Science.gov

Sample records for large detector arrays

  1. Large Format Detector Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2006-01-01

    Improvements in detector design and advances in fabrication techniques has resulted in devices which can reach fundamental sensitivity limits in many cases. Many pressing astrophysical questions require large arrays of such sensitive detectors. I will describe the state of far infrared through millimeter detector development at NASA/GSFC, the design and production of large format arrays, and the initial deployment of these powerful new tools.

  2. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  3. A broadband superconducting detector suitable for use in large arrays.

    PubMed

    Day, Peter K; LeDuc, Henry G; Mazin, Benjamin A; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2003-10-23

    Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of DeltaE < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions. PMID:14574407

  4. A readout for large arrays of microwave kinetic inductance detectors.

    PubMed

    McHugh, Sean; Mazin, Benjamin A; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-04-01

    Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications. PMID:22559560

  5. LAMBDA — Large Area Medipix3-Based Detector Array

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.

    2012-11-01

    Medipix3 is a photon-counting readout chip for X-ray detection. It has a small pixel size (55 μm) and a high frame rate with zero dead time, which makes it attractive for experiments at synchrotrons. Using Medipix3, DESY are developing the LAMBDA (Large Area Medipix3-Based Detector Array) system. A single LAMBDA module carries either a single large silicon sensor of 1536 by 512 pixels, or two smaller high-Z sensors. The sensor is bonded to 12 Medipix3 chips, and mounted on a ceramic carrier board. The readout system for the module then provides a fast FPGA, a large RAM and four 10 Gigabit Ethernet links to allow operation at high frame rates. Multiple modules may then be tiled together a larger area. Currently, the first large silicon modules have been constructed and tested at low speed, and the firmware for fast readout is being developed.

  6. Development of LAMBDA: Large Area Medipix-Based Detector Array

    NASA Astrophysics Data System (ADS)

    Pennicard, David; Lange, Sabine; Smoljanin, Sergej; Becker, Julian; Hirsemann, Helmut; Epple, Michael; Graafsma, Heinz

    2011-11-01

    The Medipix3 photon counting readout chip has a range of features — small pixel size, high readout rate and inter-pixel communication — which make it attractive for X-ray scattering and imaging at synchrotrons. DESY have produced a prototype large-area detector module that can carry a 6 by 2 array of Medipix3 chips (1536 by 512 pixels), which can be used with a single large silicon sensor (85mm by 28mm) or two ``hexa'' high-Z sensors. The detector head is designed to be tilable and compatible with low temperatures, and will allow high speed parallel readout of the Medipix3 chips. It consists of a ceramic board, on which the sensor assembly is mounted, and a secondary board for signal routing and voltage regulators. A prototype DAQ board using USB2 readout has also been produced. A ``quad'' Medipix3 sensor assembly has been mounted on the detector head, and successfully configured and read out by the DAQ board. Development has begun on a high-speed readout board, and large-area silicon assemblies are in production.

  7. Digital readouts for large microwave low-temperature detector arrays

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-04-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100 MS/s 16-bit D/A to generate an arbitrary number of tones in 50 MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (˜10 GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80 MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0 Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors.

  8. Remote alignment of large mirror array for RICH detectors

    NASA Astrophysics Data System (ADS)

    Dalla Torre, S.; Levorato, S.; Menon, G.; Polak, J.; Steiger, L.; Sulc, M.; Tessarotto, F.

    2008-09-01

    Image focusing in large RICH detectors is obtained by composite systems of mirror elements. Monitoring and adjusting the alignment of the mirror elements during data taking are important handles to improve the detector resolution. Mirror adjustment via piezoelectric actuators can combine unprecedented accuracy and match some fundamental requirements: the detector material budget can be kept low and the high purity of the gas radiator can be preserved, a prerequisite when UV photons are detected. A system based on this principle, well suited for COMPASS RICH-1 mirrors, is proposed.

  9. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  10. Large-format electrographic and array detectors for a space Schmidt imaging telescope

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Fischer, Jacqueline; Wray, James D.; Lowrance, John L.

    1990-01-01

    Possible optical designs of imaging detectors for the spaceborne Schmidt telescope proposed by Carruthers et al. (1990) are discussed, surveying the currently or potentially available technology. Consideration is given to FUV electrographic detectors of large format (e.g., 120 mm with 10-micron resolution) using CsI photocathodes, the possible extension of the same technology to the mid-UV using Cs2Te instead of CsI, large CCD arrays for the visible and NIR, electron-bombarded CCDs for the FUV and mid-UV, and the data handling and processing requirements of these detectors.

  11. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  12. Force spectroscopy with a large dynamic range using small cantilevers and an array detector

    NASA Astrophysics Data System (ADS)

    Schäffer, Tilman E.

    2002-04-01

    The important characteristics of a detector for force spectroscopy measurements are sensitivity, linearity and dynamic range. The commonly used two-segment detector that measures the position of a light beam reflected from the force-sensing cantilever in an atomic force microscope becomes nonlinear when the beam shifts significantly onto one of the segments. For a detection setup optimized for high sensitivity, such as needed for the use with small cantilevers, it is shown both experimentally and theoretically that the dynamic range extends to an upper detection limit of only about 115 nm in cantilever deflection if <10% nonlinearity is required. A detector is presented that circumvents that limitation. This detector is based on a linear arrangement of multiple photodiode segments that are read out individually. With such an array detector, the irradiance distribution of the reflected beam is measured. The reflected beam not only shifts in position but also deforms when the cantilever deflects because the bent cantilever acts as a curved mirror. The mean of the distribution, however, is a linear function of cantilever deflection in both theory and experiment. An array detector is consequently well suited for force measurements for which both high sensitivity and a large dynamic range are required.

  13. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  14. Design considerations for large detector arrays on submillimeter-wave telescopes

    NASA Astrophysics Data System (ADS)

    Stark, Antony A.

    2000-07-01

    The emerging technology of large (approximately 10,000 pixel) submillimeter-wave bolometer arrays presents a novel optical design problem -- how can such arrays be fed by diffraction- limited telescope optics where the primary mirror is less than 100,000 wavelengths in diameter? Standard Cassegrain designs for radiotelescope optics exhibit focal surface curvature so large that detectors cannot be placed more than 25 beam diameters from the central ray. The problem is worse for Ritchey-Chretien designs, because these minimize coma while increasing field curvature. Classical aberrations, including coma, are usually dominated by diffraction in submillimeter- wave single dish telescopes. The telescope designer must consider (1) diffraction, (2) aberration, (3) curvature of field, (4) cross-polarization, (5) internal reflections, (6) the effect of blockages, (7) means of beam chopping on- and off-source, (8) gravitational and thermal deformations of the primary mirror, (9) the physical mounting of large detector packages, and (10) the effect of gravity and (11) vibration on those detectors. Simultaneous optimization of these considerations in the case of large detector arrays leads to telescopes that differ considerably from standard radiotelescope designs. Offset optics provide flexibility for mounting detectors, while eliminating blockage and internal reflections. Aberrations and cross-polarization can be the same as on-axis designs having the same diameter and focal length. Trade-offs include the complication of primary mirror homology and an increase in overall cost. A dramatic increase in usable field of view can be achieved using shaped optics. Solutions having one to six mirrors will be discussed, including possible six-mirror design for the proposed South Pole 10 m telescope.

  15. Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2013-06-01

    Numerical simulations play an important role in the development of large-format infrared detector array tech- nologies, especially when considering devices whose sizes are comparable to the wavelength of the radiation they are detecting. Computational models can be used to predict the optical and electrical response of such devices and evaluate designs prior to fabrication. We have developed a simulation framework which solves Maxwell's equations to determine the electromagnetic properties of a detector and subsequently uses a drift-diffusion ap- proach to asses the electrical response. We apply these techniques to gauge the effects of cathode placement on the inter- and intra-pixel attributes of compositionally graded and constant Hg1-xCdxTe mid-wavelength infrared detectors. In particular, the quantum efficiency, nearest-neighbor crosstalk, and modulation transfer function are evaluated for several device architectures.

  16. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  17. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-02-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  18. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-07-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  19. LAMBDA: Large Area Modular BaF2 Detector Array for the measurement of high energy γ rays

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Bhattacharya, Srijit; Pandit, Deepak; Ray, A.; Pal, Surajit; Banerjee, K.; Kundu, S.; Rana, T. K.; Bhattacharya, S.; Bhattacharya, C.; De, A.; Banerjee, S. R.

    2007-11-01

    A large BaF 2 detector array along with its dedicated CAMAC electronics and VME based data acquisition system has been designed, constructed and installed successfully at VECC, Kolkata for studying high energy γ rays ( >8 MeV). The array consists of 162 detector elements. The detectors were fabricated from bare barium fluoride crystals (each measuring 35 cm in length and having cross-sectional area of 3.5×3.5 cm2). The basic properties of the detectors (energy resolution, time resolution, efficiency, uniformity, fast to slow ratio, etc.) were studied exhaustively. Complete GEANT3 Monte Carlo simulations were performed to optimize the detector design and also to generate the response function. The detector system has been used successfully to measure high energy photons from 113Sb, formed by bombarding 145 and 160 MeV 20Ne beams on a 93Nb target. The measured experimental spectra are in good agreement with those from a modified version of the statistical model code CASCADE. In this paper, we present the complete description of this detector array along with its in-beam performance.

  20. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. (Inventor)

    1982-01-01

    A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  1. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. A. (Inventor)

    1982-01-01

    A pryoelectric detector array and the method for making it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strip. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of the layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  2. Students using large muon detectors to investigate an array of cosmic ray phenomena

    NASA Astrophysics Data System (ADS)

    Sedita, Paul; McFarland, Kevin

    2012-03-01

    During the summers of 2004 to 2008 high school students were given the opportunity to refurbish, characterize and ultimately experiment with large muon detectors at the University of Rochester. The 2.3 m^2 panels used for the cosmic ray investigations were remnants of the NuTeV experiment conducted at Fermilab in the late 1990's, and provided a means for measuring surface cosmic ray muon rates with high precision over many years of time. The first set of experiments carried out by students used data from two stacked paddles running in coincidence mode to detect significant muon fluctuations due to solar events, model an indirect relationship between muon frequency and atmospheric pressure, and determine if muon rates were dependent of the time of day. Current and archived data can be accessed at http://muon2.pas.rochester.edu/data/. In subsequent summers, students and teachers utilized four panel arrays to characterize directionality, angular distribution and frequency of atmospheric muon shower events. For all investigations students presented their findings to their peers and mentors via weekly seminars, e-logs, and poster sessions.

  3. Arrays of Segmented, Tapered Light Guides for Use with Large, Planar Scintillation Detectors

    PubMed Central

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-01-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector’s active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system. PMID:26538685

  4. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  5. Detector array design

    SciTech Connect

    Lari, S.

    1996-02-01

    Neutron scattering facility at Oak-Ridge National is used to measure residual stresses in many different materials. Neutron beam from the reactor can be used to penetrate the inner atomic distances of metals which then can be diffracted to a detector to measure the strain. The strain data later can be converted to stresses. The facility currently uses only one detector to carry the measurement. By designing an array of detectors data can be obtained at a much faster rate and or having a much better and improved resolution. The purpose of this report is to show design of such array of detectors and their movements (rotation) for possible maximum data collection at a faster rate.

  6. Development of an array of cooled large area Si(Li) detectors

    SciTech Connect

    Pehl, R.H.; Madden, N.W.; Walton, J.T.; Malone, D.F.; Landis, D.A.; Goulding, F.S.; Cork, C.P.; Wong, Y.K.; Strauss, M.G.; Sherman, I.S.

    1985-10-01

    A system containing six cooled, 34 mm diam by 7 mm thick, high-resolution Si(Li) detectors designed to maximize the sensitivity for counting x rays in the 10-30 keV range to measure trace radionuclides in soil samples has been successfully fabricated. The detectors were mounted in a paddle-shaped cryostat with a single large beryllium window on each side. This configuration provides for efficient anticoincidence background suppression and effectively doubles the sensitive detector area because x rays can impinge on the detectors from both sides. To maximize detection efficiency, the thickness of the cryostat was held to a bare minimum (25 mm); this caused severe difficulties during fabrication of the system. Cutting down the rim of the detectors reduced to an acceptable level the microphony caused by movement of the beryllium window that faces the lithium-diffused contact of the detectors. Since this system will be used for low level counting. careful testing was performed to select materials having the lowest radioactivity.

  7. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    SciTech Connect

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  8. Map-making for Large-Format Detector Arrays on CCAT

    NASA Astrophysics Data System (ADS)

    Marsden, G.; Jenness, T.; Scott, D.

    2015-09-01

    CCAT is a large submillimetre telescope to be built near the ALMA site in northern Chile. A large-format KID camera, with up to 48,000 detectors at a single waveband sampled at ˜1 kHz, will have a data rate ˜50 times larger than SCUBA-2, the largest existing submillimetre camera. Creating a map from this volume of data will be a challenge, both in terms of memory and processing time required. We investigate how to extend SMURF, the iterative map-maker used for reducing SCUBA-2 observations, to a distributed-node parallel system, and estimate how the processing time scales with the number of nodes in the system.

  9. Very low noise AC/DC power supply systems for large detector arrays

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Baù, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μVRMS (CUORE setup) and 90 μVRMS (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  10. Very low noise AC/DC power supply systems for large detector arrays.

    PubMed

    Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled). PMID:26724052

  11. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  12. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  13. Efficiency calibration and coincidence summing correction for large arrays of NaI(Tl) detectors in soccer-ball and castle geometries

    NASA Astrophysics Data System (ADS)

    Anil Kumar, G.; Mazumdar, I.; Gothe, D. A.

    2009-11-01

    Efficiency calibration and coincidence summing correction have been performed for two large arrays of NaI(Tl) detectors in two different configurations. They are, a compact array of 32 conical detectors of pentagonal and hexagonal shapes in soccer-ball geometry and an array of 14 straight hexagonal NaI(Tl) detectors in castle geometry. Both of these arrays provide a large solid angle of detection, leading to considerable coincidence summing of gamma rays. The present work aims to understand the effect of coincidence summing of gamma rays while determining the energy dependence of efficiencies of these two arrays. We have carried out extensive GEANT4 simulations with radio-nuclides that decay with a two-step cascade, considering both arrays in their realistic geometries. The absolute efficiencies have been simulated for gamma energies from 700 to 2800 keV using four different double-photon emitters, namely, 60Co, 46Sc, 94Nb and 24Na. The efficiencies so obtained have been corrected for coincidence summing using the method proposed by Vidmar et al. [11]. The simulations have also been carried out for the same energies assuming mono-energetic point sources, for comparison. Experimental measurements have also been carried out using calibrated point sources of 137Cs and 60Co. The simulated and the experimental results are found to be in good agreement. This demonstrates the reliability of the correction method [11] for efficiency calibration of two large arrays in very different configurations.

  14. Development of an ASIC for the readout and control of near-infrared large array detectors

    NASA Astrophysics Data System (ADS)

    Meier, Dirk; Berge, Hans Kristian Otnes; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Azman, Suleyman; Talebi, Jahanzad; Olsen, Alf; Øya, Petter; Paahlsson, Philip; Gheorghe, Codin; Maehlum, Gunnar

    2014-07-01

    The article describes the near infrared readout and controller ASIC (NIRCA) developed by Integrated Detector Electronics AS (IDEAS). The project aims at future astronomical science and Earth observation missions, where the ASIC will be used with image sensors based on mercury cadmium telluride (HgCdTe, or MCT). NIRCA is designed to operate from cryogenic temperatures (77 K) to higher than room temperature (328 K) and in a high radiation environment (LET > 60 MeVcm2/mg). The ASIC connects to the readout integrated circuit (ROIC) and delivers fully digitized data via serial digital output. The ASIC contains an analogue front-end (AFE) with 4 analogue-to-digital converters (ADCs) and programmable gain amplifiers with offset adjustment. The ADCs have a differential input swing of +/-2 V, 12-bit resolution, and a maximum sample rate of 3 MSps. The ASIC contains a programmable sequencer (microcontroller) to generate up to 40 digital signals for the ROIC and to control the analogue front-end and DACs on the chip. The ASIC has two power supply voltage regulators that provide the ROIC with 1.8 V and 3.3 V, and programmable 10-bit DACs to generate 16 independent reference and bias voltages from 0.3 V to 3 V. In addition NIRCA allows one to read 8 external digital signals, and monitor external and internal analogue signals including onchip temperature. NIRCA can be programmed and controlled via SPI interface for all internal functions and allows data forwarding from and to the ROIC SPI interface.

  15. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  16. Massively parallel MRI detector arrays

    NASA Astrophysics Data System (ADS)

    Keil, Boris; Wald, Lawrence L.

    2013-04-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas via reception, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays.

  17. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  18. Massively parallel MRI detector arrays.

    PubMed

    Keil, Boris; Wald, Lawrence L

    2013-04-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas via reception, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called "ultimate" SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  19. The CHROMA focal plane array: a large-format, low-noise detector optimized for imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Demers, Richard T.; Bailey, Robert; Beletic, James W.; Bernd, Steve; Bhargava, Sidharth; Herring, Jason; Kobrin, Paul; Lee, Donald; Pan, Jianmei; Petersen, Anders; Piquette, Eric; Starr, Brian; Yamamoto, Matthew; Zandian, Majid

    2013-09-01

    The CHROMA (Configurable Hyperspectral Readout for Multiple Applications) is an advanced Focal Plane Array (FPA) designed for visible-infrared imaging spectroscopy. Using Teledyne's latest substrateremoved HgCdTe detector, the CHROMA FPA has very low dark current, low readout noise and high, stable quantum efficiency from the deep blue (390nm) to the cutoff wavelength. CHROMA has a pixel pitch of 30 microns and is available in array formats ranging from 320×480 to 1600×480 pixels. Users generally disperse spectra over the 480 pixel-length columns and image spatially over the n×160 pixellength rows, where n=2, 4, 8, 10. The CHROMA Readout Integrated Circuit (ROIC) has Correlated Double Sampling (CDS) in pixel and generates its own internal bias signals and clocks. This paper presents the measured performance of the CHROMA FPA with 2.5 micron cutoff wavelength including the characterization of noise versus pixel gain, power dissipation and quantum efficiency.

  20. High Performance Measurement System of Large Area Solid-State Track Detector Array for Ultra Heavy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Doke, T.; Hareyama, M.; Hasebe, N.; Sakurai, K.; Ota, S.; Sato, M.; Yasuda, N.; Nakamura, S.; Kamei, T.; Tawara, H.; Ogura, K.

    The handling of solid-state track detector (SSTD) has been historically required for a long period and many human powers to scan and analyze etch-pits produced on the detector. Because a large area greater than a few m2 detector is required to observe ultraheavy nuclei in galactic cosmic rays, a high speed scanning system is practically important to realize our observation. We have developed the fast automated digital imaging optical microscope (HSP-1000) to scan and analyze the etch-pit produced on the detector, whose image acquisition speed is 50-100 times faster than conventional microscope system. Furthermore, analyzing massive cosmic ray track data produced in extremely large exposed area requires a completely automated multi-sample scanning system. The developed automated system consists of a modified HSP-1000 microscope for image acquisition, a robot arm to replace the sample trays, a magazine station for storing sample trays, and a scanning and analyzing computer to control the whole system. Moreover, since the improvement of thickness measurement accuracy in local area of SSTD will allow us to achieve higher charge and mass resolutions, the new system to measure the SSTD thickness located adjacent to etch-pit in SSTD with an excellent resolution of +/- 0.2 um has been developed.

  1. Synchronizing large systolic arrays

    SciTech Connect

    Fisher, A.L.; Kung, H.T.

    1982-04-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of systolic array, it may be convenient to think of all processors as operating in lock step. Totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternate means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. This paper represents a first step towards a systematic study of synchronization problems for large systolic arrays.

  2. Encapsulated thermopile detector array for IR microspectrometer

    NASA Astrophysics Data System (ADS)

    Wu, Huaiwen; Emadi, Arvin; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2010-04-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as possible pitch, which is limited by processing constraints. The large aspect ratio of the TE elements implies a large cross-sectional area between adjacent elements within the array and results in a relatively large lateral heat exchange between micromachined elements by thermal diffusion. This thermal cross-talk is about 10% in case of a gap spacing of 10 μm between elements. Therefore, the detector array should be packaged (and operated) in vacuum in order to reduce the cross-talk due to the air conduction through the gap. Thin film packaging is a solution to achieve an operating air pressure at1.3 mBar, which reduces the cross-talk to 0.4%. An absorber based on an optical interference filter design is also designed and fabricated as an IC compatible post-process on top the detector array. The combination of the use of CMOS compatible materials and processing with high absorbance in 1.5 - 5 μm wavelength range makes a complete on-chip microspectrometer possible.

  3. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  4. The FPGA Pixel Array Detector

    NASA Astrophysics Data System (ADS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-02-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested.

  5. Why compton-suppressed germanium detector arrays?

    SciTech Connect

    Diamond, R.M.

    1993-10-01

    Nuclear spectroscopic studies have provided a strong incentive to obtain {gamma}-ray detectors with increasingly better energy resolution, higher full-energy peak efficiencies, and greater sensitivity or resolving power. A major step was the introduction of Ge detectors in the early 60`s. But because of the low atomic number of Ge they have a poor response function; a majority of interacting gamma rays of moderate energy Compton scatter out of the detector leaving a large low-energy background. The remedy was to add a Compton-suppression shield made of NaI around the Ge crystal, and if interactions occurred simultaneously in the NaI scintillator and in the Ge detector to veto that event. Efficiencies also increased greatly when an English-Danish collaboration assembled five Ge detectors, each with a NaI suppressor, into the first array at the end of 1980. Obviously, a system of five such detectors gave much better statistics than the usual two bare detectors used for obtaining coincidence data (by a factor of 10). A few years later, another major improvement came with replacement of the NaI suppressors with shields made of the much denser bismuth germanate (BGO) as scintillator, as these could be thinner leading to arrays with of order 20 detectors. Use of such a large number of detectors led to the realization that for cascades of coincident gamma rays, as in going down a band, the improvement in the peak/background ratio observed and already appreciated in going from singles spectra to gated (double-) coincidence spectra continued when doubly-gated triple-coincidence data were compared for the first time to singly-gated double-coincidence ones. The higher-gated spectra were much cleaner and more selective, though with poorer statistics, and the advantages of higher folds and efficiencies led to the proposals for the larger 4{pi} arrays of today, Eurogam and GASP in Europe and Gammasphere in the U.S.

  6. Preliminary validation results of an ASIC for the readout and control of near-infrared large array detectors

    NASA Astrophysics Data System (ADS)

    Pâhlsson, Philip; Meier, Dirk; Otnes Berge, Hans Kristian; Øya, Petter; Steenari, David; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar

    2015-06-01

    In this paper we present initial test results of the Near Infrared Readout and Controller ASIC (NIRCA), designed for large area image sensors under contract from the European Space Agency (ESA) and the Norwegian Space Center. The ASIC is designed to read out image sensors based on mercury cadmium telluride (HgCdTe, or MCT) operating down to 77 K. IDEAS has developed, designed and initiated testing of NIRCA with promising results, showing complete functionality of all ASIC sub-components. The ASIC generates programmable digital signals to clock out the contents of an image array and to amplify, digitize and transfer the resulting pixel charge. The digital signals can be programmed into the ASIC during run-time and allows for windowing and custom readout schemes. The clocked out voltages are amplified by programmable gain amplifiers and digitized by 12-bit, 3-Msps successive approximation register (SAR) analogue-to-digital converters (ADC). Digitized data is encoded using 8-bit to 10-bit encoding and transferred over LVDS to the readout system. The ASIC will give European researchers access to high spectral sensitivity, very low noise and radiation hardened readout electronics for astronomy and Earth observation missions operating at 77 K and room temperature. The versatility of the chip makes the architecture a possible candidate for other research areas, or defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  7. Coherent Detector Arrays for Continuum and Spectral Line Applications

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.

    2006-01-01

    This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.

  8. Multianode microchannel array detectors for Space Shuttle imaging applications

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.

  9. Multi-Channel Detector Arrays for Heavy Ion Beam Probes

    NASA Astrophysics Data System (ADS)

    Aceto, Steven; Beckstead, Jeffrey; Castracane, James; Iguchi, H.; Fujisawa, A.; Demers, Diane; Schatz, John

    1997-11-01

    InterScience, Inc. has developed a multiple slit detector array for use with heavy ion beam probes. The first array was a twenty element array installed on the TEXT tokamak. An initial set of data was obtained with this array prior to the shutdown on the TEXT tokamak in December of 1995. More recently, a smaller detector array has been developed for use in the CHS torsatron in Nagoya. This array is smaller than the TEXT array, with ten elements, but contains two prototype sets of detector plates to determine the beam position. The operating conditions in CHS are expected to be much harsher than in TEXT, with ECH and NBI plasmas. Trajectory simulations allowed for the design of a tilted detector array in the CHS vacuum vessel. First tests of the CHS array will begin in the late summer of 1997. Other candidate machines for detector arrays are the MST reversed field pinch, in which a beam probe is expected to be installed in late 1997 or early 1998 and the Large Helical Device (LHD) which is expected to be operational in 1998. Design issues, trajectory simulations and array test results will be presented. Supported in part by the U.S. Department of Energy under Grant #DE-FG02-94ER81788

  10. Si:As BIB detector arrays

    NASA Technical Reports Server (NTRS)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  11. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  12. Thermopile Detector Arrays for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.

    2004-01-01

    Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.

  13. Characterization of Large Volume 3.5″ x 8″ LaBr3:Ce Detectors for the HECTOR+ array

    NASA Astrophysics Data System (ADS)

    Camera, F.; Giaz, A.; Pellegri, L.; Riboldi, S.; Blasi, N.; Boiano, C.; Bracco, A.; Brambilla, S.; Ceruti, S.; Coelli, S.; Crespi, F. C. L.; Csatlòs, M.; Krasznahorkay, A.; Gulyàs, J.; Lodetti, S.; Frega, S.; Miani, A.; Million, B.; Stuhl, L.; Wieland, O.

    2014-03-01

    A selection of the properties of large volume, cylindrical 3.5" x 8" LaBr3:Ce scintillation detectors coupled to a 3.5" PMT (model R10233-1000SEL from HAMAMATSU) and a special designed Voltage Divider (LABRVD) will be discussed. A number of 10 of such detectors constitute the HECTOR+ array which, in fall 2012, measured at GSI coupled to the AGATA DEMOSTRATOR at the PRESPEC experimental setup. These crystals are among the largest ever produced and needed to be characterized. We have performed several tests and here we discuss, in particular, the energy resolution measured using monochromatic γ-ray sources and in-beam reactions producing γ-rays up to 22.6 MeV. As already measured in two previous works a saturation in the energy resolution was observed in case of high energy gamma rays. Crystal non-homogeneities and PMT gain drifts can affect the resolution of measurements especially in case of high energy γ-rays.

  14. Microparticle impact calibration of the Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) onboard the solar power sail demonstrator IKAROS

    NASA Astrophysics Data System (ADS)

    Hirai, Takayuki; Cole, Michael J.; Fujii, Masayuki; Hasegawa, Sunao; Iwai, Takeo; Kobayashi, Masanori; Srama, Ralf; Yano, Hajime

    2014-10-01

    The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m2) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of ≥10-μm-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of ≥10-μm-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nano-second pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-μm-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-μm-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to ≥10-μm size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9×10-14 kg to 2×10-10 kg (4-56 μm in diameter at density of 2.0 g/cm3) at the expected impact velocity of 10 km/s at 1 AU

  15. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  16. Next generation microwave multiplexers for low-temperature detector arrays

    NASA Astrophysics Data System (ADS)

    Irwin, Kent

    We propose to continue our successful program for the development of breakthrough readout technology for low-temperature detectors. The next generation of larger arrays requires multiplexed readout at microwave frequencies. Multiplexing at microwave frequencies with superconducting microwave resonators shows great promise for the instrumentation of very large arrays of transition-edge sensors (TES) and microwave kinetic inductance detectors (MKID). Applications include the detection of the cosmic microwave background (CMB), submillimeter and far-infrared astronomy, optical astronomy, and x-ray astronomy. These arrays will play a critical role in answering questions about the origins and evolution of galaxies, stars, and planetary systems, the physics of the cosmos, and the physics of the inflationary epoch in the early universe. We propose an integrated program to develop quantum-limited amplifiers to enable the readout of both large TES and MKID arrays. These amplifiers include microwave SQUIDs for TES readout and wideband parametric amplifiers for MKID arrays.

  17. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  18. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  19. Chunking of Large Multidimensional Arrays

    SciTech Connect

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  20. Integration of an amorphous silicon passive pixel sensor array with a lateral amorphous selenium detector for large area indirect conversion x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Yazdandoost, Mohammad Y.; Keshavarzi, Rasoul; Shin, Kyung-Wook; Hristovski, Christos; Abbaszadeh, Shiva; Chen, Feng; Majid, Shaikh Hasibul; Karim, Karim S.

    2011-03-01

    Previously, we reported on a single-pixel detector based on a lateral a-Se metal-semiconductor-metal structure, intended for indirect conversion X-ray imaging. This work is the continuous effort leading to the first prototype of an indirect conversion X-ray imaging sensor array utilizing lateral amorphous selenium. To replace a structurally-sophisticated vertical multilayer amorphous silicon photodiode, a lateral a-Se MSM photodetector is employed which can be easily integrated with an amorphous silicon thin film transistor passive pixel sensor array. In this work, both 2×2 macro-pixel and 32×32 micro-pixel arrays were fabricated and tested along with discussion of the results.

  1. Technology developments toward large format long wavelength bolometer arrays

    NASA Astrophysics Data System (ADS)

    Allen, Christine A.; Benford, Dominic J.; Miller, Timothy M.; Moseley, S. Harvey; Staguhn, Johannes G.; Wollack, Edward J.

    2007-09-01

    We are developing a kilopixel, filled bolometer array for infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; 1) a transition edge sensor (TES) bolometer array, operating in the milliKelvin regime, 2) quarter-wave resonance backshorts, and 3) superconducting quantum interference device (SQUID) multiplexer readout. The detector array is a filled, square-grid of suspended, silicon membrane bolometers with superconducting thermistors. The spacing of the backshort beneath the detector grid can be set from ~30-300 microns by adjusting two process parameters during fabrication. We have produced prototype, monolithic arrays having 1 mm and 2 mm pitch detectors. The key technologies required for kilopixel arrays of detectors to be hybridized to SQUID multiplexer readout circuits have been demonstrated. Mechanical models of large-format detector grids have been indium bump-bonded to dummy multiplexer readouts to study electrical continuity. A monolithic array of 1 mm pitch detectors has been mated to a backshort grid optimized for a 350 micron resonant wavelength. Through-wafer microvias, for electroplated, low-resistance electrical connection of detector elements, have been prototyped using deep reactive ion etching. The ultimate goal of this work is to develop large-format (thousands of pixels) bolometer array architecture with background-limited sensitivity, suitable for a wide range of long wavelengths and a wide range of astronomical applications such as imaging, spectroscopy, and polarimetry and applicable for ground-based, suborbital, and space-based instruments.

  2. Optimal design of a generalized compound eye particle detector array

    NASA Astrophysics Data System (ADS)

    Nehorai, Arye; Liu, Zhi; Paldi, Eytan

    2006-05-01

    We analyze the performance of a novel detector array for detecting and localizing particle emitting sources. The array is spherically shaped and consists of multiple "eyelets," each having a conical shape with a lens on top and a particle detectors subarray inside. The array's configuration is inspired by and generalizes the biological compound eye: it has a global spherical shape and allows a large number of detectors in each eyelet. The array can be used to detect particles including photons (e.g. visible light, X or γ rays), electrons, protons, neutrons, or α particles. We analyze the performance of the array by computing statistical Cramer-Rao bounds on the errors in estimating the direction of arrival (DOA) of the incident particles. In numerical examples, we first show the influence of the array parameters on its performance bound on the mean-square angular error (MSAE). Then we optimize the array's configuration according to a min-max criterion, i.e. minimize the worst case lower bound of the MSAE. Finally we introduce two estimators of the source direction using the proposed array and analyze their performance, thereby showing that the performance bound is attainable in practice. Potential applications include artificial vision, astronomy, and security.

  3. The neutron detector array DESCANT

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Garnsworthy, A. B.; Pearson, C. J.

    2013-10-01

    The DESCANT array at TRIUMF is designed to track neutrons from RIB experiments. DESCANT is comprised of 70 close-packed deuterated liquid organic scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. The anisotropy of the n-d scattering will allow to distinguish higher neutron multiplicities from scattering within the array and to determine the neutron energy spectrum directly from the pulse-height spectrum without using TOF. Comparative type-testing of candidate small deuterated scintillators to non-deuterated scintillators have been performed at the University of Kentucky. Results of these type-testing measurements will be presented together with first designs of the firmware written for the fast sampling ADC modules.

  4. Centroid tracking with area array detectors

    NASA Technical Reports Server (NTRS)

    Glavich, T. A.

    1986-01-01

    A computer program (ALGEVAL) has been developed to simulate the position estimating behavior of a centroid estimator algorithm using data typical of optical point spread function data recorded by an area array detector. Typical results are shown of varying detector properties and optical point spread function types. The detector parameters currently available for study include read noise mean value, dark current mean value and spatial variation, charge transfer efficiency and point spread function location, saturation level, signal level and pixel size. The program is capable of calculating any order centroid using an array size from 2 x 2 to 15 x 15 pixels. The output of the program is either a performance map, histogram data or tabluar data. A number of further developments are recommended.

  5. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  6. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  7. Interference effects in Reticon photodiode array detectors

    NASA Astrophysics Data System (ADS)

    Mount, George H.; Sanders, Ryan W.; Brault, James W.

    1992-03-01

    A detector system incorporating the Reticon RL1024S photodiode array has been constructed as part of a double spectrograph to be used to study the earth's atmosphere from ground-based and aircraft-based platforms. To determine accurately the abundances of atmospheric trace gases, this new system must be able to measure spectral absorptions as small as 0.02 percent. The detector exhibits superior signal-to-noise characteristics at the light levels characteristic of scattered skylights, but interference in the passivating layer causes problems in achieving the required precision. The mechanism of the problems and the solution implemented are described in detail.

  8. Development of the ORRUBA Silicon Detector Array

    SciTech Connect

    Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Johnson, M. S.; Jones, K. L.; Kapler, R.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Smith, Michael Scott; Thomas, J. S.

    2009-01-01

    High quality radioactive beams have recently made possible the measurement of (d,p) reactions on unstable nuclei in inverse kinematics, which can yield information on the development of single-neutron structure away from stability, and are of astrophysical interest due to the proximity to suggested r-process paths. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new high solid-angular coverage array, composed of two rings of silicon detectors, optimized for measuring (d,p) reactions. A partial implementation has been used to measure (d,p) reactions on nuclei around the N = 82 shell closure.

  9. The SORDS trimodal imager detector arrays

    NASA Astrophysics Data System (ADS)

    Wakeford, Daniel; Andrews, H. R.; Clifford, E. T. H.; Li, Liqian; Bray, Nick; Locklin, Darren; Hynes, Michael V.; Toolin, Maurice; Harris, Bernard; McElroy, John; Wallace, Mark; Lanza, Richard

    2009-05-01

    The Raytheon Trimodal Imager (TMI) uses coded aperture and Compton imaging technologies as well as the nonimaging shadow technology to locate an SNM or radiological threat in the presence of background. The heart of the TMI is two arrays of NaI crystals. The front array serves as both a coded aperture and the first scatterer for Compton imaging. It is made of 35 5x5x2" crystals with specially designed low profile PMTs. The back array is made of 30 2.5x3x24" position-sensitive crystals which are read out at both ends. These crystals are specially treated to provide the required position resolution at the best possible energy resolution. Both arrays of detectors are supported by aluminum superstructures. These have been efficiently designed to allow a wide field of view and to provide adequate support to the crystals to permit use of the TMI as a vehicle-mounted, field-deployable system. Each PMT has a locally mounted high-voltage supply that is remotely controlled. Each detector is connected to a dedicated FPGA which performs automated gain alignment and energy calibration, event timing and diagnostic health checking. Data are streamed, eventby- event, from each of the 65 detector FPGAs to one master FPGA. The master FPGA acts both as a synchronization clock, and as an event sorting unit. Event sorting involves stamping events as singles or as coincidences, based on the approximately instantaneous detector hit pattern. Coincidence determination by the master FPGA provides a pre-sorting for the events that will ultimately be used in the Compton imaging and coded aperture imaging algorithms. All data acquisition electronics have been custom designed for the TMI.

  10. Large Format Arrays for Far Infrared and Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2004-01-01

    Some of the most compelling questions in modem astronomy are best addressed with submillimeter and millimeter observations. The question of the role of inflation in the early evolution of the universe is best addressed with large sensitive arrays of millimeter polarimeters. The study of the first generations of galaxies requires sensitive submillimeter imaging, which can help us to understand the history of energy release and nucleosynthesis in the universe. Our ability to address these questions is dramatically increasing, driven by dramatic steps in the sensitivity and size of available detector arrays. While the MIPS instrument on the SIRTF mission will revolutionize far infrared astronomy with its 1024 element array of photoconductors, thermal detectors remain the dominant technology for submillimeter and millimeter imaging and polarimetry. The last decade has seen the deployment of increasingly large arrays of bolometers, ranging from the 48 element arrays deployed on the KAO in the late 198Os, to the SHARC and SCUBA arrays in the 1990s. The past years have seen the deployment of a new generation of larger detector arrays in SHARC II (384 channels) and Bolocam (144 channels). These detectors are in operation and are beginning to make significant impacts on the field. Arrays of sensitive submillimeter bolometers on the SPIRE instrument on Herschel will allow the first large areas surveys of the sky, providing important insight into the evolution of galaxies. The next generation of detectors, led by SCUBA II, will increase the focal scale of these instruments by an order of magnitude. Two major missions are being planned by NASA for which further development of long wavelength detectors is essential, The SAFlR mission, a 10-m class telescope with large arrays of background limited detectors, will extend our reach into the epoch of initial galaxy formation. A major goal of modem cosmology is to test the inflationary paradigm in the early evolution of the universe

  11. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  12. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  13. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  14. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  15. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  16. Plans for CHICOS a detector array in California High Schools

    NASA Astrophysics Data System (ADS)

    McKeown, R. D.; Carr, R.; Gao, J.; Guerrera, T.; Horton-Smith, S.; Ito, T.; Seki, R.; Li, S.-P.; Shoup, A.; Yodh, G.

    The California HIgh school Cosmic ray ObServatory, CHICOS, is a collabora-tive project involving Caltech, Cal State Northridge, UC Irvine, and local high school physics teachers to site a large array of particle detectors at high schools in the Los Angeles area. The Los Angeles basin is quite unique in that there is a very large area (> 5000 km2 ) of uniformly dense population with available high school infrastructure. We have obtained 164 scintillation detectors from the decommissioned CYGNUS experiment in New Mexico, and are presently working to instrument these detectors in an array with area of more than 400 km2 . Each site will have a detection system with a computer to acquire data, and will operate in an autonomous mode using GPS time-stamping of events. The data from each site will be transmitted via internet to a central computer at Caltech where the data will be logged, processed, and accessible to the high schools. The availability of existing infrastructure in the Los Angeles school system with internet connections, power, and shelter provides an excellent op-portunity to develop such a large array. In the future we would like to expand the scope of this project to cover a larger fraction of the Los Angeles area and include a much larger percentage of the high schools, hopefully increasing the area to over 1000 km2 .

  17. Astronomical imaging with infrared array detectors.

    PubMed

    Gatley, I; Depoy, D L; Fowler, A M

    1988-12-01

    History shows that progress in astronomy often stems directly from technological innovation and that each portion of the electromagnetic spectrum offers unique insights into the nature of the universe. Most recently, the widespread availability of infrared-sensitive two-dimensional array detectors has led to dramatic improvements in the capabilities of conventional ground-based observatories. The impact of this new technology on our understanding of a wide variety of phenomena is illustrated here by infrared pictures of star-forming regions, of nebulae produced by the late stages of stellar evolution, of the nucleus of our own galaxy(the Milky Way), and of activity in other galaxies. PMID:17817072

  18. Detector Arrays for an Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Haas, M. R.; Baltz, J. A.; McKelvey, M. E.; Colgan, S. W. J.; Lynch, D. H.; Wolf, J.; Witteborn, Fred (Technical Monitor)

    1996-01-01

    The design of a long-slit echelle spectrograph covering the 16 - 210 micron range for use on the Stratospheric Observatory for Infrared Astronomy (SOFIA) is under study at NASA-Ames. This wavelength range is selected for its content of important astrophysical spectral lines accessible from an airborne platform, and availability of suitable detectors. Two dimensional arrays will be used to simultaneously provide spectral coverage in the dispersion direction and imaging in the cross-dispersion direction. Major goals are: (1) to reach sensitivities limited primarily by the background from the residual atmosphere and the telescope; (2) to provide imaging not far from the diffraction limit of the 2.5 meter (effective) aperture of the telescope; and (3) to obtain diffraction-limited spectral resolution from the large echelle grating, which means that the resolving power increases with decreasing wavelength. To meet these requirements, three detector types are forseen: a commercially available monolithic Si:Sb IBC array to cover the wavelength range from 16 to 40 microns, a Ge:Sb photoconductor array to cover the range from 40 to 125 microns, and a stressed Ge:Ga photoconductor array covering the range from 125 to 210 microns. The paper discusses details of the studies and plans for the field optics, detectors, and readouts.

  19. Ultralow-Background Large-Format Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)

    2002-01-01

    In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.

  20. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-03-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  1. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  2. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Battaglia, N.; Wollack, E. J.; Allison, R.; Austermann, J.; Baildon, T.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  3. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  4. Low dark current InGaAs detector arrays for night vision and astronomy

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan

    2009-05-01

    Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.

  5. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    NASA Astrophysics Data System (ADS)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  6. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  7. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  8. Novel Multiplexing Technique for Detector and Mixer Arrays

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.

    2001-01-01

    Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature

  9. High resolution 64-element pyroelectric linear array IR detector

    NASA Astrophysics Data System (ADS)

    Turnbull, Andrew A.; Cooke, Martin E.

    1987-01-01

    A 64-element pyroelectric linear array detector has been developed. Included within the detector is a corresponding array of source followers together with a multiplexer and amplifier. High responsivity and high detectivity have been achieved, together with a low level of microphony.

  10. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  11. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  12. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  13. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  14. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  15. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  16. Performance characteristics of multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The multi-anode microchannel arrays (MAMAs) are state-of-the-art, pulse-counting, photoelectric array detectors designed specifically for use in space astrophysics instruments. The present paper provides a description of recent progress related to the development of ultraviolet and visible-light versions of the MAMA detectors, taking into account a comparison of the operating characteristics of these devices with those of photoconductive array detectors, such as the CCDs. Attention is given to MAMA detector system design parameters, the operating characteristics of MAMAs and CCDs, MAMA performance characteristics, and future developments.

  17. A 16 x 16 element extrinsic silicon detector array

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two bismuth-doped silicon accumulation-mode charge-injection device (AMCID) infrared detector arrays are studied. The geometry and composition of the arrays, and a description of the cold and warm electronics components of the system are described. Instructions for setting up and operating the array system, plus results of a functional test, are included.

  18. Large Imaging X-ray MKID Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin

    Microwave Kinetic Inductance Detectors, or MKIDs, are a relatively new type of superconducting detector with built-in frequency domain multiplexing (FDM). Like Transition Edge Sensors (TESs), MKIDs can count single X-ray photons over a wide energy range and determine their energy and arrival time. Unlike TESs, MKIDs allow very large pixel counts with a fairly simple room temperature readout. MKIDs currently are being used for submillimeter/millimeter and optical/UV astronomy. They are a mature technology, and our group has recently demonstrated very promising X-ray MKIDs. The uncertain state of future NASA X-ray missions makes fundamental detector research even more important. New detector capabilities are one of the best ways to increase mission performance without increasing cost. We propose to continue our existing ROSES-funded program to develop X-ray MKIDs with the ultimate goal of developing large, sensitive focal plane arrays for future X-ray missions. In particular, we will focus on making a hybrid array with a core of high count rate, high energy resolution single pixels, and a very large (up to 50 mm x 50 mm, megapixel or larger) extended array with a moderate 5-15 eV energy resolution R=E/FWHM(E) at 6 keV. For the single pixel core of the array we propose a new type of "calorimetric" MKID that uses the temperature rise of a membrane suspended MKID and absorber, very similar in design to the TES detectors that have achieved an energy resolution of 1.8 eV at 5.9 keV. For the outer array the ability of absorber-coupled MKIDs to trap quasiparticles in a lower gap material allows the separation of the function of photon absorption from detection, and also allows distributed "strip detector/DROID" configurations that can drastically increase the size of the arrays. MKID arrays using rectangular 2-D detectors could quickly reach megapixel pixel counts and cover 25 cm^2. The science potential of a CCD-scale array but with 10-20 times better energy resolution is

  19. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  20. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects. PMID:26233363

  1. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm3 detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  2. Big Data Challenges for Large Radio Arrays

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  3. A possible EAS array above the Soudan 2 detector

    NASA Technical Reports Server (NTRS)

    Sivaprasad, K.

    1985-01-01

    Multiple high energy muons, when studied with a large area detector, can be useful in the study of the composition of cosmic rays at energies approx. 10 14 eV. The Soudan II detector, primarily designed to detect nucleon decay, is located approx. 600 m deep underground and has dimensions of 16m x 8m x 5m (height), and is made up of drift tubes. The minimum muon energy needed to penetrate that depth is approximately 500 GeV. A set of simulated cosmic ray showers was set up to calculate the rate of muon associated events, using a trigger array with the number of detectors varying from 37 to 127 (the radius of acceptance varying from 50m to 100m). The number used in the calculations is given. The association rate is seen to be a strong function of the multiplicity of muons in the detector. The difference in the rates of association of proton and nuclei induced showers rises rapidly with multiplicity.

  4. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGESBeta

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; et al

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics.more » The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  5. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  6. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E. Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.; Hodges, D.; Lee, W.; Petryk, M.

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  7. Particle Identification in the NIMROD-ISiS Detector Array

    SciTech Connect

    Wuenschel, S.; Hagel, K.; May, L. W.; Wada, R.; Yennello, S. J.

    2009-03-10

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.

  8. Scientific Applications and Promise of Cryogenic Detector Arrays

    SciTech Connect

    Moseley, Samuel Harvey

    2009-12-16

    During the past year, the first results from a new generation of instruments based on kilopixel-scale arrays of cryogenic detectors have been released. I will review the history of low temperature detector arrays which has enabled this development, the science which has driven this rapid progress, describe the instruments now in operation and their initial scientific results, and speculate on the developments we may see in the next decade.

  9. Scientific Applications and Promise of Cryogenic Detector Arrays

    NASA Astrophysics Data System (ADS)

    Moseley, Samuel Harvey

    2009-12-01

    During the past year, the first results from a new generation of instruments based on kilopixel-scale arrays of cryogenic detectors have been released. I will review the history of low temperature detector arrays which has enabled this development, the science which has driven this rapid progress, describe the instruments now in operation and their initial scientific results, and speculate on the developments we may see in the next decade.

  10. A Research on CdZnTe Array Detector

    NASA Astrophysics Data System (ADS)

    Cai, M. S.; Guo, J. H.; Xie, M. G.; Zheng, C. X.

    2013-09-01

    The CdZnTe array detector is a new type of semiconductor detector, and it has been developing rapidly in recent years. It has some characteristics of high spatial resolution, high energy resolution, and it can work at room temperature. This article describes the physical characteristics and the working principle of the CdZnTe detector. It also introduces the production process of the CdZnTe array detector, including the pretreatment of the chips, passivation, ohmic electrode production, array template selection, and array package process selection (micro-interconnect). For evaluating the performance of the detector, the authors produced a 4 pixel × 4 pixel CdZnTe array and an 8 pixel × 8 pixel CdZnTe array (The thicknesses are 5 mm and 2 mm, respectively.The pixel size is 2 mm × 2 mm. The gaps are 0.15 mm and 0.2 mm, respectively.) with cooperation partner successfully. A multi-channel electronic readout system based on the ASIC (Application Specific Integrated Circuit) chip is used for the charge measurement of the 4 pixel × 4 pixel array of CdZnTe. The 16-pixel spectrum and the corresponding energy resolution are obtained with the ^{137}Cs radiation source. Among the results of each pixel, the best resolution is 4.8%@662 keV.

  11. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  12. Superconducting-nanowire single-photon-detector linear array

    NASA Astrophysics Data System (ADS)

    Zhao, Qingyuan; McCaughan, Adam; Bellei, Francesco; Najafi, Faraz; De Fazio, Domenico; Dane, Andrew; Ivry, Yachin; Berggren, Karl K.

    2013-09-01

    We designed, fabricated, and tested a one-dimensional array of superconducting-nanowire single-photon detectors, integrated with on-chip inductors and resistors. The architecture is suitable for monolithic integration on a single chip operated in a cryogenic environment, and inherits the characteristics of individual superconducting-nanowire single-photon detectors. We demonstrated a working array with four pixels showing position discrimination and a timing jitter of 124 ps. The electronic crosstalk between the pixels in the array was negligible.

  13. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  14. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  15. Hybrid Array of Gamma Ray Detectors (HAGRiD)

    NASA Astrophysics Data System (ADS)

    Smith, Karl; Grzywacz, R.; Jones, K. L.; Munoz, S.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Pain, S. D.

    2015-10-01

    Transfer reactions and beta-decay studies are powerful tools to study nuclear structure and to provide insight into astrophysically important reactions that may be difficult to measure directly. Both types of studies are enhanced immensely by measuring a particle-gamma coincidence. For transfer reactions, gamma-ray measurements improve the resolution, aid in channel selection and lifetime measurements. To achieve these coincidences the Hybrid Array of Gamma Ray Detectors (HAGRiD) is being designed and constructed. This array would be coupled with the Oak Ridge Rutgers Barrel Array (ORRUBA) of silicon detectors, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) and beta detection scintillators. Detector systems providing a particle-gamma coincidence have previously compromised the charged-particle angular resolution due to compact geometries used to increase the gamma efficiency. HAGRiD will be coupled with ORRUBA such that resolution is not sacrificed, requiring the new array to provide improved resolution and efficiency over NaI and increased portability and flexibility over germanium detectors; therefore, we have chosen to use LaBr3(Ce) crystals. We demonstrate the advantages of a coupled detector system and discuss the current status of the project.

  16. A Study on the CdZnTe Array Detector

    NASA Astrophysics Data System (ADS)

    Cai, Ming-sheng; Guo, Jian-hua; Xie, Ming-gang; Zheng, Chun-xiao

    2014-04-01

    The CdZnTe array detector is a new type of semiconductor detector being rapidly developed in recent years. It possesses a high spatial resolution and a high energy resolution, and it can work at room temperatures. This paper describes the physical properties and working principle of the CdZnTe array detector, as well as the manufacturing technology, including the chip pretreatment, passivation, ohmic electrode preparation, array template selection, and array packaging technology (micro-interconnection). For evaluating the perfor-mance of the detector, the authors have developed successfully a 4 pixel×4 pixel CdZnTe array and an 8 pixel×8 pixel CdZnTe array (with the thicknesses of 5 mm and 2 mm, the pixel size of 2 mm×2 mm, and the gaps of 0.15 mm and 0.2 mm, respectively) in cooperation with the partner. A multi-channel electronic readout system based on the ASIC (Application Specific Integrated Circuit) chip is devel-oped independently for the charge measurement of the 4 pixel×4 pixel CdZnTe array. The energy spectra and corresponding energy resolutions of the 16 pixels are obtained with the 137Cs radiative source, among them the best resolution is 4.8%@662 kev.

  17. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Rossinot, P.; Sterb, J.; Vayonakis, A.; Wang, G.; Yun, M.; Zmuidzinas, J.

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  18. Detector architecture of the cosmology large angular scale surveyor

    NASA Astrophysics Data System (ADS)

    Rostem, K.; Bennett, C. L.; Chuss, D. T.; Costen, N.; Crowe, E.; Denis, K. L.; Eimer, J. R.; Lourie, N.; Essinger-Hileman, T.; Marriage, T. A.; Moseley, S. H.; Stevenson, T. R.; Towner, D. W.; Voellmer, G.; Wollack, E. J.; Zeng, L.

    2012-09-01

    The cosmic microwave background (CMB) provides a powerful tool for testing modern cosmology. In particular, if inflation has occurred, the associated gravitational waves would have imprinted a specific polarized pattern on the CMB. Measurement of this faint polarized signature requires large arrays of polarization-sensitive, background- limited detectors, and an unprecedented control over systematic effects associated with instrument design. To this end, the ground-based Cosmology Large Angular Scale Surveyor (CLASS) employs large-format, feedhorn- coupled, background-limited Transition-Edge Sensor (TES) bolometer arrays operating at 40, 90, and 150 GHz bands. The detector architecture has several enabling technologies. An on-chip symmetric planar orthomode transducer (OMT) is employed that allows for highly symmetric beams and low cross-polarization over a wide bandwidth. Furthermore, the quarter-wave backshort of the OMT is integrated using an innovative indium bump bonding process at the chip level that ensures minimum loss, maximum repeatability and performance uniformity across an array. Care has been taken to reduce stray light and on-chip leakage. In this paper, we report on the architecture and performance of the first prototype detectors for the 40 GHz focal plane.

  19. Low-cost uncooled infrared detector arrays in standard CMOS

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Tanrikulu, M. Y.; Akin, Tayfun

    2003-09-01

    This paper reports the development of a low-cost 128 x 128 uncooled infrared focal plane array (FPA) based on suspended and thermally isolated CMOS p+-active/n-well diodes. The FPA is fabricated using a standard 0.35 μm CMOS process followed by simple post-CMOS bulk micromachining that does not require any critical lithography or complicated deposition steps; and therefore, the cost of the uncooled FPA is almost equal to the cost of the CMOS chip. The post-CMOS fabrication steps include an RIE etching to reach the bulk silicon and an anisotropic silicon etching to obtain thermally isolated pixels. During the RIE etching, CMOS metal layers are used as masking layers, and therefore, narrow openings such as 2 μm can be defined between the support arms. This approach allows achieving small pixel size of 40 μm x 40 μm with a fill factor of 44%. The FPA is scanned at 30 fps by monolithically integrated multi-channel parallel readout circuitry which is composed of low-noise differential transconductance amplifiers, switched capacitor (SC) integrators, sample-and-hold circuits, and various other circuit blocks for reducing the effects of variations in detector voltage and operating temperature. The fabricated detector has a temperature coefficient of -2 mV/K, a thermal conductance value of 1.8 x 10-7 W/K, and a thermal time constant value of 36 msec, providing a measured DC responsivity (R) of 4970 V/W under continuous bias. Measured detector noise is 0.69 μV in 8 kHz bandwidth at 30 fps scanning rate, resulting a measured detectivity (D*) of 9.7 x 108 cm√HzW. Contribution of the 1/f noise component is found to be negligible due to the single crystal nature of the silicon n-well and its low value at low bias levels. The noise of the readout circuit is measured as 0.76 μV, resulting in an expected NETD value of 1 K when scanned at 30 fps using f=1 optics. This NETD value can be decreased below 350 mK by decreasing the electrical bandwidth with the help of increased

  20. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Ringdal, F; Harris, D B; Dodge, D; Gibbons, S J

    2009-07-23

    Waveform correlation detectors compare a signal template with successive windows of a continuous data stream and report a detection when the correlation coefficient, or some comparable detection statistic, exceeds a specified threshold. Since correlation detectors exploit the fine structure of the full waveform, they are exquisitely sensitive when compared to power (STA/LTA) detectors. The drawback of correlation detectors is that they require complete knowledge of the signal to be detected, which limits such methods to instances of seismicity in which a very similar signal has already been observed by every station used. Such instances include earthquake swarms, aftershock sequences, repeating industrial seismicity, and many other forms of controlled explosions. The reduction in the detection threshold is even greater when the techniques are applied to arrays since stacking can be performed on the individual channel correlation traces to achieve significant array gain. In previous years we have characterized the decrease in detection threshold afforded by correlation detection across an array or network when observations of a previous event provide an adequate template for signals from subsequent events located near the calibration event. Last year we examined two related issues: (1) the size of the source region calibration footprint afforded by a master event, and (2) the use of temporally incoherent detectors designed to detect the gross envelope structure of the signal to extend the footprint. In Case 1, results from the PETROBAR-1 marine refraction profile indicated that array correlation gain was usable at inter-source separations out to one or two wavelengths. In Case 2, we found that incoherent detectors developed from a magnitude 6 event near Svalbard were successful at detecting aftershocks where correlation detectors derived from individual aftershocks were not. Incoherent detectors might provide 'seed' events for correlation detectors that then could

  1. Large active retrodirective arrays for space applications

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1979-01-01

    An active retrodirective array (ARA) transmits a beam toward the apparent source of an illuminating signal called the pilot. The term active implies that the array produces, not merely reflects, RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the conjugate of that received by the element. The problem of supplying the correct phase reference to the phase conjugation circuit (PCC) is solved by central phasing. A new form of central phasing suitable for very large arrays is outlined. ARAs may serve simultaneously as transmitting and receiving satellite antennas for space applications. Precision pointing and input-output isolation is provided by exact frequency-translating PCCs. A two-element ARA breadboard has been built and tested.

  2. Large area position sensitive β-detector

    NASA Astrophysics Data System (ADS)

    Vaintraub, S.; Hass, M.; Edri, H.; Morali, N.; Segal, T.

    2015-03-01

    A new conceptual design of a large area electron detector, which is position and energy sensitive, was developed. This detector is designed for beta decay energies up to 4 MeV, but in principle can be re-designed for higher energies. The detector incorporates one large plastic scintillator and, in general, a limited number of photomultipliers (7 presently). The current setup was designed and constructed after an extensive Geant4 simulation study. By comparison of a single hit light distribution between the various photomultipliers to a pre-measured accurate position-response map, the anticipated position resolution is around 5 mm. The first benchmark experiments have been conducted in order to calibrate and confirm the position resolution of the detector. The new method, results of the first test experiments and comparison to simulations are presented.

  3. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  4. Research in large adaptive antenna arrays

    NASA Technical Reports Server (NTRS)

    Berkowitz, R. S.; Dzekov, T.

    1976-01-01

    The feasibility of microwave holographic imaging of targets near the earth using a large random conformal array on the earth's surface and illumination by a CW source on a geostationary satellite is investigated. A geometrical formulation for the illuminator-target-array relationship is applied to the calculation of signal levels resulting from L-band illumination supplied by a satellite similar to ATS-6. The relations between direct and reflected signals are analyzed and the composite resultant signal seen at each antenna element is described. Processing techniques for developing directional beam formation as well as SNR enhancement are developed. The angular resolution and focusing characteristics of a large array covering an approximately circular area on the ground are determined. The necessary relations are developed between the achievable SNR and the size and number of elements in the array. Numerical results are presented for possible air traffic surveillance system. Finally, a simple phase correlation experiment is defined that can establish how large an array may be constructed.

  5. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  6. Detector array evaluation and figures of merit

    NASA Technical Reports Server (NTRS)

    Dereniak, Eustace L.

    1990-01-01

    The commonly used methods to evaluate the performance of a two-dimensional focal-plane array using charge transfer devices are reviewed. Two figures of merit that attempt to combine quantum efficiency, read noise and dark-current generation into a single parameter are discussed. The figures of merit are suggested as possible alternatives to the D asterisk.

  7. Large scale anisotropy of UHECRs for the Telescope Array

    SciTech Connect

    Kido, E.

    2011-09-22

    The origin of Ultra High Energy Cosmic Rays (UHECRs) is one of the most interesting questions in astroparticle physics. Despite of the efforts by other previous measurements, there is no consensus of both of the origin and the mechanism of UHECRs generation and propagation yet. In this context, Telescope Array (TA) experiment is expected to play an important role as the largest detector in the northern hemisphere which consists of an array of surface particle detectors (SDs) and fluorescence detectors (FDs) and other important calibration devices. We searched for large scale anisotropy using SD data of TA. UHECRs are expected to be restricted in GZK horizon when the composition of UHECRs is proton, so the observed arrival directions are expected to exhibit local large scale anisotropy if UHECR sources are some astrophysical objects. We used the SD data set from 11 May 2008 to 7 September 2010 to search for large-scale anisotropy. The discrimination power between LSS and isotropy is not enough yet, but the statistics in TA is expected to discriminate between those in about 95% confidence level on average in near future.

  8. Large Format Multicolor QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Soibel, A.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.

    2009-01-01

    Mid-wave infrared (MWIR) and long-wave infrared (LWIR) multicolor focal plane array (FPA) cameras are essential for many DoD and NASA applications including Earth and planetary remote sensing. In this paper we summarize our recent development of large format multicolor QWIP FPA that cover MWIR and LWIR bands.

  9. High-energy interactions in kinetic inductance detectors arrays

    NASA Astrophysics Data System (ADS)

    D'Addabbo, A.; Calvo, M.; Goupy, J.; Benoit, A.; Bourrion, O.; Catalano, A.; Macias-Perez, J. F.; Monfardini, A.

    2014-07-01

    The impacts of Cosmic Rays on the detectors are a key problem for space-based missions. We are studying the effects of such interactions on arrays of Kinetic Inductance Detectors (KID), in order to adapt this technology for use on board of satellites. Before proposing a new technology such as the Kinetic Inductance Detectors for a space-based mission, the problem of the Cosmic Rays that hit the detectors during in-flight operation has to be studied in detail. We present here several tests carried out with KID exposed to radioactive sources, which we use to reproduce the physical interactions induced by primary Cosmic Rays, and we report the results obtained adopting different solutions in terms of substrate materials and array geometries. We conclude by outlining the main guidelines to follow for fabricating KID for spacebased applications.

  10. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  11. Large Active Retrodirective Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1978-01-01

    An active retrodirective array (ARA) electronically points a microwave beam back at the apparent source of an incident pilot signal. Retrodirectivity is the result of phase conjugation of the pilot signal received by each element of the array. The problem of supplying the correct phase reference to the phase conjugation circuit (PCC) associated with each element of the array is solved by central phasing. By eliminating the need for structural rigidity, central phasing confers a decisive advantage on ARA's as large spaceborne antennas. A new form of central phasing suitable for very large arrays is described. ARA's may easily be modified to serve both as transmitting and receiving arrays simultaneously. Two new kinds of exact, frequency translating PCC's are described. Such PCC's provide the ARA with input-output isolation and freedom from squint. The pointing errors caused by the radial and transverse components of the ARA's velocity, by the propagation medium, and by multipath are discussed. A two element ARA breadboard was built and tested at JPL. Its performance is limited primarily by multipath induced errors.

  12. Beam profile shaping for laser radars that use detector arrays.

    PubMed

    Veldkamp, W B; Kastner, C J

    1982-01-15

    The beam shaper we developed shapes the transmit beam of a CO(2) laser radar that uses a linear detector array. It consists of a diffraction grating and an anamorphic prism beam compressor and produces a stretched profile that efficiently and uniformly illuminates the far-field footprint of the detector array. The diffraction grating phase modulates the near field or the laser beam to generate a far-field flattop intensity profile, whereas the compressor produces the necessary profile eccentricity. We have achieved conversion efficiencies in the 70-90% range. PMID:20372453

  13. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  14. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Multi-Anode Microchannel Array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 square mm are now under evaluation at visible, ultraviolet and soft x-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 square mm are under development for use in the NASA Goddard Space Flight Center's Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with CsI photocathodes can provide a high-resolution imaging capability at extreme ultraviolet (EUV) and soft x-ray wavelengths and can deliver a maximum count rate from each array in excess of 1 million counts s-1. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode-of-operation and performance characteristics of the MAMA detectors are described and the program for the development of the very-large-format detectors is outlined.

  15. An Event Reconstruction Method for the Telescope Array Fluorescence Detectors

    SciTech Connect

    Fujii, T.; Ogio, S.; Yamazaki, K.; Fukushima, M.; Ikeda, D.; Sagawa, H.; Takahashi, Y.; Tameda, Y.; Hayashi, K.; Ishimori, R.; Kobayashi, Y.; Tokuno, H.; Tsunesada, Y.; Honda, K.; Tomida, T.; Udo, S.

    2011-09-22

    We measure arrival directions, energies and mass composition of ultra-high energy cosmic rays with air fluorescence detector telescopes. The longitudinal profile of the cosmic ray induced extensive air shower cascade is imaged on focal plane of the telescope camera. Here, we show an event reconstruction method to obtain the primary information from data collected by the Telescope Array Fluorescence Detectors. In particular, we report on an ''Inverse Monte Carlo (IMC)'' method in which the reconstruction process searches for an optimum solution via repeated Monte Carlo simulations including characteristics of all detectors, atmospheric conditions, photon emission and scattering processes.

  16. First Results from the Telescope Array RAdar (TARA) Detector

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2014-03-01

    The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.

  17. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  18. Cold radiation shield design for a linear detector array. II

    NASA Astrophysics Data System (ADS)

    Dhar, Vikram; Gopal, Vishnu

    1986-11-01

    This communication reports the results of a calculation of cold-shield shading effects in the linear detector array described by Gopal and Dhar (1986), for an elliptical aperture geometry with varying major-to-minor axis ratio. The results suggest that an elliptical aperture geometry is a better design than a rectangular aperture.

  19. High resolution decoding of Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Morgan, Jeffrey S.

    1991-01-01

    The Multi-Anode Microchannel Array (MAMA) is a photon counting detector which utilizes a photocathode for photon to electron conversion, a microchannel plate (MCP) for signal amplification and a proximity focused anode array for position sensitivity. The detector electronics decode the position of an event through coincidence discrimination. The decoding algorithm which associates a given event with the appropriate pixel is determined by the geometry of the array. A new algorithm incorporated into a CMOS Application Specific Integrated Circuit (ASIC) decoder which improves the pixel spatial resolution is described. The new algorithm does not degrade the detector throughput and does not require any modifications to the detector tube. The standard MAMA detector has a pixel size of 25 x 25 square microns, but with the new decoder circuit the pixel size is reduced to 12.5 x 12.5 square microns. We have built the first set of decode electronics utilizing the new ASIC chips and report here on the first imaging tests of this system.

  20. Keck array and BICEP3: spectral characterization of 5000+ detectors

    NASA Astrophysics Data System (ADS)

    Karkare, K. S.; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Amiri, M.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bonetti, J. A.; Brevik, J. A.; Buder, I.; Bullock, E. W.; Burger, B.; Connors, J.; Crill, B. P.; Davis, G.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S. T.; Golwala, S. R.; Gordon, M. S.; Grayson, J. A.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hristov, V. V.; Hui, H.; Irwin, K. D.; Kang, J. H.; Karpel, E.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Mason, P.; Megerian, K. G.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W.; Pryke, C. L.; Reintsema, C. D.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Turner, A. D.; Vieregg, A.; Weber, A.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2014-08-01

    The inflationary paradigm of the early universe predicts a stochastic background of gravitational waves which would generate a B-mode polarization pattern in the cosmic microwave background (CMB) at degree angular scales. Precise measurement of B-modes is one of the most compelling observational goals in modern cosmology. Since 2011, the Keck Array has deployed over 2500 transition edge sensor (TES) bolometer detectors at 100 and 150 GHz to the South Pole in pursuit of degree-scale B-modes, and Bicep3 will follow in 2015 with 2500 more at 100 GHz. Characterizing the spectral response of these detectors is important for controlling systematic effects that could lead to leakage from the temperature to polarization signal, and for understanding potential coupling to atmospheric and astrophysical emission lines. We present complete spectral characterization of the Keck Array detectors, made with a Martin-Puplett Fourier Transform Spectrometer at the South Pole, and preliminary spectra of Bicep3 detectors taken in lab. We show band centers and effective bandwidths for both Keck Array bands, and use models of the atmosphere at the South Pole to cross check our absolute calibration. Our procedure for obtaining interferograms in the field with automated 4-axis coupling to the focal plane represents an important step towards efficient and complete spectral characterization of next-generation instruments more than 10000 detectors.

  1. Antineutrino spectroscopy with large water Cerenkov detectors.

    PubMed

    Beacom, John F; Vagins, Mark R

    2004-10-22

    We propose modifying large water C erenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with summation operatorE(gamma)=8 MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction nu (e)+p-->e(+)+n (similarly for nu (mu)). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed. PMID:15525063

  2. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  3. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  4. ASIC Readout System for use with a Silicon Detector Array (SAND)

    NASA Astrophysics Data System (ADS)

    Marsh, Ian; Lesher, Shelly; Tan, Wanpeng; Smith, Mallory; Robbe, Mike; Aprahamian, Ani

    2012-10-01

    Silicon (Si) detectors are widely used throughout the scientific community, particularly in nuclear physics. Modern versions of Si detectors are getting larger and increasingly segmented, requiring many electronic channels to process the signals. NIM and VME modules have traditionally been used to process signals from various types of detectors. Applying this traditional method to a large array of Si-detectors, segmented or otherwise, would be very expensive and in most cases highly impractical. To handle this high density of signals from state-of-the-art Si detector arrays we have explored an Application Specific Integrated Circuit (ASIC) approach in collaboration with University of Washington in St. Louis. This involves ASIC chips developed for simultaneous signal processing with charge sensitive preamplifiers, shaping amplifiers, and constant fraction discriminators built in for 16 channels. One ASIC box is capable of housing 32 of these chips and thus processing signals directly from detectors through a total of 512 channels. Analog energy and timing signals are digitized through a pipeline ADC for the NSCL DAQ software to readout. I was a part of the ND effort to implement such an ASIC system. I conducted energy and timing calibrations as well as linearity, threshold, and resolution tests on the system. In collaboration with Indiana University at Bloomington the ASIC system will be applied to a silicon detector array (SAND) at ND for the study of nuclear astrophysics.

  5. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  6. The CLAS12 large area RICH detector

    SciTech Connect

    M. Contalbrigo, E. Cisbani, P. Rossi

    2011-05-01

    A large area RICH detector is being designed for the CLAS12 spectrometer as part of the 12 GeV upgrade program of the Jefferson Lab Experimental Hall-B. This detector is intended to provide excellent hadron identification from 3 GeV/c up to momenta exceeding 8 GeV/c and to be able to work at the very high design luminosity-up to 1035 cm2 s-1. Detailed feasibility studies are presented for two types of radiators, aerogel and liquid C6F14 freon, in conjunction with a highly segmented light detector in the visible wavelength range. The basic parameters of the RICH are outlined and the resulting performances, as defined by preliminary simulation studies, are reported.

  7. A large area, silicon photomultiplier-based PET detector module

    PubMed Central

    Raylman, RR; Stolin, A; Majewski, S; Proffitt, J

    2013-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm2 LYSO elements (spanning 41 × 91mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner. PMID:24319305

  8. A large area, silicon photomultiplier-based PET detector module

    NASA Astrophysics Data System (ADS)

    Raylman, R. R.; Stolin, A.; Majewski, S.; Proffitt, J.

    2014-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26×58 array of 1.5×1.5 mm2 LYSO elements (spanning 41×91 mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ~45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (~2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3 T clinical magnetic resonance imaging scanner.

  9. LEAP: the Large European Array for Pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lee, K. J.; Liu, K.; McKee, J.; Perrodin, D.; Purver, M.; Sanidas, S.; Smits, R.; Stappers, B. W.

    2016-02-01

    The Large European Array for Pulsars (LEAP) is an experiment that harvests the collective power of Europe's largest radio telescopes in order to increase the sensitivity of high-precision pulsar timing. As part of the ongoing effort of the European Pulsar Timing Array, LEAP aims to go beyond the sensitivity threshold needed to deliver the first direct detection of gravitational waves. The five telescopes presently included in LEAP are the Effelsberg Telescope, the Lovell Telescope at Jodrell Bank, the Nançay Radio Telescope, the Sardinia Radio Telescope and the Westerbork Synthesis Radio Telescope. Dual polarization, Nyquist-sampled time series of the incoming radio waves are recorded and processed offline to form the coherent sum, resulting in a tied-array telescope with an effective aperture equivalent to a 195-m diameter circular dish. All observations are performed using a bandwidth of 128 MHz centred at a frequency of 1396 MHz. In this paper, we present the design of the LEAP experiment, the instrumentation, the storage and transfer of data and the processing hardware and software. In particular, we present the software pipeline that was designed to process the Nyquist-sampled time series, measure the phase and time delays between each individual telescope and a reference telescope and apply these delays to form the tied-array coherent addition. The pipeline includes polarization calibration and interference mitigation. We also present the first results from LEAP and demonstrate the resulting increase in sensitivity, which leads to an improvement in the pulse arrival times.

  10. A Large Scale Virtual Gas Sensor Array

    NASA Astrophysics Data System (ADS)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  11. Cd1-xZnxTe detector imaging array

    NASA Astrophysics Data System (ADS)

    Butler, Jack F.; Friesenhahn, Stan J.; Lingren, Clinton L.; Apotovsky, Boris A.; Doty, F. P.; Ashburn, William L.; Dillon, William P.

    1993-09-01

    A prototype portable gamma ray camera using 32 X 32 channels was developed. An experimental 3 X 3 sub-array of 5 mm X 5 mm CZT detectors was fabricated for use in system checkout and to investigate the applicability of CZT imaging arrays to nuclear medical imaging. Experiments were carried out to make a direct comparison of the imaging capabilities of the CZT sub-array with a state-of-the-art Anger camera. In a linespread study using a Tc-99m source embedded in a tissue equivalent absorber, contrasts of 9.5 for the CZT array and 3.4 for the Anger camera were observed. In a dynamic imaging experiment, the CZT imager appeared to have comparable resolution to and be somewhat more regular than the Anger camera.

  12. Detector telescope array: silicon--CsI(Tl)--photodiode

    NASA Astrophysics Data System (ADS)

    Norbeck, E.; Yang, L. B.; Pogodin, P.; Ingram, F. D.

    1999-10-01

    A closely packed array of 60 telescopes was developed for use at forward angles in the 4π Array at the National Superconducting Cyclotron Laboratory at Michigan State University. The telescopes resolve isotopes and cover nearly 100% of the solid angle assigned to the array. These requirements and limitations of space and funding resulted in a number of novel features, some of which will be useful in other applications. These features include: photodiodes of arbitrary shape with no frame around the edge, replacement of aluminized Mylar with aluminum leaf, an inexpensive silicon diode leakage current monitor that presents a graph of leakage current vs detector number, and a low noise but inexpensive preamplifier chip. Experience with the array showed that compounds in the outer insulation layer of some types of coax cable can seriously contaminate a vacuum system. The use of computer aided design and computer controlled machine tools reduced the cost of the structural parts by orders of magnitude.

  13. Order-sorting filter transmittance measured with an array detector

    NASA Technical Reports Server (NTRS)

    Heaney, James B.; Bradley, Scott E.; Bly, Vincent T.; Ewin, Audrey J.; La, Anh T.

    1993-01-01

    The simultaneous measurement of the spectrally and spatially variant transmittance of a linear variable order-sorting filter in a manner that closely resembles its conditions of actual use is described. The transmittance of a prototype order-sorting filter was measured in the 400- to 880-nm wavelength region by illuminating it with the output beam of a spectrophotometer while the filter was attached to the front of a 30 x 32 pixel silicon array detector. The filter was designed to be used in the output beam of a grating spectrometer to prevent the dispersal of higher diffracted orders onto an array detector. Areas of the filter that were spatially matched to the corresponding detector pixel column had measured peak transmittances of about 90 percent that were uniform to within +/- 1.5 percent along a given column. Transmittances for incident wavelengths shorter than the desired bandpass, corresponding to the order overlap region, were measured in the 0.003 range. Line spread function measurements made with the array detector indicated no significant beam spreading caused by inserting the filter into the beam.

  14. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    . The road ahead The three-year design and development phase of the project is now underway as a collaboration between Europe and the U.S., and Japan may also join in this effort. Assuming the construction phase begins about two years from now, limited operations of the array may begin in 2005 and the full array may become operational by 2009. Notes [1] Press Releases about this event have also been issued by some of the other organisations participating in this project: * CNRS (in French) * MPG (in German) * NOVA (in Dutch) * NRAO * NSF (ASCII and HTML versions) * PPARC [2] "ALMA" means "soul" in Spanish. [3] Additional information about ALMA is available on the web: * Articles in the ESO Messenger - "The Large Southern Array" (March 1998), "European Site Testing at Chajnantor" (December 1998) and "The ALMA Project" (June 1999), cf. http://www.eso.org/gen-fac/pubs/messenger/ * ALMA website at ESO at http://www.eso.org/projects/alma/ * ALMA website at the U.S. National Radio Astronomy Observatory (NRAO) at http://www.mma.nrao.edu/ * ALMA website in The Netherlands about the detectors at http://www.sron.rug.nl/alma/ ALMA/Chajnantor Video Clip and Photos ESO PR Video Clip 03/99 [MPEG-version] ESO PR Video Clip 03/99 (2450 frames/1:38 min) [MPEG Video; 160x120 pix; 2.1Mb] [MPEG Video; 320x240 pix; 10.0Mb] [RealMedia; streaming; 700k] [RealMedia; streaming; 2.3M] About ESO Video Clip 03/99 : This video clip about the ALMA project contains two sequences. The first shows a panoramic scan of the Chajnantor plain from approx. north-east to north-west. The Chajnantor mountain passes through the field-of-view and the perfect cone of the Licancabur volcano (5900 m) on the Bolivian border is seen at the end (compare also with ESO PR 24e/99 below. The second is a 52-sec animation with a change of viewing perspective of the array and during which the antennas move in unison. For convenience, the clip is available in four versions: two MPEG files of different sizes and two streamer

  15. Development of an 8× 8 CPW Microwave Kinetic Inductance Detector (MKID) Array at 0.35 THz

    NASA Astrophysics Data System (ADS)

    Li, Jing; Yang, Jin-Ping; Lin, Zhen-Hui; Liu, Dong; Shi, Sheng-Cai; Mima, S.; Furukawa, N.; Otani, C.

    2015-12-01

    Microwave kinetic inductance detectors (MKIDs) are promising for THz direct detector arrays of large size, particularly with simple frequency-division multiplexing. Purple Mountain Observatory is developing a terahertz superconducting imaging array (TeSIA) for the DATE5 telescope to be constructed at Dome A, Antarctica. Here we report on the development of a prototype array for the TeSIA, namely an 8× 8 CPW MKID array at 0.35 THz. The resonance frequencies of the MKIDs span the 4-5.575 GHz band with an interval of 25 MHz. Each detector is integrated with a twin-slot antenna centered at 0.5 THz and with a relative bandwidth of 10 %, while the whole MKID array with a micro-lens array. Detailed design and measurement results will be presented.

  16. Development of an 8× 8 CPW Microwave Kinetic Inductance Detector (MKID) Array at 0.35 THz

    NASA Astrophysics Data System (ADS)

    Li, Jing; Yang, Jin-Ping; Lin, Zhen-Hui; Liu, Dong; Shi, Sheng-Cai; Mima, S.; Furukawa, N.; Otani, C.

    2016-07-01

    Microwave kinetic inductance detectors (MKIDs) are promising for THz direct detector arrays of large size, particularly with simple frequency-division multiplexing. Purple Mountain Observatory is developing a terahertz superconducting imaging array (TeSIA) for the DATE5 telescope to be constructed at Dome A, Antarctica. Here we report on the development of a prototype array for the TeSIA, namely an 8× 8 CPW MKID array at 0.35 THz. The resonance frequencies of the MKIDs span the 4-5.575 GHz band with an interval of 25 MHz. Each detector is integrated with a twin-slot antenna centered at 0.5 THz and with a relative bandwidth of 10 %, while the whole MKID array with a micro-lens array. Detailed design and measurement results will be presented.

  17. Superconducting infrared detector arrays with integrated processing circuitry

    SciTech Connect

    Osterman, D.P.; Marr, P.; Dang, H.; Yao, C.T.; Radparvar, M. )

    1991-03-01

    This paper reports on thin film Josephson junctions used as infrared detectors' which function by a thermal sensing mechanism. In addition to the potential for high sensitivity to a broad range of optical wavelengths, they are ideally suited for integration with superconducting electronics on a single wafer. A project at HYPRES to develop these arrays is directed along two avenues: maximizing the sensitivity of individual Josephson junction detector/SQUID amplifier units and development of superconducting on-chip processing circuitry - multiplexers and A to D converters.

  18. Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    NASA Astrophysics Data System (ADS)

    Hüyük, Tayfun; Di Nitto, Antonio; Jaworski, Grzegorz; Gadea, Andrés; Javier Valiente-Dobón, José; Nyberg, Johan; Palacz, Marcin; Söderström, Pär-Anders; Jose Aliaga-Varea, Ramon; de Angelis, Giacomo; Ataç, Ayşe; Collado, Javier; Domingo-Pardo, Cesar; Egea, Francisco Javier; Erduran, Nizamettin; Ertürk, Sefa; de France, Gilles; Gadea, Rafael; González, Vicente; Herrero-Bosch, Vicente; Kaşkaş, Ayşe; Modamio, Victor; Moszynski, Marek; Sanchis, Enrique; Triossi, Andrea; Wadsworth, Robert

    2016-03-01

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

  19. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  20. The Deep Space Network Large Array

    NASA Astrophysics Data System (ADS)

    Gatti, M. S.

    2004-05-01

    In recent years it has become evident that, if future science needs are to be met, the capacity of the telecommunications link between planetary spacecraft and the Earth must be increased by orders of magnitude. Both the number of spacecraft and higher data rates demand the increased capacity. Technologies to support the increased capacity include even larger antennas, optical receiving systems, or arrays of antennas. This article describes a large array of small antennas that would be implemented for a fraction of the cost of an equivalent 70-m aperture. Adding additional antennas can increase the sensitivity many fold over current capabilities. The array will consist of 400 parabolic reflector antennas, each of which will be 12 m in diameter. Each antenna will operate simultaneously at both X-band (8 to 8.8 GHz) and Ka-band (31 to 38 GHz) and will be configured with radio frequency (RF) electronics, including the feeds, low-noise amplifiers, and frequency converters, as well as the appropriate servo controls and drives. The array also includes the signal transmission and signal processing to enable the system to track from between 1 and 16 different signals. A significant feature of this system is that it will be done for relatively very low cost compared to the current antenna paradigms. This is made possible by the use of low-cost antenna reflector technology, the extensive use of monolithic microwave integrated circuits (MMICs), and, finally, by using commercially available equipment to the maximum extent possible. Cost can be further reduced by the acceptance of lower antenna element reliability. High system availability will be maintained by a design paradigm that provides for a marginal set of excess antenna elements for any particular tracking period. Thus, the same total system availability is achieved for lower element availability. The "plug-and-play" aspects of the assemblies will enhance maintainability and operability. The project plans include a

  1. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  2. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  3. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  4. Microscopy using source and detector arrays

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Castello, Marco; Vicidomini, Giuseppe; Duocastella, Martí; Diaspro, Alberto

    2016-03-01

    There are basically two types of microscope, which we call conventional and scanning. The former type is a full-field imaging system. In the latter type, the object is illuminated with a probe beam, and a signal detected. We can generalize the probe to a patterned illumination. Similarly we can generalize the detection to a patterned detection. Combining these we get a range of different modalities: confocal microscopy, structured illumination (with full-field imaging), spinning disk (with multiple illumination points), and so on. The combination allows the spatial frequency bandwidth of the system to be doubled. In general we can record a four dimensional (4D) image of a 2D object (or a 6D image from a 3D object, using an acoustic tuneable lens). The optimum way to directly reconstruct the resulting image is by image scanning microscopy (ISM). But the 4D image is highly redundant, so deconvolution-based approaches are also relevant. ISM can be performed in fluorescence, bright field or interference microscopy. Several different implementations have been described, with associated advantages and disadvantages. In two-photon microscopy, the illumination and detection point spread functions are very different. This is also the case when using pupil filters or when there is a large Stokes shift.

  5. Spectral line-diode registry effects with photodiode array detectors

    SciTech Connect

    Winge, R.K.; Fassel, V.A.; Eckels, D.E.

    1986-05-01

    A limitation of photodiode array detectors for spectroscopic intensity measurements relates to the spacing of the diodes and the errors generated when a spectral line is not in exact registry with the diode or diodes from which its intensity is being measured. These misregistry intensity errors, which may be as high as 25 to 30%, are documented for a range of spectral bandwidths and for single diode (pixel) intensities and multiple diode summations of intensities.

  6. Development of a Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Jiang, J.; Matalon, A.; Matthews, J. N.; Motloch, P.; Privitera, P.; Takizawa, Y.; Yamazaki, K.

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECR) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report preliminary results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photo-multiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment.

  7. Report of the large solenoid detector group

    SciTech Connect

    Hanson, G.G.; Mori, S.; Pondrom, L.G.; Williams, H.H.; Barnett, B.; Barnes, V.; Cashmore, R.; Chiba, M.; DeSalvo, R.; Devlin, T.

    1987-09-01

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region.

  8. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  9. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  10. Distributed Antenna-Coupled TES for FIR Detectors Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas

    2007-01-01

    We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.

  11. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  12. Muon-hadron detector of the carpet-2 array

    NASA Astrophysics Data System (ADS)

    Dzhappuev, D. D.; Kudzhaev, A. U.; Klimenko, N. F.

    2016-05-01

    The 1-GeV muon-hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01) code package and performed for primary protons and iron nuclei.

  13. ALMA - the Atacama large millimeter array

    NASA Astrophysics Data System (ADS)

    Brown, Robert L.; Wild, Wolfgang; Cunningham, Charles

    2004-01-01

    The Atacama Large Millimeter Array (ALMA) is a major ground-based telescope for millimeter and submillimeter astronomy to be realized during this decade. It is comprised of 64 antennas of 12 m diameter, each of which is equipped with receivers in ten frequency bands that cover the atmospheric windows from 30 to 950 GHz. All the antennas may be moved on a specially-designed antenna transporter so that the antenna array may be reconfigured: At the extremes, the antennas may all be grouped together in an area 150 m in diameter to provide arcsecond angular resolution, or they may be distributed over an area 14 km in extent to provide an angular resolution as high as 10 milli-arcsec. ALMA will be located in the Chilean Andes east of the Atacama Desert at an elevation of 5000 m above sea level. The ALMA Project is a joint venture of the European Southern Observatory and the U.S. National Science Foundation acting in partnership with the National Research Council of Canada. Interim science operations are expected to begin in 2007 with completion of ALMA scheduled for 2011.

  14. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  15. Very-large-format pulse-counting UV detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1988-01-01

    Multi-anode microchannel array (MAMA) detector systems with formats of 2048 x 2048 pixels and pixel dimensions of 25 x 25 microns are being developed for use in the NASA Goddard Hubble Space Telescope Imaging Spectrograph. This paper describes the current state of development of these detector systems.

  16. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions. PMID:27452789

  17. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  18. Large format 15μm pitch XBn detector

    NASA Astrophysics Data System (ADS)

    Karni, Yoram; Avnon, Eran; Ben Ezra, Michael; Berkowitz, Eyal; Cohen, Omer; Cohen, Yossef; Dobromislin, Roman; Hirsh, Itay; Klin, Olga; Klipstein, Philip; Lukomsky, Inna; Nitzani, Michal; Pivnik, Igor; Rozenberg, Omer; Shtrichman, Itay; Singer, Michael; Sulimani, Shay; Tuito, Avi; Weiss, Eliezer

    2014-06-01

    Over the past few years, a new type of High Operating Temperature (HOT) photon detector has been developed at SCD, which operates in the blue part of the MWIR atmospheric window (3.4 - 4.2 μm). This window is generally more transparent than the red part of the MWIR window (4.4 - 4.9 μm), and thus is especially useful for mid and long range applications. The detector has an InAsSb active layer and is based on the new "XBn" device concept, which eliminates Generation-Recombination dark current and enables operation at temperatures of 150K or higher, while maintaining excellent image quality. Such high operating temperatures reduce the cooling requirements of Focal Plane Array (FPA) detectors dramatically, and allow the use of a smaller closed-cycle Stirling cooler. As a result, the complete Integrated Detector Cooler Assembly (IDCA) has about 60% lower power consumption and a much longer lifetime compared with IDCAs based on standard InSb detectors and coolers operating at 77K. In this work we present a new large format IDCA designed for 150K operation. The 15 μm pitch 1280×1024 FPA is based on SCD's XBn technology and digital Hercules ROIC. The FPA is housed in a robust Dewar and is integrated with Ricor's K508N Stirling cryo-cooler. The IDCA has a weight of ~750 gram and its power consumption is ~ 5.5 W at a frame rate of 100Hz. The Mean Time to Failure (MTTF) of the IDCA is more than 20,000 hours, greatly facilitating 24/7 operation.

  19. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  20. Infrared speckle interferometer with a linear array detector

    NASA Astrophysics Data System (ADS)

    Kataza, Hirokazu; Maihara, Toshinori

    1993-04-01

    We have developed a 1D near-IR speckle interferometer with a linear-array detector which can produce speckle images by means of a cylindrical lens. The detector with a Reticon multiplexer is operated at the kTC noise limit (approximately 2500 e-, rms). Using this instrument, we have obtained systematic data of the exposure time dependence of the modulation transfer function along with astronomical observations. The result indicates that the best exposure time of the speckle interferometry is longer than the exposure time chosen so that the fluctuations in the atmosphere are approximately frozen within an exposure. In the actual observations at the University of Hawaii 2.2-m telescope at Mauna Kea, the optimum exposure time is proved to be about 0.3 s.

  1. Curved-channel microchannel array plates. [photoelectric detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The microchannel array plate (MCP) is a photoelectric detector with an imaging capability comparable to that of a photographic plate. Recently MCPs in which the channels are curved to inhibit ion feedback have become available. These devices represent a major advance in MCP technology, since a single curved-channel MCP can be operated stably at high gain in the pulse-counting mode without any of the problems of stability of response or short lifetime reported for 'chevron' MCP detectors. Attention is given to the mode of operation of channel electron multipliers (CEM) and MCP, curved-channel MCP, test procedures, and performance characteristics. The accumulated test data show that the fundamental operating characteristics of the curved-channel MCP are directly related to those for the CEM.

  2. Advances in array detectors for X-ray diffraction techniques.

    PubMed

    Hanley, Quentin S; Denton, M Bonner

    2005-09-01

    Improved focal plane array detector systems are described which can provide improved readout speeds, random addressing and even be employed to simultaneously measure position, intensity and energy. This latter capability promises to rekindle interests in Laue techniques. Simulations of three varieties of foil mask spectrometer in both on- and off-axis configurations indicate that systems of stacked silicon detectors can provide energy measurements within 1% of the true value based on the use of single 'foils' and approximately 10000 photons. An eight-detector hybrid design can provide energy coverage from 4 to 60 keV. Energy resolution can be improved by increased integration time or higher flux experiments. An off-axis spectrometer design in which the angle between the incident beam and the detector system is 45 degrees results in a shift in the optimum energy response of the spectrometer system. In the case of a 200 microm-thick silicon absorber, the energy optimum shifts from 8.7 keV to 10.3 keV as the angle of incidence goes from 0 to 45 degrees. These new designs make better use of incident photons, lower the impact of source flicker through simultaneous rather than sequential collection of intensities, and improve the energy range relative to previously reported systems. PMID:16120985

  3. An MLC calibration method using a detector array

    SciTech Connect

    Simon, Thomas A.; Kahler, Darren; Simon, William E.; Fox, Christopher; Li, Jonathan; Palta, Jatinder; Liu, Chihray

    2009-10-15

    Purpose: The authors have developed a quantitative calibration method for a multileaf collimator (MLC) which measures individual leaf positions relative to the MLC backup jaw on an Elekta Synergy linear accelerator. Methods: The method utilizes a commercially available two-axis detector array (Profiler 2; Sun Nuclear Corporation, Melbourne, FL). To calibrate the MLC bank, its backup jaw is positioned at the central axis and the opposing jaw is retracted to create a half-beam configuration. The position of the backup jaws field edge is then measured with the array to obtain what is termed the radiation defined reference line. The positions of the individual leaf ends relative to this reference line are then inferred by the detector response in the leaf end penumbra. Iteratively adjusting and remeasuring the leaf end positions to within specifications completes the calibration. Using the backup jaw as a reference for the leaf end positions is based on three assumptions: (1) The leading edge of an MLC leaf bank is parallel to its backup jaw's leading edge, (2) the backup jaw position is reproducible, and (3) the measured radiation field edge created by each leaf end is representative of that leaf's position. Data from an electronic portal imaging device (EPID) were used in a similar analysis to check the results obtained with the array. Results: The relative leaf end positions measured with the array differed from those measured with the EPID by an average of 0.11 {+-}0.09 mm per leaf. The maximum leaf positional change measured with the Profiler 2 over a 3 month period was 0.51 mm. A leaf positional accuracy of {+-}0.4 mm is easily attainable through the iterative calibration process. The method requires an average of 40 min to measure both leaf banks. Conclusions: This work demonstrates that the Profiler 2 is an effective tool for efficient and quantitative MLC quality assurance and calibration.

  4. Two detector arrays for fast neutrons at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.

    2012-03-01

    The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons

  5. Large area x-ray detectors for cargo radiography

    NASA Astrophysics Data System (ADS)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  6. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2

  7. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Harris, J. T.; Friedrich, S.

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100-2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays - currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I-V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  8. Jansky Very Large Array: technology advancing science

    NASA Astrophysics Data System (ADS)

    Carilli, Christopher

    2015-08-01

    Over the last decade, the NRAO has completed on time, and on budget, a major reconstruction of the Very Large Array. Building on existing infrastructure to maximize efficiency, the entire VLA electronics system, including correlator, receivers, data transmission, and monitor and control, have been replaced with state of the art systems. This complete rebuild establishes the new Jansky VLA, operating between 75MHz and 50GHz, as the most powerful radio telescope in the world for the coming decade.I will review the technical improvements of the array, including:- Correlator: Increased bandwidth from 100MHz to 8GHz, with thousands of spectral channels.- Receivers: replaced the previous narrow bands with receivers covering the full frequency range from 1 GHz to 50GHz. New systems are also being tested to cover from 50MHz to 400MHz.- Data transmission: 8GHz over optical fiber out to 30km.I will then highlight some of the science enabled by these improvements, including:- Large cosmic volume searches for atomic and molecular gas, from the nearby Universe to the most distant galaxies, plus kpc-scale imaging of the cool gas in distant starburst galaxies.- High resolution studies of star and planet formation.- Innovative interferometric searches for transient phenomena.- The first radio continuum deep fields with sensitivities < 1uJy, with full polarization for Faraday tomography.- Imaging radio-mode feedback in galaxies and clusters, and delineating the complex plasma physical processes involved on scales from a few kpc to hundreds of kpc.I will conclude with a few words about the major challenges facing such a new instrument. These challenges are all on the critical path toward any successful development of future facilities, such as the next generation VLA and SKA:- Big data: data volumes and post-processing are currently major bottlenecks in the turn-over from observation to science publication. NRAO is developing calibration and imaging pipelines to provide science

  9. The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-08-01

    The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.

  10. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  11. NORSAR Final Scientific Report Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Gibbons, S J; Ringdal, F; Harris, D B

    2009-04-16

    Correlation detection is a relatively new approach in seismology that offers significant advantages in increased sensitivity and event screening over standard energy detection algorithms. The basic concept is that a representative event waveform is used as a template (i.e. matched filter) that is correlated against a continuous, possibly multichannel, data stream to detect new occurrences of that same signal. These algorithms are therefore effective at detecting repeating events, such as explosions and aftershocks at a specific location. This final report summarizes the results of a three-year cooperative project undertaken by NORSAR and Lawrence Livermore National Laboratory. The overall objective has been to develop and test a new advanced, automatic approach to seismic detection using waveform correlation. The principal goal is to develop an adaptive processing algorithm. By this we mean that the detector is initiated using a basic set of reference ('master') events to be used in the correlation process, and then an automatic algorithm is applied successively to provide improved performance by extending the set of master events selectively and strategically. These additional master events are generated by an independent, conventional detection system. A periodic analyst review will then be applied to verify the performance and, if necessary, adjust and consolidate the master event set. A primary focus of this project has been the application of waveform correlation techniques to seismic arrays. The basic procedure is to perform correlation on the individual channels, and then stack the correlation traces using zero-delay beam forming. Array methods such as frequency-wavenumber analysis can be applied to this set of correlation traces to help guarantee the validity of detections and lower the detection threshold. In principle, the deployment of correlation detectors against seismically active regions could involve very large numbers of very specific detectors. To

  12. JPL Large Advanced Antenna Station Array Study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In accordance with study requirements, two antennas are described: a 30 meter standard antenna and a 34 meter modified antenna, along with a candidate array configuration for each. Modified antenna trade analyses are summarized, risks analyzed, costs presented, and a final antenna array configuration recommendation made.

  13. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA

  14. Continuous-wave terahertz digital holographic tomography with a pyroelectric array detector

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dayong; Zhou, Xun; Rong, Lu; Li, Zeyu; Li, Lei; Min, Wan; Huang, Haochong; Wang, Yunxin

    2016-05-01

    Terahertz computed tomography makes use of the penetrability of terahertz radiation and obtains three-dimensional (3-D) object projection data. Continuous-wave terahertz digital holographic tomography with a pyroelectric array detector is presented. Compared with scanning terahertz computed tomography, a pyroelectric array detector can obtain a large quantity of projection data in a short time. To obtain a 3-D image, in-line digital holograms of the object are recorded from various directions and reconstructed to obtain two-dimensional (2-D) projection data; then 2-D cross-sectional images and 3-D images of the internal structure of the object are obtained by the filtered back projection algorithm. The presented system can rapidly reconstruct the 3-D object and reveals the internal 3-D structure of the object. A 3-D reconstruction of a polyethylene straw is presented with a 6% error in retrieved diameter.

  15. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  16. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  17. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  18. Materials Development for Auxiliary Components for Large Compact Mo/Au TES Arrays

    NASA Astrophysics Data System (ADS)

    Chervenak, J. A.; Finkbeiner, F. M.; Bandler, S. R.; Brekosky, R.; Brown, A. D.; Iyomoto, N.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J.; Smith, S.

    2008-04-01

    Pursuing the feasibility of scaling conventionally-micromachined transition-edge-sensor (TES) arrays, we have undertaken a study of materials suitable for array integration. A potential limitation of increased pixel count is adequate heatsinking of each detector element to its base temperature. We describe technical approaches for heat sinking large compact TES microcalorimeter arrays and calculate the achievable heatsinking based on measured material parameters. Techniques include backside-deposited thick film copper on arrays with deep-etched wells in the substrates and electroplated gold and copper-filled micro-trenches on the substrate surface. Another limitation is the sensitivity of the thin film circuit elements to applied stress, which can arise in fabrication and mounting of arrays of increasing size. We have explored stress and deposition temperature sensitivity in our molybdenum-based bilayers. Such process parameters can impact options for array heat sinking and electrical interconnects.

  19. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Arthur E.; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-05-01

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  20. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    SciTech Connect

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Art; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  1. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  2. Detection and localization of particle-emitting sources with compound-eye inspired detector arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2007-08-01

    We develop methods to detect and localize particle-emitting sources using detector arrays that are inspired by biological compound eyes. The sources of interest may be optical, nuclear, or cosmic; they emit particles such as visible photons, neutrons, protons, or charged particles. Our results may have wide applications to artificial vision, which can be important in robotics (robot vision) or medicine (e.g., artificial eyes for the blind); security, where the detection of nuclear materials is needed; or astronomy. This dissertation consists of three parts. First, we detect a far-field particle source using two directional detector arrays: cubic and spherical. We propose a mean-difference test (MDT) detector, analyze its statistical performance, and show that the MDT has a number of advantages over the generalized likelihood- ratio test (GLRT). Second, we localize the source by proposing a novel biologically inspired detector array, whose configuration generalizes the compound eye of insects. This array combines the advantages of compound eyes (e.g., large field-of-view) and human eyes (e.g., high angular resolution). Based on a statistical model of the array measurements, we analyze the array performance by computing the Cramérao bound (CRB) on the error in estimating the source direction. We also derive lower bounds on the mean-square angular error (MSAE) of the source localization and investigate the MSAE of two source- direction estimators. Numerical examples, including the optimal array design, are presented to further illustrate the array performance. Third, we derive a statistical angular resolution limit (ARL) on resolving two closely spaced point sources in a three-dimensional frame, which is applicable to various measurement models (e.g., radar, sonar, or astronomy). Using the asymptotic analysis of the GLRT, we derive the ARL with constraints on the probabilities of false alarm and detection. Our results give explicit analytical expression for the ARL

  3. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  4. Reducing the Read Noise of H2RG Detector Arrays by more Efficient use of Reference Signals

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixen, D. J.; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, D. V.

    2011-01-01

    We present a process for characterizing the correlation properties of the noise in large two-dimensional detector arrays, and describe an efficient process for its removal. In the case of the 2k x 2k HAWAII-2RG detectors (H2RG) detectors from Teledyne which are being used on the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), we find that we can reduce the read noise by thirty percent. Noise on large spatial scales is dramatically reduced. With this relatively simple process, we provide a performance improvement that is equivalent to a significant increase in telescope collecting area for high resolution spectroscopy with NIRSpec.

  5. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  6. Modulation transfer function of antenna-coupled infrared detector arrays.

    PubMed

    Boreman, G D; Dogariu, A; Christodoulou, C; Kotter, D

    1996-11-01

    Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 μm. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's. PMID:21127627

  7. Electrical breakdown gas detector featuring carbon nanotube array electrodes.

    PubMed

    Kim, Seongyul; Pal, Sunil; Ajayan, Pulickel M; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2008-01-01

    We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices. PMID:18468093

  8. Thermal crosstalk simulation and measurement of linear terahertz detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Huang, Zehua; Wang, Jun; Li, Mingyu; Gou, Jun; Jiang, Yadong

    2015-11-01

    Thermal simulation of differently structured linear terahertz detector arrays (TDAs) based on lithium tantalate was performed by finite element analysis (FEA). Simulation results revealed that a relatively simple TDA structure can have good thermal insulation, i.e., low thermal crosstalk effect (TCE), between adjacent pixels, which was thus selected for the real fabrication of TDA sample. Current responsivity (Ri) of the sample for a 2.52 THz source was measured to be 6.66 × 10-6 A/W and non-uniformity (NU) of Ri was 4.1%, showing good performance of the sample. TCE test result demonstrated that small TCE existed in the sample, which was in good agreement with the simulation results.

  9. Modulation transfer function of antenna-coupled infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.; Dogariu, Aristide; Christodoulou, Christos; Kotter, Dale

    1996-11-01

    Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 mu m. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's.

  10. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, Charlie E.

    1997-01-01

    Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.

  11. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, C.E.

    1997-11-18

    Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.

  12. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy

    PubMed Central

    Mastanduno, Michael A.; Jiang, Shudong; DiFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2012-01-01

    The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast. PMID:23082277

  13. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy.

    PubMed

    Mastanduno, Michael A; Jiang, Shudong; Diflorio-Alexander, Roberta; Pogue, Brian W; Paulsen, Keith D

    2012-10-01

    The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast. PMID:23082277

  14. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  15. Evolution of large format impurity band conductor focal plane arrays for astronomy applications

    NASA Astrophysics Data System (ADS)

    Mills, Robert; Beuville, Eric; Corrales, Elizabeth; Hoffman, Alan; Finger, Gert; Ives, Derek

    2011-09-01

    Raytheon Vision Systems (RVS) has developed a family of high performance large format infrared (IR) detector arrays whose detectors are most effective for the detection of long and very long wavelength IR energy. This paper describes the evolution of the present state of the art one mega-pixel Si: As Impurity Band Conduction (IBC) arrays toward a four mega-pixel array that is desired by the astronomy community. Raytheon's Aquarius-1k, developed in collaboration with ESO, is a 1024 × 1024 pixel high performance array with a 30 μm pitch that features high quantum efficiency IBC detectors, low noise, low dark current, and on-chip clocking for ease of operation. Since the Aquarius-1k array was designed primarily for ground-based astronomy applications, it incorporates selectable gains and a large well capacity among its other features. Raytheon, in collaboration with JAXA (Japan Aerospace Exploration Agency), is also designing a 2048 × 2048 pixel high performance array with a 25 μm pitch. This 2k × 2k readout circuit will be based on the successful design used for the on the Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST). It will feature high quantum efficiency IBC detectors, low noise, low dark current, and on-chip clocking for ease of operation. This version will also incorporate flight qualified packaging to support space-based astronomy applications. Previous generations of RVS IBC detectors have flown on several platforms, including NASA's Spitzer Space Telescope and Japan's Akari Space Telescope.

  16. Automated Hybridization of X-ray Absorber Elements-A Path to Large Format Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Kelley, R.; Allen, C.; Kilbourne, C.; Costen, N.; Miller, T.

    2007-01-01

    In the design of microcalorimeters, it is often desirable to produce the X-ray absorber separately from the detector element. In this case, the attachment of the absorber to the detector element with the required thermal and mechanical characteristics is a major challenge. In such arrays, the attachment has been done by hand. This process is not easily extended to the large format arrays required for future X- ray astronomy missions such as the New x-ray Telescope or NeXT. In this paper we present an automated process for attaching absorber tiles to the surface of a large-scale X-ray detector array. The absorbers are attached with stycast epoxy to a thermally isolating polymer structure made of SU-8. SU-8 is a negative epoxy based photo resist produced by Microchem. We describe the fabrication of the X-ray absorbers and their suspension on a handle die in an adhesive matrix. We describe the production process for the polymer isolators on the detector elements. We have developed a new process for the alignment, and simultaneous bonding of the absorber tiles to an entire detector array. This process uses equipment and techniques used in the flip-chip bonding industry and approaches developed in the fabrication of the XRS-2 instrument. XRS-2 was an X-ray spectrometer that was launched on the Suzaku telescope in July 10, 2005. We describe the process and show examples of sample arrays produced by this process. Arrays with up to 300 elements have been bonded. The present tests have used dummy absorbers made of Si. In future work, we will demonstrate bonding of HgTe absorbers.

  17. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  18. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  19. Array detector for high energy laser based on diffuse transmission sampling.

    PubMed

    Pang, Miao; Rong, Jian; Zhou, Shan; Wu, Juan; Fan, Guobin; Zhang, Wei; Hu, Xiaoyang

    2014-01-01

    In order to improve the ability and accuracy of measuring the temporal-spatial distribution of the intensity of a large-size, high-energy laser beam, a novel array detecting method based on diffuse transmission sampling is proposed. The measurement principle and the design of the sampling and attenuating unit are presented. High-temperature-resistant diffuse transmission material is used to sample and attenuate a high energy laser beam. Pure copper, whose surface is first sand-blasted and then gold-plated, is applied to scatter the incident high-energy laser beam. The formula for the attenuation ratio was derived in detail. We developed two large-aperture array detectors with spatial resolution of 5 mm, spatial duty ratio of 20%, and useable angle range of ±30° without varying the responsivity, the non-uniformity in the laser profile measurement is below 1%, and the repeatability error in the laser power measurement is approximately 1%. The maximal energy density that the array detector can endure is more than 10 kJ/cm(2). PMID:24517743

  20. Array detector for high energy laser based on diffuse transmission sampling

    SciTech Connect

    Pang, Miao; Rong, Jian; Zhou, Shan; Wu, Juan; Zhang, Wei; Hu, Xiaoyang; Fan, Guobin

    2014-01-15

    In order to improve the ability and accuracy of measuring the temporal–spatial distribution of the intensity of a large-size, high-energy laser beam, a novel array detecting method based on diffuse transmission sampling is proposed. The measurement principle and the design of the sampling and attenuating unit are presented. High-temperature-resistant diffuse transmission material is used to sample and attenuate a high energy laser beam. Pure copper, whose surface is first sand-blasted and then gold-plated, is applied to scatter the incident high-energy laser beam. The formula for the attenuation ratio was derived in detail. We developed two large-aperture array detectors with spatial resolution of 5 mm, spatial duty ratio of 20%, and useable angle range of ±30° without varying the responsivity, the non-uniformity in the laser profile measurement is below 1%, and the repeatability error in the laser power measurement is approximately 1%. The maximal energy density that the array detector can endure is more than 10 kJ/cm{sup 2}.

  1. Status of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer

    1996-06-01

    A cooperative research project between the Defense Science and Technology Organization, Australia, and the National Defense Research Establishment, Sweden, seeks to investigate concepts for smart IR focal plane detector arrays, whereby a monolithic Semiconductor Film Bolometer detector array is integrated with a CMOS signal conditioning circuit, analog- to-digital conversion and signal processing functions on the same silicon chip. Novel signal conditioning and on-chip digital readout techniques have been successfully demonstrated, and the supporting signal processing electronic design is being developed. This paper discusses the status of detector materials research and staring focal plane array development. The first experimental array has been delivered and is undergoing evaluation.

  2. Opto-electrical characterization and X-ray mapping of large-volume cadmium zinc telluride radiation detectors

    SciTech Connect

    Yang, G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yao, H.W.; Kim, K.; and James, R.B.

    2009-04-13

    Large-volume cadmium zinc telluride (CZT) radiation detectors would greatly improve radiation detection capabilities and, therefore, attract extensive scientific and commercial interests. CZT crystals with volumes as large as hundreds of centimeters can be achieved today due to improvements in the crystal growth technology. However, the poor performance of large-volume CZT detectors is still a challenging problem affecting the commercialization of CZT detectors and imaging arrays. We have employed Pockels effect measurements and synchrotron X-ray mapping techniques to investigate the performance-limiting factors for large-volume CZT detectors. Experimental results with the above characterization methods reveal the non-uniform distribution of internal electric field of large-volume CZT detectors, which help us to better understand the responsible mechanism for the insufficient carrier collection in large-volume CZT detectors.

  3. Large Array Channel Capacity in the Presence of Interference

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2006-01-01

    We develop a model for a large array ground receiver system for use in deep-space communications, and analyze the resulting array channel capacity. The model includes effects of array geometry, time-dependent spacecraft orbital trajectory, point and extended interference sources, and elevation-dependent noise and tropospheric channel variations. Channel capacity is expressed as the ratio of determinants of covariance matrices characterizing source, interference, and additive noise, and then reduced to a simpler quadratic form more amenable to analysis and numerical computation. This formulation facilitates inclusion of array and channel characteristics into the model, as well as comparison of optimal, suboptimal, and equivalent single antenna configurations on achievable throughput. Realistic examples of ground array channel capacity calculations are presented, demonstrating the impact of array geometry, planetary interference sources, and array combining algorithm design upon the achievable data throughput.

  4. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    SciTech Connect

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  5. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency. PMID:26832039

  6. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512

    SciTech Connect

    Aldosari, A. H.; Petasecca, M. Espinoza, A.; Newall, M.; Fuduli, I.; Porumb, C.; Alshaikh, S.; Alrowaili, Z. A.; Weaver, M.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Carolan, M.; Perevertaylo, V.

    2014-09-15

    Purpose: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named “MagicPlate-512” (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). Methods: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5 × 0.5 mm{sup 2} and pitch 2 mm with an overall dimension of 52 × 52 mm{sup 2}. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. Results: MP512 shows a good dose linearity (R{sup 2} = 0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10 × 10 cm{sup 2} agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1 × 1 cm{sup 2}. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP

  7. Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Franz, David E.; Ewin, Audrey J.; Jhabvala, Christine; Babu, Sachi; Snodgrass, Stephen; Costen, Nicholas; Zincke, Christian

    2009-01-01

    The silicon substrate carrier was created so that a large-area array (in this case 62,000+ elements of a microshutter array) and a variety of discrete passive and active devices could be mounted on a single board, similar to a printed circuit board. However, the density and number of interconnects far exceeds the capabilities of printed circuit board technology. To overcome this hurdle, a method was developed to fabricate this carrier out of silicon and implement silicon integrated circuit (IC) technology. This method achieves a large number of high-density metal interconnects; a 100-percent yield over a 6-in. (approximately equal to 15-cm) diameter wafer (one unit per wafer); a rigid, thermally compatible structure (all components and operating conditions) to cryogenic temperatures; re-workability and component replaceability, if required; and the ability to precisely cut large-area holes through the substrate. A method that would employ indium bump technology along with wafer-scale integration onto a silicon carrier was also developed. By establishing a silicon-based version of a printed circuit board, the objectives could be met with one solution. The silicon substrate would be 2 mm thick to survive the environmental loads of a launch. More than 2,300 metal traces and over 1,500 individual wire bonds are required. To mate the microshutter array to the silicon substrate, more than 10,000 indium bumps are required. A window was cut in the substrate to allow the light signal to pass through the substrate and reach the microshutter array. The substrate was also the receptacle for multiple unpackaged IC die wire-bonded directly to the substrate (thus conserving space over conventionally packaged die). Unique features of this technology include the implementation of a 2-mmthick silicon wafer to withstand extreme mechanical loads (from a rocket launch); integrated polysilicon resistor heaters directly on the substrate; the precise formation of an open aperture

  8. Polycrystalline CVD diamond pixel array detector for nuclear particles monitoring

    NASA Astrophysics Data System (ADS)

    Pacilli, M.; Allegrini, P.; Girolami, M.; Conte, G.; Spiriti, E.; Ralchenko, V. G.; Komlenok, M. S.; Khomic, A. A.; Konov, V. I.

    2013-02-01

    We report the 90Sr beta response of a polycrystalline diamond pixel detector fabricated using metal-less graphitic ohmic contacts. Laser induced graphitization was used to realize multiple squared conductive contacts with 1mm × 1mm area, 0.2 mm apart, on one detector side while on the other side, for biasing, a 9mm × 9mm large graphite contact was realized. A proximity board was used to wire bonding nine pixels at a time and evaluate the charge collection homogeneity among the 36 detector pixels. Different configurations of biasing were experimented to test the charge collection and noise performance: connecting the pixel at the ground potential of the charge amplifier led to best results and minimum noise pedestal. The expected exponential trend typical of beta particles has been observed. Reversing the bias polarity the pulse height distribution (PHD) does not changes and signal saturation of any pixel was observed around ±200V (0.4 V/μm). Reasonable pixels response uniformity has been evidenced even if smaller pitch 50÷100 μm structures need to be tested.

  9. ISABELLE. Volume 3. Experimental areas, large detectors

    SciTech Connect

    Not Available

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors.

  10. CMOS preamplifiers for detectors large and small

    SciTech Connect

    O`Connor, P.

    1997-12-31

    We describe four CMOS preamplifiers developed for multiwire proportional chambers (MWPC) and silicon drift detectors (SDD) covering a capacitance range from 150 pF to 0.15 pF. Circuit techniques to optimize noise performance, particularly in the low-capacitance regime, are discussed.

  11. Large format MBE HgCdTe on silicon detector development for astronomy

    NASA Astrophysics Data System (ADS)

    Hanold, Brandon J.; Figer, Donald F.; Lee, Joong; Kolb, Kimberly; Marcuson, Iain; Corrales, Elizabeth; Getty, Jonathan; Mears, Lynn

    2015-08-01

    The Center for Detectors at Rochester Institute of Technology and Raytheon Vision Systems (RVS) are leveraging RVS capabilities to produce large format, short-wave infrared HgCdTe focal plane arrays on silicon (Si) substrate wafers. Molecular beam epitaxial (MBE) grown HgCdTe on Si can reduce detector fabrication costs dramatically, while keeping performance competitive with HgCdTe grown on CdZnTe. Reduction in detector costs will alleviate a dominant expense for observational astrophysics telescopes. This paper presents the characterization of 2.5μm cutoff MBE HgCdTe/Si detectors including pre- and post-thinning performance. Detector characteristics presented include dark current, read noise, spectral response, persistence, linearity, crosstalk probability, and analysis of material defects.

  12. Progress of Multicolor Single Detector to Detector Array Development for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Bhat, Ishwara; Xiao, Ye-Gao; Bandra, Sumith; Gunapala, Sarath D.

    2004-01-01

    Knowledge of the spatial and temporal distribution of atmospheric species such as CO2, O3, H2O, and CH4 is important for understanding the chemistry and physical cycles involving Earth s atmosphere. Although several remote sensing techniques are suitable for such measurements they are considered high cost techniques involving complicated instrumentation. Therefore, simultaneous measurement of atmospheric species using a single remote sensing instrument is significant for minimizing cost, size and complexity. While maintaining the instrument sensitivity and range, quality of multicolor detector, in terms of high quantum efficiency and low noise are vital for these missions. As the first step for developing multicolor focal plan array, the structure of a single element multicolor detector is presented in this paper. The detector consists of three p-n junction layers of Si, GaSb and InAs wafer bonded to cover the spectral range UV to 900 nm, 800 nm to 1.7 m, and 1.5 m to 3.4 m, respectively. Modeling of the absorption coefficient for each material was carried out for optimizing the layers thicknesses for maximum absorption. The resulted quantum efficiency of each layer has been determined except InAs layer. The optical and electrical characterization of each layer structure is reported including dark current and spectral response measurements of Si pin structure and of GaSb and InAs p-n junctions. The effect of the material processing is discussed.

  13. Infrared pushbroom camera breadboard using off-the-shelf 2D array of detector

    NASA Astrophysics Data System (ADS)

    Bernier, Joel; Plainchamp, Patrick; Bardon, Dominique

    1994-09-01

    Performances for nowadays optronic systems require focal plane arrays (FPA) with an increasing number of detectors. The `push- broom' technic is well adapted to earth observation in the visible range with the availability of long linear CCD'S offering thousands of pixels. In the infrared, line scan systems are preferred at the present time because technological difficulties have to be overcome in order to get long linear arrays. Among the most important, are: (1) Difficulties to have a large cold focal plane with a temperature uniformity of a few degrees. (2) Difficulties to get good detection material over large surface. Mechanical or optical butting technology can be used there but with dead pixels and/or side effects. (3) Very low cold shield efficiency due to the geometry of the long linear array. (4) Very high development costs. MATRA DEFENSE UAO has made the design of a new infrared FPA concept which has the advantage to overcome all drawbacks listed previously (patented design). The idea consists to transform the pixel arrangement geometry of a 2D array which is available off the shelf into a long linear FPA using a coherent infrared fiber optic reformatter. In order to demonstrate the feasibility of this new FPA concept, a camera breadboard has been built. This task has been supported by the French MOD (STTE). This paper describes this breadboard and gives main technical performances.

  14. Development of an ultra-low-power x-ray-photon-resolving imaging detector array

    NASA Astrophysics Data System (ADS)

    Sun, Shunming; Downey, Stephen; Gaalema, Stephen; Gates, James L.; Jernigan, J. Garrett; Kaaret, Philip; MacIntosh, Scott; Ramsey, Brian; Wall, Bruce

    2010-08-01

    We report on progress to develop and demonstrate CZT and Si hybrid detector arrays for future NASA missions in X-ray and Gamma-ray astronomy. The primary goal for these detectors is consistent with the design concept for the EXIST mission1 and will also be appropriate for other NASA applications and ground-based projects. In particular we target science instruments that have large aperture (multiple square meters) and therefore require a low power ROIC (readout integrated circuits) design (< 10 microwatt per pixel in quiescent mode). The design also must achieve good energy resolution for single photon detection for X rays in the range 5-600 keV with a CZT sense layer and 2-30 keV with a Si sense layer. The target CZT arrays are 2 cm × 2 cm with 600 micron square-shaped pixels. The low power smart pixel detects rare X-ray hits with an adjustable threshold setting. A test array of 7 × 5 pixels with a 5 mm thick CZT sense layer demonstrates that the low power pixel can successfully detect X-rays with {50 readout noise electrons RMS.

  15. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  16. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  17. Delta-Doped CCDs as Detector Arrays in Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva

    2007-01-01

    In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a

  18. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  19. High luminosity operation of large solid angle scintillator arrays in Jefferson Lab Hall A

    SciTech Connect

    Ran Shneor

    2003-12-01

    This thesis describes selected aspects of high luminosity operation of large solid angle scintillator arrays in Hall A of the CEBAF (Central Electron Beam Accelerator Facility) at TJNAF (Thomas Jefferson National Accelerator Facility ). CEBAF is a high current, high duty factor electron accelerator with a maximum beam energy of about 6 GeV and a maximum current of 200 {micro}A. Operating large solid angle scintillator arrays in high luminosity environment presents several problems such as high singles rates, low signal to noise ratios and shielding requirements. To demonstrate the need for large solid angle and momentum acceptance detectors as a third arm in Hall A, we will give a brief overview of the physics motivating five approved experiments, which utilize scintillator arrays. We will then focus on the design and assembly of these scintillator arrays, with special focus on the two new detector packages built for the Short Range Correlation experiment E01-015. This thesis also contains the description and results of different tests and calibrations which where conducted for these arrays. We also present the description of a number of tests which were done in order to estimate the singles rates, data reconstruction, filtering techniques and shielding required for these counters.

  20. Bi-material resonant infrared thermal detector and array

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2014-10-01

    A resonant infrared thermal sensor with high sensitivity, whose sensing element is a bi-material structure with thermal expansion mismatch effect, is presented in this paper. The sensor detects infrared radiation by means of tracking the change in resonance frequency of the bi-material structure with temperature change attributed to the infrared radiation from targets. The bi-material structure can amplify the change in resonance frequency compared to a single material sensing structure. In accordance with the theory of vibration mechanics and design principle of infrared thermal detector, the bi-material resonant sensor by means of which an array can be achieved is designed. The simulation results, by ANSYS software analysis based on multi-layer shell finite element, demonstrate that the dependence of resonance frequency on temperature of the designed sensing structure achieves 1Hz/0.01°C. A microarray with 6×6 resonant infrared sensors is fabricated based on microelectronics processes being compatible with integrated circuit fabrication technology. The frequency variation corresponding to the temperature shift can be obtained by electrical measurement.

  1. Synthesis arrangement and parity correction of linear array infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Hong, Pu; Wang, Bo; Wang, Chensheng

    2010-11-01

    According to the configuration and technical specification of the detector, which has multiple channels, channels mixing, high speed outputs and separate columns between odd and even, a real time digital processing unit based on the CPLD, FPGA and DSP has been developed to achieve the data synthesis and arrangement function and the parity correction algorithm. A special interface circuit with 4 CPLDs is designed to complete the first synthesis step where the 16 channels of data are combined into 4 channels. The second step is finished in FPGA and ROM address encoder where the 4 channels of data are combined into 1 channel. For output data synchronization, FIFO is adopted to achieve the delay of even channels in the parity correction. Data of odd channels enters the columns synthesis unit without any processing and even channels shall be processed in the columns synthesis unit after entering the FIFO unit first and experiencing the delay process. Thereby the pre-processing before image processing of the linear array thermal imager is accomplished.

  2. A Prototype Three-Dimensional Position Sensitive CdZnTe Detector Array

    SciTech Connect

    Zhang, Feng; He, Zhong; Seifert, Carolyn E.

    2007-08-01

    A new CdZnTe gamma-ray spectrometer system that employs two layers of modular detector arrays is being developed under the collaboration between the University of Michigan and the Pacific Northwest National Labaratory (PNNL). Each layer can accommodate up to three by three 3-dimensional position sensitive CdZnTe gamma-ray spectrometers. This array system is based on the newly developed VAS_UM/TAT4 ASIC readout electronics. Each of the nine detector modules consists of a pixellated CdZnTe detector and a VAS_UM/TAT4 ASIC frontend board. Each 1.5´1.5´1.0 cm3 CdZnTe detector employs an array of 11 by 11 pixellated anodes and a planar cathode. The energy depositions and 3-dimensional positions of individual interactions of each incident gamma ray can be obtained from pulse amplitude, location of each pixel anode and the drift time of electrons. Ten detectors were tested individually and half of them achieved resolution of <1.0% FWHM at 662 keV for single-pixel events (~30% of all 662 keV full energy deposition events). Two of them were tested in a simple array to verify that the upgrade to an array system does not sacrifice the performance of individual detectors. Experimental results of individual detectors and a twodetector array system are presented, and possible causes for several worse performing detectors are discussed.

  3. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  4. Use of single photon counting detector arrays in combined PET/MR: Characterization of LYSO-SiPM detector modules and comparison with a LSO-APD detector

    NASA Astrophysics Data System (ADS)

    Spanoudaki, V. C.; Mann, A. B.; Otte, A. N.; Konorov, I.; Torres-Espallardo, I.; Paul, S.; Ziegler, S. I.

    2007-12-01

    We propose in this study a novel PET detector concept as insert for simultaneous PET/MR imaging, using arrays of Silicon Photomultipliers (SiPMs) as photodetectors, read out by a data acquisition system based on sampling ADCs. A 2 × 2 LSO-SiPM detector array and four single channel LYSO-SiPM detectors have been evaluated and compared to a LSO-APD detector. A 17.9% energy resolution and a 1.4 ns time resolution have been measured. No degradation of these values could be detected when simultaneous MR acquisitions were performed. The non-linear detector behaviour due to the limited dynamic range and recovery time effects has been studied. In addition, the contribution of dark counts and optical crosstalk for PET applications was also addressed. The feasibility for position localization of the incident light to a SiPM array using Anger logic has been investigated.

  5. The Design and Performance of the 384: Element Submillimeter Detector Array for SHARC II

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.; Allen, Christine; Benford, Dominic; Silverberg, Robert; Staguhn, Johannes; Dowell, Darren; Phillips, Tom

    2003-01-01

    We report on the performance of the SHARC II detector, a 12 x 32 array of ion implanted Si pop-up bolometers. This 384 element detector array was built as a prototype for the High Angular Resolution Widefield Camera (HAWC) for the Stratospheric Observatory for Infrared Astronomy (SOFIA). We will discuss the design process, the characterization of the detectors, and the performance of the array in the SHARC II instrument. SHARC II is now a facility instrument on the Caltech Submillimeter Observatory, providing background-limited imaging at 350 and 450 microns.

  6. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  7. A prototype avalanche photodiode array for scintillating-fiber tracking detectors

    NASA Astrophysics Data System (ADS)

    Yoshida, tracking detectors T.; Sora, T.

    2004-12-01

    We have evaluated the performance of a prototype 16-channel avalanche photodiode (APD) array developed primarily for scintillating-fiber (SCIFI) tracking detectors. The APD array was coupled to a 2.5 m long SCIFI array, and the detection efficiency was measured for minimum ionizing particles passing through the SCIFI array. The APD array was cooled to -50 °C to improve the S/N ratio. We have found that the APD array can read out each individual SCIFI with sufficiently high efficiency.

  8. Large format high-operability SWIR and MWIR focal plane array performance and capabilities

    NASA Astrophysics Data System (ADS)

    Bangs, James; Langell, Mark; Reddy, Madhu; Melkonian, Leon; Johnson, Scott; Elizondo, Lee; Rybnicek, Kimon; Norton, Elyse; Jaworski, Frank; Asbrock, James; Baur, Stefan

    2011-06-01

    High-performance large-format detector arrays responsive to the 1-5μm wavelength range of the infrared spectrum fabricated using large area HgCdTe layers grown on 6-inch diameter (211) silicon substrates are available for advanced imaging applications. This paper reviews performance and capabilities of Raytheon Vision Systems (RVS) HgCdTe/Si Focal Plane Arrays (FPA) and shows 2k x 2k format MWIR HgCdTe/Si FPA performance with NEdT operabilities better than 99.9%. SWIR and MWIR detector performance for HgCdTe/Si is comparable to established performance of HgCdTe/CdZnTe wafers. HgCdTe devices fabricated on both types of substrates have demonstrated very low dark current, high quantum efficiency and full spectral band fill factor characteristic of HgCdTe. HgCdTe has the advantage of being able to precisely tune the detector cutoff via adjustment of the Cd composition in the MBE growth. The HgCdTe/Si detectors described in this paper are p-on-n mesa delineated architecture and fabricated using the same mature etch, passivation, and metallization processes as our HgCdTe/CdZnTe line. Uniform device quality HgCdTe epitaxial layers and application of detector fabrication processes across the full area of 6-inch wafers routinely produces high performing detector pixels from edge to edge of the photolithographic limits across the wafer, offering 5 times the printable area as costly 6×6cm CdZnTe substrates. This 6-inch HgCdTe detector wafer technology can provide applications demanding very wide FOV high resolution coverage the capability to produce a very large single piece infrared detector array, up to a continuous image plane 10×10 cm in size. Alternatively, significant detector cost reduction through allowing more die of a given size to be printed on each wafer is possible, with further cost reduction achieved through transition towards automated detector fabrication and photolithographic processes for both increased yields and reduced touch labor costs. RVS continues

  9. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  10. Fabrication of Metallic Magnetic Calorimeter X-ray Detector Arrays

    NASA Astrophysics Data System (ADS)

    Hsieh, W.-T.; Adams, J. A.; Bandler, S. R.; Beyer, J.; Denis, K. L.; Eguchi, H.; Figueroa-Feliciano, E.; Rotzinger, H.; Schneider, G. H.; Seidel, G. M.; Stevenson, T. R.; Travers, D. E.

    2008-04-01

    Microcalorimeters with metallic magnetic sensors show great promise for use in astronomical X-ray spectroscopy. We describe the design and fabrication of a lithographically patterned magnetic microcalorimeter. A paramagnetic AuEr film is sputter-deposited as the sensor, which is coupled to a low noise SQUID via a meander superconducting pickup loop used as an inductor. This inductor also provides the magnetic field bias to the sensor. The AuEr film is deposited over this meander such that the field created by a large current flowing in the loop magnetizes the sensor material. The use of thin film techniques in the fabrication of these magnetic sensors not only allows strong magnetic coupling between the sensor and the inductor, it also is scalable for array fabrication.