the harmonic conversion along with its coherence properties. The study will be useful for producing an intense source of harmonics with high spatial coherence from plasmas plumes for applications.

  12. Potential of a Future Large Aperture UVOIR Space Observatory for Breakthrough Observations of Star and Planet Formation

    NASA Astrophysics Data System (ADS)

    Danchi, William C.; Grady, Carol A.; Padgett, Deborah

    2015-01-01

    A future large aperture space observatory operating from the UV to the near-infrared with a diameter between 10 and 15 meters will provide a unique opportunity for observations of star and planet formation, from nearby moving groups and associations to star formation in galaxies in the local universe. Our newly formed working group will examine the unique opportunities that such a telescope will give observers in a post-JWST/WFIRST-AFTA era that includes extremely large ground-based observatories such as the TMT, E-ELT, ALMA, and the VLTI. Given a potential suite of instruments for this observatory we will discuss some of the key areas of star and planet formation science where breakthroughs might occur.

  13. Direct laser writing of pyramidal plasmonic structures with apertures and asymmetric gratings towards efficient subwavelength light focusing.

    PubMed

    Mu, Jiajia; Liu, Zhiguang; Li, Jiafang; Hao, Tingting; Wang, Yujin; Sun, Shengsheng; Li, Zhi-Yuan; Li, Junjie; Li, Wuxia; Gu, Changzhi

    2015-08-24

    Efficient confining of photons into subwavelength scale is of great importance in both fundamental researches and engineering applications, of which one major challenge lies in the lack of effective and reliable on-chip nanofabrication techniques. Here we demonstrate the efficient subwavelength light focusing with carefully engineered pyramidal structures fabricated by direct laser writing and surface metallization. The important effects of the geometry and symmetry are investigated. Apertures with various sizes are flexibly introduced at the apex of the pyramids, the focusing spot size and center-to-sidelobe ratio of which could be improved a factor of ~4 and ~3, respectively, compared with the conical counterparts of identical size. Moreover, two pairs of asymmetric through-nanogratings are conceptually introduced onto the top end of the pyramids, showing significantly improved focusing characteristics. The studies provide a novel methodology for the design and realization of 3D plasmonic focusing with low-noise background and high energy transfer. PMID:26368223

  14. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals.

    PubMed

    Phillips, Jonathan P; Banerjee, Saumyabrata; Smith, Jodie; Fitton, Mike; Davenne, Tristan; Ertel, Klaus; Mason, Paul; Butcher, Thomas; De Vido, Mariastefania; Greenhalgh, Justin; Edwards, Chris; Hernandez-Gomez, Cristina; Collier, John

    2016-08-22

    We report on type-I phase-matched second harmonic generation (SHG) in three nonlinear crystals: DKDP (98% deuteration), YCOB (XZ plane), and LBO (XY plane), of 8 J, 10 Hz cryogenic gas cooled Yb:YAG laser operating at 1029.5 nm. DKDP exhibited an efficiency of 45% at a peak fundamental intensity of 0.24 GW/cm2 for 10 Hz operation at 10 ns. At the same intensity and repetition rate, YCOB and LBO showed 50% and 65% conversion efficiencies, respectively. Significant improvement in conversion efficiency, to a maximum of 82%, was demonstrated in LBO at 0.7 GW/cm2 and 10 Hz, generating output energy of 5.6 J at 514.75 nm, without damage or degradation. However, no improvement in conversion efficiency was recorded for YCOB at this increased intensity. Additionally, we present theoretically calculated temperature maps for both 10 J and 100 J operation at 10 Hz, and discuss the suitability of these three crystals for frequency conversion of a 100 J, 10 Hz diode pumped solid state laser (DPSSL). PMID:27557246

  15. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Horie, Yu; Ball, Alexander J.; Bagheri, Mahmood; Faraon, Andrei

    2015-05-01

    Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.

  16. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays.

    PubMed

    Arbabi, Amir; Horie, Yu; Ball, Alexander J; Bagheri, Mahmood; Faraon, Andrei

    2015-01-01

    Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption. PMID:25947118

  17. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J. Richard; Chiang, H. Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C. Barth; Padilla, Ivan; Rahlin, Alexandra S.; Reintsema, Carl; Riley, Daniel C.; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1∘. The system performed well in Spider during its successful 16 day flight.

  18. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol): Instrument and 2010 Science Campaign

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; BLAST-Pol Collaboration

    2012-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a 1.8-m telescope that observes polarized dust emission with a resolution of 1'. BLAST-Pol images the sky onto a focal plane that consists of 270 feed-horn coupled bolometers at 250, 350, and 500 microns. In January 2011, BLAST-Pol completed a successful 9.5-day flight over Antarctica. Eight science targets were observed, and a second flight is planned for December 2012. I will give an overview of the instrument performance during the first science campaign and present preliminary maps. BLAST-Pol maps will provide an excellent dataset for studying the role of magnetic fields in star formation.

  19. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers, Technology Developments, and Synergies with Other Future Facilities

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  20. Comparison of Turbulent Sensible Heat Flux Determined by Large-Aperture Scintillometer and Eddy Covariance over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng

    2015-01-01

    Field observations of the atmospheric boundary layer were made over urban and suburban areas in the Yangtze River Delta, China. Sensible heat fluxes were obtained by eddy-covariance (EC) systems and large-aperture scintillometers (LASs). The results indicated that (1) the sensible heat flux obtained by LAS was less noisy and slightly larger than that obtained by EC over both urban and suburban surfaces; (2) the values of were higher when the correlation coefficient of vertical wind speed and temperature () was smaller. Lower values of were due to low-frequency trends. The urban values of were smaller than suburban values at low values; (3) the sensible heat flux determined by LAS was improved by use of the Monin-Obukhov similarity theory of the temperature structure parameter over urban and suburban areas, and the improvement is more significant over urban surface areas.

  1. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument.

    PubMed

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J Richard; Chiang, H Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C Barth; Padilla, Ivan; Rahlin, Alexandra S; Reintsema, Carl; Riley, Daniel C; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1(∘). The system performed well in Spider during its successful 16 day flight. PMID:26827333

  2. Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor

    NASA Astrophysics Data System (ADS)

    Allen, T. J.; Zhang, E.; Beard, P. C.

    2015-03-01

    Laser-Scanning-Optical-Resolution Photoacoustic Microscopy (LSOR-PAM) requires an ultrasound detector with a low noise equivalent pressure (NEP) and a large angular detection aperture in order to image a large field of view (FOV). It is however challenging to meet these requirements when using piezoelectric receivers since using a small sensing element size (<100μm) in order to achieve a large angular detection aperture will inevitability reduce the sensitivity of the detector as it scales with decreasing element size. Fibre optic ultrasound sensors based on a Fabry Perot cavity do not suffer from this limitation and can provide high detection sensitivity (NEP<0.1kPa over a 20 MHz measurement bandwidth) with a large angular detection aperture due to their small active element size (~10μm). A LSOR-PAM system was developed and combined with this type of fibre optic ultrasound sensor. A set of phantom studies were undertaken. The first study demonstrated that a high resolution image over a large field of view (Ø11mm) could be obtained with a sampledetector separation of only 1.6mm. In the second study, a 12μm diameter tube filled with methylene blue whose absorption coefficient was similar to that of blood was visualised demonstrating that the fibre optic sensor could provide sufficient SNR for in-vivo microvascular OR-PAM imaging. These preliminary results suggest that the fibre optic sensor has the potential to outperform piezoelectric detectors for Laser-Scanning Optical Resolution Photoacoustic Microscopy (LSOR-PAM).

  3. Concept study of an Extremely Large Hyper Telescope (ELHyT) with 1200m sparse aperture for direct imaging at 100 micro-arcsecond resolution

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Mourard, Denis; Allouche, Fatmé; Chakraborthy, Rijuparna; Dejonghe, Julien; Surya, Arun; Bresson, Yves; Aime, Claude; Mary, David; Carlotti, Alexis

    2012-07-01

    The hypertelescope construction initiated in the Southern Alps (Labeyrie et al., this conference) has provided some preliminary operating experience indicating that larger versions, up to perhaps 1200m, are probably feasible at suitable sites. The Arecibo-like architecture of such instruments does not require the large mount and dome which dominate the cost of a 40m ELT. For the same cost, an "Extremely Large Hyper Telescope” ( ELHyT) may therefore have a larger collecting area. It may thus in principle reach higher limiting magnitudes, both for seeing-limited and, if equipped with a Laser Guide Star and adaptive phasing, for high-resolution imaging with gain as the size ratio, i.e. about 30 with respect to a 40m ELT. Like the radio arrays of antennas, such instruments can be grown progressively. Also, they can be up-graded with several focal gondolas, independently tracking different sources. Candidate sites have been identified in the Himalaya and the Andes. We describe several design options and compare the science achievable for both instruments, ELTs and ELHyTs. The broad science addressed by an ELHyT covers stellar chromospheres, transiting exoplanets and those requiring a high dynamic range, achieved by array apodization or coronagraphy. With a Laser Guide Star, it extends to faint compact sources beyond the limits of telescopes having a smaller collecting area, supernovae, active galactic nuclei, gamma ray bursts. The sparse content of remote galaxies seen in the Hubble Deep Field appears compatible with the crowding limitations of an ELHyT having 1000 apertures.

  4. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  5. The design and analysis of sub-wavelength metal-grating large-aperture VCSELs

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Ning, Y. Q.; Qin, L.; Liu, Y.; Wang, L. J.

    2012-10-01

    The polarization control of vertical-cavity surface-emitting lasers with high power emission has been demonstrated by using metal grating to import non-isotropic gain. The grating with a period of 186 nm and a duty ratio of 0.5 was fabricated on the GaAs-cap layer to provide additional reflectance for H-polarization. The pairs of P-distributed Bragg reflectors were reduced to realize the maximum difference threshold gain of two orthogonal polarizations. A polarization ratio of 3 with an output power of 860 mW at continuous-wave operation was demonstrated at room temperature, and the high-order modes were suppressed. As a result, the far-field beam divergence was suppressed to 12°.

  6. A survey of near-field testing methods for large aperture antennas and future trends

    NASA Technical Reports Server (NTRS)

    Newell, A. C.

    1983-01-01

    In recent years, a near-field antenna measurements have progressed from theoretical concepts to a wide variety of operational measurement systems. The current status of this work is summarized and its possible application to large space antennas is discussed.

  7. Modelling and simulation of large solid state laser systems

    SciTech Connect

    Simmons, W.W.; Warren, W.E.

    1986-01-01

    The role of numerical methods to simulate the several physical processes (e.g., diffraction, self-focusing, gain saturation) that are involved in coherent beam propagation through large laser systems is discussed. A comprehensive simulation code for modeling the pertinent physical phenomena observed in laser operations (growth of small-scale modulation, spatial filter, imaging, gain saturation and beam-induced damage) is described in some detail. Comparisons between code results and solid state laser output performance data are presented. Design and performance estimation of the large Nova laser system at LLNL are given. Finally, a global design rule for large, solid state laser systems is discussed.

  8. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power

    NASA Astrophysics Data System (ADS)

    Leich, M.; Jäger, M.; Grimm, S.; Hoh, D.; Jetschke, S.; Becker, M.; Hartung, A.; Bartelt, H.

    2014-04-01

    We report on a tapered large-core Yb fiber laser operating at 976 nm emission wavelength. It was realized using a high-numerical aperture large-core fiber with 126 μm core diameter, which was fabricated by powder-sinter technology and shows a very homogeneous step-index profile. The end of the fiber is tapered down to match a single-mode fiber containing a fiber Bragg grating. Using the benefits of core-pumping and the feedback of the spliced fiber Bragg grating, we achieved efficient pump light absorption and wavelength stable 976 nm lasing with single-mode performance. We could demonstrate 10 W laser power out of a 10 μm fiber core with a slope efficiency of 31% with respect to the launched pump power. The presented device is well-suited for fiber-coupled pumping of amplifiers for high peak power.

  9. Preliminary evaluation of sensible heat flux measurements from a large aperture scintillometer using lysimetric data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The path integrating capabilities of scintillometers over several kilometers make it a potential tool that can bridge the gap between primary point based observations (lysimeters, Bowen ratio, or eddy covariance) and the demand for large-scale spatially averaged surface fluxes. Further, the spatial...

  10. New technologies for the actuation and controls of large aperture lightweight quality mirrors

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.

    2003-01-01

    This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.

  11. Research of active panel technology for large aperture millimeter-wave/sub-millimeter-wave telescope

    NASA Astrophysics Data System (ADS)

    Wu, Xuhao; Cui, Xiangqun

    2010-05-01

    As Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project was completed successfully, indicating the key technology of active optics has been mastered by the Chinese astronomical community, experts of Nanjing Institute of Astronomical Optics and Technology (NIAOT), builders of this project, started to consider how to use the technology developed in large optical telescope such as LAMOST to improve the performance of millimeterwave / sub-millimeter-wave telescope. In order to do more research work about active optics of millimeter submillimeter band and improve the performance of Delingha 13.7m millimeter-wave telescope, researchers of NIAOT intend to upgrade the reflect panel accuracy of this telescope. This paper will introduce the preliminary work of the accuracy-upgrading task, numerical simulation of the 13.7m telescope. In this presentation, the primary reflector finite element model (FEM) construction, gravity and thermal deformation, and modal analyze are described. The result shows that the gravity and thermal distortion of the reflector are contributed mostly by the back-structure and the active support for the panels is very necessary to restrain this kind of distortion.

  12. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  13. Design of large aperture four group elements mid-wave infrared zoom lens

    NASA Astrophysics Data System (ADS)

    Ji, Yiqun; Shi, Rongbao; He, Hucheng; Shen, Weimin

    2012-10-01

    Zoom lens with variable focal length is well fit for researching objectives far and near. Design of zoom lens working at mid-wave infrared wavelength (7.7-10.3_m) and its view field 10 degrees is presented. Determination of the initial configuration of the variable and the compensate groups are discussed according to the mechanism compensate curves. The compensate group is determined with positive power. Its focal length changes during a large scope, which is from 300mm to 100mm. And the corresponding F number variables from 3.75 to 1.25. So the residual aberration needs to be carefully corrected. The optimized zoom lens is composed of four group elements, and its performance reaches diffraction limited at each focal position.

  14. Cleaning of large area by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir I.; Uteza, Olivier P.

    2000-01-01

    Surface removal technologies are being challenged from environmental and economic perspectives. This paper is concerned with laser ablation applied to large surface cleaning with an automatized excimer laser unit. The study focused on metallic surfaces that are oxidized and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The whole system is described: laser, beam deliver, particle collection cell, real time control of cleaning processes. Results concerning surface laser interaction and substrate modifications are presented.

  15. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  16. Study on the Stressed Mirror Polishing with a Continuous Polishing Machine for Large Aperture Off-axis Aspheric Mirrors

    NASA Astrophysics Data System (ADS)

    Li, Xin-nan; Zhang, Hai-ying; Cui, Xiang-qun; Jiang, Zi-bo; Zheng, Yi; Liu, Xing-tao; Ni, Hou-kun

    2012-10-01

    A special stressed annular polishing technique is proposed to mill the off-axis aspheric sub-mirrors of a large segmented mirror with an annular polishing machine. Based on the basic principle of stressed annular polishing technique, a set of special stressing mechanisms are designed to convert milling the aspheric surfaces of sub-mirrors with different off-axis distances into milling the spherical surfaces with identical radii of curvature, so that they can be pol- ished simultaneously on a continuous polishing machine. It took about contin- uous 40 hours to polish a scaled-down mirror of the planning Chinese Future Giant Telescope (CFGT) using this technique. This mirror has the 330 mm di- ameter, 3.6 m off-axis distance, and the 21.6 m radius of curvature, and its max- imum asphericity is 16 micron. The experiment shows that this method has a high effciency, suits batch manufacturing, especially the batch manufacturing of aspheric sub-mirrors of the segmented primary mirror of an extremely large aperture telescope.

  17. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  18. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    NASA Astrophysics Data System (ADS)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  19. Deposition of high quality YBa2Cu3O(7-delta) thin films over large areas by pulsed laser ablation with substrate scanning

    NASA Technical Reports Server (NTRS)

    Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.

    1991-01-01

    The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.

  20. Large-aperture continuous-phase diffractive optical element for beam transform

    NASA Astrophysics Data System (ADS)

    Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-11-01

    Beam transform, such as to obtain uniform focal spot with flat top, steep edge, low side lobes and high light efficiency, can be realized well by diffractive optical element (DOE). The DOE has many advantages, such as high light efficiency and strong phase distribution design flexibility. To increase the light efficiency and decrease large-angle scattering, continuous phase DOE should be used. The phase design is competed by a kind of multi-resolution hybrid algorithm based on hill-climbing and simulated annealing, which exploits sufficiently strong convergence ability of the hill climbing and global optimization potential of the simulated annealing. A kind of phase distribution with good geometrical structure and diameter 80 mm is obtained by choosing disturbance function, receipt and refused probability and so on. The simulated results show that the light efficiency is more than 95 percent, and the non-uniformity is less than 5 percent. Because the etching depth is direct proportion to the exposure time, to obtain continuous phase DOE, a kind of hollowed-out mask, namely gray-scale mask is used to control exposure time of each are. The mask is manufactured by linear cutting machine. The continuous phase DOE with diameter 80mm is fabricated by ion-etching with the mask. Finally, the tolerance of manufacturing error including depth error and alignment error are analyzed.

  1. From Monolithics to Tethers to Freeflyers: The Spectrum of Large Aperture Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Quinn, David; Bauer, Frank (Technical Monitor)

    2002-01-01

    As part of NASA's endeavor to push the envelope and go where we have never been before, the Space Science Enterprise has laid out a vision which includes several missions that revolutionize the collection of scientific data from space. Many of the missions designed to meet the objectives of these programs depend heavily on the ability to perform space-based interferometry, which has recently become a rapidly growing field of investigation for both the scientific and engineering communities. While scientists are faced with the challenges of designing high fidelity optical systems capable of making detailed observations, engineers wrestle with the problem of providing s-pace-based platforms that can permit this data gathering to occur. Observational data gathering is desired at's variety of spectral wavelengths and resolutions, calling for interferometers with a range of baseline requirements. Approaches to configuration design are as varied as the missions themselves from large monolithic spacecraft to multiple free-flying small spacecraft and everything in between. As will be discussed, no one approach provides a 'panacea' of solutions rather each has its place in terms of the mission requirements. The purpose here is to identify the advantages and disadvantages of the various approaches, to discuss the driving factors in design selection and determine the relative range of applicability of each design approach.

  2. T/R module development for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Andricos, Constantine; Kumley, Kendra; Berkun, Andrew; Hodges, Richard; Spitz, Suzanne

    2004-01-01

    This paper describes a transmit / receive (T/R) module for a large L-band space based radar active phased array being developed at JPL. Electrical performance and construction techniques are described, with emphasis on the former. The T/R modules have a bandwidth of more than 80 MHz centered at 1260MHz and support dual, switched polarizations. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit attenuator, respectively. The transmitter power amplifier generates 2.4 W into a nominal 50 ohm load with 36% overall efficiency. The receiver noise figure is 4.4 dB including all front-end losses. The module weighs 32 g and has a footprint of 8 cm x 4.5 cm. Fourteen of these T/R modules were fabricated at the JPL Pick-and-Place Facility and were tested using a computer-controlled measurement facility developed at JPL. Calibrated performance of this set of T/R modules is presented and shows good agreement with design predictions.

  3. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  4. Neutral density estimation derived from meteoroid measurements using high-power, large-aperture radar

    NASA Astrophysics Data System (ADS)

    Li, A.; Close, S.

    2016-07-01

    We present a new method to estimate the neutral density of the lower thermosphere/upper mesosphere given deceleration measurements from meteoroids as they enter Earth's atmosphere. By tracking the plasma (referred to as head echoes) surrounding the ablating meteoroid, we are able to measure the range and velocity of the meteoroid in 3-D. This is accomplished at Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR) with the use of four additional receiving horns. Combined with the momentum and ablation equations, we can feed large quantities of data into a minimization function which estimates the associated constants related to the ablation process and, more importantly, the density ratios between successive layers of the atmosphere. Furthermore, if we take statistics of the masses and bulk densities of the meteoroids, we can calculate the neutral densities and its associated error by the ratio distribution on the minimum error statistic. A standard deviation of approximately 10% can be achieved, neglecting measurement error from the radar. Errors in velocity and deceleration compound this uncertainty, which in the best case amounts to an additional 4% error. The accuracy can be further improved if we take increasing amounts of measurements, limited only by the quality of the ranging measurements and the probability of knowing the median of the distribution. Data analyzed consist mainly of approximately 500 meteoroids over a span of 20 min on two separate days. The results are compared to the existing atmospheric model NRLMSISE-00, which predicts lower density ratios and static neutral densities at these altitudes.

  5. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    NASA Astrophysics Data System (ADS)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  6. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  7. Study on key techniques for synthetic aperture ladar system

    NASA Astrophysics Data System (ADS)

    Cao, Changqing; Zeng, Xiaodong; Feng, Zhejun; Zhang, Wenrui; Su, Lei

    2008-03-01

    The spatial resolution of a conventional imaging LADAR system is constrained by the diffraction limit of the telescope aperture. The purpose of this work is to investigate Synthetic Aperture Imaging LADAR (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long range, two-dimensional imaging with modest aperture diameters. Because of many advantages, LADAR based on synthetic aperture theory is becoming research hotspot and practicality. Synthetic Aperture LADAR (SAL) technology satisfies the critical need for reliable, long-range battlefield awareness. An image that takes radar tens of seconds to produce can be produced in a few thousands of a second at optical frequencies. While radar waves respond to macroscopic features such as corners, edges, and facets, laser waves interact with microscopic surface characteristics, which results in imagery that appears more familiar and is more easily interpreted. SAL could provide high resolution optical/infrared imaging. In the present paper we have tried to answer three questions: (1) the process of collecting the samples over the large "synthetic" aperture; (2) differences between SAR and SAL; (3) the key techniques for SAL system. The principle and progress of SAL are introduced and a typical SAL system is described. Beam stabilization, chirp laser, and heterodyne detection, which are among the most challenging aspects of SAL, are discussed in detail.

  8. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; Postman, Marc; Sparks, Williams

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  9. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  10. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  11. A scalable multi-chip architecture to realise large-format microshutter arrays for coded aperture applications

    NASA Astrophysics Data System (ADS)

    McNie, Mark E.; King, David O.; Smith, Gilbert W.; Stone, Steven M.; Brown, Alan G.; Gordon, Neil T.; Slinger, Christopher W.; Cannon, Kevin; Riches, Stephen; Rogers, Stanley

    2009-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously we reported on the realization of a 2x2cm single chip mask in the mid-IR based on polysilicon micro-opto-electro-mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. The MOEMS architecture employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we present the latest transmission results in the mid-IR band (3-5μm) and report on progress in developing a scalable architecture based on a tiled approach using multiple 2 x 2cm MOEMS chips with associated control ASICs integrated using flip chip technology. Initial work has focused on a 2 x 2 tiled array as a stepping stone towards an 8 x 8 array.

  12. Seasonal variability of turbulent fluxes over a vegetated subtropical coastal wetland measured by large aperture scintillometry and eddy covariance

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Gray, Michael; Riesenkamp, Michiel; Lockington, David; McGowan, Hamish

    2016-04-01

    Subtropical coastal wetlands are particularly susceptible to the impacts of climate variability: their recharge rates strongly depend on rainfall, and the occurrence of prolonged droughts or wet periods have direct consequences for wetland health and bio-diversity. There is therefore a need to close the water budget of these ecosystems and this requires the quantification of rates of evaporation/evapotranspiration. However, few studies have documented land-atmosphere exchanges over wetlands for which water level varies considerably during a typical annual cycle. Here, we present a year of turbulent flux observations over a wetland on the subtropical coast of eastern Australia. Large Aperture Scintillometry and Eddy Covariance are used to derive sensible heat fluxes. Latent heat fluxes are also derived through an energy balance for both instruments' observations and also directly through Eddy Covariance. Careful sensitivity analysis of the instrumental footprints, seasonal variations of land surface parameters such as roughness length and displacement height are examined and subsequent uncertainties in the derived turbulent fluxes are discussed. Finally we show how these observations can also help better understand hydrological processes at the catchment scale.

  13. Tilt angular anisoplanatism and a full-aperture tilt-measurement technique with a laser guide star.

    PubMed

    Belen'kii, M S

    2000-11-20

    A method is presented for sensing atmospheric wave-front tilt from a laser guide star (LGS) by observing a laser beacon with auxiliary telescopes. The analysis is performed with a LGS scatter model and Zernike polynomial expansion of wave-front distortions. It is shown that integration of the LGS image over its angular extent and the position of the auxiliary telescope in an array reduce the tilt sensing error associated with the contribution from the downward path. This allows us to single out only the wave-front tilt of the transmitted beam on the uplink path that corresponds to the tilt for the scientific object. The tilt angular correlation is analyzed in the atmosphere with a finite turbulence outer scale. The tilt correlation angle depends on the angular size of the telescope and the outer scale of turbulence. The tilt sensing error increases with the auxiliary telescope diameter, suggesting that an auxiliary telescope must be small. The Strehl ratio associated with the contribution from the downward path is in the range from 0.1 to 0.9 when the relative telescope diameter D/r(0) varies from 4 to 93 and the turbulence outer scale is in the 10-150-m range. Tilt correction increases the Strehl ratio compared with the uncorrected image for all the system parameters and seeing conditions considered. The method discussed gives a higher performance than the conventional technique, which uses an off-axis natural guide star. A scheme for measuring tilt with a beam projected from a small aperture is described. This scheme allows us to avoid phosphorescence of the main optical train for a sodium LGS. PMID:18354615

  14. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  15. Comparison of full-aperture interferometry to subaperture stitched interferometry for a large-diameter fast mirror

    NASA Astrophysics Data System (ADS)

    Catanzaro, Brian E.; Thomas, James A.; Cohen, Eri J.

    2001-11-01

    The Herschel Space Observatory (formerly known as FIRST) consists of a 3.5 m space telescope. Stitching sub aperture interferograms may offer considerable cost savings during testing of the flight telescope as compared to other techniques. A comparative demonstration is presented of interferogram stitching techniques that enable a composite map of a 3-D surface to be assembled from a sequence of sub-aperture measurements. This paper describes the fundamental procedures for stitching together component data sets and demonstrates such techniques with real data sets. A set of 14 sub-aperture measurements was made of a 2 m diameter all-composite mirror developed as part of the Herschel Space Observatory program and two different stitching software packages were employed to stitch together the sub-aperture surface maps. The software packages differ fundamentally in the way the sub-aperture maps are three-dimensionally stitched, one employing a local technique and the other using a global technique. The processed results from both algorithms are compared with each other and with a full-aperture reference measurement made of the same test optic. A summary of the results is presented and potential modifications and enhancements to the stitching techniques are discussed.

  16. Large mode-volume, large beta, photonic crystal laser resonator

    SciTech Connect

    Dezfouli, Mohsen Kamandar; Dignam, Marc M.

    2014-12-15

    We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

  17. Resolving the Effects of Aperture and Volume Restriction of the Flow by Semi-Porous Barriers Using Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Chatziefstratiou, Efthalia K.; Velissariou, Vasilia; Bohrer, Gil

    2014-09-01

    The Regional Atmospheric Modelling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES) model is used to simulate the effects of large rectangular prism-shaped semi-porous barriers of varying densities under neutrally buoyant conditions. RAFLES model resolves flows inside and above forested canopies and other semi-porous barriers, and it accounts for barrier-induced drag on the flow and surface flux exchange between the barrier and the air. Unlike most other models, RAFLES model also accounts for the barrier-induced volume and aperture restriction via a modified version of the cut-cell coordinate system. We explicitly tested the effects of the numerical representation of volume restriction, independent of the effects of the drag, by comparing drag-only simulations (where we prescribed neither volume nor aperture restrictions to the flow), restriction-only simulations (where we prescribed no drag), and control simulations where both drag and volume plus aperture restrictions were included. Previous modelling and empirical work have revealed the development of important areas of increased uplift upwind of forward-facing steps, and recirculation zones downwind of backward-facing steps. Our simulations show that representation of the effects of the volume and aperture restriction due to the presence of semi-porous barriers leads to differences in the strengths and locations of increased-updraft and recirculation zones, and the length and strength of impact and adjustment zones when compared to simulation solutions with a drag-only representation. These are mostly driven by differences to the momentum budget of the streamwise wind velocity by resolved turbulence and pressure gradient fields around the front and back edges of the barrier. We propose that volume plus aperture restriction is an important component of the flow system in semi-porous environments such as forests and cities and should be considered by large-eddy simulation (LES).

  18. Large volume multiple-path nuclear pumped laser

    SciTech Connect

    Hohl, F.; Deyoung, R.J.

    1981-11-01

    Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems. Official Gazette of the U.S. Patent and Trademark Office

  19. Large area electron beam pumped krypton fluoride laser amplifier

    SciTech Connect

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-06-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm {times} 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high {times} 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. {copyright} {ital 1997 American Institute of Physics.}

  20. Transverse Mode Structure and Pattern Formation in Oxide Confined Vertical Cavity Semiconductor Lasers

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Hegarty, S.P.; Hou, H.Q.; Huyet, G.; McInerney, J.G.; Porta, P.

    1999-07-06

    We analyze the transverse profiles of oxide-confined vertical cavity laser diodes as a function of aperture size. For small apertures we demonstrate that thermal lensing can be the dominant effect in determining the transverse resonator properties. We also analyze pattern formation in lasers with large apertures where we observe the appearance of tilted waves.

  1. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Heinselman, Craig J.; Chau, Jorge L.; Chandran, Amal; Woodman, Ronald

    2006-07-01

    We report initial results of an effort to model the diurnal and seasonal variability of the meteor rate detected by high power and large aperture (HPLA) radars. The model uses Monte Carlo simulation techniques and at present assumes that most of the detected particles originate from three radiant distributions with the most dominant concentrated around the Earth's apex. The other two sources are centered 80° in ecliptic longitude to each side of the apex and are commonly known as helion and antihelion. To reproduce the measurements, the apex source flux was set to provide ˜70% of the total number of particles while the other ˜30% is provided by the combined contribution of the two remaining sources. The results of the model are in excellent agreement with observed diurnal curves obtained at different seasons and locations using the 430 MHz Arecibo radar in Puerto Rico, the 50 MHz Jicamarca radar in Perú, and the 1.29 GHz Sondrestrom radar in Greenland. To obtain agreement with the observed diurnal and seasonal variability of the meteor rate, an empirical atmospheric filtering effect was introduced in the simulation which prevents meteors with low-elevation radiants (≤20°) from being detected by the radars at mesospheric altitudes. The filtering effect is probably produced by a combination of factors related to the interaction of the meteor with the air molecules such as electron production and/or the ablation at higher altitudes. On the basis of these results we calculate the micrometeor global, diurnal, and seasonal input in the upper atmosphere.

  2. Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Lee, Jun-Ho; Kim, Bo-Young

    2015-08-01

    The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat ( Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas ("footprint") of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%-30% in terms of the influence of input parameters and the nondimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a "micro- a scale"), depending on local meteorological conditions.

  3. Determining meteoroid bulk densities using a plasma scattering model with high-power large-aperture radar data

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Volz, Ryan; Loveland, Rohan; Macdonell, Alex; Colestock, Patrick; Linscott, Ivan; Oppenheim, Meers

    2012-09-01

    We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.

  4. A conceptual design for a Cassegrain-mounted high-resolution optical spectrograph for large-aperture telescopes

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia S.; Osterman, Steven; Burgh, Eric; Beasley, Matthew; Scowen, Paul; Veach, Todd; Jordan, Steven; Ebbets, Dennis; Lieber, Michael; deCino, James; Castilho, Bruno Vaz; Gneiding, Clemens; César de Oliveira, Antonio

    2013-09-01

    We present a conceptual design for a high-resolution optical spectrograph appropriate for mounting at Cassegrain on a large aperture telescope. The design is based on our work for the Gemini High Resolution Optical Spectrograph (CUGHOS) project. Our design places the spectrograph at Cassegrain focus to maximize throughput and blue wavelength coverage, delivering R=40,000 resolving power over a continuous 320-1050 nm waveband with throughputs twice those of current instruments. The optical design uses a two-arm, cross-dispersed echelle format with each arm optimized to maximize efficiency. A fixed image slicer is used to minimize optics sizes. The principal challenge for the instrument design is to minimize flexure and degradation of the optical image. To ensure image stability, our opto-mechanical design combines a cost-effective, passively stable bench employing a honeycomb aluminum structure with active flexure control. The active flexure compensation consists of hexapod mounts for each focal plane with full 6-axis range of motion capability to correct for focus and beam displacement. We verified instrument performance using an integrated model that couples the optical and mechanical design to image performance. The full end-to-end modeling of the system under gravitational, thermal, and vibrational perturbations shows that deflections of the optical beam at the focal plane are <29 μm per exposure under the worst case scenario (<10 μm for most orientations), with final correction to 5 μm or better using open-loop active control to meet the stability requirement. The design elements and high fidelity modeling process are generally applicable to instruments requiring high stability under a varying gravity vector.

  5. A methodology for laser diagnostics in large-bore marine two-stroke diesel engines

    NASA Astrophysics Data System (ADS)

    Hult, J.; Mayer, S.

    2013-04-01

    Large two-stroke diesel engines for marine propulsion offer several challenges to successful implementation of the laser diagnostic techniques applied extensively in smaller automotive engines. For this purpose a fully operational large-bore engine has been modified to allow flexible optical access, through 24 optical ports with clear diameters of 40 mm. By mounting the entire optical set-up directly to the engine, effects of the vigorous vibrations and thermal drifts on alignment can be minimized. Wide-angle observation and illumination, as well as relatively large aperture detection, is made possible through mounting of optical modules and relays inside optical ports. This allows positioning of the last optical element within 10 mm from the cylinder wall. Finally, the implementation on a multi-cylinder engine allows for flexible and independent operation of the optically accessible cylinder for testing purposes. The performance of the integrated optical engine and imaging system developed is demonstrated through laser Mie scattering imaging of fuel jet structures, from which information on liquid penetration and spray angles can be deduced. Double pulse laser-sheet imaging of native in-cylinder structures is also demonstrated, for the purpose of velocimetry.

  6. Design and prototype tests of a large-aperture 37-53 MHz ferrite-tuned booster synchrotron cavity

    SciTech Connect

    Mark S. Champion et al.

    2001-07-12

    The Booster synchrotron at Fermilab employs eighteen 37-53 MHz ferrite-tuned double-gap coaxial radiofrequency cavities for acceleration of protons from 400 MeV to 8 GeV. The cavities have an aperture of 2.25 inches and operate at 55 kV per cavity. Future high duty factor operation of the Booster will be problematic due to unavoidable beam loss at the cavities resulting in excessive activation. The power amplifiers, high maintenance items, are mounted directly to the cavities in the tunnel. A proposed replacement for the Booster, the Proton Driver, will utilize the Booster radiofrequency cavities and requires not only a larger aperture, but also higher voltage. A research and development program is underway at Fermilab to modify the Booster cavities to provide a 5-inch aperture and a 20% voltage increase. A prototype has been constructed and high power tests have bee completed. The cavity design and test results is presented.

  7. MULTISPECTRAL LASER-INDUCED FLUORESCENCE IMAGING SYSTEM FOR LARGE BIOLOGICAL SAMPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented is a detailed description of a common aperture, multispectral laser-induced fluorescence imaging system developed to allow detection of fecal matter on agricultural products. With an expanded, 355 nm, Nd:YAG laser beam as the excitation source, fluorescence emission images in the blue, gr...

  8. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  9. Large-Aperture [O I] 6300 A Photometry of Comet Hale-Bopp: Implications for the Photochemistry of OH

    NASA Technical Reports Server (NTRS)

    Morgenthaler, Jeffrey P.; Harris, Walter M.; Scherb, Frank; Anderson, Christopher M.; Oliversen, Ronald J.; Doane, Nathaniel E.; Combi, Michael R.; Marconi, Maximus L.; Smyth, William H.

    2001-01-01

    Large-aperture photometric observations of comet Hale-Bopp (C/1995 O1) in the forbidden red line of neutral oxygen ([O I] 6300 angstroms) with the 150 mm dual-etalon Fabry-Perot spectrometer that comprises the Wisconsin H-alpha Mapper and a 50 mm dual-etalon Fabry-Perot spectrometer at the McMath-Pierce main telescope from 1997 late February to mid April yield a total metastable O((sup 1)D) production rate of (2.3-5.9) x 10(exp 30)/s. Applying the standard H2O and OH photodissociation branching ratios, we derive a water production rate, Q(H2O), of (2.6-6.1) x 10(exp 31)/s, which disagrees with Q(H2O = 1x10(exp 31)/s determined by independent H2O, OH, and H measurements. Furthermore, our own [O I] 6300 observations of the inner coma (< 30,000 km) using the 3.5 m Wisconsin-Indiana-Yale-NOAO telescope Hydra and Densepak multi-object spectrographs yield Q(H2O) = 1 x 10(exp 31)/s. Using our [O I] 6300 data, which cover spatial scales ranging from 2,000 to 1x10(exp 6) km, and a complementary set of wide-field ground-based OH images, we can constrain the sources of the apparent excess O((sup 1)D) emission to the outer coma, where photodissociation of OH is assumed to be the dominant O((sup 1)D) production mechanism. From production rates of other oxygen-bearing volatiles (e.g., CO and CO2), we can account for at most 30% of the observed excess O((sup 1)D) emission. Since even less O((sup 1)D) should be coming from other sources (e.g., electron excitation of neutral O and distributed nonnuclear sources of H2O), we hypothesize that the bulk of the excess O((sup 1)D) is likely coming from photodissociating OH. Using the experimental OH photo-dissociation cross section of Nee and Lee at Ly-alpha as a guide in modifying the theoretical OH cross sections of van Dishoeck and Dalgarno, we can account for approximately 60% of the observed O((sup 1)D) excess without requiring major modifications to the other OH branching ratios or the total OH photodissociation lifetime.

  10. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  11. Laser processing system development of large area and high precision

    NASA Astrophysics Data System (ADS)

    Park, Hyeongchan; Ryu, Kwanghyun; Hwang, Taesang

    2013-03-01

    As industry of PCB (Printed Circuit Board) and display growing, this industry requires an increasingly high-precision quality so current cutting process in industry is preferred laser machining than mechanical machining. Now, laser machining is used almost "step and repeat" method in large area, but this method has a problem such as cutting quality in the continuity of edge parts, cutting speed and low productivity. To solve these problems in large area, on-the-fly (stagescanner synchronized system) is gradually increasing. On-the-fly technology is able to process large area with high speed because of stage-scanner synchronized moving. We designed laser-based high precision system with on-the-fly. In this system, we used UV nano-second pulse laser, power controller and scanner with telecentric f-theta lens. The power controller is consisted of HWP(Half Wave Plate), thin film plate polarizer, photo diode, micro step motor and control board. Laser power is possible to monitor real-time and adjust precision power by using power controller. Using this machine, we tested cutting of large area coverlay and sheet type large area PCB by applying on-the-fly. As a result, our developed machine is possible to process large area without the problem of the continuity of edge parts and by high cutting speed than competitor about coverlay.

  12. A new look at Fresnel field computation using the Jacobi-Bessel series. [large aperture antenna design

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Rahmat-Samii, Y.

    1981-01-01

    Computational procedures that would be useful in finding the Fresnel field from a knowledge of the Jacobi-Bessel expansion of the far field are considered. The range of validity of the Fresnel approximation is carefully examined by comparing it with the exact closed form solution for the uniform circular aperture. Also investigated numerically, and in great detail, is the range of validity (over theta) of the Fresnel small angle (FSA) approximation. For moderate sized apertures as small as 10 wavelengths, it is found that the FSA approximation is very accurate to angles as wide as four or more sidelobes (as seen in the far zone). A very efficient computational method is shown to exist for the radiation integral in the form of a single series expansion that is analytically continuous and convergent for a wide range of observation points in three-dimensional space.

  13. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings. PMID:26932032

  14. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  15. A study program on large aperture electronic scanning phased array antennas for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Fundamental phased array theory and performance parameters are discussed in terms of their application to microwave radiometry, and four scanning phased arrays representing current examples of state-of-the-art phased array technology are evaluated for potential use as components of the multispectral antenna system for the space shuttle imaging microwave system (SIMS). A discussion of problem areas, both in performance and fabrication is included, with extrapolations of performance characteristics for phased array antennas of increased sizes up to 20 m by 20 m. The possibility of interlacing two or more phased arrays to achieve a multifrequency aperture is considered, and, finally, a specific antenna system is recommended for use with SIMS.

  16. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  17. A large-field laser holographic focusing schilieren system

    NASA Technical Reports Server (NTRS)

    Doggett, Glen P.; Chokani, N.

    1992-01-01

    A large-field laser holographic focusing schlieren system for high-speed flow visualization has been built and evaluated. This system is based on a recently improved large-field focusing schlieren technique and is combined with laser holography methods to record three-dimensional flows. A coordinated experimental and computational study of supersonic flows over wedge, cone, and sphere geometries was conducted to evaluate the capabilities and limitations of the system. The ability of the system to focus on planes normal to its optical axis is demonstrated. The sharpness of focus of the present system was found to be limited. Issues regarding obtaining quantitative measurements of the density gradient are discussed.

  18. 10 x 10 cm-sq aperture 1 Hz repetition rate X-ray preionized-discharge pumped KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Mizoguchi, H.; Endoh, A.; Jethwa, J.; Schaefer, F. P.

    A 10 x 10 sq cm aperture X-ray preionized discharge-pumped KrF excimer amplifier for subpicosecond pulse amplification is demonstrated experimentally in the oscillator mode operation. A fast pulse-forming line (36 nF, 340 kV) together with a peaking capacitor (6 nF) switched with a rail-gap switch, and collimated X-ray preionization is employed to obtain a wide and uniform discharge. The active cross section of the laser beam is about 10 x 8 sq cm and the intense plateau region is about 10 x 5.5 sq cm. The laser pulse energy exceeds 4.7 J in a 28 ns pulse (FWHM).

  19. Comparison of CNES spherical and NASA hemispherical large aperture integrating sources. I - Using a laboratory transfer spectroradiometer. II - Using the SPOT-2 satellite instruments

    NASA Technical Reports Server (NTRS)

    Guenther, B.; Mclean, J.; Leroy, M.; Henry, P.

    1990-01-01

    CNES spherical and NASA hemispherical large aperture calibration sources are examined using a laboratory transfer spectroradiometer and SPOT-2 instruments. The sources, collected at Matra in France during October 1987, are compared in terms of absolute calibration, linearity, and uniformity. The laboratory transfer spectroradiometer data reveal that the calibration results correspond to within about 7 percent absolute accuracy level and the linearity of the CNES source with lamp level is good. It is observed using the satellite data that both sources have an excellent uniformity over a 4 deg field of view.

  20. Plane-polar Fresnel and far-field computations using the Fresnel-Wilcox and Jacobi-Bessel expansions. [for large aperture antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1981-01-01

    It is pointed out that the computation of the Fresnel fields for large aperture antennas is significant for many applications. The present investigation is concerned with an approach for the effective utilization of the coefficients of the Jacobi-Bessel series for the far-field to obtain an analytically continuous representation of the antenna field which is valid from the Fresnel region into the far field. Attention is given to exact formulations and closed form solutions, Fresnel and Fresnel small angle approximations, aspects of field expansion, the accuracy of the Fresnel and Fresnel small angle approximations, and the Jacobi-Bessel expansion applied to the Fresnel small angle approximation.

  1. Laser-Induced Production of Large Carbon-Based Toriods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the production of large carbon-based toroids (CBTs) from fullerencs. The process involves two step laser irradiation of a mixed fullcrene target (76% C-60, 22% C-70). Transmission electron microscopy (11M) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. ...

  2. Optical Storage System for 0.4 mm Substrate Media Using 405 nm Laser Diode and Numerical Aperture 0.60/0.65 Objective Lens

    NASA Astrophysics Data System (ADS)

    Ko, Jungwan; Park, In Sik; Yoon, Du-Seop; Chung, Chong-Sam; Kim, Yoon-Gi; Ro, Myong-Do; Doh, Tae-Yong; Shin, Dong-Ho

    2001-03-01

    The most important application of the blue-laser optical storage system is the recording high-definition digital broadcasting. For this application, the next-generation blue laser optical storage system requires a data capacity of at least 2 h of a digital broadcasting data stream with a data transfer rate of 23.5 megabits per second (Mbps). In addition to the capacity goal, system compatibility with the conventional digital versatile disc (DVD) system as well as the compact disc (CD) system is important. In order to satisfy the requirements of blue-laser optical storage, a system for media with a substrates thickness of 0.4 mm was proposed, and improved molding technology, crosstalk cancellation technology, dynamic tilt compensation technology and quadrature phase shift keying (QPSK) modulated wobble addressing method were developed for the system. We confirm the feasibility of the proposed system for media with a 0.4 mm substrate using a 405 nm blue laser diode and objective lens with a numerical aperture (NA) of 0.6 (0.65 for rewritable system).

  3. Laser scanning system for inspecting large underwater hydroelectric structures

    NASA Astrophysics Data System (ADS)

    Mirallès, François; Beaudry, Julien; Blain, Michel; de Santis, Romano M.; Houde, Régis; Hurteau, Richard; Robert, André; Sarraillon, Serge; Soucy, Nathalie

    2010-04-01

    A novel robotic laser scanning system for the inspection of large underwater hydroelectric structures is proposed. This system has been developed at the Hydro Quebec Research Institute and consists of a laser camera mounted on a 2-D Cartesian manipulator. Mechanical, electronic, and software design aspects; overall operational modalities; and proof of concept results are presented. We evaluated the performances of the system in the course of laboratory experiments and inspection trials carried out under normal operating conditions at the site of three of Hydro Quebec's hydroelectric dams.

  4. Radiative shocks on large scale lasers. Preliminary results

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehle, C.; Barroso, P.; Batani, D.; Benuzzi, A.; Cathala, B.; Chièze, J.-P.; Fleury, X.; Grandjouan, N.; Grenier, J.; Hall, T.; Henry, E.; Koenig, M.; Lafon, J. P. J.; Malka, V.; Marchet, B.; Merdji, H.; Michaut, C.; Poles, L.; Thais, F.

    2001-05-01

    Radiative shocks, those structure is strongly influenced by the radiation field, are present in various astrophysical objects (circumstellar envelopes of variable stars, supernovae ...). Their modeling is very difficult and thus will take benefit from experimental informations. This approach is now possible using large scale lasers. Preliminary experiments have been performed with the nanosecond LULI laser at Ecole Polytechnique (France) in 2000. A radiative shock has been obtained in a low pressure xenon cell. The preparation of such experiments and their interpretation is performed using analytical calculations and numerical simulations.

  5. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  6. Nuclear-pumped lasers for large-scale applications

    SciTech Connect

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

  7. Large-scale and non-contact surface topography measurement using scanning ion conductance microscopy and sub-aperture stitching technique

    NASA Astrophysics Data System (ADS)

    Zhuang, Jian; Guo, Renfei; Li, Fei; Yu, Dehong

    2016-08-01

    In this paper, we propose a large-scale and non-contact surface topography measurement method using a non-contact scanning probe microscopy (SPM) technique, scanning ion conductance microscopy (SICM), combined with the sub-aperture stitching technique. The phase correlation techniques were first applied to the three-dimensional (3D) images measured by the SICM to acquire an initially coarse stitching position. Then the tip–tilt compensated sub-aperture stitching algorithm is utilized to eliminate tilts and translations among adjacent images and expand the lateral measuring range of the existing hopping mode SICM system. This SICM and the stitching based method has been used to measure some large-scale samples (micrometer to millimeter scale) in a non-contact, quantitative and high resolution way. Simulation and experimental results on these samples verify the feasibility of this method and the effectiveness of the stitching algorithm. A measuring range of 1.08 mm  ×  0.55 mm and a lateral resolution of 100 nm or even higher were obtained in these experiments. Compared with atomic force microscopy (AFM), the non-contact feature of the proposed method ensures less damage to the surface topography. The non-optical feature makes the data stitching simpler than the existing optical microscopic methods, which need consider how to compensate the vignetting effect caused by the inhomogeneity of light.

  8. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam.

    PubMed

    Rodgers, Thomas; Shoji, Satoru; Sekkat, Zouheir; Kawata, Satoshi

    2008-09-19

    We demonstrate the selective aggregation of single-walled carbon nanotubes by photon forces, using the large optical field gradient of a laser focused through a high numerical aperture objective lens. The nanotubes, dispersed in an aqueous solution with a surfactant, are detected via Raman scattering from the confocal volume of the optical trap. By using a visible-light laser for both trapping and detection, the dynamics of the radial breathing mode signal taken at short intervals shows an increase of a single breathing mode over time, indicating the increase in the density of only one species of tube in the focal volume. This result represents a significant step toward the development of techniques for the arbitrary manipulation and sorting of nanotubes by optical fields. PMID:18851409

  9. Phasing rectangular apertures.

    PubMed

    Baker, K L; Homoelle, D; Utterback, E; Jones, S M

    2009-10-26

    Several techniques have been developed to phase apertures in the context of astronomical telescopes with segmented mirrors. Phasing multiple apertures, however, is important in a wide range of optical applications. The application of primary interest in this paper is the phasing of multiple short pulse laser beams for fast ignition fusion experiments. In this paper analytic expressions are derived for parameters such as the far-field distribution, a line-integrated form of the far-field distribution that could be fit to measured data, enclosed energy or energy-in-a-bucket and center-of-mass that can then be used to phase two rectangular apertures. Experimental data is taken with a MEMS device to simulate the two apertures and comparisons are made between the analytic parameters and those derived from the measurements. Two methods, fitting the measured far-field distribution to the theoretical distribution and measuring the ensquared energy in the far-field, produced overall phase variance between the 100 measurements of less than 0.005 rad(2) or an RMS displacement of less than 12 nm. PMID:19997175

  10. Invited review article: Large ring lasers for rotation sensing.

    PubMed

    Schreiber, Karl Ulrich; Wells, Jon-Paul R

    2013-04-01

    Over the last two decades a series of large ring laser gyroscopes have been built having an unparalleled scale factor. These upscaled devices have improved the sensitivity and stability for rotation rate measurements by six orders of magnitude when compared to previous commercial developments. This progress has made possible entirely new applications of ring laser gyroscopes in the fields of geophysics, geodesy, and seismology. Ring lasers are currently the only viable measurement technology, which is directly referenced to the instantaneous rotation axis of the Earth. The sensor technology is rapidly developing. This is evidenced by the first experimentally viable proposals to make terrestrial tests of general relativistic effects such as the frame dragging of the rotating Earth. PMID:23635174

  11. Coherent sub-aperture ultraviolet imagery

    NASA Astrophysics Data System (ADS)

    Morton, R. G.; Connally, W. J.; Avicola, K.; Monjo, D.; Olson, T.

    1989-09-01

    Laboratory targets have been imaged by a multi-sub-aperture, coherent receiver technique in which a common local oscillator illuminates the sub-aperture array to preserve both phase and intensity information. The target, receiver and range dimensions were chosen such that each sub-aperture was smaller than the speckle size. Various targets were illuminated by microsecond pulses from an e-beam pumped XeF power amplifier, which was seeded by a coherent ultraviolet beam generated with a frequency doubled visible dye laser. Data is presented showing comparisons between the coherent multi-sub-aperture approach and conventional, full aperture photography of the same traget(s).

  12. Surface Change Detection Using Large Footprint Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Smith, David E. (Technical Monitor)

    2000-01-01

    Laser altimeters provide a precise and accurate method for mapping topography at fine horizontal and vertical scales. A laser altimeter provides range by measuring the roundtrip flight time of a short pulse of laser light from the laser altimeter instrument to the target surface. The range is then combined with laser beam pointing knowledge and absolute position knowledge to provide an absolute measurement of the surface topography. Newer generations of laser altimeters measure the range by recording the shape and time of the outgoing and received laser pulses. The shape of the return pulse can also provide unique information about the vertical structure of material such as vegetation within each laser footprint. Distortion of the return pulse is caused by the time-distributed reflections adding together and representing the vertical distribution of surfaces within the footprint. Larger footprints (10 - 100m in diameter) can support numerous target surfaces and thus provide the potential for producing complex return pulses. Interpreting the return pulse from laser altimeters has evolved from simple timing between thresholds, range-walk corrections, constant-fraction discriminators, and multi-stop time interval units to actual recording of the time varying return pulse intensity - the return waveform. Interpreting the waveform can be as simple as digitally thresholding the return pulse, calculating a centroid, to fitting one or more gaussian pulse-shapes to the signal. What we present here is a new technique for using the raw recorded return pulse as a raw observation to detect centimeter-level vertical topographic change using large footprint airborne and spaceborne laser altimetry. We use the correlation of waveforms from coincident footprints as an indication of the similarity in structure of the waveforms from epoch to epoch, and assume that low correlation is an indicator of vertical structure or elevation change. Thus, using vertically and horizontally

  13. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes.

    PubMed

    Chiu, Chi-Wei; Lin, Yu-Cheng; Chao, Paul C-P; Fuh, Andy Y-G

    2008-11-10

    Aiming to equip commercial camera modules, such as the optical imaging systems with a CMOS sensor module in 3 Mega pixels, an ultra thin liquid crystal lens with designed hole-and-ring electrodes is proposed in this study to achieve high focusing power. The LC lens with proposed electrodes improves the central intensity of electric field which leads to better focusing quality. The overall thickness of the LC lens can be as thin as 1.2 mm and the shortest focal length of the 4 mm-aperture lens occurs at 20 cm under an applied voltage of 30 V at 1 KHz. The inner ring electrode requires only 40% of applied voltage of the external hole electrode. The applied voltages for this internal ring and external hole electrodes can simply be realized by a pre-designed parallel resistance pair and a single voltage source. Experiments are conducted for validation and it shows that the designed LC lens owns good image clearness and contrast at the focal plane. The proposed design reduces the thickness of LC lens and is capable of achieving relative higher focusing power than past studies with lower applied voltage. PMID:19582020

  14. Optical metrology devices for high-power laser large optics

    NASA Astrophysics Data System (ADS)

    Daurios, J.; Bouillet, S.; Gaborit, G.; Poncetta, J. C.

    2007-06-01

    High power laser systems such as the LMJ laser or the LIL laser, its prototype, require large optical components with very strict and various specifications. Technologies used for the fabrication of these components are now usually compatible of such specifications, but need the implementation at the providers' sites of different kind of metrology like interferometry, photometry, surface inspection, etc., systematically performed on the components. So, during the production for the LIL and now for the LMJ, CEA has also equipped itself with a wide range of specific metrology devices used to verify the effective quality of these large optics. These various systems are now used to characterize and validate the LMJ vendors' processes or to perform specific controls dedicated to analyzes which are going further than the simple "quality control" of the component (mechanical mount effect, environment effect, ageing effect,...). After a short introduction on the LMJ laser and corresponding optical specifications for components, we will focus on different metrology devices concerning interferometry and photometry measurements or surface inspection. These systems are individually illustrated here by the mean of different results obtained during controls done in the last few years.

  15. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  16. Really Large Scale Computer Graphic Projection Using Lasers and Laser Substitutes

    NASA Astrophysics Data System (ADS)

    Rother, Paul

    1989-07-01

    This paper reflects on past laser projects to display vector scanned computer graphic images onto very large and irregular surfaces. Since the availability of microprocessors and high powered visible lasers, very large scale computer graphics projection have become a reality. Due to the independence from a focusing lens, lasers easily project onto distant and irregular surfaces and have been used for amusement parks, theatrical performances, concert performances, industrial trade shows and dance clubs. Lasers have been used to project onto mountains, buildings, 360° globes, clouds of smoke and water. These methods have proven successful in installations at: Epcot Theme Park in Florida; Stone Mountain Park in Georgia; 1984 Olympics in Los Angeles; hundreds of Corporate trade shows and thousands of musical performances. Using new ColorRayTM technology, the use of costly and fragile lasers is no longer necessary. Utilizing fiber optic technology, the functionality of lasers can be duplicated for new and exciting projection possibilities. The use of ColorRayTM technology has enjoyed worldwide recognition in conjunction with Pink Floyd and George Michaels' world wide tours.

  17. Return Echoes from Medium-Large Footprint Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Rabine, David L.

    1999-01-01

    For just over 10 years, NASA Goddard Space Flight Center has been at the forefront of developing return echo laser altimeters and analysis techniques for a variety of both space and airborne applications. In 1991, the Laser Remote Sensing Branch began investigating the use of medium-large diameter footprint return waveforms for measuring vegetation height and structure and sub-canopy topography. Over the last 8 years, using a variety of profiling and scanning laser altimeters (i.e. ATLAS, SLICER, SLA, and LVIS), we have collected return waveforms over a variety of terrestrial surface types. We describe the effects of instrument characteristics and within-footprint surface structure on the shape of the return waveform and suggest several techniques for extracting this information. Specifically for vegetation returns, we describe the effects of canopy parameters such as architecture and closure on the shape of the return waveform. Density profiles, statistics, and examples from a variety of vegetation types will be presented, as well as comparisons with small-footprint laser altimeter data.

  18. Optical sparse aperture imaging.

    PubMed

    Miller, Nicholas J; Dierking, Matthew P; Duncan, Bradley D

    2007-08-10

    The resolution of a conventional diffraction-limited imaging system is proportional to its pupil diameter. A primary goal of sparse aperture imaging is to enhance resolution while minimizing the total light collection area; the latter being desirable, in part, because of the cost of large, monolithic apertures. Performance metrics are defined and used to evaluate several sparse aperture arrays constructed from multiple, identical, circular subapertures. Subaperture piston and/or tilt effects on image quality are also considered. We selected arrays with compact nonredundant autocorrelations first described by Golay. We vary both the number of subapertures and their relative spacings to arrive at an optimized array. We report the results of an experiment in which we synthesized an image from multiple subaperture pupil fields by masking a large lens with a Golay array. For this experiment we imaged a slant edge feature of an ISO12233 resolution target in order to measure the modulation transfer function. We note the contrast reduction inherent in images formed through sparse aperture arrays and demonstrate the use of a Wiener-Helstrom filter to restore contrast in our experimental images. Finally, we describe a method to synthesize images from multiple subaperture focal plane intensity images using a phase retrieval algorithm to obtain estimates of subaperture pupil fields. Experimental results from synthesizing an image of a point object from multiple subaperture images are presented, and weaknesses of the phase retrieval method for this application are discussed. PMID:17694146

  19. Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Meehan, Timothy J.; Vilcheck, Michael J.; Mahon, Rita; Burris, Ray; Ferraro, Mina; Sokolsky, Ilene; Vasquez, John A.; Bovais, Chris S.; Cochrell, Kerry; Goins, Kim C.; Barbehenn, Robin; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Montes, Marcos J.

    2001-07-01

    We describe progress in the development of a multiple quantum well modulating retroreflector, including a description of recent demonstrations of an infrared data link between a small rotary-wing unmanned airborne vehicle and a ground-based laser interrogator using the device designed and fabricated at the Naval Research Laboratory (NRL). Modulating retroreflector systems couple an optical retroreflector, such as a corner cube, and an electro-optic shutter to allow two-way optical communications using a laser, telescope, and pointer-tracker on only one platform. The NRL modulating retroreflector uses a semiconductor-based multiple quantum well shutter capable of modulation rates greater than 10 Mbps, depending on link characteristics. The technology enables the use of near-infrared frequencies, which is well known to provide covert communications immune to frequency allocation problems. This specific device has the added advantage of being compact, lightweight, covert, and requires very low paper. Up to an order of magnitude in onboard power can be saved using a small array of these devices instead of the radio frequency equivalent. In the described demonstration, a Mbps optical link to an unmanned aerial vehicle in flight at a range of 100 to 200 feet is shown. Near real-time compressed video was also demonstrated at the Mbps level and is described.

  20. Location of Body Wave Microseism Sources Using Three-Component Data From a Large Aperture Seismic Array in China

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Koper, K. D.; Burlacu, R.; Ni, S.; Wang, F.

    2015-12-01

    From September 2013 through October 2014 up to 100 Guralp CMG-3 broadband seismometers were deployed in the WT-Array (WTA) in northwest China. The aperture of WTA is about 700 km, with an average station spacing of approximately 50 km. Here, we process continuous, three-component WTA data to detect and locate body wave microseism sources in four distinct period bands: 1.0-2.5 s, 2.5-5 s, 5-10 s, and 10-20 s. We back-project vertical component data through a 1D reference Earth model (AK135) to a global grid of hypothetical source locations, assuming P-wave (30o-90o), PP-wave (60o-180o), and S-wave (30o-75o) propagation. At the same time, we rotate the horizontals and back-project the radial and transverse components of the wavefield. For each frequency band, grid point, and assumed origin time, the array power is calculated from the amplitude of a windowed, filtered, and tapered time domain beam constructed with fourth-root stacking. We find strong P-wave and S-wave noise sources in the North Pacific and North Atlantic Oceans. Shorter period sources (2.5-5 s) are mainly observed in the North Pacific Ocean, while both short and long period (2.5-20 s) sources are observed in the North Atlantic Ocean. Median power plots for each month during September 2013 through October 2014 show distinct seasonal variations. The energy peaks in the North Atlantic are visible from November to March and strong energy is also observed in the North Pacific from October to April. We also observe PP-waves in the Southern Ocean, especially for May-August 2014. Using classical f-k analysis and plane-wave propagation, we are able to confirm the back-projection results. To improve our understanding of body wave microseism generation, we compare the observed P, S, and PP wave microseism locations with the predictions of significant wave height and wave-wave interactions derived from the WAVEWATCH III ocean model.From September 2013 through October 2014 up to 100 Guralp CMG-3 broadband

  1. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  2. Diffraction smoothing aperture for an optical beam

    DOEpatents

    Judd, O'Dean P.; Suydam, Bergen R.

    1976-01-01

    The disclosure is directed to an aperture for an optical beam having an irregular periphery or having perturbations imposed upon the periphery to decrease the diffraction effect caused by the beam passing through the aperture. Such apertures are particularly useful with high power solid state laser systems in that they minimize the problem of self-focusing which frequently destroys expensive components in such systems.

  3. Picosecond laser fabrication of micro cutting tool geometries on polycrystalline diamond composites using a high-numerical aperture micro scanning system

    NASA Astrophysics Data System (ADS)

    Eberle, Gregory; Dold, Claus; Wegener, Konrad

    2015-03-01

    The generation of microsized components found in LEDs, watches, molds as well as other types of micromechanics and microelectronics require a corresponding micro cutting tool in order to be manufactured, typically by milling or turning. Micro cutting tools are made of cemented tungsten carbide and are conventionally fabricated either by electrical discharge machining (EDM) or by grinding. An alternative method is proposed through a laser-based solution operating in the picosecond pulse duration whereby the beam is deflected using a modified galvanometer-driven micro scanning system exhibiting a high numerical aperture. A micro cutting tool material which cannot be easily processed using conventional methods is investigated, which is a fine grain polycrystalline diamond composite (PCD). The generation of various micro cutting tool relevant geometries, such as chip breakers and cutting edges, are demonstrated. The generated geometries are subsequently evaluated using scanning electron microscopy (SEM) and quality is measured in terms of surface roughness and cutting edge sharpness. Additionally, two processing strategies in which the laser beam processes tangentially and orthogonally are compared in terms of quality.

  4. Planarization of amorphous silicon thin film transistors for high-aperture-ratio and large-area active-matrix liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Lan, Je-Hsiung

    The reduction of the backlight power consumption and the improvement of the display image uniformity for future large-area and high-resolution active-matrix liquid- crystal displays (AM-LCDs) are very important. One possible method to achieve the former goal is to increase the pixel electrode aperture-ratio. This can be realized by overlapping the pixel electrode with both gate/data buslines. While for the latter, reduction of the RC-delay by using a low resistance gate metal line is the key. Both of these approaches can be realized by using planarization technology. In this dissertation, the planarization technology based on low dielectric constant organic polymer, benzocyclobutene (BCB), is demonstrated, and this technology has been successfully applied to hydrogenated amorphous-silicon (a-Si:H) thin-film transistor (TFT) arrays and thick metal gate buslines/electrodes. Through the planarization technology, a high-aperture-ratio (HAR) pixel electrode structure has been fabricated. The parasitic capacitance and crosstalk issues in the HAR pixel electrode have been studied through interconnect analysis and circuit simulation. The impact of the parasitic capacitance on display performances, such as feedthrough voltage, vertical crosstalk, pixel electrode aperture-ratio, pixel charging behavior, and gate busline RC-delay issues, has been thoroughly discussed. Some key issues during the process integration of the HAR pixel electrode structure have been addressed. These include the BCB contact via formation, the patterning of the ITO pixel electrodes on BCB layer, the selection of Ar plasma treatment conditions for BCB surface, and the optical transmittance evaluation of the ITO/BCB double-layer structure. In addition, the BCB passivation effects on back-channel etched type a-Si:H TFTs have been investigated. It is found that there is no degradation in the TFT electrical performance and reliability after the BCB passivation. Finally, the planarization technology is

  5. A 2x2 multi-chip reconfigurable MOEMS mask: a stepping stone to large format microshutter arrays for coded aperture applications

    NASA Astrophysics Data System (ADS)

    McNie, Mark E.; Brown, Alan G.; King, David O.; Smith, Gilbert W.; Gordon, Neil T.; Riches, Stephen; Rogers, Stanley

    2010-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously reported work focused on realising a 2x2cm single chip mask in the mid-IR based on polysilicon micro-optoelectro- mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. It employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we report on the latest results in the mid-IR for the single chip reconfigurable MOEMS mask, trials in scaling up to a mask based on a 2x2 multi-chip array and report on progress towards realising a large format mask comprising 44 MOEMS chips. We also explore the potential of such large, transmissive IR spatial light modulator arrays for other applications and in the current and alternative architectures.

  6. Synthetic Aperture Radiometer Systems

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    1999-01-01

    Aperture synthesis is a new technology for passive microwave remote sensing from space which has the potential to overcome the limitations set in the past by antenna size. This is an interferometric technique in which pairs of small antennas and signal processing are used to obtain the resolution of a single large antenna. The technique has been demonstrated successfully at L-band with the aircraft prototype instrument, ESTAR. Proposals have been submitted to demonstrate this technology in space (HYDROSTAR and MIRAS).

  7. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  8. Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials

    NASA Astrophysics Data System (ADS)

    Brooks, D. R.; Brown, N. S.; Savage, D. E.; Wang, C.; Knox, W. H.; Ellis, J. D.

    2014-06-01

    A precision, large stroke (nearly 1 cm) scanning system was designed, built, and calibrated for micromachining of ophthalmic materials including hydrogels and cornea (excised and in vivo). This system comprises a flexure stage with an attached objective on stacked vertical and horizontal translation stages. This paper outlines the design process leading to our most current version including the specifications that were used in the design and the drawbacks of other methods that were previously used. Initial measurements of the current version are also given. The current flexure was measured to have a 27 Hz natural frequency with no load.

  9. Multi-laser-guided adaptive optics for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, M.; Angel, R.; Green, R.; Stalcup, T.; Milton, N. M.; Powell, K.

    2007-09-01

    We describe the conceptual design of an advanced laser guide star facility (LGSF) for the Large Binocular Telescope (LBT), to be built in collaboration with the LBT's international partners. The highest priority goal for the facility is the correction of ground-layer turbulence, providing partial seeing compensation in the near IR bands over a 4' field. In the H band, GLAO is projected to improve the median seeing from 0.55" to 0.2". The new facility will build on the LBT's natural guide star AO system, integrated into the telescope with correction by adaptive secondary mirrors, and will draw on Arizona's experience in the construction of the first multi-laser adaptive optics (AO) system at the 6.5 m MMT. The LGSF will use four Rayleigh beacons at 532 nm, projected to an altitude of 25 km, on each of the two 8.4 m component telescopes. Initial use of the system for ground layer correction will deliver image quality well matched to the LBT's two LUCIFER near IR instruments. They will be used for direct imaging over a 4'×4' field and will offer a unique capability in high resolution multi-object spectroscopy. The LGSF is designed to include long-term upgrade paths. Coherent imaging at the combined focus of the two apertures will be exploited by the LBT Interferometer in the thermal IR. Using the same launch optics, an axial sodium or Rayleigh beacon can be added to each constellation, for tomographic wavefront reconstruction and diffraction limited imaging over the usual isoplanatic patch. In the longer term, a second DM conjugated to high altitude is foreseen for the LBT's LINC-NIRVANA instrument, which would extend the coherent diffraction-limited field to an arcminute in diameter with multi-conjugate AO.

  10. Ultrafast large-area micropattern generation in nonabsorbing polymer thin films by pulsed laser diffraction.

    PubMed

    Verma, Ankur; Sharma, Ashutosh; Kulkarni, Giridhar U

    2011-03-21

    An ultrafast, parallel, and beyond-the-master micropatterning technique for ultrathin (30-400 nm) nonabsorbing polymer films by diffraction of laser light through a 2D periodic aperture is reported. The redistribution of laser energy absorbed by the substrate causes self-organization of polymer thin films in the form of wrinklelike surface relief structures caused by localized melting and freezing of the thin film. Unlike conventional laser ablation and laser writing processes, low laser fluence is employed to only passively swell the polymer as a pre-ablative process without loss of material, and without absorption/reaction with incident radiation. Self-organization in the thin polymer film, aided by the diffraction pattern, produces microstructures made up of thin raised lines. These regular microstructures have far more complex morphologies than the mask geometry and very narrow line widths that can be an order of magnitude smaller than the openings in the mask. The microstructure morphology is easily modulated by changing the film thickness, aperture size, and geometry, and by changing the diffraction pattern. PMID:21290600

  11. Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture

    SciTech Connect

    Bobrov, M. A.; Blokhin, S. A. Kuzmenkov, A. G.; Maleev, N. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Nikitina, E. V.; Ustinov, V. M.

    2014-12-15

    The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 μm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 μm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 μm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps.

  12. The vector behavior of aberrations in high numerical aperture (0.9 < NA < 3.1) laser focusing systems

    NASA Astrophysics Data System (ADS)

    Jo, Sseunhyeun

    This dissertation investigates vector behavior of aberrations for high numerical aperture optical systems using a solid immersion lens (SIL). In order to analyze the system, this dissertation introduces the illumination system transfer function (ISTF), which is a map in the space of the exit pupil that shows reflection and transmission properties of individual plane waves that are emitted from corresponding points in the exit pupil. A vector analysis using ISTF presents the role of propagating and evanescent energy in the SIL systems, where the boundary between the them is defined by total internal reflection. The behavior of third-order aberrations such as coma and astigmatism, are dramatically affected by polarization in high NA systems. The irradiance distribution exhibits significantly different characteristics, depending on how coma or astigmatism is aligned with the incident linear polarized light. Vector effects including diffraction, polarization, and aberration, are used to analyze tolerances along with a comparison to geometrical optics. Apodization in amplitude and phase of the angular spectrum is generated in high NA focusing systems due to the difference in vector transmission and reflection for each plane wave. The size of the incident gaussian beam is effectively reduced at the exit pupil by the amplitude apodization and causes a spot size increase in image space. The apodization in phase is called gap-induced aberration due to its dependence on the air gap. The gap- induced aberration does not come from lens surface imperfection, and it exhibits multiple orders of spherical aberration and astigmatism. The apodization in amplitude and phase is well characterized by separable supergaussian functions, where each function depends on the refractive index of the SIL n SIL and the air gap height h. The best defocus, based on characteristics of gap-induced aberration, is suggested to be a good compensator only for low nSIL and h. The system performance, as

  13. Experimental verification and theory of CNR gain for an eight-element multiple-aperture coherent laser receiver

    NASA Astrophysics Data System (ADS)

    Weeks, Arthur R.; Phillips, Ronald L.; Xu, Jing; Gamble, Kevin J.; Gagge, Chie L.; Lewis, K.; Luvera, Giovanni; Notash, Ali; Thompson, Patrick L.; Harvey, James E.; Sellar, R. Glenn; Stickley, C. Martin; Andrews, Larry C.; Tjin-Tham-Sjin, Deborah E.; Stryjewski, John S.

    1997-08-01

    The detection and processing of laser communication signals are drastically affected by the fading induced onto these signals by atmospheric turbulence. One method of reducing this fading is to use an array of detectors in which each of the detector outputs are added together coherently. This requires measuring the phase difference between each of the receivers and co-phasing each of the detector outputs. This paper presents experimental verification at the Innovative Science and Technology Experimentation Facility over an outdoor range of a 1.06 micron eight element coherent receiver used to mitigate the effects of fading. The system is composed of a 60 mw Nd:Yag laser used as the transmitter and a 27 MHz AO modulator used to frequency shift the transmitted beam. The receiver is composed of eight 1 cm lenses launching the eight received optical signals into eight signal mode optical fibers. Phase compensation between each of the eight receivers is accomplished using single mode fibers wrapped around PZT cylinders that are controlled by phase compensating electronics. The carrier-to-noise (CNR) ratio was measured on a single channel and was then compared with the CNR obtained from the coherent sum of the eight channels. The improvement of the CNR for the coherent sum as compared to a single channel was then compared against theoretical predictions.

  14. A laser tomography test bed for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Conan, R.; Piatrou, P.; Rigaut, F.; Uhlendorf, K.

    2014-08-01

    The Advanced Instrumentation and Technology Center at the Australian National University is building a Laser Tomography Adaptive Optics Test Bed for Extremely Large Telescopes. The optical test bench is using three Laser Guide Stars (LGS) propagating through three phase screens. The LGS wavefronts are sampled with a 16 × 16 Shack-Hartmann wavefront sensor (SH-WFS). Cone effect, spot elongation and Sodium layer density fluctuations are reproduced on the bench. Two Natural Guide Stars (NGS), on-axis and off-axis, are also added to the bench. The wavefront of the on-axis NGS is corrected with a DM located in the optical path of both the LGSs and the on-axis NGS. The DM commands are derived from the tomographic estimate of the on-axis NGS wavefront using the measurements of the 3 LGS WFSs. The off-axis NGS wavefront is sampled with a 6 × 6 SH-WFS and is emulating tip-tilt, focus and truth sensing. A DM located in front of the off-axis NGS WFS is correcting the off-axis NGS wavefront. The commands of this DM are also derived from the tomographic reconstructor. In the paper, the design of the LTAO test bed is presented.

  15. Accelerated aging of 28 Gb s-1 850 nm vertical-cavity surface-emitting laser with multiple thick oxide apertures

    NASA Astrophysics Data System (ADS)

    Kropp, J. R.; Steinle, G.; Schäfer, G.; Shchukin, V. A.; Ledentsov, N. N.; Turkiewicz, J. P.; Zoldak, M.

    2015-04-01

    850 nm vertical-cavity surface-emitting lasers with multiple thick oxide apertures suitable for temperature-insensitive error free transmission at 28 Gb s-1 are subjected to accelerated aging at high current densities and chip temperatures. The devices withstand a 20% power change test at a high current density (18 kA c{{m}-2}) at an ambient temperature of 120 {}^\\circ C for 2500 h. At 90-95 {}^\\circ C at this current density no degradation was observed up to 5000 h. We performed the studies at further elevated current densities and temperatures and define the acceleration factor as AF={{({{J}stress}/{{J}use})}8}exp [(1.3 eV/{{k}B})(1/{{T}use}-1/{{T}stress})]. The extrapolated lifetime for 20% power drop is estimated as 20 thousand years at 300 K at current density of 18 kA c{{m}-2} which is sufficient for 28 Gb s-1 error-free temperature-insensitive data transmission.

  16. Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers.

    PubMed

    Lancaster, D G; Gross, S; Fuerbach, A; Heidepriem, H Ebendorff; Monro, T M; Withford, M J

    2012-12-01

    We report performance characteristics of a thulium doped ZBLAN waveguide laser that supports the largest fundamental modes reported in a rare-earth doped planar waveguide laser (to the best of our knowledge). The high mode quality of waveguides up to 45 um diameter (~1075 μm(2) mode-field area) is validated by a measured beam quality of M(2)~1.1 ± 0.1. Benefits of these large mode-areas are demonstrated by achieving 1.9 kW peak-power output Q-switched pulses. The 1.89 μm free-running cw laser produces 205 mW and achieves a 67% internal slope efficiency corresponding to a quantum efficiency of 161%. The 9 mm long planar chip developed for concept demonstration is rapidly fabricated by single-step optical processing, contains 15 depressed-cladding waveguides, and can operate in semi-monolithic or external cavity laser configurations. PMID:23262700

  17. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  18. KrF excimer laser lithography with a phase-shifting mask for gigabit-scale ultra large scale integration

    NASA Astrophysics Data System (ADS)

    Imai, Akira; Terasawa, Tsuneo; Hasegawa, Norio; Asai, Naoko; Tanaka, Toshihiko P.; Okazaki, Shinji

    1996-10-01

    Resolution-enhancement technologies such as alternating-type phase-shifting masks (PSMs), half-tone PSMs, and the off- axis illumination method in optical lithography are necessary for manufacturing gigabit-scale ultra large scale integration (ULSI) devices. Because an alternating-type PSM is the most effective way to enhance resolution, we examine the resolution capabilities of KrF excimer laser lithography combined with the use of an alternating-type PSM through simulations. Our goal is to apply this technique to attain pattern delineation smaller than 200 nm. We simulate light intensity profiles for various types of PSMs in terms of the 3-D mask structure, and find that a PSM structure with a spin-on glass (SOG) phase shifter on a Cr layer that is thinner than in a conventional mask is one of the best choices for KrF excimer laser lithography. We examine potential problems such as the durability of the SOG phase shifters to KrF excimer laser irradiation exposure, and phase angle error due to the surface topography of the Cr aperture patterns. From our experimental results, we confirm that the optical characteristics of the PSM are not degraded, and the phase angle can be controlled with an accuracy sufficient for gigabit-scale ULSI device fabrication. Improved PSMs with a thin Cr layer and SOG phase shifters were successfully used to fabricate several layers of experimental 1-Gbit dynamic random access memory (DRAM) devices with sufficient resolution capability.

  19. Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users

    NASA Astrophysics Data System (ADS)

    Van Kesteren, B.; Beyrich, F.; Hartogensis, O. K.; Braam, M.

    2015-08-01

    We compare the structure parameter of the refractive index, , measured simultaneously with two large-aperture scintillometers: the WagLAS (Wageningen University, Wageningen, the Netherlands) and the BLS900 (Scintec, Rottenburg, Germany). A 3.5-year dataset shows a bias in of about 17 % between the instruments. Analysis of these data reveals firstly that the logarithmic amplifiers in the WagLAS exhibit a strong dependence on temperature, resulting in an overestimation of of up to 35 % for temperatures 0 . Secondly, high-pass filtering of the WagLAS and BLS900 intensity data artificially reduces for crosswinds 2 (error 25 and 5 % respectively). Thirdly, the BLS900 increasingly underestimates (up to 10-15 %) with increasing signal saturation. We demonstrate that Scintec's data processing relies too heavily on the assumption that the intensity data obey a log-normal distribution, which they do not in the case of saturation. Fourthly, both instruments ignore the dissipation range of the refractive-index spectrum, which leads to an overestimation of of up to 30 % for friction velocity 0.2 . Implications of these findings are discussed and placed into perspective for other scintillometer users. Furthermore, we present a tool for revealing saturation and other violations of Rytov theory for any given scintillometer type, including microwave scintillometers.

  20. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars. The paper uses numerous trade studies created during the software development phase of the Arnold Mirror Modeler to illustrate the influences of system specifications on the design space. The future telescopes will require better performance, stability and documented feasibility to meet the hurdles of today's budget and schedules realities. AMTD is developing the tools, but the basic system planning mentality also has to adopt to the requirements of these very large and complex physical structures.

  1. Micro-cavity lasers with large device size for directional emission

    NASA Astrophysics Data System (ADS)

    Yan, Chang-ling; Li, Peng; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Zhu, Dongda

    2014-10-01

    Optical micro-cavity structures, which can confine light in a small mode volume with high quality factors, have become an important platform not only for optoelectronic applications with densely integrated optical components, but also for fundamental studies such as cavity quantum electrodynamics and nonlinear optical processes. Micro-cavity lasers with directional emission feature are becoming a promising resonator for the compact laser application. In this paper, we presented the limason-shaped cavity laser with large device size, and fabricated this type of micro-cavity laser with quantum cascade laser material. The micro-cavity laser with large device size was fabricated by using InP based InGaAs/InAlAs quantum cascade lasers material at about 10um emitting wavelength, and the micro-cavity lasers with the large device size were manufactured and characterized with light output power, threshold current, and the far-field pattern.

  2. Design of a neutron penumbral-aperture microscope with 10-. mu. m resolution

    SciTech Connect

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Lane, S.M.

    1990-05-01

    We are currently designing a 10-{mu}m resolution neutron penumbral-aperture microscope to diagnose high-convergence targets at the Nova laser facility. To achieve such high resolution, the new microscope will require substantial improvements in three areas. First, we have designed thick penumbral apertures with extremely sharp cutoffs over a useful ({approx}100 {mu}m) field of view; fabrication of such apertures appears feasible using gold electroplating techniques. Second, the limited field of view and required close proximity of the aperture to the target (2 cm) necessitates a durable mounting and alignment system with {plus}25 {mu}m accuracy. Finally, a neutron detector containing 160,000 scintillator elements is required; readout and optimization of this large array are outstanding issues. 5 refs., 3 figs.

  3. Study of the generation characteristics of laser converters with dye-based wide-aperture solid--liquid active elements

    SciTech Connect

    Eremenko, A.S.; Zemskii, V.I.; Kolesnikov, Y.L.; Malinin, B.G.; Meshkovsky, I.K.; Savkin, N.P.; Stepanov, V.E.; Shildyaev, V.S.

    1986-11-01

    The lasing characteristics of an active element, consisting of a fine porous silicate matrix, has been studied. Molecules of a dye (rhodamine 6G) and an ethanol solution of the same dye were introduced into the cells. It has been shown that under conditions of large heat release (when thermooptical distortions begin to appear in the dye solutions), the solid--liquid element preserves the stability of its own lasing characteristics.

  4. Laser microprocessing and nanoengineering of large-area functional micro/nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, M.; Xie, X. Z.; Yang, J.; Chen, Z. C.; Xu, L.; Choo, Y. S.; Hong, M. H.

    2011-12-01

    Laser microprocessing and nanoengineering are of great interest to both scientists and engineers, since the inspired properties of functional micro/nanostructures over large areas can lead to numerous unique applications. Currently laser processing systems combined with high speed automation ensure the focused laser beam to process various materials at a high throughput and a high accuracy over large working areas. UV lasers are widely used in both laser microprocessing and nanoengineering. However by improving the processing methods, green pulsed laser is capable of replacing UV lasers to make high aspect ratio micro-grooves on fragile and transparent sapphire substrates. Laser micro-texturing can also tune the wetting property of metal surfaces from hydrophilic to super-hydrophobic at a contact angle of 161° without chemical coating. Laser microlens array (MLA) can split a laser beam into multiple laser beams and reduce the laser spot size down to sub-microns. It can be applied to fabricate split ring resonator (SRR) meta-materials for THz sensing, surface plasmonic resonance (SPR) structures for NIR and molding tools for soft lithography. Furthermore, laser interference lithography combined with thermal annealing can obtain a large area of sub-50nm nano-dot clusters used for SPR applications.

  5. Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.

    2016-09-01

    Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.

  6. Diagnostic for dynamic aperture

    SciTech Connect

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Rivkin, L.; Ross, M.; Ruth, R.D.; Spence, W.L.

    1985-04-01

    In large accelerators and low beta colliding beam storage rings, the strong sextupoles, which are required to correct the chromatic effects, produce strong nonlinear forces which act on particles in the beam. In addition in large hadron storage rings the superconducting magnets have significant nonlinear fields. To understand the effects of these nonlinearities on the particle motion there is currently a large theoretical effort using both analytic techniques and computer tracking. This effort is focused on the determination of the 'dynamic aperture' (the stable acceptance) of both present and future accelerators and storage rings. A great deal of progress has been made in understanding nonlinear particle motion, but very little experimental verification of the theoretical results is available. In this paper we describe 'dynamic tracking', a method being studied at the SPEAR storage ring, which can be used to obtain experimental results which are in a convenient form to be compared with the theoretical predictions.

  7. Ionization processes in the ultrashort, intense laser field interaction with large clusters

    NASA Astrophysics Data System (ADS)

    Shokri, B.; Niknam, A. R.; Smirnov, M.

    2004-03-01

    Multiple ionization of large clusters when they are irradiated by an intense ultrashort laser pulse is investigated. Different mechanisms, responsible for cluster ionization, are investigated. It is found that the ionization of large clusters, irradiated by a strong intense ultrashort laser pulse, is realized by means of the surface thermoemission.

  8. Longwave infrared (LWIR) coded aperture dispersive spectrometer.

    PubMed

    Fernandez, C; Guenther, B D; Gehm, M E; Brady, D J; Sullivan, M E

    2007-04-30

    We describe a static aperture-coded, dispersive longwave infrared (LWIR) spectrometer that uses a microbolometer array at the detector plane. The two-dimensional aperture code is based on a row-doubled Hadamard mask with transmissive and opaque openings. The independent column code nature of the matrix makes for a mathematically well-defined pattern that spatially and spectrally maps the source information to the detector plane. Post-processing techniques on the data provide spectral estimates of the source. Comparative experimental results between a slit and coded aperture for emission spectroscopy from a CO(2) laser are demonstrated. PMID:19532832

  9. Error analysis of sub-aperture stitching interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Xing, Tingwen

    2012-10-01

    Large-aperture optical elements are widely employed in high-power laser system, astronomy, and outer-space technology. Sub-aperture stitching is an effective way to extend the lateral and vertical dynamic range of a conventional interferometer. With the aim to provide the accuracy of equipment, this paper simulates the arithmetic to analyze the errors. The Selection of stitching mode and setting of the number of subaperture is given. According to the programmed algorithms simulation stitching is performed for testing the algorithm. In this paper, based on the Matlab we simulate the arithmetic of Sub-aperture stitching. The sub-aperture stitching method can also be used to test the free formed surface. The freeformed surface is created by Zernike polynomials. The accuracy has relationship with the errors of tilting, positioning. Through the stitching the medium spatial frequency of the surface can be tested. The results of errors analysis by means of Matlab are shown that how the tilting and positioning errors to influence the testing accuracy. The analysis of errors can also be used in other interferometer systems.

  10. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data

    NASA Astrophysics Data System (ADS)

    Sun, Genhou; Hu, Zeyong; Sun, Fanglin; Wang, Jiemin; Xie, Zhipeng; Lin, Yun; Huang, Fangfang

    2016-05-01

    The influence of spatial scales on surface fluxes is an interesting but not fully investigated question. This paper presents an analysis on the influence of spatial scales on surface fluxes in the north Tibetan Plateau based on eddy covariance (EC) and large aperture scintillometer (LAS) data at site Nagqu/BJ, combined with the land surface temperature (LST) and normalized difference vegetation index (NDVI) of moderate-resolution imaging spectroradiometer (MODIS). The analysis shows that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with sensible heat fluxes calculated with EC data (H_EC) in the rain and dry seasons. The difference in their footprints due to the wind direction is an important reason for the differences in H_EC and H_LAS. The H_LAS are statistically more consistent with H_EC when their footprints overlap than when their footprints do not. A detailed analysis on H_EC and H_LAS changes with net radiation and wind direction in rain and dry season indicates that the spatial heterogeneity in net radiation created by clouds contributes greatly to the differences in H_EC and H_LAS in short-term variations. A significant relationship between the difference in footprint-weighted averages of LST and difference in H_EC and H_LAS suggests that the spatial heterogeneity in LST at two spatial scales is a reason for the differences in H_EC and H_LAS and that LST has a positive correlation with the differences in H_EC and H_LAS. A significant relationship between the footprint-weighted averages of NDVI and the ratio of sensible heat fluxes at two spatial scales to net radiation (H/Rn) in the rain season supports the analysis that the spatial heterogeneity in canopy at two spatial scales is another reason for differences in H_EC and H_LAS and that canopy has a negative correlation with (H/Rn). An analysis on the influence of the difference in aerodynamic roughness lengths at two spatial scales on sensible heat fluxes shows that the

  11. A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Close, Sigrid; Fentzke, Jonathan T.

    2008-01-01

    Meteor head-echo observations using High Power and Large Aperture (HPLA) radars have been routinely used for micrometeor studies for over a decade. The head-echo is a signal from the radar-reflective plasma region traveling with the meteoroid and its detection allows for very precise determination of instantaneous meteor altitude, velocity and deceleration. Unlike specular meteor radars (SMR), HPLA radars are diverse instruments when compared one to another. The operating frequencies range from 46 MHz to 1.29 GHz while the antenna configurations changes from 18,000 dipoles in a 300 m×300 m square array, phase arrays of dipoles to single spherical or parabolic dishes of various dimensions. Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] recently showed, by utilizing a head-echo plasma-based model, the presence of instrumental biases in the ALTAIR VHF radar system against detecting meteors produced by very small particles (<1 μg) moving at slow (˜20 km/s) velocities due to the low head echo radar cross-section (RCS) associated with these particles. In this paper we apply the same methodology to the Arecibo 430 MHz radar and compare the results with those presented by Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07]. We show that, if the methodology applied by Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] is accurate, for particles at least 1 μg or heavier, while the bias may exist for the ALTAIR measurements, it does not exist in the Arecibo data due to its greater sensitivity.

  12. ABCD matrix for apertured spherical waves.

    PubMed

    Wang, S; Bernabeu, E; Alda, J

    1991-05-01

    An ABCD matrix for describing the hard aperture under a large Fresnel number is defined in this Technical Note based on Li and Wolf's formula. It is useful for analyzing focal shifts of complicated optical systems with hard apertures. PMID:20700324

  13. New Aperture Partitioning Element

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Calef, B.; Williams, S.

    Postprocessing in an optical system can be aided by adding an optical element to partition the pupil into a number of segments. When imaging through the atmosphere, the recorded data are blurred by temperature-induced variations in the index of refraction along the line of sight. Using speckle imaging techniques developed in the astronomy community, this blurring can be corrected to some degree. The effectiveness of these techniques is diminished by redundant baselines in the pupil. Partitioning the pupil reduces the degree of baseline redundancy, and therefore improves the quality of images that can be obtained from the system. It is possible to implement the described approach on an optical system with a segmented primary mirror, but not very practical. This is because most optical systems do not have segmented primary mirrors, and those that do have relatively low bandwidth positioning of segments due to their large mass and inertia. It is much more practical to position an active aperture partitioning element at an aft optics pupil of the optical system. This paper describes the design, implementation and testing of a new aperture partitioning element that is completely reflective and reconfigurable. The device uses four independent, annular segments that can be positioned with a high degree of accuracy without impacting optical wavefront of each segment. This mirror has been produced and is currently deployed and working on the 3.6 m telescope.

  14. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications.

    PubMed

    Britten, Jerald A; Dixit, Shamusundar N; DeBruyckere, Michael; Steadfast, Daniel; Hackett, James; Farmer, Brandon; Poe, Garrett; Patrick, Brian; Atcheson, Paul D; Domber, Jeanette L; Seltzer, Aaron

    2014-04-10

    The ability to fabricate 4-level diffractive structures with 1 µm critical dimensions has been demonstrated for the creation of fast (∼f/3.1 at 633 nm) Fresnel zone lenses (FZLs) with >60% diffraction efficiency into the -1 focusing order and nearly complete suppression of 0 and +1 orders. This is done using tooling capable of producing optics with 800 mm apertures. A 4-level grating fabricated in glass at 300 mm aperture is shown to have <15  nm rms holographic phase error. Glass FZLs have also been used as mandrels for casting zero-thermal-expansion, 20 µm thick polymer films created with the 4-level structure as a route to mass replication of efficient diffractive membranes for ultralight segmented space-based telescope applications. PMID:24787399

  15. Thermal emission by a subwavelength aperture

    NASA Astrophysics Data System (ADS)

    Joulain, Karl; Ezzahri, Younès; Carminati, Rémi

    2016-04-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture separating from the outside, vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures separating vacuum from the outside have their thermal emission strongly decreased compared to classical blackbodies which have an aperture much larger than the wavelength. A simple expression of their emissivity can be calculated and their total emissive power scales as T8 instead of T4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  16. Sideband analysis and seismic detection in a large ring laser

    NASA Astrophysics Data System (ADS)

    Stedman, G. E.; Li, Z.; Bilger, H. R.

    1995-08-01

    A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.

  17. Research on the timing sequence control in large laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Wang, Lingfang; Wang, Chao; Tang, Ling; Chen, Ji; Zhang, Xin

    2015-11-01

    The timing sequence, between different pulses in SG-III laser facility, is controlled with three arbitrary waveform generators. The external clock and trigger are used to inhibit the timing jitter, which is provided by the synchronization system. Close-loop monitoring is used to make sure that the temporal phase can be recovered after reboot of the arbitrary waveform generator. The verification experiment shows that the three arbitrary waveform generators can work synchronously , which ensures the synchronization error control of the SG-III laser facility.

  18. Aperture masking behind AO systems

    NASA Astrophysics Data System (ADS)

    Ireland, Michael J.

    2012-07-01

    Sparse Aperture-Mask Interferometry (SAM or NRM) behind Adaptive Optics (AO) has now come of age, with more than a dozen astronomy papers published from several 5-10m class telescopes around the world. I will describe the reasons behind its success in achieving relatively high contrasts ( 1000:1 at lambda/ D) and repeatable binary astronomy at the diffraction limit, even when used behind laser-guide star adaptive optics. Placed within the context of AO calibration, the information in an image can be split into pupil-plane phase, Fourier amplitude and closure-phase. It is the closure-phase observable, or its generalisation to Kernel phase, that is immune to pupil-plane phase errors at first and second-order and has been the reason for the technique's success. I will outline the limitations of the technique and the prospects for aperture-masking and related techniques in the future.

  19. Fiber-optic detection of ultrashort laser pulses diffusely reflected from intralipid skin phantom: effect of numerical aperture and scattering anisotropy

    NASA Astrophysics Data System (ADS)

    Popov, Alexey P.; Priezzhev, Alexander V.; Myllylä, Risto A.

    2006-06-01

    In this paper, simulations by Monte Carlo method are applied to reveal the effect of numerical aperture (NA) of a detector (backward registration) and scattering anisotropy of a sample (g) on the probing depth of the sample. Correlation between temporal and depth-resolved detection is investigated as a function of the considered characteristics, NA and g. Decrease of the numerical aperture of the detector or increase of the scattering anisotropy of the sample lead to probing of deeper depths and larger region around. These depths correspond to the maximal numbers of the detected photons measured with time-resolved registration. The better correlation comes from the use of fibers with smaller apertures and media with strong forwards scattering (high value of anisotropy factor).

  20. Active compensation of large dispersion of femtosecond pulses for precision laser ranging.

    PubMed

    Lee, Sang-Hyun; Lee, Joohyung; Kim, Young-Jin; Lee, Keunwoo; Kim, Seung-Woo

    2011-02-28

    We describe an active way of compensation for large dispersion induced in the femtosecond light pulses travelling in air for laser ranging. The pulse duration is consistently regulated at 250 fs by dispersion control, allowing sub-micrometer resolution in measuring long distances by means of time-of-flight measurement. This method could facilitate more reliable applications of femtosecond pulses for satellite laser ranging, laser altimetry and active LIDAR applications. PMID:21369227

  1. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser.

    PubMed

    Li, Xian-lei; Xu, Jin-long; Wu, Yong-zhong; He, Jing-liang; Hao, Xiao-peng

    2011-05-01

    We demonstrated that the graphene could be used as an effective saturable absorber for Q-switched solid-state lasers. A graphene saturable absorber mirror was fabricated with large and high-quality graphene sheets deprived from the liquid phase exfoliation. Using this mirror, 105-ns pulses and 2.3-W average output power are obtained from a passively Q-switched Nd:GdVO(4) laser. The maximum pulse energy is 3.2 μJ. The slope efficiency is as high as 37% approximating to 40% of the continue-wave laser, indicating a low intrinsic loss of the graphene. PMID:21643251

  2. Study of laser-induced damage to large core silica fiber by Nd:YAG and Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hokansson, Adam; Whelan, Dan; Clancy, Michael

    2009-02-01

    As a continuation of our earlier study at 2.1 μm wavelength, we have investigated the laser damage to several types of step-index, large core (1500 μm) silica fibers at two new wavelengths by high power long pulsed Nd:YAG (1064 nm) and Alexandrite (755 nm) lasers. It was observed that fibers with different designs showed a significant difference in performance at these wavelengths. We will also report a correlation of damage to the fibers between the two laser wavelengths. The performance analyses of different fiber types under the given test conditions will enable optimization of fiber design for specific applications.

  3. Role of the aperture in Z-scan experiments: A parametric study

    NASA Astrophysics Data System (ADS)

    Rashidian Vaziri, M. R.

    2015-11-01

    In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel-Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can influence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fluctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fluctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fluctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fluctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.

  4. Deterministic measurement and correction of the pad shape in full-aperture polishing processes

    NASA Astrophysics Data System (ADS)

    Liao, D.; Zhang, Q.; Xie, R.; Chen, X.; Zhao, S.; Wang, J.

    2015-11-01

    Full-aperture polishing is a significant process in fabricating large optical flats because it restrains Mid-Spatial Frequency errors and removes material quickly on the whole optic surface. Nevertheless, optical flats fabricated by full-aperture polishing generally fail to meet the stringent requirement of surface figure, which has to be corrected by sub-aperture polishing processes. Surface figure of optical flats in full-aperture polishing processes is primarily dependent on the pressure distribution uniformity which correlates intensively with the lap shape. At present, practical and precise means are urgently desired for measuring and correcting the lap shape, especially the polyurethane pad lap. In the study, we present a novel method for deterministic measurement of the pad shape. The method obtains the height of the pad at spirally distributed locations implemented by the revolution of the pad and translation of the laser displacement sensor. The pad shape in terms of matrixes whose elements representing the heights at the corresponding locations is then calculated by interpolation algorithm based on the obtained data. Further, we propose a method for deterministic correction of the pad shape utilizing a small conditioning tool. The dwell time algorithm and implementation strategy for the dwell time are provided for common full-aperture polishers. These solutions for the deterministic measurement and correction of the pad shape have been validated on a full-aperture polisher with polyurethane pad. The polishing experiments revealed that the optic surface figure was obviously improved.

  5. Demarcation laser photocoagulation induced retinal necrosis and rupture resulting in large retinal tear formation.

    PubMed

    Quezada, Carlos; Pieramici, Dante J; Matsui, Rodrigo; Rabena, Melvin; Graue, Federico

    2015-06-01

    Retinal tears after laser photocoagulation are a rare complication that occurs after intense laser. It is talked about among retina specialist occurring particularly at the end of a surgical case while applying endophotocoagulation; to the best our knowledge, there are no reports in the literature of a large retinal tear induced after attempted in-office demarcation laser photocoagulation (DLP) that simulated a giant retinal tear. DLP has been employed in the management of selected cases of macula sparring rhegmatogenous retinal detachment (RRD). Even though extension of the retinal detachment through the "laser barrier" is considered a failure of treatment, few complications have been described with the use of this less invasive retinal detachment repair technique. We describe a case of a high myopic woman who initially was treated with demarcation laser photocoagulation for an asymptomatic retinal detachment associated with a single horseshoe tear and a full thickness large retinal tear was created where the laser was placed. Intense laser photocoagulation resulted in abrupt laser induced retinal necrosis and rupture creating this large retinal break. Proper laser technique should reduce the risks associated with this procedure. PMID:25770055

  6. Research of large energy and high power Nd:Ce:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-yu; Nie, Jin-song

    2011-06-01

    Currently, the output laser energy was enlarged mostly by using laser application technology and different pump styles were used, which made the laser volume large. In this thesis, the output laser energy was increased by improving the quality of laser crystal and using new style doped laser crystal, which can increase the capacity usage ratio of solid laser, and the beam quality was improved as well. In the paper, a new double-doped Nd:Ce:YAG laser crystal pumped by Xe-lamp and the plane-plane resonant was used as main oscillator of laser. There were two advantages using the method. Firstly, the absorption spectrum and emission band spectrum of Ce3+ were analyzed, which can create energy transition between Ce3+ and Nd3+. The Ce3+ ion in double-doped laser crystal can absorb pump light at ultraviolet band and create stimulated emission, which located at the absorption band of Nd3+ and made more Nd3+ ion create energy level transition. The inverted population increased. As result the capacity usage ratio of pumped energy was increased and the output energy of laser was enlarged. Secondly for the advantage of the limitation of plane-plane resonant to laser beam was strong, the angle of divergence was small at far field and the beam quality was good. Finally the pulsed laser energy was compressed to spike pulse by using passive Q-switched, and the peak power was increased. The experiments were carried out under the condition of passive Q-switched. When the input voltage was 800V, the laser beam was obtained at the oscillator stage, whose output energy was 651.5mJ. The pulse width was 20ns. The slope efficiency was 0.49%. Angle of divergence was better than 1.2 mrad. And peak power was 32.5KW. The experiment result is accordant with theoretical analyses. This solid laser has important potential application.

  7. The laser interferometer system for the large optics diamond turning machine

    SciTech Connect

    Baird, E D; Donaldson, R R; Patterson, S R

    1999-06-29

    The purpose of this report is to describe the Laser Interferometer System designed for the Large Optics Diamond Turning Machine (LODTM). To better understand the laser interferometer system, it is useful to begin with an overview of the LODTM metrology system.

  8. `Fail-safe` system for suppressing stimulated Brillouin scattering in large optics on the Nova laser

    NASA Astrophysics Data System (ADS)

    Thompson, Calvin E.; Browning, Donald F.; Padilla, E. H.; Weiland, Timothy L.; Wintemute, J. D.

    1992-04-01

    We have designed and are testing a `fail safe' system on Nova to suppress stimulated Brillouin scattering (SBS) in large optics at the output of the laser. The system increases the laser bandwidth to prevent SBS and prevents pulses with insufficient bandwidth from being injected into the amplifier chain. It is thus fail safe. The system design and experimental measurements are presented.

  9. Systematic design and analysis of laser-guide-star adaptive-optics systems for large telescopes

    SciTech Connect

    Gavel, D.T.; Morris, J.R.; Vernon, R.G.

    1994-02-01

    The authors discuss the design of laser-guided adaptive-optics systems for the large, 8-10-m-class telescopes. Through proper choice of system components and optimized system design, the laser power that is needed at the astronomical site can be kept to a minimum. 37 refs., 9 figs., 3 tabs.

  10. Laser safety training programs for a large and diverse research and development laboratory

    NASA Astrophysics Data System (ADS)

    Stocum, W. E.

    Sandia National Laboratories is a large multiprogram Research and Development laboratory which is operated by a contractor for the US Department of Energy. In the Laboratories, lasers are both the subject of research and the tools that are used in other research, development, and testing activities. Since 1979, laser safety training has been the primary focus of the Laboratories' laser safety program. Approximately 1100 personnel have been trained in formal courses during that time period. The formal course, presented on site by a contractor, consists of two full days of instruction. The course contents include the following topics: Laser technology and safety overview; Federal and ANSI laser standards summaries; Biological effects of laser radiation; Classification of lasers; Laser hazard analysis; Review of ANSI Z136.1 control measures; Laser eye protection. Recent emphasis on regulatory requirements, conduct of operations, and quality management has revealed a need to change the laser safety training curriculum. A new course for users of low power lasers (Class 2 and 3a) is being developed. A refresher course, a management awareness (self-study) course, and major changes in the current course are planned.

  11. Compensation of the laser parameter fluctuations in large ring-laser gyros: a Kalman filter approach.

    PubMed

    Beghi, Alessandro; Belfi, Jacopo; Beverini, Nicolò; Bouhadef, B; Cuccato, D; Di Virgilio, Angela; Ortolan, Antonello

    2012-11-01

    He-Ne ring-laser gyroscopes are, at present, the most precise devices for absolute angular velocity measurements. Limitations to their performance come from the nonlinear dynamics of the laser. Following Lamb semiclassical theory, we find a set of critical parameters affecting the time stability of the system. We propose a method for estimating the long-term drift of the laser parameters and for filtering out the laser dynamics effects from the rotation measurement. The parameter estimation procedure, based on the perturbative solutions of the laser dynamics, allows us to apply Kalman filter theory for the estimation of the angular velocity. Results of a comprehensive Monte Carlo simulation and results of a preliminary analysis on experimental data from the ring-laser prototype G-Pisa are shown and discussed. PMID:23128698

  12. Compensation of the laser parameter fluctuations in large ring-laser gyros: a Kalman filter approach

    NASA Astrophysics Data System (ADS)

    Beghi, Alessandro; Belfi, Jacopo; Beverini, Nicolò; Bouhadef, B.; Cuccato, D.; Di Virgilio, Angela; Ortolan, Antonello

    2012-11-01

    He-Ne ring laser gyroscopes are, at present, the most precise devices for absolute angular velocity measurements. Limitations to their performance come from the non--linear dynamics of the laser. Following the Lamb semi-classical theory, we find a set of critical parameters affecting the time stability of the system. We propose a method for estimating the long term drift of the laser parameters and for filtering out the laser dynamics effects from the rotation measurement. The parameter estimation procedure, based on the perturbative solutions of the laser dynamics, allow us to apply Kalman Filter theory for the estimation of the angular velocity. Results of a comprehensive Monte Carlo simulation and results of a preliminary analysis on experimental data from the ring laser prototype G-Pisa are shown and discussed.

  13. A laser velocimeter system for large-scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Orloff, K. L.; Snyder, P. K.

    1984-01-01

    A unique laser velocimeter was developed that is capable of sensing two orthogonal velocity components from a variable remote distance of 2.6 to 10 m for use in the 40- by 80-Foot and 80- by 120-Foot Wind Tunnels and the Outdoor Aerodynamic Research Facility at Ames Research Center. The system hardware, positioning instrumentation, and data acquisition equipment are described in detail; system capabilities and limitations are discussed; and expressions for systematic and statistical accuracy are developed. Direct and coupled laboratory measurements taken with the system are compared with measurements taken with a laser velocimeter of higher spatial resolution, and sample data taken in the open circuit exhaust flow of a 1/50-scale model of the 80- by 120-Foot Wind Tunnel are presented.

  14. Single-pulse driven, large-aperture 2×1 array plasma-electrodes optical switch for SG-II upgrading facility

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Dengsheng; Zheng, Jiangang; Zheng, Kuixing; Zhu, Qihua; Zhang, Xiongjun

    2014-12-01

    We demonstrate the design and performance of an optical switch that has been constructed for the SG-II upgrading facility. The device is a longitudinal, potassium di-hydrogen phosphate (KDP), 360 mm×360 mm aperture, and 2×1 array electro-optical switch driven by a 20 kV output switching-voltage pulse generator through two plasma electrodes produced at the rise edge of the switching-voltage pulse. The results show that the temporal responses and the spatial performance of the optical switch fulfill the operation requirements of the SG-II upgrading facility.

  15. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  16. Frequency doubling of fiber laser radiation of large spectral bandwidths

    NASA Astrophysics Data System (ADS)

    Nyga, Sebastian; Geiger, Jens; Jungbluth, Bernd

    2010-02-01

    In this work the reduction of conversion efficiency due to spectral bandwidth of fiber laser radiation is investigated. Subsequently, compensation optics to correct the spectral phase mismatching inside the nonlinear crystal is dimensioned and tested. For the experimental study a laboratory fiber laser setup is used consisting of a seed diode and a three stage fiber amplifier. The laser delivers an average output power of up to 100 W at 1 MHz. Even below the Raman threshold the output is far away from Fourier limit, providing a nearly Lorentzian spectral shape and a temporal pulse width of 800 ps. As the bandwidth increases nearly linearly with the pump power of the third amplifier stage, this parameter could be controlled for the experiments. All conversion experiments are conducted with a moderate load of the nonlinear crystals, i.e. intensity less than 150 MW/cm2. Without compensation of the spectral phase mismatch, a maximum conversion efficiency of 15 % is attained for a Type I configuration with a 20mm long LBO crystal. Using the compensation setup 27 W of green light are obtained from 60 W infrared light at a bandwidth of 4.7 nm. Therefore the efficiency rises to 44% at the same load.

  17. Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion.

    PubMed

    Zhang, Lei; El-Damak, A R; Feng, Yan; Gu, Xijia

    2013-05-20

    An ytterbium-doped mode-locked fiber laser was demonstrated with a chirped fiber Bragg grating for dispersion management. The cavity net dispersion could be changed from large normal dispersion (2.4 ps(2)) to large anomalous dispersion (-2.0 ps(2)), depending on the direction of the chirped Bragg grating in laser cavity. The proposed fiber lasers with large normal dispersion generated stable pulses with a pulse width of <1.1 ns and a pulse energy of 1.5 nJ. The laser with large anomalous dispersion generated wavelength-tunable soliton with a pulse width of 2.7 ps and pulse energy of 0.13 nJ. A theoretical model was established and used to verify the experimental observations. PMID:23736423

  18. Debuncher Momentum Aperture Measurements

    SciTech Connect

    O'Day, S.

    1991-01-01

    During the November 1990 through January 1991 {bar p} studies period, the momentum aperture of the beam in the debuncher ring was measured. The momentum aperture ({Delta}p/p) was found to be 4.7%. The momentum spread was also measured with beam bunch rotation off. A nearly constant particle population density was observed for particles with {Delta}p/p of less than 4.3%, indicating virtually unobstructed orbits in this region. The population of particles with momenta outside this aperture was found to decrease rapidly. An absolute or 'cut-off' momentum aperture of {Delta}p/p = 5.50% was measured.

  19. A smart car for the surface shape measurement of large antenna based on laser tracker

    NASA Astrophysics Data System (ADS)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  20. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL's atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  1. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL`s atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  2. Retrograde diurnal motion of the instantaneous rotation axis observed by a large ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Tian, W.

    2016-07-01

    Ring laser gyroscope technique directly senses the Earth's instantaneous rotation pole (IRP), whose polar motion contains strong retrograde diurnal components induced by external torques due to the gravitational attraction of the Moon and Sun. The first direct measurement of this retrograde diurnal motion with three large ring lasers was reported by Schreiber et al. (J Geophys Res 109(B18):B06405, 2004). Since then many technical improvements led to a significant increase in precision and stability of ring laser gyroscopes; however, precise determination of amplitude and phase at main partial waves has not been given in the literature. In this paper, I will report on determination of the retrograde diurnal motion of the IRP at main partial waves (Oo_1, J_1, K_1, M_1, O_1, Q_1 ) by the ring laser "G", located in Wettzell, Germany, which is the most stable one amongst the currently running large ring laser gyroscopes.

  3. Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness

    SciTech Connect

    Lamaignere, Laurent; Dupuy, Gabriel; Donval, Thierry; Grua, Pierre; Bercegol, Herve

    2011-02-01

    Pulsed laser damage density measurements obtained with diverse facilities are difficult to compare, due to the interplay of numerous parameters, such as beam area and pulse geometry, which, in operational large beam conditions, are very different from laboratory measurements. This discrepancy could have a significant impact; if so, one could not even pretend that laser damage density control is a real measurement process. In this paper, this concern is addressed. Tests with large beams of centimeter size on a high-power laser facility have beam performed according to a parametric study and are compared to small beam laboratory tests. It is shown that laser damage densities obtained with large and small beams are equal, within calculated error bars.

  4. Variable-aperture screen

    DOEpatents

    Savage, George M.

    1991-01-01

    Apparatus for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function.

  5. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  6. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for intergrated tools in the optimization process

    NASA Astrophysics Data System (ADS)

    Arnold, William R.

    2015-09-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  7. Evolving Design Criteria for Very Large Aperture Space-Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  8. On the laser quenching of the groove of the piston head in large diesel engines

    SciTech Connect

    Liu, Q.; Song, Y.; Yang, Y.; Xu, G.; Zhao, Z.

    1998-06-01

    The service life of piston heads and the stability of large diesel engines are remarkably affected by the wear resistance of the groove of the piston head. Unfortunately, conventional high-frequency quenching methods result in several deleterious effects that may impair the antifriction and wear properties of the groove of the piston head. Excellent wear resistance characteristics may be achieved provided the groove surface is properly surface treated. Laser surface quenching is a new candidate technique. A 2 kW CW CO{sub 2} laser was employed for the laser quenching of the groove of the piston head in large diesel engines. The hardness and depth of the laser quenched layer reached 750 HV and 0.59 mm, respectively. The microstructure of the quenched layer is composed of martensite and retained austenite. Wear tests were performed using laser quenching and high-frequency quenching samples, and wear resistance was compared by using a method of mass loss. The results show that the wear resistances of laser quenched samples are 1.3{times} higher than that resulting from the high-frequency quenching method. Practical application of laser quenched piston heads in diesel power plants indicate that it is an effective way to prolong the service life of the piston head in large diesel engines.

  9. Synthetic aperture methods for angular scatter imaging

    NASA Astrophysics Data System (ADS)

    Guenther, Drake A.; Ranganathan, Karthik; McAllister, Michael J.; Rigby, K. W.; Walker, William F.

    2004-04-01

    Angular scatter offers a new source of tissue contrast and an opportunity for tissue characterization in ultrasound imaging. We have previously described the application of the translating apertures algorithm (TAA) to coherently acquire angular scatter data over a range of scattering angles. While this approach works well at the focus, it suffers from poor depth of field (DOF) due to a finite aperture size. Furthermore, application of the TAA with large focused apertures entails a tradeoff between spatial resolution and scattering angle resolution. While large multielement apertures improve spatial resolution, they encompass many permutations of transmit/receive element pairs. This results in the simultaneous interrogation of multiple scattering angles, limiting angular resolution. We propose a synthetic aperture imaging scheme that achieves both high spatial resolution and high angular resolution. In backscatter acquisition mode, we transmit successively from single transducer elements, while receiving on the same element. Other scattering angles are interrogated by successively transmitting and receiving on different single elements chosen with the appropriate spatial separation between them. Thus any given image is formed using only transmit/receive element pairs at a single separation. This synthetic aperture approach minimizes averaging across scattering angles, and yields excellent angular resolution. Likewise, synthetic aperture methods allow us to build large effective apertures to maintain a high spatial resolution. Synthetic dynamic focusing and dynamic apodization are applied to further improve spatial resolution and DOF. We present simulation results and experimental results obtained using a GE Logiq 700MR system modified to obtain synthetic aperture TAA data. Images of wire targets exhibit high DOF and spatial resolution. We also present a novel approach for combining angular scatter data to effectively reduce grating lobes. With this approach we have

  10. Laser Direct Write micro-fabrication of large area electronics on flexible substrates

    NASA Astrophysics Data System (ADS)

    Zacharatos, F.; Makrygianni, M.; Geremia, R.; Biver, E.; Karnakis, D.; Leyder, S.; Puerto, D.; Delaporte, P.; Zergioti, I.

    2016-06-01

    To date, Laser Direct Write (LDW) techniques, such as Laser Induced Forward Transfer (LIFT), selective laser ablation and selective laser sintering of metal nanoparticle (NP) ink layers are receiving growing attention for the printing of uniform and well-defined conductive patterns with resolution down to 10 μm. For flexible substrates in particular, selective laser sintering of such NP patterns has been widely applied, as a low temperature and high resolution process compatible with large area electronics. In this work, LDW of silver NP inks has been carried out on polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN) and polyimide (PI) substrates to achieve low electrical resistivity electrodes. In more detail, high speed short pulsed (picosecond and nanosecond) lasers with repetition rates up to 1 MHz were used to print (LIFT) metal NP inks. We thus achieved uniform and continuous patterns with a minimum feature size of 1 μm and a total footprint larger than 1 cm2. Next, the printed patterns were laser sintered with ns pulses at 532 nm over a wide laser fluence window, resulting in an electrical resistivity of 10 μΩ cm. We carried out spatial beam shaping experiments to achieve a top-hat laser intensity profile and employed selective laser ablation of thin films (thickness on the order of 100 nm) to produce silver micro-electrodes with a resolution on the order of 10 μm and a low line edge roughness. Laser sintering was combined with laser ablation to constitute a fully autonomous micro-patterning technique of metallic micro-features, with a 10 μm resolution and geometrical characteristics tuned for interdigitated electrodes for sensor applications.

  11. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    aperture mask, these optical paths are stated to be homothetic. In short, these two types will be addressed as the Michelson or the Homothetic type. The other two types are addressed as Densified and Staircase. The first one is short for densified pupil imaging, an imaging technique very similar to the Homothetic type, be it that the natural course of light after the aperture mask is altered. However, the combination of the beams of light is again in focus. The Staircase method is an alternative to the co-axial Michelson method and lends its name from the fact that a staircase-shaped mirror is placed in an intermediate focal plane after each telescope in the array, before combining the beams of light co-axially. This addition allows stellar imaging as with the Michelson type, with the advantage of covering a large field-of-view. The details of these methods will intensively be discussed in this thesis, but the introduction of them at this point allows a short list of results, found by comparing them for equal imaging tasks. Homothetic imagers are best suited for covering a wide field-of-view, considering the information content of the interferometric signals these arrays produce. The large number of detectors does not seem to limit the imaging performance in the presence of noise, due to the high ratio of coherent versus incoherent information in the detector signal. The imaging efficiency of a Michelson type array is also high, although -considering only polychromatic wide-field imaging tasks- the ratio of coherent versus incoherent information in the detected signals is very low. This results in very large observation times needed to produce images comparable to those obtained with a Homothetic array. A detailed presentation of the characteristics of the detected signals in a co-axial Michelson array reveal that such signals, obtained by polychromatic observation of extended sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain high

  12. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses.

    PubMed

    Liao, G Q; Li, Y T; Li, C; Su, L N; Zheng, Y; Liu, M; Wang, W M; Hu, Z D; Yan, W C; Dunn, J; Nilsen, J; Hunter, J; Liu, Y; Wang, X; Chen, L M; Ma, J L; Lu, X; Jin, Z; Kodama, R; Sheng, Z M; Zhang, J

    2015-06-26

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100  μJ per steradian in the laser specular direction at an optimal preplasma scale length around 40-50  μm. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas. PMID:26197129

  13. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    SciTech Connect

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  14. High numerical aperture hybrid optics for two-photon polymerization.

    PubMed

    Burmeister, Frank; Zeitner, Uwe D; Nolte, Stefan; Tünnermann, Andreas

    2012-03-26

    We report on an immersion hybrid optics specially designed for focusing ultrashort laser pulses into a polymer for direct laser writing via two-photon polymerization. The hybrid optics allows for well-corrected focusing over a large working distance range of 577 μm with a numerical aperture (NA) of 1.33 and low internal dispersion. We combine the concepts of an aplanatic solid immersion lens (ASIL) for achieving a high NA with a diffractive optical element (DOE) for correction of aberrations. To demonstrate the improvements for volume structuring of the polymer, we compare the achievable structure sizes of our optics with a commercially available oil-immersion objective (100x, NA=1.4). PMID:22453471

  15. Sub-Aperture Interferometers

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2010-01-01

    Sub-aperture interferometers -- also called wavefront-split interferometers -- have been developed for simultaneously measuring displacements of multiple targets. The terms "sub-aperture" and "wavefront-split" signify that the original measurement light beam in an interferometer is split into multiple sub-beams derived from non-overlapping portions of the original measurement-beam aperture. Each measurement sub-beam is aimed at a retroreflector mounted on one of the targets. The splitting of the measurement beam is accomplished by use of truncated mirrors and masks, as shown in the example below

  16. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  17. Growth and quasistabilization of large-scale spikes on laser beams in self-focusing media

    NASA Astrophysics Data System (ADS)

    Abbi, S. C.; Kothari, N. C.; Subrahmanyam, V. R.

    1985-07-01

    We present numerical calculations concerning the growth of a large-scale Gaussian spike riding axially over a Gaussian profile intense laser beam. Incorporation of both self-focusing and depletion of the laser beam leads to a criticality with regard to the spike's initial relative intensity due to the counteracting behavior of these two effects, thereby determining the net power transfer to the spike and its quasistabilization.

  18. Treatment of large bulla formation after tattoo removal with a q-switched laser.

    PubMed

    Kirby, William; Kartono, Francisca; Desai, Alpesh; Kaur, Ravneet R; Desai, Tejas

    2010-01-01

    Widely considered the gold standard treatment option for tattoo removal, the use of Q-switched lasers may very rarely result in the formation of large bulla. While very disconcerting to patients, these lesions are easily managed and, with proper care, heal quickly with no long-term consequences. The authors present three cases of patients who had bullous reactions shortly after receiving Q-switched laser treatment of tattoo ink. Bullous formation in all three patients was treated successfully. PMID:20725537

  19. Cleaved-coupled-cavity lasers with large cavity length ratios for enhanced stability

    SciTech Connect

    Bowers, J.E.; Bjorkholm, J.E.; Burrus, C.A.; Coldren, L.A.; Hemenway, B.R.; Wilt, D.P.

    1984-05-01

    The fabrication and operation of the first cleaved-coupled-cavity (C/sup 3/) semiconductor lasers with large cavity length ratios are described. The internal cleaved facet is precisely positioned by photochemically etching a groove through most of the wafer. Single longitudinal mode operation is obtained over a temperature range of 21 /sup 0/C and over a current range of threshold to greater than four times threshold. Sidemode suppression of 100:1 was measured when the laser was modulated at 350 MHz with an extinction ratio greater than 10:1. These results are experimentally and theoretically compared to approximately equal length C/sup 3/ lasers.

  20. Picosecond laser-driven terahertz radiation from large scale preplasmas of solid targets

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Su, L. N.; Zheng, Y.; Liu, M.; Dunn, J.; Nilsen, J.; Hunter, J.; Wang, W. M.; Sheng, Z. M.; Zhang, J.

    2016-05-01

    The terahertz (THz) radiation from the front of solid targets with a large-scale preplasma irradiated by relativistic picosecond laser pulses has been studied. The THz radiation measured at the specular direction nonlinearly increases with laser energy and an optimal plasma density scalelength is observed. Particle-in-cell simulations indicate that the radiation can be attributed to the model of mode conversion. While the THz radiation near the target normal direction is saturated with laser energy and plasma scalelength. Unlike the radiation in the specular direction’ the transient current formed at the plasma-vacuum interface could be responsible for the radiation near the target normal.

  1. Mounting, alignment and integration of large optics in China's high power laser

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xiong, Zhao; Yuan, Xiaodong

    2016-05-01

    SG-III, a high-power laser facility of China, is constructed to produce 0.18MJ energy for physical experiments under controlled laboratory conditions. Each laser beam requires the ability to align to a millimeter-sized target with a precision of 30 μm (RMS) and the single-beam energy will be up to 3.75 KJ. Arrayed along each beam-path, hundreds of optics must be positioned to stringent tolerances. Therefore, this paper introduces the approaches used by engineers to overcome the technical challenges on precise mounting, alignment and integration of large optics in china's high power laser facility.

  2. Broadband synthetic aperture geoacoustic inversion.

    PubMed

    Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S

    2013-07-01

    A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment. PMID:23862809

  3. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  4. Measurement of the surface form error of large aperture plane optical surfaces with a polarization phase-shifting liquid reference reflection Fizeau interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan; Singh, Rishipal; Singh, Sarvendra

    2016-01-10

    A polarization phase-shifting liquid reference reflection Fizeau interferometer has been proposed. A polarization cyclic path optical configuration along with a concave telescope mirror is used to produce a pair of expanded, collimated p and s polarized beams with a small angular separation between them. The collimated beams are deflected along a vertical direction toward a Fizeau interferometer cavity formed between a liquid surface that acts as a reference surface and a plane test surface. Either the p or s polarized beam is allowed to strike the liquid surface normally and the orientation of the test surface is adjusted to reflect the other beam, having orthogonal linear polarization, in the direction of the normally reflected reference beam from the liquid surface. A combination of a quarter-wave plate and linear polarizer is used to apply polarization phase shift between the test and reference beams, and quantitative surface form error is measured by applying phase-shifting interferometry. A method for elimination of the residual system aberration is discussed. Results obtained for an optically polished BK-7 disk of clear aperture diameter ≈160  mm are presented. PMID:26835767

  5. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  6. Absolute testing of surface based on sub-aperture stitching interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Xing, Tingwen

    2015-02-01

    Large-aperture optical elements are widely employed in high-power laser system, astronomy, and outer-space technology. Sub-aperture stitching is an effective way to extend the lateral and vertical dynamic range of a conventional interferometer. Most of the commercial available sub-aperture stitching interferometers measure the surface with a standard lens that produces a reference wavefront, and the precision of the interferometer is generally limited by the standard lens. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. In our paper we use the different sub-apertures as the different flats to get the profile of the reference lens. Only two lens in the testing process which is fewer than the traditional 3-flat method. In the testing equipment, we add a reflective lens and a lens which can transparent and reflect to get the non rationally symmetric errors of the testing flat. The arithmetic is present in this paper which uses the absolute testing method to improve the testing accuracy of the sub-aperture stitching interferometers by removing the errors caused by reference surface.

  7. Variable-aperture screen

    DOEpatents

    Savage, G.M.

    1991-10-29

    Apparatus is described for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function. 10 figures.

  8. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  9. Recommendations for the design and the installation of large laser scanning microscopy systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  10. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    PubMed Central

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360

  11. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  12. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept

    NASA Astrophysics Data System (ADS)

    Stubbs, David; Duncan, Alan; Pitman, Joseph T.; Sigler, Robert; Kendrick, Rick; Smith, Eric H.; Mason, James

    2004-10-01

    An innovative approach to future space telescopes that enables order of magnitude increased science return for astronomical, Earth-observing and planetary science missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes. MIDAS integrates many optical interferometry advances as an evolution of over a decade of technology development in distributed aperture optical imaging systems. Nine collector telescopes are integrated into MIDAS as the primary remote sensing science payload, supporting a collection of six back-end science instruments tailored to a specific mission. By interfacing to multiple science instruments, enabling sequential and concurrent functional modes, we expand the potential science return of future space science missions many fold. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. For Earth-observing and planetary science missions, the MIDAS optical design provides high-resolution imaging at high altitudes for long dwell times, thereby enabling real-time, wide-area remote sensing of dynamic planetary surface characteristics. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables surface illumination, active spectroscopy, LIDAR, vibrometery, and optical communications. Our concept is directly scalable to telescope synthetic apertures of 5m, limited by launch vehicle fairing diameter, and above 5m diameter achieved by means of autonomous deployments or manned

  13. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  14. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  15. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon.

    PubMed

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~ 200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc. PMID:26727551

  16. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    PubMed Central

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc. PMID:26727551

  17. Large laser sparks for laboratory simulation of high-energy-density events in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Babankova, Dagmar; Juha, Libor; Civias, Svatopluk; Bittner, Michal; Cihelka, Jaroslav; Bartnik, Andrzej; Fiedorowicz, Henryk; Mikolajczyk, Janusz; Ryc, Leszek; Pfeifer, Miroslav; Skala, Jiri; Ullschmied, Jiri

    2005-09-01

    Single ≤1 kJ pulses from a high-power laser are focused into molecular gases to create large laser sparks. This provides a unique way to mimic the chemical effects of high-energy-density events in planetary atmospheres (cometary impact, lightning) matching the natural energy-density, its spatio-temporal evolution and plasma-volume scaling of such events in a fully-controlled laboratory environment. Some chemical reactions initiated by laser-induced dielectric breakdown (LIDB) in both pure molecular gases and mixtures related to the chemical evolution of the Earth's early atmosphere were studied. Most of the experiments were carried out in a static gas cell. However, an initial series of experiments was also performed with a gas-puff target placed within a vacuum interaction chamber. Under these dynamic conditions the hot core of a laser spark can be directly investigated.

  18. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc.

  19. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  20. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Smith, Eric; Mason, James; Delory, Greg; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Bierhaus, Edward; Dalton, James B.; Fienup, James; Yu, Jeffrey W.

    2004-11-01

    An innovative approach that enables greatly increased return from earth and planetary science remote sensing missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, integration and risks of a set of back-end science instruments (SI's) tailored to a specific mission, such as advanced SI's now in development for earth and planetary remote sensing missions. MIDAS interfaces to multiple SI's for redundancy and to enable synchronized concurrent science investigations, such as with multiple highly sensitive spectrometers. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. In its active remote sensing modes using an integrated laser source, MIDAS enables LIDAR, vibrometry, illumination, various active laser spectroscopies such as ablative, breakdown or time-resolved spectroscopy. The MIDAS optical design also provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic changes in planet surface processes.

  1. Restoring Aperture Profile At Sample Plane

    SciTech Connect

    Jackson, J L; Hackel, R P; Lungershausen, A W

    2003-08-03

    Off-line conditioning of full-size optics for the National Ignition Facility required a beam delivery system to allow conditioning lasers to rapidly raster scan samples while achieving several technical goals. The main purpose of the optical system designed was to reconstruct at the sample plane the flat beam profile found at the laser aperture with significant reductions in beam wander to improve scan times. Another design goal was the ability to vary the beam size at the sample to scan at different fluences while utilizing all of the laser power and minimizing processing time. An optical solution was developed using commercial off-the-shelf lenses. The system incorporates a six meter relay telescope and two sets of focusing optics. The spacing of the focusing optics is changed to allow the fluence on the sample to vary from 2 to 14 Joules per square centimeter in discrete steps. More importantly, these optics use the special properties of image relaying to image the aperture plane onto the sample to form a pupil relay with a beam profile corresponding almost exactly to the flat profile found at the aperture. A flat beam profile speeds scanning by providing a uniform intensity across a larger area on the sample. The relayed pupil plane is more stable with regards to jitter and beam wander. Image relaying also reduces other perturbations from diffraction, scatter, and focus conditions. Image relaying, laser conditioning, and the optical system designed to accomplish the stated goals are discussed.

  2. Multiple Instrument Distributed Aperture Sensor (MIDAS) for planetary remote sensing

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert D.; Kendrick, Richard L.; Smith, Eric H.; Mason, James E.; Delory, Gregory; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Marcus, Philip; Bierhaus, Edward; Dalton, James B.; Fienup, James R.; Yu, Jeffrey W.

    2004-12-01

    An innovative approach that enables greatly increased return from planetary science remote sensing missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, integration and risks of a set of back-end science instruments (SI"s) tailored to a specific mission, such as advanced SI"s now in development for future planetary remote sensing missions. MIDAS interfaces to multiple SI"s for redundancy and to enable synchronized concurrent science investigations, such as with multiple highly sensitive spectrometers. Passive imaging modes with MIDAS enable high resolution remote sensing at the diffraction limit of the overall synthetic aperture, sequentially by each science instrument as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. In its active remote sensing modes using an integrated laser subsystem, MIDAS enables LIDAR, vibrometry, illumination, various active laser spectroscopies such as ablative, breakdown, fluorescence, Raman and time-resolved spectroscopy. The MIDAS optical design also provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic changes in planet surface processes. These remote sensing capabilities significantly enhance astrobiologic, geologic, atmospheric, and similar scientific objectives for planetary exploration missions.

  3. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    SciTech Connect

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-09-02

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge.

  4. Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Connelly, Joseph

    2011-01-01

    The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.

  5. Large-scale atomistic simulations of surface nanostructuring by short pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Chengping; Shugaev, Maxim; Zhigilei, Leonid

    2015-03-01

    The availability of petascale supercomputing resources has expanded the range of research questions that can be addressed in the simulations and, in particular, enabled large-scale atomistic simulations of short pulse laser nanostructuring of metal surfaces. A series of simulations performed for systems consisting of 108 - 109 atoms is used in this study to investigate the mechanisms responsible for the generation of complex multiscale surface morphology and microstructure. At low laser fluence, just below the spallation threshold, a concurrent occurrence of fast laser melting, dynamic relaxation of laser-induced stresses, and rapid cooling and resolidification of the transiently melted surface region is found to produce a sub-surface porous region covered by a nanocrystalline layer. At higher laser fluences, in the spallation and phase explosion regimes, the material disintegration and ejection driven by the relaxation of laser-induced stresses and/or explosive release of vapor leads to the formation of complex surface morphology that can only be studied in billion-atom simulations. The first result from a billion atom simulation of surface nanostructuring performed on Titan will be discussed in the presentation. Financial support is provided by NSF (DMR-0907247 and CMMI-1301298) and AFOSR (FA9550-10-1-0541). Computational support is provided by the OLCF (MAT048) and NSF XSEDE (TG-DMR110090).

  6. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  7. Polarisation splitting of laser beams by large angles with minimal reflection losses

    SciTech Connect

    Davydov, B L

    2006-05-31

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal-air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables. (laser applications and other topics in quantum electronics)

  8. Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds

    NASA Astrophysics Data System (ADS)

    Wu, P. H.; Cheng, C. W.; Chang, C. P.; Wu, T. M.; Wang, J. K.

    2011-11-01

    Fast replication of large-area femtosecond-laser-induced surface micro/nanostructures on plastic parts by injection molding is demonstrated. An STAVAX steel mold insert is irradiated by femtosecond laser pulses with linear or circular polarization to form periodic-like nanostructures or nanostructure-covered conical microstructures. It was then used for the process of thermal injection molding. The process provides high-volume manufacturing means to generate hydrophobic enhanced plastic parts, which is expected to be widely used in consumables and chemical/biomedical device industries.

  9. Management of large prostatic adenoma: Lasers versus bipolar transurethral resection of prostate.

    PubMed

    Gupta, Narmada P; Nayyar, Rishi

    2013-07-01

    Transurethral resection of prostate (TURP) has long been the most commonly performed surgical procedure for the management of benign prostate enlargement (BPE), but has several associated limitations. Over the years, laser techniques have developed as major contenders as alternative therapies for BPE. However, simultaneously, TURP has also flourished and with relatively recent development of resection in saline (bipolar TURP), the tussle between laser techniques and TURP has further gained momentum. A systematic search was performed on Medline using the various Medical subject headings related to the surgical management of BPE including TURP, bipolar, lasers, holmium laser enucleation of prostate (HoLEP), photo-selective vaporization of prostate (PVP), etc., All articles types including meta-analysis randomized controlled trials, review articles, guidelines from various urological associations, single center studies from 2002 onward were considered for review. Bipolar TURP, HoLEP, and PVP provide equivalent outcomes for large prostate adenoma (<60 g). For extremely large glands (<150 g), HoLEP is a very efficacious endoscopic alternative to open prostatectomy and has proven long-term results over more than a decade. Bipolar TURP and PVP are attractive with a minimal learning curves and equivalent short term durability. Surgical management of large prostate should be individualized based upon patient's comorbidities and surgeon's expertise. PMID:24082445

  10. Management of large prostatic adenoma: Lasers versus bipolar transurethral resection of prostate

    PubMed Central

    Gupta, Narmada P; Nayyar, Rishi

    2013-01-01

    Transurethral resection of prostate (TURP) has long been the most commonly performed surgical procedure for the management of benign prostate enlargement (BPE), but has several associated limitations. Over the years, laser techniques have developed as major contenders as alternative therapies for BPE. However, simultaneously, TURP has also flourished and with relatively recent development of resection in saline (bipolar TURP), the tussle between laser techniques and TURP has further gained momentum. A systematic search was performed on Medline using the various Medical subject headings related to the surgical management of BPE including TURP, bipolar, lasers, holmium laser enucleation of prostate (HoLEP), photo-selective vaporization of prostate (PVP), etc., All articles types including meta-analysis randomized controlled trials, review articles, guidelines from various urological associations, single center studies from 2002 onward were considered for review. Bipolar TURP, HoLEP, and PVP provide equivalent outcomes for large prostate adenoma (<60 g). For extremely large glands (<150 g), HoLEP is a very efficacious endoscopic alternative to open prostatectomy and has proven long-term results over more than a decade. Bipolar TURP and PVP are attractive with a minimal learning curves and equivalent short term durability. Surgical management of large prostate should be individualized based upon patient's comorbidities and surgeon's expertise. PMID:24082445

  11. A feasibility study into the screening and imaging of hand luggage for threat items at 35 GHz using an active large aperture (1.6 m) security screening imager

    NASA Astrophysics Data System (ADS)

    Bowring, Nicholas J.; O'Reilly, Dean; Salmon, Neil A.; Andrews, David A.; Rezgui, Nacer-Ddine; Harmer, Stuart W.

    2013-10-01

    The feasibility of screening hand luggage for concealed threat items such as Person-Borne Improvised Explosive Devices (PBIED's) both metallic and non-metallic, together with handguns and at millimetre wavelengths is investigated. Previous studies by the authors and others indicate that hand baggage material and fabric is much more transmissive and has less scattering at lower millimetre wave frequencies and the ability to use K-band active imaging with high spatial resolution presents an opportunity to image and hence recognise concealed threats. For this feasibility study, a 1.6 m aperture, 35 GHz security screening imaging system with a spatial resolution of 2.5 cm and a depth of field of around 5 cm is employed, using spatially incoherent illuminating panels to enhance image contrast. In this study, realistic scenarios using backpacks containing a realistic range of threat and non-threat items are scanned, both carried and standalone. This range of items contains large vessels suitable for containing simulated home-made PBIED's and handguns. The comprehensive list of non-threat items includes laptops, bottles, clothing and power supplies. For this study, the range at which imaging data at standoff distances can be acquired is confined to that of the particular system in use, although parameters such as illumination and integration time are optimised. However, techniques for extrapolating towards effective standoff distances using aperture synthesis imagers are discussed. The transmission loss through fabrics and clothing that may form, or be contained in baggage, are reported over range of frequencies ranging from 26 to 110 GHz.

  12. Coded aperture computed tomography

    NASA Astrophysics Data System (ADS)

    Choi, Kerkil; Brady, David J.

    2009-08-01

    Diverse physical measurements can be modeled by X-ray transforms. While X-ray tomography is the canonical example, reference structure tomography (RST) and coded aperture snapshot spectral imaging (CASSI) are examples of physically unrelated but mathematically equivalent sensor systems. Historically, most x-ray transform based systems sample continuous distributions and apply analytical inversion processes. On the other hand, RST and CASSI generate discrete multiplexed measurements implemented with coded apertures. This multiplexing of coded measurements allows for compression of measurements from a compressed sensing perspective. Compressed sensing (CS) is a revelation that if the object has a sparse representation in some basis, then a certain number, but typically much less than what is prescribed by Shannon's sampling rate, of random projections captures enough information for a highly accurate reconstruction of the object. This paper investigates the role of coded apertures in x-ray transform measurement systems (XTMs) in terms of data efficiency and reconstruction fidelity from a CS perspective. To conduct this, we construct a unified analysis using RST and CASSI measurement models. Also, we propose a novel compressive x-ray tomography measurement scheme which also exploits coding and multiplexing, and hence shares the analysis of the other two XTMs. Using this analysis, we perform a qualitative study on how coded apertures can be exploited to implement physical random projections by "regularizing" the measurement systems. Numerical studies and simulation results demonstrate several examples of the impact of coding.

  13. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  14. Temporal Aperture Modulation

    NASA Technical Reports Server (NTRS)

    Proctor, R. J.

    1981-01-01

    The two types of modulation techniques useful to X-ray imaging are reviewed. The use of optimum coded temporal aperature modulation is shown, in certain cases, to offer an advantage over a spatial aperture modulator. Example applications of a diffuse anisotropic X-ray background experiment and a wide field of view hard X-ray imager are discussed.

  15. Frequency chirped light at large detuning with an injection-locked diode laser

    SciTech Connect

    Teng, K.; Disla, M.; Dellatto, J.; Limani, A.; Kaufman, B.; Wright, M. J.

    2015-04-15

    We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generate a 1 GHz frequency chirp in 5 ns.

  16. High gain-production efficiency and large brightness X-UV laser at Palaiseau

    NASA Astrophysics Data System (ADS)

    Jaeglé, P.; Carillon, A.; Dhez, P.; Goedtkindt, P.; Jamelot, G.; Klisnick, A.; Rus, B.; Zeitoun, Ph.; Jacquemot, S.; Mazataud, D.; Mens, A.; Chauvineau, J. P.

    1995-05-01

    A large gain has been measured for the J=0-1 line of neonlike Zn at λ=21.2 nm. The time evolutions and the localization of emission zones of the J=0-1 and J=2-1 lines are compared. It is shown that a train of very small prepulses before the main pulse has an important role in the J=0=1 emission. A half-cavity has been successfully used to attain a nearly saturated intensity with a 2 cm long plasma. The X-UV pulse energy is of 400 μJ, the laser power of 5 MW. The driving laser is the 0.4 KJ, 600 ps laser of LULI.

  17. Removal of an Extra-large Irritation Fibroma With a Combination of Diode Laser and Scalpel

    PubMed Central

    Bakhtiari, Sedigheh; Taheri, Jamileh Bigom; Sehhatpour, Marziye; Asnaashari, Mohammad; Attarbashi Moghadam, Saaedeh

    2015-01-01

    Introduction: Irritation fibroma is the most common tumor like and sub mucosal reactive lesion in the oral cavity. Usually it is measured less than 1.5 cm in diameter; however in rare case it has more than 3 cm in diameter. Different kind of treatment for soft tissue lesions include scalpel excision, electrical surgery, and laser surgery. The diode laser can be more effective than conventional surgery, electrosurgery and cryosurgery in reduction of bleeding and pain. Case Report: We reported a very large irritation fibroma in right lingual side of retromolar pad which was less prone to be traumatized under local irritation, in a woman wearing maxillary complete denture and use of both diode laser and scalpel for its excision. PMID:26705465

  18. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Polarisation splitting of laser beams by large angles with minimal reflection losses

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.

    2006-05-01

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal—air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables.

  19. Measurements of Aperture Averaging on Bit-Error-Rate

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  20. ROMY - The First Large 3D Ring Laser Structure for Seismology and Geodesy

    NASA Astrophysics Data System (ADS)

    Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Lin, Chin-Jen; Gebauer, André; Wells, Jon-Paul

    2016-04-01

    Large ring laser gyroscopes have matured to the point that they can routinely observe rotational motions from geophysical processes that can be used in geodesy and seismology. The ring lasers used for this purpose enclose areas between 16 and 800 square meters and have in common that they can only measure rotations around the vertical axis because the structures are horizontally placed on the floor. With the ROMY project we have embarked on the construction of a full 3-dimensional rotation sensor. The actual apparatus consists of four individual triangular ring lasers arranged in the shape of a tetrahedron with 12 m of length on each side. At each corner of the tetrahedron three of the ring lasers are rigidly tied together to the same mechanical reference. The overall size of the installation provides a promising compromise between sensor stability on one side and sensor resolution on the other side. This talk introduces the technical concept of the ROMY ring laser installation and will also briefly outline the requirements for applications in space geodesy.

  1. Large-scale massively parallel atomistic simulations of short pulse laser interaction with metals

    NASA Astrophysics Data System (ADS)

    Wu, Chengping; Zhigilei, Leonid; Computational Materials Group Team

    2014-03-01

    Taking advantage of petascale supercomputing architectures, large-scale massively parallel atomistic simulations (108-109 atoms) are performed to study the microscopic mechanisms of short pulse laser interaction with metals. The results of the simulations reveal a complex picture of highly non-equilibrium processes responsible for material modification and/or ejection. At low laser fluences below the ablation threshold, fast melting and resolidification occur under conditions of extreme heating and cooling rates resulting in surface microstructure modification. At higher laser fluences in the spallation regime, the material is ejected by the relaxation of laser-induced stresses and proceeds through the nucleation, growth and percolation of multiple voids in the sub-surface region of the irradiated target. At a fluence of ~ 2.5 times the spallation threshold, the top part of the target reaches the conditions for an explosive decomposition into vapor and small droplets, marking the transition to the phase explosion regime of laser ablation. The dynamics of plume formation and the characteristics of the ablation plume are obtained from the simulations and compared with the results of time-resolved plume imaging experiments. Financial support for this work was provided by NSF (DMR-0907247 and CMMI-1301298) and AFOSR (FA9550-10-1-0541). Computational support was provided by the OLCF (MAT048) and XSEDE (TG-DMR110090).

  2. Preliminary Report On Combined Surgical- And Laser-Treatment Of Large Hemangiomas And Tattoos

    NASA Astrophysics Data System (ADS)

    Ginsbach, G.

    1981-05-01

    As most hemangiomas and tattoos require many sessions to be cured completely by argon-laser or conventional therapy I developed a new combined surgical and laser-therapy method for large hemangiomas and tattoos. This is a three step method. First: The skin lesion is treated by argon-laser with the point by point method, developed by ourself. Second: Under local or general anaesthesia a) the hemangioma is partially excised and undermined letting only the skin which is already treated by argon-laser-beams. Than the hemangioma is exstirpated in toto, the wound closed by running intradermal sutures and a pressure bandage applied, b) the tattoo is abraded as deep as possible, draped by lyofoam. Then a pressure bandage is applied. Third: The hemangioma as well as the tattoo are treated by argon-laser-beams after the operation. This method is safe and effective, gives good results, minimal scars in the case of hemangiomas and tattoos. In this paper the method is described and some cases are illustrated by pre- and postoperational photographs.

  3. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces

    SciTech Connect

    Hou Xi; Wu Fan; Yang Li; Wu Shibin; Chen Qiang

    2006-05-20

    We propose a more accurate and efficient reconstruction method used in testing large aspheric surfaces with annular subaperture interferometry. By the introduction of the Zernike annular polynomials that are orthogonal over the annular region, the method proposed here eliminates the coupling problem in the earlier reconstruction algorithm based on Zernike circle polynomials. Because of the complexity of recurrence definition of Zernike annular polynomials, a general symbol representation of that in a computing program is established. The program implementation for the method is provided in detail. The performance of the reconstruction algorithm is evaluated in some pertinent cases, such as different random noise levels, different subaperture configurations, and misalignments.

  4. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.

    PubMed

    Clare, Richard M; Le Louarn, Miska; Béchet, Clementine

    2011-02-01

    We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42 m European Extremely Large Telescope. Shack-Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10×10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100 s) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile. PMID:21283238

  5. Non-contact large-scale separated surfaces flatness measurement by using laser beam and laser distance sensor

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Fan, Bo; Jiang, Hongzhi; Zhao, Huijie

    2015-07-01

    Large-scale separated surface is very common in modern manufacturing industry. The measurement of the flatness of such surfaces is one of the most important procedures when evaluating the manufacturing quality. Usually, the measurement needs to be accomplished in an in-situ and non-contact way. Although there are many conventional approaches such as autocollimator, capacitance displacement sensor and even CMM, they can not meet the needs from the separated surfaces measurement either because of their contact-nature or inapplicable to separated surfaces. A non-contact large-scale separated surfaces flatness measurement device utilizing laser beam and laser distance sensor (LDS) is proposed. The laser beam is rotated to form an optical reference plane. The LDS is used to measure the distance between the surface and the sensor accurately. A Position Sensitive Detector (PSD) is mounted with the LDS firmly to determine the distance between the LDS and the reference plane and then the distance between the surface and the reference plane can be obtained by subtracting the two distances. The device can be easily mounted on a machine-tool spindle and is moved to measure all the separated surfaces. Then all the data collected are used to evaluate the flatness of these separated surfaces. The accuracy analysis, the corresponding flatness evaluation algorithm, the prototype construction and experiments are also discussed. The proposed approach and device feature as high accuracy, in-situ usage and the higher degree of automatic measurement, and can be used in the areas that call for non-contact and separated surfaces measurement.

  6. Apodised aperture using rotation of plane of polarization

    DOEpatents

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-09-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)

  7. Z-Beamlet: a multikilojoule, terawatt-class laser system

    SciTech Connect

    Rambo, Patrick K.; Smith, Ian C.; Porter, John L. Jr.; Hurst, Michael J.; Speas, C. Shane; Adams, Richard G.; Garcia, Antonio J.; Dawson, Ellis; Thurston, Benjamin D.; Wakefield, Colleen; Kellogg, Jeff W.; Slattery, Michael J.; Ives III, Harry C.; Broyles, Robin S.; Caird, John A.; Erlandson, Alvin C.; Murray, James E.; Behrendt, William C.; Neilsen, Norman D.; Narduzzi, Joseph M

    2005-04-20

    A large-aperture (30-cm) kilojoule-class Nd:glass laser system known as Z-Beamlet has been constructed to perform x-ray radiography of high-energy-density science experiments conducted on the Z facility at Sandia National Laboratories, Albuquerque, New Mexico. The laser, operating with typical pulse durations from 0.3 to 1.5 ns, employs a sequence of successively larger multipass amplifiers to achieve up to 3-kJ energy at 1054 nm. Large-aperture frequency conversion and long-distance beam transport can provide on-target energies of up to 1.5 kJ at 527 nm.

  8. Coded aperture imaging for fluorescent x-rays

    SciTech Connect

    Haboub, A.; MacDowell, A. A.; Marchesini, S.; Parkinson, D. Y.

    2014-06-15

    We employ a coded aperture pattern in front of a pixilated charge couple device detector to image fluorescent x-rays (6–25 KeV) from samples irradiated with synchrotron radiation. Coded apertures encode the angular direction of x-rays, and given a known source plane, allow for a large numerical aperture x-ray imaging system. The algorithm to develop and fabricate the free standing No-Two-Holes-Touching aperture pattern was developed. The algorithms to reconstruct the x-ray image from the recorded encoded pattern were developed by means of a ray tracing technique and confirmed by experiments on standard samples.

  9. Design of scanning spherical trireflector antennas with high aperture efficiency

    NASA Technical Reports Server (NTRS)

    Shen, Bing; Stutzman, Warren L.

    1993-01-01

    It is frequently desirable to scan the main beam of a large antenna system without moving the main aperture structure. Spherical reflectors have excellent potential in this application. However, they are not commonly used because of poor aperture efficiency and high side lobes in traditional implementations. This paper introduces a new dual-subreflector feed system design which does not require oversizing the spherical main reflector to accommodate scan and yet permits a controlled aperture illumination. The design yields high aperture efficiency, low cross-polarization, and low side lobes.

  10. Multiple aperture window and seeker concepts for endo KEW applications

    SciTech Connect

    Shui, V.H.; Reeves, B.L.; Thyson, N.A.; Mueffelmann, W.H.; Werner, J.S.; Jones, G. Loral Infrared and Imaging Systems, Lexington, MA U.S. Army, Strategic Defense Command, Huntsville, AL )

    1992-05-01

    Hypersonic interceptors performing endoatmospheric hit-to-kill missions require very high seeker angle measurement accuracies in very severe aero-thermal environments. Wall jet window/aperture cooling usually leads to significant aero-optic degradation in seeker and hence interceptor performance. This paper describes window/aperture concepts that have the potential of eliminating or significantly reducing the need for coolant injection, together with a multiple aperture sensor concept that can provide a high angle measurement accuracy and a large field of regard, with a small aperture size. 15 refs.

  11. Multiple aperture window and seeker concepts for endo KEW applications

    NASA Astrophysics Data System (ADS)

    Shui, V. H.; Reeves, B. L.; Thyson, N. A.; Mueffelmann, W. H.; Werner, J. S.; Jones, G.

    1992-05-01

    Hypersonic interceptors performing endoatmospheric hit-to-kill missions require very high seeker angle measurement accuracies in very severe aero-thermal environments. Wall jet window/aperture cooling usually leads to significant aero-optic degradation in seeker and hence interceptor performance. This paper describes window/aperture concepts that have the potential of eliminating or significantly reducing the need for coolant injection, together with a multiple aperture sensor concept that can provide a high angle measurement accuracy and a large field of regard, with a small aperture size.

  12. Far-field pattern of a coherently combined beam from large-scale laser diode arrays

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.; Williams, Michael D.

    1991-01-01

    The far-field pattern of a large-scale amplifier array (LSAA) consisting of a large number (2000) of diode laser amplifiers is numerically simulated, and the power collection efficiencies are determined. Random distributions of phase mismatches, misorientations, and element failures in the LSAA system are considered. Phase mismatches and misorientations of the element amplifiers are found to be the most critical parameters of those affecting the power-collection efficiency. Errors of 0.2 wavelength and 25 percent for phase and diffraction angle, respectively, cause a 10 percent reduction in power-collection efficiency. The results are used to evaluate the concept of space-laser power transmission. It is found that an overall transmission efficiency of 80 percent could be realized with a 5-m-diam. receiver at a distance of 10,000 km when an LSAA transmitter 6 m in diam. is aimed with state-of-the-art pointing accuracy.

  13. Genetic apertures: an improved sparse aperture design framework.

    PubMed

    Salvaggio, Philip S; Schott, John R; McKeown, Donald M

    2016-04-20

    The majority of optical sparse aperture imaging research in the remote sensing field has been confined to a small set of aperture layouts. While these layouts possess some desirable properties for imaging, they may not be ideal for all applications. This work introduces an optimization framework for sparse aperture layouts based on genetic algorithms as well as a small set of fitness functions for incoherent sparse aperture image quality. The optimization results demonstrate the merits of existing designs and the opportunity for creating new sparse aperture layouts. PMID:27140086

  14. Design and fabrication of a large primary reflector structure for space laser power beaming

    SciTech Connect

    MacNeal, P.; Jewett, K.

    1994-12-31

    This paper discusses the design issues and fabrication considerations specifically related to a large twelve meter, graphite-epoxy space truss that has been developed to provide support of the primary mirror system for the SpacE Laser ENErgy (SELENE) Beam Transmission Optical System (BTOS). Details of the optical system and wavefront corrector concepts have been discussed in prior papers. Specific issues which are addressed in this paper include optical performance needs, environmental requirements, and low-cost fabrication techniques.

  15. The slant-stacklet transform and its application to teleseismic PcP-P data recorded at large aperture seismic array

    NASA Astrophysics Data System (ADS)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    In most high-resolution studies of the Earth's Deep Interior, the limited amount and uneven distribution of high-quality observations of short-period teleseismic body waves are major obstacles. Dense broadband seismic networks help to overcome major challenges of low signal-to-noise ratio (SNR) of the target phases and of signal-to-interference ratio (SIR) of other (often stronger) mantle phases when the slowness difference is large enough. Intuitive delay-and-sum (i.e. slant-stack) approaches are routinely applied to combine data of many spatially close stations to improve data quality. Alternative methods developed in the context of image processing, such as Radon transform-based methods, have proven useful in exploration seismology to facilitate enhancement and separation of signals according to their slowness and time of arrival. In this spirit, we have introduced the slant-stacklet transform to define coherency-guided filters able to exploit signals that would have been otherwise rejected because of low SNR or SIR. As an illustration, this method allows us to dramatically increase the amount of high-quality PcP observations using dense arrays in North America and Japan, sampling Central America, the western Pacific and Alaska/western Canada with unprecedented resolution and accuracy. After mantle corrections, the main signal left in these regions is relatively long wavelength in these regions of fast velocities around the Pacific, except at the western border of the Pacific large-low shear-velocity province (LLSVP) where we observe a rapid reduction of Vp velocity over a distance of about 10˚. This is just one step to further increase lowermost mantle imaging using P waves, much more information from PcP and other complementary signals (e.g. PdP) around the globe are needed to resolve volumetric structure, topography of the core-mantle boundary and D" discontinuity, and the trade-offs between them, in order to improve our understanding of the interaction

  16. Different effects of laser contrast on proton emission from normal large foils and transverse-size-reduced targets

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Ge, Xulei; Yang, Su; Wei, Wenqing; Yu, Tongpu; Liu, Feng; Chen, Min; Liu, Jingquan; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-07-01

    We report experimental results on the effects of laser contrast on beam divergence and energy spectrum of protons emitted from ultrashort intense laser interactions with normal large foils and transverse-size-reduced targets. Correlations between beam divergence and spectral shape are found. Large divergence and near-plateau shape energy spectrum are observed for both types of targets when the laser pulse contrast is low. With high contrast laser irradiation, proton beam divergence is remarkably reduced and the energy spectral shape is changed to exponential for large foil targets. In comparison, a similar large divergence and the near-plateau spectral shape remain for transverse-size-reduced targets. The results could be explained by the preplasma formation and target deformation at different laser contrasts and modified accelerating sheath field evolution in transverse-size-reduced target, which were supported by the 2D hydrodynamic and PIC simulations.

  17. Aperture center energy showcase

    SciTech Connect

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), and the partnership provides a unique opportunity to take technology research and development from demonstration to application in a sustainable community. A project under that CRADA, Aperture Center Energy Showcase, offers a means to develop exhibits and demonstrations that present feedback to community members, Sandia customers, and visitors. The technologies included in the showcase focus on renewable energy and its efficiency, and resilience. These technologies are generally scalable, and provide secure, efficient solutions to energy production, delivery, and usage. In addition to establishing an Energy Showcase, support offices and conference capabilities that facilitate research, collaboration, and demonstration were created. The Aperture Center project focuses on establishing a location that provides outreach, awareness, and demonstration of research findings, emerging technologies, and project developments to Sandia customers, visitors, and Mesa del Sol community members.

  18. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  19. Multispectral Dual-Aperture Schmidt Objective

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1983-01-01

    Off-axis focal planes make room for beam splitters. System includes two off-axis primary spherical reflectors, each concentric with refractive corrector at aperature. Off-axis design assures large aperture required for adequate spatial resolution. Separate images have precise registration, used for multispectral resource mapping or remote sensing.

  20. Integrated electrochromic aperture diaphragm

    NASA Astrophysics Data System (ADS)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  1. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  2. Implementation of swept synthetic aperture imaging

    NASA Astrophysics Data System (ADS)

    Bottenus, Nick; Jakovljevic, Marko; Boctor, Emad; Trahey, Gregg E.

    2015-03-01

    Ultrasound imaging of deep targets is limited by the resolution of current ultrasound systems based on the available aperture size. We propose a system to synthesize an extended effective aperture in order to improve resolution and target detectability at depth using a precisely-tracked transducer swept across the region of interest. A Field II simulation was performed to demonstrate the swept aperture approach in both the spatial and frequency domains. The adaptively beam-formed system was tested experimentally using a volumetric transducer and an ex vivo canine abdominal layer to evaluate the impact of clutter-generating tissue on the resulting point spread function. Resolution was improved by 73% using a 30.8 degree sweep despite the presence of varying aberration across the array with an amplitude on the order of 100 ns. Slight variations were observed in the magnitude and position of side lobes compared to the control case, but overall image quality was not significantly degraded as compared by a simulation based on the experimental point spread function. We conclude that the swept aperture imaging system may be a valuable tool for synthesizing large effective apertures using conventional ultrasound hardware.

  3. Aperture effects in squid jet propulsion.

    PubMed

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes. PMID:24501132

  4. Class of near-perfect coded apertures

    NASA Technical Reports Server (NTRS)

    Cannon, T. M.; Fenimore, E. E.

    1977-01-01

    Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method.

  5. The aperture problem in contoured stimuli

    PubMed Central

    Kane, David; Bex, Peter J.; Dakin, Steven C.

    2010-01-01

    A moving object elicits responses from V1 neurons tuned to a broad range of locations, directions, and spatiotemporal frequencies. Global pooling of such signals can overcome their intrinsic ambiguity in relation to the object’s direction/speed (the “aperture problem”); here we examine the role of low-spatial frequencies (SF) and second-order statistics in this process. Subjects made a 2AFC fine direction-discrimination judgement of ‘naturally’ contoured stimuli viewed rigidly translating behind a series of small circular apertures. This configuration allowed us to manipulate the scene in several ways; by randomly switching which portion of the stimulus was presented behind each aperture or by occluding certain spatial frequency bands. We report that global motion integration is (a) largely insensitive to the second-order statistics of such stimuli and (b) is rigidly broadband even in the presence of a disrupted low SF component. PMID:19810794

  6. Nd:YAG thin-disk laser with large dynamic range unstable resonance

    NASA Astrophysics Data System (ADS)

    Shang, Jianli; Yu, Yi; An, Xiangchao; Gao, Qingsong; Tang, Chun

    2015-02-01

    In this paper, based on the self-reproduction condition of laser wavefront curvature, the influences of disk defocus on laser parameters can be calculated. The laser-pumping overlapping efficiency will decrease by 9%; the magnification will rise to 2.3, and the intra-cavity loss will be high to 30% due to a laser beam size mismatch when each disk has focal length of -100 m in a positive-branch confocal unstable resonator containing four disks with magnification of 1.8. Therefore, the optical conversion efficiency and stability will be reduced significantly. Several methods defocus compensation of are compared, it can be found that inserting variable-focus lens in resonant is useful in large dynamic range. In experiment, the defocus values are measured in different pumping power. A lens group, used for compensate components according to the single pass probe, is carefully designed. Under this compensation, the pulse energy can be maintained in 10 J from 1 Hz to 100 Hz. The output power can be improved 2.33 times compared to non-compensation condition.

  7. High-performance blazed GxL TM device for large-area laser projector

    NASA Astrophysics Data System (ADS)

    Ito, Yasuyuki; Saruta, Kunihiko; Kasai, Hiroto; Nishida, Masato; Yamaguchi, Masanari; Yamashita, Keitaro; Taguchi, Ayumu; Oniki, Kazunao; Tamada, Hitoshi

    2006-01-01

    A blazed GxL device is described that has high optical efficiency (>70% for RGB lasers), and high contrast ratio (> 10,000:1), and that is highly reliable when used in a large-area laser projection system. The key features were a robust design and precise stress control technology to maintain a uniform shape (bow and tilt) of more than 6,000 ribbons, a 0.25-μm CMOS compatible fabrication processing and planarization techniques to reduce fluctuation of the ribbons, and a reliable Al-Cu reflective film that provided protection against a high-power laser. No degradation in characteristics of the GxL device was observed after operating a 5,000- lumen projector for 2,000 hours and conducting 2,000 temperature cycling tests at -20°C and +80°C. Consequently, the world's largest laser projection screen with a size of 2005 inches (10 m × 50 m) and 6 million pixels (1,080 × 5,760) was demonstrated at the 2005 World Exposition in Aichi, Japan.

  8. Pinhole closure in spatial filters of large-scale ICF laser systems

    NASA Astrophysics Data System (ADS)

    Bikmatov, R. G.; Boley, Charles D.; Burdonsky, I. N.; Chernyak, V. M.; Fedorov, A. V.; Goltsov, A. Y.; Kondrashov, V. N.; Koptyaev, S. N.; Kovalsky, N. G.; Kuznetsov, V. N.; Milam, David; Murray, James E.; Pergament, Michael I.; Petryakov, V. M.; Smirnov, Ruslan V.; Sokolov, Victor I.; Zhuzhukalo, E. V.

    1999-07-01

    Pinhole plasma effects on parameters of the laser beam passing through the spatial filter in conditions of interest for large scale ICF laser facilities were investigated. The experiments on pinhole irradiation were conducted at power density range 1010-1011 W/cm2 with approximately 15 ns laser pulses. Al, Fe, and Ta pinholes were used. The diagnostic approach was chosen based on probing the pinhole region with frequency doubled 3-ns-long laser pulse. Ablative-plasma dynamics was studied with shadowgraphy and interferometry. Also measured were the parameters of transmitted probing beam in the near- and far-fields. The rate of pinhole 'closure' is found to decrease with the increase in the atomic number of pinhole material. The rate o pinhole closure ranges from approximately 5*106 cm/s for aluminum pinhole down to approximately 2*106 cm/s for tantalum pinhole in experiments with power density at the pinhole edge of approximately 50 GW/cm2. For aluminum and steel pinholes the parameters of the transmitted probing beam deteriorate to unacceptable level for approximately 15-20 ns after the irradiation start. In the same experimental conditions the pinholes of tantalum exhibits acceptable performance till the end of the irradiation process. Fast plasma jets converging to the pinhole axis with velocities up to approximately 107 cm/s and significantly deteriorating transmitted probing beam quality are observed. Reasonable agreement was found between the data obtained in experiments with circular pinholes and linear edge experiments.

  9. Observations of large-scale fluid transport by laser-guided plankton aggregationsa)

    NASA Astrophysics Data System (ADS)

    Wilhelmus, Monica M.; Dabiri, John O.

    2014-10-01

    Diel vertical migration of plankton has been proposed to affect global ocean circulation to a degree comparable to winds and tides. This biomixing process has never been directly observed, however, due to the inability to predict its occurrence in situ or to reproduce it in a laboratory setting. Furthermore, it has been argued that the energy imparted to the ocean by plankton migrations occurs at the scale of individual organisms, which is too small to impact ocean mixing. We describe the development of a multi-laser guidance system that leverages the phototactic abilities of plankton to achieve controllable vertical migrations concurrently with laser velocimetry of the surrounding flow. Measurements in unstratified fluid show that the hydrodynamic interactions between neighboring swimmers establish an alternate energy transfer route from the small scales of individually migrating plankton to significantly larger scales. Observations of laser-induced vertical migrations of Artemia salina reveal the appearance of a downward jet, which triggers a Kelvin-Helmholtz instability that results in the generation of eddy-like structures with characteristic length scales much larger than the organisms. The measured energy spectrum is consistent with these findings and indicates energy input at large scales, despite the small individual size of the organisms. These results motivate the study of biomixing in the presence of stratification to assess the contribution of migrating zooplankton to local and global ocean dynamics. The laser control methodology developed here enables systematic study of the relevant processes.

  10. Large-scale numerical simulation of laser propulsion by parallel computing

    NASA Astrophysics Data System (ADS)

    Zeng, Yaoyuan; Zhao, Wentao; Wang, Zhenghua

    2013-05-01

    As one of the most significant methods to study laser propelled rocket, the numerical simulation of laser propulsion has drawn an ever increasing attention at present. Nevertheless, the traditional serial simulation model cannot satisfy the practical needs because of insatiable memory overhead and considerable computation time. In order to solve this problem, we study on a general algorithm for laser propulsion design, and bring about parallelization by using a twolevel hybrid parallel programming model. The total computing domain is decomposed into distributed data spaces, and each partition is assigned to a MPI process. A single step of computation operates in the inter loop level, where a compiler directive is used to split MPI process into several OpenMP threads. Finally, parallel efficiency of hybrid program about two typical configurations on a China-made supercomputer with 4 to 256 cores is compared with pure MPI program. And, the hybrid program exhibits better performance than the pure MPI program on the whole, roughly as expected. The result indicates that our hybrid parallel approach is effective and practical in large-scale numerical simulation of laser propulsion.

  11. Multiple instrument distributed aperture sensor (MIDAS) science payload concept

    NASA Astrophysics Data System (ADS)

    Stubbs, David M.; Duncan, Alan L.; Pitman, Joe T.; Sigler, Robert D.; Kendrick, Richard L.; Chilese, John F.; Smith, Eric H.

    2004-10-01

    We describe the Multiple Instrument Distributed Aperture Sensor (MIDAS) concept, an innovative approach to future planetary science mission remote sensing that enables order of magnitude increased science return. MIDAS provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All telescope optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, I&T and risks of a set of back-end science instruments (SI's) tailored to a specific mission. MIDAS interfaces to multiple science instruments, enabling sequential and concurrent functional modes, thereby expanding the potential planetary science return many fold. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, or at lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. For planetary science missions, the MIDAS optical design provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic surface characteristics. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, and various active or ablative spectroscopies. Our concept is scalable to apertures well over 10m, achieved by autonomous deployments or manned assembly in space. MIDAS is a proven candidate for future planetary science missions, enabled by our continued investments in focused MIDAS technology development areas. In this paper we present the opto-mechanical design for a 1.5m MIDAS point

  12. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching.

    PubMed

    Tong, Siyu; Bian, Hao; Yang, Qing; Chen, Feng; Deng, Zefang; Si, Jinhai; Hou, Xun

    2014-11-17

    Large-scale high quality microlens arrays (MLAs) play an important role in enhancing the imaging quality of CCD and CMOS as well as the light extraction efficiency of LEDs and OLEDs. To meet the requirement in MLAs' wide application areas, a rapid fabrication method to fabricate large-scale MLAs with high quality, high fill factor and high uniformity is needed, especially on the glass substrate. In this paper, we present a simple and cost-efficient approach to the development of both concave and convex large-scale microlens arrays (MLAs) by using femtosecond laser wet etching method and replication technique. A large-scale high quality square-shaped microlens array with 512 × 512 units was fabricated.The unit size is 20 × 20 μm² on the whole scale of 1 × 1 cm². Its perfect uniformity and optical performance are demonstrated. PMID:25402166

  13. Anomalous lasing of high-speed 850 nm InGaAlAs oxide-confined vertical-cavity surface-emitting lasers with a large negative gain-to-cavity wavelength detuning

    SciTech Connect

    Blokhin, S. A. Bobrov, M. A.; Maleev, N. A.; Sakharov, A. V.; Ustinov, V. M.; Kuzmenkov, A. G.; Blokhin, A. A.; Moser, P.; Lott, J. A.; Bimberg, D.

    2014-08-11

    The impact of a large negative quantum well gain-to-cavity etalon wavelength detuning on the static and dynamic characteristics of 850 nm InGaAlAs high-speed oxide-confined vertical-cavity surface-emitting lasers (VCSELs) was investigated. Three distinct lasing regimes were revealed in large square aperture (≥7 μm per side) devices with large detuning including: (1) an anomalous lasing via higher order Hermite–Gaussian modes at low forward bias current; (2) lasing via the lowest order Hermite–Gaussian modes at high bias current; and (3) simultaneous lasing via both types of transverse modes at intermediate bias currents. In contrast to conventional multimode VCSELs a two-resonance modulation response was observed for the case of co-lasing via multiple transverse modes with high spectral separation. The reduction in the oxide aperture area resulted in classical lasing via the lowest order modes with a conventional single-resonance frequency response.

  14. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  15. Large spectral tuning of a water-glycerol microdroplet by a focused laser: characterization and modeling.

    PubMed

    Kiraz, A; Karadağ, Y; Muradoğlu, M

    2008-11-14

    Large spectral tuning of a water-glycerol microdroplet standing on a superhydrophobic surface by local heating with a focused infrared laser is studied both experimentally by optical spectroscopy and computationally using a lumped system formulation of the mass and heat transfer between the microdroplet and the chamber. The effects of optical scattering force, chamber humidity, size of microdroplet and laser power on the tuning mechanism are examined. The reversibility of the tuning mechanism is also studied. In spite of its negligibly small volatility compared to that of water, irreversibility is found to be mainly caused by evaporation of glycerol. It is also found that reversibility increases dramatically with the relative water and glycerol humidities, and spectral tuning can be made almost fully reversible when the chamber is saturated with glycerol vapor and the relative water humidity approaches unity. Some hysteresis effects are observed, especially in large microdroplets, and this behavior is attributed to the whispering-gallery mode resonances in laser absorption. The time response of the tuning mechanism is also analyzed both experimentally and computationally. The technique presented can find applications in optical communication systems, and can be used in fundamental studies in cavity quantum electrodynamics and in characterizing liquid aerosols on a surface. PMID:18972033

  16. Laser-Damage-Resistant Photoalignment Layers for High-Peak-Power Liquid Crystal Device Applications

    SciTech Connect

    Marshall, K.L.; Gan, J.; Mitchell, G.; Papernov, S.; Rigatti, A.L.; Schmid, A.W.; Jacobs, S.D.

    2008-10-23

    Large-aperture liquid crystal (LC) devices have been in continuous use since 1995 as polarization control devices in the 40-TW, 351-nm, 60-beam OMEGA Nd:glass laser system at the University of Rochester’s Laboratory for Laser Energetics. The feasibility of using a noncontacting alignment method for high-peak-power LC laser optics by irradiation of a linearly photopolymerizable polymer with polarized UV light was recently investigated. These materials were found to have surprisingly large laser-damage thresholds at 1054 nm, approaching that of bare fused silica (30 to 60 J/cm^2). Their remarkable laser-damage resistance and ease in scalability to large apertures of these photoalignment materials, along with the ability to produce multiple alignment states by photolithographic patterning, opens new doorways for their application in LC devices for optics, photonics, and high-peak-power laser applications.

  17. Preclinical Assessment of a 980-nm Diode Laser Ablation System in a Large Animal Tumor Model

    PubMed Central

    Ahrar, Kamran; Gowda, Ashok; Javadi, Sanaz; Borne, Agatha; Fox, Matthew; McNichols, Roger; Ahrar, Judy U.; Stephens, Clifton; Stafford, R. Jason

    2010-01-01

    Purpose To characterize the performance of a 980-nm diode laser ablation system in an in vivo tumor model. Materials and Methods This study was approved by the Institutional Animal Care and Use Committee. The ablation system consisted of a 15-W, 980-nm diode laser, flexible diffusing tipped fiber optic, and 17-gauge internally cooled catheter. Ten immunosuppressed dogs were inoculated subcutaneously with canine transmissible venereal tumor fragments in eight dorsal locations. Laser ablations were performed at 79 sites where inoculations were successful (99%) using powers of 10 W, 12.5 W, and 15 W, with exposure times between 60 and 180 seconds. In 20 cases, multiple overlapping ablations were performed. After the dogs were euthanized, the tumors were harvested, sectioned along the applicator track, measured and photographed. Measurements of ablation zone were performed on gross specimen. Histopathology and viability staining was performed using hematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide hydrogen (NADH) staining. Results Gross pathology confirmed well-circumscribed ablation zone with sharp boundaries between thermally ablated tumor in the center surrounded by viable tumor tissue. When a single applicator was used, the greatest ablation diameters ranged from 12 mm at the lowest dose (10 W, 60 sec) to 26 mm at the highest dose (15 W, 180 sec). Multiple applicators created ablation zones of up to 42 mm in greatest diameter (with the lasers operating at 15 W for 120 sec). Conclusions The new 980-nm diode laser and internally cooled applicator effectively creates large ellipsoid thermal ablations in less than 3 minutes. PMID:20346883

  18. Diode-pumped medium-aperture-size square Nd,Y:CaF2 rod amplifier for Inertial Confinement Fusion laser drivers

    NASA Astrophysics Data System (ADS)

    Tang, Xiongxin; Qiu, Jisi; Fan, Zhongwei; Su, Liangbi; Wang, Haocheng

    2016-08-01

    We demonstrate, for the first time, an 12 mm × 12 mm 0.5%Nd,5% Y:CaF2 crystal rod having a uniformly-distributed fluorescence spectrum and capable of operating as an amplifying medium at high repetition frequencies. A small gain of 2.7 is experimentally achieved at repetition frequency of 10 Hz for a pump center wavelength of 802 nm, power and absorption efficiency, 61.2 kW and 63.7%, respectively. Spatial-uniformity degradation of the output near-field beam distribution is observed, which should be attributed to the inhomogeneity of Nd,Y:CaF2 crystal. For a pump power of 61.2 kW, the stored energy of Nd,Y:CaF2 amplifier is 3.73 J. When the input energy is 50 mJ, the output laser energy is 1.4 J of extraction efficiency up to 37.53% after four-pass amplification.

  19. High energy, narrow linewidth 1572nm ErYb-fiber based MOPA for a multi-aperture CO2 trace-gas laser space transmitter

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-03-01

    A cladding-pumped, LMA ErYb fiber-based, amplifier is presented for use in a LIDAR transmitter for remote sensing of atmospheric CO2 from space. The amplifier is optimized for high peak power, high efficiency, and narrow linewidth operation at 1572.3nm. Using highly reliable COTS components, the amplifier achieves 0.5kW peak power (440uJ pulse energy), 3.3W average power with transform limited (TL) linewidth and M2<1.3. The power amplifier supports a 30% increase in pulse energy when linewidth is increased to 100MHz. A preliminary conductively cooled laser optical module (LOM) concept has size 9x10x1.25 in (113 in3) and estimated weight of 7.2lb (3.2 kg). Energy scaling with pulse width up to 645uJ, 1.5usec is demonstrated. A novel doubleclad ErYb LMA fiber (30/250um) with high pump absorption (6 dB/m at 915nm) was designed, fabricated, and characterized for power scaling. The upgraded power amplifier achieves 0.8kW peak power (720uJ pulse energy) 5.4W average power with TL linewidth and M2<1.5.

  20. Diode-pumped medium-aperture-size square Nd,Y:CaF2 rod amplifier for Inertial Confinement Fusion laser drivers

    NASA Astrophysics Data System (ADS)

    Tang, Xiongxin; Qiu, Jisi; Fan, Zhongwei; Su, Liangbi; Wang, Haocheng

    2016-08-01

    We demonstrate, for the first time, an 12 mm × 12 mm 0.5%Nd,5% Y:CaF2 crystal rod having a uniformly-distributed fluorescence spectrum and capable of operating as an amplifying medium at high repetition frequencies. A small gain of 2.7 is experimentally achieved at repetition frequency of 10 Hz for a pump center wavelength of 802 nm, power and absorption efficiency, 61.2 kW and 63.7%, respectively. Spatial-uniformity degradation of the output near-field beam distribution is observed, which should be attributed to the inhomogeneity of Nd,Y:CaF2 crystal. For a pump power of 61.2 kW, the stored energy of Nd,Y:CaF2 amplifier is 3.73 J. When the input energy is 50 mJ, the output laser energy is 1.4 J of extraction efficiency up to 37.53% after four-pass amplification.