Science.gov

Sample records for large deformation diffeomorphic

  1. Cortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve Mapping

    PubMed Central

    Qiu, Anqi; Miller, Michael I.

    2010-01-01

    We present large deformation diffeomorphic metric curve mapping (LDDMM-Curve) for registering cortical hemispheres. We showed global cortical hemisphere matching and evaluated the mapping accuracy in five subregions of the cortex in fourteen MRI scans. PMID:18051058

  2. Large Deformation Multiresolution Diffeomorphic Metric Mapping for Multiresolution Cortical Surfaces: A Coarse-to-Fine Approach.

    PubMed

    Tan, Mingzhen; Qiu, Anqi

    2016-09-01

    Brain surface registration is an important tool for characterizing cortical anatomical variations and understanding their roles in normal cortical development and psychiatric diseases. However, surface registration remains challenging due to complicated cortical anatomy and its large differences across individuals. In this paper, we propose a fast coarse-to-fine algorithm for surface registration by adapting the large diffeomorphic deformation metric mapping (LDDMM) framework for surface mapping and show improvements in speed and accuracy via a multiresolution analysis of surface meshes and the construction of multiresolution diffeomorphic transformations. The proposed method constructs a family of multiresolution meshes that are used as natural sparse priors of the cortical morphology. At varying resolutions, these meshes act as anchor points where the parameterization of multiresolution deformation vector fields can be supported, allowing the construction of a bundle of multiresolution deformation fields, each originating from a different resolution. Using a coarse-to-fine approach, we show a potential reduction in computation cost along with improvements in sulcal alignment when compared with LDDMM surface mapping. PMID:27254865

  3. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging

    PubMed Central

    Ceritoglu, Can; Oishi, Kenichi; Li, Xin; Chou, Ming-Chung; Younes, Laurent; Albert, Marilyn; Lyketsos, Constantine; van Zijl, Peter C.M.; Miller, Michael I.; Mori, Susumu

    2010-01-01

    Diffusion tensor imaging (DTI) can reveal detailed white matter anatomy and has the potential to detect abnormalities in specific white matter structures. Such detection and quantification are, however, not straightforward. The voxel-based analysis after image normalization is one of the most widely used methods for quantitative image analyses. To apply this approach to DTI, it is important to examine if structures in the white matter are well registered among subjects, which would be highly dependent on employed algorithms for normalization. In this paper, we evaluate the accuracy of normalization of DTI data using a highly elastic transformation algorithm, called large deformation diffeomorphic metric mapping. After simulation-based validation of the algorithm, DTI data from normal subjects were used to measure the registration accuracy. To examine the impact of morphological abnormalities on the accuracy, the algorithm was also tested using data from Alzheimer’s disease (AD) patients with severe brain atrophy. The accuracy level was measured by using manual landmark-based white matter matching and surface-based brain and ventricle matching as gold standard. To improve the accuracy level, cascading and multi-contrast approaches were developed. The accuracy level for the white matter was 1.88 ± 0.55 and 2.19 ± 0.84 mm for the measured locations in the controls and patients, respectively. PMID:19398016

  4. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    PubMed Central

    Zhao, Liya; Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed. PMID:26120356

  5. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations.

    PubMed

    Zhao, Liya; Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed. PMID:26120356

  6. Large chiral diffeomorphisms on Riemann surfaces and W-algebras

    SciTech Connect

    Bandelloni, G.; Lazzarini, S.

    2006-10-15

    The diffeomorphism action lifted on truncated (chiral) Taylor expansion of a complex scalar field over a Riemann surface is presented in the paper under the name of large diffeomorphisms. After an heuristic approach, we show how a linear truncation in the Taylor expansion can generate an algebra of symmetry characterized by some structure functions. Such a linear truncation is explicitly realized by introducing the notion of Forsyth frame over the Riemann surface with the help of a conformally covariant algebraic differential equation. The large chiral diffeomorphism action is then implemented through a Becchi-Rouet-Stora (BRS) formulation (for a given order of truncation) leading to a more algebraic setup. In this context the ghost fields behave as holomorphically covariant jets. Subsequently, the link with the so-called W-algebras is made explicit once the ghost parameters are turned from jets into tensorial ghost ones. We give a general solution with the help of the structure functions pertaining to all the possible truncations lower or equal to the given order. This provides another contribution to the relationship between Korteweg-de Vries (KdV) flows and W-diffeomorphims.

  7. Fermions, q-deformed diffeomorphism and the evolution of spin networks

    NASA Astrophysics Data System (ADS)

    Mullick, L.; Bandyopadhyay, P.

    2015-06-01

    We have considered here the emergence of diffeomorphism symmetry in quantum gravity in the framework of the quantization of a fermion. It is pointed out that a closed loop having the holonomy associated with the SU(2) gauge group is realized from the rotation of the direction vector associated with the quantization of a fermion depicting spin degrees of freedom which appear as SU(2) gauge bundle. During the formation of a loop, a noncyclic path with open ends can be mapped onto a closed loop when the holonomy involves q-deformed gauge group SUq(2). This gives rise to q-deformed diffeomorphism and helps to realize diffeomorphism invariance in quantum gravity through a sequence of q-deformed diffeomorphism in the limit q = 1. We can consider adiabatic iteration such that the quasispin associated with the quantum group SUq(2) gradually evolves as the time dependent deformation parameter q changes and in the limit q = 1, we achieve the standard spin. This essentially depicts the evolution of spin network as the loop is being formed and links fermionic degrees of freedom with loop quantum gravity.

  8. Volume-preserving diffeomorphisms in integrable deformations of self-dual gravity

    NASA Astrophysics Data System (ADS)

    Takasaki, Kanehisa

    1992-07-01

    A group of volume-preserving diffeomorphisms in 3D turns out to play a key role in an Einstein-Maxwell theory whose Weyl tensor is self-dual and whose Maxwell tensor has an algebraically general anti-self-dual part. This model was first introduced by Flaherty and recently studied by Park as an integrable deformation of self-dual gravity. A twisted volume form on the corresponding twistor space is shown to be the origin of volume-preserving diffeomorphisms. An immediate consequence is the existence of an infinite number of symmetries as a generalization of w 1 + ∞ symmetries in self-dual gravity. A possible relation to Witten's 2D string theory is pointed out.

  9. Longitudinal Analysis of Image Time Series with Diffeomorphic Deformations: A Computational Framework Based on Stationary Velocity Fields

    PubMed Central

    Hadj-Hamou, Mehdi; Lorenzi, Marco; Ayache, Nicholas; Pennec, Xavier

    2016-01-01

    We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts. The pipeline is exemplified on the longitudinal Open Access Series of Imaging Studies (OASIS) database and all the parameters values are given so that the study can be reproduced. We investigate the group-wise differences between the patients with Alzheimer's disease and the healthy control group, and show that the proposed pipeline increases the sensitivity with no decrease in the specificity of the statistical study done on the longitudinal deformations. PMID:27375408

  10. Longitudinal Analysis of Image Time Series with Diffeomorphic Deformations: A Computational Framework Based on Stationary Velocity Fields.

    PubMed

    Hadj-Hamou, Mehdi; Lorenzi, Marco; Ayache, Nicholas; Pennec, Xavier

    2016-01-01

    We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts. The pipeline is exemplified on the longitudinal Open Access Series of Imaging Studies (OASIS) database and all the parameters values are given so that the study can be reproduced. We investigate the group-wise differences between the patients with Alzheimer's disease and the healthy control group, and show that the proposed pipeline increases the sensitivity with no decrease in the specificity of the statistical study done on the longitudinal deformations. PMID:27375408

  11. Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes

    PubMed Central

    Tward, Daniel J.; Ma, Jun; Miller, Michael I.; Younes, Laurent

    2013-01-01

    This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS). Our principal application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the tangent space of the template surface. The dimension of this representation is constrained using principal component analysis generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging data. This is formulated as an energy minimization problem, where energy describes shape variability and data attachment accuracy, and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by comparing to an existing diffeomorphic landmark matching algorithm. PMID:23690757

  12. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  13. Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling.

    PubMed

    Yang, Xianfeng; Goh, Alvina; Qiu, Anqi

    2011-05-01

    This paper presents the algorithm, Locally Linear Diffeomorphic Metric Embedding (LLDME), for constructing efficient and compact representations of surface-based brain shapes whose variations are characterized using Large Deformation Diffeomorphic Metric Mapping (LDDMM). Our hypothesis is that the shape variations in the infinite-dimensional diffeomorphic metric space can be captured by a low-dimensional space. To do so, traditional Locally Linear Embedding (LLE) that reconstructs a data point from its neighbors in Euclidean space is extended to LLDME that requires interpolating a shape from its neighbors in the infinite-dimensional diffeomorphic metric space. This is made possible through the conservation law of momentum derived from LDDMM. It indicates that initial momentum, a linear transformation of the initial velocity of diffeomorphic flows, at a fixed template shape determines the geodesic connecting the template to a subject's shape in the diffeomorphic metric space and becomes the shape signature of an individual subject. This leads to the compact linear representation of the nonlinear diffeomorphisms in terms of the initial momentum. Since the initial momentum is in a linear space, a shape can be approximated by a linear combination of its neighbors in the diffeomorphic metric space. In addition, we provide efficient computations for the metric distance between two shapes through the first order approximation of the geodesic using the initial momentum as well as for the reconstruction of a shape given its low-dimensional Euclidean coordinates using the geodesic shooting with the initial momentum as the initial condition. Experiments are performed on the hippocampal shapes of 302 normal subjects across the whole life span (18-94years). Compared with Principal Component Analysis and ISOMAP, LLDME provides the most compact and efficient representation of the age-related hippocampal shapes. Even though the hippocampal volumes among young adults are as

  14. Explicit B-spline regularization in diffeomorphic image registration

    PubMed Central

    Tustison, Nicholas J.; Avants, Brian B.

    2013-01-01

    Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140

  15. Freesurfer-initialized large deformation diffeomorphic metric mapping with application to Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Chen, Jingyun; Palmer, Samantha J.; Khan, Ali R.; Mckeown, Martin J.; Beg, Mirza Faial

    2009-02-01

    We apply a recently developed automated brain segmentation method, FS+LDDMM, to brain MRI scans from Parkinson's Disease (PD) subjects, and normal age-matched controls and compare the results to manual segmentation done by trained neuroscientists. The data set consisted of 14 PD subjects and 12 age-matched control subjects without neurologic disease and comparison was done on six subcortical brain structures (left and right caudate, putamen and thalamus). Comparison between automatic and manual segmentation was based on Dice Similarity Coefficient (Overlap Percentage), L1 Error, Symmetrized Hausdorff Distance and Symmetrized Mean Surface Distance. Results suggest that FS+LDDMM is well-suited for subcortical structure segmentation and further shape analysis in Parkinson's Disease. The asymmetry of the Dice Similarity Coefficient over shape change is also discussed based on the observation and measurement of FS+LDDMM segmentation results.

  16. Splines for Diffeomorphic Image Regression

    PubMed Central

    Singh, Nikhil; Niethammer, Marc

    2016-01-01

    This paper develops a method for splines on diffeomorphisms for image regression. In contrast to previously proposed methods to capture image changes over time, such as geodesic regression, the method can capture more complex spatio-temporal deformations. In particular, it is a first step towards capturing periodic motions for example of the heart or the lung. Starting from a variational formulation of splines the proposed approach allows for the use of temporal control points to control spline behavior. This necessitates the development of a shooting formulation for splines. Experimental results are shown for synthetic and real data. The performance of the method is compared to geodesic regression. PMID:25485370

  17. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  18. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images.

    PubMed

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-05-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler-Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  19. Large poroelastic deformation of a soft material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  20. The algebra of diffeomorphisms from the world sheet

    NASA Astrophysics Data System (ADS)

    Schulgin, Waldemar; Troost, Jan

    2014-09-01

    The quantum theory of a massless spin two particle is strongly constrained by diffeomorphism invariance, which is in turn implied by unitarity. We explicitly exhibit the space-time diffeomorphism algebra of string theory, realizing it in terms of world sheet vertex operators. Viewing diffeomorphisms as field redefinitions in the two-dimensional conformal field theory renders the calculation of their algebra straightforward. Next, we generalize the analysis to combinations of space-time anti-symmetric tensor gauge transformations and diffeomorphisms. We also point out a left-right split of the algebra combined with a twist that reproduces the C-bracket of double field theory. We further compare our derivation to an analysis in terms of marginal deformations as well as vertex operator algebras.

  1. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  2. Diffeomorphism groups and anyon fields

    SciTech Connect

    Goldin, G.A.; Sharp, D.H.

    1995-09-01

    We make use of unitary representations of the group of diffeomorphisms of the plane to construct an explicit field theory of anyons. The resulting anyon fields satisfy q-commutators, where q is the well-known phase shift associated with a single counterclockwise exchange of a pair of anyons. Our method uses a realization of the braid group by means of paths in the plane, that transform naturally under diffeomorphisms of R{sup 2}.

  3. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  4. Analysis of deformations of large earth dams

    NASA Astrophysics Data System (ADS)

    Szostak-Chrzanowski, Anna; Massiéra, Michel; Chrzanowski, Adam

    2007-09-01

    Safety of earth dams depends on the proper design, construction, and monitoring of actual behaviour during the construction and during the operation of the structure. The most critical factor in the assessment of the safety threshold value of any structure is the acceleration of its deformation. Therefore, the designed accuracy of monitoring surveys must fulfill requirements of detecting accelerations at critical locations of the investigated object. As an example, time dependant behavior of a large embankment dam during filling up the reservoir has been analyzed and verified by comparing monitoring results with the deterministic (prediction) model of the deformation. The geotechnical and geodetic monitoring besides providing a warning system in case of an abnormal behaviour of the dam, may be used as a tool for a verification of design parameters where geotechnical parameters are of the highest importance. Modeling of deformation of earth dams is a complex process in which one should consider the nonlinear behaviour of the construction material, interaction between the structure and the underlying foundation strata, influence of water load on the structure and on the foundation bedrock, and the effects of water saturation. Due to the uncertainty of the model parameters, careful monitoring of the dam and its surroundings are required in order to verify and enhance the model. In addition, with properly designed monitoring surveys, one may also determine the actual deformation mechanism. The finite element method may be useful tool in the proper design of the monitoring scheme by providing information on the locations and magnitude of the expected maximum displacements and velocites of movements. The discussed problems are illustrated by three types of earth dams located in California, U.S.A. and in Quebec, Canada.

  5. Local remeshing for large amplitude grid deformations

    NASA Astrophysics Data System (ADS)

    Moyle, Keri R.; Ventikos, Yiannis

    2008-02-01

    Fluid-structure interaction (FSI) modelling can involve large deformations in the fluid domain, which could lead to degenerating mesh quality and numerical inaccuracies or instabilities, if allowed to amplify unchecked. Complete remeshing of the entire domain during the solution process is computationally expensive, and can require interpolation of solution variables between meshes. As an alternative, we investigate a local remeshing algorithm, with two emphases: (a) the identification and remedy of flat, degenerate tetrahedra, and (b) the avoidance of node motion, and hence associated interpolation errors. Initially, possible topological changes are examined using a dynamic programming algorithm to maximise the minimum local element quality through edge reconnection. In the 3D situation it was found that reconnection improvements tend to be limited to long edges, and those with few (three or four) element neighbours. The remaining degenerate elements are classified into one of four types using three proposed metrics - the minimum edge-to-edge distance (EE), the minimum node-to-edge distance (NE), and the shortest edge length (SE) - and removed according to the best manner for their type. Optimised thresholds for identifying and classifying elements for removal were found to be EE < 0.18, NE < 0.21, SE < 0.2.

  6. S-HAMMER: Hierarchical Attribute-Guided, Symmetric Diffeomorphic Registration for MR Brain Images

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Shen, Dinggang

    2013-01-01

    Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421–1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786–802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications. PMID:23283836

  7. On the distinction between large deformation and large distortion for anisotropic materials

    SciTech Connect

    BRANNON,REBECCA M.

    2000-02-24

    A motion involves large distortion if the ratios of principal stretches differ significantly from unity. A motion involves large deformation if the deformation gradient tensor is significantly different from the identity. Unfortunately, rigid rotation fits the definition of large deformation, and models that claim to be valid for large deformation are often inadequate for large distortion. An exact solution for the stress in an idealized fiber-reinforced composite is used to show that conventional large deformation representations for transverse isotropy give errant results. Possible alternative approaches are discussed.

  8. Induced gravity from curvature density preserving diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We construct not only an induced gravity model with restricted diffeomorphisms, that is, transverse diffeomorphisms that preserve the curvature density, but also with full diffeomorphisms. By solving the equations of motion, it turns out that these models produce Einstein's equations with a certain Newton constant in addition to the constraint for the curvature density. In the limit of the infinite Newton constant, the models give rise to induced gravity. Moreover, we discuss cosmological solutions on the basis of the gravitational models at hand.

  9. DIFFEOMORPHIC POINT SET REGISTRATION USING NON-STATIONARY MIXTURE MODELS

    PubMed Central

    Wassermann, D.; Ross, J.; Washko, G.; Westin, C-F; Estépar, R. San José

    2013-01-01

    This paper investigates a diffeomorphic point-set registration based on non-stationary mixture models. The goal is to improve the non-linear registration of anatomical structures by representing each point as a general non-stationary kernel that provides information about the shape of that point. Our framework generalizes work done by others that use stationary models. We achieve this by integrating the shape at each point when calculating the point-set similarity and transforming it according to the calculated deformation. We also restrict the non-rigid transform to the space of symmetric diffeomorphisms. Our algorithm is validated in synthetic and human datasets in two different applications: fiber bundle and lung airways registration. Our results shows that non-stationary mixture models are superior to Gaussian mixture models and methods that do not take into account the shape of each point. PMID:24419463

  10. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  11. Displacement and deformation measurement for large structures by camera network

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  12. Hybrid natural element method for large deformation elastoplasticity problems

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Qi; Zhou, Yan-Kai

    2015-03-01

    We present the hybrid natural element method (HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger-Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system. Compared with the natural element method (NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems. Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1415900).

  13. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  14. Symmetric log-domain diffeomorphic Registration: a demons-based approach.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2008-01-01

    Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfectly fit for log-Euclidean statistics on diffeomorphisms. Our algorithm works completely in the log-domain, i.e. it uses a stationary velocity field. This implies that we guarantee the invertibility of the deformation and have access to the true inverse transformation. This also means that our output can be directly used for log-Euclidean statistics without relying on the heavy computation of the log of the spatial transformation. As it is often desirable, our algorithm is symmetric with respect to the order of the input images. Furthermore, we use an alternate optimization approach related to Thirion's demons algorithm to provide a fast non-linear registration algorithm. First results show that our algorithm outperforms both the demons algorithm and the recently proposed diffeomorphic demons algorithm in terms of accuracy of the transformation while remaining computationally efficient. PMID:18979814

  15. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  16. A large stroke magnetic fluid deformable mirror for focus control

    NASA Astrophysics Data System (ADS)

    Min, Ling-kun; Wu, Zhi-zheng; Huang, Ming-shuang; Kong, Xiang-hui

    2016-03-01

    A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

  17. Large-deformation modal coordinates for nonrigid vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  18. Fracture Deformation Measurements in the Large Block Test

    SciTech Connect

    Carlson, S R; Blair, S C; Wagoner, J L

    2002-03-08

    Fracture deformations were measured in a 3m x 3m x 4.5m block of Topopah Spring tuff as part of a larger effort to characterize coupled thermal-hydrologic-mechanical-chemical processes in an isolated rock mass subjected to a one-dimensional thermal gradient. The fracture deformations were measured in three orthogonal directions at 17 points on the vertical faces of the block over a time span of 19 months. Eight fractures, including a major sub-horizontal fracture near the top of the block and five large, sub-vertical fractures, were selected for study. The data provide point measurements of apparent aperture change and slip motions parallel and perpendicular to the block faces. The fracture aperture and slip motions, though only a few tenths of a millimeter, form a significant portion of the total block deformation. The data reveal some fairly complex behaviors, such as nonuniform slip motions along individual fractures and sub-vertical fractures that sometimes open and close simultaneously at different elevations. Slip motions along sub-vertical fractures near the heater plane were relatively large and well correlated with temperature. The heating phase deformations were only partially recovered during cool-down. The fracture deformation data show that fractures deformed in conjunction with water movements and associated temperature fluctuations during the test. Simultaneous slip and aperture data also provide estimates of fracture dilation angle.

  19. Control and large deformations of marginal disordered structures

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Pinson, Matthew; Chen, Elizabeth

    Designed deformations, such as origami patterns, provide a way to make easily controlled mechanical metamaterials with tailored responses to external forces. We focus on an often overlooked regime of origami - non-linear deformations of large disordered origami patterns with no symmetries. We find that practical questions of control in origami have counterintuitive answers, because of intimate connections to spin glasses and neural networks. For example, 1 degree of freedom origami structures are actually difficult to control about the flat state with a single actuator; the actuator is thrown off by an exponential number of `red herring' zero modes for small deformations, all but one of which disappear at larger deformations. Conversely, structures with multiple programmed motions are much easier to control than expected - in fact, they are as easy to control as a dedicated single-motion structure if the number of programmed motions is below a threshold (`memory capacity').

  20. Deformation and recrystallization texture development in Fe-4%Si subjected to large shear deformation

    NASA Astrophysics Data System (ADS)

    Kustas, A. B.; Sagapuram, D.; Chandrasekar, S.; Trumble, K. P.

    2015-04-01

    Machining is used as a deformation technique to impose large shear strains (γ ˜ 2) in a commercial Fe-4%Si alloy. The partial <111> and {110} - fiber texture components are generated throughout the as-deformed microstructure, which is expected of BCC metals deformed in simple shear. Using an annealing schedule similar to that in the commercial rolling process, samples retain the deformation texture, consistent with a continuous-type recrystallization mechanism. Fine-grained annealed samples reveal two different partial fiber orientations, one of which becomes the dominate texture, following the high-temperature growth treatment. The mechanisms of texture evolution and implications for texture control in the machining-based process are discussed.

  1. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Westem U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  2. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Western U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  3. Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory

    2015-11-01

    In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.

  4. Microstructural changes, steady-state deformation and strain localisation during large strain deformation of rocks

    NASA Astrophysics Data System (ADS)

    Barnhoorn, A.

    2012-04-01

    Ductile deformation in the Earth's crust and mantle is often concentrated in narrow shear zones. These shear zones play a fundamental role in the deformation dynamics of the earth's lithosphere during mountain building, subduction and continental break-up. Shear zones exhibit large amounts of strain with an increase in strain from the edge to the center of the shear zone. Those large strains are often accompanied with large changes in microstructure due to processes such as dynamic recrystallization, grain size refinement, development of strong foliations, development of crystallographic preferred orientations, weakening of the rock as well as progressive localisation of the deformation into more and more concentrated zones. The interplay between all those different processes produce the various microstructures that are often studied in natural shear zones to assess the deformation conditions and history of plate tectonic processes. Experimental deformation studies under controlled conditions are used to produce relationships between the different processes active in shear zones (rheology, microstructural changes, and CPO development) in order to make those quantitative inferences on natural shear zones, Here I will present the outcomes from large strain torsion experiments at elevated temperatures and pressures on monophase calcitic rocks showing that very large strains are needed before true steady-state conditions in rocks are attained. Continuous changes in crystallographic preferred orientations and continuous dynamic recrystallization by grain boundary migration and subgrain rotation recrystallization occur up to the largest shear strains achieved in the study (shear strain of 50). Dynamic recrystallization from an undeformed coarse-grained calcite rock types towards a fine-grained ultramylonite is accompanied by a modest (~20%) weakening of the rock. However, this modest weakening never caused strain localisation in the samples. In contrast to the

  5. Geodesic estimation for large deformation anatomical shape averaging and interpolation.

    PubMed

    Avants, Brian; Gee, James C

    2004-01-01

    The goal of this research is to promote variational methods for anatomical averaging that operate within the space of the underlying image registration problem. This approach is effective when using the large deformation viscous framework, where linear averaging is not valid, or in the elastic case. The theory behind this novel atlas building algorithm is similar to the traditional pairwise registration problem, but with single image forces replaced by average forces. These group forces drive an average transport ordinary differential equation allowing one to estimate the geodesic that moves an image toward the mean shape configuration. This model gives large deformation atlases that are optimal with respect to the shape manifold as defined by the data and the image registration assumptions. We use the techniques in the large deformation context here, but they also pertain to small deformation atlas construction. Furthermore, a natural, inherently inverse consistent image registration is gained for free, as is a tool for constant arc length geodesic shape interpolation. The geodesic atlas creation algorithm is quantitatively compared to the Euclidean anatomical average to elucidate the need for optimized atlases. The procedures generate improved average representations of highly variable anatomy from distinct populations. PMID:15501083

  6. Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration

    PubMed Central

    Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-01-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963

  7. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    SciTech Connect

    Plohr, Bradley J.; Plohr, Jeeyeon N.

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  8. An Inexact Newton–Krylov Algorithm for Constrained Diffeomorphic Image Registration*

    PubMed Central

    Mang, Andreas; Biros, George

    2016-01-01

    We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evolution of the image intensity. The control variable is the velocity field. Tikhonov regularization on the control ensures well-posedness. We consider standard smoothness regularization based on H1- or H2-seminorms. We augment this regularization scheme with a constraint on the divergence of the velocity field (control variable) rendering the deformation incompressible (Stokes regularization scheme) and thus ensuring that the determinant of the deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral discretization in space and a Chebyshev pseudospectral discretization in time. The latter allows us to reduce the number of unknowns and enables the time-adaptive inversion for nonstationary velocity fields. We use a preconditioned, globalized, matrix-free, inexact Newton–Krylov method for numerical optimization. A parameter continuation is designed to estimate an optimal regularization parameter. Regularity is ensured by controlling the geometric properties of the deformation field. Overall, we arrive at a black-box solver that exploits computational tools that are precisely tailored for solving the optimality system. We study spectral properties of the Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation regularity of our scheme. We compare the designed Newton–Krylov methods with a globalized Picard method (preconditioned gradient descent). We study the influence of a varying number of unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed local deformation

  9. Generic Rigidity for Circle Diffeomorphisms with Breaks

    NASA Astrophysics Data System (ADS)

    Kocić, Saša

    2016-05-01

    We prove that C^r -smooth (r > 2 ) circle diffeomorphisms with a break, i.e., circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, are generically, i.e., for almost all irrational rotation numbers, not C^1+ɛ -rigid, for any ɛ > 0 . This result complements our recent proof, joint with Khanin (Geom Funct Anal 24:2002-2028, 2014), that such maps are generically C^1 -rigid. It stands in remarkable contrast to the result of Yoccoz (Ann Sci Ec Norm Sup 17:333-361, 1984) that C^r -smooth circle diffeomorphisms are generically C^r-1-κ -rigid, for any κ > 0.

  10. Generic Rigidity for Circle Diffeomorphisms with Breaks

    NASA Astrophysics Data System (ADS)

    Kocić, Saša

    2016-06-01

    We prove that {C^r}-smooth ({r > 2}) circle diffeomorphisms with a break, i.e., circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, are generically, i.e., for almost all irrational rotation numbers, not {C^{1+\\varepsilon}}-rigid, for any {\\varepsilon > 0}. This result complements our recent proof, joint with Khanin (Geom Funct Anal 24:2002-2028, 2014), that such maps are generically {C^1}-rigid. It stands in remarkable contrast to the result of Yoccoz (Ann Sci Ec Norm Sup 17:333-361, 1984) that {C^r}-smooth circle diffeomorphisms are generically {C^{r-1-κ}}-rigid, for any {κ > 0}.

  11. Effective field theory of broken spatial diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Lin, Chunshan; Labun, Lance Z.

    2016-03-01

    We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. We discuss several examples relevant to theories of massive gravity.

  12. Generic area-preserving reversible diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Bessa, Mário; Carvalho, Maria; Rodrigues, Alexandre

    2015-06-01

    Let M be a surface and R : M → M an area-preserving C∞ diffeomorphism which is an involution and whose set of fixed points is a submanifold with dimension one. We will prove that C1 - generically either an area-preserving R-reversible diffeomorphism, is Anosov, or, for μ-almost every x ∈ M, the Lyapunov exponents at x vanish or else the orbit of x belongs to a compact hyperbolic set with an empty interior. We will also describe a nonempty C1-open subset of area-preserving R-reversible diffeomorphisms where for C1 - generically each map is either Anosov or its Lyapunov exponents vanish from almost everywhere.

  13. Large N behavior of mass deformed ABJM theory

    NASA Astrophysics Data System (ADS)

    Nosaka, Tomoki; Shimizu, Kazuma; Terashima, Seiji

    2016-03-01

    In this paper, using the localization technique we analyze the large N limit of the mass deformed Aharony-Bergman-Jafferis-Maldacena (ABJM) theory on the three sphere with a finite mass parameter and finite Chern-Simons levels. We find two different solutions of the saddle point equations in the large N limit. With these solutions we compute the free energy limit and find that there is a first order phase transition. Our results may predict a phase transition in the dual gravity theory.

  14. Development of thermoplastic composite tubes for large deformation

    NASA Astrophysics Data System (ADS)

    Derisi, Bijan

    Composites have proved their great potentials for many aerospace applications, where the high performance can justify the high cost. However, the brittleness of the composites has been a main drawback for many applications that require large deformation, high failure strain and extensive energy absorption before final fracture. The objective of this research is to present a solution to the brittleness of the composites in tubular form and to introduce a composite tube that shows the same strength, stiffness and failure strain as its high grade Aluminum 7075-T6 counterpart tube. One application of this research can be in the development of composite landing gear for helicopters. Up to date, almost all helicopter landing gears are made of high strength aluminum, and despite their major issues in maintenance and fabrication, aluminum landing gears have remained the only choice for the helicopter manufacturing industry. Substitution of aluminum landing gear for helicopters with a thermoplastic composite landing gear is really a challenge, but if this can be done, it would be for the first time in the world! Through this research, the mechanical behavior of flat plate Carbon AS4/PEKK is characterized, and the potential mechanisms for large deformation of composite laminates are sought. The outcomes are used to design a composite tube that shows the same strength, stiffness and deformability as its high grade aluminum counterpart. The accuracy of the design is verified through progressive failure by ANSYS analysis and experimental work. Strain Controlled Design is introduced as a new design technique to substitute for the traditional stiffness-controlled techniques whenever large deformation from composite laminates is expected. The analytical techniques for stress analysis of composite tubes are reviewed, and the cumbersomeness of the method is highlighted. Finally, a simplified technique is presented to analyze composite tubes as a sandwich panel model. The results of

  15. Large Deformation Behavior of Long Shallow Cylindrical Composite Panels

    NASA Technical Reports Server (NTRS)

    Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.

    1991-01-01

    An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.

  16. Modeling Large-Strain, High-Rate Deformation in Metals

    SciTech Connect

    Lesuer, D R; Kay, G J; LeBlanc, M M

    2001-07-20

    The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a range in strain rates from 10{sup -4} s{sup -1} to over 10{sup 4} s{sup -1}. The results have been used to critically evaluate the strength and damage components of the Johnson-Cook (JC) material model. A new model that addresses the shortcomings of the JC model was then developed and evaluated. The model is derived from the rate equations that represent deformation mechanisms active during moderate and high rate loading. Another model that accounts for the influence of void formation on yield and flow behavior of a ductile metal (the Gurson model) was also evaluated. The characteristics and predictive capabilities of these models are reviewed.

  17. Diffeomorphic Metric Mapping and Probabilistic Atlas Generation of Hybrid Diffusion Imaging based on BFOR Signal Basis

    PubMed Central

    Du, Jia; Hosseinbor, A. Pasha; Chung, Moo K.; Bendlin, Barbara B.; Suryawanshi, Gaurav; Alexander, Andrew L.; Qiu, Anqi

    2015-01-01

    We first propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI).We denote this algorithm as LDDMM-HYDI. We then propose a Bayesian probabilistic model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and the analytic form of the emsemble average propagator (EAP) reconstructure, as well as reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in the q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the q-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-valued images to HYDIs and derive the expectation-maximization algorithm for solving the HYDI atlas estimation problem. Using real HYDI datasets, we show the Bayesian model generates the white matter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization and to incorporate the full information of HYDI for aligning mDWI. Finally, we show that the LDDMM-HYDI outperforms the LDDMM algorithm with diffusion tensors generated from each shell of HYDI. PMID:24972378

  18. The large deformation elastic response of woven Kevlar fabric

    SciTech Connect

    Warren, W.E.

    1991-01-01

    The large deformation elastic response of a plane woven Kevlar fabric is investigated analytically and experimentally. The analysis assumes the undeformed geometry to be a sequence of interlaced arcs of circles which reverse at each yarn midpoint, ad each yarn is modeled as an extensible elastical subject to certain compatibility conditions. Deflection-force relations for the fabric are determined in terms of the initial weave geometry and the elastic properties of the individual yarns. The theoretical results agree well with the results of experiments performed on a fabric woven from 400 denier Kevlar yarns under conditions of uniaxial loading in both warp and fill directions. 13 refs., 4 figs.

  19. Contactless Large Deformable Mirrors: ELT AO corrector technology available now

    NASA Astrophysics Data System (ADS)

    Biasi, Roberto; Gallieni, Daniele

    2011-09-01

    We present our design of ESO E-ELT M4 deformable mirror and GMT Adaptive Secondary Mirrors unit. Both systems are based on our consolidated design of large deformable mirrors for 8-m class telescopes, successfully implemented on MMT and LBT and currently in advanced construction and testing phase for VLT and Magellan telescopes respectively. We describe the main features of the technology adopted: thin Zerodur mirror shell with contactless voice coil motors, co-located capacitive sensors to close a local position loop at each actuator, centralized control by force feedforward, embedded real time control and communication electronics. We then highlight how the same concept has been scaled up on the E-ELT M4AU and the GMT-ASM cases, adapting the technology to deal with thousands of actuators, while maintaining its intrinsic advantages: tolerance to actuators' failures, mechanical de-coupling and relaxed tolerances between correcting mirror and reference structure, large stroke, hysteresis-free behavior. For the next generation systems, we report the predicted performances based on the actual results attained on our 1-m class DMs currently in use: the LBT adaptive secondary for the GMT-ASM and the 330 actuators Demonstration Prototype for the E-ELT M4AU.

  20. Large anisotropic deformation of skyrmions in strained crystal.

    PubMed

    Shibata, K; Iwasaki, J; Kanazawa, N; Aizawa, S; Tanigaki, T; Shirai, M; Nakajima, T; Kubota, M; Kawasaki, M; Park, H S; Shindo, D; Nagaosa, N; Tokura, Y

    2015-07-01

    Mechanical control of magnetism is an important and promising approach in spintronics. To date, strain control has mostly been demonstrated in ferromagnetic structures by exploiting a change in magnetocrystalline anisotropy. It would be desirable to achieve large strain effects on magnetic nanostructures. Here, using in situ Lorentz transmission electron microscopy, we demonstrate that anisotropic strain as small as 0.3% in a chiral magnet of FeGe induces very large deformations in magnetic skyrmions, as well as distortions of the skyrmion crystal lattice on the order of 20%. Skyrmions are stabilized by the Dzyaloshinskii-Moriya interaction, originating from a chiral crystal structure. Our results show that the change in the modulation of the strength of this interaction is amplified by two orders of magnitude with respect to changes in the crystal lattice due to an applied strain. Our findings may provide a mechanism to achieve strain control of topological magnetic structures based on the Dzyaloshinskii-Moriya interaction. PMID:26030654

  1. Manifestly diffeomorphism invariant classical Exact Renormalization Group

    NASA Astrophysics Data System (ADS)

    Morris, Tim R.; Preston, Anthony W. H.

    2016-06-01

    We construct a manifestly diffeomorphism invariant Wilsonian (Exact) Renor-malization Group for classical gravity, and begin the construction for quantum gravity. We demonstrate that the effective action can be computed without gauge fixing the diffeo-morphism invariance, and also without introducing a background space-time. We compute classical contributions both within a background-independent framework and by perturbing around a fixed background, and verify that the results are equivalent. We derive the exact Ward identities for actions and kernels and verify consistency. We formulate two forms of the flow equation corresponding to the two choices of classical fixed-point: the Gaussian fixed point, and the scale invariant interacting fixed point using curvature-squared terms. We suggest how this programme may completed to a fully quantum construction.

  2. Large Deformation and Adhesive Contact Studies of Axisymmetric Membranes

    PubMed Central

    Laprade, Evan J.; Long, Rong; Pham, Jonathan; Lawrence, Jimmy; Emrick, Todd; Crosby, Alfred; Hui, Chung-Yuen; Shull, Kenneth R.

    2013-01-01

    A model membrane contact system consisting of an acrylic copolymer membrane and polydimethyl-siloxane substrate was utilized to evaluate a recently developed nonlinear large-deformation adhesive contact analysis. Direct measurements of the local membrane apex strain during non-contact inflation indicated that the neo-Hookean model provides an accurate measure of membrane strain and supports its use as the strain energy function for the analysis. A time dependent modulus emerges from the analysis, with principal tensions obtained from a comparison of predicted and experimental membrane profiles. A displacement controlled geometry was more easily modeled than the pressure controlled geometry, the applicability of the analysis was limited by wrinkling instabilities. The substantial viscoelastic behavior of these membranes made it difficult to describe the entire membrane with a single modulus, given the nonuniform deformation history of the membranes. Given the difficulty in determining membrane tension from the measured pressure and profile fits using the model, the peel energy was used as a simpler measure of adhesion. Using an analytical balance in the displacement controlled geometry, the membrane tension at the contact line was directly measured. Coupled with contact angle imaging, the peel energy was determined. For the model membranes studied, this peel energy described the membrane/substrate adhesive interactions quite well, giving well-defined peel energies that were independent of the detailed strain state of the membrane. PMID:23289644

  3. Large deformation finite element analysis of undrained pile installation

    NASA Astrophysics Data System (ADS)

    Konkol, Jakub; Bałachowski, Lech

    2016-03-01

    In this paper, a numerical undrained analysis of pile jacking into the subsoil using Abaqus software suit has been presented. Two different approaches, including traditional Finite Element Method (FEM) and Arbitrary Lagrangian-Eulerian (ALE) formulation, were tested. In the first method, the soil was modelled as a two-phase medium and effective stress analysis was performed. In the second one (ALE), a single-phase medium was assumed and total stress analysis was carried out. The fitting between effective stress parameters and total stress parameters has been presented and both solutions have been compared. The results, discussion and verification of numerical analyzes have been introduced. Possible applications and limitations of large deformation modelling techniques have been explained.

  4. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error

    PubMed Central

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. Methods: The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simulated and real cardiac sequences tests showed that results in the authors’ method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors’ method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors’ method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods. PMID:24784402

  5. Interferogram formation in the presence of complex and large deformation

    USGS Publications Warehouse

    Yun, S.-H.; Zebker, H.; Segall, P.; Hooper, A.; Poland, M.

    2007-01-01

    Sierra Negra volcano in Isabela island, Gala??pagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a "rubber-sheeting" SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra. Copyright 2007 by the American Geophysical Union.

  6. Interferogram formation in the presence of complex and large deformation

    NASA Astrophysics Data System (ADS)

    Yun, Sang-Ho; Zebker, Howard; Segall, Paul; Hooper, Andrew; Poland, Michael

    2007-06-01

    Sierra Negra volcano in Isabela island, Galápagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a ``rubber-sheeting'' SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra.

  7. Speckle photography applied to measure deformations of very large structures

    NASA Astrophysics Data System (ADS)

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  8. Large deformation measurement scheme for 3D digital image correlation method

    NASA Astrophysics Data System (ADS)

    Tang, Zhengzong; Liang, Jin; Xiao, Zhenzhong; Guo, Cheng

    2012-02-01

    Difficulties often arise for digital image correlation (DIC) technique when serious de-correlation occurs between the reference image and the deformed image due to large deformation. An updating reference image scheme could be employed to deal with large deformation situation, however that will introduce accumulated errors. A large deformation measurement scheme, combining improved coarse search method and updating reference image scheme, is proposed in this paper. For a series of deformation images, the correlation calculation begins with a seed point and spreads out. An improved coarse search method is developed to calculate the initial correlation parameters for the seed point, which guarantees that the correlation calculation can be carried out successfully even in large deformation situation. Only for extremely large deformation, the reference image is updated. Using this method, not only extremely large deformation can be measured successfully but also the accumulated error could be controlled. A polymer material tensile test and a foam compression test are used to verify the proposed scheme. Experimental results show that up to 450% tensile deformation and 83% compression deformation can be measured successfully.

  9. Breaking and Restoring of Diffeomorphism Symmetry in Discrete Gravity

    SciTech Connect

    Bahr, B.; Dittrich, B.

    2009-12-15

    We discuss the fate of diffeomorphism symmetry in discrete gravity. Diffeomorphism symmetry is typically broken by the discretization. This has repercussions for the observable content and the canonical formulation of the theory. It might however be possible to construct discrete actions, so-called perfect actions, with exact symmetries and we will review first steps towards this end.

  10. Explicit versus spontaneous diffeomorphism breaking in gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert

    2015-03-01

    Gravitational theories with fixed background fields break local Lorentz and diffeomorphism invariance either explicitly or spontaneously. In the case of explicit breaking it is known that conflicts can arise between the dynamics and geometrical constraints, while spontaneous breaking evades this problem. It is for this reason that in the gravity sector of the Standard-Model extension (SME) it is assumed that the background fields (SME coefficients) originate from spontaneous symmetry breaking. However, in other examples, such as Chern-Simons gravity and massive gravity, diffeomorphism invariance is explicitly broken by the background fields, and the potential conflicts between the dynamics and geometry can be avoided in most cases. An analysis of how this occurs is given, and the conditions that are placed on the metric tensor and gravitational structure as a result of the presence of an explicit-breaking background are described. The gravity sector of the SME is then considered for the case of explicit breaking. However, it is found that a useful post-Newtonian limit is only obtained when the symmetry breaking is spontaneous.

  11. Fabric strain sensor integrated with CNPECs for repeated large deformation

    NASA Astrophysics Data System (ADS)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  12. Anosov Diffeomorphisms and {γ}-Tilings

    NASA Astrophysics Data System (ADS)

    Almeida, João P.; Pinto, Alberto A.

    2016-07-01

    We consider a toral Anosov automorphism {G_γ:{mathbb{T}}_γto{mathbb{T}}_γ} given by {G_γ(x,y)=(ax+y,x)} in the { < v,w > } base, where {ainmathbb{N} backslash\\{1\\}}, {γ=1/(a+1/(a+1/ldots))}, {v=(γ,1)} and {w=(-1,γ)} in the canonical base of {{mathbb{R}}^2} and {{mathbb{T}}_γ={mathbb{R}}^2/(v{mathbb{Z}} × w{mathbb{Z}})}. We introduce the notion of {γ}-tilings to prove the existence of a one-to-one correspondence between (i) marked smooth conjugacy classes of Anosov diffeomorphisms, with invariant measures absolutely continuous with respect to the Lebesgue measure, that are in the isotopy class of {G_γ}; (ii) affine classes of {γ}-tilings; and (iii) {γ}-solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences.

  13. Strain localization in usnaturated soils with large deformation

    NASA Astrophysics Data System (ADS)

    Song, X.; Borja, R. I.

    2014-12-01

    Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability

  14. New approach to nonrelativistic diffeomorphism invariance and its applications

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2016-04-01

    A comprehensive account of a new structured algorithm for obtaining nonrelativistic diffeomorphism invariances in both space and spacetime by gauging the Galilean symmetry in a generic nonrelativistic field theoretical model is provided. Various applications like the obtention of nonrelativistic diffeomorphism invariance, the introduction of the Chern-Simons term and its role in fractional quantum Hall effect, the induction of diffeomorphism in the irrotational fluid model, the abstraction of Newton-Cartan geometry, and the emergence of Horava-Lifshitz gravity are discussed in details.

  15. Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Cannone, Dario; Ricciardone, Angelo; Tasinato, Gianmassimo

    2016-03-01

    The effective field theory of inflation is a powerful tool for obtaining model independent predictions common to large classes of inflationary models. It requires only information about the symmetries broken during the inflationary era, and on the number and nature of fields that drive inflation. In this paper, we consider the case for scenarios that simultaneously break time reparameterization and spatial diffeomorphisms during inflation. We examine how to analyse such systems using an effective field theory approach, and we discuss several observational consequences for the statistics of scalar and tensor modes. For example, examining the three point functions, we show that this symmetry breaking pattern can lead to an enhanced amplitude for the squeezed bispectra, and to a distinctive angular dependence between their three wavevectors. We also discuss how our results indicate prospects for constraining the level of spatial diffeomorphism breaking during inflation.

  16. Grid-based matching for full-field large-area deformation measurement

    NASA Astrophysics Data System (ADS)

    Du, Xian; Anthony, Brian W.; C. Kojimoto, Nigel

    2015-03-01

    Grid-based measurement can facilitate metrology and inspection of flexible electronics manufacturing. Multiple fundamental difficulties, however, arise in the large-area and full-field deformation measurement of deformable grid patterns including noise, occlusions, and artifacts. This paper addresses one of the key issues in deformation measurement: the registration and matching of deformed grid patterns. The emphasis is on accurate and robust periodicity tracing registration and constellation matching algorithms for grid pattern fidelity. The registration algorithm uses deviation metrics in deformed grids to estimate global translation, rotation and scaling; the matching algorithm uses the constellation reference grid to mine buried deformed point patterns. Using synthetic data, the validity of the registration algorithm is proved by registering noisy deformed grid patterns with various distortion scales and transformations; the validity of the matching algorithm is proved by matching deformed grid point patterns with various distortion scales, extra point rates and missing point rates. Compared to established non-rigid registration and point pattern matching algorithms, our algorithms demonstrate higher speed, sub-pixel accuracy and robustness in the matching of highly-deformed and noisy grids.

  17. Time-dependent recovery of passive neutrophils after large deformation.

    PubMed Central

    Tran-Son-Tay, R; Needham, D; Yeung, A; Hochmuth, R M

    1991-01-01

    Experiments are performed in which a passive human neutrophil is deformed into an elongated "sausage" shape by aspirating it into a small glass pipette. When expelled from the pipette the neutrophil recovers its natural spherical shape in approximately 1 minute. This recovery process is analyzed according to a Newtonian, liquid-drop model in which a variational method is used to simultaneously solve the hydrodynamic equations for low Reynolds-number flow and the equations for membrane equilibrium with a constant membrane tension. The theoretical model gives a good fit to the experimental data for a ratio of membrane cortical tension to cytoplasmic viscosity of approximately 1.7 x 10(-5) cm/s (0.17 micron/s). However, when the cell is held in the pipette for only a short time period of 5 s or less, and then expelled, the cell undergoes an initial, rapid elastic rebound suggesting that the cell behaves in this instance as a Maxwell viscoelastic liquid rather than a Newtonian liquid with constant cortical tension. PMID:1742456

  18. Finite-element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1975-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

  19. Finite element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1974-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.

  20. Large-Scale Deformation and Uplift Associated with Serpentinization

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Lowell, R. P.; Smith, J. E.

    2014-12-01

    Geologic and geophysical data suggest that partially serpentinized peridotites and serpentinites are a significant part of the oceanic lithosphere. All serpentinization reactions are exothermic and result in volume expansion as high as 40%. Volume expansion beneath the seafloor will lead to surface uplift and elevated stresses in the neighborhood of the region undergoing serpentinization. The serpentinization-induced stresses are likely to result in faulting or tensile fracturing that promote the serpentinization process by creating new permeability and allowing fluid access to fresh peridotite. To explore these issues, we developed a first-order model of crustal deformation by considering an inclusion undergoing transformation strain in an elastic half-space. Using solutions for inclusions of different shapes, orientations, and depths, we calculate the surface uplift and mechanical stresses generated by the serpentinization processes. We discuss the topographic features at the TAG hydrothermal field (Mid-Atlantic Ridge, 26°N), uplift of the Miyazaki Plain (Southwestern Japan), and tectonic history of the Atlantic Massif (inside corner high of the Mid-Atlantic Ridge, 30°N, and the Atlantis Transform Fault). Our analysis suggests that an anomalous salient of 3 km in diameter and 100 m high at TAG may have resulted from approximately 20% transformational strain in a region beneath the footwall of the TAG detachment fault. This serpentinization process tends to promote slip along some overlying normal faults, which may then enhance fluid pathways to the deeper crust to continue the serpentinization process. The serpentinization also favors slip and seismicity along the antithetic faults identified below the TAG detachment fault. Our solution for the Miyazaki Plain above the Kyushu-Palau subduction zone explains the observed uplift of 120 m, but the transformational strain needs only be 3%. Transformational strains associated with serpentinization in this region may

  1. Automated registration of large deformations for adaptive radiation therapy of prostate cancer

    SciTech Connect

    Godley, Andrew; Ahunbay, Ergun; Peng Cheng; Li, X. Allen

    2009-04-15

    Available deformable registration methods are often inaccurate over large organ variation encountered, for example, in the rectum and bladder. The authors developed a novel approach to accurately and effectively register large deformations in the prostate region for adaptive radiation therapy. A software tool combining a fast symmetric demons algorithm and the use of masks was developed in C++ based on ITK libraries to register CT images acquired at planning and before treatment fractions. The deformation field determined was subsequently used to deform the delivered dose to match the anatomy of the planning CT. The large deformations involved required that the bladder and rectum volume be masked with uniform intensities of -1000 and 1000 HU, respectively, in both the planning and treatment CTs. The tool was tested for five prostate IGRT patients. The average rectum planning to treatment contour overlap improved from 67% to 93%, the lowest initial overlap is 43%. The average bladder overlap improved from 83% to 98%, with a lowest initial overlap of 60%. Registration regions were set to include a volume receiving 4% of the maximum dose. The average region was 320x210x63, taking approximately 9 min to register on a dual 2.8 GHz Linux system. The prostate and seminal vesicles were correctly placed even though they are not masked. The accumulated doses for multiple fractions with large deformation were computed and verified. The tool developed can effectively supply the previously delivered dose for adaptive planning to correct for interfractional changes.

  2. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  3. Development of patient-specific biomechanical models for predicting large breast deformation

    NASA Astrophysics Data System (ADS)

    Han, Lianghao; Hipwell, John H.; Tanner, Christine; Taylor, Zeike; Mertzanidou, Thomy; Cardoso, Jorge; Ourselin, Sebastien; Hawkes, David J.

    2012-01-01

    Physically realistic simulations for large breast deformation are of great interest for many medical applications such as cancer diagnosis, image registration, surgical planning and image-guided surgery. To support fast, large deformation simulations of breasts in clinical settings, we proposed a patient-specific biomechanical modelling framework for breasts, based on an open-source graphics processing unit-based, explicit, dynamic, nonlinear finite element (FE) solver. A semi-automatic segmentation method for tissue classification, integrated with a fully automated FE mesh generation approach, was implemented for quick patient-specific FE model generation. To solve the difficulty in determining material parameters of soft tissues in vivo for FE simulations, a novel method for breast modelling, with a simultaneous material model parameter optimization for soft tissues in vivo, was also proposed. The optimized deformation prediction was obtained through iteratively updating material model parameters to maximize the image similarity between the FE-predicted MR image and the experimentally acquired MR image of a breast. The proposed method was validated and tested by simulating and analysing breast deformation experiments under plate compression. Its prediction accuracy was evaluated by calculating landmark displacement errors. The results showed that both the heterogeneity and the anisotropy of soft tissues were essential in predicting large breast deformations under plate compression. As a generalized method, the proposed process can be used for fast deformation analyses of soft tissues in medical image analyses and surgical simulations.

  4. Development of patient-specific biomechanical models for predicting large breast deformation.

    PubMed

    Han, Lianghao; Hipwell, John H; Tanner, Christine; Taylor, Zeike; Mertzanidou, Thomy; Cardoso, Jorge; Ourselin, Sebastien; Hawkes, David J

    2012-01-21

    Physically realistic simulations for large breast deformation are of great interest for many medical applications such as cancer diagnosis, image registration, surgical planning and image-guided surgery. To support fast, large deformation simulations of breasts in clinical settings, we proposed a patient-specific biomechanical modelling framework for breasts, based on an open-source graphics processing unit-based, explicit, dynamic, nonlinear finite element (FE) solver. A semi-automatic segmentation method for tissue classification, integrated with a fully automated FE mesh generation approach, was implemented for quick patient-specific FE model generation. To solve the difficulty in determining material parameters of soft tissues in vivo for FE simulations, a novel method for breast modelling, with a simultaneous material model parameter optimization for soft tissues in vivo, was also proposed. The optimized deformation prediction was obtained through iteratively updating material model parameters to maximize the image similarity between the FE-predicted MR image and the experimentally acquired MR image of a breast. The proposed method was validated and tested by simulating and analysing breast deformation experiments under plate compression. Its prediction accuracy was evaluated by calculating landmark displacement errors. The results showed that both the heterogeneity and the anisotropy of soft tissues were essential in predicting large breast deformations under plate compression. As a generalized method, the proposed process can be used for fast deformation analyses of soft tissues in medical image analyses and surgical simulations. PMID:22173131

  5. The influence of large deformations on mechanical properties of sinusoidal ligament structures

    NASA Astrophysics Data System (ADS)

    Strek, Tomasz; Jopek, Hubert; Wojciechowski, Krzysztof W.

    2016-05-01

    Studies of mechanical properties of materials, both theoretical and experimental, usually deal with linear characteristics assuming a small range of deformations. In particular, not much research has been published devoted to large deformations of auxetic structures – i.e. structures exhibiting negative Poisson’s ratio. This paper is focused on mechanical properties of selected structures that are subject to large deformations. Four examples of structure built of sinusoidal ligaments are studied and for each geometry the impact of deformation size and geometrical parameters on the effective mechanical properties of these structures are investigated. It is shown that some of them are auxetic when compressed and non-auxetic when stretched. Geometrical parameters describing sinusoidal shape of ligaments strongly affect effective mechanical properties of the structure. In some cases of deformation, the increase of the value of amplitude of the sinusoidal shape decreases the effective Poisson’s ratio by 0.7. Therefore the influence of geometry, as well as the arrangement of ligaments allows for smart control of mechanical properties of the sinusoidal ligament structure being considered. Given the large deformation of the structure, both a linear elastic material model, and a hyperelastic Neo-Hookean material model are used.

  6. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  7. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  8. Large deformation polymer optical fiber sensors for civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Abdi, Omid; Kowalsky, Mervyn; Hassan, Tasnim; Kiesel, Sharon; Peters, Kara

    2008-03-01

    This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as the performance-based assessment and health monitoring of civil infrastructure systems subjected to earthquake loading or morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of single mode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. Measurements of the mechanical response of the sensor at various strain rates are presented. Several cleaving methods were also tested in order to appropriately cleave POFs for coupling purposes. In addition, the design of a time-of-flight interferometer for phase measurements over the large strain range required is discussed. Finally the bond strength between the embedded POF and various structural materials is investigated and a methodology demonstrated for embedment of the sensors into a reinforced concrete structural component.

  9. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  10. Analyzing elastoplastic large deformation problems with the complex variable element-free Galerkin method

    NASA Astrophysics Data System (ADS)

    Li, D. M.; Liew, K. M.; Cheng, Y. M.

    2014-06-01

    Using the complex variable moving least-squares (CVMLS) approximation, a complex variable element-free Galerkin (CVEFG) method for two-dimensional elastoplastic large deformation problems is presented. This meshless method has higher computational precision and efficiency because in the CVMLS approximation, the trial function of a two-dimensional problem is formed with a one-dimensional basis function. For two-dimensional elastoplastic large deformation problems, the Galerkin weak form is employed to obtain its equation system. The penalty method is used to impose essential boundary conditions. Then the corresponding formulae of the CVEFG method for two-dimensional elastoplastic large deformation problems are derived. In comparison with the conventional EFG method, our study shows that the CVEFG method has higher precision and efficiency. For illustration purpose, a few selected numerical examples are presented to demonstrate the advantages of the CVEFG method.

  11. A finite element method for transient analysis of concurrent large deformation and mass transport in gels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaping; Zhao, Xuanhe; Suo, Zhigang; Jiang, Hanqing

    2009-05-01

    A gel is an aggregate of polymers and solvent molecules. The polymers crosslink into a three-dimensional network by strong chemical bonds and enable the gel to retain its shape after a large deformation. The solvent molecules, however, interact among themselves and with the network by weak physical bonds and enable the gel to be a conduit of mass transport. The time-dependent concurrent process of large deformation and mass transport is studied by developing a finite element method. We combine the kinematics of large deformation, the conservation of the solvent molecules, the conditions of local equilibrium, and the kinetics of migration to evolve simultaneously two fields: the displacement of the network and the chemical potential of the solvent. The finite element method is demonstrated by analyzing several phenomena, such as swelling, draining and buckling. This work builds a platform to study diverse phenomena in gels with spatial and temporal complexity.

  12. Black hole entropy and Lorentz-diffeomorphism Noether charge

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Mohd, Arif

    2015-12-01

    We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.

  13. Experimental analysis of crack tip fields in rubber materials under large deformation

    NASA Astrophysics Data System (ADS)

    Xiao, Xia; Song, Hai-Peng; Kang, Yi-Lan; Li, Xiao-Lei; Tan, Xiao-Hua; Tan, Hao-Yun

    2012-04-01

    A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation. The model is inspired by the distribution of the measured in-plane and out-of-plane deformation. The inplane displacement of crack-tip fields under both Mode I and mixed-mode (Mode I-II) fracture conditions is measured by using the digital Moiré method. The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes. The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.

  14. Effect of GFRP spacer on local deformation of large superconductor in coil pack

    NASA Astrophysics Data System (ADS)

    Nishimura, Arata; Tamura, Hitoshi; Mito, Toshiyuki; Yamamoto, Junya

    1994-07-01

    Local deformation in a large superconductor caused by GFRP (glass fiber reinforced plastic) spacers and epoxy adhesives was investigated after compressive rigidity testing. The epoxy adhesive used for attaching the GFRP spacers to the superconductor changed shape from an almost square sheet into a lens-like sheet during deformation, and a dent appeared on the surface of the superconductor. Three-dimensional FEM (finite element method) analysis showed that a compressive stress in the vertical direction of the loading axis existed in the adhesive plane. This stress component makes the adhesive lens-like and it results in the dent created during the compressive testing. This local deformation should yield a part of the permanent deformation observed after the compressive load cycle at 4.2 K.

  15. Large deformation analysis of Euler-Bernoulli beamshell under own weight based on HAM

    NASA Astrophysics Data System (ADS)

    Sohouli, Abdol; Kimiaeifar, Amin; Mohsenzadeh, Afshin; Mohebpour, Saeed

    2012-03-01

    Large deformation of a horizontally uniform cantilevered Euler-Bernoulli beamshell subjected to its own weight is studied. The governing equation for the first time is analytically solved using the analytical technique for nonlinear problems Homotopy Analysis Method (HAM). A series solution is presented that can be used for the analysis of beamshells undergoing large deformations with wide range of weight, material/cross section properties and lengths. The results obtained by HAM are compared with the results reported in the previous works, and good agreement is found. Finally, the load-displacement characteristics of a uniform cantilever beamshell under different load conditions, dimensionless weight parameter are presented.

  16. Zinc selenide-based large aperture photo-controlled deformable mirror.

    PubMed

    Quintavalla, Martino; Bonora, Stefano; Natali, Dario; Bianco, Andrea

    2016-06-01

    Realization of large aperture deformable mirrors with a large density of actuators is important in many applications, and photo-controlled deformable mirrors (PCDMs) represent an innovation. Herein we show that PCDMs are scalable realizing a 2-inch aperture device based on a polycrystalline zinc selenide (ZnSe) as the photoconductive substrate and a thin polymeric reflective membrane. ZnSe is electrically characterized and analyzed through a model that we previously introduced. The PCDM is then optically tested, demonstrating its capabilities in adaptive optics. PMID:27244417

  17. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes

    NASA Astrophysics Data System (ADS)

    Pritchard, Matthew E.; Simons, Mark

    2002-07-01

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.

  18. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes.

    PubMed

    Pritchard, Matthew E; Simons, Mark

    2002-07-11

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile. PMID:12110886

  19. Diffeomorphic demons: efficient non-parametric image registration.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2009-03-01

    We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians. PMID:19041946

  20. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  1. Fast deformable registration for soft organs with large motion in HIFU treatment

    NASA Astrophysics Data System (ADS)

    Huang, Xishi; Abdalbari, Anwar; Zaheer, Sameer; Looi, Thomas; Ren, Jing; Drake, James

    2013-03-01

    In noninvasive high intensity focused ultrasound (HIFU) treatment, we often need to register MR images acquired with different patient positioning or at different respiratory instances. In these scenarios, the abdominal organs such as the liver exhibit a large motion in different images. In our previous work, we proposed a fast neuro-fuzzy technique for deformable registration with small motion. In this study, based on elastic solid mechanics, we extend our previous results to deformation with large motion which is often the case for soft tissues in HIFU treatment. The proposed method involves minimizing strain energy of soft tissues which is constrained by 3D curves of blood vessels and point marks. It provides fast and robust deformable match for internal structures such as blood vessels, and eliminates local minima. Furthermore, the strain energy constraint provides good generalization properties, prevents the issue of overfitting, and leads to physically consistent deformable registration results. We have demonstrated the effectiveness of our deformable technique in registering MR liver images. Validation shows a target registration error of 2.31 mm and an average centerline distance error of 2.30 mm. This technique has the potential to significantly improve the registration capability and the quality of intra-operative image guidance in HIFU procedures.

  2. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    NASA Astrophysics Data System (ADS)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  3. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2016-02-01

    Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness. PMID:26866939

  4. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  5. Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem

    NASA Astrophysics Data System (ADS)

    Hansbo, Peter; Larson, Mats G.; Larsson, Fredrik

    2015-07-01

    We develop a finite element method for a large deformation membrane elasticity problem on meshed curved surfaces using a tangential differential calculus approach that avoids the use of classical differential geometric methods. The method is also applied to form finding problems.

  6. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  7. X-ray microbeam quantification of grain subdivision accompanying large deformations of copper

    SciTech Connect

    Butler, G.C.; Guvenilir, A.; McDowell, D.L.; Stock, S.R.

    1998-12-31

    Polychromatic synchrotron x-ray microbeams offer a very efficient alternative to electron beam methods for quantifying the amount and character of grain subdivision accompanying large deformations. With a 0.01 mm diameter collimator, bending magnet radiation from a 3.0 GeV source and image storage plates, samples of copper with thicknesses greater than 0.1 mm have been studied. Results from an as-received sample and a sample deformed to 100% torsion are compared and illustrate how efficiently grain subdivision can be quantified with polychromatic microbeam diffraction.

  8. Solitons in a baby-Skyrme model with invariance under area-preserving diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Gisiger, T.; Paranjape, M. B.

    1997-06-01

    We study the properties of soliton solutions in an analogue of the Skyrme model in 2+1 dimensions whose Lagrangian contains the Skyrme term and the mass term, but no usual kinetic term. The model admits a symmetry under area-preserving diffeomorphisms. We solve the dynamical equations of motion analytically for the case of spinning isolated baryon-type solitons. We take fully into account the induced deformation of the spinning Skyrmions and the consequent modification of its moment of inertia to give an analytical example of related numerical behavior found by Piette, Schroers, and Zakrzewski. We solve the equations of motion also for the case of an infinite, open string, and a closed annular string. In each case, the solitons are of finite extent, so called ``compactons,'' being exactly the vacuum outside a compact region. We end with indications on the scattering of baby Skyrmions, as well as some considerations as the properties of solitons on a curved space.

  9. Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe; Wang, Qiming

    2014-06-01

    Widely used as insulators, capacitors, and transducers in daily life, soft dielectrics based on polymers and polymeric gels play important roles in modern electrified society. Owning to their mechanical compliance, soft dielectrics subject to voltages frequently undergo large deformation and mechanical instabilities. The deformation and instabilities can lead to detrimental failures in some applications of soft dielectrics such as polymer capacitors and insulating gels but can also be rationally harnessed to enable novel functions such as artificial muscle, dynamic surface patterning, and energy harvesting. According to mechanical constraints on soft dielectrics, we classify their deformation and instabilities into three generic modes: (i) thinning and pull-in, (ii) electro-creasing to cratering, and (iii) electro-cavitation. We then provide a systematic understanding of different modes of deformation and instabilities of soft dielectrics by integrating state-of-the-art experimental methods and observations, theoretical models, and applications. Based on the understanding, a systematic set of strategies to prevent or harness the deformation and instabilities of soft dielectrics for diverse applications are discussed. The review is concluded with perspectives on future directions of research in this rapidly evolving field.

  10. A dynamic tree-based registration could handle possible large deformations among MR brain images.

    PubMed

    Zhang, Pei; Wu, Guorong; Gao, Yaozong; Yap, Pew-Thian; Shen, Dinggang

    2016-09-01

    Multi-atlas segmentation is a powerful approach to automated anatomy delineation via fusing label information from a set of spatially normalized atlases. For simplicity, many existing methods perform pairwise image registration, leading to inaccurate segmentation especially when shape variation is large. In this paper, we propose a dynamic tree-based strategy for effective large-deformation registration and multi-atlas segmentation. To deal with local minima caused by large shape variation, coarse estimates of deformations are first obtained via alignment of automatically localized landmark points. The dynamic tree capturing the structural relationships between images is then employed to further reduce misalignment errors. Evaluation based on two real human brain datasets, ADNI and LPBA40, shows that our method significantly improves registration and segmentation accuracy. PMID:27235894

  11. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  12. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  13. Large-deformation and high-strength amorphous porous carbon nanospheres

    PubMed Central

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. PMID:27072412

  14. Large-deformation and high-strength amorphous porous carbon nanospheres.

    PubMed

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R; Yue, Zhufeng; Dillon, Shen J; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. PMID:27072412

  15. A mesh density study for application to large deformation rolling process evaluations

    SciTech Connect

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated.

  16. Diffeomorphism invariant cosmological symmetry in full quantum gravity

    NASA Astrophysics Data System (ADS)

    Beetle, Christopher; Engle, Jonathan S.; Hogan, Matthew E.; Mendonça, Phillip

    2016-06-01

    This paper summarizes a new proposal to define rigorously a sector of loop quantum gravity at the diffeomorphism invariant level corresponding to homogeneous and isotropic cosmologies, thereby enabling a detailed comparison of results in loop quantum gravity and loop quantum cosmology. The key technical steps we have completed are (a) to formulate conditions for homogeneity and isotropy in a diffeomorphism covariant way on the classical phase-space of general relativity, and (b) to translate these conditions consistently using well-understood techniques to loop quantum gravity. Some additional steps, such as constructing a specific embedding of the Hilbert space of loop quantum cosmology into a space of (distributional) states in the full theory, remain incomplete. However, we also describe, as a proof of concept, a complete analysis of an analogous embedding of homogeneous and isotropic loop quantum cosmology into the quantum Bianchi I model of Ashtekar and Wilson-Ewing. Details will appear in a pair of forthcoming papers.

  17. Euclidean space-time diffeomorphisms and their Fueter subgroups

    SciTech Connect

    Guersey, F.; Jiang, W. )

    1992-02-01

    Holomorphic Fueter functions of the position quaternion form a subgroup of Euclidean space-time diffeomorphisms. An {ital O}(4) covariant treatment of such mappings is presented with the quaternionic argument {ital x} being replaced by either {ital {bar p}x} or {ital x{bar p}} involving self-dual and anti-self-dual structures and {ital p} denoting an arbitrary Euclidean time direction. An infinite group (the quasiconformal group) is exhibited that admits the conformal group SO(5,1) as a subgroup, in analogy to the two-dimensional case in which the Moebius group SO(3,1) is a subgroup of the infinite Virasoro group. The ensuing (3+1) covariant decomposition of diffeomorphisms suggests covariant gauges that throw the metric and the stress tensors in standard forms suitable for canonical quantization, leading to improved'' energy-momentum tensors. Other possible applications to current algebra and gravity will be mentioned.

  18. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J

    2016-01-01

    ABSTRACT Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom‐up approach. By conserving the three‐dimensional structure and the entanglement of the molecules, we were able to construct finite‐size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26866939

  19. Breaking diffeomorphism invariance and tests for the emergence of gravity

    SciTech Connect

    Anber, Mohamed M.; Aydemir, Ufuk; Donoghue, John F.

    2010-04-15

    If general relativity is an emergent phenomenon, there may be small violations of diffeomorphism invariance. We propose a phenomenology of perturbatively small violations of general relativity by the inclusion of terms which break general covariance. These can be tested by matching to the parameterized post-Newtonian formalism. The most sensitive tests involve pulsar timing and provide an extremely strong bound, with a dimensionless constraint of order 10{sup -20} relative to gravitational strength.

  20. The relationship between the clinical performance and large deformation mechanical behavior of retrieved UHMWPE tibial inserts.

    PubMed

    Kurtz, S M; Rimnac, C M; Pruitt, L; Jewett, C W; Goldberg, V; Edidin, A A

    2000-02-01

    Many aspects of the proposed relationship between material properties and clinical performance of UHMWPE components remain unclear. In this study, we explored the hypothesis that the clinical performance of tibial inserts is directly related to its large-deformation mechanical behavior measured near the articulating surface. Retrieval analysis was performed on three conventional UHMWPE and three Hylamer-M tibial components of the same design and manufacturer. Samples of material were then obtained from the worn regions of each implant and subjected to mechanical characterization using the small punch test. Statistically significant relationships were observed between the metrics of the small punch test and the total damage score and the burnishing damage score of the implants. We also examined the near-surface morphology of the retrievals using transmission electron microscopy. TEM analysis revealed lamellar alignment at and below the wear surfaces of the conventional UHMWPE retrievals up to a maximum depth of approximately 8 microm, consistent with large-deformation crystalline plasticity. The depth of the plasticity-induced damage layer varied not only between the retrievals, but also between the conventional UHMWPE and Hylamer-M components. Thus, the results of this study support the hypothesis that the clinical performance of UHMWPE tibial inserts is related to the large-deformation mechanical behavior measured near the articulating surface. PMID:10646945

  1. Transient elasticity and the rheology of polymeric fluids with large amplitude deformations.

    PubMed

    Müller, Oliver; Liu, Mario; Pleiner, Harald; Brand, Helmut R

    2016-02-01

    Transient elasticity is a systematic generalization of viscoelasticity. Its purpose is to give a coherent description of non-Newtonian effects displayed by soft-matter systems, especially polymer melts and solutions. Using the concept of transient elasticity we describe here a hydrodynamic model for polymeric fluids, which is applicable for large amplitude deformations. We present an energy density with only two independent parameters, which is compatible with all thermodynamic requirements and which reduces for small deformations to models studied previously. The expression discussed is simple enough to allow full analytic treatment and shows semiquantitative agreement with experimental data. This model is used to capture many of the interesting effects thought to be characteristic of polymer rheology for large deformations including viscosity overshoot near the onset of shear flow, the onset of elongational flows in situations for which there is no stationary solution as well as shear thinning and normal stress differences for a large range of shear rates. In addition, we analyze how well our model accounts for empirical relations including the Cox-Merz rule, the Yamamoto relation, and Gleißle's mirror relations. PMID:26986420

  2. Transient elasticity and the rheology of polymeric fluids with large amplitude deformations

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Liu, Mario; Pleiner, Harald; Brand, Helmut R.

    2016-02-01

    Transient elasticity is a systematic generalization of viscoelasticity. Its purpose is to give a coherent description of non-Newtonian effects displayed by soft-matter systems, especially polymer melts and solutions. Using the concept of transient elasticity we describe here a hydrodynamic model for polymeric fluids, which is applicable for large amplitude deformations. We present an energy density with only two independent parameters, which is compatible with all thermodynamic requirements and which reduces for small deformations to models studied previously. The expression discussed is simple enough to allow full analytic treatment and shows semiquantitative agreement with experimental data. This model is used to capture many of the interesting effects thought to be characteristic of polymer rheology for large deformations including viscosity overshoot near the onset of shear flow, the onset of elongational flows in situations for which there is no stationary solution as well as shear thinning and normal stress differences for a large range of shear rates. In addition, we analyze how well our model accounts for empirical relations including the Cox-Merz rule, the Yamamoto relation, and Gleißle's mirror relations.

  3. Large deformation analysis of a dielectric elastomer membrane-spring system

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Cui, Leilei; Chen, Cheng

    2009-07-01

    Due to the capability of large strain, dielectric elastomers are promising for applications as transducers in cameras, robots, valves, pumps, energy harvesters and so on. The dielectric elastomer transducers are based on the deformation of a soft polymer membrane contracting in thickness and expanding in area, which is induced by the application of a voltage across the two compliant electrodes coated on both sides of the membrane. This paper focuses on the large deformation analysis of a dielectric elastomer membrane-spring system. The system is constructed from attaching a disk in the middle of a circular dielectric membrane and then connecting the disk with a spring. This configuration can be potentially used as a key part in valves. The basic governing equations describing the large out-of-plane deformations are formulated, and the obtained equations are solved numerically. The relations related to the displacement of the disk, the spring force, the applied voltage, and the parameters of spring including stiffness and initial length are illustrated. The results show the anticipated displacement of the disk can be controlled by adjusting the parameters of spring and the applied voltage individually or simultaneously, and the parameters of the spring, that is, stiffness and initial length, play an important role in the performance of the membrane-spring system.

  4. On the large Ω-deformations in the Nekrasov-Shatashvili limit of N={2}^{*} SYM

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo

    2016-07-01

    We study the multi-instanton partition functions of the Ω-deformed N={2}^{*} SU(2) gauge theory in the Nekrasov-Shatashvili (NS) limit. They depend on the deformation parameters ɛ1, the scalar field expectation value a, and the hypermultiplet mass m. At fixed instanton number k, they are rational functions of ɛ1 , a, m and we look for possible regularities that admit a parametrical description in the number of instantons. In each instanton sector, the contribution to the deformed Nekrasov prepotential has poles for large deformation parameters. To clarify the properties of these singularities we exploit Bethe/gauge correspondence and examine the special ratios m/ɛ1 at which the associated spectral problem is n-gap. At these special points we illustrate several structural simpli-fications occurring in the partition functions. After discussing various tools to compute the prepotential, we analyze the non-perturbative corrections up to k = 24 instantons and present various closed expressions for the coefficients of the singular terms. Both the regular and singular parts of the prepotential are resummed over all instantons and compared successfully with the exact prediction from the spectral theory of the Lamé equation, showing that the pole singularities are an artifact of the instanton expansion. The analysis is fully worked out in the 1-gap case, but the final pole cancellation is proved for a generic ratio m/ɛ1 relating it to the gap width of the Lamé equation.

  5. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Liu, Xiaoli; Hu, Senying; Li, Pujian

    2016-06-01

    The unstable rock slope in the Laxiwa reservoir area of the Yellow River upstream, China, shows the signs of gravitational and water-impounding induced large deformations over an area of 1.15 × 105 m2. Slope movements have been measured daily at more than 560 observation points since 2009, when the reservoir was first impounded. At two of these points, an average daily movement of around 60-80 mm has ever been observed since the beginning of the impounding. Based on the observed deformations and the geology of the site, a fluid-solid coupling model was then adopted to investigate the existing rockslide activity to better understand the mechanism underlying the large deformations. The results from the field observation, kinematic analysis and numerical modeling indicate that the slope instability is dominated by the strong structurally controlled unstable rock mass. Based on an integrated overview of these analyses, a new toppling mode, i.e. the so-called `conjugate block' mode, is proposed to explain the large deformation mechanism of the slope. The conjugate block is formed by a `dumping block' and toppling blocks. The large deformation of the slope is dominated by (1) a toppling component and (2) a subsiding bilinear wedge induced by planar sliding along the deep-seated faults. Following a thorough numerical analysis, it is concluded that small collapses of rock blocks along the slope will be more frequent with the impounding process continuing and the water level fluctuating during the subsequent operation period. Based on a shear strength reduction method and field monitoring, four controlling faults are identified and the instability of the loose structure in the surface layer is analyzed and discussed. The factor of safety against the sliding failure along the deep seated fractures in the slope is 1.72, which reveals that (1) the collapse of the free-standing fractured blocks cannot be ruled out and the volume of the unstable blocks may be greater than 100

  6. Deformation regime and long-term precursors to eruption at large calderas: Rabaul, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Robertson, Robert M.; Kilburn, Christopher R. J.

    2016-03-01

    Eruptions at large calderas are normally preceded by variable rates of unrest that continue for decades or more. A classic example is the 1994 eruption of Rabaul caldera, in Papua New Guinea, which began after 23 years of surface uplift and volcano-tectonic (VT) seismicity at rates that changed unevenly with time by an order of magnitude. Although the VT event rate and uplift rate peaked in 1983-1985, eruptions only began a decade later and followed just 27 hours of anomalous changes in precursory signal. Here we argue that the entire 23 years of unrest belongs to a single sequence of damage accumulation in the crust and that, in 1991-1992, the crust's response to applied stress changed from quasi-elastic (elastic deformation with minor fault movement) to inelastic (deformation predominantly by fault movement alone). The change in behaviour yields limiting trends in the variation of VT event rate with deformation and can be quantified with a mean-field model for an elastic crust that contains a dispersed population of small faults. The results show that identifying the deformation regime for elastic-brittle crust provides new criteria for using precursory time series to evaluate the potential for eruption. They suggest that, in the quasi-elastic regime, short-term increases in rates of deformation and VT events are unreliable indicators of an imminent eruption, but that, in the inelastic regime, the precursory rates may follow hyperbolic increases with time and offer the promise of developing forecasts of eruption as much as months beforehand.

  7. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland

    USGS Publications Warehouse

    Glaser, P.H.; Chanton, J.P.; Morin, P.; Rosenberry, D.O.; Siegel, D.I.; Ruud, O.; Chasar, L.I.; Reeve, A.S.

    2004-01-01

    Peatlands deform elastically during precipitation cycles by small (??3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4-12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m-2, which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands. Copyright 2004 by the American Geophysical Union.

  8. Characterizing large-scale glaciotectonic sediment deformation using electrical resistivity methods

    NASA Astrophysics Data System (ADS)

    Aylsworth, R. L., Jr.; Van Dam, R. L.; Larson, G. J.; Jessee, M. A.

    2016-04-01

    Large-scale sediment deformation structures formed by glaciotectonic processes have been identified south of Ludington, USA. Here, several apparent clay diapirs rise from below beach level to near the top of an approximately 60 m high bluff along the eastern shore of Lake Michigan. Throughout the area, the surface topography and locations of springs indicate a complicated subsurface structure and a preferred pattern of groundwater drainage. Since public borehole information is sparse, it is not known whether the structures exposed in the bluff are true diapirs or ridges, and if the latter, what is their orientation. In this paper we present the results of field, laboratory, and modeling studies to characterize the inland extent and orientation of these deformation structures using galvanic-source electrical geophysical methods. We exploit the large electrical contrast between a sandy sedimentary layer and an underlying clayey silt sedimentary layer in which the deformation occurred. Constant-spread traverses and multi-electrode tomographic data demonstrate that at least one of the narrow structures extends a significant distance inland.

  9. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  10. Effect of large deformation pre-loads on the wave properties of hexagonal lattices

    NASA Astrophysics Data System (ADS)

    Pal, Raj Kumar; Rimoli, Julian; Ruzzene, Massimo

    2016-05-01

    We study linear wave propagation in nonlinear hexagonal lattices capable of undergoing large deformations, under different levels of pre-load. The lattices are composed of a set of masses connected by linear axial and angular springs, with the nonlinearity arising solely from geometric effects. By applying different levels of pre-load, the small amplitude linear wave propagation response can be varied from isotropic to highly directional. Analytical expressions for the stiffness of a unit cell in the deformed configuration are derived and they are used to analyze the dispersion surfaces and group velocity variation with pre-load. Numerical simulations on finite lattices demonstrate the validity of our unit cell predictions and illustrate the wave steering potential of our lattice.

  11. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    NASA Technical Reports Server (NTRS)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  12. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  13. Statistical shape analysis: From landmarks to diffeomorphisms.

    PubMed

    Zhang, Miaomiao; Golland, Polina

    2016-10-01

    We offer a blazingly brief review of evolution of shape analysis methods in medical imaging. As the representations and the statistical models grew more sophisticated, the problem of shape analysis has been gradually redefined to accept images rather than binary segmentations as a starting point. This transformation enabled shape analysis to take its rightful place in the arsenal of tools for extracting and understanding patterns in large clinical image sets. We speculate on the future developments in shape analysis and potential applications that would bring this mathematically rich area to bear on clinical practice. PMID:27377332

  14. Low-Dimensional Generalized Coordinate Models of Large-Deformation Elastic Joints

    NASA Astrophysics Data System (ADS)

    Odhner, Lael; Dollar, Aaron

    2012-02-01

    In the field of robotics, it is increasingly common to use elastic elements such as rods, beams or sheets to allow motion between the rigid links of a robot, rather than conventional sliding mechanisms such as pin joints. Although these elastic joints are simpler to manufacture, especially at meso- and micro-scales, representational simplicity is sacrificed. It is far easier to compute the Lagrangian of a robot using joint angles as generalized coordinates, rather than by considering the large-deformation continuum behavior of elastic joints. In this talk, we will discuss our work toward finding accurate, low-dimensional discretizations of elastic joint mechanics, suitable for use in generalized coordinate models of robot kinematics and dynamics. We use modally parameterized backbone curves to describe the kinematic configuration of the elastic joints, and compute the energy associated with deformation using rod and shell theory. In the plane, only three smooth deformation modes are sufficient to describe Euler-Bernoulli bending of 90 degrees to within 1 percent. Parametric models for the three-dimensional motion of sheet hinges are more complex, but can be simplified significantly using boundary conditions and constraints imposed by ruled surface assumptions.

  15. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  16. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects.

    PubMed

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks. PMID:25408295

  17. A large-deformation thin plate theory with application to one-atom-thick layers

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Shodja, H. M.

    2016-02-01

    Nowadays, two-dimensional materials due to their vast engineering and biomedical applications have been the focus of many researches. The present paper proposes a large-deformation theory for thin plates with application to one-atom-thick layers (OATLs). The deformation is formulated exactly in the mathematical framework of Lagrangian description. In particular, an exact finite strain analysis is given - in addition to the usual strain tensor associated to the middle surface, the second and third fundamental forms of the middle surface of the deformed thin plate are also maintained in the analysis. Exact closed-form solutions for a uniaxially curved thin plate due to pure bending in one case and due to a combination of vertical and horizontal loading in another are obtained. As a special case of the latter problem, the exact solution for the plane-strain bulge test of thin plates is derived. Subsequently, the approximation of Vlassak and Nix [Vlassak, J.J., Nix, W.D., 1992. J. Mater. Res., 7(12), 3242-3249] for the load-deflection equation is recovered. The given numerical results are devoted to graphene as the most well-known OATL.

  18. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    PubMed Central

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks. PMID:25408295

  19. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    NASA Astrophysics Data System (ADS)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  20. Using geophysical observations to constrain dynamic models of large-scale continental deformation in Asia

    NASA Astrophysics Data System (ADS)

    Flesch, L. M.; Holt, W. E.; Haines, A. J.

    2003-04-01

    The deformation of continental lithosphere is controlled by a variety of factors, including (1) body forces, (2) basal tractions, (3) boundary forces, and (4) rheology. Obtaining unique solutions that describe the dynamics of continental lithosphere is extremely challenging. Limitations are associated with inadequate observations that can uniquely constrain the dynamics as well as inadequate numerical methods. However, the compilation of space geodetic, seismic, and geologic data over the past 10-15 years have made it possible to make significant strides toward understanding the dynamics of large-scale continental deformation. The first step in making inferences about continental dynamics involves a quantification of the kinematics of active deformation (measurement of the velocity gradient tensor field). We interpolate both GPS velocity vectors and Quaternary strain rates with continuous spline functions (bi-cubic Bessel interpolation) to define a model velocity gradient tensor field solution (strain rates, rotation rates, and relative motions). In our methodology grid areas can be defined to be small enough such that fault zones are narrow and regions between faults (crustal blocks) possess rigid behavior. Our dynamic models are solutions to equations for a thin sheet, accounting for body forces associated with horizontal density variations and edge forces associated with accommodation of relative plate motion. The formalism can also include basal tractions associated with coupling between lithosphere and deeper mantle circulation. These dynamic models allow for lateral variations of viscosity and they allow for different power-law rheologies with power law exponents ranging from n = 1-9. Thus our dynamic models account for possible block-like behavior (high effective viscosity) as well as concentrated strain within shear zones. Kinematic results to date for central Asia show block-like behavior for large regions such as South China, Tarim Basin, Amurian block

  1. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Kang, Di; Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar; Ciovati, Gianluigi; Wright, Neil T.; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.; Myneni, Ganapati Rao

    2015-12-01

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  2. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  3. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  4. Shear bands in a bulk metallic glass after large plastic deformation

    SciTech Connect

    Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J.

    2012-10-23

    A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.

  5. X-ray microbeam quantification of grain subdivision accompanying large deformations of copper

    SciTech Connect

    Guvenilir, A.; Butler, G.C.; Haase, J.D.; McDowell, D.L.; Stock, S.R.

    1998-11-20

    This work reports the application of X-ray microbeam diffraction to quantifying grain subdivision processes in copper. Polychromatic synchrotron X-radiation was used to study samples in the as-received (low deformation) and 100% torsion strained material. The large range of domain disorientations (within individual grains) observed in the highly strained material agrees with results on other f.c.c. materials obtained by electron beam methods; it is not surprising, therefore, that models of texture development which do not include this effect predict too rapid sharpening of preferred orientation compared to experimental pole figures.

  6. Thermomechanical theory of materials undergoing large elastic and viscoplastic deformation (AWBA development program)

    SciTech Connect

    Martin, S.E.; Newman, J.B.

    1980-11-01

    A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference.

  7. Comparison of spacetime defects which are homeomorphic but not diffeomorphic

    SciTech Connect

    Klinkhamer, F. R. Sorba, F.

    2014-11-15

    Certain remnants of a quantum spacetime foam can be modeled by a distribution of defects embedded in a flat classical spacetime. The presence of such spacetime defects affects the propagation of elementary particles. In this article, we show explicitly that both topology and differential structure of the defects are important for the particle motion. Specifically, we consider three types of spacetime defects which are described by the same topological manifold R×(RP{sup 3}−(point)) but which are not diffeomorphic to each other. We investigate the propagation of a massless scalar field over the three different manifolds and find different solutions of the Klein–Gordon equation.

  8. Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth.

    PubMed

    Zacharaki, Evangelia I; Hogea, Cosmina S; Shen, Dinggang; Biros, George; Davatzikos, Christos

    2009-07-01

    Although a variety of diffeomorphic deformable registration methods exist in the literature, application of these methods in the presence of space-occupying lesions is not straightforward. The motivation of this work is spatial normalization of MR images from patients with brain tumors in a common stereotaxic space, aiming to pool data from different patients into a common space in order to perform group analyses. Additionally, transfer of structural and functional information from neuroanatomical brain atlases into the individual patient's space can be achieved via the inverse mapping, for the purpose of segmenting brains and facilitating surgical or radiotherapy treatment planning. A method that estimates the brain tissue loss and replacement by tumor is applied for achieving equivalent image content between an atlas and a patient's scan, based on a biomechanical model of tumor growth. Automated estimation of the parameters modeling brain tissue loss and displacement is performed via optimization of an objective function reflecting feature-based similarity and elastic stretching energy, which is optimized in parallel via APPSPACK (Asynchronous Parallel Pattern Search). The results of the method, applied to 21 brain tumor patients, indicate that the registration accuracy is relatively high in areas around the tumor, as well as in the healthy portion of the brain. Also, the calculated deformation in the vicinity of the tumor is shown to correlate highly with expert-defined visual scores indicating the tumor mass effect, thereby potentially leading to an objective approach to quantification of mass effect, which is commonly used in diagnosis. PMID:19408350

  9. Kernel Bundle Diffeomorphic Image Registration Using Stationary Velocity Fields and Wendland Basis Functions.

    PubMed

    Pai, Akshay; Sommer, Stefan; Sorensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2016-06-01

    In this paper, we propose a multi-scale, multi-kernel shape, compactly supported kernel bundle framework for stationary velocity field-based image registration (Wendland kernel bundle stationary velocity field, wKB-SVF). We exploit the possibility of directly choosing kernels to construct a reproducing kernel Hilbert space (RKHS) instead of imposing it from a differential operator. The proposed framework allows us to minimize computational cost without sacrificing the theoretical foundations of SVF-based diffeomorphic registration. In order to recover deformations occurring at different scales, we use compactly supported Wendland kernels at multiple scales and orders to parameterize the velocity fields, and the framework allows simultaneous optimization over all scales. The performance of wKB-SVF is extensively compared to the 14 non-rigid registration algorithms presented in a recent comparison paper. On both MGH10 and CUMC12 datasets, the accuracy of wKB-SVF is improved when compared to other registration algorithms. In a disease-specific application for intra-subject registration, atrophy scores estimated using the proposed registration scheme separates the diagnostic groups of Alzheimer's and normal controls better than the state-of-the-art segmentation technique. Experimental results show that wKB-SVF is a robust, flexible registration framework that allows theoretically well-founded and computationally efficient multi-scale representation of deformations and is equally well-suited for both inter- and intra-subject image registration. PMID:26841388

  10. Constitutive modeling of large inelastic deformation of amorphous polymers: Free volume and shear transformation zone dynamics

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Samadi-Dooki, Aref

    2016-06-01

    Due to the lack of the long-range order in their molecular structure, amorphous polymers possess a considerable free volume content in their inter-molecular space. During finite deformation, these free volume holes serve as the potential sites for localized permanent plastic deformation inclusions which are called shear transformation zones (STZs). While the free volume content has been experimentally shown to increase during the course of plastic straining in glassy polymers, thermal analysis of stored energy due to the deformation shows that the STZ nucleation energy decreases at large plastic strains. The evolution of the free volume, and the STZs number density and nucleation energy during the finite straining are formulated in this paper in order to investigate the uniaxial post-yield softening-hardening behavior of the glassy polymers. This study shows that the reduction of the STZ nucleation energy, which is correlated with the free volume increase, brings about the post-yield primary softening of the amorphous polymers up to the steady-state strain value; and the secondary hardening is a result of the increased number density of the STZs, which is required for large plastic strains, while their nucleation energy is stabilized beyond the steady-state strain. The evolutions of the free volume content and STZ nucleation energy are also used to demonstrate the effect of the strain rate, temperature, and thermal history of the sample on its post-yield behavior. The obtained results from the model are compared with the experimental observations on poly(methyl methacrylate) which show a satisfactory consonance.

  11. Large-scale deformation of Tibet measured with Envisat ScanSAR interferometry

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Rosen, P. A.; Burgmann, R.

    2007-12-01

    Scanning synthetic aperture radar (ScanSAR) interferometry has the potential to map deformation over large areas. The large actively deforming area and arid climate of Tibet make it an excellent test area for the ScanSAR interferometry technique, which has been proposed as a possible SAR operation mode for the DESDynI mission recommended by the Decadal Survey. The Envisat C-band (5.6 cm wavelength) ScanSAR is called Wide Swath (WS) mode and images a track that is over 400 km wide, with five subswaths. Envisat WS was not originally designed for interferometry, but about one in five pairs have the required burst synchronization. Since January 2007, the European Space Agency have been attempting to greatly improve the burst synchronization and reduce the variation in baselines. Unfortunately, some of the WS data over Tibet has been acquired in HH polarization and some in VV polarization, causing an additional limitation on usable interferometric pairs. Several Envisat tracks across Tibet have appropriate WS acquisitions to form interferometric pairs. Initial results show a reduction of coherence in eastern Tibet where the plateau climate is wetter and allows more vegetation cover. Processing long strips (>1000 km) with the full WS width gives strong constraints on the baseline between the two orbits of image-pair acquisitions and enables better separation of atmospheric effects and orbit errors from moderate- wavelength (~ 100 km) deformation signals. Long-wavelength control from GPS or other ground-based data is still required for the longest wavelengths (>300 km).

  12. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-10-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.

  13. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept

  14. Longitudinal diffeomorphisms obstruct the protection of vacuum energy

    NASA Astrophysics Data System (ADS)

    Carballo-Rubio, Raúl

    2015-06-01

    To guarantee the stability of the cosmological constant sector against radiative corrections coming from quantum matter fields, one of the most natural ingredients to invoke is the symmetry under scale transformations of the gravitational field. Previous attempts to follow this path have nevertheless failed in providing a consistent picture. Here, we point out that this failure is intimately tied up to an assumption that is typically embedded in modern studies of the gravitational interaction: invariance under the full group of diffeomorphisms. We base the discussion on the gravitational theory known as Weyl transverse gravity. While leading to the same classical solutions as general relativity, and so to the same classical phenomenology, we show that in the presence of quantum matter (i) the degeneracy between these theories is broken (general relativity exhibits the well-known cosmological constant problem, while in Weyl transverse gravity, the cosmological constant sector is protected due to gravitational scale invariance), and (ii) this is possible as the result of abandoning the assumption of full diffeomorphism invariance, which permits circumventing classic results on scale-invariance anomalies and guarantees that gravitational scale invariance survives quantum corrections. Both results signal new directions in the quest of finding an ultraviolet completion of gravity.

  15. A combinatorial approach to diffeomorphism invariant quantum gauge theories

    SciTech Connect

    Zapata, J.A.

    1997-11-01

    Quantum gauge theory in the connection representation uses functions of holonomies as configuration observables. Physical observables (gauge and diffeomorphism invariant) are represented in the Hilbert space of physical states; physical states are gauge and diffeomorphism invariant distributions on the space of functions of the holonomies of the edges of a certain family of graphs. Then a family of graphs embedded in the space manifold (satisfying certain properties) induces a representation of the algebra of physical observables. We construct a quantum model from the set of piecewise linear graphs on a piecewise linear manifold, and another manifestly combinatorial model from graphs defined on a sequence of increasingly refined simplicial complexes. Even though the two models are different at the kinematical level, they provide unitarily equivalent representations of the algebra of physical observables in {ital separable} Hilbert spaces of physical states (their s-knot basis is countable). Hence, the combinatorial framework is compatible with the usual interpretation of quantum field theory. {copyright} {ital 1997 American Institute of Physics.}

  16. A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels

    NASA Astrophysics Data System (ADS)

    Bouklas, Nikolaos; Landis, Chad M.; Huang, Rui

    2015-06-01

    Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson's ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.

  17. Investigating viscoelastic postseismic deformation due to large earthquakes in East Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Sunbul, Fatih; Nalbant, Suleyman S.; Simão, Nuno M.; Steacy, Sandy

    2016-03-01

    We investigate the postseismic viscoelastic flow in the lower crust and upper mantle due to the 19th and 20th century large earthquakes in eastern Turkey. Three possible rheological models are used in the viscoelastic postseismic deformation analysis to assess the extent to which these events influence the velocity fields at GPS sites in the region. Our models show that the postseismic signal currently contributes to the observed deformation in the eastern part of the North Anatolian fault and northern and middle parts of the East Anatolian Fault Zone, primarily due to the long-lasting effect of the Ms 7.9 1939 earthquake. None of the postseismic displacement generated by the Ms 7.5 1822 earthquake, which is the earliest and the second largest event in the calculations, exceeds observed error range at the GPS stations. Our results demonstrate that a postseismic signal can be identified in the region and could contribute up to 3-25% of the observed GPS measurements.

  18. A three-dimensional FE analysis of large deformations for impact loadings using tetrahedral elements

    NASA Astrophysics Data System (ADS)

    Yoo, Y. H.; Lee, M.

    A three-dimensional dynamic program for the anaysis of large deformations in contact-penetration problems is developed using the finite element Lagrangian method with explicit time integration. By incorporating a tetrahedral element, which allows a single-point integration without a special hourglass control scheme, this program can be more effective to the present problem. The position code algorithm is used to search contact surface. Eroding surfaces are also considered. The defense node algorithm was slightly modified for the calculation of contact forces. A study of obliquity effects on metallic plate perforation and ricochet processes in thin plates impacted by a sphere was conducted. It is well simulated that on separation of two parts of the sphere, the portion still within the crater tends to perforate, while the portion in contact with the plate surface ricochets. This deformation pattern is observed in experiments, especially at high obliquities. A long rod that impacts an oblique steel plate at high impact velocity was also simulated in order to study the dynamics of the rod caused by the three dimensional asymmetric contact. The agreement between simulated and experimental results is quite good. Fracture phenomena occuring at high obliquity deserves further investigations.

  19. Morphological Evolution of Semi-crystalline Poly(ethylene terephthalate) During Large Scale Simple Shear Deformation

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyong; Sue, Hung-Jue

    2001-03-01

    In this study, the morphological evolution of semi-crystalline poly(ethylene terephthalate) (PET) under large scale simple shear is investigated. The equal channel angular extrusion (ECAE) process is used to induce the simple shear deformation. The deformation of semi-crystalline PET at different length scales is studied. At the spherulite scale, optical microscopy (OM) and scanning electron microscopy (SEM) are used. Lamellar scale information is obtained by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Molecular chains in the crystalline lamellae are obtained by wide-angle X-ray scattering (WAXS), and the molecular chains in the amorphous phase are studied by annealing the sample at temperatures above glass transition but below melting point. Structural characterization shows that PET spherulites are highly elongated into macrofibrils after ECAE. Within the macrofibrils, a "V-type" of crystalline lamellar orientation is induced. Molecular chains in the crystalline lamellae are tilted to the lamellar surface, whereas the molecular chains in the amorphous phase are highly stretched.

  20. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems

    PubMed Central

    Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard

    2013-01-01

    Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796

  1. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.

    PubMed

    Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard

    2014-02-01

    Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796

  2. An internal variable constitutive model for the large deformation of metals at high temperatures

    NASA Technical Reports Server (NTRS)

    Brown, Stuart; Anand, Lallit

    1988-01-01

    The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.

  3. Verification and large deformation analysis using the reproducing kernel particle method

    SciTech Connect

    Beckwith, Frank

    2015-09-01

    The reproducing kernel particle method (RKPM) is a meshless method used to solve general boundary value problems using the principle of virtual work. RKPM corrects the kernel approximation by introducing reproducing conditions which force the method to be complete to arbritrary order polynomials selected by the user. Effort in recent years has led to the implementation of RKPM within the Sierra/SM physics software framework. The purpose of this report is to investigate convergence of RKPM for verification and validation purposes as well as to demonstrate the large deformation capability of RKPM in problems where the finite element method is known to experience difficulty. Results from analyses using RKPM are compared against finite element analysis. A host of issues associated with RKPM are identified and a number of potential improvements are discussed for future work.

  4. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  5. Accurate Interactive Visualization of Large Deformations and Variability in Biomedical Image Ensembles.

    PubMed

    Hermann, Max; Schunke, Anja C; Schultz, Thomas; Klein, Reinhard

    2016-01-01

    Large image deformations pose a challenging problem for the visualization and statistical analysis of 3D image ensembles which have a multitude of applications in biology and medicine. Simple linear interpolation in the tangent space of the ensemble introduces artifactual anatomical structures that hamper the application of targeted visual shape analysis techniques. In this work we make use of the theory of stationary velocity fields to facilitate interactive non-linear image interpolation and plausible extrapolation for high quality rendering of large deformations and devise an efficient image warping method on the GPU. This does not only improve quality of existing visualization techniques, but opens up a field of novel interactive methods for shape ensemble analysis. Taking advantage of the efficient non-linear 3D image warping, we showcase four visualizations: 1) browsing on-the-fly computed group mean shapes to learn about shape differences between specific classes, 2) interactive reformation to investigate complex morphologies in a single view, 3) likelihood volumes to gain a concise overview of variability and 4) streamline visualization to show variation in detail, specifically uncovering its component tangential to a reference surface. Evaluation on a real world dataset shows that the presented method outperforms the state-of-the-art in terms of visual quality while retaining interactive frame rates. A case study with a domain expert was performed in which the novel analysis and visualization methods are applied on standard model structures, namely skull and mandible of different rodents, to investigate and compare influence of phylogeny, diet and geography on shape. The visualizations enable for instance to distinguish (population-)normal and pathological morphology, assist in uncovering correlation to extrinsic factors and potentially support assessment of model quality. PMID:26390470

  6. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  7. A 1-metre Ni coated CFRP demonstrator for large deformable mirrors

    NASA Astrophysics Data System (ADS)

    Thompson, Samantha J.; Doel, Peter; Brooks, David; Strangwood, Martin

    We present results from our current project to develop an alternative substrate for large deformable mirrors, particularly with the European Extremely Large Telescope (E-ELT) in mind. Our mirror substrate consists of a carbon-fibre reinforced polymer (CFRP) core encapsulated in a thick (50µm) coating of nickel; the coating entirely covers the CFRP front, back and edges. The benefits of CFRP are: that it has high tensile strength, making it exceptionally resistant to breakage and able to withstand high inter-actuator forces; that it can be fabricated in large sections, allowing the production of a 2.6 m monolithic mirror, simplifying system control and eliminating additional diffraction/scattering introduced by segmented mirror systems; its low density (< 1800 kgm-3 for a Ni coated substrate). By the end of summer this year (2009) we aim to have constructed a 19 cm diameter fully actuated (37 piezo-stack actuators on a 29 mm triangular grid) prototype and a 1.0 m diameter substrate mounted on a static set of points to demonstrate the scalability of the technology. We discuss the processes involved in forming a Ni-CFRP mirror, the results obtained so far and a current status update.

  8. Concept, modeling, and performance prediction of a low-cost, large deformable mirror.

    PubMed

    Heimsten, Rikard; MacMynowski, Douglas G; Andersen, Torben; Owner-Petersen, Mette

    2012-02-10

    While it is attractive to integrate a deformable mirror (DM) for adaptive optics (AO) into the telescope itself rather than using relay optics within an instrument, the resulting large DM can be expensive, particularly for extremely large telescopes. A low-cost approach for building a large DM is to use voice-coil actuators connected to the back of the DM through suction cups. Use of such inexpensive voice-coil actuators leads to a poorly damped system with many structural modes within the desired bandwidth. Control of the mirror dynamics using electro-mechanical sensors is thus required for integration within an AO system. We introduce a distributed control approach, and we show that the "inner" back sensor control loop does not need to function at low frequencies, leading to significant cost reduction for the sensors. Incorporating realistic models of low-cost actuators and sensors together with an atmospheric seeing model, we demonstrate that the low-cost mirror strategy is feasible within a closed-loop AO system. PMID:22330282

  9. Coupling Dynamical Quantum Diffeomorphisms to Matter Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Aldaya, V.; Jaramillo, J. L.

    2002-12-01

    We introduce matter degrees of freedom into a recently proposed 2D quantum gravity model based on the Virasoro group. Quantum diffeomorphisms have dynamical content in this model, thus spoiling their classical gauge nature. The algebra of observables is enlarged now with the inclusion of an ensemble of new operators closing the affine Kac-Moody algebra of the (non-compact) semi-simple group SL(2, R), and constituting the modes of a set of scalar fields. The gravity effect on those new fields is accomplished by the natural semi-direct action of the Virasoro group on the new subalgebra. While the model is rather entangled at the severe quantum regime, at the semi-classical level we recover the action of the scalar fields modified with an added gravitational interaction term...

  10. Solitons in a baby-Skyrme model with invariance under area-preserving diffeomorphisms

    SciTech Connect

    Gisiger, T.; Paranjape, M.B.

    1997-06-01

    We study the properties of soliton solutions in an analogue of the Skyrme model in 2+1 dimensions whose Lagrangian contains the Skyrme term and the mass term, but no usual kinetic term. The model admits a symmetry under area-preserving diffeomorphisms. We solve the dynamical equations of motion analytically for the case of spinning isolated baryon-type solitons. We take fully into account the induced deformation of the spinning Skyrmions and the consequent modification of its moment of inertia to give an analytical example of related numerical behavior found by Piette, Schroers, and Zakrzewski. We solve the equations of motion also for the case of an infinite, open string, and a closed annular string. In each case, the solitons are of finite extent, so called {open_quotes}compactons,{close_quotes} being exactly the vacuum outside a compact region. We end with indications on the scattering of baby Skyrmions, as well as some considerations as the properties of solitons on a curved space. {copyright} {ital 1997} {ital The American Physical Society}

  11. Initial guess by improved population-based intelligent algorithms for large inter-frame deformation measurement using digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhao, Jia-qing; Zeng, Pan; Lei, Li-ping; Ma, Yuan

    2012-03-01

    Digital image correlation (DIC) has received a widespread research and application in experimental mechanics. In DIC, the performance of subpixel registration algorithm (e.g., Newton-Raphson method, quasi-Newton method) relies heavily on the initial guess of deformation. In the case of small inter-frame deformation, the initial guess could be found by simple search scheme, the coarse-fine search for instance. While for large inter-frame deformation, it is difficult for simple search scheme to robustly estimate displacement parameters and deformation parameters simultaneously with low computational cost. In this paper, we proposed three improving strategies, i.e. Q-stage evolutionary strategy (T), parameter control strategy (C) and space expanding strategy (E), and then combined them into three population-based intelligent algorithms (PIAs), i.e. genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO), and finally derived eighteen different algorithms to calculate the initial guess for qN. The eighteen algorithms were compared in three sets of experiments including large rigid body translation, finite uniaxial strain and large rigid body rotation, and the results showed the effectiveness of proposed improving strategies. Among all compared algorithms, DE-TCE is the best which is robust, convenient and efficient for large inter-frame deformation measurement.

  12. A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations

    NASA Astrophysics Data System (ADS)

    Mellbin, Y.; Hallberg, H.; Ristinmaa, M.

    2015-06-01

    A mesoscale model of microstructure evolution is formulated in the present work by combining a crystal plasticity model with a graph-based vertex algorithm. This provides a versatile formulation capable of capturing finite-strain deformations, development of texture and microstructure evolution through recrystallization. The crystal plasticity model is employed in a finite element setting and allows tracing of stored energy build-up in the polycrystal microstructure and concurrent reorientation of the crystal lattices in the grains. This influences the progression of recrystallization as nucleation occurs at sites with sufficient stored energy and since the grain boundary mobility and energy is allowed to vary with crystallographic misorientation across the boundaries. The proposed graph-based vertex model describes the topological changes to the grain microstructure and keeps track of the grain inter-connectivity. Through homogenization, the macroscopic material response is also obtained. By the proposed modeling approach, grain structure evolution at large deformations as well as texture development are captured. This is in contrast to most other models of recrystallization which are usually limited by assumptions of one or the other of these factors. In simulation examples, the model is in the present study shown to capture the salient features of dynamic recrystallization, including the effects of varying initial grain size and strain rate on the transitions between single-peak and multiple-peak oscillating flow stress behavior. Also the development of recrystallization texture and the influence of different assumptions on orientation of recrystallization nuclei are investigated. Further, recrystallization kinetics are discussed and compared to classical JMAK theory. To promote computational efficiency, the polycrystal plasticity algorithm is parallelized through a GPU implementation that was recently proposed by the authors.

  13. Recrystallization and the Development of Abnormally Large Grains After Small Strain Deformation in a Polycrystalline Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Miller, Victoria M.; Johnson, Anthony E.; Torbet, Chris J.; Pollock, Tresa M.

    2016-04-01

    The formation of abnormally large grains has been investigated in the polycrystalline nickel-based superalloy René 88DT. Cylindrical specimens with a 15 μm grain size were compressed to plastic strains up to 11.0 pct and subsequently rapidly heated to above the γ' solvus at 1423 K (1150° C) and held for 60 seconds. All deformed samples partially recrystallized during the heat treatment, with the recrystallized grain size varying with the degree of deformation. The largest final grain size occurred in samples deformed to approximately 2 pct strain, with isolated grains as large as 700 μm in diameter observed. It is proposed that abnormally large grains appear due to nucleation-limited recrystallization, not abnormal grain growth, based on the high boundary velocities measured and the observed reduction in grain orientation spread.

  14. Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method

    NASA Astrophysics Data System (ADS)

    Schillinger, Dominik; Ruess, Martin; Zander, Nils; Bazilevs, Yuri; Düster, Alexander; Rank, Ernst

    2012-10-01

    The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed.

  15. Features of the low-temperature creep of a Nb-Ti alloy after large plastic deformations at 77 K

    NASA Astrophysics Data System (ADS)

    Aksenov, V. K.; Volchok, O. I.; Karaseva, E. V.; Starodubov, Ya. D.

    2004-04-01

    The low-temperature (77 K) creep and the corresponding changes in the resistivity of a niobium-titanium alloy subjected to plastic deformation by drawing at 77 K are investigated. It is shown that after large plastic deformations (ɛ>99%) one observes anomalies of the low-temperature creep which do not appear in tests of samples subjected to low and medium deformations. The creep rate in the transient stage is significantly higher than would follow from the classical ideas about the mechanisms of low-temperature creep (logarithmic law), and the time dependence of the creep deformations is described by a power law, which corresponds to recovery creep. In the creep process oscillations appear on the resistivity curves; these are especially pronounced after drawing in liquid nitrogen. Possible causes of the observed effects are discussed.

  16. A Mortar Segment-to-Segment Frictional Contact Method for Large Deformations

    SciTech Connect

    Puso, M; Laursen, T

    2003-10-29

    Contact modeling is still one of the most difficult aspects of nonlinear implicit structural analysis. Most 3D contact algorithms employed today use node-on-segment approaches for contacting dissimilar meshes. Two pass node-on-segment contact approaches have the well known deficiency of locking due to over constraint. Furthermore, node-on-segment approaches suffer when individual nodes slide out of contact at contact surface boundaries or when contacting nodes slide from facet to facet. This causes jumps in the contact forces due to the discrete nature of the constraint enforcement and difficulties in convergence for implicit solution techniques. In a previous work, we developed a segment-to-segment contact approach based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the overconstraint which caused ''locking'' and provided smooth force variations in large sliding. Here, we extend this previous approach in to treat frictional contact problems. The proposed approach is then applied to several challenging frictional contact problems which demonstrate its effectiveness.

  17. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi

    2006-09-01

    It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment. PMID:17124114

  18. Lyapunov Exponents of Minimizing Measures for Globally Positive Diffeomorphisms in All Dimensions

    NASA Astrophysics Data System (ADS)

    Arnaud, M.-C.

    2016-05-01

    The globally positive diffeomorphisms of the 2 n-dimensional annulus are important because they represent what happens close to a completely elliptic periodic point of a symplectic diffeomorphism where the torsion is positive definite. For these globally positive diffeomorphisms, an Aubry-Mather theory was developed by Garibaldi and Thieullen that provides the existence of some minimizing measures. Using the two Green bundles {G_-} and {G_+} that can be defined along the support of these minimizing measures, we will prove that there is a deep link between: the angle between {G_-} and {G_+} along the support of the considered measure {μ};

  19. Distributed deformation measurement of large space deployable mechanism based on FBG sensors

    NASA Astrophysics Data System (ADS)

    Dong, Yanfang; Zhou, Zude; Liu, Yi; Liu, Mingyao; Li, Ruiya; Li, Tianliang

    2015-10-01

    Space deployable mechanisms are widely used, important and multi-purpose components in aerospace fields. In order to ensure the mechanism in normal situation after unfolded, detecting the deformation caused by huge temperature difference in real-time is necessary. This paper designed a deployable mechanism setup, completed its distributed deformation measurement by means of fiber Bragg grating (FBG) sensors and BP neural network, proved the mechanism distributed strain takes place sequence and FBG sensor is capable for space deployable mechanisms deformation measuring.

  20. An explicit solution of the large deformation of a cantilever beam under point load at the free tip

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Chen, Jian-Kang; Liao, Shijun

    2008-03-01

    The large deformation of a cantilever beam under point load at the free tip is investigated by an analytic method, namely the homotopy analysis method (HAM). The explicit analytic formulas for the rotation angle at the free tip are given, which provide a convenient and straightforward approach to calculate the vertical and horizontal displacements of a cantilever beam with large deformation. These explicit formulas are valid for most practical problems, thus providing a useful reference for engineering applications. The corresponding Mathematica code is given in the Appendix.

  1. Fluid-like flows in large-strain deformation of metals

    NASA Astrophysics Data System (ADS)

    Yeung, Ho; Sagapuram, Dinakar; Viswanathan, Koushik; Sundaram, Narayan; Mahato, Anirban; Trumble, Kevin; Chandrasekar, Srinivasan

    Laminar or smooth plastic flow, commonly observed in large deformation of metals, becomes unstable under certain conditions, resulting in inhomogeneous plastic flow. Using in situ imaging, we demonstrate the unique features of two inhomogeneous flow modes in metal plasticity -- the well-known shear band flow and the recently discovered sinuous flow -- and methods for suppressing them. Both modes occur via a two stage process -- nucleation and flow development. The nucleation stage results in a weak material zone and the development stage involves imposition of significant strains. In the case of shear bands, using additional micro-marker techniques, we show that the second stage is well described by a viscous slider model. As a result, controlling the second stage causes band formation to cease. We demonstrate the use of this method -- Passive Geometric Flow control -- to form long strips from metallic alloys that are difficult to form conventionally. For sinuous flow, nucleation and flow formation kinematics show remarkable resemblance with flows in complex fluids. The nucleation stage can be altered using suitable ink coatings on the free surface or by surface pre-straining, and we use this idea to demonstrate complete sinuous flow suppression. Membership pending.

  2. Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System)

    NASA Astrophysics Data System (ADS)

    Huang, Run; Su, Peng; Horne, Todd; Brusa Zappellini, Guido; Burge, Jim H.

    2013-09-01

    The software configurable optical test system (SCOTS) is an efficient metrology technology based on reflection deflectometry that uses only an LCD screen and a camera to measure surface slope. The surface slope is determined by triangulations using the coordinates of the display screen, camera and test mirror. We present our recent SCOTS test results concentrated on high dynamic range measurements of low order aberrations. The varying astigmatism in the 91 cm diameter aspheric deformable secondary mirror for the Large Binocular Telescope (LBT) was measured with SCOTS, requiring no null corrector. The SCOTS system was designed on axis with camera and screen aligned on the optical axis of the test mirror with the help of a 6 inch pellicle beam splitter. The on-axis design gives better control of the astigmatism in the test. The high dynamic range of slope provided a measurement of astigmatism with 0.2 μm rms accuracy in the presence of 231 μm peak-to-valley (PV) aspheric departure. The simplicity of the test allowed the measurements to be performed at multiple elevation angles.

  3. On the invariance under area preserving diffeomorphisms of noncommutative Yang-Mills theory in two dimensions

    NASA Astrophysics Data System (ADS)

    Bassetto, Antonio; DePol, Giancarlo; Torrielli, Alessandro; Vian, Federica

    2005-05-01

    We present an investigation on the invariance properties of noncommutative Yang-Mills theory in two dimensions under area preserving diffeomorphisms. Stimulated by recent remarks by Ambjorn, Dubin and Makeenko who found a breaking of such an invariance, we confirm both on a fairly general ground and by means of perturbative analytical and numerical calculations that indeed invariance under area preserving diffeomorphisms is lost. However a remnant survives, namely invariance under linear unimodular tranformations.

  4. Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.

    2016-01-01

    The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.

  5. Modelling Deformation and Texture Evolution in OFHC Copper at Large Strain and High Strain Rate

    NASA Astrophysics Data System (ADS)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In this work, a two-scale approach to simulate high rate deformation and texture evolution in OFHC copper is presented. The modified Rusinek-Klepaczko material model was used to simulate the response of the material at continuum scale accounting for different deformation mechanisms occurring over an extensive range of strain rate and temperature. Material model parameters were determined from characterization test (mainly uniaxial tests) results. Successively, the model was validated simulating material deformation in Taylor anvil impact, symmetric Taylor impact (rod-on-rod) and dynamic tensile extrusion (DTE) tests. Texture evolution, under different deformation paths was simulated using the crystal plasticity package CPFEM and results were compared with those obtained by EBSD analysis. The possibility to incorporate the effect of grain size evolution and fragmentation at continuum scale is discussed.

  6. Active control of a large deformable mirror for future E-ELT

    NASA Astrophysics Data System (ADS)

    Gasmi, R.; Le Bihan, D.; Dournaux, J. L.; Sinquin, J. C.; Jagourel, P.

    2010-07-01

    Increasing dimensions of ground based telescopes and adaptive optics needs for these instruments require wide deformable mirrors with a high number of actuators to compensate the effects of the atmospheric turbulence on the wave fronts. The new dimensions and characteristics of these deformable mirrors lead to the apparition of structural vibrations, which may reduce the rejection band width of the adaptive optics control loop. The aim of this paper is the study of the dynamic behavior of a 1-meter prototype of E-ELT's deformable mirror in order to identify its eigenmodes and to propose some ways to control its vibrations. We first present the first eigenmodes of the structure determined by both finite element analysis and experimental modal analysis. Then we present the frequency response of the prototype to a tilt excitation to estimate the effects of its vibrations on the adaptive optics loop. Finally we suggest a method to control the dynamics of the deformable mirror.

  7. A first analysis regarding matter-dynamical diffeomorphism coupling

    NASA Astrophysics Data System (ADS)

    Aldaya, V.; Jaramillo, J. L.

    2000-12-01

    A first attempt at adding matter degrees of freedom to the two-dimensional `vacuum' gravity model presented in Aldaya and Jaramillo (2000 Class. Quantum Grav. 17 1649) is analysed in this paper. Just as in the previous pure gravity case, quantum diffeomorphism operators (constructed from a Virasoro algebra) possess a dynamical content; their gauge nature is recovered only after the classical limit. Emphasis is placed on the new physical modes modelled on an SU(1,1)-Kac-Moody algebra. The non-trivial coupling to `gravity' is a consequence of the natural semi-direct structure of the entire extended algebra. A representation associated with the discrete series of the rigid SU(1,1) algebra is revisited in the light of previously neglected crucial global features which imply the appearance of an SU(1,1)-Kac-Moody fusion rule, determining the rather entangled quantum structure of the physical system. In the classical limit, an action which explicitly couples gravity and matter modes governs the dynamics.

  8. No evidence of unusually large postseismic deformation in Andaman region immediately after 2004 Sumatra-Andaman earthquake

    NASA Astrophysics Data System (ADS)

    Gahalaut, V. K.; Catherine, J. K.; Jade, Sridevi; Gireesh, R.; Gupta, D. C.; Narsaiah, M.; Ambikapathy, A.; Bansal, A.; Chadha, R. K.

    2008-05-01

    Static offsets due to the 26 December 2004 Sumatra-Andaman earthquake have been reported from the campaign mode GPS measurements in the Andaman-Nicobar region. However, these measurements contain contributions from postseismic deformation that must have occurred in the 16-25 days period between the earthquake and the measurements. We analyse these and tide gauge measurements of coseismic deformation, a longer time series of postseismic deformation from GPS measurements at Port Blair in the South Andaman and aftershocks, to suggest that postseismic displacement not larger than 7 cm occurred in the 16-25 days following the earthquake in the South Andaman and probably elsewhere in the Andaman Nicobar region. Earlier, this contribution was estimated to be as large as 1 m in the Andaman region, which implied that the magnitude of the earthquake based on these campaign mode measurements should be decreased. We suggest an Mw for this earthquake as 9.23.

  9. Precisions Measurement for the Grasp of Welding Deformation amount of Time Series for Large-Scale Industrial Products

    NASA Astrophysics Data System (ADS)

    Abe, R.; Hamada, K.; Hirata, N.; Tamura, R.; Nishi, N.

    2015-05-01

    As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.

  10. Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions.

    PubMed

    Bergström, J S; Kurtz, S M; Rimnac, C M; Edidin, A A

    2002-06-01

    When subjected to a monotonically increasing deformation state, the mechanical behavior of UHMWPE is characterized by a linear elastic response followed by distributed yielding and strain hardening at large deformations. During the unloading phases of an applied cyclic deformation process, the response is characterized by nonlinear recovery driven by the release of stored internal energy. A number of different constitutive theories can be used to model these experimentally observed events. We compare the ability of the J2-plasticity theory, the "Arruda-Boyce" model, the "Hasan-Boyce" model, and the "Bergström-Boyce" model to reproduce the observed mechanical behavior of ultra-high molecular weight polyethylene (UHMWPE). In addition a new hybrid model is proposed, which incorporates many features of the previous theories. This hybrid model is shown to most effectively predict the experimentally observed mechanical behavior of UHMWPE. PMID:12013180

  11. Large scale deformation of incoming plates before subduction and implications for oceanic plate hydration

    NASA Astrophysics Data System (ADS)

    Calahorrano Betancourt, A.; Ranero, C. R.; Barckhausen, U.; Reichert, C. J.; Grevemeyer, I.

    2009-12-01

    We present three multichannel seismic (MCS) lines, collected during the CINCA ‘95 experiment with German research vessel Sonne by the BGR. The data image the subduction zone of the North Chile, with 3 lines that extend 400-500 hundred km into the incoming plate. We focus on the deformation of the incoming 50 Myr old oceanic Nazca plate converging nearly orthogonally (N83 S) with the South American Plate at ~60-65 mm/yr. The 3 seismic profiles provide a detailed image of the crustal and uppermost mantle deformation structure across the underformed segment of plate, the entire outer rise, and extreme deformation at the trench slope just before underthusting. A compilation of multibeam bathymetry in the area, although not providing full seafloor coverage, shows the lateral extension of the deformation fabrics. Seawards from the trench slope, the seafloor morphology shows mainly the spreading ridge fabric with a NW lineation. At the trench slope, the spreading fabric is superimposed by a new fabric, oriented parallel to the trench axis, corresponding to the horst and graben pattern related to bending deformation of the incoming plate. Seismic cross sections image the incoming plate with a strong, continuous and irregular reflection characterizing the top of the oceanic crust. This roughness is related, locally to volcanic activity (p.e. Iquique Ridge), and to the spreading fabric and the horst-and-graben pattern observed in bathymetry. Sedimentary pelagic coverage is only about 100 m thick and only locally small turbidite accumulations are observed in grabens. The Moho reflection is fairly continuous typically at 2 seconds two way time (stwt) below the seafloor, but can be about 3 stwt locally indicating crustal thickening related to volcanism. Looking at its whole extent, these images illustrate the flexure of the downgoing plate as it reaches the subduction zone. This bending, characterizing the outer rise, is observed along 250 km seaward from the trench axis, and

  12. Long-lived large-scale ground deformation caused by a buoyantly rising magma resevoir

    NASA Astrophysics Data System (ADS)

    Del Potro, R.; Diez, M.; Muller, C.; Perkins, J. P.; Finnegan, N. J.; Gottsmann, J.

    2013-12-01

    Recent InSAR studies have identified a constant, long-wavelength ground deformation pattern, comprising a central uplift and peripheral subsidence, centred on Uturuncu volcano in the Altiplano Puna Volcanic Complex of the Central Andes. This so-called 'sombrero uplift' has been consistent over the time scales of InSAR observations (1992-2010); however, it is unclear how long this deformation has persisted over the history of Uturuncu. Here we constrain the duration and causes of the ground deformation through a combination of available geodetic data, geomorphological studies and numerical modelling. GPS data from re-occupation of a nearby levelling line show that the observed ground deformation from 1965 to 2012 is compatible with the extent and the rate observed with InSAR, and thus suggests that the 'sombrero uplift' may have been constant for at least 50 years. In addition, from geomorphological measurements using shorelines from nearby lakes as inclinometers, we conclude that the total uplift of Uturuncu has not been more than 30 m, or that the constant ongoing uplift cannot have been active for more than 3000 years. Following our recent geophysical studies in the area, we explore the possibility that the observed ground deformation is caused by a rising felsic diapir and test this hypothesis numerically to show that the process is viable under these specific conditions, and accounts for the observed uplift rate. Our findings have significant implications for volcanologists inferring the characteristics of magma reservoirs from ground deformation data as it offers an alternative explanation of the causes driving ground deformation, and the growth and failure of magma reservoirs in a hot multiphase viscous crust.

  13. Crystal plasticity based finite element modelling of large strain deformation in AM30 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Izadbakhsh, Adel; Inal, Kaan; Mishra, Raja K.

    2012-04-01

    In this paper, the finite strain plastic deformation of AM30 magnesium alloy has been simulated using the crystal plasticity finite element method. The simulations have been carried out using a rate-dependent elastic-viscoplastic crystal plasticity constitutive model implemented in a user defined material subroutine (UMAT) in the commercial software LS-DYNA. The plastic deformation mechanisms accounted for in the model are the slip systems in the matrix (parent grain), extension twinning systems and the slip systems inside the extension twinned regions. The parameters of the constitutive model have been calibrated using the experimental data. The calibrated model has then been used to predict the deformation of AM30 magnesium alloy in bending and simple shear. For the bending strain path, the effects of texture on the strain accommodated by the deformation mechanisms and bending moment have been investigated. For simple shear, the effects of texture on the relative activity of deformation mechanisms, shear stress and texture evolution have been investigated. Also, the effect of twinning on shear stress and texture evolution has been studied. The numerical analyses predicted a more uniform strain distribution during bending and simple shear for rolled texture compared with extruded texture.

  14. ERS-ENVISAT InSAR deformation time-series: a powerful tool to investigate long term surface deformation of large areas

    NASA Astrophysics Data System (ADS)

    Lanari, Riccardo

    2010-05-01

    Satellite time series have already provided key measurements to retrieve information on the dynamic nature of Earth surface processes. We exploit in this work the availability of the large archives of spaceborne Synthetic Aperture Radar (SAR) data acquired by the ERS-1/2 and ENVISAT sensors of the European Space Agency (ESA) during the 1992-2009 time period, in order to investigate long term surface deformation of large areas. To achieve this result we take advantage of the Differential SAR Interferometry (InSAR) algorithm referred to as Small BAseline Subset (SBAS) technique (Berardino et al., 2002), which allows us to generate mean deformation velocity maps and corresponding time-series by exploiting temporally overlapping SAR dataset collected by the ERS and ENVISAT sensors (Pepe et al., 2005). In particular, we focus on the results obtained by retrieving ERS-ENVISAT deformation time-series from 1992 till today in selected case studies relevant to different scenarios. We start from the analysis of the Mt. Etna volcano (Italy) and the Napoli Bay area (Italy), the latter including three volcanic systems (the Campi Flegrei caldera, the Somma-Vesuvio volcanic complex and the Ischia island) and the city of Napoli. In addition, we present the results relevant to the cities of Istanbul (Turkey) and Roma (Italy). The overall analyses are carried out by using averaged (multilook) InSAR interferograms with a spatial resolution of about 100 x 100 m. Moreover, in selected zones we further investigate localized phenomena by zooming in the areas of interest and carrying out a InSAR analysis at full spatial resolution scale (Lanari et al., 2004). In these cases we also exploit the doppler centroid variations of the post-2000 acquisitions of the ERS-2 sensor and the carrier frequency difference between the ERS-1/2 and the ENVISAT systems in order to maximize the number of investigated SAR pixels and to improve their geocoding. The presented results demonstrate the unique

  15. Path-dependent J-integral evaluations around an elliptical hole for large deformation theory

    NASA Astrophysics Data System (ADS)

    Unger, David J.

    2016-08-01

    An exact expression is obtained for a path-dependent J-integral for finite strains of an elliptical hole subject to remote tensile tractions under the Tresca deformation theory for a thin plate composed of non-work hardening material. Possible applications include an analytical resistance curve for the initial stage of crack propagation due to crack tip blunting.

  16. Measurements of very large deformations in potash salt in conjunction with an ongoing mining operation

    SciTech Connect

    Sattler, A.R.; Christensen, C.L.

    1980-01-01

    Room and pillar deformation were measured in conjunction with a relatively new type of mining operation in a southeastern New Mexico potash mine. The extraction ration was approximately 90 percent in a first mining operation. Due to severe deformations encountered, instrumentation had to be developed/modified for these measurements. This paper concentrates on experiment design, design of special instrumentation, field installation of equipment, and presentation of the data. Measurements made include extensometers in the pillar, in the floor and ceiling in the room between pillars, absolute level measurements, floor ceiling closure, and stress (strain) measurements. Associated laboratory rock mechanics measurements of samples from the mine are being done separately. Two separate room pillar complexes were instrumented. In the first complex, floor-ceiling deformations of approximately 1 inch/day and pillar deformations around 1/2 inch/day were measured. In the second complex, instrumentation was installed while the pillar was a part of a long wall and the subsequent sequential mining (long wall-pillar with only one adjoining room on one side - pillar in the middle of room pillar complex) was observed. Data return from this operation was good.

  17. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.

    PubMed

    Avants, B B; Epstein, C L; Grossman, M; Gee, J C

    2008-02-01

    One of the most challenging problems in modern neuroimaging is detailed characterization of neurodegeneration. Quantifying spatial and longitudinal atrophy patterns is an important component of this process. These spatiotemporal signals will aid in discriminating between related diseases, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), which manifest themselves in the same at-risk population. Here, we develop a novel symmetric image normalization method (SyN) for maximizing the cross-correlation within the space of diffeomorphic maps and provide the Euler-Lagrange equations necessary for this optimization. We then turn to a careful evaluation of our method. Our evaluation uses gold standard, human cortical segmentation to contrast SyN's performance with a related elastic method and with the standard ITK implementation of Thirion's Demons algorithm. The new method compares favorably with both approaches, in particular when the distance between the template brain and the target brain is large. We then report the correlation of volumes gained by algorithmic cortical labelings of FTD and control subjects with those gained by the manual rater. This comparison shows that, of the three methods tested, SyN's volume measurements are the most strongly correlated with volume measurements gained by expert labeling. This study indicates that SyN, with cross-correlation, is a reliable method for normalizing and making anatomical measurements in volumetric MRI of patients and at-risk elderly individuals. PMID:17659998

  18. An Anthropometric-Based Subject-Specific Finite Element Model of the Human Breast for Predicting Large Deformations.

    PubMed

    Pianigiani, Silvia; Ruggiero, Leonardo; Innocenti, Bernardo

    2015-01-01

    The large deformation of the human breast threatens proper nodules tracking when the subject mammograms are used as pre-planning data for biopsy. However, techniques capable of accurately supporting the surgeons during biopsy are missing. Finite element (FE) models are at the basis of currently investigated methodologies to track nodules displacement. Nonetheless, the impact of breast material modeling on the mechanical response of its tissues (e.g., tumors) is not clear. This study proposes a subject-specific FE model of the breast, obtained by anthropometric measurements, to predict breast large deformation. A healthy breast subject-specific FE parametric model was developed and validated by Cranio-caudal (CC) and Medio-Lateral Oblique (MLO) mammograms. The model was successively modified, including nodules, and utilized to investigate the effect of nodules size, typology, and material modeling on nodules shift under the effect of CC, MLO, and gravity loads. Results show that a Mooney-Rivlin material model can estimate healthy breast large deformation. For a pathological breast, under CC compression, the nodules displacement is very close to zero when a linear elastic material model is used. Finally, when nodules are modeled, including tumor material properties, under CC, or MLO or gravity loads, nodules shift shows ~15% average relative difference. PMID:26734604

  19. An Anthropometric-Based Subject-Specific Finite Element Model of the Human Breast for Predicting Large Deformations

    PubMed Central

    Pianigiani, Silvia; Ruggiero, Leonardo; Innocenti, Bernardo

    2015-01-01

    The large deformation of the human breast threatens proper nodules tracking when the subject mammograms are used as pre-planning data for biopsy. However, techniques capable of accurately supporting the surgeons during biopsy are missing. Finite element (FE) models are at the basis of currently investigated methodologies to track nodules displacement. Nonetheless, the impact of breast material modeling on the mechanical response of its tissues (e.g., tumors) is not clear. This study proposes a subject-specific FE model of the breast, obtained by anthropometric measurements, to predict breast large deformation. A healthy breast subject-specific FE parametric model was developed and validated by Cranio-caudal (CC) and Medio-Lateral Oblique (MLO) mammograms. The model was successively modified, including nodules, and utilized to investigate the effect of nodules size, typology, and material modeling on nodules shift under the effect of CC, MLO, and gravity loads. Results show that a Mooney–Rivlin material model can estimate healthy breast large deformation. For a pathological breast, under CC compression, the nodules displacement is very close to zero when a linear elastic material model is used. Finally, when nodules are modeled, including tumor material properties, under CC, or MLO or gravity loads, nodules shift shows ~15% average relative difference. PMID:26734604

  20. Deformation of leaky-dielectric fluid globules under strong electric fields: Boundary layers and jets at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud

    2013-11-01

    In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.

  1. Model of a thermo-elastic-inelastic process with large deformations and structural changes in material

    NASA Astrophysics Data System (ADS)

    Rogovoi, A. A.

    2015-09-01

    The dependence of a scalar measure of the structural changes occurring in a material under plastic deformation on a plastic strain measure and the dependence of a free energy measure on a structural change measure are constructed using experimental data that allow the expended plastic work to be divided into a latent part and a thermal part. The obtained dependences, kinematic relations, a constitutive equation, and a heat-conduction equation that satisfy the principles of thermodynamics and objectivity are used to construct a model of thermo-elastic-inelastic processes in the presence of finite deformations and structural changes in the material. The model is tested on the problem of temperature changes in the process of adiabatic elastic-plastic compression, which has experimental support.

  2. In Situ Neutron Diffraction Studies of Large Monotonic Deformations of Superelastic Nitinol

    NASA Astrophysics Data System (ADS)

    Stebner, Aaron P.; Paranjape, Harshad M.; Clausen, Bjørn; Brinson, L. Catherine; Pelton, Alan R.

    2015-06-01

    Superelastic Nitinol micromechanics are studied well into plastic deformation regimes using neutron diffraction. Insights are made into the nature of initial transformation, bulk transformation, plastic deformation, and unloading. Schmid factor predictions based on habit plane variants are found to best describe the very first grains that transform, prior to the transformation plateaus. However, the bulk transformation behavior that gives rise to transformation plateaus violates single crystal Schmid factor analyses, indicating that in bulk polycrystals, it is the effect of grain neighborhoods, not the orientations of individual grains, that drives transformation behaviors. Beyond the plateaus, a sudden shift in micromechanical deformation mechanisms is observed at ~8.50 %/4.75 % tension/compression engineering strain. This mechanism results in reverse-phase transformation in both cases, indicating a strong relaxation in internal stresses of the samples. It is inferred that this mechanism is most likely initial bulk plastic flow, and postulated that it is the reason for a transition from fatigue life enhancement to detriment when pre-straining superelastic Nitinol. The data presented in this work provide critical datasets for development and verification of both phenomenological internal variable-driven and micromechanical theories of transformation-plasticity coupling in shape memory alloys.

  3. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

    PubMed

    Discher, D E; Boal, D H; Boey, S K

    1998-09-01

    Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment. PMID:9726959

  4. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

    PubMed Central

    Discher, D E; Boal, D H; Boey, S K

    1998-01-01

    Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment. PMID:9726959

  5. Blocks or Continuous Deformation in Large-Scale Continental Geodynamics: Ptolemy Versus Copernicus, Kepler, and Newton (Invited)

    NASA Astrophysics Data System (ADS)

    Molnar, P. H.

    2010-12-01

    Tibetan Plateau illustrates this failing of plate tectonics (or crustal blocks) especially well. In particular, because of the large lateral variations in gravitational potential energy, it offers the best region in which to study dynamics of continental deformation.

  6. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    SciTech Connect

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  7. Application of Time Series Insar Technique for Deformation Monitoring of Large-Scale Landslides in Mountainous Areas of Western China

    NASA Astrophysics Data System (ADS)

    Qu, T.; Lu, P.; Liu, C.; Wan, H.

    2016-06-01

    Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.

  8. A deformation partitioning approach to resolving the sequence of fold events and the orientations in which they formed across multiply deformed large-scale regions

    NASA Astrophysics Data System (ADS)

    Bell, T. H.; Sanislav, I. V.

    2011-07-01

    Regional distributions of axial plane trends retain information on the orientation in which successive generations formed because multi-scale partitioning results in most orogenic belts preserving subsequently undeformed portions of all large-scale folds. At depths greater than ˜10 km within orogens, successions of regional folds are accompanied by the sequential development of crenulation hinges in pelites, which are commonly overgrown early during their development by successive generations of porphyroblasts. Consequently, the original trends of the axial planes of these folds are preserved within the distribution of foliation inflection/intersection axes within porphyroblasts (FIAs). Peaks in the distribution of FIA trends in western Maine predominantly coincide with peaks in the distribution of trends of the axial planes of macroscopic and regional folds. The WNW-ESE (˜420 Ma), N-S (408 ± 10 Ma), W-E (388 ± 9 Ma), WSW-ENE (372 ± 5 Ma), SW-NE (353 ± 4 Ma) succession of FIA peaks defines the sequence of folds and accords with map scale overprinting relationships. This quantitative approach to interpreting fold successions in multiply deformed terrains resolves timing where overprinting criteria are rare, uncertain or obliterated by younger events in portions of the orogen. Significantly, lengthy detailed histories of structural development can be extracted from a small area containing porphyroblastic rocks and applied to very large-scale regions.

  9. The effect of stress-state on the large strain inelastic deformation behavior of 304L stainless steel

    SciTech Connect

    Miller, M.P.; McDowell, D.L.

    1996-01-01

    In metals, large strain inelastic deformation processes such as the formation of a preferred crystallographic orientation (crystallographic texture) and strain hardening processes such as the formation and evolution of dislocation substructures depend on stress-state. Much of the current large strain research has focused on texture. Crystallographic texture development and strain-hardening processes each contribute to the overall material behavior, and a complete description of large strain inelastic material response should reflect both. An investigation of the large strain behavior of 304L stainless steel (SS 304L) subjected to compression, torsion, and sequences of compression followed by torsion and torsion followed by tension is reported. This paper focuses on the stress-state dependence of strain-hardening processes as well as the relative effect such processes have on the overall material behavior. To characterize these processes, transmission electron microscopy (TEM) as well as magnetization investigations were conducted at different strain levels and under different deformation modes. The {gamma} {yields} {alpha}{prime} martensitic transformation which occurs in this material was found to be related to both the strain level and stress state. Dislocation substructures in the form of Taylor lattices, dense dislocation walls, and microbands were also present. The ramifications of using a thin-walled tubular torsion specimen were also explored.

  10. Design of a Deformed Flat Plate to Compensate the Gain Loss Due to the Gravity-Induced Surface Distortion of Large Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Imbriale, W.; Rengarajan, S.; Cramer, P., Jr.

    1998-01-01

    This paper presents a novel design of a deformed flat plate, wherein known amounts of distortion are introduced in a compensating flat plate, to recover the gain-loss due to the gravity-induced surface deformations of a large reflector antenna.

  11. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  12. Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm

    NASA Technical Reports Server (NTRS)

    Reed, K. W.; Atluri, S. N.

    1983-01-01

    A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is base upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and thg resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.

  13. On the large deformation behaviour of reinforced rubber at different temperatures

    NASA Astrophysics Data System (ADS)

    Lion, Alexander

    1997-11-01

    This essay investigates the temperature dependence of the mechanical properties of a filler-loaded tread compound experimentally and proposes a physically based method to represent this behaviour in the framework of non-linear continuum thermomechanics. To this end, we realise a series of monotonic and cyclic strain controlled tests on cylindrical specimens in tension at different temperature levels. The experimental data show the isothermal mechanical behaviour to be mainly influenced by non-linear elasticity in combination with non-linear rate dependence and weak equilibrium hysteresis. We observe that the rate sensitivity of the material depends strongly on the temperature : at low temperature levels, the rate sensitivity is essentially higher than at high temperatures. The elastic properties of the material depend comparatively less on the temperature. Nevertheless, higher temperature levels lead to higher equilibrium stresses. In order to represent the material behaviour, we start with a multiplicative split of the deformation gradient into a mechanical and a thermal part as proposed by Lu and Pister (1975). Physically, this idea corresponds to a stress-free thermal expansion followed by an isothermal stress-producing deformation. We suppose the thermal part of the deformation gradient to be isotropic. As a consequence of this, the velocity gradient decomposes additively into a pure thermal and a pure mechanical part. By using these elements, we exploit the Clausius Duhem inequality and assume the so-called 'mechanical second Piola Kirchhoff stress tensor' to be a functional of the 'mechanical Green's strain tensor'. In a further step, we define this functional by a system of constitutive equations which are based on a rheological model. The evolution equations for the internal variables are formulated by using the concept of dual variables proposed by Haupt and Tsakmakis (1989, 1996). The rate sensitivity is modelled by a stress and temperature dependent

  14. Large-aperture deformable mirror correction of tiled-grating wavefront error

    NASA Astrophysics Data System (ADS)

    Kruschwitz, B. E.; Jungquist, R.; Qiao, J.; Abbey, S.; Dean, S. E.; Maywar, D. N.; Moore, M. D.; Waxer, L. J.; Wilson, M. E.

    2006-06-01

    When tiling three gratings, with each individually exhibiting astigmatism and power due to holographic errors and coating stress, the resulting wavefront aberrations contain high-frequency components as well as the fundamental frequency, which is nearly three cycles across the aperture in the tiling direction. A deformable mirror (DM) that was designed to compensate for much slower errors (e.g., those arising from distortion in amplifier disks) is being used to compensate for this tiling-induced error. This investigation studies the effectiveness of compensating only the fundamental frequency of the tiled aberration, and shows that this provides a significant improvement that is adequate for a range of expected aberrations. Limitations of the DM correction technique are also studied.

  15. Long-term geodetic measurements of large scale deformation at Iwo-jima caldera, Japan

    NASA Astrophysics Data System (ADS)

    Ukawa, M.; Fujita, E.; Ueda, H.; Kumagai, T.; Nakajima, H.; Morita, H.

    2006-02-01

    Iwo-jima is a volcanic caldera located 1250 km south of Tokyo, and is part of the Izu-Ogasawara arc. An extremely high uplift rate (averaging 0.25 m/a over several hundred years) characterizes the volcanic activity of Iwo-jima. This deformation is believed to be due to post caldera uplift. To investigate the mechanisms contributing to the high uplift rate, we have repeatedly conducted leveling and trilateration surveys from 1976 to 1995, and GPS surveys from 1996 to 2002. These observations have detected two patterns of continuous crustal deformation: concentric subsidence around Motoyama at the center of the Iwo-jima caldera and uplift surrounding the subsiding area. During the period from 1977 to 1995, subsidence at Motoyama reached 0.54 m and uplift in the southwestern part of the island exceeded 3 m. In addition, the island has experienced broad, episodic uplift, which amounted to more than 1 m during volcanic unrest both in 1982 and 2001. Horizontal displacements around Motoyama exhibit contraction due to the concentric subsidence, indicating the presence of a deflating source at depth. Vertical deformation dominates the displacement field during periods of broad episodic uplift, suggesting a deeper and/or more extensive source. Focusing the Motoyama area, we modeled the subsidence source simultaneously with the broad episodic uplift, which is approximated by deformation with a planar gradient, for 14 times between 1976 and 2002, using a grid search combined with a least-squares method. By assuming the subsidence source could be located at any grid point, we applied the least-squares method to calculate the intensity of subsidence source and the parameters for the uplift with a planar gradient and then selected the best-fitting source location. The best-fitting subsidence source geometries for 1998-2000 and 2000-2002 (the two time periods with GPS results) are horizontal, squared-shaped sills with side lengths of 4 and 5 km, respectively. Adopting the

  16. Learning layer-specific edges for segmenting retinal layers with large deformations

    PubMed Central

    Karri, S. P. K.; Chakraborthi, Debjani; Chatterjee, Jyotirmoy

    2016-01-01

    We present an algorithm for layer-specific edge detection in retinal optical coherence tomography images through a structured learning algorithm to reinforce traditional graph-based retinal layer segmentation. The proposed algorithm simultaneously identifies individual layers and their corresponding edges, resulting in the computation of layer-specific edges in 1 second. These edges augment classical dynamic programming based segmentation under layer deformation, shadow artifacts noise, and without heuristics or prior knowledge. We considered Duke’s online data set containing 110 B-scans of 10 diabetic macular edema subjects with 8 retinal layers annotated by two experts for experimentation, and achieved a mean distance error of 1.38 pixels whereas that of the state-of-the-art was 1.68 pixels. PMID:27446714

  17. Learning layer-specific edges for segmenting retinal layers with large deformations.

    PubMed

    Karri, S P K; Chakraborthi, Debjani; Chatterjee, Jyotirmoy

    2016-07-01

    We present an algorithm for layer-specific edge detection in retinal optical coherence tomography images through a structured learning algorithm to reinforce traditional graph-based retinal layer segmentation. The proposed algorithm simultaneously identifies individual layers and their corresponding edges, resulting in the computation of layer-specific edges in 1 second. These edges augment classical dynamic programming based segmentation under layer deformation, shadow artifacts noise, and without heuristics or prior knowledge. We considered Duke's online data set containing 110 B-scans of 10 diabetic macular edema subjects with 8 retinal layers annotated by two experts for experimentation, and achieved a mean distance error of 1.38 pixels whereas that of the state-of-the-art was 1.68 pixels. PMID:27446714

  18. C*-algebras of holonomy-diffeomorphisms and quantum gravity: I

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Møller Grimstrup, Jesper

    2013-04-01

    A new approach to a unified theory of quantum gravity based on noncommutative geometry and canonical quantum gravity is presented. The approach is built around a *-algebra generated by local holonomy-diffeomorphisms on a 3-manifold and a quantized Dirac-type operator, the two capturing the kinematics of quantum gravity formulated in terms of Ashtekar variables. We prove that the separable part of the spectrum of the algebra is contained in the space of measurable connections modulo gauge transformations and we give limitations to the non-separable part. The construction of the Dirac-type operator—and thus the application of noncommutative geometry—is motivated by the requirement of diffeomorphism invariance. We conjecture that a semi-finite spectral triple, which is invariant under volume-preserving diffeomorphisms, arises from a GNS construction of a semi-classical state. Key elements of quantum field theory emerge from the construction in a semi-classical limit, as does an almost commutative algebra. Finally, we note that the spectrum of loop quantum gravity emerges from a discretization of our construction. Certain convergence issues are left unresolved. This paper is the first of two where the second paper [1] is concerned with mathematical details and proofs concerning the spectrum of the holonomy-diffeomorphism algebra.

  19. Gauge theory of a group of diffeomorphisms. II. The conformal and de Sitter groups

    NASA Astrophysics Data System (ADS)

    Lord, Eric A.

    1986-12-01

    The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.

  20. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    An, Yonghao; Jiang, Hanqing

    2013-10-01

    Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity-plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform.

  1. Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates

    NASA Astrophysics Data System (ADS)

    Frei, S.; Richter, T.; Wick, T.

    2016-09-01

    In this work, we develop numerical schemes for mechano-chemical fluid-structure interactions with long-term effects. We investigate a model of a growing solid interacting with an incompressible fluid. A typical example for such a situation is the formation and growth of plaque in blood vessels. This application includes two particular difficulties: First, growth may lead to very large deformations, up to full clogging of the fluid domain. We derive a simplified set of equations including a fluid-structure interaction system coupled to an ODE model for plaque growth in Arbitrary Lagrangian Eulerian (ALE) coordinates and in Eulerian coordinates. The latter novel technique is capable of handling very large deformations up to contact. The second difficulty stems from the different time scales: while the dynamics of the fluid demand to resolve a scale of seconds, growth typically takes place in a range of months. We propose a temporal two-scale approach using local small-scale problems to compute an effective wall stress that will enter a long-scale problem. Our proposed techniques are substantiated with several numerical tests that include comparisons of the Eulerian and ALE approaches as well as convergence studies.

  2. Large-scale distributed deformation controlled topography along the western Africa-Eurasia limit: Tectonic constraints

    NASA Astrophysics Data System (ADS)

    de Vicente, G.; Vegas, R.

    2009-09-01

    In the interior of the Iberian Peninsula, the main geomorphic features, mountain ranges and basins, seems to be arranged in several directions whose origin can be related to the N-S plate convergence which occurred along the Cantabro-Pyrenean border during the Eocene-Lower Miocene time span. The Iberian Variscan basement accommodated part of this plate convergence in three E-W trending crustal folds as well as in the reactivation of two left-lateral NNE-SSW strike-slip belts. The rest of the convergence was assumed through the inversion of the Iberian Mesozoic Rift to form the Iberian Chain. This inversion gave rise to a process of oblique crustal shortening involving the development of two right lateral NW-SE shear zones. Crustal folds, strike-slip corridors and one inverted rift compose a tectonic mechanism of pure shear in which the shortening is solved vertically by the development of mountain ranges and related sedimentary basins. This model can be expanded to NW Africa, up to the Atlasic System, where N-S plate convergence seems also to be accommodated in several basement uplifts, Anti-Atlas and Meseta, and through the inversion of two Mesozoic rifts, High and Middle Atlas. In this tectonic situation, the microcontinent Iberia used to be firmly attached to Africa during most part of the Tertiary, in such a way that N-S compressive stresses could be transmitted from the collision of the Pyrenean boundary. This tectonic scenario implies that most part of the Tertiary Eurasia-Africa convergence was not accommodated along the Iberia-Africa interface, but in the Pyrenean plateboundary. A broad zone of distributed deformation resulted from the transmission of compressive stresses from the collision at the Pyrenean border. This distributed, intraplate deformation, can be easily related to the topographic pattern of the Africa-Eurasia interface at the longitude of the Iberian Peninsula. Shortening in the Rif-Betics external zones - and their related topographic

  3. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    PubMed Central

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-01-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71–4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain. PMID:26898475

  4. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    NASA Astrophysics Data System (ADS)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  5. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations.

    PubMed

    Miri, Amir K; Barthelat, François; Mongeau, Luc

    2012-11-01

    Dehydration may alter vocal fold viscoelastic properties, thereby hampering phonation. The effects of water loss induced by an osmotic pressure potential on vocal fold tissue viscoelastic properties were investigated. Porcine vocal folds were dehydrated by immersion in a hypertonic solution, and quasi-static and low-frequency dynamic traction tests were performed for elongations of up to 50%. Digital image correlation was used to determine local strains from surface deformations. The elastic modulus and the loss factor were then determined for normal and dehydrated tissues. An eight-chain hyperelastic model was used to describe the observed nonlinear stress-stretch behavior. Contrary to the expectations, the mass history indicated that the tissue absorbed water during cyclic extension when submerged in a hypertonic solution. During loading history, the elastic modulus was increased for dehydrated tissues as a function of strain. The response of dehydrated tissues was much less affected when the load was released. This observation suggests that hydration should be considered in micromechanical models of the vocal folds. The internal hysteresis, which is often linked to phonation effort, increased significantly with water loss. The effects of dehydration on the viscoelastic properties of vocal fold tissue were quantified in a systematic way. A better understanding of the role of hydration on the mechanical properties of vocal fold tissue may help to establish objective dehydration and phonotrauma criteria. PMID:22483778

  6. Effects of Dehydration on the Viscoelastic Properties of Vocal Folds in Large Deformations

    PubMed Central

    Miri, Amir K.; Barthelat, François; Mongeau, Luc

    2012-01-01

    Summary Dehydration may alter vocal fold viscoelastic properties, which may hamper phonation. The effects of water loss induced by an osmotic-pressure potential on vocal fold tissue viscoelastic properties were investigated. Porcine vocal folds were dehydrated by immersion in a hypertonic solution, and quasi-static and low-frequency dynamic traction tests were performed for elongations of up to 50%. Digital image correlation was used to determine local strains from surface deformations. The elastic modulus and the loss factor were then determined for normal and dehydrated tissues. An eight-chain hyperelastic model was used to describe the observed nonlinear stress-stretch behavior. Contrary to expectations, the mass history indicated that the tissue absorbed water during cyclic extension when submerged in a hypertonic solution. During loading history, the elastic modulus was increased for dehydrated tissues as a function of strain. The response of dehydrated tissues was much less affected when the load was releasing. This calls more attention to the modeling of vocal folds in micromechanics modeling. The internal hysteresis, which is often linked to phonation effort, increased significantly with water loss. The effects of dehydration on the viscoelastic properties of vocal fold tissue were quantified in a systematic way. The results will contribute to a better understanding of the basic biomechanics of voice production and ultimately will help establish objective dehydration and phonotrauma criteria. PMID:22483778

  7. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  8. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Ricard, Y. R.

    2012-12-01

    We investigate the global SV-wave azimuthal anisotropy from a new dataset of around 375 000 fundamental and higher mode Rayleigh waveforms. Our azimuthal anisotropy model improves upon DKP2005 seismic model (Debayle et al., Nature 2005) through a larger dataset (expanded by a factor 3.8) and a new approach which allows us to better extract fundamental and higher mode information. Our results confirm that in average, azimuthal anisotropy is significant only in the uppermost 200-250 km of the upper mantle and weak below. A clear root square of age dependence of anisotropy is observed beneath oceanic plates. The anisotropy projected in the direction of plate motion is more or less proportional to the plate velocity. Plate-scale present-day deformation is remarkably well recorded beneath the fastest moving plates (Indo-Australian, Coco, Nazca, Philippine Sea and Pacific plates). Under these plates, the amplitude of anisotropy does not change much with the distance to the ridge, indicating that the lattice preferred orientation rotates and saturates quickly. Beneath slower plates, plate-motion parallel anisotropy is observed only locally, which suggests, not surprisingly that the convection flow is only partly controlled by the surface motion. Within the lithosphere itself, the anisotropy is weak and likely frozen in; rather aligned with the plate velocity at its age of formation which is recorded by the local age gradient, than with the present-day motion. Although for young ages, the difference between the velocity recorded by the isochrons and the present-day velocity is small, for ages larger than 80 ~myrs the anisotropy rotates with depth from the fossil direction in the lithosphere to the present-day direction in the asthenosphere. Under fast continents (mostly Australia and India), the present day velocity orients the anisotropy around 150-200 km depth.

  9. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    SciTech Connect

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.

  10. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    DOE PAGESBeta

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less

  11. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    PubMed Central

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-01-01

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design. PMID:25341619

  12. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    NASA Astrophysics Data System (ADS)

    Sheridan, Robert; Roche, Juan; Lofland, Samuel E.; vonLockette, Paris R.

    2014-09-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a

  13. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Ricard, Yanick

    2014-05-01

    We present a new tomographic model of azimuthal anisotropy in the upper mantle and discuss in details the geodynamical causes of this anisotropy. Our model improves upon DKP2005 seismic model (Debayle et al., 2005) through a larger dataset (expanded by a factor ~ 4) and a new approach which allows us to better extract fundamental and higher mode information. Our results confirm that on average, azimuthal anisotropy is only significant in the uppermost 200-250 km of the upper mantle where it decreases regularly with depth. We do not see a significant difference in the amplitude of anisotropy beneath fast oceanic plates, slow oceanic plates or continents. The anisotropy projected onto the direction of present plate motion shows a very specific relation with the plate velocity; it peaks in the asthenosphere around 150 km depth, it is very weak for plate velocities smaller than 3 cm yr-1, increases significantly between 3 and 5 cm yr-1, and saturates for plate velocities larger than 5 cm yr-1. Plate-scale present-day deformation is remarkably well and uniformly recorded beneath the fastest moving plates (India, Coco, Nazca, Australia, Philippine Sea and Pacific plates). Beneath slower plates, plate-motion parallel anisotropy is only observed locally, which suggests that the mantle flow below these plates is not controlled by the lithospheric motion (a minimum plate velocity of around 4 cm yr-1 is necessary for a plate to organize the flow in its underlying asthenosphere). The correlation of oceanic anisotropy with the actual plate motion in the shallow lithosphere is very weak. A better correlation is obtained with the fossil accretion velocity recorded by the gradient of local seafloor age. The transition between frozen-in and active anisotropy occurs across the typical age- isotherm that defines the bottom of the thermal lithosphere around 1100 °C. Under fast continents (mostly under Australia and India), the present day velocity orients also the anisotropy in a

  14. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Ricard, Yanick

    2013-08-01

    We present a new tomographic model of azimuthal anisotropy in the upper mantle, DR2012, and discuss in details the geodynamical causes of this anisotropy. Our model improves upon DKP2005 seismic model (Debayle et al., 2005) through a larger dataset (expanded by a factor ˜3.7) and a new approach which allows us to better extract fundamental and higher-mode information. Our results confirm that on average, azimuthal anisotropy is only significant in the uppermost 200-250 km of the upper mantle where it decreases regularly with depth. We do not see a significant difference in the amplitude of anisotropy beneath fast oceanic plates, slow oceanic plates or continents. The anisotropy projected onto the direction of present plate motion shows a very specific relation with the plate velocity; it peaks in the asthenosphere around 150 km depth, it is very weak for plate velocities smaller than 3 cm yr, increases significantly between 3 and 5 cm yr, and saturates for plate velocities larger than 5 cm yr. Plate-scale present-day deformation is remarkably well and uniformly recorded beneath the fastest-moving plates (India, Coco, Nazca, Australia, Philippine Sea and Pacific plates). Beneath slower plates, plate-motion parallel anisotropy is only observed locally, which suggests that the mantle flow below these plates is not controlled by the lithospheric motion (a minimum plate velocity of around 4 cm yr is necessary for a plate to organize the flow in its underlying asthenosphere). The correlation of oceanic anisotropy with the actual plate motion in the shallow lithosphere is very weak. A better correlation is obtained with the fossil accretion velocity recorded by the gradient of local seafloor age. The transition between frozen-in and active anisotropy occurs across the typical √{age} isotherm that defines the bottom of the thermal lithosphere around 1100 °C. Under fast continents (mostly under Australia and India), the present-day velocity orients also the anisotropy

  15. Rare, large earthquakes at the laramide deformation front - Colorado (1882) and Wyoming (1984)

    USGS Publications Warehouse

    Spence, W.; Langer, C.J.; Choy, G.L.

    1996-01-01

    The largest historical earthquake known in Colorado occurred on 7 November 1882. Knowledge of its size, location, and specific tectonic environment is important for the design of critical structures in the rapidly growing region of the Southern Rocky Mountains. More than one century later, on 18 October 1984, an mb 5.3 earthquake occurred in the Laramie Mountains, Wyoming. By studying the 1984 earthquake, we are able to provide constraints on the location and size of the 1882 earthquake. Analysis of broadband seismic data shows the 1984 mainshock to have nucleated at a depth of 27.5 ?? 1.0 km and to have ruptured ???2.7 km updip, with a corresponding average displacement of about 48 cm and average stress drop of about 180 bars. This high stress drop may explain why the earthquake was felt over an area about 3.5 times that expected for a shallow earthquake of the same magnitude in this region. A microearthquake survey shows aftershocks to be just above the mainshock's rupture, mostly in a volume measuring 3 to 4 km across. Focal mechanisms for the mainshock and aftershocks have NE-SW-trending T axes, a feature shared by most earthquakes in western Colorado and by the induced Denver earthquakes of 1967. The only data for the 1882 earthquake were intensity reports from a heterogeneously distributed population. Interpretation of these reports also might be affected by ground-motion amplification from fluvial deposits and possible significant focal depth for the mainshock. The primary aftershock of the 1882 earthquake was felt most strongly in the northern Front Range, leading Kirkham and Rogers (1985) to locate the epicenters of the aftershock and mainshock there. The Front Range is a geomorphic extension of the Laramie Mountains. Both features are part of the eastern deformation front of the Laramide orogeny. Based on knowledge of regional tectonics and using intensity maps for the 1984 and the 1967 Denver earthquakes, we reinterpret prior intensity maps for the 1882

  16. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing

    2009-11-01

    Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.

  17. Size effect of large deformable nanopillar by focused-ion-beam chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Shinkai, M.; Shibutani, Y.; Kogo, Y.

    2009-11-01

    Nanoscopic fabrication technique has been achieved by the direct deposition methods using focused-ion-beam chemical vapor deposition (FIB-CVD). The nanopillar fabricated by FIB-CVD consists of an outer amorphous carbon ring and a inner gallium core. We developed the original double-cantilever (DC) bending test using two pillars rigidly connected by the exposure of a focused electron beam in a scanning electron microscope. The obtained deflection curves suggest that nanopillars have the size dependence to the mechanical response. The pillar with the diameter over 180 nm exhibits a wide region of stiffness weakening after linear response and then becomes extremely hardened at a large deflection. Thus, the pillar intrinsically possesses much more flexibility for bending without any fracturing. The accuracy of a DC testing is also discussed by estimating the bending rigidities of nanopillars, comparing to those obtained by resonance frequency tests.

  18. Stabilization of non-minimum phase switched nonlinear systems with the concept of multi-diffeomorphism

    NASA Astrophysics Data System (ADS)

    Jouili, Khalil; Benhadj Braiek, Naceur

    2015-06-01

    In this paper we propose a control approach for the stabilization of a class of switched nonlinear systems where each mode may be non-minimum phase. The proposed approach is based on the exact input-output linearization and the Lyapunov stability theory. The main contribution in this work is to elaborate a strategy of switching that recourse to the concept of multi-diffeomorphism makes it possible to guarantee an improvement of the transient state compared to a feedback linearization based on one diffeomorphism. Specifically, we show the sufficient condition for the exponential stability and the exponential upper bound of the trajectory of the switched system. The theoretical results are applied to a non-minimum phase inverted cart-pendulum in order to illustrate the effectiveness of the proposed approach.

  19. Becchi-Rouet-Stora-Tyutin structure for the mixed Weyl-diffeomorphism residual symmetry

    NASA Astrophysics Data System (ADS)

    François, J.; Lazzarini, S.; Masson, T.

    2016-03-01

    In this paper, we show the compatibility of the so-called "dressing field method," which allows a systematic reduction of gauge symmetries, with the inclusion of diffeomorphisms in the Becchi-Rouet-Stora-Tyutin (BRST) algebra of a gauge theory. The robustness of the scheme is illustrated on two examples where Cartan connections play a significant role. The former is General Relativity, while the latter concerns the second-order conformal structure where one ends up with a BRST algebra handling both the Weyl residual symmetry and diffeomorphisms of spacetime. We thereby provide a geometric counterpart to the BRST cohomological treatment used in Boulanger [J. Math. Phys. 46, 053508 (2005)] in the construction of a Weyl covariant tensor calculus.

  20. New phases of D ge 2 current and diffeomorphism algebras in particle physics

    SciTech Connect

    Tze, Chia-Hsiung.

    1990-09-01

    We survey some global results and open issues of current algebras and their canonical field theoretical realization in D {ge} 2 dimensional spacetime. We assess the status of the representation theory of their generalized Kac-Moody and diffeomorphism algebras. Particular emphasis is put on higher dimensional analogs of fermi-bose correspondence, complex analyticity and the phase entanglements of anyonic solitons with exotic spin and statistics. 101 refs.

  1. Notes on diffeomorphisms symmetry of f(R) gravity in the cosmological context

    NASA Astrophysics Data System (ADS)

    Ghalee, Amir

    2016-03-01

    We study the metric perturbations in the context of restricted f(R) gravity, in which a parameter for deviation from the full diffeomorphisms of space-time is introduced. We demonstrate that one can choose the parameter to remove the induced anisotropic stress, which is present in the usual f(R) gravity. Moreover, to prevent instability for the vector and tensor metric perturbations, some constraints on the restricted f(R) gravity are obtained.

  2. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    NASA Astrophysics Data System (ADS)

    Adami, H.; Setare, M. R.

    2016-04-01

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.

  3. Stress polishing of thin shells for adaptive secondary mirrors. Application to the Very Large Telescope deformable secondary

    NASA Astrophysics Data System (ADS)

    Hugot, E.; Ferrari, M.; Riccardi, A.; Xompero, M.; Lemaître, G. R.; Arsenault, R.; Hubin, N.

    2011-03-01

    Context. Adaptive secondary mirrors (ASM) are, or will be, key components on all modern telescopes, providing improved seeing conditions or diffraction limited images, thanks to the high-order atmospheric turbulence correction obtained by controlling the shape of a thin mirror. Their development is a key milestone towards future extremely large telescopes (ELT) where this technology is mandatory for successful observations. Aims: The key point of actual adaptive secondaries technology is the thin glass mirror that acts as a deformable membrane, often aspheric. On 6 m - 8 m class telescopes, these are typically 1 m-class with a 2 mm thickness. The optical quality of this shell must be sufficiently good not to degrade the correction, meaning that high spatial frequency errors must be avoided. The innovative method presented here aims at generating aspherical shapes by elastic bending to reach high optical qualities. Methods: This method is called stress polishing and allows generating aspherical optics of a large amplitude with a simple spherical polishing with a full sized lap applied on a warped blank. The main advantage of this technique is the smooth optical quality obtained, free of high spatial frequency ripples as they are classically caused by subaperture toolmarks. After describing the manufacturing process we developed, our analytical calculations lead to a preliminary definition of the geometry of the blank, which allows a precise bending of the substrate. The finite element analysis (FEA) can be performed to refine this geometry by using an iterative method with a criterion based on the power spectral density of the displacement map of the optical surface. Results: Considering the specific case of the Very Large Telescope (VLT) deformable secondary mirror (DSM), extensive FEA were performed for the optimisation of the geometry. Results are showing that the warping will not introduce surface errors higher than 0.3 nm rms on the minimal spatial scale

  4. Large Deformation Dynamic Response

    Energy Science and Technology Software Center (ESTSC)

    1993-08-23

    HONDO2-SLA is used to compute the time-dependent displacements, velocities, accelerations, and stresses within elastic or inelastic, two-dimensional or axisymmetric or planar bodies of arbitrary shape and materials.

  5. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications. PMID:26512734

  6. The moduli space of germs of generic families of analytic diffeomorphisms unfolding of a codimension one resonant diffeomorphism or resonant saddle

    NASA Astrophysics Data System (ADS)

    Rousseau, Christiane

    In this paper we describe the moduli space of germs of generic analytic families of complex 1-dimensional resonant analytic diffeomorphisms of codimension 1. In Rousseau and Christopher (2007) [11], it was shown that the Ecalle modulus can be unfolded to give a complete modulus for such germs. As function of the canonical parameter, the modulus is defined on two sectors giving a covering of a neighborhood of the origin in the parameter space. As in the case of the Ecalle modulus, the modulus is defined up to a linear scaling depending only on the parameter. The compatibility condition is obtained by considering the region of intersection of the two sectors in parameter space, which we call the Glutsyuk sectors. There, both the fixed point and the periodic orbit are hyperbolic and they are connected by the orbits of the diffeomorphism. This yields an alternate description of the equivalence class by the Glutsyuk modulus: near each of the fixed point and of the periodic orbit we construct a change of coordinate to the normal form. The Glutsyuk modulus measures the obstruction of having one being the analytic extension of the other. In the intersection of the two sectors, we have two representatives of the modulus which describe the same dynamics. A necessary compatibility condition is that they have the same Glutsyuk modulus. This necessary condition becomes sufficient for realizability. The compatibility condition implies the existence of a linear scaling for which the modulus is 1-summable in ɛ, whose directions of non-summability coincide with the direction of real multipliers at the fixed point and periodic orbit. Conversely, we show that the compatibility condition (which implies the summability property) is sufficient to realize the modulus as coming from an analytic unfolding, thus giving a complete description of the space of moduli.

  7. ScanSAR interferometric processing using existing standard InSAR software for measuring large scale land deformation

    NASA Astrophysics Data System (ADS)

    Liang, Cunren; Zeng, Qiming; Jia, Jianying; Jiao, Jian; Cui, Xi'ai

    2013-02-01

    Scanning synthetic aperture radar (ScanSAR) mode is an efficient way to map large scale geophysical phenomena at low cost. The work presented in this paper is dedicated to ScanSAR interferometric processing and its implementation by making full use of existing standard interferometric synthetic aperture radar (InSAR) software. We first discuss the properties of the ScanSAR signal and its phase-preserved focusing using the full aperture algorithm in terms of interferometry. Then a complete interferometric processing flow is proposed. The standard ScanSAR product is decoded subswath by subswath with burst gaps padded with zero-pulses, followed by a Doppler centroid frequency estimation for each subswath and a polynomial fit of all of the subswaths for the whole scene. The burst synchronization of the interferometric pair is then calculated, and only the synchronized pulses are kept for further interferometric processing. After the complex conjugate multiplication of the interferometric pair, the residual non-integer pulse repetition interval (PRI) part between adjacent bursts caused by zero padding is compensated by resampling using a sinc kernel. The subswath interferograms are then mosaicked, in which a method is proposed to remove the subswath discontinuities in the overlap area. Then the following interferometric processing goes back to the traditional stripmap processing flow. A processor written with C and Fortran languages and controlled by Perl scripts is developed to implement these algorithms and processing flow based on the JPL/Caltech Repeat Orbit Interferometry PACkage (ROI_PAC). Finally, we use the processor to process ScanSAR data from the Envisat and ALOS satellites and obtain large scale deformation maps in the radar line-of-sight (LOS) direction.

  8. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Le, Trung Bao; Sotiropoulos, Fotis

    2015-11-01

    We present a new numerical methodology for simulating fluid-structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet-Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid-fluid interfaces where the structural nodal positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.

  9. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The

  10. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a

  11. Breaking of spatial diffeomorphism invariance, inflation and the spectrum of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Graef, L. L.; Brandenberger, R.

    2015-10-01

    Standard inflationary models yield a characteristic signature of a primordial power spectrum with a red tensor and scalar tilt. Nevertheless, Cannone et al. [1] recently suggested that, by breaking the assumption of spatial diffeomorphism invariance in the context of the effective field theory of inflation, a blue tensor spectrum can be achieved without violating the Null Energy Condition. In this context, we explore in which cases the inflationary model of [2] can yield a blue tilt of the tensor modes along with a red tilt in the scalar spectrum. Ultimately, we analyze under which conditions the model of [3] can reproduce the specific consistency relation of String Gas Cosmology.

  12. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    PubMed

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  13. Large-scale deformed quasiparticle random-phase approximation calculations of the γ -ray strength function using the Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.

    2016-07-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.

  14. QCD-like Theories on R_3\\times S_1: a Smooth Journey from Small to Large r(S_1)with Double-Trace Deformations

    SciTech Connect

    Shifman, Mikhail; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-02-22

    We consider QCD-like theories with one massless fermion in various representations of the gauge group SU(N). The theories are formulated on R{sub 3} x S{sub 1}. In the decompactification limit of large r(S{sub 1}) all these theories are characterized by confinement, mass gap and spontaneous breaking of a (discrete) chiral symmetry ({chi}SB). At small r(S{sub 1}), in order to stabilize the vacua of these theories at a center-symmetric point, we suggest to perform a double trace deformation. With these deformation, the theories at hand are at weak coupling at small r(S{sub 1}) and yet exhibit basic features of the large-r(S{sub 1}) limit: confinement and {chi}SB. We calculate the string tension, mass gap, bifermion condensates and {theta} dependence. The double-trace deformation becomes dynamically irrelevant at large r(S{sub 1}). Despite the fact that at small r(S{sub 1}) confinement is Abelian, while it is expected to be non-Abelian at large r(S{sub 1}), we argue that small and large-r(S{sub 1}) physics are continuously connected. If so, one can use small-r(S{sub 1}) laboratory to extract lessons about QCD and QCD-like theories on R{sub 4}.

  15. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: Age and geological constraints from North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Tappe, S.; Heaman, L.; Knudsen, M. F.

    2013-12-01

    Age, compositional and geological data show the High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan orogeny. New 40Ar-39Ar and U-Pb dating provides emplacement ages of 71-68 Ma for most of the Kap Washington alkaline volcanics of North Greenland, but with activity continuing down to 61 Ma. A thermal resetting age of 49-47 Ma is also identified in 40Ar-39Ar whole-rock data for trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting, interpreted as a result of Eurekan compressional tectonism. The formation of the tholeiitic suite (130-80 Ma) appears to be associated with the opening of the Canada Basin and may have involved mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay. The alkaline and tholeiitic suites of the High Arctic may therefore be unrelated. It is striking that High Arctic volcanism terminates at about the same time (c. 60 Ma) as magmatism in the North Atlantic Large Igneous Province begins. We suggest this is a corollary of a change from extensional to compressional tectonism in the High Arctic. In the period when Greenland moved together with Eurasia (>60 Ma), the separation from North America resulted in rift-related alkaline magmatism in the High Arctic. When Greenland subsequently moved as a separate plate (60-35 Ma), overlapping spreading on both sides pushed it northwards and volcanism in the High Arctic stopped due to compression. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  16. Video texture synthesis with multi-frame LBP-TOP and diffeomorphic growth model.

    PubMed

    Guo, Yimo; Zhao, Guoying; Zhou, Ziheng; Pietikainen, Matti

    2013-10-01

    Video texture synthesis is the process of providing a continuous and infinitely varying stream of frames, which plays an important role in computer vision and graphics. However, it still remains a challenging problem to generate high-quality synthesis results. Considering the two key factors that affect the synthesis performance, frame representation and blending artifacts, we improve the synthesis performance from two aspects: 1) Effective frame representation is designed to capture both the image appearance information in spatial domain and the longitudinal information in temporal domain. 2) Artifacts that degrade the synthesis quality are significantly suppressed on the basis of a diffeomorphic growth model. The proposed video texture synthesis approach has two major stages: video stitching stage and transition smoothing stage. In the first stage, a video texture synthesis model is proposed to generate an infinite video flow. To find similar frames for stitching video clips, we present a new spatial-temporal descriptor to provide an effective representation for different types of dynamic textures. In the second stage, a smoothing method is proposed to improve synthesis quality, especially in the aspect of temporal continuity. It aims to establish a diffeomorphic growth model to emulate local dynamics around stitched frames. The proposed approach is thoroughly tested on public databases and videos from the Internet, and is evaluated in both qualitative and quantitative ways. PMID:23686952

  17. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  18. Afterslip and viscoelastic relaxation model inferred from the large scale postseismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile)

    NASA Astrophysics Data System (ADS)

    Klein, E.; Fleitout, L.; Vigny, C.; Garaud, J. D.

    2016-03-01

    Megathrust earthquakes of magnitude close to 9 are followed by large scale (thousands of km) and long-lasting (decades), significant crustal and mantle deformation. This deformation can be observed at the surface and quantified with GPS measurements. Here we report on deformation observed during the 5-years time span after the 2010 Mw8.8 Maule Megathrust Earthquake (February 27, 2010) over the whole South American continent. With the first two years of those data, we use finite element modelling (FEM) to relate this deformation to slip on the plate interface and relaxation in the mantle, using a realistic layered Earth model and Burgers rheologies. Slip alone on the interface, even up to large depths, is unable to provide a satisfactory fit simultaneously to horizontal and vertical displacements. The horizontal deformation pattern requires relaxation both in the asthenosphere and in a Low Viscosity Channel along the deepest part of the plate interface and no additional Low Viscosity Wedge is required by the data. The vertical velocity pattern (intense and quick uplift over the Cordillera) is well fitted only when the channel extends deeper than 100km. Additionally, viscoelastic relaxation alone cannot explain the characteristics and amplitude of displacements over the first 200 km from the trench and aseismic slip on the fault plane is needed. This aseismic slip on the interface generates stresses, which induce additional relaxation in the mantle. In the final model, all three components (relaxation due to the coseismic slip, aseismic slip on the fault plane and relaxation due to aseismic slip) are taken into account. Our best-fit model uses slip at shallow depths on the subduction interface decreasing as function of time and includes (i) an asthenosphere extending down to 200km, with a steady-state Maxwell viscosity of 4.75 × 1018 Pa.s; and (ii) a Low Viscosity Channel along the plate interface extending from depths of 55 to 135 km with viscosities below 1018 Pa.s.

  19. Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile)

    NASA Astrophysics Data System (ADS)

    Klein, E.; Fleitout, L.; Vigny, C.; Garaud, J. D.

    2016-06-01

    Megathrust earthquakes of magnitude close to 9 are followed by large-scale (thousands of km) and long-lasting (decades), significant crustal and mantle deformation. This deformation can be observed at the surface and quantified with GPS measurements. Here we report on deformation observed during the 5 yr time span after the 2010 Mw 8.8 Maule Megathrust Earthquake (2010 February 27) over the whole South American continent. With the first 2 yr of those data, we use finite element modelling (FEM) to relate this deformation to slip on the plate interface and relaxation in the mantle, using a realistic layered Earth model and Burgers rheologies. Slip alone on the interface, even up to large depths, is unable to provide a satisfactory fit simultaneously to horizontal and vertical displacements. The horizontal deformation pattern requires relaxation both in the asthenosphere and in a low-viscosity channel along the deepest part of the plate interface and no additional low-viscosity wedge is required by the data. The vertical velocity pattern (intense and quick uplift over the Cordillera) is well fitted only when the channel extends deeper than 100 km. Additionally, viscoelastic relaxation alone cannot explain the characteristics and amplitude of displacements over the first 200 km from the trench and aseismic slip on the fault plane is needed. This aseismic slip on the interface generates stresses, which induce additional relaxation in the mantle. In the final model, all three components (relaxation due to the coseismic slip, aseismic slip on the fault plane and relaxation due to aseismic slip) are taken into account. Our best-fit model uses slip at shallow depths on the subduction interface decreasing as function of time and includes (i) an asthenosphere extending down to 200 km, with a steady-state Maxwell viscosity of 4.75 × 1018 Pa s; and (ii) a low-viscosity channel along the plate interface extending from depths of 55-135 km with viscosities below 1018 Pa s.

  20. Coupling to extension in a thickness-shear resonator due to relatively large thickness-shear deformation.

    PubMed

    Yang, Jiashi; Shen, Xuechun

    2008-03-01

    We show that in a plate thickness-shear mode resonator of rotated Y-cut quartz coupling to extension occurs when the shear deformation is no longer infinitesimal. A set of coupled equations is derived with which the effect of coupling to extension on the thickness-shear operating mode is examined. PMID:18407862

  1. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  2. Dynamic model of intrusion of magma and/or magmatic fluids in the large-scale deformation source of the Campi Flegrei caldera (Italy).

    NASA Astrophysics Data System (ADS)

    Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria

    2015-04-01

    The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an

  3. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  4. Influence of transverse-shear and large-deformation effects on the low-speed impact response of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.

    1993-01-01

    An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.

  5. Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: An intrinsic Hamilton-Jacobi approach

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald; Renn, Jürgen; Sundermeyer, Kurt

    2016-02-01

    Classical background independence is reflected in Lagrangian general relativity through covariance under the full diffeomorphism group. We show how this independence can be maintained in a Hamilton-Jacobi approach that does not accord special privilege to any geometric structure. Intrinsic space-time curvature-based coordinates grant equal status to all geometric backgrounds. They play an essential role as a starting point for inequivalent semiclassical quantizations. The scheme calls into question Wheeler’s geometrodynamical approach and the associated Wheeler-DeWitt equation in which 3-metrics are featured geometrical objects. The formalism deals with variables that are manifestly invariant under the full diffeomorphism group. Yet, perhaps paradoxically, the liberty in selecting intrinsic coordinates is precisely as broad as is the original diffeomorphism freedom. We show how various ideas from the past five decades concerning the true degrees of freedom of general relativity can be interpreted in light of this new constrained Hamiltonian description. In particular, we show how the Kuchař multi-fingered time approach can be understood as a means of introducing full four-dimensional diffeomorphism invariants. Every choice of new phase space variables yields new Einstein-Hamilton-Jacobi constraining relations, and corresponding intrinsic Schrödinger equations. We show how to implement this freedom by canonical transformation of the intrinsic Hamiltonian. We also reinterpret and rectify significant work by Dittrich on the construction of “Dirac observables.”

  6. The typical large-scale superposed folds in the central South China: Implications for Mesozoic intracontinental deformation of the South China Block

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Dong, Shuwen; Zhang, Yueqiao; Huang, Shiqi

    2015-11-01

    The South China Block has experienced polyphase intensive intracontinental deformation in the Mesozoic time. Large-scale superposed folds in central South China document the Mesozoic tectonic events within the South China Block. Here, we present new structural data related to synfolding deformation, coupling with chronological data, to reconstruct the deformation sequence and tectonic regime during crustal shortening. These data indicate that the superposed folds, dominated by a two-stage tectonic compressive regime, experienced two phases of superposed buckle folding, leading to the orthogonal superposition of NE-SW-trending folds onto WNW-ESE-trending folds between the late Middle Jurassic and the earliest Early Cretaceous. Our structural analysis, together with geochronological data for this area, suggests that the South China Block predominately underwent two phases of intracontinental deformation during the Mesozoic. The early phase of tectonism (D1) is characterized by a late Middle Triassic to earliest Early Jurassic NE-SW compression, causing the occurrence of an orogeny-perpendicular shortening accompanying with evident magmatism. This tectonic event was most likely associated with progressive clockwise collision of the South China Block toward the north in the Indosinian event. Subsequent tectonic activity (D2) between the late Middle Jurassic and the earliest Early Cretaceous contributed to a phase of NW-SE contraction that overprinted the early NE-SW shortening in the interior of the South China Block, generating a large-scale NW-convex fold belt and the typical large-scale superposed folds within the central South China Block. The later tectonism was probably driven by the NW-directed subduction of the paleo-Pacific Plate beneath the eastern part of the Asian continent.

  7. Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images.

    PubMed

    Ruthotto, L; Kugel, H; Olesch, J; Fischer, B; Modersitzki, J; Burger, M; Wolters, C H

    2012-09-21

    Diffusion-weighted magnetic resonance imaging is a key investigation technique in modern neuroscience. In clinical settings, diffusion-weighted imaging and its extension to diffusion tensor imaging (DTI) are usually performed applying the technique of echo-planar imaging (EPI). EPI is the commonly available ultrafast acquisition technique for single-shot acquisition with spatial encoding in a Cartesian system. A drawback of these sequences is their high sensitivity against small perturbations of the magnetic field, caused, e.g., by differences in magnetic susceptibility of soft tissue, bone and air. The resulting magnetic field inhomogeneities thus cause geometrical distortions and intensity modulations in diffusion-weighted images. This complicates the fusion with anatomical T1- or T2-weighted MR images obtained with conventional spin- or gradient-echo images and negligible distortion. In order to limit the degradation of diffusion-weighted MR data, we present here a variational approach based on a reference scan pair with reversed polarity of the phase- and frequency-encoding gradients and hence reversed distortion. The key novelty is a tailored nonlinear regularization functional to obtain smooth and diffeomorphic transformations. We incorporate the physical distortion model into a variational image registration framework and derive an accurate and fast correction algorithm. We evaluate the applicability of our approach to distorted DTI brain scans of six healthy volunteers. For all datasets, the automatic correction algorithm considerably reduced the image degradation. We show that, after correction, fusion with T1- or T2-weighted images can be obtained by a simple rigid registration. Furthermore, we demonstrate the improvement due to the novel regularization scheme. Most importantly, we show that it provides meaningful, i.e. diffeomorphic, geometric transformations, independent of the actual choice of the regularization parameters. PMID:22941943

  8. Diffuse Deformation Across the Southern Mariana Margin: Possible Effects of Water on Large-Scale Lithospheric Rheology

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Sleeper, J. D.

    2012-12-01

    The southern Mariana margin is extending in an approximately E-W direction at about 45 mm/yr above the subducting Pacific slab. We use earthquake locations, shallow- and new deep-towed side-scan sonar imagery together with compiled multibeam bathymetry to document the nature of the tectonic and volcanic deformation. A well-defined and magmatically robust spreading center takes up part of this extension along the northern part of the southern margin. However, it does not intersect the trench. Instead the spreading center curves westward and becomes a diffuse zone of volcanism extending to the western end of the back-arc basin. The approximately E-W oriented fabric of this diffuse volcanic zone suggest it is taking up a southerly-directed extensional component associated with southward trench rollback in this area. The main E-W oriented extension in the southern margin appears to be distributed broadly across the margin to the south, as indicated by ~N-S-oriented seafloor fabric and the distribution of earthquakes in this area. Near the outer margin, deep-towed side-scan sonar data to near the 6000 m isobath image possible isolated volcanic emplacements within an otherwise tectonized terrain. Possible ~E-W oriented mullion structures are also imaged suggesting low angle tectonic deformation within the margin. The transition of the organized spreading center to a diffuse volcano-tectonic zone and the broadly distributed deformation in the entire southern margin may be consequences of the high water content in the mantle wedge and overlying lithosphere predicted here. Hydrous and therefore weak subduction margin lithosphere may not be able to localize the narrow plate boundary zones characteristic of extension in oceanic lithosphere.

  9. Deformation mechanisms, architecture, and petrophysical properties of large normal faults in platform carbonates and their role in the release of carbon dioxide from earth's interior in central Italy

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio

    2006-04-01

    A challenging theme of research in structural geology is the process of faulting in carbonate rocks: how do the resulting internal architecture and petrophysical properties of faults affect subsurface fluid flow. A better understanding of this process is important to evaluate the potential oil and gas recovery from carbonate reservoirs, and to plan CO 2 containment in the depleted reservoirs. Carbonate rocks may deform with different mechanisms depending primarily on their original sedimentary fabric, diagenetic history, fluid content, and tectonic environment. In this dissertation I investigate the deformation mechanisms, petrophysics, and internal fluid composition of large, seismic, basin-bounding normal faults in low porosity platform carbonates. Based on the nature, orientation, and abutting relationships of the structural elements preserved within the faults and in the surrounding carbonate host rocks, I was able to characterize the mechanisms of fault growth and the fault architecture. Incipient faulting occurred at shallow depths by sequential formation and shearing of pressure solution seams and joints/veins; with ongoing deformation and exhumation, the joint-based mechanism became predominant. The end result is a mature normal fault that juxtaposes basin sedimentary rocks of the hanging wall against deformed carbonates of the footwall. The deformed carbonates of the fault footwalls are composed of rocks with low porosity and permeability and major slip surfaces in the fault core, and fragmented carbonate matrices with high porosity and permeability, and small faults in the damage zone. The degree of fragmentation in the damage zone generally increases towards the fault hanging wall, forming structural domains characterized by different deformation intensity. The rocks of the fault core have sub-spherical pores, those of the damage zone have elongated, crack-like, pores. The permeability structure of the normal fault zones is therefore made up of a fault

  10. Investigating Cenozoic Deformation in the Southeast Tarim Basin Using Seismic Reflection: Evidence Against Large Scale Thrusting Along the Northwest Tibetan Margin

    NASA Astrophysics Data System (ADS)

    McDermott, J.; Wu, L.; Cowgill, E.

    2014-12-01

    Interpretation of seismic reflection surveys of the Southeast Tarim Basin, in northwestern China, show minimal evidence of significant Cenozoic deformation and large-scale structures in the southeast depression. Seismic reflection profiles bound on the south by the transpressional North Altyn Fault (NAF) and on the north by the strike-slip dominated transpressional Cherchen Fault, obtained in a grid of 20 km-spaced parallel and 10 km-spaced perpendicular lines to these two major structures. Among the major features apparent on the seismic sections are: 1) a southwest-northeast trending anticline bound on the north by a minor reverse fault, 2) a basal Cenozoic angular unconformity evident as a major reflective horizon and confirmed with borehole data from the RC1 well, also verifying the thickness of Cenozoic aged sediments at <3500 m throughout SE Tarim, 3) minor reverse faults with minimal (< 500 m) cumulative vertical offset in early Cenozoic strata, 4) depth to crystalline basement of ~3500 m, evident from the lack of seismic horizons (reflections) below Jurassic aged strata. Though identifiable structures are few within SE Tarim, reconstructions of the structures shown in seismic sections indicate that a maximum of 1.5 km of crustal shortening has occurred in the southeast Tarim Basin throughout the Cenozoic, less than that necessary for a major thrust system. Quantifying this shortening helps to characterize the deformation within the footwall block of the NAF, constraining the maximum vertical component of offset on the NAF as less than the maximum vertical thickness of Cenozoic sediments in SE Tarim of ~3500 m, observations that suggest minimal vertical offset (<3 km) on the NAF. 1 Seismic section that extends north of the Cherchen Fault shows that the pattern of minimal deformation in SE Tarim extends north of this major structure, further solidifying the results showing minimal deformation within the Tarim Basin.

  11. Afterslip and Viscoelastic Relaxation Model Inferred from the Large Scale Postseismic Deformation Following the 2010 Mw 8,8 Maule Earthquake (Chile)

    NASA Astrophysics Data System (ADS)

    Vigny, C.; Klein, E.; Fleitout, L.; Garaud, J. D.

    2015-12-01

    Postseismic deformation following the large subduction earthquake of Maule (Chile, Mw8.8, February 27th 2010) have been closely monitored with GPS from 70 km up to 2000 km away from the trench. They exhibit a behavior generally similar to that already observed after the Aceh and Tohoku-Oki earthquakes. Vertical uplift is observed on the volcanic arc and a moderate large scale subsidence is associated with sizeable horizontal deformation in the far-field (500-2000km from the trench). In addition, near-field data (70-200km from the trench) feature a rather complex deformation pattern. A 3D FE code (Zebulon Zset) is used to relate these deformation to slip on the plate interface and relaxation in the mantle. The mesh features a spherical shell-portion from the core-mantle boundary to the Earth's surface, extending over more than 60 degrees in latitude and longitude. The overridding and subducting plates are elastic, and the asthenosphere is viscoelastic. A viscoelastic Low Viscosity Channel (LVC) is also introduced along the plate interface. Both the asthenosphere and the channel feature Burger's rheologies and we invert for their mechanical properties and geometrical characteristics simultaneously with the afterslip distribution. The horizontal deformation pattern requires relaxation both in i) the asthenosphere extending down to 270km, with a 'long-term' viscosity of the order of 4.8.1018 Pa.s and ii) in the channel, that has to extend from depth of 50 to 150 km with viscosities slightly below 1018 Pa.s, to fit well the vertical velocity pattern (intense and quick uplift over the Cordillera). Aseismic slip on the plate interface, at shallow depth, is necessary to explain all the characteristics of the near-field displacements. We then detect two main patches of high slip, one updip of the coseismic slip distribution in the northernmost part of the rupture zone, and the other one downdip, at the latitude of Constitucion (35°S). We finally study the temporel

  12. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  13. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  14. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  15. Large deformation analysis and synthesis of elastic closed-loop mechanism made of a certain spring wire described by free curves

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Nobuyuki; Kosaki, Takashi

    2015-07-01

    Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.

  16. A maximum likelihood approach to diffeomorphic speckle tracking for 3D strain estimation in echocardiography.

    PubMed

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Bosch, Johan G; Aja-Fernández, Santiago

    2015-08-01

    The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocardial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging (TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial movement and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and the noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum likelihood approaches have been proposed to statistically characterize the behavior of speckle, which results in a better performance of speckle tracking. However, those models do not consider common transformations to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood approach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The accuracy and agreement assessment was evaluated on a set of 16 synthetic image sequences for three different scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six speckle tracking methods. Results revealed that the proposed method is the most

  17. SU-F-BRF-03: Quality Assurance of Deformable Image Registration in Radiotherapy

    SciTech Connect

    Watkins, W.T.; Siebers, J.V.; Bzdusek, K.

    2014-06-15

    Purpose: To introduce methods to analyze Deformable Image Registration (DIR) and identify regions of potential DIR errors. Methods: DIR Deformable Vector Fields (DVFs) quantifying patient anatomic changes were evaluated using the Jacobian determinant and the magnitude of DVF curl as functions of tissue density and tissue type. These quantities represent local relative deformation and rotation, respectively. Large values in dense tissues can potentially identify non-physical DVF errors. For multiple DVFs per patient, histograms and visualization of DVF differences were also considered. To demonstrate the capabilities of methods, we computed multiple DVFs for each of five Head and Neck (H'N) patients (P1–P5) via a Fast-symmetric Demons (FSD) algorithm and via a Diffeomorphic Demons (DFD) algorithm, and show the potential to identify DVF errors. Results: Quantitative comparisons of the FSD and DFD registrations revealed <0.3 cm DVF differences in >99% of all voxels for P1, >96% for P2, and >90% of voxels for P3. While the FSD and DFD registrations were very similar for these patients, the Jacobian determinant was >50% in 9–15% of soft tissue and in 3–17% of bony tissue in each of these cases. The volumes of large soft tissue deformation were consistent for all five patients using the FSD algorithm (mean 15%±4% volume), whereas DFD reduced regions of large deformation by 10% volume (785 cm{sup 3}) for P4 and by 14% volume (1775 cm{sup 3}) for P5. The DFD registrations resulted in fewer regions of large DVF-curl; 50% rotations in FSD registrations averaged 209±136 cm{sup 3} in soft tissue and 10±11 cm{sup 3} in bony tissue, but using DFD these values were reduced to 42±53 cm{sup 3} and 1.1±1.5 cm{sup 3}, respectively. Conclusion: Analysis of Jacobian determinant and curl as functions of tissue density can identify regions of potential DVF errors by identifying non-physical deformations and rotations. Collaboration with Phillips Healthcare, as indicated in

  18. SU-E-J-108: Template Matching Based On Multiple Templates Can Improve the Tumor Tracking Performance When There Is Large Tumor Deformation

    SciTech Connect

    Shi, X; Lin, J; Diwanji, T; Mooney, K; D'Souza, W; Mistry, N

    2014-06-01

    Purpose: Recently, template matching has been shown to be able to track tumor motion on cine-MRI images. However, artifacts such as deformation, rotation, and/or out-of-plane movement could seriously degrade the performance of this technique. In this work, we demonstrate the utility of multiple templates derived from different phases of tumor motion in reducing the negative effects of artifacts and improving the accuracy of template matching methods. Methods: Data from 2 patients with large tumors and significant tumor deformation were analyzed from a group of 12 patients from an earlier study. Cine-MRI (200 frames) imaging was performed while the patients were instructed to breathe normally. Ground truth tumor position was established on each frame manually by a radiation oncologist. Tumor positions were also automatically determined using template matching with either single or multiple (5) templates. The tracking errors, defined as the absolute differences in tumor positions determined by the manual and automated methods, when using either single or multiple templates were compared in both the AP and SI directions, respectively. Results: Using multiple templates reduced the tracking error of template matching. In the SI direction where the tumor movement and deformation were significant, the mean tracking error decreased from 1.94 mm to 0.91 mm (Patient 1) and from 6.61 mm to 2.06 mm (Patient 2). In the AP direction where the tumor movement was small, the reduction of the mean tracking error was significant in Patient 1 (from 3.36 mm to 1.04 mm), but not in Patient 2 ( from 3.86 mm to 3.80 mm). Conclusion: This study shows the effectiveness of using multiple templates in improving the performance of template matching when artifacts like large tumor deformation or out-of-plane motion exists. Accurate tumor tracking capabilities can be integrated with MRI guided radiation therapy systems. This work was supported in part by grants from NIH/NCI CA 124766 and Varian

  19. Topological duality between vortices and planar Skyrmions in BPS theories with area-preserving diffeomorphism symmetries

    NASA Astrophysics Data System (ADS)

    Adam, C.; Sanchez-Guillen, J.; Wereszczynski, A.; Zakrzewski, W. J.

    2013-01-01

    The Bogomol’nyi-Prasad-Sommerfield (BPS) baby Skyrme models are submodels of baby Skyrme models, where the nonlinear sigma model term is suppressed. They have Skyrmion solutions saturating a BPS bound, and the corresponding static energy functional is invariant under area-preserving diffeomorphisms (APDs). Here we show that the solitons in the BPS baby Skyrme model, which carry a nontrivial topological charge Qb∈π2(S2) (a winding number), are dual to vortices in a BPS vortex model with a topological charge Qv∈π1(S1) (a vortex number), in the sense that there is a map between the BPS solutions of the two models. The corresponding energy densities of the BPS solutions of the two models are identical. A further consequence of the duality is that the dual BPS vortex models inherit the BPS property and the infinitely many symmetries (APDs) of the BPS baby Skyrme models. Finally, we demonstrate that the same topological duality continues to hold for the U(1) gauged versions of the models.

  20. General variational principle for spherically symmetric perturbations in diffeomorphism covariant theories

    SciTech Connect

    Seifert, Michael D.; Wald, Robert M.

    2007-04-15

    We present a general method for the analysis of the stability of static, spherically symmetric solutions to spherically symmetric perturbations in an arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves fixing the gauge and solving the linearized gravitational field equations to eliminate the metric perturbation variables in terms of the matter variables. In a wide class of cases--which include f(R) gravity, the Einstein-aether theory of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining perturbation equations for the matter fields are second order in time. We show how the symplectic current arising from the original Lagrangian gives rise to a symmetric bilinear form on the variables of the reduced theory. If this bilinear form is positive definite, it provides an inner product that puts the equations of motion of the reduced theory into a self-adjoint form. A variational principle can then be written down immediately, from which stability can be tested readily. We illustrate our method in the case of Einstein's equation with perfect fluid matter, thereby rederiving, in a systematic manner, Chandrasekhar's variational principle for radial oscillations of spherically symmetric stars. In a subsequent paper, we will apply our analysis to f(R) gravity, the Einstein-aether theory, and Bekenstein's TeVeS theory.

  1. The Large Scale Tectonic Framework of SE Asia and the Deformation of the lithosphere Beneath Tibet and SW China (Invited)

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Huang, H.; Yao, H.

    2010-12-01

    delineate the 3-D anisotropic structure of the crust and lithospheric mantle at length scales as small as 100 km beneath SE Asia. These inversions revealed (i) the presence of intra-crustal low velocity zones (perhaps bounded by major faults), (ii) a strong correlation between these low velocity zones and radial anisotropy (Vsh faster than Vsv), and (iii) that the pattern of crustal (azimuthal) anisotropy is quite different from that in the deep crust and mantle lithosphere. Furthermore, the spatial relationship with high heat flow, high (electrical) conductivity, and high Poisson’s ratio’s suggests that the crustal zones of low shear velocity are mechanically weak. Collectively, these inferences suggest that deformation is generally not vertically coherent and that (horizontal) ductile flow occurs (at least locally) in the deep crust of SE Tibet. Deformation of the lithosphere in SE Tibet may thus occur through interaction of geological units with and without crustal flow that are separated by major faults.

  2. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2004-01-01

    We present a computer program which solves the Schrodinger equation of the stationary states for an average nuclear potential of Woods-Saxon type. In this work, we take specifically into account triaxial (i.e. ellipsoidal) nuclear surfaces. The deformation is specified by the usual Bohr parameters. The calculations are carried out in two stages. In the first, one calculates the representative matrix of the Hamiltonian in the Cartesian oscillator basis. In the second stage one diagonalizes this matrix with the help of subroutines of the Eispack library. If it is wished, one can calculate all eigenvalues, or only the part of the eigenvalues that are contained in a fixed interval defined in advance. In this latter case the eigenvectors are given conjointly. The program is very rapid, and the run-time is mainly used for the diagonalization. Thus, it is possible to use a significant number of the basis states in order to insure a best convergence of the results. Program summaryProgram obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Title of program:Triaxial Catalogue number:ADSK Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSK Licensing provisions:None Computer:PC. AMD Athlon 1000 MHz Hard disk:40 Go Ram:256 Mo Swap file:4 Go Operating system:WINDOWS XP Software used:Microsoft Visual Fortran 5.0A (with full optimizations in the settings project options) Programming language:Fortran 77/90 (double precision) Number of bits in a word:32 Number of lines:7662 No. of bytes in distributed program, including test data, etc.:174 601 Distribution format:tar gzip file Nature of the problem: The single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters ( β,

  3. Single particle calculations for a Woods Saxon potential with triaxial deformations, and large Cartesian oscillator basis (new version code)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2007-05-01

    We present a new version of the computer program which solves the Schrödinger equation of the stationary states for an average nuclear potential of Woods-Saxon type. In this work, we take specifically into account triaxial (i.e. ellipsoidal) nuclear surfaces. The deformation is specified by the usual Bohr parameters. The calculations are carried out in two stages. In the first, one calculates the representative matrix of the Hamiltonian in the Cartesian oscillator basis. In the second stage one diagonalizes this matrix with the help of subroutines of the EISPACK library. This new version calculates all the eigenvalues up to a given cutoff energy, and gives the components of the corresponding eigenfunctions. For a more convenient handling, these results are stored simultaneously in the computer memory, and on a files. Program summaryTitle of program:Triaxial2007 Catalogue identifier:ADSK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSK_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Summary of revision:One input file instead two. Reduced number of input parameters. Storage of eigenvalues and eigenvectors in memory in a very simple way which makes the code very convenient to the user. Reasons for the new version: More convenient handling of the eigenvectors Catalogue number old version: ADSK Catalogue number new version:ADSK_v2_0 Journal: Computer Physics Commun. 156 (2004) 241-282 Licensing provisions: none Computer: PC Pentium 4, 2600 MHz Hard disk: 40 Gb RAM: 256 Mb Swap file: 4 Gb Operating system: WINDOWS XP Software used: Compaq Visual FORTRAN (with full optimizations in the settings project options) Programming language used:Fortran 77/90 (double precision) Number of bits in a word: 32 No. of lines in distributed program, including test data, etc.:4058 No. of bytes in distributed program, including test data, etc.:75 590 Distribution format:tar.gz Nature of the problem: The single particle energies

  4. Room-Temperature, Near-Instantaneous Fabrication of Auxetic Materials with Constant Poisson's Ratio over Large Deformation.

    PubMed

    Li, Yan; Zeng, Changchun

    2016-04-01

    A novel compressed carbon dioxide assisted fabrication method is demonstrated to produce auxetic PU foam. Auxetic PU foams can be fabricated at room temperature (25 °C) in several seconds with compressed CO2 . This technology overcomes some key challenging issues in the large-scale production of auxetic PU foams. PMID:26861805

  5. An Analysis of Flight-Test Measurements of the Wing Structural Deformations in Rough Air of a Large Flexible Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Murrow, Harold N.

    1959-01-01

    An analysis is made of wing deflection and streamwise twist measurements in rough-air flight of a large flexible swept-wing bomber. Random-process techniques are employed in analyzing the data in order to describe the magnitude and characteristics of the wing deflection and twist responses to rough air. Power spectra and frequency-response functions for the wing deflection and twist responses at several spanwise stations are presented. The frequency-response functions describe direct and absolute response characteristics to turbulence and provide a convenient basis for assessing analytic calculation techniques. The wing deformations in rough air are compared with the expected deformations for quasi-static loadings of the same magnitude, and the amplifications are determined. The results obtained indicate that generally the deflections are amplified by a small amount, while the streamwise twists are amplified by factors of the order of 2.0. The magnitudes of both the deflection velocities and the twist angles are shown to have significant effects on the local angles of attack at the various stations and provide the main source of aerodynamic loading, particularly at frequencies in the vicinity of the first wing-vibration mode.

  6. Surface effect on the large amplitude periodic forced vibration of first-order shear deformable rectangular nanoplates with various edge supports

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Gholami, R.

    2016-01-01

    Surface stress and surface inertia effects may play a significant role in the mechanical characteristics of nanostructures with a high surface to volume ratio. The objective of this study is to present a comprehensive study on the surface stress and surface inertia effects on the large amplitude periodic forced vibration of first-order shear deformable rectangular nanoplates. To this end, the Gurtin-Murdoch theory, first-order shear deformation theory (FSDT) and Hamilton's principle are employed to develop a non-classical continuum plate model capable of taking the surface stress and surface inertia effects and also the rotary and in-plane inertias into account. To solve numerically the geometrically nonlinear forced vibration of nanoplates with different boundary conditions, the generalized differential quadrature (GDQ) method, numerical Galerkin scheme, periodic time differential operators and pseudo arc-length continuation method are employed. The effects of parameters such as thickness, surface residual stress, surface elasticity, surface mass density, length-to-thickness ratio, width-to-thickness ratio and boundary conditions on the nonlinear forced vibration of rectangular nanoplates are fully investigated. The results demonstrate that surface effects on the nonlinear frequency response of aluminum (Al) nanoplate are more prominent in comparison with the silicon (Si) nanoplate.

  7. Resurgent deformation quantisation

    SciTech Connect

    Garay, Mauricio; Goursac, Axel de; Straten, Duco van

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  8. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  9. A Paleomagnetic Investigation of Large-Scale Vertical Axis Rotations in Coastal Sonora: Evidence for Transtensional Proto-Gulf Deformation

    NASA Astrophysics Data System (ADS)

    Herman, S. W.; Gans, P. B.

    2006-12-01

    A paleomagnetic investigation into possible vertical axis rotations has been conducted in the Sierra el Aguaje and Sierra Tinajas del Carmen, Sonora, Mexico, in order assess proposed styles for oblique continental rifting in the Gulf of California. Two styles of rifting have been proposed; (1) strain partitioning (Stock and Hodges, 89), and (2) transtension (Gans, 97), for the Proto-Gulf period of the Gulf of California. The presence of large- scale vertical axis rotations would lend weight to the argument for transtension. The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico. The ranges represent the eastern-rifted margin of the central Gulf of California. This is one of the few areas of that margin which is entirely above water, with new ocean crust of the Guaymas basin lying immediately offshore of the western edge of the ranges. The ranges are composed of volcanic units and their corresponding volcaniclastic units that are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje and Sierra Tinajas del Carmen is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. Existing field relations suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. The results of the paleomagnetic investigation are consistent with the field evidence and show large clockwise rotations between ~30° and

  10. The Driving Forces of the Large-Scale Deformation in the India-Eurasia Collision Region: Joint Modeling of Lithosphere and Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, X.; Holt, W. E.; Ghosh, A.

    2014-12-01

    The origin of the large-scale deformation of the India-Eurasia collision zone has been pursued for more than 4 decades. However, the driving forces for the largest area of continental deformation zone on earth have not been entirely resolved; the source of such driving forces remains enigmatic. One reason could be that the driving forces have to be sufficiently large to overcome the resistance of the Tibetan Plateau, created by excess gravitational potential energy (GPE) over a long time span. Another reason is that seismic experiments carried out in the Tibetan Plateau, due to the harsh natural conditions, are fewer, making it challenging to resolve high-resolution seismic structure beneath Tibet. We address this issue of driving forces in this deformation zone by quantifying the primary contributions to the lithospheric stress field. We take into account effects of topography and shallow lithosphere structure, as well as tractions originating from deeper mantle convection, in order to calculate model estimates of the total lithosphere stresses. We evaluate recent published global seismic tomographic models (P-wave, S-wave, and geodynamic models) and select a tomographic model which, when used in the semi-analytical mantle circulation model HC (Hager and O'Connell, 1981; Milner et al., 2009), provides a best fit to observations of geoid, surface motions, strain rates, and stress orientations. We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the circulation model, which can only handle radial viscosity variations. After using the selected seismic tomographic model of SAW642AN (Panning and Romanowicz, 2006) to compute the global lithosphere stresses, we refine the calculated stresses in the India-Eurasia collision zone. Our results show that both the driving stresses from mantle convection and GPE differences contribute to the deviatoric stress field in

  11. a Method to Achieve Large Volume, High Accuracy Photogrammetric Measurements Through the Use of AN Actively Deformable Sensor Mounting Platform

    NASA Astrophysics Data System (ADS)

    Sargeant, B.; Robson, S.; Szigeti, E.; Richardson, P.; El-Nounu, A.; Rafla, M.

    2016-06-01

    When using any optical measurement system one important factor to consider is the placement of the sensors in relation to the workpiece being measured. When making decisions on sensor placement compromises are necessary in selecting the best placement based on the shape and size of the object of interest and the desired resolution and accuracy. One such compromise is in the distance the sensors are placed from the measurement surface, where a smaller distance gives a higher spatial resolution and local accuracy and a greater distance reduces the number of measurements necessary to cover a large area reducing the build-up of errors between measurements and increasing global accuracy. This paper proposes a photogrammetric approach whereby a number of sensors on a continuously flexible mobile platform are used to obtain local measurements while the position of the sensors is determined by a 6DoF tracking solution and the results combined to give a single set of measurement data within a continuous global coordinate system. The ability of this approach to achieve both high accuracy measurement and give results over a large volume is then tested and areas of weakness to be improved upon are identified.

  12. Multivariate regression approaches for surrogate-based diffeomorphic estimation of respiratory motion in radiation therapy

    NASA Astrophysics Data System (ADS)

    Wilms, M.; Werner, R.; Ehrhardt, J.; Schmidt-Richberg, A.; Schlemmer, H.-P.; Handels, H.

    2014-03-01

    Breathing-induced location uncertainties of internal structures are still a relevant issue in the radiation therapy of thoracic and abdominal tumours. Motion compensation approaches like gating or tumour tracking are usually driven by low-dimensional breathing signals, which are acquired in real-time during the treatment. These signals are only surrogates of the internal motion of target structures and organs at risk, and, consequently, appropriate models are needed to establish correspondence between the acquired signals and the sought internal motion patterns. In this work, we present a diffeomorphic framework for correspondence modelling based on the Log-Euclidean framework and multivariate regression. Within the framework, we systematically compare standard and subspace regression approaches (principal component regression, partial least squares, canonical correlation analysis) for different types of common breathing signals (1D: spirometry, abdominal belt, diaphragm tracking; multi-dimensional: skin surface tracking). Experiments are based on 4D CT and 4D MRI data sets and cover intra- and inter-cycle as well as intra- and inter-session motion variations. Only small differences in internal motion estimation accuracy are observed between the 1D surrogates. Increasing the surrogate dimensionality, however, improved the accuracy significantly; this is shown for both 2D signals, which consist of a common 1D signal and its time derivative, and high-dimensional signals containing the motion of many skin surface points. Eventually, comparing the standard and subspace regression variants when applied to the high-dimensional breathing signals, only small differences in terms of motion estimation accuracy are found.

  13. Multivariate regression approaches for surrogate-based diffeomorphic estimation of respiratory motion in radiation therapy.

    PubMed

    Wilms, M; Werner, R; Ehrhardt, J; Schmidt-Richberg, A; Schlemmer, H-P; Handels, H

    2014-03-01

    Breathing-induced location uncertainties of internal structures are still a relevant issue in the radiation therapy of thoracic and abdominal tumours. Motion compensation approaches like gating or tumour tracking are usually driven by low-dimensional breathing signals, which are acquired in real-time during the treatment. These signals are only surrogates of the internal motion of target structures and organs at risk, and, consequently, appropriate models are needed to establish correspondence between the acquired signals and the sought internal motion patterns. In this work, we present a diffeomorphic framework for correspondence modelling based on the Log-Euclidean framework and multivariate regression. Within the framework, we systematically compare standard and subspace regression approaches (principal component regression, partial least squares, canonical correlation analysis) for different types of common breathing signals (1D: spirometry, abdominal belt, diaphragm tracking; multi-dimensional: skin surface tracking). Experiments are based on 4D CT and 4D MRI data sets and cover intra- and inter-cycle as well as intra- and inter-session motion variations. Only small differences in internal motion estimation accuracy are observed between the 1D surrogates. Increasing the surrogate dimensionality, however, improved the accuracy significantly; this is shown for both 2D signals, which consist of a common 1D signal and its time derivative, and high-dimensional signals containing the motion of many skin surface points. Eventually, comparing the standard and subspace regression variants when applied to the high-dimensional breathing signals, only small differences in terms of motion estimation accuracy are found. PMID:24557007

  14. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation

    PubMed Central

    Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S.; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. Methods: The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. Results: The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. Conclusions: The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the

  15. The Effect of Large Melt Fraction on the Deformation Behavior of Peridotite: Implications for the Rheology of Io' Mantle

    NASA Technical Reports Server (NTRS)

    Scott, T.; Kohlstedt, D. L.

    2004-01-01

    One key constraint needed for refinement of the interior geochemical and geodynamic models of Io is the viscosity of the convecting partially- molten silicate mantle. To date, laboratory studies of partially molten mantle rocks have reached melt fractions up to approx.0.12, a value much smaller than thought to be appropriate for the asthenosphere of Io where the degree of partial melting may be 0.15 0.40 or higher. Therefore, we have performed a series of high temperature, triaxial compressive creep experiments on dry synthetic peridotites in a gas medium apparatus at a confining pressure of 300 MPa and temperatures from 1473 to 1573 K in order to understand the influence of large amounts of melt (0.15 < phi < 0.40) on the rheological behavior of partially molten rocks.

  16. Global and local large-deformation response of sub-micron, soft- and hard-particle filled polycarbonate

    NASA Astrophysics Data System (ADS)

    Krop, Sam; Meijer, Han E. H.; van Breemen, Lambert C. A.

    2016-02-01

    Since polymers play an increasingly important role in both structural and tribological applications, understanding their intrinsic mechanical response is key. Therefore in the last few decades much effort has been devoted into the development of constitutive models that capture the polymers' intrinsic mechanical response quantitatively. An example is the Eindhoven Glassy Polymer model. In practice most polymers are filled, e.g. with hard particles or fibers, with colorants, or with soft particles that serve as impact modifiers. To characterize the influence of type and amount of filler particles on the intrinsic mechanical response, we designed model systems of polycarbonate with different volume fractions of small, order 100 nm sized, either hard or soft particles, and tested them in lubricated uniaxial compression experiments. To reveal the local effects on interparticle level, three-dimensional representative volume elements (RVEs) were constructed. The matrix material is modeled with the EGP model and the fillers with their individual mechanical properties. It is first shown that (only) 32 particles are sufficient to capture the statistical variations in these systems. Comparing the simulated response of the RVEs with the experiments demonstrates that in the small strain regime the stress is under-predicted since the polymer matrix is modeled by using only one single relaxation time. The yield- and the large strain response is captured well for the soft-particle filled systems while, for the hard-particles at increased filler loadings, the predictions are less accurate. This is likely caused by polymer-filler interactions that result in accelerated physical aging of the polymer matrix close to the surfaces. Modifying the Sa-parameter, that captures the thermodynamic state of the polymer matrix, allows us to correctly predict the macroscopic response after yield. The simulations reveal that all rate-dependencies of the different filled systems originate from

  17. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  18. Conceptual Numerical Modeling of Large-Scale Footwall Behavior at the Kiirunavaara Mine, and Implications for Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Svartsjaern, M.; Saiang, D.; Nordlund, E.; Eitzenberger, A.

    2016-03-01

    Over the last 30 years, the Kiirunavaara mine has experienced a slow but progressive fracturing and movement in the footwall rock mass, which is directly related to the sublevel caving (SLC) method utilized by Luossavaara-Kiirunavaara Aktiebolag (LKAB). As part of an ongoing work, this paper focuses on describing and explaining a likely evolution path of large-scale fracturing in the Kiirunavaara footwall. The trace of this fracturing was based on a series of damage mapping campaigns carried out over the last 2 years, accompanied by numerical modeling. Data collected from the damage mapping between mine levels 320 and 907 m was used to create a 3D surface representing a conceptual boundary for the extent of the damaged volume. The extent boundary surface was used as the basis for calibrating conceptual numerical models created in UDEC. The mapping data, in combination with the numerical models, indicated a plausible evolution path of the footwall fracturing that was subsequently described. Between levels 320 and 740 m, the extent of fracturing into the footwall appears to be controlled by natural pre-existing discontinuities, while below 740 m, there are indications of a curved shear or step-path failure. The step-path is hypothesized to be activated by rock mass heave into the SLC zone above the current extraction level. Above the 320 m level, the fracturing seems to intersect a subvertical structure that daylights in the old open pit slope. Identification of these probable damage mechanisms was an important step in order to determine the requirements for a monitoring system for tracking footwall damage. This paper describes the background work for the design of the system currently being installed.

  19. Skeleton-and-bubble model of polyether-polyurethane elastic open-cell foams for finite element analysis at large deformations

    NASA Astrophysics Data System (ADS)

    Sabuwala, Tapan; Gioia, Gustavo

    2013-03-01

    We formulate a new micromechanical model of elastic open-cell (EOC) foams. In this model, the usual skeleton of open-cell foams is supplemented by fitting a thin-walled bubble within each cavity of the skeleton, as a substitute for the membranes that occlude the "windows" of the foam cells in polyether-polyurethane EOC foams. The model has nine parameters; each parameter has a clear geometrical or mechanical significance, and its value may be readily estimated for any given foam. To calibrate the model, we carry out fully nonlinear, three-dimensional finite-element simulations of the experiments of Dai et al. (2011a), in which a set of five polyether-polyurethane EOC foams covering a range of commercially available relative densities was tested under compression along the rise direction, compression along a transverse direction, tension along the rise direction, simple shear combined with compression along the rise direction, and hydrostatic pressure combined with compression along the rise direction. We show that, with a suitable choice of the values of the parameters of the model, the model is capable of reproducing the most salient trends evinced in the experimental stress-stretch curves. Yet the model can no longer reproduce all of these trends if the bubbles be excluded from the model, and we conclude that the bubbles play a crucial role at large deformations. We also show that the stretch fields that obtain in our computational simulations are in good accord with the digital-image-correlation (DIC) measurements of Dai et al. For simple shear combined with compression along the rise direction, the DIC measurements of Dai et al. prove insufficient to our purposes, and we carry out DIC measurements of our own. To demonstrate the performance of the model in a typical application of polyether-polyurethane EOC foams, we carry out experiments and simulations of foam specimens loaded through a cylindrical punch and a spherical punch. We conclude the paper with a

  20. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718

  1. Control of tectonic setting and large-scale faults on the basin-scale distribution of deformation bands in porous sandstone (Provence, France)

    NASA Astrophysics Data System (ADS)

    Ballas, G.; Soliva, R.; Benedicto, A.; Sizun, J.

    2013-12-01

    From outcrops located in Provence (South-East France), we describe the distribution, the microstructures, and the petrophysical properties of deformation bands networks related to different tectonic events. In contractional setting, pervasively distributed networks of reverse-sense compactional-shear bands are observed in all the folded-sand units of the foreland, whereas localized networks of clustered reverse-sense shear bands are only observed close to a large-scale thrust. In extensional setting, networks of clustered normal-sense shear bands are generally observed adjacent to large-scale faults, although few and randomly distributed bands are also observed between these faults. Normal-sense cataclastic faults are also observed restricted to sand units, suggesting that faults can initiate in the sands in extension, which is not observed in contraction. Shear bands and faults show cataclastic microstructures of low-permeability whereas compactional-shear bands show crush microbreccia or protocataclastic microstructures of moderate permeability. This basin-scale analysis underlines the major role of tectonic settings (thrust-fault versus normal-fault andersonian-stress regime) and the influence of inherited large-scale faults on the formation of low-permeability shear bands. We also provide a geometrical analysis of the band network properties (spacing, thickness, shear/compaction ratio, degree of cataclasis, petrophysical properties) with respect to the host sand granulometry. This analysis suggests that granulometry, although less important than tectonic setting and the presence of large-scale faults, has however a non-negligible effect on the band networks geometry.

  2. Deep seated gravitational slope deformations and large landslides: implications on landslide hazard of urban areas and coastal erosion phenomena of Mount Poro headland

    NASA Astrophysics Data System (ADS)

    Guerricchio, A.; Simeone, V.

    2012-04-01

    Deep seated gravitational slope deformations (DSGSD) characterize the north west and south side of Mount Poro headland, mid Calabria, south Italy, as reported by Guerrichio (2000). This work investigates the DSGSD of Mount Poro headland, in particular the gravitational collapses, occurring between the coast and the western flank of the headland up to an elevation of about 500-600 m AMSL. These collapses seem to be inconsistent with the local lithotypes, made by the substratum of granitic complex of Polia-Copanello. In particular, Ietto and Calcaterra (1988) identified DSGSDs in the area of Zaccanopoli. They assumed these phenomena on the edge between post-uplift gravitative tectonics and deep seated gravitational deformations that were referred to morphologies sub-parallel to the banks of two important local rivers. The local geology comprises severely fractured and sometimes cataclastic granitic rocks. These show deep sub-vertical fracture, bow-shaped and oriented along the direction NNE-SSW in the upstream areas, at an elevation between 500 and 600 m AMSL. For those areas on the right side of the headland, fractures are oriented along NE-SW, N-S and NW-SE, while on the left side of the headland fractures are oriented W-E and NW-SE. In the upstream areas, there are frequent depressed and stretched stripes of land, which are crossed by fractures, which affect granitic masses for a difference of elevation ranging between few tens of meters and one hundred meters. Similar differences of elevation can also be observed either inside the DSGSDs, and the large landslides, like that located immediately upstream Dropia town, where for instance a one hundred meters concave scarp shows. Inside the DSGSDs and inside the topping Pleistocenic deposits, there are frequent twofold terraces, which can be hardly dated. In fact, no fossils are present, and then it is possible to assume their age just on a geomorphologic base. The entire area involved by the DSGSD is few tens of

  3. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  4. Modeling large-strain deformation behavior and neighborhood effects during hot working of a coarse-grain nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Turner, T. J.; Semiatin, S. L.

    2011-09-01

    Isothermal, uniaxial compression tests and accompanying numerical simulations were conducted on Waspaloy-ingot specimens to quantify deformation heterogeneity during hot working of coarse, columnar-grain materials. This was used as a means to approximate deformation processing in ingot materials. Electron-backscatter-diffraction (EBSD) measurements were made before and after compression testing to quantify microstructure evolution. A crystal-plasticity finite-element-method model, in which the starting microstructure was instantiated using EBSD scans of the undeformed material, was used to simulate the deformation. Good agreement was found between observations and simulation predictions of specimen profiles and intra-grain misorientations. The simulation results also revealed that the grain neighborhood appeared to be a principal factor controlling the heterogeneity of deformation at the grain scale. Significant differences in the simulated deformation of a given grain were noted for various arrangements of the orientations of its neighbors. In particular, the first- and second-nearest neighbors of a given grain have the most significant effect on heterogeneous deformation behavior.

  5. A cosmological viewpoint on the correspondence between deformed phase-space and canonical quantization

    NASA Astrophysics Data System (ADS)

    Khosravi, Nima; Sepangi, Hamid Reza; Vakili, Babak

    2010-05-01

    We employ the familiar canonical quantization procedure in a given cosmological setting to argue that it is equivalent to and results in the same physical picture if one considers the deformation of the phase-space instead. To show this we use a probabilistic evolutionary process to make the solutions of these different approaches comparable. Specific model theories are used to show that the independent solutions of the resulting Wheeler-DeWitt equation are equivalent to solutions of the deformation method with different signs for the deformation parameter. We also argued that since the Wheeler-DeWitt equation is a direct consequence of diffeomorphism invariance, this equivalence is only true provided that the deformation of phase-space does not break such an invariance.

  6. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stoica, Mihai; Scudino, Sergio; Bednarčik, Jozef; Kaban, Ivan; Eckert, Jürgen

    2014-02-01

    By adding 0.5 at. % Cu to the strong but brittle [(Fe0.5Co0.5)0.75Si0.05B0.20]96Nb4 bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs.

  7. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    SciTech Connect

    Stoica, Mihai Scudino, Sergio; Bednarčik, Jozef; Kaban, Ivan; Eckert, Jürgen

    2014-02-07

    By adding 0.5 at. % Cu to the strong but brittle [(Fe{sub 0.5}Co{sub 0.5}){sub 0.75}Si{sub 0.05}B{sub 0.20}]{sub 96}Nb{sub 4} bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs.

  8. QCD-like theories on R{sub 3}xS{sub 1}: A smooth journey from small to large r(S{sub 1}) with double-trace deformations

    SciTech Connect

    Shifman, M.; Uensal, Mithat

    2008-09-15

    We consider QCD-like theories with one massless fermion in various representations of the gauge group SU(N). The theories are formulated on R{sub 3}xS{sub 1}. In the decompactification limit of large r(S{sub 1}) all these theories are characterized by confinement, mass gap, and spontaneous breaking of a (discrete) chiral symmetry ({chi}SB). At small r(S{sub 1}), in order to stabilize the vacua of these theories at a center-symmetric point, we suggest to perform a double-trace deformation. With this deformation, the theories at hand are at weak coupling at small r(S{sub 1}) and yet exhibit basic features of the large r(S{sub 1}) limit: confinement and {chi}SB. We calculate the string tension, mass gap, bifermion condensates, and {theta} dependence. The double-trace deformation becomes dynamically irrelevant at large r(S{sub 1}). Despite the fact that at small r(S{sub 1}) confinement is Abelian, while it is expected to be non-Abelian at large r(S{sub 1}), we argue that small and large r(S{sub 1}) physics are continuously connected. If so, one can use small r(S{sub 1}) laboratory to extract lessons about QCD and QCD-like theories on R{sub 4}.

  9. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar- 39Ar age of Kap Washington Group volcanics, North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Lo, C.-H.; Knudsen, M. F.

    2011-03-01

    The High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and has been suggested to include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan Orogeny. New 40Ar-39Ar dating of alkaline volcanics from Kap Kane, part of the Kap Washington Group volcanics at the northern tip of Greenland, provides an emplacement age of 71.2 ± 0.5 Ma obtained from amphibole in lapilli tuffs, and a thermal resetting age of 49-47 Ma obtained in feldspar and whole-rocks from trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting. This thermal event is interpreted as a result of compressional tectonism of the Kap Cannon Thrust Zone in which older Palaeozoic metasediments were thrusted northwards over the Kap Washington Group volcanics. The formation of the tholeiitic suite (130-80 Ma) is linked to the opening of the Canada Basin and may involve mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay, and to eastwards displacement of Greenland relative to North America. The alkaline suite, therefore, may be unrelated to the main tholeiitic phase of the High Arctic Large Igneous Province. The subsequent initiation of continental rifting and ensuing seafloor spreading in the Northeast Atlantic resulted in spreading and volcanism (61-25 Ma) on both sides of Greenland, pushing Greenland northwards relative to North America. The tectonic setting in the High Arctic thus changed from extensional to compressional and volcanic activity was terminated. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  10. Lorentz-diffeomorphism quasi-local conserved charges and Virasoro algebra in Chern-Simons-like theories of gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-08-01

    The Chern-Simons-like theories of gravity (CSLTG) are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz-Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.

  11. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  12. Stopping Criteria for Log-Domain Diffeomorphic Demons Registration: An Experimental Survey for Radiotherapy Application.

    PubMed

    Peroni, M; Golland, P; Sharp, G C; Baroni, G

    2016-02-01

    A crucial issue in deformable image registration is achieving a robust registration algorithm at a reasonable computational cost. Given the iterative nature of the optimization procedure an algorithm must automatically detect convergence, and stop the iterative process when most appropriate. This paper ranks the performances of three stopping criteria and six stopping value computation strategies for a Log-Domain Demons Deformable registration method simulating both a coarse and a fine registration. The analyzed stopping criteria are: (a) velocity field update magnitude, (b) mean squared error, and (c) harmonic energy. Each stoping condition is formulated so that the user defines a threshold ∊, which quantifies the residual error that is acceptable for the particular problem and calculation strategy. In this work, we did not aim at assigning a value to e, but to give insights in how to evaluate and to set the threshold on a given exit strategy in a very popular registration scheme. Experiments on phantom and patient data demonstrate that comparing the optimization metric minimum over the most recent three iterations with the minimum over the fourth to sixth most recent iterations can be an appropriate algorithm stopping strategy. The harmonic energy was found to provide best trade-off between robustness and speed of convergence for the analyzed registration method at coarse registration, but was outperformed by mean squared error when all the original pixel information is used. This suggests the need of developing mathematically sound new convergence criteria in which both image and vector field information could be used to detect the actual convergence, which could be especially useful when considering multi-resolution registrations. Further work should be also dedicated to study same strategies performances in other deformable registration methods and body districts. PMID:24000996

  13. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    NASA Astrophysics Data System (ADS)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  14. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus.

    PubMed

    Guignard, Jeremy; Crichton, Wilson A

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10(-4) to 10(-6) s(-1). Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10(-3) Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T-σ-ε̇ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation. PMID:26329238

  15. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus

    NASA Astrophysics Data System (ADS)

    Guignard, Jeremy; Crichton, Wilson A.

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10-4 to 10-6 s-1. Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10-3 Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T- σ - ɛ ˙ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation.

  16. Optimization of Kinematic GPS Data Analysis for Large Surface Deformation from the July 2003 Dome Collapse at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Medina, R. B.; Mattioli, G. S.; Braun, J.

    2013-12-01

    position parameters to increase the precision of GPS position estimates during the eruption. BGGY, a station located 48 km northeast on Antigua, was used as a control to optimize the parameters for modeling the atmospheric variations more accurately for this type of environment, since BGGY is subjected to the similar weather patterns but was unaffected by volcanic activity at SHV. The final stochastic parameters were selected to yield the lowest variance in the kinematic position time-series at BGGY, then, HERM was reprocessed using the same parameters. The apparent vertical movement at HERM has been reduced substantially, and now has a maximum of 2.5 cm with a variation of 30 cm in the zenith wet troposphere estimate. We conclude that the original default parameters used to process that GPS observations over-constrained possible atmospheric variation for this tropical environment, producing apparently large dynamic position changes. Our new results now reflect actual dynamic ground deformation during the massive dome collapse and may be used to develop improved models for volcanic processes that occur over time scales of minutes to hours at SHV and other tropical volcanoes.

  17. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  18. Large scale displacements and internal deformations of the Outer Western Carpathians during the Cenozoic as manifested in paleomagnetic rotations and in the magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Tokarski, Antek K.

    2016-04-01

    The paleomagnetic and magnetic anisotropy results interpreted in this presentation in terms of tectonics were obtained on the fine grained members, mostly mudstones/claystones, of the flysch from the Magura, the Silesian and the Dukla rootless nappes. The results are the best from the Upper Oligocene Krosno beds, which were affected by compression soon after deposition. These beds were available for sampling in the Silesian and Dukla nappes, but absent in the Magura nappe. Thus, in the latter older Paleogene strata were tested. A common feature of all sampled sediments is the low susceptibility (in the range of 10‑4 SI or lower), weak remanence and the presence of pyrite. AMS measurements point to quite strong and probably repeated deformation in the Magura nappe, and the remanence is of-post-folding age. The AMS of the Silesian and Dukla nappes indicate weaker deformation, the orientations of the AMS lineations reflect compression. The remanence is of pre-folding age in the western and central segments of the Silesian nappe and is a mixture of pre and post-folding magnetization in the eastern segment. All the so far mentioned areas must have been affected by about 60° CCW rotation which followed the internal deformation. The Dukla nappe also rotated in the CCW sense, but the angle is far from well-defined. This can be attributed to the complicated internal structure of the nappe (e.g. presence of olistoliths) and non-removable overprint magnetizations. The relationship between local tectonic strikes and AMS lineations seems to imply that the ductile deformation responsible for the AMS lineations were acquired first, and the map-scale structures came into being during the CCW rotation of the studied segment of the nappe. AARM measurements documented that the fabrics of the ferrimagnetic minerals are often different from the orientation of the AMS fabrics. In such cases, they either fail to define an ellipsoid or the general orientations of the maxima are

  19. Analysis of long-wavelength signals in InSAR to resolve large-scale deformation: Application to the Western Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Amelung, F.; Greene, F.; Wdowinski, S.

    2012-12-01

    We present the contemporary velocity field in the western Basin and Range province observed by satellite radar imagery. We use 18 years of ERS 1,2 and Envisat data to study 5 descending swaths nearly 600 to 700 km long. We followed the Small Baseline Subset (SBAS) algorithm to generate time series of ground displacements and average velocities. We only exploit pixels of the interferograms, which remain coherent through time in the SAR dataset. Our time-series mean velocity maps show a broad area of uplift located in Central Nevada Seismic Belt (CNSB) with velocities as high as 2 to 3 mm/yr. Previous studies based on 9 years of SAR data explained this uplift as postseismic mantle relaxation after a sequence of four earthquakes (M ~ 7) that occurred in the first half of the 20th century. After increasing the spatial and temporal coverage of SAR imagery, results indicate that the velocity is slowing down during the decade covered by Envisat and post-2000 ERS 2 acquisitions. Unfortunately, long-wavelength noise is introduced to InSAR data from uncertainties in the satellite orbits, and an improper estimation and removal of these artifacts can lead to significant error in the estimated displacements. To understand how these errors affect our results we produce time-series in non-deforming areas and analyze long-wavelength residuals in terms of vertical and horizontal baseline errors, however ERS SAR imagery in non-deforming areas is limited in temporal and spatial coverage. We thus extend our analysis of ERS data using InSAR time-series near the Nevada-Utah border, were we expect to observe low rates of deformation. Finally we perform an analysis of short and long-wavelength signals for all the overlapping areas of the adjacent tracks localized between CNSB and the Nevada-Utah border. The error distribution in areas with low rates or no deformation is valuable for the assessment of the apparent deformation signal observed at CNSB.

  20. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  1. Madelung deformity.

    PubMed

    Ghatan, Andrew C; Hanel, Douglas P

    2013-06-01

    Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962

  2. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Kellett, Dawn A.

    2015-09-01

    The presence of hot, weak crust is a central component of recent hypotheses that seek to explain the evolution of continent-continent collisions, and in particular may play an important role in accommodating the >3000 km of convergence within the Himalaya-Tibetan collision over the last ˜55 Myr. Models that implicate flow of semi-viscous midcrustal rocks south toward the front of the Himalayan orogen, 'channel flow', are able to account for many geologic observations in the Himalaya, while alternative models of collision, particularly 'thrust-wedge taper', demonstrate that much of the observed geology could have formed in the absence of a low-viscosity mid-crustal layer. Several recent studies, synthesized here, have prompted a shift from initial assumptions that channel flow and thrust-wedge taper processes are by definition mutually exclusive. These new studies reveal the presence of several tectonometamorphic discontinuities in the midcrust that appear to reflect a continuum of deformation in which both channel- and wedge-type processes operate in spatially and temporally distinct domains within the orogen, and further, that the system may migrate back and forth between these types of behavior. This continuum of deformation styles within the collisional system is of crucial importance for explaining the evolution of the Himalayan orogen and, hence, for understanding the evolution of Earth's many continent-continent collision zones.

  3. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  4. Deformation and collapse of the higher-order optical vortices obtained by large-angle diffraction in computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Bekshaev, Aleksandr; Orlinska, Oksana

    2009-10-01

    Spatial characteristics of the optical-vortex (OV) beams created during the Gaussian beam diffraction by a grating with groove bifurcation are analyzed theoretically and numerically. In contrast to previous works, condition of small-angle diffraction is no longer required and the diffracted beam can be strongly deformed. This causes the intensity profile rotation and the high-order OV decomposition into a set of secondary single-charged OVs. These effects are studied quantitatively and confronted with similar properties of a Laguerre-Gaussian beam that undergoes astigmatic telescopic transformation. In contrast to the latter case, the secondary OVs do not lie on a single straight line within the beam cross section, and morphology parameters of the individual secondary OVs carried by the same beam are, in general, different. The results can be used for practical generation of OV beams and OV arrays with prescribed properties.

  5. Log-Euclidean free-form deformation

    NASA Astrophysics Data System (ADS)

    Modat, Marc; Ridgway, Gerard R.; Daga, Pankaj; Cardoso, M. J.; Hawkes, David J.; Ashburner, John; Ourselin, Sébastien

    2011-03-01

    The Free-Form Deformation (FFD) algorithm is a widely used method for non-rigid registration. Modifications have previously been proposed to ensure topology preservation and invertibility within this framework. However, in practice, none of these yield the inverse transformation itself, and one loses the parsimonious B-spline parametrisation. We present a novel log-Euclidean FFD approach in which a spline model of a stationary velocity field is exponentiated to yield a diffeomorphism, using an efficient scaling-and-squaring algorithm. The log-Euclidean framework allows easy computation of a consistent inverse transformation, and offers advantages in group-wise atlas building and statistical analysis. We optimise the Normalised Mutual Information plus a regularisation term based on the Jacobian determinant of the transformation, and we present a novel analytical gradient of the latter. The proposed method has been assessed against a fast FFD implementation (F3D) using simulated T1- and T2-weighted magnetic resonance brain images. The overlap measures between propagated grey matter tissue probability maps used in the simulations show similar results for both approaches; however, our new method obtains more reasonable Jacobian values, and yields inverse transformations.

  6. Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Youn; Yeo, Myoung; Shin, Eun-Jae; Park, Won-Hyeong; Jang, Jong-Seok; Nam, Byeong-Uk; Bae, Jin Woo

    2015-11-01

    In this paper, we propose a variable focus microlens module based on a transparent, electroactive, and non-ionic PVC/DBA gel. A non-ionic PVC/DBA (nPVC) gel on an ITO glass was confined beneath a rigid annular electrode, and applied pressure squeezed a bulge of the nPVC gel into the annular electrode, resulting in a hemispherical plano-convex nPVC gel microlens. The proposed nPVC gel microlens was analyzed and optimized. When voltage is applied to the circular perimeter (the annular electrode) of this fabricated microlens, electrically induced creep deformation of the nPVC gel occurs, changing its optical focal length. The focal length remarkably increases from 3.8 mm up to 14.3 mm with increasing applied voltages from 300 V to 800 V. Due to its compact, transparent, and electroactive characteristics, the proposed nPVC gel microlens can be easily inserted into small consumer electronic devices, such as digital cameras, camcorders, cell phones, and other portable optical devices.

  7. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  8. Construction of a Deformable Spatiotemporal MRI Atlas of the Fetal Brain: Evaluation of Similarity Metrics and Deformation Models

    PubMed Central

    Gholipour, Ali; Limperopoulos, Catherine; Clancy, Sean; Clouchoux, Cedric; Akhondi-Asl, Alireza; Estroff, Judy A.; Warfield, Simon K.

    2014-01-01

    The development and identification of best methods in fetal brain MRI analysis is crucial as we expect an outburst of studies on groupwise and longitudinal analysis of early brain development in the upcoming years. To address this critical need, in this paper, we have developed a mathematical framework for the construction of an unbiased deformable spatiotemporal atlas of the fetal brain MRI and compared it to alternative configurations in terms of similarity metrics and deformation models. Our contributions are twofold: first we suggest a novel approach to fetal brain spatiotemporal atlas construction that shows high capability in capturing anatomic variation between subjects; and second, within our atlas construction framework we evaluate and compare a set of plausible configurations for inter-subject fetal brain MRI registration and identify the most accurate approach that can potentially lead to most accurate results in population atlas construction, atlas-based segmentation, and group analysis. Our evaluation results indicate that symmetric diffeomorphic deformable registration with cross correlation similarity metric outperforms other configurations in this application and results in sharp unbiased atlases that can be used in fetal brain MRI analysis. PMID:25485391

  9. Modeling of Fluid Induced Deformation of the Upper Crust of the Earth: Tilt Investigations About the Large Scale Injection Experiment at the KTB/Germany

    NASA Astrophysics Data System (ADS)

    Jahr, T.; Jentzsch, G.; Gebauer, A.

    2006-12-01

    The injection experiment at the KTB started in June, 2004 with a medium injection rate of 180 liters/minute into the KTB pilot borehole (4000 meters deep). A tiltmeter array, consisting of five high resolution borehole tiltmeters of the ASKANIA type, was operating in the surrounding area of the KTB location from mid 2003 until September 2006. The tiltmeters have a resolution of better than 0.2 msec (about 1 nrad). The aim of the research project was to observe the induced deformation of the upper crust at kilometer scale and to interpret the observation by numerical modeling, together with the monitoring of induced seismicity in the area. We expect elastic as well as anelastic responses: Changes of the rheologic properties due to pore pressure increase will cause changes in the tidal parameters. Further we expect sudden changes of the drift curve as well as slow variations. For the separation of the induced drift signal it is necessary to eliminate locally induced interference, e.g. arising from groundwater variations. The ground water / pore pressure changes, observed at all stations show significant correlations with the recorded tilt signals. The reduction of these locally acting effects and also meteorological influences like barometric pressure changes or precipitation yield tilt signals, which are significantly correlated with the injection experiment: The hodograms, which describe the tip movement of the pendulum over ground, show a clear dominant drift away from the injection point for three stations. This corresponds with a bulge in the area where the injection takes place. The tilt amplitudes are in the order of some milliseconds. Parallel to the observations with the tiltmeter array we quantified the expected additional drift for different injection scenarios at each tiltmeter site, by numerical modeling using the program POEL. It can be demonstrated that the tilt signals caused by injection intervals of less than three days are not detectable by the

  10. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  11. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  12. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  13. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  14. Uniaxial deformation of a soft porous material

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Dufresne, Eric; Wettlaufer, John

    2015-11-01

    Compressing a porous material will decrease the volume of pore space, driving fluid out. Similarly, injecting fluid into a porous material will drive mechanical deformation, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with linear elasticity and then further linearizing in the strain. This is a good model for very small deformations, but it becomes increasingly inappropriate as deformations grow larger, and moderate to large deformations are common in the context of phenomena such as swelling, damage, and extreme softness. Here, we compare the predictions of linear poroelasticity with those of a rigorous large-deformation framework in the context of two uniaxial model problems. We explore the error associated with the linear model in both steady and dynamic situations, as well as the impact of allowing the permeability to vary with the deformation.

  15. Deformation-Induced Anisotropy of Polymers

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1982-01-01

    New theory calculates anisotropies induced by large deformations in polymers. Theory was developed primarily for calculating anistropy of thermal expansivity, but is also applicable to thermal conductivity, elastic moduli and other properties. Theory assumes that in isotropic state, long polymer chains are randomly coiled and not oriented in particular direction. They acquire an orientation when material is deformed. As average molecular orientation increases with deformation, properties of bulk material exhibit averaging of the microscopic anistropies of the oriented molecular segments.

  16. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  17. Solute transport through a deforming porous medium

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Smith, David W.

    2002-06-01

    Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers.

  18. Inflated Soft Actuators with Reversible Stable Deformations.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Sitti, Metin

    2016-05-01

    Most soft robotic systems are currently dependent on bulky compressors or pumps. A soft actuation method is presented combining hyperelastic membranes and dielectric elastomer actuators to switch between stable deformations of sealed chambers. This method is capable of large repeatable deformations, and has a number of stable states proportional to the number of actuatable membranes in the chamber. PMID:27008455

  19. Differential-geometrical approach to the dynamics of dissipationless incompressible Hall magnetohydrodynamics: I. Lagrangian mechanics on semidirect product of two volume preserving diffeomorphisms and conservation laws

    NASA Astrophysics Data System (ADS)

    Araki, Keisuke

    2015-05-01

    The dynamics of a dissipationless incompressible Hall magnetohydrodynamic (HMHD) medium is formulated using Lagrangian mechanics on a semidirect product of two volume preserving diffeomorphism groups. In the case of {{{T}}3} or E3, the generalized Elsässer variables (GEV) introduced by (Galtier 2006 J. Plasma Phys. 72 721-69) yield remarkably simple expressions of basic formulas and equations such as the structure constants of Lie algebra, the equation of motion, and the conservation laws. Four constants of motion, where three of the four are independent, are naturally derived from the GEV representation of the equation of motion for the HMHD system: total plasma energy, magnetic helicity, hybrid helicity, and the modified cross helicity.

  20. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields.

    PubMed

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M; San Jose-Estepar, Raul

    2014-06-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  1. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields

    PubMed Central

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M.; San Jose-Estepar, Raul

    2014-01-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  2. Finite Deformation of Magnetoelastic Film

    SciTech Connect

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  3. Measuring deformations with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Huke, Philipp; Burke, Jan; von Kopylow, Christoph; Bergmann, Ralf B.

    2014-07-01

    Phase-measuring deflectometry is a powerful method to measure reflective surfaces. It is relatively easy to extract slope and curvature information from the measured phase maps; however, retrieving shape information depends very sensitively on the calibration of the camera and the geometry of the measurement system. Whereas we have previously demonstrated shape uncertainties below 1 μm, the range below 100 nm is currently inaccessible to deflectometric shape measurement. On the other hand, the astounding sensitivity of deflectometry can be put to good use for deformation measurements. The evaluation of corresponding shape differences rather than absolute shapes is much less susceptible to system calibration errors and its resolution is given mostly by the measurement system's sensitivity. We give an overview of recent progress in difference deflectometry. Firstly we show results from solar mirror substrates under load to detect flaws with high sensitivity. Secondly we present a preliminary simulation study of achievable deformation-measurement uncertainties to assess the feasibility of deflectometric characterisation of actuator performance and gravity sag for the mirror segments of the European Extremely Large Telescope (E-ELT). Results for the relevant Zernike terms show reliable detection of Zernike coefficients at the 25 nm level. Random artefacts related to noise in the phase measurements are seen to translate into bogus Zernike terms, and we discuss possible mitigation techniques to enhance the sensitivity and accuracy further.

  4. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  5. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  6. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  7. Deformable Nanolaminate Optics

    SciTech Connect

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  8. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications. PMID:20090749

  9. Deformation properties of lead isotopes

    NASA Astrophysics Data System (ADS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  10. Statistical field theories deformed within different calculi

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Borysov, S. S.; Shuda, I. A.

    2010-09-01

    Within the framework of basic-deformed and finite-difference calculi, as well as deformation procedures proposed by Tsallis, Abe, and Kaniadakis and generalized by Naudts, we develop field-theoretical schemes of statistically distributed fields. We construct a set of generating functionals and find their connection with corresponding correlators for basic-deformed, finite-difference, and Kaniadakis calculi. Moreover, we introduce pair of additive functionals, which expansions into deformed series yield both Green functions and their irreducible proper vertices. We find as well formal equations, governing by the generating functionals of systems which possess a symmetry with respect to a field variation and are subjected to an arbitrary constrain. Finally, we generalize field-theoretical schemes inherent in concrete calculi in the Naudts manner. From the physical point of view, we study dependences of both one-site partition function and variance of free fields on deformations. We show that within the basic-deformed statistics dependence of the specific partition function on deformation has in logarithmic axes symmetrical form with respect to maximum related to deformation absence; in case of the finite-difference statistics, the partition function takes non-deformed value; for the Kaniadakis statistics, curves of related dependences have convex symmetrical form at small curvatures of the effective action and concave form at large ones. We demonstrate that only moment of the second order of free fields takes non-zero values to be proportional to inverse curvature of effective action. In dependence of the deformation parameter, the free field variance has linearly arising form for the basic-deformed distribution and increases non-linearly rapidly in case of the finite-difference statistics; for more complicated case of the Kaniadakis distribution, related dependence has double-well form.

  11. Electrostatics of Deformable Lipid Membranes

    PubMed Central

    Vorobyov, Igor; Bekker, Borislava; Allen, Toby W.

    2010-01-01

    Abstract It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (∼0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation. PMID:20550903

  12. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  13. Dielectric elastomer membranes undergoing inhomogeneous deformation

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Zhao, Xuanhe; Suo, Zhigang

    2009-10-01

    Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.

  14. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  15. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  16. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  17. Novel technologies for small deformable mirrors

    NASA Astrophysics Data System (ADS)

    Strachan, Mel; Myers, Richard; Cooke, Kevin; Hampshire, Joanne; Hough, Jim; Rowan, Sheila; van Veggel, Marielle; Kirk, Katherine; Hutson, David; Uzgur, Erman; Kim, Shin-Sung

    2010-07-01

    Adaptive optic requirements for instrumentation such as EAGLE for the European extremely large telescope present an enormous challenge to deformable mirror technology. We have developed a unique approach using fabricated arrays of multilayer actuator technology to address the requirements of actuator density and deflection. Our programme of work has uncovered a novel approach which has led to a built in test capability. We will present the outcomes of our work which we believe will lead to a compact deformable mirror.

  18. GPS constraints on the kinematics of continental deformation

    USGS Publications Warehouse

    Thatcher, W.

    2003-01-01

    Recent GPS observations from the western United States, New Zealand, central Greece, and Japan indicate that present-day continental deformation is typically focused in narrow deforming zones whose extent is much smaller than the intervening largely inactive regions. However, these narrow zones are heterogeneously distributed, reflecting the inherent heterogeneity of continental lithospheric strength and internal buoyancy. Plate driving and resisting forces stress plate boundary zones and plate interiors and drive deformation. These forces change continuously and discontinuously, leading to continental deformation that typically evolves and migrates with time. Magmatic and tectonic processes alter lithospheric rheology and internal buoyancy and also contribute to the time-varying character of continental deformation.

  19. New regions of nuclear deformation

    SciTech Connect

    Lister, C.J.; Gelletly, W.; Varley, B.J.; Price, H.G.; Olness, J.W.

    1983-01-01

    It has long been expected from general theoretical considerations that nuclei with Z and N far removed from major shell closures should exhibit considerable collectivity and maybe deformed in their groundstates. A number of calculations have recently attempted to quantify these expectations through detailed predictions of nuclear shapes across the periodic table. In this contribution we review predictions and experimental data for the regions with Z,N = (40,40), (40,64) and (64,64) which are all off the valley of stability. Emphasis is placed on the experimental techniques and data obtained from the first of these regions where the prediction of extremely large prolate deformation has been experimentally verified.

  20. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  1. Motion of deformable ring made of IPMC

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Alasty, Aria; Ozmaeian, Masoumeh

    2011-11-01

    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different arrangements of actuators. Since in this research we used our own fabricated IPMC, next we present characterization tests and identification results for model's parameters. Then using this model in simulation possibility of generating locomotion using body deformation in a ring made of IPMC is confirmed. Finally result of experiment on deformable ring is presented and possibility of implementation of the proposed design is confirmed. Based on this work, more accurate models can be developed to get better compatibility between experiment and simulation results. Also by modifying fabrication techniques, a deformable ring with faster and steadier movement can be made in future.

  2. Motion of deformable ring made of IPMC

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Alasty, Aria; Ozmaeian, Masoumeh

    2012-04-01

    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different arrangements of actuators. Since in this research we used our own fabricated IPMC, next we present characterization tests and identification results for model's parameters. Then using this model in simulation possibility of generating locomotion using body deformation in a ring made of IPMC is confirmed. Finally result of experiment on deformable ring is presented and possibility of implementation of the proposed design is confirmed. Based on this work, more accurate models can be developed to get better compatibility between experiment and simulation results. Also by modifying fabrication techniques, a deformable ring with faster and steadier movement can be made in future.

  3. Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation

    PubMed Central

    Peter, Adrian M.; Rangarajan, Anand

    2010-01-01

    Shape matching plays a prominent role in the comparison of similar structures. We present a unifying framework for shape matching that uses mixture models to couple both the shape representation and deformation. The theoretical foundation is drawn from information geometry wherein information matrices are used to establish intrinsic distances between parametric densities. When a parameterized probability density function is used to represent a landmark-based shape, the modes of deformation are automatically established through the information matrix of the density. We first show that given two shapes parameterized by Gaussian mixture models (GMMs), the well-known Fisher information matrix of the mixture model is also a Riemannian metric (actually, the Fisher-Rao Riemannian metric) and can therefore be used for computing shape geodesics. The Fisher-Rao metric has the advantage of being an intrinsic metric and invariant to reparameterization. The geodesic—computed using this metric—establishes an intrinsic deformation between the shapes, thus unifying both shape representation and deformation. A fundamental drawback of the Fisher-Rao metric is that it is not available in closed form for the GMM. Consequently, shape comparisons are computationally very expensive. To address this, we develop a new Riemannian metric based on generalized ϕ-entropy measures. In sharp contrast to the Fisher-Rao metric, the new metric is available in closed form. Geodesic computations using the new metric are considerably more efficient. We validate the performance and discriminative capabilities of these new information geometry-based metrics by pairwise matching of corpus callosum shapes. We also study the deformations of fish shapes that have various topological properties. A comprehensive comparative analysis is also provided using other landmark-based distances, including the Hausdorff distance, the Procrustes metric, landmark-based diffeomorphisms, and the bending energies of the

  4. Information geometry for landmark shape analysis: unifying shape representation and deformation.

    PubMed

    Peter, Adrian M; Rangarajan, Anand

    2009-02-01

    Shape matching plays a prominent role in the comparison of similar structures. We present a unifying framework for shape matching that uses mixture models to couple both the shape representation and deformation. The theoretical foundation is drawn from information geometry wherein information matrices are used to establish intrinsic distances between parametric densities. When a parameterized probability density function is used to represent a landmark-based shape, the modes of deformation are automatically established through the information matrix of the density. We first show that given two shapes parameterized by Gaussian mixture models (GMMs), the well-known Fisher information matrix of the mixture model is also a Riemannian metric (actually, the Fisher-Rao Riemannian metric) and can therefore be used for computing shape geodesics. The Fisher-Rao metric has the advantage of being an intrinsic metric and invariant to reparameterization. The geodesicâcomputed using this metricâestablishes an intrinsic deformation between the shapes, thus unifying both shape representation and deformation. A fundamental drawback of the Fisher-Rao metric is that it is not available in closed form for the GMM. Consequently, shape comparisons are computationally very expensive. To address this, we develop a new Riemannian metric based on generalized \\phi-entropy measures. In sharp contrast to the Fisher-Rao metric, the new metric is available in closed form. Geodesic computations using the new metric are considerably more efficient. We validate the performance and discriminative capabilities of these new information geometry-based metrics by pairwise matching of corpus callosum shapes. We also study the deformations of fish shapes that have various topological properties. A comprehensive comparative analysis is also provided using other landmark-based distances, including the Hausdorff distance, the Procrustes metric, landmark-based diffeomorphisms, and the bending energies of

  5. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) Method for Correcting Echo Planar Imaging Distortions

    PubMed Central

    Irfanoglu, M. Okan; Modi, Pooja; Nayak, Amritha; Hutchinson, Elizabeth B.; Sarlls, Joelle; Pierpaoli, Carlo

    2014-01-01

    We propose an echo planar imaging (EPI) distortion correction method (DR-BUDDI), specialized for diffusion MRI, which uses data acquired twice with reversed phase encoding directions, often referred to as blip-up blip-down acquisitions. DR-BUDDI can incorporate information from an undistorted structural MRI and also use diffusion-weighted images (DWI) to guide the registration, improving the quality of the registration in the presence of large deformations and in white matter regions. DR-BUDDI does not require the transformations for correcting blip-up and blip-down images to be the exact inverse of each other. Imposing the theoretical “blip-up blip-down distortion symmetry” may not be appropriate in the presence of common clinical scanning artifacts such as motion, ghosting, Gibbs ringing, vibrations, and low signal-to-noise. The performance of DR-BUDDI is evaluated with several data sets and compared to other existing blip-up blip-down correction approaches. The proposed method is robust and generally outperforms existing approaches. The inclusion of the DWIs in the correction process proves to be very important to obtain a reliable correction of distortions in the brain stem. Methods that do not use DWIs may produce a visually appealing correction of the non-diffusion weighted b = 0 s/mm2 images, but the directionally encoded color maps computed from the tensor reveal an abnormal anatomy of the white matter pathways. PMID:25433212

  6. Shape Function-Based Estimation of Deformation with Moving Cameras Attached to the Deforming Body

    NASA Astrophysics Data System (ADS)

    Jokinen, O.; Ranta, I.; Haggrén, H.; Rönnholm, P.

    2016-06-01

    The paper presents a novel method to measure 3-D deformation of a large metallic frame structure of a crane under loading from one to several images, when the cameras need to be attached to the self deforming body, the structure sways during loading, and the imaging geometry is not optimal due to physical limitations. The solution is based on modeling the deformation with adequate shape functions and taking into account that the cameras move depending on the frame deformation. It is shown that the deformation can be estimated even from a single image of targeted points if the 3-D coordinates of the points are known or have been measured before loading using multiple cameras or some other measuring technique. The precision of the method is evaluated to be 1 mm at best, corresponding to 1:11400 of the average distance to the target.

  7. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this

  8. Dynamics of continental deformation in Asia

    NASA Astrophysics Data System (ADS)

    Vergnolle, M.; Calais, E.; Dong, L.

    2007-11-01

    The relevance of plate tectonics concepts to the description of deformation of large continental areas like Asia is subject to much debate. For some, the deformation of continents is better described by rigid motion of lithospheric blocks with strain concentrated along narrow fault zones. For others, it is better described by viscous flow of a continuously deforming solid in which faults play a minor role. Discriminating these end-member hypotheses requires spatially dense measurements of surface strain rates covering the whole deforming area. Here we revisit the issue of the forces and rheological structure that control present-day deformation in Asia. We use the "thin sheet" theory, with deformation driven by the balance of boundary and buoyancy stresses acting on a faulted lithosphere with laterally varying strength. Models are validated against a recent, homogeneous, GPS velocity field that covers most of Asia. In the models, deformation in compressional areas (Himalayas, Tien Shan, Altay) is well reproduced with strong coupling at the India/Eurasia plate contact, which allows for boundary forces to transfer into Asia. Southeastward motions observed in north and south China, however, require tensional, oceanward directed stresses, possibly generated by gravitational potential energy gradients across the Indonesian and Pacific subductions. Model and observed strain rates show that a large part of Asia undergoes no resolvable strain, with a kinematics apparently consistent with block- or plate-like motions. Internal strain, possibly continuous, is limited to high-elevation, mechanically weaker areas. Lateral variations of lithospheric strength appear to control the style of deformation in Asia, with a dynamics consistent with the thin sheet physical framework.

  9. Deformations of 3-algebras

    SciTech Connect

    Figueroa-O'Farrill, Jose Miguel

    2009-11-15

    We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.

  10. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  11. Motion Planning Under Uncertainty In Highly Deformable Environments

    PubMed Central

    Patil, Sachin; van den, Jur; Alterovitz, Berg Ron

    2012-01-01

    Many tasks in robot-assisted surgery, food handling, manufacturing, and other applications require planning and controlling the motions of manipulators or other devices that must interact with highly deformable objects. We present a unified approach for motion planning under uncertainty in deformable environments that maximizes probability of success by accounting for uncertainty in deformation models, noisy sensing, and unpredictable actuation. Unlike prior planners that assume deterministic deformations or treat deformations as a type of small perturbation, our method explicitly considers the uncertainty in large, time-dependent deformations. Our method requires a simulator of deformable objects but places no significant restrictions on the simulator used. We use a sampling-based motion planner in conjunction with the simulator to generate a set of candidate plans based on expected deformations. Our method then uses the simulator and optimal control to numerically estimate time-dependent state distributions based on uncertain parameters (e.g. deformable material properties or actuation errors). We then select the plan with the highest estimated probability of successfully avoiding obstacles and reaching the goal region. Using FEM-based simulation of deformable tissues, we demonstrate the ability of our method to generate high quality plans in two medical-inspired scenarios: (1) guiding bevel-tip steerable needles through slices of deformable tissue around obstacles for minimally invasive biopsies and drug-delivery, and (2) manipulating planar tissues to align interior points at desired coordinates for precision treatment. PMID:25030775

  12. Clinical Implications of Nasal Septal Deformities.

    PubMed

    Mladina, Ranko; Skitarelić, Neven; Poje, Gorazd; Šubarić, Marin

    2015-04-01

    The first attempts to systematize septal distortions have been given by Cottle who defined four groups of septal deformities: subluxation, large spurs, caudal deflection and tension septum. Fortunately, the variations of the septal deformities show a certain order, thus enabling more precise classification. Mladina was the first to make user-friendly classification of septal deformities in six basic types. He also described the seventh type, named "Passali deformity", which presents individually, but is always a well-defined combination between some of the previous six types. Mladina types of septal deformities (SD) are divided in two main groups: so called "vertical" deformities (types 1, 2, 3 and 4), and "horizontal" ones (types 5 and 6). This classification was immediately well accepted by rhinologists worldwide and started to be cited from the very beginning. Since then it has been continuously cited increasingly more often, thus making Mladina classification a gold standard whenever clinical researches on nasal septum are concerned. More than forty clinical studies based on this classification have been performed to date. It is extremely important to make a strict distinction between the types of SD since all of them play some specific role in the nasal and general physiology in man. PMID:26167337

  13. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  14. Measuring Crustal Deformation in the American West.

    ERIC Educational Resources Information Center

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    Suggests that there is a close relationship between deformation in the western United States and the large-scale motions of tectonic plates. Introduces very-long-baseline interferometry (VLBI) as one of the space-geodetic techniques, vector addition of the VLBI data and geological data, and a new geodetic network. (YP)

  15. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  16. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  17. Vaporization of Deforming Droplets

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor

    2012-11-01

    Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.

  18. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  19. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  20. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  1. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  2. Nail Deformities and Injuries.

    PubMed

    Tucker, James Rory J

    2015-12-01

    A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. PMID:26612379

  3. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    NASA Astrophysics Data System (ADS)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  4. Deformation studies of near single-crystal triblock copolymers

    SciTech Connect

    Honeker, C.; Villar, M.A.; Thomas, E.L.

    1993-12-31

    The mechanical behavior of block copolymers is being studied in order to determine the evolution of the microphase-separation morphologies with deformation. To facilitate analysis a novel processing technique termed {open_quotes}roll-casting{close_quotes} is used to orient the copolymers. Large, near single-crystal macroscopically oriented films are produced by applying a shear field on a homogeneous solution and allowing the solvent to evaporate until the copolymer has microphase separated. Deformation behavior is studied with in situ small angle x-ray diffraction and TEM studies of films deformed up to 700% extension. Initial studies on poly(styrene-butadiene-styrene) triblock copolymers with a cylindrical morphology indicate a break-up of the morphology at low deformations and a development of a characteristic 4 point pattern at high deformations. Hysteresis is observed in deformation directions of 0 and 90 degrees.

  5. Management of post burn hand deformities

    PubMed Central

    Sabapathy, S. Raja; Bajantri, Babu; Bharathi, R. Ravindra

    2010-01-01

    The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor. PMID:21321661

  6. Software available for analyzing GPS deformation

    NASA Astrophysics Data System (ADS)

    Crespi, Mattia; Riguzzi, Federica

    1998-06-01

    A FORTRAN 77 software package that analyzes Global Positioning System (GPS) deformation control networks is available free of charge. This package is able to simulate and adjust GPS networks. It can also perform onedimensional, two dimensional, and three-dimensional statistical analysis to study the significance of coordinate differences coming from two repeated surveys of the same network. In addition, the package computes displacement vectors with error and reliability ellipsoids, and it is suited for both engineering and geophysical applications. It has been used successfully in Italy to analyze small and large networks established for high precision engineering surveys and geodynamic deformation control [Acker et al., 1998; Anzidei et al., 1996].

  7. Global deformation on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1992-01-01

    Large-scale mapping of tectonic structures on Venus shows that there is an organized global distribution to deformation. The structures we emphasize are linear compressive mountain belts, extensional rafted zones, and the small-scale but widely distributed wrinkle ridges. Ninety percent of the area of the planet's compressive mountain belts are concentrated in the northern hemisphere whereas the southern hemisphere is dominated by extension and small-scale compression. We propose that this striking concentration of fold belts in the northern hemisphere, along with the globe-encircling equatorial rift system, represents a global organization to deformation on Venus.

  8. Does deformation saturate seismic anisotropy?

    NASA Astrophysics Data System (ADS)

    Tatham, D. J.; Lloyd, G. E.; Butler, R. W.; Casey, M.

    2006-12-01

    The progressive simple shear deformation that characterizes ductile fault zones in the crust involves both rotation and intensification of the strain ellipsoid. These mathematic predictions have been confirmed repeatedly by finite strain determinations in outcrop studies of natural shear zones and used to test geodynamic models of mountain belts. Seismic anisotropy (SA) methods offer the opportunity to pursue these approaches in situ. First however, we must calibrate the magnitude and orientation of the SA ellipsoid against naturally deformed tectonites of known strain state and microstructure. Here we present data from a field analogue of mafic ductile crust in an amphibolite-facies shear zone developed in a deformed mafic dyke embedded within the Lewisian Gneiss (Badcall, NW Scotland). Deflection of pre-existing linear and planar elements and attenuation of the dyke into the shear zone are used to determine the strain gradient. Specimens collected along this gradient were used to establish the geometric fabric intensity defined by different minerals (hornblende grain alignment and ellipticity of plagioclase clots). Finally, petrophysical properties were calculated for the specimens using the SEM-EBSD measured populations of lattice preferred orientations (LPO) for all mineral phases. It is the hornblende-plagioclase LPO, combined in their modal proportions and modulated by the individual mineral single crystal elastic properties, which define the SA profile across the shear zone. Hornblende develops a strong preferred dimensional orientation and hence LPO at shear strains of about 2, whereas the plagioclase LPO remains close to random regardless of bulk strain. The modelled SA of the samples is dominated therefore by the amphibole LPO. Although the values of bulk shear strain vary across the shear zone (0 at the margins to greater than 12 in the centre), the calculated intensity of SA saturates at a shear strain of about 2. These results, if typical of large

  9. Deformation twins in Hornblende

    USGS Publications Warehouse

    Rooney, T.P.; Riecker, R.E.; Ross, M.

    1970-01-01

    Hornblende deformation twins with twin planes parallel to (101) are produced experimentally in single crystals by compression parallel to the c axis. Twinning occurs at confining pressures from 5 to 15 kilobars and temperatures from 400?? to 600??C (strain rate, 10-5 per second).

  10. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  11. Degenerative Spinal Deformity.

    PubMed

    Ailon, Tamir; Smith, Justin S; Shaffrey, Christopher I; Lenke, Lawrence G; Brodke, Darrel; Harrop, James S; Fehlings, Michael; Ames, Christopher P

    2015-10-01

    Degenerative spinal deformity afflicts a significant portion of the elderly and is increasing in prevalence. Recent evidence has revealed sagittal plane malalignment to be a key driver of pain and disability in this population and has led to a significant shift toward a more evidence-based management paradigm. In this narrative review, we review the recent literature on the epidemiology, evaluation, management, and outcomes of degenerative adult spinal deformity (ASD). ASD is increasing in prevalence in North America due to an aging population and demographic shifts. It results from cumulative degenerative changes focused in the intervertebral discs and facet joints that occur asymmetrically to produce deformity. Deformity correction focuses on restoration of global alignment, especially in the sagittal plane, and decompression of the neural elements. General realignment goals have been established, including sagittal vertical axis <50 mm, pelvic tilt <22°, and lumbopelvic mismatch <±9°; however, these should be tailored to the patient. Operative management, in carefully selected patients, yields satisfactory outcomes that appear to be superior to nonoperative strategies. ASD is characterized by malalignment in the sagittal and/or coronal plane and, in adults, presents with pain and disability. Nonoperative management is recommended for patients with mild, nonprogressive symptoms; however, evidence of its efficacy is limited. Surgery aims to restore global spinal alignment, decompress neural elements, and achieve fusion with minimal complications. The surgical approach should balance the desired correction with the increased risk of more aggressive maneuvers. In well-selected patients, surgery yields excellent outcomes. PMID:26378361

  12. Anisotropic Hydraulic Permeability Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Weiss, Jeffrey A.

    2011-01-01

    The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor. Formulations are presented which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and non-affine reorientation of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations. PMID:21034145

  13. Clinical Implications of Nasal Septal Deformities

    PubMed Central

    Mladina, Ranko; Skitarelić, Neven; Poje, Gorazd; Šubarić, Marin

    2015-01-01

    The first attempts to systematize septal distortions have been given by Cottle who defined four groups of septal deformities: subluxation, large spurs, caudal deflection and tension septum. Fortunately, the variations of the septal deformities show a certain order, thus enabling more precise classification. Mladina was the first to make user-friendly classification of septal deformities in six basic types. He also described the seventh type, named “Passali deformity”, which presents individually, but is always a well-defined combination between some of the previous six types. Mladina types of septal deformities (SD) are divided in two main groups: so called “vertical” deformities (types 1, 2, 3 and 4), and “horizontal” ones (types 5 and 6). This classification was immediately well accepted by rhinologists worldwide and started to be cited from the very beginning. Since then it has been continuously cited increasingly more often, thus making Mladina classification a gold standard whenever clinical researches on nasal septum are concerned. More than forty clinical studies based on this classification have been performed to date. It is extremely important to make a strict distinction between the types of SD since all of them play some specific role in the nasal and general physiology in man. PMID:26167337

  14. Nanoscale buckling deformation in layered copolymer materials

    PubMed Central

    Makke, Ali; Perez, Michel; Lame, Olivier; Barrat, Jean-Louis

    2012-01-01

    In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of “hard” and “soft” layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. PMID:22203970

  15. Multifractal analysis of the irregular set for almost-additive sequences via large deviations

    NASA Astrophysics Data System (ADS)

    Bomfim, Thiago; Varandas, Paulo

    2015-10-01

    In this paper we introduce a notion of free energy and large deviations rate function for asymptotically additive sequences of potentials via an approximation method by families of continuous potentials. We provide estimates for the topological pressure of the set of points whose non-additive sequences are far from the limit described through Kingman’s sub-additive ergodic theorem and give some applications in the context of Lyapunov exponents for diffeomorphisms and cocycles, and the Shannon-McMillan-Breiman theorem for Gibbs measures.

  16. Deformable Surface Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Hess, K.; Dandliker, R.; Thalmann, R.

    1987-05-01

    A spatial light modulator (SLM) based on a deformable gel surface is presented. It has remarkable optical properties and its construction and operation are comparatively simple. It can be optically addressed through a photoconductor layer. The surface relief pattern is read out by total reflection and a schlieren optical system. The device provides good wavefront quality (X/10 over the whole aperture of 30 x 50 mm2) and has a spatial resolution of 10 line pairs/mm. Contrast ratios for modulation up to 40:1 were measured. The input sensitivity is typically 0.3 mW/cm2. The rise and decay times are both approximately 20 ms. Besides its primary application as a light valve in large screen TV projection, it can be used in optical information processing systems, e.g., as an incoherent-to-coherent transducer. Combined with a CRT, the SLM can be addressed electronically.

  17. [Babies with cranial deformity].

    PubMed

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  18. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  19. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  20. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  1. Unscented Particle Filtering for Estimation of Shipboard Deformation Based on Inertial Measurement Units

    PubMed Central

    Wang, Bo; Xiao, Xuan; Xia, Yuanqing; Fu, Mengyin

    2013-01-01

    Shipboard is not an absolute rigid body. Many factors could cause deformations which lead to large errors of mounted devices, especially for the navigation systems. Such errors should be estimated and compensated effectively, or they will severely reduce the navigation accuracy of the ship. In order to estimate the deformation, an unscented particle filter method for estimation of shipboard deformation based on an inertial measurement unit is presented. In this method, a nonlinear shipboard deformation model is built. Simulations demonstrated the accuracy reduction due to deformation. Then an attitude plus angular rate match mode is proposed as a frame to estimate the shipboard deformation using inertial measurement units. In this frame, for the nonlinearity of the system model, an unscented particle filter method is proposed to estimate and compensate the deformation angles. Simulations show that the proposed method gives accurate and rapid deformation estimations, which can increase navigation accuracy after compensation of deformation. PMID:24248280

  2. Ice deformation near SHEBA

    NASA Astrophysics Data System (ADS)

    Lindsay, R. W.

    2002-10-01

    The deformation rate of sea ice is a key parameter for determining the evolution of the ice thickness distribution. It determines the rate of new ice formation through opening and the rate of ridging through closing and shear. An extensive suite of ground-based and satellite-based measurements of ice motion is used to construct a daily time series of the ice velocity and deformation in the vicinity of the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp that is suitable for forcing a model of the ice thickness distribution. The velocity is interpolated to a square grid that remains centered on the camp, has a spacing of 25 km, is 400 km on a side, and is determined for a 371-day period from 2 October 1997 to 7 October 1998. Velocity measurements from buoys, Advanced Very High Resolution Radiometer (AVHRR), Special Sensor Microwave/Imager (SSMI), and Radarsat Geophysical Processing System (RGPS) are merged using optimal interpolation and a Kalman filter approach. The deformation rate is taken directly from the RGPS measurements when available. The daily total deformation rate measured on a scale of 100 km near the camp averaged 2.21% d-1, and the standard deviation was 1.78% d-1. The divergence was positive in the early winter and negative through most of the spring and summer. There were two major opening/closing events, one in January and one at the end of July. The net divergence over the year was very near zero. The vorticity indicated a net rotation of 87° over the year, with the winter showing strong anticyclonic turning and the summer showing strong cyclonic turning.

  3. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  4. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  5. Treatment of Madelung's deformity.

    PubMed

    Saffar, P; Badina, A

    2015-12-01

    Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609

  6. Supertransvectants, cohomology, and deformations

    NASA Astrophysics Data System (ADS)

    Ben Fraj, Nizar; Laraiedh, Ismail; Omri, Salem

    2013-02-01

    Over the (1, N)-dimensional real superspace, N = 2, 3, we classify {osp}(N|2)-invariant binary differential operators acting on the superspaces of weighted densities, where {osp}(N|2) is the orthosymplectic Lie superalgebra. This result allows us to compute the first differential {osp}(N|2)-relative cohomology of the Lie superalgebra K(N) of contact vector fields with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We classify generic formal {osp}(3|2)-trivial deformations of the K(3)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal {osp}(3|2)-trivial deformation of this K(3)-module is equivalent to its infinitesimal part. This work is the simplest generalization of a result by the first author et al. [Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., and Kammoun, K., "Cohomology of the Lie superalgebra of contact vector fields on {K}^{1|1} and deformations of the superspace of symbols," J. Nonlinear Math. Phys. 16, 373 (2009), 10.1142/S1402925109000431].

  7. Surface Deformation in Imperial Valley, Southern California

    NASA Astrophysics Data System (ADS)

    Eneva, M.; Adams, D.; Falorni, G.; Morgan, J.

    2013-12-01

    The Imperial Valley in southern California is subjected to significant tectonic deformation resulting from the relative movement of the North American and Pacific plates. It is characterized by large earthquakes, frequent swarm activity, and aseismic events. High heat flow makes possible the operation of geothermal fields, some of which cause man-made surface displacements superimposed on the tectonic deformation. We apply radar interferometry (InSAR) to analyze Envisat ASAR data for the period 2003-2010. The SqueeSAR technique is used to obtain deformation time series and annual rates at numerous locations of permanent and distributed scatterers (PS and DS). SqueeSAR works very well in agricultural areas, where conventional differential InSAR (DinSAR) fails. We observe differential movements marking the Superstition Hills, San Andreas, and Imperial faults. The Imperial fault traverses agricultural fields, where DInSAR does not work and thus our SqueeSAR observations are the first for this fault (Fig. 1). We also observe steps in the deformation time series around the Superstition Hills fault from an October 2006 aseismic event and the April 2010 M7.2 earthquake south of the U.S.-Mexico border. Significant annual deformation rates are detected in the current geothermal fields. For example, subsidence of up to -50 mm/year is seen at the Salton Sea field (Fig. 2), and both subsidence and uplift are seen at Heber. We also determine the deformation baseline at prospective geothermal fields, thus making it possible in the future to distinguish between man-made and tectonic causes of surface deformation. Fig. 1. Line-of-sight (LOS) deformation indicates differential displacement on both sides of Imperial Fault. Movements away from the satellite are shown in yellow to red, and towards the satellite in blue. Larger deformation is associated with two geothermal fields, Heber (to the south-west) and East Mesa (to the east). Fig. 2. Subsidence in the Salton Sea geothermal

  8. Linking lithosphere deformation and sedimentary basin formation over multiple scales

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.

    2014-05-01

    In the spirit of Peter Ziegler we are interested in and explore the relationships between tectonic deformation and sedimentary basin formation. Resolving the interaction and feedback between tectonic crust-lithosphere scale deformation and surface processes through erosion of elevated areas and formation of sedimentary basins over multiple scales has been a long-standing challenge. While forward process based models have been successful at showing that a feedback is expected between tectonic deformation and redistribution of mass at the earth's surface by erosion, transport, and deposition, demonstrating this coupling for natural systems has been an even greater challenge and is strongly debated. Observational constraints on crust-lithosphere deformation and surface processes are typically collected at highly varying spatial and temporal scales, while forward process based models are typically run at either very large lithosphere-mantle scale, or at the scale of the sedimentary basin making it difficult to investigate and explore the detailed interaction and feedback between these systems. Here I will report on recent advances in forward modelling linking crust-lithosphere deformation with surface processes over a large range of scales resolving tectonic plate scale deformation and sedimentary basin formation at stratigraphic scales. The forward numerical models indicate a linkage and interaction between the structural style of thick-skinned large-scale mountain belt and rift-passive margin formation, erosion-transport-deposition processes operating at the surface, and the thin-skinned deformation occurring in the associated sedimentary basins.

  9. Formation and subdivision of deformation structures during plastic deformation.

    PubMed

    Jakobsen, Bo; Poulsen, Henning F; Lienert, Ulrich; Almer, Jonathan; Shastri, Sarvjit D; Sørensen, Henning O; Gundlach, Carsten; Pantleon, Wolfgang

    2006-05-12

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior. Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials. PMID:16690859

  10. Intermittent dislocation flow in viscoplastic deformation.

    PubMed

    Miguel, M C; Vespignani, A; Zapperi, S; Weiss, J; Grasso, J R

    2001-04-01

    The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations. Analytical methods and sophisticated 'dislocation dynamics' simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behaviour of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials. Moreover, it should provide a framework for discussing fundamental aspects of plasticity that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow. PMID:11287948

  11. Deformation of a micro-torque swimmer

    PubMed Central

    Ishikawa, Takuji; Tanaka, Tomoyuki; Imai, Yohsuke; Omori, Toshihiro; Matsunaga, Daiki

    2016-01-01

    The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli. PMID:26997893

  12. Subglacial till: the deforming glacier bed

    NASA Astrophysics Data System (ADS)

    van der Meer, Jaap J. M.; Menzies, John; Rose, James

    2003-07-01

    "Till is a sediment and is perhaps more variable than any sediment known by a single name." R.F. Flint 1957 Glacial and Pleistocene Geology Tills are commonly classified according to the perceived process of deposition. However, it is increasingly recognised that this classification, which is mainly based on macroscopic field data, has severe limitations. At the same time the concept of the deforming glacier bed has become more realistic as a framework for discussing tills and their properties, and this (tectonic) concept is irreconcilable with the existing (depositional) till classification scheme. Over the last 20 years large thin sections have been used to study tills, which has provided new insights into the textural and structural properties of tills. These results have revolutionised till sedimentology as they show that, in the main, subglacial tills possess deformational characteristics. Depositional properties are rare. Based on this new insight the process of subglacial till formation is discussed in terms of glacier/ice sheet basal velocity, clay, water and carbonate content and the variability of these properties in space and time. The end result of this discussion is: till, the deforming glacier bed. To distinguish subglacial till from depositional sediments the term 'tectomict' is proposed. Within the single framework of subglacial till as the deforming glacier bed, many textural, structural and geomorphological features of till beds can be more clearly and coherently explained and understood.

  13. Crustal deformation along the San Andreas, California

    NASA Astrophysics Data System (ADS)

    Li, Victor C.

    1992-03-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  14. Postseismic Deformation in the Central Andaman Islands

    NASA Astrophysics Data System (ADS)

    Puchakayala, J. P.; Smalley, R.; Bilham, R.; Lowry, A.; Batacharjee, A.

    2005-12-01

    The December 26, 2004 Sumatra-Andaman earthquake generated horizontal displacements at Port Blair totaling 3.08 m and vertical subsidence of 0.6-0.9m, indicating 1.6 m arc normal and 6.2±0.6 m dextral coseismic slip on the plate interface. Displacements occurred steadily beginning 10 minutes after the mainshock and were largely complete within 30 minutes after the mainshock. Although continuous GPS measurements were not initiated until 24 days after the mainshock by us and other groups, it is possible from these records to inferthat postseismic deformation in this interval did not exceed 10% of the coseismic displacements. Postseismic deformation continues at present at an exponentially decaying rate. Between January and June 2005, Port Blair has moved 4.5 cm south, 15 cm west and 10 cm up, suggesting postseismic slip downdip of the coseismic rupture and/or viscoelastic relaxation of the mantle. Elastic models of the region based on GPS coseismic slip observations provided by Center for Earth Science Studies (CESS) are consistent with reports of uplift from the islands: North Sentinel (50 km west of Port Blair) rose by 1.0±0.2 m, Port Blair and Middle Andaman subsided by about 1 m and Havelock Island (32 km east) showed no significant vertical deformation. We report data from five campaign sites in the Andaman Islands measured thrice since the earthquake that permit viscoelastic and afterslip models of postseismic deformation to be developed and assessed.

  15. Interseismic deformation for normal fault earthquakes

    NASA Technical Reports Server (NTRS)

    Reilinger, Robert

    1987-01-01

    Comparison between the coseismic vertical deformation associated with normal fault earthquakes and permanent deformation indicated by geologic structure indicates that large deformation must occur during the period between earthquakes. When sufficient geodetic and geologic information is available it is possible to estimate the spatial character of this interseismic deformation. A case in point is the 1983 Borah Peak, Idaho earthquake. This normal fault earthquake produced roughly 5 times as much basin subsidence as it did uplift of the adjacent mountain ranges. In contrast, geophysical and geological observations show that the basin is roughly as deep as the bounding range is high. A similar normal fault event in the Basin and Range, the 1959 Hebgen Lake earthquake, was also accompanied by substantially larger subsidence than uplift. In this case, postseismic geodetic measurements show broad regional uplift with a spatial pattern which is roughly consistent with that proposed for the Borah Peak event. Modeling suggests that postseismic viscoelastic relaxation and strain accumulation in an elastic lithosphere overlying a viscoelastic asthenosphere are possible physical mechanisms to generate interseismic uplift. These mechanisms may be the contemporary expression of those processes responsible for the high elevation of the Basin and Range Province.

  16. Crustal deformation along the San Andreas, California

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1992-01-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  17. Ultrasoft, highly deformable microgels.

    PubMed

    Bachman, Haylee; Brown, Ashley C; Clarke, Kimberly C; Dhada, Kabir S; Douglas, Alison; Hansen, Caroline E; Herman, Emily; Hyatt, John S; Kodlekere, Purva; Meng, Zhiyong; Saxena, Shalini; Spears, Mark W; Welsch, Nicole; Lyon, L Andrew

    2015-03-14

    Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine. PMID:25648590

  18. Deformable spanners and applications

    PubMed Central

    Guibas, Leonidas J.; Nguyen, An

    2010-01-01

    For a set S of points in ℝd, an s-spanner is a subgraph of the complete graph with node set S such that any pair of points is connected via some path in the spanner whose total length is at most s times the Euclidean distance between the points. In this paper we propose a new sparse (1 + ε)-spanner with O(n/εd) edges, where ε is a specified parameter. The key property of this spanner is that it can be efficiently maintained under dynamic insertion or deletion of points, as well as under continuous motion of the points in both the kinetic data structures setting and in the more realistic blackbox displacement model we introduce. Our deformable spanner succinctly encodes all proximity information in a deforming point cloud, giving us efficient kinetic algorithms for problems such as the closest pair, the near neighbors of all points, approximate nearest neighbor search (aka approximate Voronoi diagram), well-separated pair decompositions, and approximate k-centers. PMID:21165161

  19. Deformable spanners and applications.

    PubMed

    Gao, Jie; Guibas, Leonidas J; Nguyen, An

    2006-08-01

    For a set S of points in ℝ(d), an s-spanner is a subgraph of the complete graph with node set S such that any pair of points is connected via some path in the spanner whose total length is at most s times the Euclidean distance between the points. In this paper we propose a new sparse (1 + ε)-spanner with O(n/ε(d)) edges, where ε is a specified parameter. The key property of this spanner is that it can be efficiently maintained under dynamic insertion or deletion of points, as well as under continuous motion of the points in both the kinetic data structures setting and in the more realistic blackbox displacement model we introduce. Our deformable spanner succinctly encodes all proximity information in a deforming point cloud, giving us efficient kinetic algorithms for problems such as the closest pair, the near neighbors of all points, approximate nearest neighbor search (aka approximate Voronoi diagram), well-separated pair decompositions, and approximate k-centers. PMID:21165161

  20. Deformation of Diopside Single Crystal at Mantle Pressure 2 TEM Characterization of Deformation Microstructures

    SciTech Connect

    E Amiguet; P Cordier; P Raterron

    2011-12-31

    The dislocation microstructures of diopside single crystals deformed at high-pressure (4 {<=} P {<=} 9 GPa), high-temperature (1100{sup o} {<=} T {<=} 1400 {sup o}C) using a Deformation-DIA high-pressure apparatus (D-DIA) have been characterized by transmission electron microscopy using weak-beam dark-field (WBDF), precession electron diffraction (PED), large-angle convergent-beam electron diffraction (LACBED) and the thickness-fringe method. Dislocation glide is the dominant deformation mechanism under these conditions. The 1/2<110>{l_brace}110{r_brace} glide is controlled by lattice friction on the edge segments and shows extensive cross-slip. The [001] glide occurs mostly on {l_brace}110{r_brace}; no evidence for [001](010) glide has been found. The [100] dislocations bear a strong lattice friction probably due to complex (out of glide) core structures.

  1. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  2. Deformation analysis of boron/aluminum specimens by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, Daniel; Guo, Yifan; Czarnek, Robert

    1989-01-01

    Whole-field surface deformations were measured for two slotted tension specimens from multiply laminates, one with 0 deg fiber orientation in the surface ply and the other with 45 deg orientation. Macromechanical and micromechanical details were revealed using high-sensitivity moire interferometry. Although global deformations of all plies were essentially equal, numerous random or anomalous features were observed. Local deformations of adjacent 0 deg and 45 deg plies were very different, both near the slot and remote from it, requiring large interlaminar shear strains for continuity. Shear strains were concentrated in the aluminum matrix. For 45 deg plies, a major portion of the deformation was by shear; large plastic slip of matrix occurred at random locations in 45 deg plies, wherein groups of fibers slipped relative to other groups. Shear strains in the interior, between adjacent fibers, were larger than the measured surface strains.

  3. Optical feedback interferometry for measuring dynamic stress deformation of beams

    NASA Astrophysics Data System (ADS)

    Atashkhooei, Reza; Azcona, Francisco; Royo, Santiago; Espert, Lluis Gil

    2012-06-01

    An optical feedback interferometer has been used as a sensor for measuring the deformation of the beams under dynamic loading. The compactness, non-contact nature, high accuracy (below half wavelength of the laser) and the cost-effectiveness of this sensor makes it a suitable choice for material deformation measurements. A general procedure of the measurement is described in detail, including the proposed solution to deal with the speckle effect which appears when large deformations are presented. The performance of the proposed sensor has been compared and validated with a commercial contact LVDT sensor showing measurement differences below 20μm (2.9%).

  4. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  5. Global organization of tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-01-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the

  6. Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots

    NASA Astrophysics Data System (ADS)

    Milton, Graeme Walter

    2013-07-01

    A complete characterization is given of the possible macroscopic deformations of periodic non-linear affine unimode metamaterials constructed from rigid bars and pivots. The materials are affine in the sense that their macroscopic deformations can only be affine deformations: on a local level the deformation may vary from cell to cell. Unimode means that macroscopically the material can only deform along a one dimensional trajectory in the six dimensional space of invariants describing the deformation (excluding translations and rotations). We show by explicit construction that any continuous trajectory is realizable to an arbitrarily high degree of approximation provided at all points along the trajectory the geometry does not collapse to a lower dimensional one. In particular, we present two and three dimensional dilational materials having an arbitrarily large flexibility window. These are perfect auxetic materials for which a dilation is the only easy mode of deformation. They are free to dilate to arbitrarily large strain with zero bulk modulus.

  7. Learning Deformable Shape Manifolds

    PubMed Central

    Rivera, Samuel; Martinez, Aleix

    2011-01-01

    We propose an approach to shape detection of highly deformable shapes in images via manifold learning with regression. Our method does not require shape key points be defined at high contrast image regions, nor do we need an initial estimate of the shape. We only require sufficient representative training data and a rough initial estimate of the object position and scale. We demonstrate the method for face shape learning, and provide a comparison to nonlinear Active Appearance Model. Our method is extremely accurate, to nearly pixel precision and is capable of accurately detecting the shape of faces undergoing extreme expression changes. The technique is robust to occlusions such as glasses and gives reasonable results for extremely degraded image resolutions. PMID:22308002

  8. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  9. Novel optical fiber sensor for deformation measurement

    NASA Astrophysics Data System (ADS)

    Di, Haiting; Sun, Suping; Yu, Jianqiang; Liu, Renqiang

    2010-10-01

    A light intensity modulation optical fiber sensor, which can measure deformation directly, has been developed. A light leakage zone is introduced on one side of fiber to increase the sensitivity of fiber under deformation. The machining process of sensor is considered. Hand carving, milling and embossing methods are introduced to produce the light leakage zone respectively, and the comparison between these methods is carried out. To obtain the static curve of sensor, cantilevered beam, simple support beam and cylinders are used respectively to measure little and large deformation. The static characters of sensor, such as sensitivity and measurement range, are analyzed from the static curve. The experimental results show that the sensor can distinguish the direction of deformation (positive bending and negative bending). Positive bending increases the throughput of light, and is distinguishable from negative bending, which decreases the throughput. The output of sensor is linear with curvature when the curvature radius is larger than 60mm. The response of sensor is a cosine function with the direction of deformation and there is a maximum sensitivity direction (perpendicular to the light leakage zone plane and passing through the axis of the fiber) and a minimum sensitivity direction (parallel to light leakage zone plane and pass through the axis of the fiber). The dynamic responds of attenuation vibration and sawtooth input signal are studied. Comparison between the optical fiber sensor, untreated fiber and strain gauge shows that the sensor is 400 times of untreated fiber in sensitivity and is more advantageous in measurement of thin structures. The sensor is easily made by multi-mode plastic optical fiber and the detection equipments are very simple, therefore it is small in size, simple in structure and low in cost, which make the sensor can be widely used in various fields.

  10. Deformation of vortex patches by boundaries

    NASA Astrophysics Data System (ADS)

    Crosby, A.; Johnson, E. R.; Morrison, P. J.

    2013-02-01

    The deformation of two-dimensional vortex patches in the vicinity of fluid boundaries is investigated. The presence of a boundary causes an initially circular patch of uniform vorticity to deform. Sufficiently far away from the boundary, the deformed shape is well approximated by an ellipse. This leading order elliptical deformation is investigated via the elliptic moment model of Melander, Zabusky, and Styczek [J. Fluid Mech. 167, 95 (1986), 10.1017/S0022112086002744]. When the boundary is straight, the centre of the elliptic patch remains at a constant distance from the boundary, and the motion is integrable. Furthermore, since the straining flow acting on the patch is constant in time, the problem is that of an elliptic vortex patch in constant strain, which was analysed by Kida [J. Phys. Soc. Jpn. 50, 3517 (1981), 10.1143/JPSJ.50.3517]. For more complicated boundary shapes, such as a square corner, the motion is no longer integrable. Instead, there is an adiabatic invariant for the motion. This adiabatic invariant arises due to the separation in times scales between the relatively rapid time scale associated with the rotation of the patch and the slower time scale associated with the self-advection of the patch along the boundary. The interaction of a vortex patch with a circular island is also considered. Without a background flow, the conservation of angular impulse implies that the motion is again integrable. The addition of an irrotational flow past the island can drive the patch towards the boundary, leading to the possibility of large deformations and breakup.

  11. Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data

    NASA Astrophysics Data System (ADS)

    Latifi, Kujtim; Huang, Tzung-Chi; Feygelman, Vladimir; Budzevich, Mikalai M.; Moros, Eduardo G.; Dilling, Thomas J.; Stevens, Craig W.; van Elmpt, Wouter; Dekker, Andre; Zhang, Geoffrey G.

    2013-11-01

    Quantum noise is common in CT images and is a persistent problem in accurate ventilation imaging using 4D-CT and deformable image registration (DIR). This study focuses on the effects of noise in 4D-CT on DIR and thereby derived ventilation data. A total of six sets of 4D-CT data with landmarks delineated in different phases, called point-validated pixel-based breathing thorax models (POPI), were used in this study. The DIR algorithms, including diffeomorphic morphons (DM), diffeomorphic demons (DD), optical flow and B-spline, were used to register the inspiration phase to the expiration phase. The DIR deformation matrices (DIRDM) were used to map the landmarks. Target registration errors (TRE) were calculated as the distance errors between the delineated and the mapped landmarks. Noise of Gaussian distribution with different standard deviations (SD), from 0 to 200 Hounsfield Units (HU) in amplitude, was added to the POPI models to simulate different levels of quantum noise. Ventilation data were calculated using the ΔV algorithm which calculates the volume change geometrically based on the DIRDM. The ventilation images with different added noise levels were compared using Dice similarity coefficient (DSC). The root mean square (RMS) values of the landmark TRE over the six POPI models for the four DIR algorithms were stable when the noise level was low (SD <150 HU) and increased with added noise when the level is higher. The most accurate DIR was DD with a mean RMS of 1.5 ± 0.5 mm with no added noise and 1.8 ± 0.5 mm with noise (SD = 200 HU). The DSC values between the ventilation images with and without added noise decreased with the noise level, even when the noise level was relatively low. The DIR algorithm most robust with respect to noise was DM, with mean DSC = 0.89 ± 0.01 and 0.66 ± 0.02 for the top 50% ventilation volumes, as compared between 0 added noise and SD = 30 and 200 HU, respectively. Although the landmark TRE were stable with low noise, the

  12. User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W. H.; Stagliano, T. R.; Witmer, E. A.; Spilker, R. L.

    1978-01-01

    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included.

  13. Improved Image Registration by Sparse Patch-Based Deformation Estimation

    PubMed Central

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Shen, Dinggang

    2014-01-01

    Despite of intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation towards the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) For each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) A small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients. (4) We

  14. Stroke amplifier for deformable mirrors

    PubMed Central

    Webb, Robert H.; Albanese, Marc J.; Zhou, Yaopeng; Bifano, Thomas; Burns, Stephen A.

    2010-01-01

    We demonstrate a simple optical configuration that amplifies the usable stroke of a deformable mirror. By arranging for the wavefront to traverse the deformable mirror more than once, we correct it more than once. The experimental implementation of the idea demonstrates a doubling of 2.0 and 2.04 by two different means. PMID:15495423

  15. Elastocapillary Deformations and Fracture of Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Grzelka, Marion; Bostwick, Joshua

    When a droplet is placed on the surface of a soft gel, the surface deforms by an amount proportional to the elastocapillary length calculated from the ratio of surface tension and elastic modulus. For sufficiently large deformations, the gel can fracture due to the forces generated under the liquid-gel contact line. We observe that a starburst of channel fractures forms at the surface of the gel, driven by fluid propagating away from the central droplet. To understand the initiation of these cracks, we model the substrate as an incompressible, linear-elastic solid and quantify the elastic response. This provides quantitative agreement with experimental measurements of the number of fracture arms as a function of material properties and geometric parameters. In addition, we find that the initiation process is thermally-activated, with delay time that decreases as a function of the elastocapillary length.

  16. Regional Deformation Studies with GRACE and GPS

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Elosequi, P.; Tamisiea, M.; Mitrovica, J. X.

    2005-01-01

    GRACE data indicate large seasonal variations in gravity that have been shown to be to be related to climate-driven fluxes of surface water. Seasonal redistribution of surface mass deforms the Earth, and our previous study using GRACE data demonstrate that annual radial deformations of +/-13 mm in the region of Amazon River Basin were observed by both GRACE and ten GPS sites in the region. For the GRACE determinations, we estimate in a least-squares solution for each Stokes coefficient parameters that represent the amplitudes of the annual variation. We then filter these parameters based on a statistical test that uses the scatter of the postfit residuals. We demonstrate by comparison to the GPS amplitudes that this method is more accurate, for this region, than Gaussian smoothing. Our model for the temporal behavior of the gravity coefficients includes a rate term, and although the time series are noisy, the glacial isostatic adjustment signal over Hudson s Bay can be observed. .

  17. High strain rate deformation of layered nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  18. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers. PMID:23132014

  19. Capillary deformations of bendable films.

    PubMed

    Schroll, R D; Adda-Bedia, M; Cerda, E; Huang, J; Menon, N; Russell, T P; Toga, K B; Vella, D; Davidovitch, B

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. PMID:23863002

  20. Capillary Deformations of Bendable Films

    NASA Astrophysics Data System (ADS)

    Schroll, R. D.; Adda-Bedia, M.; Cerda, E.; Huang, J.; Menon, N.; Russell, T. P.; Toga, K. B.; Vella, D.; Davidovitch, B.

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling “drop-on-a-floating-sheet” experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films.

  1. Particle-Based Simulation of Shock-Induced Deformation of Elastic Bodies

    NASA Astrophysics Data System (ADS)

    Sakamura, Y.; Sugimoto, T.; Nakayama, K.

    Shock-induced deformations of solid bodies are of practical interest to those who are concerned with explosive processing of materials, demolition of buildings, precautions against accidental explosions, etc. In order to simulate the shock-induced deformations of solid bodies, a large number of numerical codes based on continuum mechanics, which are called hydrocodes, have been developed so far [1, 2]. When the amount of deformation is relatively small, Lagrangian hydrocodes have been used to simulate the dynamic response of shock-loaded materials. When the deformation is large, Eulerian hydrocodes have been utilized instead. This is because the computational grids distorted along with the deformation of materials in the Lagrangian approach make the simulations either inaccurate or unstable, while the Eulerian approach where grids are fixed in space can handle such large deformations of materials. On the contrary, material interfaces that are precisely defined in the Lagrangian approach are not traced exactly in the Eulerian one.

  2. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  3. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  4. Nonaffine chain and primitive path deformation in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, J. D.; Goulbourne, N. C.

    2016-08-01

    Chains in a polymer network deform nonaffinely at small length scales due to the ability for extensive microscopic rearrangement. Classically, the conformations of an individual chain can be described solely by an end-to-end length. This picture neglects interchain interactions and therefore does not represent the behavior of a real polymer network. The primitive path concept provides the additional detail to represent interchain entanglements, and techniques have recently been developed to identify the network of primitive paths in a polymer simulation. We use coarse-grained molecular dynamics (MD) to track both chain end-to-end and primitive path deformation in crosslinked polymer networks. The range of simulated materials includes short chain unentangled networks to long, entangled chain networks. Both chain end-to-end and primitive path length are found to be linear functions of the applied deformation, and a simple relationship describes the behavior of a network in response to large stretch uniaxial, pure shear, and equi-biaxial deformations. As expected, end-to-end chain length deformation is nonaffine for short chain networks, and becomes closer to affine for networks of long, entangled chains. However, primitive path deformation is found to always be nonaffine, even for long, entangled chains. We demonstrate how the microscopic constraints of crosslinks and entanglements affect nonaffine chain deformation as well as the simulated elastic behavior of the different networks.

  5. A local fast marching-based diffusion tensor image registration algorithm by simultaneously considering spatial deformation and tensor orientation.

    PubMed

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T C

    2010-08-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  6. Effects of deformable registration algorithms on the creation of statistical maps for preoperative targeting in deep brain stimulation procedures

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; D'Haese, Pierre-Francois; Dawant, Benoit M.

    2014-03-01

    Deep brain stimulation, which is used to treat various neurological disorders, involves implanting a permanent electrode into precise targets deep in the brain. Accurate pre-operative localization of the targets on pre-operative MRI sequence is challenging as these are typically located in homogenous regions with poor contrast. Population-based statistical atlases can assist with this process. Such atlases are created by acquiring the location of efficacious regions from numerous subjects and projecting them onto a common reference image volume using some normalization method. In previous work, we presented results concluding that non-rigid registration provided the best result for such normalization. However, this process could be biased by the choice of the reference image and/or registration approach. In this paper, we have qualitatively and quantitatively compared the performance of six recognized deformable registration methods at normalizing such data in poor contrasted regions onto three different reference volumes using a unique set of data from 100 patients. We study various metrics designed to measure the centroid, spread, and shape of the normalized data. This study leads to a total of 1800 deformable registrations and results show that statistical atlases constructed using different deformable registration methods share comparable centroids and spreads with marginal differences in their shape. Among the six methods being studied, Diffeomorphic Demons produces the largest spreads and centroids that are the furthest apart from the others in general. Among the three atlases, one atlas consistently outperforms the other two with smaller spreads for each algorithm. However, none of the differences in the spreads were found to be statistically significant, across different algorithms or across different atlases.

  7. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  8. Perceptual transparency from image deformation

    PubMed Central

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin’ya

    2015-01-01

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid’s surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of “invisible” transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  9. Opioids and rat erythrocyte deformability.

    PubMed

    Rhoads, D L; Wei, L X; Lin, E T; Rezvani, A; Way, E L

    1986-01-01

    In previous studies from this laboratory, it was noted that opioids in vitro reduced human red blood cell deformability. The effect was found to be dose-dependent, naloxone reversible and preferentially selective kappa ligands exhibited the highest potency. To extend these findings studies were carried out using rat erythrocytes. The time required for erythrocytes to pass through a 5.0 um pore membrane was determined and used as an index of deformability. Opioids added in vitro produced inhibition of deformability in a dose-dependent, naloxone reversible manner. Injecting naive animals with morphine or nalbuphine also produced dose related reductions in red cell deformability. The degree of inhibition produced by nalbuphine correlated well with its plasma concentrations as measured by high performance liquid chromatography (HPLC). Chronic morphine treatment by pellet implantation resulted in the development of tolerance as evidenced by a loss in the ability of morphine in vitro to inhibit red cell deformability. Addition of naloxone resulted in a decrease in filtration time. Thus, the data confirm and extend previous findings on human red blood cells. In as much as previous data from this laboratory demonstrated that opioids inhibit calcium flux from erythrocytes by inhibiting calcium-ATPase and calcium efflux is necessary for normal deformability, it is concluded that opioids act to reduce red cell deformability by inhibition of the calcium pump. PMID:3123933

  10. Strain accumulation and surface deformation along the San Andreas, California

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1989-01-01

    The goal of this project remains to be the achievement of a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effect of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate/viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformations. In the present period, special focus is placed on the 3-D effect of irregular fault locked patches on the ground measured deformation fields. Specifically, use is made of a newly developed 3-D boundary element program to analyze the fault slip and vertical ground motion in the Parkfield area on the San Andreas.

  11. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  12. 3D deformation field throughout the interior of materials.

    SciTech Connect

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  13. Metastable vacua and complex deformations

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2007-12-15

    We use the non-normalizable complex deformations to describe the stringy realizations of the metastable vacua in N=1, SU(N{sub c}) SUSY theories with N{sub f}>N{sub c} massive fundamental flavors. The consideration of the non-normalizable deformations requires a modified toric duality. The new approach considers the tachyon condensation between pairs of wrapped D5 branes and anti-D5 branes and the resulting mixing between some cycles in the geometry. We enlarge the class of metastable vacua to the case of branes-antibranes wrapped on cycles of deformed A{sub n} singularities.

  14. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  15. Stability in holographic theories with irrelevant deformations

    NASA Astrophysics Data System (ADS)

    Amsel, Aaron J.; Roberts, Matthew M.

    2013-04-01

    We investigate the nonperturbative stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass near the Breitenlohner-Freedman bound. Such scalars are characterized by power-law radial decay near the anti-de Sitter boundary, and typical boundary conditions are “Dirichlet” (which fix the slower falloff mode) or “Neumann” (which fix the faster falloff mode) type. More generally though, these “designer gravity” theories admit a large class of boundary conditions defined by a functional relation between the two modes. While previous stability proofs have considered boundary conditions that are deformations of the Neumann theory, the goal of this paper is to analyze stability in designer gravity with boundary conditions that are irrelevant deformations of the Dirichlet theory. We obtain a lower bound on the energy using spinor charge methods and show that, for the most interesting class of such boundary conditions, the theory is always stable. We argue that the deformed theory flows to a new fixed point in the ultraviolet, which is just the Neumann theory. We also derive a corresponding “effective potential” that implies stability if it has a global minimum.

  16. Thalidomide deformities and their nerve supply.

    PubMed Central

    McCredie, J; North, K; de Iongh, R

    1984-01-01

    The aim of this study was to test the hypothesis that thalidomide acts upon the embryonic peripheral nervous system rather than upon mesenchyme. Pregnant rabbits were given oral thalidomide (150 mg/kg/day) on Days 7-11 of gestation. Fetuses were removed at laparotomy, under anaesthesia, on Day 29 of gestation. Seven fetuses with partial or total absence of the tibia, five treated fetuses without deformities, and four untreated controls were photographed, radiographed, killed and fixed for histological examination. Sciatic nerves were dissected and transverse sections were taken from an identical site. Total fascicular area, myelinated fibre number, fibre density and diameter distribution were obtained. There was a significant reduction in total fascicular area, and in the number of large diameter fibres in all treated animals. There was a significant depletion of total fibre numbers in deformed fetuses compared with controls. These findings are similar to the quantitative changes described in human adult subjects with thalidomide polyneuropathy, and are consistent with primary axonal degeneration in both instances. It is concluded that thalidomide acts upon embryonic nerves rather than on mesenchyme, and that dysmelic deformities of the limbs are secondary to toxic embryonic neuropathy. It is suggested that skeletal defects result when irreversible damage to the nerves reduces the transverse fascicular area below a critical minimum threshold. Images Fig. 1 (cont.) Fig. 1 Fig. 4 PMID:6490524

  17. Lithospheric Mantle Deformation beneath the Indian Cratons.

    PubMed

    Pandey; Agrawal

    1999-11-01

    The nature of deformation of the deep continental roots beneath the Archean-Early Proterozoic terrains opens the question whether these ancient terrains have had stable roots since the Precambrian or whether recent plate motions have deformed them. In view of this, we make an attempt to study the thermal structure beneath the cratonic regions of the Indian shield, which vary in lithospheric thickness from 65 km in the Singhbhum craton to 148 km in the Archean Dharwars. The average depth of 104 km to the top of the underlying asthenosphere is consistent with other termination methods and is in fact less than half the 200-400-km depth found in other stable areas of the earth. Similarly, the average reduced heat flow of about 35 mW/m2 and Moho temperature of about 550 degrees C (range: 400 degrees -730 degrees C) for the Indian cratons are also much higher than their counterparts elsewhere. Our study indicates a large-scale deformation of the cratonic mantle lithosphere beneath the Indian shield since the Mesoproterozoic caused by various geodynamic causes, challenging the idea of stability of deep continental roots. PMID:10517883

  18. Algebraic Multiscale Solver for Elastic Geomechanical Deformation

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Hajibeygi, H.; Tchelepi, H.

    2015-12-01

    Predicting the geomechanical response of geological formations to thermal, pressure, and mechanical loading is important in many engineering applications. The mathematical formulation that describes deformation of a reservoir coupled with flow and transport entails heterogeneous coefficients with a wide range of length scales. Such detailed heterogeneous descriptions of reservoir properties impose severe computational challenges for the study of realistic-scale (km) reservoirs. To deal with these challenges, we developed an Algebraic Multiscale Solver for ELastic geomechanical deformation (EL-AMS). Constructed on finite element fine-scale system, EL-AMS imposes a coarse-scale grid, which is a non-overlapping decomposition of the domain. Then, local (coarse) basis functions for the displacement vector are introduced. These basis functions honor the elastic properties of the local domains subject to the imposed local boundary conditions. The basis form the Restriction and Prolongation operators. These operators allow for the construction of accurate coarse-scale systems for the displacement. While the multiscale system is efficient for resolving low-frequency errors, coupling it with a fine-scale smoother, e.g., ILU(0), leads to an efficient iterative solver. Numerical results for several test cases illustrate that EL-AMS is quite efficient and applicable to simulate elastic deformation of large-scale heterogeneous reservoirs.

  19. NMR study on mechanisms of ionic polymer-metal composites deformation with water content

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Chen, Hualing; Wang, Yongquan; Luo, Bin; Chang, Longfei; Li, Bo; Chen, Luping

    2011-10-01

    Ionic polymer-metal composites (IPMCs) exhibit a large dynamic bending deformation under exterior electric field. The states and proportions of water within the IPMCs have great effect on the IPMCs deformation properties. This letter investigates the influence of the proportion changes of different types of water on the deformation, which may disclose the working mechanisms of the IPMCs. We give a deformation trend of IPMCs with the reduction of water content firstly. Then by the method of nuclear magnetic resonance, various water types (water bonded to sulfonates, loosely bound water and free water) of IPMCs and their proportions are investigated in the drying process which corresponds to their different deformation states. It is obtained that the deformation properties of IPMCs depend strongly on their water content and the excess free water is responsible for the relaxation deformation.

  20. The role of crustal quartz in controlling Cordilleran deformation.

    PubMed

    Lowry, Anthony R; Pérez-Gussinyé, Marta

    2011-03-17

    Large-scale deformation of continents remains poorly understood more than 40 years after the plate tectonic revolution. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend (somewhat nebulously) on rock type, temperature and whether or not unbound water is present. Hence, it is unclear precisely how Earth material properties translate to continental deformation zones ranging from tens to thousands of kilometres in width, why deforming zones are sometimes interspersed with non-deforming blocks and why large earthquakes occasionally rupture in otherwise stable continental interiors. An important clue comes from observations that mountain belts and rift zones cyclically form at the same locations despite separation across vast gulfs of time (dubbed the Wilson tectonic cycle), accompanied by inversion of extensional basins and reactivation of faults and other structures formed in previous deformation events. Here we show that the abundance of crustal quartz, the weakest mineral in continental rocks, may strongly condition continental temperature and deformation. We use EarthScope seismic receiver functions, gravity and surface heat flow measurements to estimate thickness and seismic velocity ratio, v(P)/v(S), of continental crust in the western United States. The ratio v(P)/v(S) is relatively insensitive to temperature but very sensitive to quartz abundance. Our results demonstrate a surprising correlation of low crustal v(P)/v(S) with both higher lithospheric temperature and deformation of the Cordillera, the mountainous region of the western United States. The most plausible explanation for the relationship to temperature is a robust dynamical feedback, in which ductile strain first localizes in relatively weak, quartz-rich crust, and then initiates processes that promote advective warming, hydration and further weakening. The feedback mechanism proposed here would not only explain

  1. Large deformations of a new class of incompressible elastic bodies

    NASA Astrophysics Data System (ADS)

    Bustamante, R.; Orellana, O.; Meneses, R.; Rajagopal, K. R.

    2016-06-01

    The consequences of the constraint of incompressibility is studied for a new class of constitutive relation for elastic bodies, for which the left Cauchy-Green tensor is a function of the Cauchy stress tensor. The requirement of incompressibility is imposed directly in the constitutive relation, and it is not necessary to assume a priori that the stress tensor should be divided into two parts, a constraint stress and a constitutively specified part, as in the classical theory of nonlinear elasticity.

  2. Developing a molecular picture for polymer glasses under large deformation

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Wang, Panpan

    2014-03-01

    Polymer glasses differ from most other types of glassy materials because they can be ductile under tensile extension. Remarkably, a ductile polymer can turn brittle and vice versa. For example, upon cooling, the glass changes from ductile to brittle at a temperature known as the brittle-ductile transition temperature (BDT). Aging causes the ductile glass to be brittle. Mechanical ``rejuvenation'' or pressurization brings a brittle glass into a ductile state. Finally, one glass can be ductile 100 degrees below Tg while another polymer is already brittle even just 10 degree below Tg. Polystyrene and bisphenol A polycarbonate are at the two extremes in the family of polymer glasses. How to rationale such a wide range of behavior in terms of a molecular picture has been a challenging task. What is the role of ``chain entanglement''? Since many of the procedures including the temperature change do not alter the ``chain entanglement'', it is clearly insufficient to explain the nature of the BDT in terms of the entanglement density. Our work attempts to answer the question of what then is the role of chain networking. We have formulated a molecular picture that presents a unifying and coherent explanation for all the known phenomenology concerning the BDT and condition for crazing. This work is supported, in part, by NSF (CMMI-0926522 and DMR-1105135).

  3. Numerical Simulation of Gas-Solid Interfaces with Large Deformations

    SciTech Connect

    Vorobiev, O.Y.; Lomov, I.N.

    2000-02-01

    A method of treatment of multimaterial interfaces on Eulerian grids is developed which works well for mixtures of materials with diverse compressibilities and shear moduli. This makes it possible to use this method not only for problems of gas dynamics and solid mechanics but also to model fluid-structure interaction problems.

  4. Large deformation of self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Maeda, Shingo; Kato, Terukazu; Otsuka, Yuji; Hosoya, Naoki; Cianchetti, Matteo; Laschi, Cecilia

    2016-01-01

    A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N -isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ >0.5 ) and prestrained gel samples oscillate in a good solution (χ <0.5 ).

  5. Microstructure evolution of compressible granular systems under large deformations

    NASA Astrophysics Data System (ADS)

    Gonzalez, Marcial; Cuitiño, Alberto M.

    2016-08-01

    We report three-dimensional particle mechanics static calculations that predict the microstructure evolution during die-compaction of elastic spherical particles up to relative densities close to one. We employ a nonlocal contact formulation that remains predictive at high levels of confinement by removing the classical assumption that contacts between particles are formulated locally as independent pair-interactions. The approach demonstrates that the coordination number depends on the level of compressibility, i.e., on Poisson's ratio, of the particles. Results also reveal that distributions of contact forces between particles and between particles and walls, although similar at jamming onset, are very different at full compaction. Particle-wall forces are in remarkable agreement with experimental measurements reported in the literature, providing a unifying framework for bridging experimental boundary observations with bulk behavior.

  6. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  7. M theory on deformed superspace

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  8. Carrier Deformability in Drug Delivery.

    PubMed

    Morilla, Maria Jose; Romero, Eder Lilia

    2016-01-01

    Deformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications. PMID:26675226

  9. Modelling magnetically deformed neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N.

    2008-03-01

    Rotating deformed neutron stars are important potential sources for ground-based gravitational wave interferometers such as LIGO, GEO600 and VIRGO. One mechanism that may lead to significant non-asymmetries is the internal magnetic field. It is well known that a magnetic star will not be spherical and, if the magnetic axis is not aligned with the spin axis, the deformation will lead to the emission of gravitational waves. The aim of this paper is to develop a formalism that would allow us to model magnetically deformed stars, using both realistic equations of state and field configurations. As a first step, we consider a set of simplified model problems. Focusing on dipolar fields, we determine the internal magnetic field which is consistent with a given neutron star model and calculate the associated deformation. We discuss the relevance of our results for current gravitational wave detectors and future prospects.

  10. Promoting research in rock deformation

    NASA Astrophysics Data System (ADS)

    Kirby, Steve

    In response to informal discussions at the 1988 AGU Spring Meeting in Baltimore, Md., a dinner colloquium was held December 5, 1988, in San Francisco. Our purpose was to explore ways of promoting basic research in rock deformation, for which no professional organization exists that spans the full range of research interests. In spite of an informal distribution of announcements of the meeting, 54 people attended.Rock deformation is the materials science of the crystalline and amorphous materials that make up the solid Earth. As such, it includes not only the physical processes responsible for brittle and ductile deformation but also the important chemical processes that influence time-dependent inelastic deformation. Consequently, there is a continuing need to engage interest and collaboration from materials scientists, mineral physicists, metallurgists, surface chemists, and geochemists in the study of the inelastic mechanical behavior of these complex materials.

  11. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  12. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  13. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  14. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  15. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  16. Measurement of deformations by NMR

    NASA Astrophysics Data System (ADS)

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2015-12-01

    Two NMR data acquisition protocols together with corresponding data processing algorithms for locating macroscopic objects, measuring distances between them or monitoring their displacements or deformations with microscopic precision are presented and discussed. The performance of the methods is demonstrated by applying them to the measurement of deformations of a freely supported beam under loading. We believe that our methods will find their applications in mechanics, civil engineering and medicine.

  17. A novel three-dimensional mesh deformation method based on sphere relaxation

    SciTech Connect

    Zhou, Xuan; Li, Shuixiang

    2015-10-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

  18. Mixing of discontinuously deforming media.

    PubMed

    Smith, L D; Rudman, M; Lester, D R; Metcalfe, G

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations-such as shear banding or wall slip-creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems. PMID:26931594

  19. Deformable Mirror Materials Issue Assessment

    SciTech Connect

    Rudd, R E

    2008-05-27

    It was a pleasure to speak with you and Dr. Olivier Guyon about your project to develop a coronagraph and in particular about materials science considerations in the development of the deformable mirror (DM) for the coronagraph. The coronagraph application will demand more of a DM than previous applications with regard to precision, and since the characterization and modeling tools are currently under development, you asked me to comment on materials issues that might impact the DM design and testing. I have not conducted research on this question, and my own research on modeling MEMS has not included DM systems. I am only in a position to discuss some general considerations that may help in developing a research plan for the DM system. As I understand it, the relevant points about the DM system are as follows. The DM surface needs to be positioned to less than 1 {angstrom} RMS of the desired shape, and be stable to 0.3 {angstrom} RMS for an hour. In the ultimate application in space the stability requirements may be greater. For example, the DM shape can be set using a bright star and then allow the coronagraph to be turned to a dim star to collect data for several hours, counting on the mirror shape to be stable. The DM is made of a polysilicon membrane coated with one or more metal layers for the reflective surface and actuated by 32x32 or 64x64 electrostatic actuators on the back side. The uncertainty in the position of any one actuator should be at the few-picometer level or less averaged over the 300-{micro}m region of the actuator. Currently, experiments are conducted that can characterize the surface shape to the 1 nm level, and it is anticipated that the experiments will be able to characterize the shape at the sub-Angstrom level but not in the immediate future. Regarding stability, under relatively large deformations (10's of nm), the DM mirror surface shows no hysteresis at the measurable nm level. Let me begin by saying that I am not aware of any

  20. Microstructures and deformation mechanisms of experimentally deformed gabbro

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; He, Changrong

    2015-04-01

    The natural gabbro samples were deformed at temperature ranging from 700 to 1150 °C with strain rate steps of 1 × 10-4, 2.5 × 10-5, 6.3 × 10-6 s-1. The mechanical data show that sample experiences gradual transition from semi-brittle flow to plastic flow, corresponding to a systematically decreasing stress exponent n with the increasing temperature ranging from 16.5 to 4.1 (He et al. Sci China (D) 46(7):730-742, 2003). We investigate microstructures and deformation mechanisms of experimentally deformed gabbro under transmission electron microscope in this study. For low temperature of 700 °C to 950 °C, the deformation is mainly accommodated with dislocation glide and mechanical twinning, corresponding to stress exponent lager than 5, which means semi-brittle deformation. Whereas with higher temperature up to 1000 °C-1150 °C, the deformation is accommodated mainly with dislocation glide and climb corresponding to stress exponent of 4.1, which means plastic deformation. Evidence of dislocation climb has been found as dislocation walls in plagioclase. The observed slip system in plagioclase is (001)1/2[110] and that in clinopyroxene are (100)[001] and (010)[001]. The (010)[001] slip system in clinopyroxene is newly found in this work. Melt was found at temperature of 950 °C-1050 °C. The melt glass distributed both in melt thin film between two grain boundaries and melt tubules of triangular along three grain boundaries at temperature of 950 °C-1000 °C. The melt triangular interconnected to the melt film at temperature of 1050 °C-1150 °C, where the melt chemical composition differentiated into iron-rich dark dots and silicate-rich matrix.

  1. Active compressive intraoceanic deformation: early stages of ophiolites emplacement?

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, Nicolas; Delescluse, Matthias; Montési, Laurent

    2010-05-01

    Oceanic lithosphere is strong and continental lithosphere is weak. As a result, there is relatively little deformation in the oceanic domain away from plate boundaries. However, the interior of oceanic lithosphere does deform when highly stressed. We review here places where intraoceanic compression is at work. In the more than 30 years since the first observations of active compressive intraplate deformation in the Central Indian Ocean through seismic profiling (Eittreim et al., 1972), compressive deformation has been identified in a variety of other oceanic tectonic settings: as a result of small differential motion between large plates (between North America and South America in the Central Atlantic; between Eurasia and Nubia offshore Gibraltar; between Macquarie and Australia plates in the Southern Ocean), within back-arcs (northwest Celebes Sea, Okushiri Ridge in the Japan Sea, on the eastern border of the Caroline plate), and ahead of subduction (Zenisu Ridge off Nankai Trough). Deformation appears to be more diffuse when larger plates are involved, and more localized for younger plates, perhaps in relation with the increasing rigidity of oceanic plates with age. The best example of diffuse deformation studied so far remains the Central Indian Ocean. Numerous marine data have been collected in this area, including shallow and deep seismic, heat flow measurements, multibeam bathymetry. The present-day deformation field has been modeled using GPS and earthquakes as far field and near field constraints respectively. Reactivation of the oceanic fabric (including for portions of the Indo-Australian plate which are now in subduction as evidenced by the September 2009 Padang earthquake), selective fault abandonment (Delescluse et al., 2008) and serpentinization (Delescluse and Chamot-Rooke, 2008) are some of the important processes that shape the present-day pattern of deformation. These rare intraplate deformation areas constitute excellent natural laboratories to

  2. Studies of microstructures of deformed charnockitic rocks in Telsiai deformation zone, Lithuania

    NASA Astrophysics Data System (ADS)

    Vejelyte, Irma

    2010-05-01

    The Telsiai Deformation Zone (TDZ), a regional scale Precambrian deformation zone in the crystalline basement of Lithuania, transects the WLGD in the E-W direction and is approximately 15-20 km wide as mirrored by a belt of gravity and magnetic lows. As indicated by petrological and geophysical data the TDZ crosscuts a 1.82 Ga charnockitic pluton in a ductile manner. In turn, the TDZ appears to have been intruded by or accommodated a 1.46 Ga granitoid intrusion, defining at least its age in-between of these two magmatic events. The mesoanalyses and microanalyses of drillcores have been carried out on augen mylonite and ultramylonite, which were formed at upper amphibolite facies. The temperature during the deformation was 650-750 C° at pressure between 3.0 and 4.7 kbar. The deformed charnockites have a prominent foliation marked mainly by feldspar, biotite, quartz, orthopyroxene, garnet and ± clinopyroxene. Porphyroclasts of plagioclase are elongated and banded. They are partly recrystallized to fine-grained polygonal aggregates as a result of high temperature deformation. In places, plagioclase has been truncated by plagioclase-rich microshears. Quartz grains are in three manners: large old grains with deeply indented boundaries and undulate extinction; medium polygonal grains and ribbons grains. Large biotite grains are locally kinked, some of them have been partly neocrystallized to much smaller new grains of biotite parallel to the foliation. Garnet crystals are elongated and oriented to the foliation. Individual grains of them in the highest strain areas have been recrystallized to many small garnet grains. Large crystals of orthopyroxene are deformed and elongated, on their sheared rims tails of fine grained orthopyroxene and clinopyroxene have been formed. The subgrain rotation, grain-boundary migration recrystallization and recovery processes predominate in all minerals. Near residual plagioclase also are visible myrmekites. They formed along those sides

  3. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  4. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  5. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  6. Special ergodic theorems and dynamical large deviations

    NASA Astrophysics Data System (ADS)

    Kleptsyn, Victor; Ryzhov, Dmitry; Minkov, Stanislav

    2012-11-01

    Let f : M → M be a self-map of a compact Riemannian manifold M, admitting a global SRB measure μ. For a continuous test function \\varphi\\colon M\\to R and a constant α > 0, consider the set Kφ,α of the initial points for which the Birkhoff time averages of the function φ differ from its μ-space average by at least α. As the measure μ is a global SRB one, the set Kφ,α should have zero Lebesgue measure. The special ergodic theorem, whenever it holds, claims that, moreover, this set has a Hausdorff dimension less than the dimension of M. We prove that for Lipschitz maps, the special ergodic theorem follows from the dynamical large deviations principle. We also define and prove analogous result for flows. Applying the theorems of Young and of Araújo and Pacifico, we conclude that the special ergodic theorem holds for transitive hyperbolic attractors of C2-diffeomorphisms, as well as for some other known classes of maps (including the one of partially hyperbolic non-uniformly expanding maps) and flows.

  7. Unimorph deformable mirror for space telescopes: design and manufacturing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2015-07-27

    Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror. PMID:26367605

  8. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  9. Influence of soil conditioning on ground deformation during longitudinal tunneling

    NASA Astrophysics Data System (ADS)

    Jiang, Mingjing; Yin, Zhen-Yu

    2014-03-01

    Soil conditioning is often adopted to facilitate EPB shield tunneling. However, the resulting improvement of soil fluidity and the reduction of friction forces will also raise the ground deformation problem. This paper aims to investigate the influence of soil conditioning on the ground deformation during longitudinal tunneling. DEM is employed for this study due to its advantages in analyzing large deformations and discontinuous processes. Soil conditioning is modeled by reducing the interparticle friction of soils in a specific zone around the cutterhead of the tunnel. The tunnel advance with different soil-conditioning treatments is thus modeled. Comparisons are carried out on the ground deformation, i.e. ground surface settlement, vertical and horizontal displacements. The influence of soil conditioning on the ground deformation is clarified, and is associated with the fluidity from poor to favorite, and the mechanical properties from dilative to contractive are associated with the increase of soil conditioning. The results are helpful to determine the conditioned soils and control ground deformation for real constructions.

  10. Controlled deformation of vesicles by flexible structured media

    PubMed Central

    Zhang, Rui; Zhou, Ye; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-01-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau–de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  11. Controlled deformation of vesicles by flexible structured media.

    PubMed

    Zhang, Rui; Zhou, Ye; Martínez-González, José A; Hernández-Ortiz, Juan P; Abbott, Nicholas L; de Pablo, Juan J

    2016-08-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  12. Biaxial deformation of collagen and elastin fibers in coronary adventitia

    PubMed Central

    Chen, Huan; Slipchenko, Mikhail N.; Liu, Yi; Zhao, Xuefeng; Cheng, Ji-Xin; Lanir, Yoram

    2013-01-01

    The microstructural deformation-mechanical loading relation of the blood vessel wall is essential for understanding the overall mechanical behavior of vascular tissue in health and disease. We employed simultaneous mechanical loading-imaging to quantify in situ deformation of individual collagen and elastin fibers on unstained fresh porcine coronary adventitia under a combination of vessel inflation and axial extension loading. Specifically, the specimens were imaged under biaxial loads to study microscopic deformation-loading behavior of fibers in conjunction with morphometric measurements at the zero-stress state. Collagen fibers largely orientate in the longitudinal direction, while elastin fibers have major orientation parallel to collagen, but with additional orientation angles in each sublayer of the adventitia. With an increase of biaxial load, collagen fibers were uniformly stretched to the loading direction, while elastin fibers gradually formed a network in sublayers, which strongly depended on the initial arrangement. The waviness of collagen decreased more rapidly at a circumferential stretch ratio of λθ = 1.0 than at λθ = 1.5, while most collagen became straightened at λθ = 1.8. These microscopic deformations imply that the longitudinally stiffer adventitia is a direct result of initial fiber alignment, and the overall mechanical behavior of the tissue is highly dependent on the corresponding microscopic deformation of fibers. The microstructural deformation-loading relation will serve as a foundation for micromechanical models of the vessel wall. PMID:24092692

  13. Structure modulated electrostatic deformable mirror for focus and geometry control.

    PubMed

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view. PMID:26832237

  14. Residual deformations in ocular tissues

    PubMed Central

    Wang, Ruoya; Raykin, Julia; Gleason, Rudolph L.; Ethier, C. Ross

    2015-01-01

    Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall. PMID:25740853

  15. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  16. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  17. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect

  18. Mixing of discontinuously deforming media

    NASA Astrophysics Data System (ADS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations—such as shear banding or wall slip—creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.

  19. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  20. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.