Science.gov

Sample records for large genomic sequences

  1. Atypical regions in large genomic DNA sequences

    SciTech Connect

    Scherer, S. |; McPeek, M.S.; Speed, T.P.

    1994-07-19

    Large genomic DNA sequences contain regions with distinctive patterns of sequence organization. The authors describe a method using logarithms of probabilities based on seventh-order Markov chains to rapidly identify genomic sequences that do not resemble models of genome organization built from compilations of octanucleotide usage. Data bases have been constructed from Escherichia coli and Saccharomyces cerevisiae DNA sequences of >1000 nt and human sequences of >10,000 nt. Atypical genes and clusters of genes have been located in bacteriophage, yeast, and primate DNA sequences. The authors consider criteria for statistical significance of the results, offer possible explanations for the observed variation in genome organization, and give additional applications of these methods in DNA sequence analysis.

  2. Global Alignment System for Large Genomic Sequencing

    Energy Science and Technology Software Center (ESTSC)

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  3. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    SciTech Connect

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  4. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions fr...

  5. SMRT® Sequencing Solutions for Large Genomes and Transcriptomes

    PubMed Central

    Chin, J.; Peluso, P.; Rank, D.; Kim, K.; Landolin, J.; Koren, S.; Phillippy, A.M.; Tseng, E.; Wang, S.; Baybayan, P.; Gu, J.

    2014-01-01

    Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers in large genome complexities, such as long, highly repetitive, low-complexity regions and duplication events, and differentiating between transcript isoforms that are difficult to resolve with short-read technologies. We present solutions available for both reference genome improvement (100 MB) and transcriptome research to best leverage long reads that have exceeded 20 Kb in length. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. Highlights from our genome improvement projects using the latest P5-C3 chemistry on model organisms with contig N50 exceeding 6 Mb and longest contig exceeding 12.5 Mb with an average base quality of QV50 will be shared. Additionally, the value of long, intact reads to provide a no-assembly approach to investigate transcript isoforms using our Iso-Seq protocol will be presented.

  6. The ClinSeq Project: Piloting large-scale genome sequencing for research in genomic medicine

    PubMed Central

    Biesecker, Leslie G.; Mullikin, James C.; Facio, Flavia M.; Turner, Clesson; Cherukuri, Praveen F.; Blakesley, Robert W.; Bouffard, Gerard G.; Chines, Peter S.; Cruz, Pedro; Hansen, Nancy F.; Teer, Jamie K.; Maskeri, Baishali; Young, Alice C.; Manolio, Teri A.; Wilson, Alexander F.; Finkel, Toren; Hwang, Paul; Arai, Andrew; Remaley, Alan T.; Sachdev, Vandana; Shamburek, Robert; Cannon, Richard O.; Green, Eric D.

    2009-01-01

    ClinSeq is a pilot project to investigate the use of whole-genome sequencing as a tool for clinical research. By piloting the acquisition of large amounts of DNA sequence data from individual human subjects, we are fostering the development of hypothesis-generating approaches for performing research in genomic medicine, including the exploration of issues related to the genetic architecture of disease, implementation of genomic technology, informed consent, disclosure of genetic information, and archiving, analyzing, and displaying sequence data. In the initial phase of ClinSeq, we are enrolling roughly 1000 participants; the evaluation of each includes obtaining a detailed family and medical history, as well as a clinical evaluation. The participants are being consented broadly for research on many traits and for whole-genome sequencing. Initially, Sanger-based sequencing of 300–400 genes thought to be relevant to atherosclerosis is being performed, with the resulting data analyzed for rare, high-penetrance variants associated with specific clinical traits. The participants are also being consented to allow the contact of family members for additional studies of sequence variants to explore their potential association with specific phenotypes. Here, we present the general considerations in designing ClinSeq, preliminary results based on the generation of an initial 826 Mb of sequence data, the findings for several genes that serve as positive controls for the project, and our views about the potential implications of ClinSeq. The early experiences with ClinSeq illustrate how large-scale medical sequencing can be a practical, productive, and critical component of research in genomic medicine. PMID:19602640

  7. Phylogeny-driven target selection for large-scale genome-sequencing (and other) projects

    PubMed Central

    Göker, Markus; Klenk, Hans-Peter

    2013-01-01

    Despite the steadily decreasing costs of genome sequencing, prioritizing organisms for sequencing remains important in large-scale projects. Phylogeny-based selection is of interest to identify those organisms whose genomes can be expected to differ most from those that have already been sequenced. Here, we describe a method that infers a phylogenetic scoring independent of which set of organisms has previously been targeted, which is computationally simple and easy to apply in practice. The scoring itself, as well as pre- and post-processing of the data, is illustrated using two real-world examples in which the method has already been applied for selecting targets for genome sequencing. These projects are the JGI CSP Genomic Encyclopedia of Bacteria and Archaea phase I, targeting 1,000 type strains, and, on a smaller-scale, the phylogenomics of the Roseobacter clade. Potential artifacts of the method are discussed and compared to a selection approach based on the taxonomic classification. PMID:23991265

  8. Sequence variants from whole genome sequencing a large group of Icelanders.

    PubMed

    Gudbjartsson, Daniel F; Sulem, Patrick; Helgason, Hannes; Gylfason, Arnaldur; Gudjonsson, Sigurjon A; Zink, Florian; Oddson, Asmundur; Magnusson, Gisli; Halldorsson, Bjarni V; Hjartarson, Eirikur; Sigurdsson, Gunnar Th; Kong, Augustine; Helgason, Agnar; Masson, Gisli; Magnusson, Olafur Th; Thorsteinsdottir, Unnur; Stefansson, Kari

    2015-01-01

    We have accumulated considerable data on the genetic makeup of the Icelandic population by sequencing the whole genomes of 2,636 Icelanders to depth of at least 10X and by chip genotyping 101,584 more. The sequencing was done with Illumina technology. The median sequencing depth was 20X and 909 individuals were sequenced to a depth of at least 30X. We found 20 million single nucleotide polymorphisms (SNPs) and 1.5 million insertions/deletions (indels) that passed stringent quality control. Almost all the common SNPs (derived allele frequency (DAF) over 2%) that we identified in Iceland have been observed by either dbSNP (build 137) or the Exome Sequencing Project (ESP) while only 60 and 20% of rare (DAF<0.5%) SNPs and indels in coding regions, the most heavily studied parts of the genome, have been observed in the public databases. Features of our variant data, such as the transition/transversion ratio and the length distribution of indels, are similar to published reports. PMID:25977816

  9. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  10. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains

    PubMed Central

    Salipante, Stephen J.; Roach, David J.; Kitzman, Jacob O.; Snyder, Matthew W.; Stackhouse, Bethany; Butler-Wu, Susan M.; Lee, Choli; Cookson, Brad T.

    2015-01-01

    Large-scale bacterial genome sequencing efforts to date have provided limited information on the most prevalent category of disease: sporadically acquired infections caused by common pathogenic bacteria. Here, we performed whole-genome sequencing and de novo assembly of 312 blood- or urine-derived isolates of extraintestinal pathogenic (ExPEC) Escherichia coli, a common agent of sepsis and community-acquired urinary tract infections, obtained during the course of routine clinical care at a single institution. We find that ExPEC E. coli are highly genomically heterogeneous, consistent with pan-genome analyses encompassing the larger species. Investigation of differential virulence factor content and antibiotic resistance phenotypes reveals markedly different profiles among lineages and among strains infecting different body sites. We use high-resolution molecular epidemiology to explore the dynamics of infections at the level of individual patients, including identification of possible person-to-person transmission. Notably, a limited number of discrete lineages caused the majority of bloodstream infections, including one subclone (ST131-H30) responsible for 28% of bacteremic E. coli infections over a 3-yr period. We additionally use a microbial genome-wide-association study (GWAS) approach to identify individual genes responsible for antibiotic resistance, successfully recovering known genes but notably not identifying any novel factors. We anticipate that in the near future, whole-genome sequencing of microorganisms associated with clinical disease will become routine. Our study reveals what kind of information can be obtained from sequencing clinical isolates on a large scale, even well-characterized organisms such as E. coli, and provides insight into how this information might be utilized in a healthcare setting. PMID:25373147

  11. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    SciTech Connect

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  12. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  13. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli

    PubMed Central

    Lee, Heewook; Doak, Thomas G.; Popodi, Ellen; Foster, Patricia L.; Tang, Haixu

    2016-01-01

    A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identified events (758 IS insertions, 98 recombinations and 1 excision), we estimate that the rate of IS insertion is 3.5 × 10−4 insertions per genome per generation and the rate of IS homologous recombination is 4.5 × 10−5 recombinations per genome per generation. These events are mostly contributed by the IS elements IS1, IS2, IS5 and IS186. Spatial analysis of new insertions suggest that transposition is biased to proximal insertions, and the length spectrum of IS-caused deletions is largely explained by local hopping. For any of the ISs studied there is no region of the circular genome that is favored or disfavored for new insertions but there are notable hotspots for deletions. Some elements have preferences for non-coding sequence or for the beginning and end of coding regions, largely explained by target site motifs. Interestingly, transposition and deletion rates remain constant across the wild-type and 12 mutant E. coli lines, each deficient in a distinct DNA repair pathway. Finally, we characterized the target sites of four IS families, confirming previous results and characterizing a highly specific pattern at IS186 target-sites, 5′-GGGG(N6/N7)CCCC-3′. We also detected 48 long deletions not involving IS elements. PMID:27431326

  14. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  15. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  16. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-08-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  17. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing.

    PubMed

    Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J

    2015-01-01

    Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes. PMID:26553646

  18. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing

    PubMed Central

    Keinath, Melissa C.; Timoshevskiy, Vladimir A.; Timoshevskaya, Nataliya Y.; Tsonis, Panagiotis A.; Voss, S. Randal; Smith, Jeramiah J.

    2015-01-01

    Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes. PMID:26553646

  19. Draft Genome Sequence of Rheinheimera sp. F8, a Biofilm-Forming Strain Which Produces Large Amounts of Extracellular DNA

    PubMed Central

    Szewzyk, Ulrich

    2016-01-01

    Rheinheimera sp. strain F8 is a biofilm-forming gammaproteobacterium that has been found to produce large amounts of filamentous extracellular DNA. Here, we announce the de novo assembly of its genome. It is estimated to be 4,464,511 bp in length, with 3,970 protein-coding sequences and 92 RNA-coding sequences. PMID:26966195

  20. A large genome centre’s improvements to the Illumina sequencing system

    PubMed Central

    Quail, Michael A.; Kozarewa, Iwanka; Smith, Frances; Scally, Aylwyn; Stephens, Philip J.; Durbin, Richard; Swerdlow, Harold; Turner, Daniel J.

    2008-01-01

    Preface The Wellcome Trust Sanger Institute is one of the world’s largest genome centres, and a substantial amount of our sequencing is performed on ‘next generation’ massively parallel sequencing technologies: in June 2008 the quantity of purity filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64gigabases (Gb). Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high throughput environment, to reduce bias, tighten insert size distribution, and reliably obtain high yields of data. PMID:19034268

  1. Large-scale sequencing based on full-length-enriched cDNA libraries in pigs: contribution to annotation of the pig genome draft sequence

    PubMed Central

    2012-01-01

    Background Along with the draft sequencing of the pig genome, which has been completed by an international consortium, collection of the nucleotide sequences of genes expressed in various tissues and determination of entire cDNA sequences are necessary for investigations of gene function. The sequences of expressed genes are also useful for genome annotation, which is important for isolating the genes responsible for particular traits. Results We performed a large-scale expressed sequence tag (EST) analysis in pigs by using 32 full-length-enriched cDNA libraries derived from 28 kinds of tissues and cells, including seven tissues (brain, cerebellum, colon, hypothalamus, inguinal lymph node, ovary, and spleen) derived from pigs that were cloned from a sow subjected to genome sequencing. We obtained more than 330,000 EST reads from the 5′-ends of the cDNA clones. Comparison with human and bovine gene catalogs revealed that the ESTs corresponded to at least 15,000 genes. cDNA clones representing contigs and singlets generated by assembly of the EST reads were subjected to full-length determination of inserts. We have finished sequencing 31,079 cDNA clones corresponding to more than 12,000 genes. Mapping of the sequences of these cDNA clones on the draft sequence of the pig genome has indicated that the clones are derived from about 15,000 independent loci on the pig genome. Conclusions ESTs and cDNA sequences derived from full-length-enriched libraries are valuable for annotation of the draft sequence of the pig genome. This information will also contribute to the exploration of promoter sequences on the genome and to molecular biology-based analyses in pigs. PMID:23150988

  2. Large Scale Sequencing of Dothideomycetes Provides Insights into Genome Evolution and Adaptation

    SciTech Connect

    Haridas, Sajeet; Crous, Pedro; Binder, Manfred; Spatafora, Joseph; Grigoriev, Igor

    2015-03-16

    Dothideomycetes is the largest and most diverse class of ascomycete fungi with 23 orders 110 families, 1300 genera and over 19,000 known species. We present comparative analysis of 70 Dothideomycete genomes including over 50 that we sequenced and are as yet unpublished. This extensive sampling has almost quadrupled the previous study of 18 species and uncovered a 10 fold range of genome sizes. We were able to clarify the phylogenetic positions of several species whose origins were unclear in previous morphological and sequence comparison studies. We analyzed selected gene families including proteases, transporters and small secreted proteins and show that major differences in gene content is influenced by speciation.

  3. High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster.

    PubMed

    Schürch, Anita C; Kremer, Kristin; Daviena, Olaf; Kiers, Albert; Boeree, Martin J; Siezen, Roland J; van Soolingen, Dick

    2010-09-01

    To investigate whether genome sequencing yields more useful markers than those currently used to study the epidemiology of tuberculosis, it was applied to three Mycobacterium tuberculosis isolates of the Harlingen outbreak. Our findings suggest that single nucleotide polymorphisms can be used to identify transmission chains in restriction fragment length polymorphism clusters. PMID:20592143

  4. High-Resolution Typing by Integration of Genome Sequencing Data in a Large Tuberculosis Cluster▿

    PubMed Central

    Schürch, Anita C.; Kremer, Kristin; Daviena, Olaf; Kiers, Albert; Boeree, Martin J.; Siezen, Roland J.; van Soolingen, Dick

    2010-01-01

    To investigate whether genome sequencing yields more useful markers than those currently used to study the epidemiology of tuberculosis, it was applied to three Mycobacterium tuberculosis isolates of the Harlingen outbreak. Our findings suggest that single nucleotide polymorphisms can be used to identify transmission chains in restriction fragment length polymorphism clusters. PMID:20592143

  5. Exploring the feasibility of using copy number variants as genetic markers through large-scale whole genome sequencing experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variants (CNV) are large scale duplications or deletions of genomic sequence that are caused by a diverse set of molecular phenomena that are distinct from single nucleotide polymorphism (SNP) formation. Due to their different mechanisms of formation, CNVs are often difficult to track us...

  6. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins.

    PubMed

    Croucher, Nicholas J; Page, Andrew J; Connor, Thomas R; Delaney, Aidan J; Keane, Jacqueline A; Bentley, Stephen D; Parkhill, Julian; Harris, Simon R

    2015-02-18

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates' recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  7. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins

    PubMed Central

    Croucher, Nicholas J.; Page, Andrew J.; Connor, Thomas R.; Delaney, Aidan J.; Keane, Jacqueline A.; Bentley, Stephen D.; Parkhill, Julian; Harris, Simon R.

    2015-01-01

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates’ recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  8. Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome.

    PubMed

    Liu, Yun-Guo; Kurokawa, Tadahide; Sekino, Masashi; Tanabe, Toru; Watanabe, Kazuhito

    2013-03-01

    The complete mitochondrial (mt) genome of the ark shell Scapharca broughtonii was determined using long PCR and a genome walking sequencing strategy with genus-specific primers. The S. broughtonii mt genome (GenBank accession number AB729113) contained 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 2 ribosomal RNA genes, and 42 transfer tRNA genes, in a length of 46,985 nucleotides for the size of mtDNA with only one copy of the heteroplasmic tandem repeat (HTR) unit. Moreover the S. broughtonii mt genome shows size variation; these genomes ranged in size from about 47 kb to about 50 kb because of variation in the number of repeat sequences in the non-coding region. The mt-genome of S. broughtonii is, to date, the longest reported metazoan mtDNA sequence. Sequence duplication in non-coding region and the formation of HTR arrays were two of the factors responsible for the ultra-large size of this mt genome. All the tRNA genes were found within the S. broughtonii mt genome, unlike the other bivalves usually lacking one or more tRNA genes. Twelve additional specimens were used to analyze the patterns of tandem repeat arrays by PCR amplification and agarose electrophoresis. Each of the 12 specimens displayed extensive heteroplasmy and had 8-10 length variants. The motifs of the HTR arrays are about 353-362 bp and the number of repeats ranges from 1 to 11. PMID:23291309

  9. Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira hyodysenteriae Reveals Adaptations to Its Lifestyle in the Porcine Large Intestine

    PubMed Central

    La, Tom; Ryan, Karon; Moolhuijzen, Paula; Albertyn, Zayed; Shaban, Babak; Motro, Yair; Dunn, David S.; Schibeci, David; Hunter, Adam; Barrero, Roberto; Phillips, Nyree D.; Hampson, David J.

    2009-01-01

    Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine. PMID:19262690

  10. Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions

    PubMed Central

    2009-01-01

    Background The highly compacted 2.9-Mb genome of Encephalitozoon cuniculi placed the microsporidia in the spotlight, encoding a mere 2,000 proteins and a highly reduced suite of biochemical pathways. This extreme level of reduction is not universal across the microsporidia, with genomes known to vary up to sixfold in size, suggesting that some genomes may harbor a gene content that is not as reduced as that of Enc. cuniculi. In this study, we present an in-depth survey of the large genome of Octosporea bayeri, a pathogen of Daphnia magna, with an estimated genome size of 24 Mb, in order to shed light on the organization and content of a large microsporidian genome. Results Using Illumina sequencing, 898 Mb of O. bayeri genome sequence was generated, resulting in 13.3 Mb of unique sequence. We annotated a total of 2,174 genes, of which 893 encodes proteins with assigned function. The gene density of the O. bayeri genome is very low on average, but also highly uneven, so gene-dense regions also occur. The data presented here suggest that the O. bayeri proteome is well represented in this analysis and is more complex that that of Enc. cuniculi. Functional annotation of O. bayeri proteins suggests that this species might be less biochemically dependent on its host for its metabolism than its more reduced relatives. Conclusions The combination of the data presented here, together with the imminent annotated genome of Daphnia magna, will provide a wealth of genetic and genomic tools to study host-parasite interactions in an interesting model for pathogenesis. PMID:19807911

  11. Large-scale whole-genome sequencing of the Icelandic population.

    PubMed

    Gudbjartsson, Daniel F; Helgason, Hannes; Gudjonsson, Sigurjon A; Zink, Florian; Oddson, Asmundur; Gylfason, Arnaldur; Besenbacher, Soren; Magnusson, Gisli; Halldorsson, Bjarni V; Hjartarson, Eirikur; Sigurdsson, Gunnar Th; Stacey, Simon N; Frigge, Michael L; Holm, Hilma; Saemundsdottir, Jona; Helgadottir, Hafdis Th; Johannsdottir, Hrefna; Sigfusson, Gunnlaugur; Thorgeirsson, Gudmundur; Sverrisson, Jon Th; Gretarsdottir, Solveig; Walters, G Bragi; Rafnar, Thorunn; Thjodleifsson, Bjarni; Bjornsson, Einar S; Olafsson, Sigurdur; Thorarinsdottir, Hildur; Steingrimsdottir, Thora; Gudmundsdottir, Thora S; Theodors, Asgeir; Jonasson, Jon G; Sigurdsson, Asgeir; Bjornsdottir, Gyda; Jonsson, Jon J; Thorarensen, Olafur; Ludvigsson, Petur; Gudbjartsson, Hakon; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Arnar, David O; Magnusson, Olafur Th; Kong, Augustine; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Sulem, Patrick; Stefansson, Kari

    2015-05-01

    Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity. PMID:25807286

  12. Sequencing-based large-scale genomics approaches with small numbers of isolated maize meiocytes

    PubMed Central

    Dukowic-Schulze, Stefanie; Sundararajan, Anitha; Ramaraj, Thiruvarangan; Mudge, Joann; Chen, Changbin

    2014-01-01

    High-throughput sequencing has become the large-scale approach of choice to study global gene expression and the distribution of specific chromatin marks and features. However, the limited availability of large amounts of purified cells made it very challenging to apply sequencing-based techniques in plant meiosis research in the past. In this paper, we describe a method to isolate meiocytes from maize anthers and detailed protocols to successfully perform RNA-seq, smRNA-seq, H3K4me3-ChIP-seq, and DNA bisulfite conversion sequencing with 5000–30,000 isolated maize male meiotic cells. These methods can be adjusted for other flowering plant species as well. PMID:24611068

  13. Meeting Highlights: Genome Sequencing and Biology 2001

    PubMed Central

    2001-01-01

    We bring you a report from the CSHL Genome Sequencing and Biology Meeting, which has a long and prestigious history. This year there were sessions on large-scale sequencing and analysis, polymorphisms (covering discovery and technologies and mapping and analysis), comparative genomics of mammalian and model organism genomes, functional genomics and bioinformatics. PMID:18628920

  14. The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms.

    PubMed Central

    Kamm, A; Doudrick, R L; Heslop-Harrison, J S; Schmidt, T

    1996-01-01

    A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610105

  15. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies.

    PubMed

    Ye, Chengxi; Hill, Christopher M; Wu, Shigang; Ruan, Jue; Ma, Zhanshan Sam

    2016-01-01

    The highly anticipated transition from next generation sequencing (NGS) to third generation sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost. The high error rates make the assembly of long erroneous reads of large genomes challenging because existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain advantages from three general and basic design principles: (i) Compact representation of the long reads leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors need to be detected and corrected. (iii) Structurally correct 3GS reads are assembled and polished. In our implementation, preassembled NGS contigs are used to derive the compact representation of the long reads, motivating an algorithmic conversion from a de Bruijn graph to an overlap graph, the two major assembly paradigms. Moreover, since NGS and 3GS data can compensate for each other, our hybrid assembly approach reduces both of their sequencing requirements. Experiments show that our software is able to assemble mammalian-sized genomes orders of magnitude more quickly than existing methods without consuming a lot of memory, while saving about half of the sequencing cost. PMID:27573208

  16. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies

    PubMed Central

    Ye, Chengxi; Hill, Christopher M.; Wu, Shigang; Ruan, Jue; Ma, Zhanshan (Sam)

    2016-01-01

    The highly anticipated transition from next generation sequencing (NGS) to third generation sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost. The high error rates make the assembly of long erroneous reads of large genomes challenging because existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain advantages from three general and basic design principles: (i) Compact representation of the long reads leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors need to be detected and corrected. (iii) Structurally correct 3GS reads are assembled and polished. In our implementation, preassembled NGS contigs are used to derive the compact representation of the long reads, motivating an algorithmic conversion from a de Bruijn graph to an overlap graph, the two major assembly paradigms. Moreover, since NGS and 3GS data can compensate for each other, our hybrid assembly approach reduces both of their sequencing requirements. Experiments show that our software is able to assemble mammalian-sized genomes orders of magnitude more quickly than existing methods without consuming a lot of memory, while saving about half of the sequencing cost. PMID:27573208

  17. Multiplexed Fragaria Chloroplast Genome Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to sequence multiple chloroplast genomes that uses the sequencing depth of ultra high throughput sequencing technologies was recently described. Sequencing complete chloroplast genomes can resolve phylogenetic relationships at low taxonomic levels and identify point mutations and indels tha...

  18. Complete Genome Sequence of the Multiresistant Acinetobacter baumannii Strain AbH12O-A2, Isolated during a Large Outbreak in Spain.

    PubMed

    Merino, M; Alvarez-Fraga, L; Gómez, M J; Aransay, A M; Lavín, J L; Chaves, F; Bou, G; Poza, M

    2014-01-01

    We report the complete genome sequence of Acinetobacter baumannii strain AbH12O-A2, isolated during a large outbreak in Spain. The genome has 3,875,775 bp and 3,526 coding sequences, with 39.4% G+C content. The availability of this genome will facilitate the study of the pathogenicity of the Acinetobacter species. PMID:25395646

  19. Complete Genome Sequence of the Multiresistant Acinetobacter baumannii Strain AbH12O-A2, Isolated during a Large Outbreak in Spain

    PubMed Central

    Merino, M.; Alvarez-Fraga, L.; Gómez, M. J.; Aransay, A. M.; Lavín, J. L.; Chaves, F.

    2014-01-01

    We report the complete genome sequence of Acinetobacter baumannii strain AbH12O-A2, isolated during a large outbreak in Spain. The genome has 3,875,775 bp and 3,526 coding sequences, with 39.4% G+C content. The availability of this genome will facilitate the study of the pathogenicity of the Acinetobacter species. PMID:25395646

  20. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing

    PubMed Central

    Nadeau, Nicola J.; Whibley, Annabel; Jones, Robert T.; Davey, John W.; Dasmahapatra, Kanchon K.; Baxter, Simon W.; Quail, Michael A.; Joron, Mathieu; ffrench-Constant, Richard H.; Blaxter, Mark L.; Mallet, James; Jiggins, Chris D.

    2012-01-01

    Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These ‘islands’ of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the ‘speciation continuum’. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races. PMID:22201164

  1. Generation of large numbers of SNP in cattle by coupling reduced genome representation with high throughput sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome sequencing projects have produced draft sequences for species from diverse evolutionary clades for comparative evolutionary studies. Generally, these projects have not simultaneously created extensive single nucleotide polymorphism (SNP) resources for use in genetics studies within the...

  2. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  3. Draft Genome Sequences of Fungus Aspergillus calidoustus.

    PubMed

    Horn, Fabian; Linde, Jörg; Mattern, Derek J; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A; Petzke, Lutz; Valiante, Vito

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  4. Draft Genome Sequences of Fungus Aspergillus calidoustus

    PubMed Central

    Horn, Fabian; Linde, Jörg; Mattern, Derek J.; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A.; Petzke, Lutz

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  5. Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics

    PubMed Central

    Cherkasov, Artem; Ho Sui, Shannan J; Brunham, Robert C; Jones, Steven JM

    2004-01-01

    Background We establish that the occurrence of protein folds among genomes can be accurately described with a Weibull function. Systems which exhibit Weibull character can be interpreted with reliability theory commonly used in engineering analysis. For instance, Weibull distributions are widely used in reliability, maintainability and safety work to model time-to-failure of mechanical devices, mechanisms, building constructions and equipment. Results We have found that the Weibull function describes protein fold distribution within and among genomes more accurately than conventional power functions which have been used in a number of structural genomic studies reported to date. It has also been found that the Weibull reliability parameter β for protein fold distributions varies between genomes and may reflect differences in rates of gene duplication in evolutionary history of organisms. Conclusions The results of this work demonstrate that reliability analysis can provide useful insights and testable predictions in the fields of comparative and structural genomics. PMID:15274750

  6. Unlocking hidden genomic sequence

    PubMed Central

    Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.

    2004-01-01

    Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330

  7. Paired-End Sequencing of Long-Range DNA Fragments for De Novo Assembly of Large, Complex Mammalian Genomes by Direct Intra-Molecule Ligation

    PubMed Central

    Wu, Kui; Cai, Qingle; Wang, Yu; Lang, Yongshan; Cao, Hongzhi; Yang, Huangming; Wang, Jian; Zhang, Xiuqing

    2012-01-01

    Background The relatively short read lengths from next generation sequencing (NGS) technologies still pose a challenge for de novo assembly of complex mammal genomes. One important solution is to use paired-end (PE) sequence information experimentally obtained from long-range DNA fragments (>1 kb). Here, we characterize and extend a long-range PE library construction method based on direct intra-molecule ligation (or molecular linker-free circularization) for NGS. Results We found that the method performs stably for PE sequencing of 2- to 5- kb DNA fragments, and can be extended to 10–20 kb (and even in extremes, up to ∼35 kb). We also characterized the impact of low quality input DNA on the method, and develop a whole-genome amplification (WGA) based protocol using limited input DNA (<1 µg). Using this PE dataset, we accurately assembled the YanHuang (YH) genome, the first sequenced Asian genome, into a scaffold N50 size of >2 Mb, which is over100-times greater than the initial size produced with only small insert PE reads(17 kb). In addition, we mapped two 7- to 8- kb insertions in the YH genome using the larger insert sizes of the long-range PE data. Conclusions In conclusion, we demonstrate here the effectiveness of this long-range PE sequencing method and its use for the de novo assembly of a large, complex genome using NGS short reads. PMID:23029438

  8. Genome Sequence Databases (Overview): Sequencing and Assembly

    SciTech Connect

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  9. Next generation sequencing of viral RNA genomes

    PubMed Central

    2013-01-01

    Background With the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform. Results As representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers’ minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed. Conclusions The approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources. PMID:23822119

  10. DEDUCTIONS ABOUT THE NUMBER, ORGANIZATION AND EVOLUTION OF GENES IN THE TOMATO GENOME BASED ON ANALYSIS OF LARGE EST COLLECTION AND SELECTIVE GENOMIC SEQUENCING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of a collection of 120,892 single pass ESTs, derived from 26 different tomato cDNA libraries and reduced to a set of 27,274 unique consensus sequences (unigenes) reveals that 70% of the unigenes have identifiable homologs in the arabidopsis genome. Many of the most highly conserved multige...

  11. Sequence Maneuverer: tool for sequence extraction from genomes

    PubMed Central

    Yasmin, Tayyaba; Rehman, Inayat Ur; Ansari, Adnan Ahmad; liaqat, Khurrum; khan, Muhammad Irfan

    2012-01-01

    The availability of genomic sequences of many organisms has opened new challenges in many aspects particularly in terms of genome analysis. Sequence extraction is a vital step and many tools have been developed to solve this issue. These tools are available publically but have limitations with reference to the sequence extraction, length of the sequence to be extracted, organism specificity and lack of user friendly interface. We have developed a java based software package having three modules which can be used independently or sequentially. The tool efficiently extracts sequences from large datasets with few simple steps. It can efficiently extract multiple sequences of any desired length from a genome of any organism. The results are crosschecked by published data. Availability URL 1: http://ww3.comsats.edu.pk/bio/ResearchProjects.aspx URL 2: http://ww3.comsats.edu.pk/bio/SequenceManeuverer.aspx PMID:23275734

  12. Introduction to comparing large sequence sets.

    PubMed

    Page, Roderic D M

    2003-02-01

    Comparisons of whole genomes can yield important insights into the evolution of genome structure, such as the role of inversions in bacterial evolution and the identification of large-scale duplications in the human genome. This unit briefly compares two tools for aligning whole genome sequences: MUMmer and PipMaker. These tools differ in both the underlying algorithms used, and in the interface they present to the user. PMID:18428691

  13. Genomic sequencing of Pleistocene cave bears

    SciTech Connect

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  14. Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori.

    PubMed

    Suetsugu, Yoshitaka; Futahashi, Ryo; Kanamori, Hiroyuki; Kadono-Okuda, Keiko; Sasanuma, Shun-ichi; Narukawa, Junko; Ajimura, Masahiro; Jouraku, Akiya; Namiki, Nobukazu; Shimomura, Michihiko; Sezutsu, Hideki; Osanai-Futahashi, Mizuko; Suzuki, Masataka G; Daimon, Takaaki; Shinoda, Tetsuro; Taniai, Kiyoko; Asaoka, Kiyoshi; Niwa, Ryusuke; Kawaoka, Shinpei; Katsuma, Susumu; Tamura, Toshiki; Noda, Hiroaki; Kasahara, Masahiro; Sugano, Sumio; Suzuki, Yutaka; Fujiwara, Haruhiko; Kataoka, Hiroshi; Arunkumar, Kallare P; Tomar, Archana; Nagaraju, Javaregowda; Goldsmith, Marian R; Feng, Qili; Xia, Qingyou; Yamamoto, Kimiko; Shimada, Toru; Mita, Kazuei

    2013-09-01

    The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes. PMID:23821615

  15. Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, Bombyx mori

    PubMed Central

    Suetsugu, Yoshitaka; Futahashi, Ryo; Kanamori, Hiroyuki; Kadono-Okuda, Keiko; Sasanuma, Shun-ichi; Narukawa, Junko; Ajimura, Masahiro; Jouraku, Akiya; Namiki, Nobukazu; Shimomura, Michihiko; Sezutsu, Hideki; Osanai-Futahashi, Mizuko; Suzuki, Masataka G; Daimon, Takaaki; Shinoda, Tetsuro; Taniai, Kiyoko; Asaoka, Kiyoshi; Niwa, Ryusuke; Kawaoka, Shinpei; Katsuma, Susumu; Tamura, Toshiki; Noda, Hiroaki; Kasahara, Masahiro; Sugano, Sumio; Suzuki, Yutaka; Fujiwara, Haruhiko; Kataoka, Hiroshi; Arunkumar, Kallare P.; Tomar, Archana; Nagaraju, Javaregowda; Goldsmith, Marian R.; Feng, Qili; Xia, Qingyou; Yamamoto, Kimiko; Shimada, Toru; Mita, Kazuei

    2013-01-01

    The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes. PMID:23821615

  16. Automated correction of genome sequence errors

    PubMed Central

    Gajer, Pawel; Schatz, Michael; Salzberg, Steven L.

    2004-01-01

    By using information from an assembly of a genome, a new program called AutoEditor significantly improves base calling accuracy over that achieved by previous algorithms. This in turn improves the overall accuracy of genome sequences and facilitates the use of these sequences for polymorphism discovery. We describe the algorithm and its application in a large set of recent genome sequencing projects. The number of erroneous base calls in these projects was reduced by 80%. In an analysis of over one million corrections, we found that AutoEditor made just one error per 8828 corrections. By substantially increasing the accuracy of base calling, AutoEditor can dramatically accelerate the process of finishing genomes, which involves closing all gaps and ensuring minimum quality standards for the final sequence. It also greatly improves our ability to discover single nucleotide polymorphisms (SNPs) between closely related strains and isolates of the same species. PMID:14744981

  17. Plantagora: Modeling Whole Genome Sequencing and Assembly of Plant Genomes

    PubMed Central

    Barthelson, Roger; McFarlin, Adam J.; Rounsley, Steven D.; Young, Sarah

    2011-01-01

    Background Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. Methodology/Principal Findings For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. Conclusions/Significance Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further. PMID:22174807

  18. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    SciTech Connect

    Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric; Abernathy, Jason; Waldbieser, Geoff; Lindquist, Erika; Richardson, Paul; Lucas, Susan; Wang, Mei; Li, Ping; Thimmapuram, Jyothi; Liu, Lei; Vullaganti, Deepika; Kucuktas, Huseyin; Murdock, Christopher; Small, Brian C; Wilson, Melanie; Liu, Hong; Jiang, Yanliang; Lee, Yoona; Chen, Fei; Lu, Jianguo; Wang, Wenqi; Xu, Peng; Somridhivej, Benjaporn; Baoprasertkul, Puttharat; Quilang, Jonas; Sha, Zhenxia; Bao, Baolong; Wang, Yaping; Wang, Qun; Takano, Tomokazu; Nandi, Samiran; Liu, Shikai; Wong, Lilian; Kaltenboeck, Ludmilla; Quiniou, Sylvie; Bengten, Eva; Miller, Norman; Trant, John; Rokhsar, Daniel; Liu, Zhanjiang

    2010-03-23

    Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.

  19. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    PubMed Central

    2010-01-01

    Background Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35% of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies. PMID:20096101

  20. Genomic sequencing in clinical trials

    PubMed Central

    2011-01-01

    Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to find its way into clinical trials both nationally and worldwide. We highlight the currently available types of genomic sequencing platforms, outline the advantages and disadvantages of each, and compare first- and next-generation techniques with respect to capabilities, quality, and cost. We describe the current geographical distributions and types of disease conditions in which these technologies are used, and how next-generation sequencing is strategically being incorporated into new and existing studies. Lastly, recent major breakthroughs and the ongoing challenges of using genomic sequencing in clinical research are discussed. PMID:22206293

  1. Decoding the human genome sequence.

    PubMed

    Bentley, D R

    2000-10-01

    The year 2000 is marked by the production of the sequence of the human genome. A 'working draft' of high quality sequence covering 90% of the genome has been determined and a quarter is in finished form, including the first two completed chromosomes. All sequence data from the project is made freely available to the community via the Internet, for further analysis and exploitation. The challenge which lies ahead is to decipher the information. Knowledge of the human genome sequence will enable us to understand how the genetic information determines the development, structure and function of the human body. We will be able to explore how variations within our DNA sequence cause disease, how they affect our interaction with our environment and ultimately to develop new and effective ways to improve human health. PMID:11005789

  2. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction

    PubMed Central

    2013-01-01

    Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems. PMID:23350846

  3. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource

    PubMed Central

    Parida, Swarup K.; Verma, Mohit; Yadav, Santosh K.; Ambawat, Supriya; Das, Shouvik; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Development of informative polymorphic simple sequence repeat (SSR) markers at a genome-wide scale is essential for efficient large-scale genotyping applications. We identified genome-wide 1835 SSRs showing polymorphism between desi and kabuli chickpea. A total of 1470 polymorphic SSR markers from diverse coding and non-coding regions of the chickpea genome were developed. These physically mapped SSR markers exhibited robust amplification efficiency (73.9%) and high intra- and inter-specific polymorphic potential (63.5%), thereby suggesting their immense use in various genomics-assisted breeding applications. The SSR markers particularly derived from intergenic and intronic sequences revealed high polymorphic potential. Using the mapped SSR markers, a wider functional molecular diversity (16–94%, mean: 68%), and parentage- and cultivar-specific admixed domestication pattern and phylogenetic relationships in a structured population of desi and kabuli chickpea genotypes was evident. The intra-specific polymorphism (47.6%) and functional molecular diversity (65%) potential of polymorphic SSR markers developed in our study is much higher than that of previous documentations. Finally, we have developed a user-friendly web resource, Chickpea Microsatellite Database (CMsDB; http://www.nipgr.res.in/CMsDB.html), which provides public access to the data and results reported in this study. The developed informative SSR markers can serve as a resource for various genotyping applications, including genetic enhancement studies in chickpea. PMID:26347762

  4. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  5. Sequencing Complex Genomic Regions

    SciTech Connect

    Eichler, Evan

    2009-05-28

    Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 1 of 2

  6. Sequencing Complex Genomic Regions

    SciTech Connect

    Eichler, Evan

    2009-05-28

    Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 2 of 2

  7. Sequencing and analysis of a genomic fragment provide an insight into the Dunaliella viridis genomic sequence.

    PubMed

    Sun, Xiao-Ming; Tang, Yuan-Ping; Meng, Xiang-Zong; Zhang, Wen-Wen; Li, Shan; Deng, Zhi-Rui; Xu, Zheng-Kai; Song, Ren-Tao

    2006-11-01

    Dunaliella is a genus of wall-less unicellular eukaryotic green alga. Its exceptional resistances to salt and various other stresses have made it an ideal model for stress tolerance study. However, very little is known about its genome and genomic sequences. In this study, we sequenced and analyzed a 29,268 bp genomic fragment from Dunaliella viridis. The fragment showed low sequence homology to the GenBank database. At the nucleotide level, only a segment with significant sequence homology to 18S rRNA was found. The fragment contained six putative genes, but only one gene showed significant homology at the protein level to GenBank database. The average GC content of this sequence was 51.1%, which was much lower than that of close related green algae Chlamydomonas (65.7%). Significant segmental duplications were found within this fragment. The duplicated sequences accounted for about 35.7% of the entire region. Large amounts of simple sequence repeats (microsatellites) were found, with strong bias towards (AC)(n) type (76%). Analysis of other Dunaliella genomic sequences in the GenBank database (total 25,749 bp) was in agreement with these findings. These sequence features made it difficult to sequence Dunaliella genomic sequences. Further investigation should be made to reveal the biological significance of these unique sequence features. PMID:17091199

  8. Poultry Genome Sequences: Progress and Outstanding Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first build of the chicken genome sequence appeared in March 2004 – the first genome sequence of any animal agriculture species. That sequence was done primarily by whole genome shotgun Sanger sequencing, along with the use of an extensive BAC contig-based physical map to assemble the sequence ...

  9. Sequencing and mapping of the onion genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of DNA sequencing continues to decline and, in the near future, it will become reasonable to undertake sequencing of the enormous nuclear genome of onion. We undertook sequencing of expressed and genomic regions of the onion genome to learn about the structure of the onion genome, as well a...

  10. Genome Sequence of Canine Herpesvirus

    PubMed Central

    Papageorgiou, Konstantinos V.; Suárez, Nicolás M.; Wilkie, Gavin S.; McDonald, Michael; Graham, Elizabeth M.; Davison, Andrew J.

    2016-01-01

    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease. PMID:27213534

  11. Genome Sequence of Spizellomyces punctatus

    PubMed Central

    Russ, Carsten; Lang, B. Franz; Chen, Zehua; Gujja, Sharvari; Shea, Terrance; Zeng, Qiandong; Young, Sarah; Nusbaum, Chad

    2016-01-01

    Spizellomyces punctatus is a basally branching chytrid fungus that is found in the Chytridiomycota phylum. Spizellomyces species are common in soil and of importance in terrestrial ecosystems. Here, we report the genome sequence of S. punctatus, which will facilitate the study of this group of early diverging fungi. PMID:27540072

  12. Annotating Large Genomes With Exact Word Matches

    PubMed Central

    Healy, John; Thomas, Elizabeth E.; Schwartz, Jacob T.; Wigler, Michael

    2003-01-01

    We have developed a tool for rapidly determining the number of exact matches of any word within large, internally repetitive genomes or sets of genomes. Thus we can readily annotate any sequence, including the entire human genome, with the counts of its constituent words. We create a Burrows-Wheeler transform of the genome, which together with auxiliary data structures facilitating counting, can reside in about one gigabyte of RAM. Our original interest was motivated by oligonucleotide probe design, and we describe a general protocol for defining unique hybridization probes. But our method also has applications for the analysis of genome structure and assembly. We demonstrate the identification of chromosome-specific repeats, and outline a general procedure for finding undiscovered repeats. We also illustrate the changing contents of the human genome assemblies by comparing the annotations built from different genome freezes. PMID:12975312

  13. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  14. TAG Sequence Identification of Genomic Regions Using TAGdb.

    PubMed

    Ruperao, Pradeep

    2016-01-01

    Second-generation sequencing (SGS) technology has enabled the sequencing of genomes and identification of genes. However, large complex plant genomes remain particularly difficult for de novo assembly. Access to the vast quantity of raw sequence data may facilitate discoveries; however the volume of this data makes access difficult. This chapter discusses the Web-based tool TAGdb that enables researchers to identify paired read second-generation DNA sequence data that share identity with a submitted query sequence. The identified reads can be used for PCR amplification of genomic regions to identify genes and promoters without the need for genome assembly. PMID:26519409

  15. Sequencing crop genomes: approaches and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genome sequencing methodology parrallels the sequencing of the human genome. The first projects were slow and very expensive. BAC by BAC approaches were utilized first and whole-genome shotgun sequencing rapidly replaced that approach. So called 'next generation' technologies such as short rea...

  16. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria

    PubMed Central

    Cosentino, Salvatore; Rasmussen, Simon; Friis, Carsten; Hasman, Henrik; Marvig, Rasmus Lykke; Jelsbak, Lars; Sicheritz-Pontén, Thomas; Ussery, David W.; Aarestrup, Frank M.; Lund, Ole

    2012-01-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST. PMID:22238442

  17. Multilocus sequence typing of total-genome-sequenced bacteria.

    PubMed

    Larsen, Mette V; Cosentino, Salvatore; Rasmussen, Simon; Friis, Carsten; Hasman, Henrik; Marvig, Rasmus Lykke; Jelsbak, Lars; Sicheritz-Pontén, Thomas; Ussery, David W; Aarestrup, Frank M; Lund, Ole

    2012-04-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST. PMID:22238442

  18. Assembly of 500,000 Inter-Specific Catfish Expressed Sequence Tags and Large Scale Gene-Associated Marker Development for Whole Genome Association Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpo...

  19. First complete genome sequence of infectious laryngotracheitis virus

    PubMed Central

    2011-01-01

    Background Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. Results The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. Conclusions This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains. PMID:21501528

  20. Agaricus bisporus genome sequence: a commentary.

    PubMed

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium. PMID:23558250

  1. Comparative Analysis of Genome Sequences with VISTA

    DOE Data Explorer

    Dubchak, Inna

    VISTA is a comprehensive suite of programs and databases developed by and hosted at the Genomics Division of Lawrence Berkeley National Laboratory. They provide information and tools designed to facilitate comparative analysis of genomic sequences. Users have two ways to interact with the suite of applications at the VISTA portal. They can submit their own sequences and alignments for analysis (VISTA servers) or examine pre-computed whole-genome alignments of different species. A key menu option is the Enhancer Browser and Database at http://enhancer.lbl.gov/. The VISTA Enhancer Browser is a central resource for experimentally validated human noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation with other vertebrates. The results of this enhancer screen are provided through this publicly available website. The browser also features relevant results by external contributors and a large collection of additional genome-wide conserved noncoding elements which are candidate enhancer sequences. The LBL developers invite external groups to submit computational predictions of developmental enhancers. As of 10/19/2009 the database contains information on 1109 in vivo tested elements - 508 elements with enhancer activity.

  2. Sequencing Intractable DNA to Close Microbial Genomes

    SciTech Connect

    Hurt, Jr., Richard Ashley; Brown, Steven D; Podar, Mircea; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  3. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  4. Shared Genomic Regions Between Derivatives of a Large Segregating Population of Maize Identified Using Bulked Segregant Analysis Sequencing and Traditional Linkage Analysis

    PubMed Central

    Haase, Nicholas J.; Beissinger, Timothy; Hirsch, Candice N.; Vaillancourt, Brieanne; Deshpande, Shweta; Barry, Kerrie; Buell, C. Robin; Kaeppler, Shawn M.; de Leon, Natalia

    2015-01-01

    Delayed transition from the vegetative stage to the reproductive stage of development and increased plant height have been shown to increase biomass productivity in grasses. The goal of this project was to detect quantitative trait loci using extremes from a large synthetic population, as well as a related recombinant inbred line mapping population for these two traits. Ten thousand individuals from a B73 × Mo17 noninbred population intermated for 14 generations (IBM Syn14) were grown at a density of approximately 16,500 plants ha−1. Flowering time and plant height were measured within this population. DNA was pooled from the 46 most extreme individuals from each distributional tail for each of the traits measured and used in bulk segregant analysis (BSA) sequencing. Allelic divergence at each of the ∼1.1 million SNP loci was estimated as the difference in allele frequencies between the selected extremes. Additionally, 224 intermated B73 × Mo17 recombinant inbred lines were concomitantly grown at a similar density adjacent to the large synthetic population and were assessed for flowering time and plant height. Using the BSA sequencing method, 14 and 13 genomic regions were identified for flowering time and plant height, respectively. Linkage mapping with the RIL population identified eight and three regions for flowering time and plant height, respectively. Of the regions identified, three colocalized between the two populations for flowering time and two colocalized for plant height. This study demonstrates the utility of using BSA sequencing for the dissection of complex quantitative traits important for production of lignocellulosic ethanol. PMID:26038364

  5. Value of a newly sequenced bacterial genome.

    PubMed

    Barbosa, Eudes Gv; Aburjaile, Flavia F; Ramos, Rommel Tj; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-05-26

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

  6. Subtype-independent near full-length HIV-1 genome sequencing and assembly to be used in large molecular epidemiological studies and clinical management

    PubMed Central

    Grossmann, Sebastian; Nowak, Piotr; Neogi, Ujjwal

    2015-01-01

    Introduction HIV-1 near full-length genome (HIV-NFLG) sequencing from plasma is an attractive multidimensional tool to apply in large-scale population-based molecular epidemiological studies. It also enables genotypic resistance testing (GRT) for all drug target sites allowing effective intervention strategies for control and prevention in high-risk population groups. Thus, the main objective of this study was to develop a simplified subtype-independent, cost- and labour-efficient HIV-NFLG protocol that can be used in clinical management as well as in molecular epidemiological studies. Methods Plasma samples (n=30) were obtained from HIV-1B (n=10), HIV-1C (n=10), CRF01_AE (n=5) and CRF01_AG (n=5) infected individuals with minimum viral load >1120 copies/ml. The amplification was performed with two large amplicons of 5.5 kb and 3.7 kb, sequenced with 17 primers to obtain HIV-NFLG. GRT was validated against ViroSeq™ HIV-1 Genotyping System. Results After excluding four plasma samples with low-quality RNA, a total of 26 samples were attempted. Among them, NFLG was obtained from 24 (92%) samples with the lowest viral load being 3000 copies/ml. High (>99%) concordance was observed between HIV-NFLG and ViroSeq™ when determining the drug resistance mutations (DRMs). The N384I connection mutation was additionally detected by NFLG in two samples. Conclusions Our high efficiency subtype-independent HIV-NFLG is a simple and promising approach to be used in large-scale molecular epidemiological studies. It will facilitate the understanding of the HIV-1 pandemic population dynamics and outline effective intervention strategies. Furthermore, it can potentially be applicable in clinical management of drug resistance by evaluating DRMs against all available antiretrovirals in a single assay. PMID:26115688

  7. Automated Sequence Preprocessing in a Large-Scale Sequencing Environment

    PubMed Central

    Wendl, Michael C.; Dear, Simon; Hodgson, Dave; Hillier, LaDeana

    1998-01-01

    A software system for transforming fragments from four-color fluorescence-based gel electrophoresis experiments into assembled sequence is described. It has been developed for large-scale processing of all trace data, including shotgun and finishing reads, regardless of clone origin. Design considerations are discussed in detail, as are programming implementation and graphic tools. The importance of input validation, record tracking, and use of base quality values is emphasized. Several quality analysis metrics are proposed and applied to sample results from recently sequenced clones. Such quantities prove to be a valuable aid in evaluating modifications of sequencing protocol. The system is in full production use at both the Genome Sequencing Center and the Sanger Centre, for which combined weekly production is ∼100,000 sequencing reads per week. PMID:9750196

  8. Corrected sequence of the wheat plastid genome.

    PubMed

    Bahieldin, Ahmed; Al-Kordy, Magdy A; Shokry, Ahmed M; Gadalla, Nour O; Al-Hejin, Ahmed M M; Sabir, Jamal S M; Hassan, Sabah M; Al-Ahmadi, Ahlam A; Schwarz, Erika N; Eissa, Hala F; El-Domyati, Fotouh M; Jansen, Robert K

    2014-09-01

    Wheat is the most important cereal in the world in terms of acreage and productivity. We sequenced and assembled the plastid genome of one Egyptian wheat cultivar using next-generation sequence data. The size of the plastid genome is 133,873 bp, which is 672 bp smaller than the published plastid genome of "Chinese Spring" cultivar, due mainly to the presence of three sequences from the rice plastid genome. The difference in size between the previously published wheat plastid genome and the sequence reported here is due to contamination of the published genome with rice plastid DNA, most of which is present in three sequences of 332, 131 and 131 bp. The corrected plastid genome of wheat has been submitted to GenBank (accession number KJ592713) and can be used in future comparisons. PMID:25242688

  9. BAC-pool 454-sequencing: A rapid and efficient approach to sequence complex tetraploid cotton genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New and emerging next generation sequencing technologies have been promising in reducing sequencing costs, but not significantly for complex polyploid plant genomes such as cotton. Large and highly repetitive genome of G. hirsutum (~2.5GB) is less amenable and cost-intensive with traditional BAC-by...

  10. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this

  11. Complete genome sequence of Candidatus Ruthia magnifica.

    PubMed

    Roeselers, Guus; Newton, Irene L G; Woyke, Tanja; Auchtung, Thomas A; Dilly, Geoffrey F; Dutton, Rachel J; Fisher, Meredith C; Fontanez, Kristina M; Lau, Evan; Stewart, Frank J; Richardson, Paul M; Barry, Kerrie W; Saunders, Elizabeth; Detter, John C; Wu, Dongying; Eisen, Jonathan A; Cavanaugh, Colleen M

    2010-01-01

    The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Mollusca) is a member of the Vesicomyidae. Species within this family form symbioses with chemosynthetic Gammaproteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a rudimentary gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. The C. magnifica symbiont, Candidatus Ruthia magnifica, was the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced (Newton et al. 2007). Here we expand upon the original report and provide additional details complying with the emerging MIGS/MIMS standards. The complete genome exposed the genetic blueprint of the metabolic capabilities of the symbiont. Genes which were predicted to encode the proteins required for all the metabolic pathways typical of free-living chemoautotrophs were detected in the symbiont genome. These include major pathways including carbon fixation, sulfur oxidation, nitrogen assimilation, as well as amino acid and cofactor/vitamin biosynthesis. This genome sequence is invaluable in the study of these enigmatic associations and provides insights into the origin and evolution of autotrophic endosymbiosis. PMID:21304746

  12. An international plan to sequence the nuclear genome of onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As large-scale DNA sequencing technologies become more efficient and less costly, the genomic DNAs of more and more plants are being sequenced, assembled, and annotated. These complete sequences are extremely valuable for the identification of specific genes associated with important phenotypes. Thi...

  13. Simple sequence repeats in prokaryotic genomes

    PubMed Central

    Mrázek, Jan; Guo, Xiangxue; Shah, Apurva

    2007-01-01

    Simple sequence repeats (SSRs) in DNA sequences are composed of tandem iterations of short oligonucleotides and may have functional and/or structural properties that distinguish them from general DNA sequences. They are variable in length because of slip-strand mutations and may also affect local structure of the DNA molecule or the encoded proteins. Long SSRs (LSSRs) are common in eukaryotes but rare in most prokaryotes. In pathogens, SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. We analyze representations of SSRs in >300 prokaryotic genomes and report significant differences among different prokaryotes as well as among different types of SSRs. LSSRs composed of short oligonucleotides (1–4 bp length, designated LSSR1–4) are often found in host-adapted pathogens with reduced genomes that are not known to readily survive in a natural environment outside the host. In contrast, LSSRs composed of longer oligonucleotides (5–11 bp length, designated LSSR5–11) are found mostly in nonpathogens and opportunistic pathogens with large genomes. Comparisons among SSRs of different lengths suggest that LSSR1–4 are likely maintained by selection. This is consistent with the established role of some LSSR1–4 in enhancing antigenic variance. By contrast, abundance of LSSR5–11 in some genomes may reflect the SSRs' general tendency to expand rather than their specific role in the organisms' physiology. Differences among genomes in terms of SSR representations and their possible interpretations are discussed. PMID:17485665

  14. Whole-exome targeted sequencing of the uncharacterized pine genome.

    PubMed

    Neves, Leandro G; Davis, John M; Barbazuk, William B; Kirst, Matias

    2013-07-01

    The large genome size of many species hinders the development and application of genomic tools to study them. For instance, loblolly pine (Pinus taeda L.), an ecologically and economically important conifer, has a large and yet uncharacterized genome of 21.7 Gbp. To characterize the pine genome, we performed exome capture and sequencing of 14 729 genes derived from an assembly of expressed sequence tags. Efficiency of sequence capture was evaluated and shown to be similar across samples with increasing levels of complexity, including haploid cDNA, haploid genomic DNA and diploid genomic DNA. However, this efficiency was severely reduced for probes that overlapped multiple exons, presumably because intron sequences hindered probe:exon hybridizations. Such regions could not be entirely avoided during probe design, because of the lack of a reference sequence. To improve the throughput and reduce the cost of sequence capture, a method to multiplex the analysis of up to eight samples was developed. Sequence data showed that multiplexed capture was reproducible among 24 haploid samples, and can be applied for high-throughput analysis of targeted genes in large populations. Captured sequences were de novo assembled, resulting in 11 396 expanded and annotated gene models, significantly improving the knowledge about the pine gene space. Interspecific capture was also evaluated with over 98% of all probes designed from P. taeda that were efficient in sequence capture, were also suitable for analysis of the related species Pinus elliottii Engelm. PMID:23551702

  15. The predictive capacity of personal genome sequencing.

    PubMed

    Roberts, Nicholas J; Vogelstein, Joshua T; Parmigiani, Giovanni; Kinzler, Kenneth W; Vogelstein, Bert; Velculescu, Victor E

    2012-05-01

    New DNA sequencing methods will soon make it possible to identify all germline variants in any individual at a reasonable cost. However, the ability of whole-genome sequencing to predict predisposition to common diseases in the general population is unknown. To estimate this predictive capacity, we use the concept of a "genometype." A specific genometype represents the genomes in the population conferring a specific level of genetic risk for a specified disease. Using this concept, we estimated the maximum capacity of whole-genome sequencing to identify individuals at clinically significant risk for 24 different diseases. Our estimates were derived from the analysis of large numbers of monozygotic twin pairs; twins of a pair share the same genometype and therefore identical genetic risk factors. Our analyses indicate that (i) for 23 of the 24 diseases, most of the individuals will receive negative test results; (ii) these negative test results will, in general, not be very informative, because the risk of developing 19 of the 24 diseases in those who test negative will still be, at minimum, 50 to 80% of that in the general population; and (iii) on the positive side, in the best-case scenario, more than 90% of tested individuals might be alerted to a clinically significant predisposition to at least one disease. These results have important implications for the valuation of genetic testing by industry, health insurance companies, public policy-makers, and consumers. PMID:22472521

  16. Insights from twenty years of bacterial genome sequencing

    SciTech Connect

    Land, Miriam L; Hauser, Loren John; Jun, Se Ran; Nookaew, Intawat; Leuze, Michael Rex; Ahn, Tae-Hyuk; Karpinets, Tatiana V; Lund, Ole; Kora, Guruprasad H; Wassenaar, Trudy; Poudel, Suresh; Ussery, David W

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  17. Insights from 20 years of bacterial genome sequencing.

    PubMed

    Land, Miriam; Hauser, Loren; Jun, Se-Ran; Nookaew, Intawat; Leuze, Michael R; Ahn, Tae-Hyuk; Karpinets, Tatiana; Lund, Ole; Kora, Guruprased; Wassenaar, Trudy; Poudel, Suresh; Ussery, David W

    2015-03-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  18. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  19. Fast and Sensitive Alignment of Microbial Whole Genome Sequencing Reads to Large Sequence Datasets on a Desktop PC: Application to Metagenomic Datasets and Pathogen Identification

    PubMed Central

    2014-01-01

    Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner. PMID:25077800

  20. Computational Profiling of Microbial Genomes using Short Sequences

    NASA Astrophysics Data System (ADS)

    Doering, Dale; Tsukuda, Toyoko

    2001-03-01

    The genomes of a number of microbial species have now been completely sequenced. We have developed a program for the statistical analysis of the appearance frequency and location of short DNA segments within an entire microbial genome. Using this program, the genomes of Methanococcus jannischii (1.66 Mbase; 68radiodurans (3.28 Mbase; 66and compared to a randomly generated genomic pattern. The random sequence shows the expected statistical frequency distribution about the average that equals the genome size divided by the total number of N size short segments (4N). In contrast, the microbial genomes are radically skewed with a large number of segments that rarely occur and a few that are highly represented in the genome. The specific distribution profile of the segments is strongly dependent on the overall bias in the organism. The biased appearance frequency allows us to develop a genome signature of each microbial species.

  1. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    SciTech Connect

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  2. Towards a reference pecan genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of generating DNA sequence data has declined dramatically over the previous 15 years as a result of the Human Genome Project and the potential applications of genome sequencing for human medicine. This cost reduction has generated renewed interest among crop breeding scientists in applying...

  3. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  4. Genome Sequence of Gordonia Phage Yvonnetastic.

    PubMed

    Pope, Welkin H; Bandyopadhyay, Anshika; Carlton, Meghan L; Kane, Meghan T; Panchal, Niyati J; Pham, Yvonne C; Reynolds, Zachary J; Sapienza, Michael S; German, Brian A; McDonnell, Jill E; Schafer, Claire E; Yu, Victor J; Furbee, Emily C; Grubb, Sarah R; Warner, Marcie H; Montgomery, Matthew T; Garlena, Rebecca A; Russell, Daniel A; Jacobs-Sera, Deborah; Hatfull, Graham F

    2016-01-01

    Gordonia bacteriophage Yvonnetastic was isolated from soil in Pittsburgh, PA, using Gordonia terrae 3612 as a host. Yvonnetastic has siphoviral morphology and a genome of 98,136 bp, with 198 predicted protein-coding genes and five tRNA genes. Yvonnetastic does not share substantial sequence similarity with other sequenced bacteriophage genomes. PMID:27389265

  5. Genome Sequence of Gordonia Phage Yvonnetastic

    PubMed Central

    Bandyopadhyay, Anshika; Carlton, Meghan L.; Kane, Meghan T.; Panchal, Niyati J.; Pham, Yvonne C.; Reynolds, Zachary J.; Sapienza, Michael S.; German, Brian A.; McDonnell, Jill E.; Schafer, Claire E.; Yu, Victor J.; Furbee, Emily C.; Grubb, Sarah R.; Warner, Marcie H.; Montgomery, Matthew T.; Garlena, Rebecca A.; Russell, Daniel A.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2016-01-01

    Gordonia bacteriophage Yvonnetastic was isolated from soil in Pittsburgh, PA, using Gordonia terrae 3612 as a host. Yvonnetastic has siphoviral morphology and a genome of 98,136 bp, with 198 predicted protein-coding genes and five tRNA genes. Yvonnetastic does not share substantial sequence similarity with other sequenced bacteriophage genomes. PMID:27389265

  6. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    SciTech Connect

    Ivanova, N; Sikorski, Johannes; Jando, Marlen; Lapidus, Alla L.; Nolan, Matt; Glavina Del Rio, Tijana; Tice, Hope; Copeland, A; Cheng, Jan-Fang; Chen, Feng; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Saunders, Elizabeth H; Han, Cliff; Detter, J C; Brettin, Thomas S; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    PubMed Central

    Ivanova, Natalia; Sikorski, Johannes; Jando, Marlen; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Chain, Patrick; Saunders, Elizabeth; Han, Cliff; Detter, John C.; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304674

  8. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  9. On the analysis of large-scale genomic structures.

    PubMed

    Oiwa, Nestor Norio; Goldman, Carla

    2005-01-01

    We apply methods from statistical physics (histograms, correlation functions, fractal dimensions, and singularity spectra) to characterize large-scale structure of the distribution of nucleotides along genomic sequences. We discuss the role of the extension of noncoding segments ("junk DNA") for the genomic organization, and the connection between the coding segment distribution and the high-eukaryotic chromatin condensation. The following sequences taken from GenBank were analyzed: complete genome of Xanthomonas campestri, complete genome of yeast, chromosome V of Caenorhabditis elegans, and human chromosome XVII around gene BRCA1. The results are compared with the random and periodic sequences and those generated by simple and generalized fractal Cantor sets. PMID:15858230

  10. The genome sequence of parrot bornavirus 5.

    PubMed

    Guo, Jianhua; Tizard, Ian

    2015-12-01

    Although several new avian bornaviruses have recently been described, information on their evolution, virulence, and sequence are often limited. Here we report the complete genome sequence of parrot bornavirus 5 (PaBV-5) isolated from a case of proventricular dilatation disease in a Palm cockatoo (Probosciger aterrimus). The complete genome consists of 8842 nucleotides with distinct 5' and 3' end sequences. This virus shares nucleotide sequence identities of 69-74 % with other bornaviruses in the genomic regions excluding the 5' and 3' terminal sequences. Phylogenetic analysis based on the genomic regions demonstrated this new isolate is an isolated branch within the clade that includes the aquatic bird bornaviruses and the passerine bornaviruses. Based on phylogenetic analyses and its low nucleotide sequence identities with other bornavirus, we support the proposal that PaBV-5 be assigned to a new bornavirus species:- Psittaciform 2 bornavirus. PMID:26403158

  11. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. PMID:26269219

  12. Genome Sequencing and Analysis Conference IV

    SciTech Connect

    Not Available

    1993-12-31

    J. Craig Venter and C. Thomas Caskey co-chaired Genome Sequencing and Analysis Conference IV held at Hilton Head, South Carolina from September 26--30, 1992. Venter opened the conference by noting that approximately 400 researchers from 16 nations were present four times as many participants as at Genome Sequencing Conference I in 1989. Venter also introduced the Data Fair, a new component of the conference allowing exchange and on-site computer analysis of unpublished sequence data.

  13. Exon capture optimization in amphibians with large genomes.

    PubMed

    McCartney-Melstad, Evan; Mount, Genevieve G; Shaffer, H Bradley

    2016-09-01

    Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0 t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians. PMID:27223337

  14. Porcine parvovirus: DNA sequence and genome organization.

    PubMed

    Ranz, A I; Manclús, J J; Díaz-Aroca, E; Casal, J I

    1989-10-01

    We have determined the nucleotide sequence of an almost full-length clone of porcine parvovirus (PPV). The sequence is 4973 nucleotides (nt) long. The 3' end of virion DNA shows a Y-shaped configuration homologous to rodent parvoviruses. The 5' end of virion DNA shows a repetition of 127 nt at the carboxy terminus of the capsid proteins. The overall organization of the PPV genome is similar to those of other autonomous parvoviruses. There are two large open reading frames (ORFs) that almost entirely cover the genome, both located in the same frame of the complementary strand. The left ORF encodes the non-structural protein NS1 and the right ORF encodes the capsid proteins (VP1, VP2 and VP3). Promoter analysis, location of splicing sites and putative amino acid sequences for the viral proteins show a high homology of PPV with feline panleukopenia virus and canine parvoviruses (FPV and CPV) and rodent parvovirus. Therefore we conclude that PPV is related to the Kilham rat virus (KRV) group of autonomous parvoviruses formed by KRV, minute virus of mice, Lu III, H-1, FPV and CPV. PMID:2794971

  15. Savant: genome browser for high-throughput sequencing data

    PubMed Central

    Fiume, Marc; Williams, Vanessa; Brook, Andrew; Brudno, Michael

    2010-01-01

    Motivation: The advent of high-throughput sequencing (HTS) technologies has made it affordable to sequence many individuals' genomes. Simultaneously the computational analysis of the large volumes of data generated by the new sequencing machines remains a challenge. While a plethora of tools are available to map the resulting reads to a reference genome, and to conduct primary analysis of the mappings, it is often necessary to visually examine the results and underlying data to confirm predictions and understand the functional effects, especially in the context of other datasets. Results: We introduce Savant, the Sequence Annotation, Visualization and ANalysis Tool, a desktop visualization and analysis browser for genomic data. Savant was developed for visualizing and analyzing HTS data, with special care taken to enable dynamic visualization in the presence of gigabases of genomic reads and references the size of the human genome. Savant supports the visualization of genome-based sequence, point, interval and continuous datasets, and multiple visualization modes that enable easy identification of genomic variants (including single nucleotide polymorphisms, structural and copy number variants), and functional genomic information (e.g. peaks in ChIP-seq data) in the context of genomic annotations. Availability: Savant is freely available at http://compbio.cs.toronto.edu/savant Contact: savant@cs.toronto.edu PMID:20562449

  16. Assessing inhomogeneities in bacterial long genomic sequences

    SciTech Connect

    Karlin, S.

    1997-12-01

    Several complete prokaryotic and eukaryotic genomes are already at hand (S. cerevisiae, H. influenzae, M. genitalium, M. jannaschii, Synechocystis, sp.) and many are forthcoming (e.g., E. coli, H, pylori, C. elegans). The comparative analysis of genomes generally strives to identify genes and characterize function/structure relationships inferred mostly via amino acid sequence comparisons. We describe concisely methods for comparing genomes (or long contigs) emphasizing sequence features other than gene comparisons. These center on the following measures of genomic organization and sequence heterogeneity: (i) compositional biases of short oligonucleotides; (ii) dinucleotide relative abundance distances within and between genomes; (iii) rare and frequent word (oligonucleotide) determinations and their distributional properties; (iv) r-scan statistics assessing clustering, overdispersion, or excessive evenness of various marker arrays; and (v) characterizations of repeat structures in the genome. 20 refs., 3 figs.

  17. Detecting long tandem duplications in genomic sequences

    PubMed Central

    2012-01-01

    Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations. PMID:22568762

  18. The genome sequence of Drosophila melanogaster.

    SciTech Connect

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  19. Intra-species sequence comparisons for annotating genomes

    SciTech Connect

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  20. Genome sequencing and analysis of the model grass Brachypodium distachyon.

    PubMed

    2010-02-11

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops. PMID:20148030

  1. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    PubMed

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species. PMID:26260183

  2. Genome sequencing and analysis of the model grass Brachypodium distachyon

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Tuskan, Gerald A

    2010-01-01

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

  3. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE PAGESBeta

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; et al

    2015-01-14

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  4. The Release 6 reference sequence of the Drosophila melanogaster genome

    PubMed Central

    Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V.; Andreyeva, Evgeniya N.; Boldyreva, Lidiya V.; Marra, Marco; Carvalho, A. Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F.; Rubin, Gerald M.; Karpen, Gary H.

    2015-01-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. PMID:25589440

  5. The Release 6 reference sequence of the Drosophila melanogaster genome.

    PubMed

    Hoskins, Roger A; Carlson, Joseph W; Wan, Kenneth H; Park, Soo; Mendez, Ivonne; Galle, Samuel E; Booth, Benjamin W; Pfeiffer, Barret D; George, Reed A; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V; Andreyeva, Evgeniya N; Boldyreva, Lidiya V; Marra, Marco; Carvalho, A Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F; Rubin, Gerald M; Karpen, Gary H; Celniker, Susan E

    2015-03-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. PMID:25589440

  6. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  7. The complete chloroplast genome sequence of Panax quinquefolius (L.).

    PubMed

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Kim, Nam-Hoon; Jang, Woojong; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Panax quinquefolius, an important medicinal herb, was generated by de novo assembly with low-coverage whole-genome sequence data and manual correction. A circular 156 088-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 095 bp, a small single copy region of 17 993 bp, and a pair of inverted repeats of 26 000 bp. The chloroplast genome had 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis with the chloroplast genome revealed that P. quinquefolius is much closer to P. ginseng than P. notoginseng. PMID:26162051

  8. Sequencing and Analysis of Neanderthal Genomic DNA

    PubMed Central

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith, Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Pääbo, Svante; Pritchard, Jonathan K.; Rubin, Edward M.

    2008-01-01

    Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library are of Neanderthal origin, the strongest being the ascertainment of sequence identities between Neanderthal and chimpanzee at sites where the human genomic sequence is different. These results enabled us to calculate the human-Neanderthal divergence time based on multiple randomly distributed autosomal loci. Our analyses suggest that on average the Neanderthal genomic sequence we obtained and the reference human genome sequence share a most recent common ancestor ~706,000 years ago, and that the human and Neanderthal ancestral populations split ~370,000 years ago, before the emergence of anatomically modern humans. Our finding that the Neanderthal and human genomes are at least 99.5% identical led us to develop and successfully implement a targeted method for recovering specific ancient DNA sequences from metagenomic libraries. This initial analysis of the Neanderthal genome advances our understanding of the evolutionary relationship of Homo sapiens and Homo neanderthalensis and signifies the dawn of Neanderthal genomics. PMID:17110569

  9. Microbial species delineation using whole genome sequences

    SciTech Connect

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  10. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...

  11. Large-scale East-Asian eQTL mapping reveals novel candidate genes for LD mapping and the genomic landscape of transcriptional effects of sequence variants.

    PubMed

    Narahara, Maiko; Higasa, Koichiro; Nakamura, Seiji; Tabara, Yasuharu; Kawaguchi, Takahisa; Ishii, Miho; Matsubara, Kenichi; Matsuda, Fumihiko; Yamada, Ryo

    2014-01-01

    Profiles of sequence variants that influence gene transcription are very important for understanding mechanisms that affect phenotypic variation and disease susceptibility. Using genotypes at 1.4 million SNPs and a comprehensive transcriptional profile of 15,454 coding genes and 6,113 lincRNA genes obtained from peripheral blood cells of 298 Japanese individuals, we mapped expression quantitative trait loci (eQTLs). We identified 3,804 cis-eQTLs (within 500 kb from target genes) and 165 trans-eQTLs (>500 kb away or on different chromosomes). Cis-eQTLs were often located in transcribed or adjacent regions of genes; among these regions, 5' untranslated regions and 5' flanking regions had the largest effects. Epigenetic evidence for regulatory potential accumulated in public databases explained the magnitude of the effects of our eQTLs. Cis-eQTLs were often located near the respective target genes, if not within genes. Large effect sizes were observed with eQTLs near target genes, and effect sizes were obviously attenuated as the eQTL distance from the gene increased. Using a very stringent significance threshold, we identified 165 large-effect trans-eQTLs. We used our eQTL map to assess 8,069 disease-associated SNPs identified in 1,436 genome-wide association studies (GWAS). We identified genes that might be truly causative, but GWAS might have failed to identify for 148 out of the GWAS-identified SNPs; for example, TUFM (P = 3.3E-48) was identified for inflammatory bowel disease (early onset); ZFP90 (P = 4.4E-34) for ulcerative colitis; and IDUA (P = 2.2E-11) for Parkinson's disease. We identified four genes (P<2.0E-14) that might be related to three diseases and two hematological traits; each expression is regulated by trans-eQTLs on a different chromosome than the gene. PMID:24956270

  12. Large-Scale East-Asian eQTL Mapping Reveals Novel Candidate Genes for LD Mapping and the Genomic Landscape of Transcriptional Effects of Sequence Variants

    PubMed Central

    Narahara, Maiko; Higasa, Koichiro; Nakamura, Seiji; Tabara, Yasuharu; Kawaguchi, Takahisa; Ishii, Miho; Matsubara, Kenichi; Matsuda, Fumihiko; Yamada, Ryo

    2014-01-01

    Profiles of sequence variants that influence gene transcription are very important for understanding mechanisms that affect phenotypic variation and disease susceptibility. Using genotypes at 1.4 million SNPs and a comprehensive transcriptional profile of 15,454 coding genes and 6,113 lincRNA genes obtained from peripheral blood cells of 298 Japanese individuals, we mapped expression quantitative trait loci (eQTLs). We identified 3,804 cis-eQTLs (within 500 kb from target genes) and 165 trans-eQTLs (>500 kb away or on different chromosomes). Cis-eQTLs were often located in transcribed or adjacent regions of genes; among these regions, 5′ untranslated regions and 5′ flanking regions had the largest effects. Epigenetic evidence for regulatory potential accumulated in public databases explained the magnitude of the effects of our eQTLs. Cis-eQTLs were often located near the respective target genes, if not within genes. Large effect sizes were observed with eQTLs near target genes, and effect sizes were obviously attenuated as the eQTL distance from the gene increased. Using a very stringent significance threshold, we identified 165 large-effect trans-eQTLs. We used our eQTL map to assess 8,069 disease-associated SNPs identified in 1,436 genome-wide association studies (GWAS). We identified genes that might be truly causative, but GWAS might have failed to identify for 148 out of the GWAS-identified SNPs; for example, TUFM (P = 3.3E-48) was identified for inflammatory bowel disease (early onset); ZFP90 (P = 4.4E-34) for ulcerative colitis; and IDUA (P = 2.2E-11) for Parkinson's disease. We identified four genes (P<2.0E-14) that might be related to three diseases and two hematological traits; each expression is regulated by trans-eQTLs on a different chromosome than the gene. PMID:24956270

  13. The Genome Sequence of the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 Reveals a Large Island Involved in Pathogenicity▿ †

    PubMed Central

    Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela

    2008-01-01

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381

  14. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity.

    PubMed

    Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela

    2008-03-01

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381

  15. Genome sequence of Coxiella burnetii strain Namibia

    PubMed Central

    2014-01-01

    We present the whole genome sequence and annotation of the Coxiella burnetii strain Namibia. This strain was isolated from an aborting goat in 1991 in Windhoek, Namibia. The plasmid type QpRS was confirmed in our work. Further genomic typing placed the strain into a unique genomic group. The genome sequence is 2,101,438 bp long and contains 1,979 protein-coding and 51 RNA genes, including one rRNA operon. To overcome the poor yield from cell culture systems, an additional DNA enrichment with whole genome amplification (WGA) methods was applied. We describe a bioinformatics pipeline for improved genome assembly including several filters with a special focus on WGA characteristics. PMID:25593636

  16. Long-read sequence assembly of the gorilla genome.

    PubMed

    Gordon, David; Huddleston, John; Chaisson, Mark J P; Hill, Christopher M; Kronenberg, Zev N; Munson, Katherine M; Malig, Maika; Raja, Archana; Fiddes, Ian; Hillier, LaDeana W; Dunn, Christopher; Baker, Carl; Armstrong, Joel; Diekhans, Mark; Paten, Benedict; Shendure, Jay; Wilson, Richard K; Haussler, David; Chin, Chen-Shan; Eichler, Evan E

    2016-04-01

    Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome. PMID:27034376

  17. Complementary DNA sequencing: Expressed sequence tags and human genome project

    SciTech Connect

    Adams, M.D.; Kelley, J.M.; Gocayne, J.D.; Dubnick, M.; Wu, A.; Olde, B.; Moreno, R.F.; Kerlavage, A.R.; McCombie, W.R.; Venter, J.C. ); Polymeropoulos, M.H.; Hong Xiao; Merril, C.R. )

    1991-06-21

    Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.

  18. Complete genome sequence of tobacco mosqueado virus.

    PubMed

    Blawid, Rosana; Rodrigues, Kelly Barreto; de Moraes Rêgo, Camila; Inoue-Nagata, Alice K; Nagata, Tatsuya

    2016-09-01

    We describe the genomic characteristics of a new potyvirus isolated from tobacco plants showing mottling ("mosqueado" in Portuguese) in southern Brazil. The complete genomic sequence consists of 9896 nucleotides, without the poly(A) tail, and shares the highest pairwise nucleotide sequence identities of 68.5 % with pepper yellow mosaic virus and 68.2 % with Brugmansia mosaic virus isolate D437. These identity values are below the level of 76.0 % used as a criterion for species demarcation in the genus Potyvirus based on the complete genome sequence. The viral genomic organization and sequence comparison thus suggest that this virus, tentatively named "tobacco mosqueado virus" (TMosqV), represents a new potyvirus species. PMID:27368991

  19. Large-scale structure of genomic methylation patterns.

    PubMed

    Rollins, Robert A; Haghighi, Fatemeh; Edwards, John R; Das, Rajdeep; Zhang, Michael Q; Ju, Jingyue; Bestor, Timothy H

    2006-02-01

    The mammalian genome depends on patterns of methylated cytosines for normal function, but the relationship between genomic methylation patterns and the underlying sequence is unclear. We have characterized the methylation landscape of the human genome by global analysis of patterns of CpG depletion and by direct sequencing of 3073 unmethylated domains and 2565 methylated domains from human brain DNA. The genome was found to consist of short (<4 kb) unmethylated domains embedded in a matrix of long methylated domains. Unmethylated domains were enriched in promoters, CpG islands, and first exons, while methylated domains comprised interspersed and tandem-repeated sequences, exons other than first exons, and non-annotated single-copy sequences that are depleted in the CpG dinucleotide. The enrichment of regulatory sequences in the relatively small unmethylated compartment suggests that cytosine methylation constrains the effective size of the genome through the selective exposure of regulatory sequences. This buffers regulatory networks against changes in total genome size and provides an explanation for the C value paradox, which concerns the wide variations in genome size that scale independently of gene number. This suggestion is compatible with the finding that cytosine methylation is universal among large-genome eukaryotes, while many eukaryotes with genome sizes <5 x 10(8) bp do not methylate their DNA. PMID:16365381

  20. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  1. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  2. Genome sequence of the date palm Phoenix dactylifera L

    PubMed Central

    Al-Mssallem, Ibrahim S.; Hu, Songnian; Zhang, Xiaowei; Lin, Qiang; Liu, Wanfei; Tan, Jun; Yu, Xiaoguang; Liu, Jiucheng; Pan, Linlin; Zhang, Tongwu; Yin, Yuxin; Xin, Chengqi; Wu, Hao; Zhang, Guangyu; Ba Abdullah, Mohammed M.; Huang, Dawei; Fang, Yongjun; Alnakhli, Yasser O.; Jia, Shangang; Yin, An; Alhuzimi, Eman M.; Alsaihati, Burair A.; Al-Owayyed, Saad A.; Zhao, Duojun; Zhang, Sun; Al-Otaibi, Noha A.; Sun, Gaoyuan; Majrashi, Majed A.; Li, Fusen; Tala; Wang, Jixiang; Yun, Quanzheng; Alnassar, Nafla A.; Wang, Lei; Yang, Meng; Al-Jelaify, Rasha F.; Liu, Kan; Gao, Shenghan; Chen, Kaifu; Alkhaldi, Samiyah R.; Liu, Guiming; Zhang, Meng; Guo, Haiyan; Yu, Jun

    2013-01-01

    Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants. PMID:23917264

  3. BACFinder: genomic localisation of large insert genomic clones based on restriction fingerprinting

    PubMed Central

    Crowe, Mark L.; Rana, Debashis; Fraser, Fiona; Bancroft, Ian; Trick, Martin

    2002-01-01

    We have developed software that allows the prediction of the genomic location of a bacterial artificial chromosome (BAC) clone, or other large genomic clone, based on a simple restriction digest of the BAC. The mapping is performed by comparing the experimentally derived restriction digest of the BAC DNA with a virtual restriction digest of the whole genome sequence. Our trials indicate that this program identified the genomic regions represented by BAC clones with a degree of accuracy comparable to that of end-sequencing, but at considerably less cost. Although the program has been developed principally for use with Arabidopsis BACs, it should align large insert genomic clones to any fully sequenced genome. PMID:12409477

  4. Large-scale whole genome sequencing identifies country-wide spread of an emerging G9P[8] rotavirus strain in Hungary, 2012.

    PubMed

    Dóró, Renáta; Mihalov-Kovács, Eszter; Marton, Szilvia; László, Brigitta; Deák, Judit; Jakab, Ferenc; Juhász, Ágnes; Kisfali, Péter; Martella, Vito; Melegh, Béla; Molnár, Péter; Sántha, Ildikó; Schneider, Ferenc; Bányai, Krisztián

    2014-12-01

    With the availability of rotavirus vaccines routine strain surveillance has been launched or continued in many countries worldwide. In this study relevant information is provided from Hungary in order to extend knowledge about circulating rotavirus strains. Direct sequencing of the RT-PCR products obtained by VP7 and VP4 genes specific primer sets was utilized as routine laboratory method. In addition we explored the advantage of random primed RT-PCR and semiconductor sequencing of the whole genome of selected strains. During the study year, 2012, we identified an increase in the prevalence of G9P[8] strains across the country. This genotype combination predominated in seven out of nine study sites (detection rates, 45-83%). In addition to G9P[8]s, epidemiologically major strains included genotypes G1P[8] (34.2%), G2P[4] (13.5%), and G4P[8] (7.4%), whereas unusual and rare strains were G3P[8] (1%), G2P[8] (0.5%), G1P[4] (0.2%), G3P[4] (0.2%), and G3P[9] (0.2%). Whole genome analysis of 125 Hungarian human rotaviruses identified nine major genotype constellations and uncovered both intra- and intergenogroup reassortment events in circulating strains. Intergenogroup reassortment resulted in several unusual genotype constellations, including mono-reassortant G1P[8] and G9P[8] strains whose genotype 1 (Wa-like) backbone gene constellations contained DS1-like NSP2 and VP3 genes, respectively, as well as, a putative bovine-feline G3P[9] reassortant strain. The conserved genomic constellations of epidemiologically major genotypes suggested the clonal spread of the re-emerging G9P[8] genotype and several co-circulating strains (e.g., G1P[8] and G2P[4]) in many study sites during 2012. Of interest, medically important G2P[4] strains carried bovine-like VP1 and VP6 genes in their genotype constellation. No evidence for vaccine associated selection, or, interaction between wild-type and vaccine strains was obtained. In conclusion, this study reports the reemergence of G9P[8

  5. Complete genome sequence of arracacha mottle virus.

    PubMed

    Orílio, Anelise F; Lucinda, Natalia; Dusi, André N; Nagata, Tatsuya; Inoue-Nagata, Alice K

    2013-01-01

    Arracacha mottle virus (AMoV) is the only potyvirus reported to infect arracacha (Arracacia xanthorrhiza) in Brazil. Here, the complete genome sequence of an isolate of AMoV was determined to be 9,630 nucleotides in length, excluding the 3' poly-A tail, and encoding a polyprotein of 3,135 amino acids and a putative P3N-PIPO protein. Its genomic organization is typical of a member of the genus Potyvirus, containing all conserved motifs. Its full genome sequence shared 56.2 % nucleotide identity with sunflower chlorotic mottle virus and verbena virus Y, the most closely related viruses. PMID:23001696

  6. A Workshop Report on Wheat Genome Sequencing

    PubMed Central

    Gill, Bikram S.; Appels, Rudi; Botha-Oberholster, Anna-Maria; Buell, C. Robin; Bennetzen, Jeffrey L.; Chalhoub, Boulos; Chumley, Forrest; Dvořák, Jan; Iwanaga, Masaru; Keller, Beat; Li, Wanlong; McCombie, W. Richard; Ogihara, Yasunari; Quetier, Francis; Sasaki, Takuji

    2004-01-01

    Sponsored by the National Science Foundation and the U.S. Department of Agriculture, a wheat genome sequencing workshop was held November 10–11, 2003, in Washington, DC. It brought together 63 scientists of diverse research interests and institutions, including 45 from the United States and 18 from a dozen foreign countries (see list of participants at http://www.ksu.edu/igrow). The objectives of the workshop were to discuss the status of wheat genomics, obtain feedback from ongoing genome sequencing projects, and develop strategies for sequencing the wheat genome. The purpose of this report is to convey the information discussed at the workshop and provide the basis for an ongoing dialogue, bringing forth comments and suggestions from the genetics community. PMID:15514080

  7. Complete Genome Sequencing of Trivittatus virus

    PubMed Central

    Groseth, Allison; Vine, Veronica; Weisend, Carla; Ebihara, Hideki

    2015-01-01

    Trivittatus virus (family Bunyaviridae, genus Orthobunyavirus) represents an important genetic intermediate between the California encephalitis group, and Bwamba/Pongola and Nyando groups. Here, we report the first complete genome sequence of the prototype (Eklund) strain, isolated in 1948, which interestingly shows only few differences compared to partial sequences of modern strains. PMID:26212363

  8. Draft Genome Sequence of Goose Dicistrovirus

    PubMed Central

    Jerome, Keith R.

    2016-01-01

    We report the draft genome sequence of goose dicistrovirus assembled from the filtered feces of a Canadian goose from South Lake Union in Seattle, Washington. The 9.1-kb dicistronic RNA virus falls within the family Dicistroviridae; however, it shares <33% translated amino acid sequence within the nonstructural open reading frame (ORF) from aparavirus or cripavirus. PMID:26941149

  9. Complete Genome Sequences of 63 Mycobacteriophages

    PubMed Central

    2013-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts. The current collection of sequenced mycobacteriophages—all isolated on a single host strain, Mycobacterium smegmatis mc2155, reveals substantial genetic diversity. The complete genome sequences of 63 newly isolated mycobacteriophages expand the resolution of our understanding of phage diversity. PMID:24285655

  10. Genome Sequence of Pseudomonas chlororaphis Strain 189

    PubMed Central

    Town, Jennifer; Audy, Patrice; Boyetchko, Susan M.

    2016-01-01

    Pseudomonas chlororaphis strain 189 is a potent inhibitor of the growth of the potato pathogen Phytophthora infestans. We determined the complete, finished sequence of the 6.8-Mbp genome of this strain, consisting of a single contiguous molecule. Strain 189 is closely related to previously sequenced strains of P. chlororaphis. PMID:27340063

  11. Draft Genome Sequence of Goose Dicistrovirus.

    PubMed

    Greninger, Alexander L; Jerome, Keith R

    2016-01-01

    We report the draft genome sequence of goose dicistrovirus assembled from the filtered feces of a Canadian goose from South Lake Union in Seattle, Washington. The 9.1-kb dicistronic RNA virus falls within the family Dicistroviridae; however, it shares <33% translated amino acid sequence within the nonstructural open reading frame (ORF) from aparavirus or cripavirus. PMID:26941149

  12. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    PubMed Central

    2010-01-01

    Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89%) and that in the Te. nigroviridis genome (4.66%). In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp) in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp). Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different accumulation of non

  13. GDC 2: Compression of large collections of genomes.

    PubMed

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-01-01

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about. PMID:26108279

  14. GDC 2: Compression of large collections of genomes

    PubMed Central

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-01-01

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about. PMID:26108279

  15. Genomic sequence analysis tools: a user's guide.

    PubMed

    Fortna, A; Gardiner, K

    2001-03-01

    The wealth of information from various genome sequencing projects provides the biologist with a new perspective from which to analyze, and design experiments with, mammalian systems. The complexity of the information, however, requires new software tools, and numerous such tools are now available. Which type and which specific system is most effective depends, in part, upon how much sequence is to be analyzed and with what level of experimental support. Here we survey a number of mammalian genomic sequence analysis systems with respect to the data they provide and the ease of their use. The hope is to aid the experimental biologist in choosing the most appropriate tool for their analyses. PMID:11226611

  16. Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley.

    PubMed

    Rostoks, Nils; Park, Yong-Jin; Ramakrishna, Wusirika; Ma, Jianxin; Druka, Arnis; Shiloff, Bryan A; SanMiguel, Phillip J; Jiang, Zeyu; Brueggeman, Robert; Sandhu, Devinder; Gill, Kulvinder; Bennetzen, Jeffrey L; Kleinhofs, Andris

    2002-05-01

    Barley (Hordeum vulgare L.) is one of the most important large-genome cereals with extensive genetic resources available in the public sector. Studies of genome organization in barley have been limited primarily to genetic markers and sparse sequence data. Here we report sequence analysis of 417.5 kb DNA from four BAC clones from different genomic locations. Sequences were analyzed with respect to gene content, the arrangement of repetitive sequences and the relationship of gene density to recombination frequencies. Gene densities ranged from 1 gene per 12 kb to 1 gene per 103 kb with an average of 1 gene per 21 kb. In general, genes were organized into islands separated by large blocks of nested retrotransposons. Single genes in apparent isolation were also found. Genes occupied 11% of the total sequence, LTR retrotransposons and other repeated elements accounted for 51.9% and the remaining 37.1% could not be annotated. PMID:12021850

  17. The complete chloroplast genome sequence of Dieffenbachia seguine (Araceae).

    PubMed

    Wang, Bin; Han, Limin; Chen, Chen; Wang, Zhezhi

    2016-07-01

    The nucleotide sequence of the chloroplast genome from Dieffenbachia seguine is the first to have complete genome sequence from genus of Dieffenbachia family Araceae. The genome size is 163 699 bp in length, with 36.4% GC content. A pair of inverted repeats (IRs, 25 235 bp) is separated by a large single copy region (LSC, 90 780 bp) and a small single copy region (SSC, 22 449 bp). The chloroplast genome contains 113 unique genes, 88 protein-coding genes, 37 tRNA genes, and four rRNA genes. In these genes, 16 genes contained single intron and two genes composed of double introns. A maximum likelihood phylogenetic analysis using complete chloroplast genome revealed that Dieffenbachia seguine belongs to the Araceae family of the Arecidae group, which is conform to the traditional classification. PMID:26153749

  18. Genome Sequence of Mycobacteriophage Cabrinians

    PubMed Central

    Chudoff, Dylan; Conboy, Andrew; Conboy, Danielle; Atoulelou, Mireille; Hasan, Sakina; Martinez, Alexandria; Mastrando, Jessica; Roy, Renoy; Schmidt, Robert; Sheed, Kabreeze; Smith, Jewel; Sperratore, Morgan; Struga, Rexhina; Starr, Katelyn; Suppi, Regina; Uguru, Ugo; Terry, Katrina; Villafuerte, Rosendo; Yuan, Vanessa

    2016-01-01

    Mycobacteriophage Cabrinians is a newly isolated phage capable of infecting both Mycobacterium phlei and Mycobacterium smegmatis and was recovered from a soil sample in New York City, NY. Cabrinians has a genome length of 56,669 bp, encodes 101 predicted proteins, and is a member of mycobacteriophages in cluster F. PMID:26847904

  19. Genome Sequence of Mycobacteriophage Cabrinians.

    PubMed

    Chudoff, Dylan; Conboy, Andrew; Conboy, Danielle; Atoulelou, Mireille; Hasan, Sakina; Martinez, Alexandria; Mastrando, Jessica; Roy, Renoy; Schmidt, Robert; Sheed, Kabreeze; Smith, Jewel; Sperratore, Morgan; Struga, Rexhina; Starr, Katelyn; Suppi, Regina; Uguru, Ugo; Terry, Katrina; Villafuerte, Rosendo; Yuan, Vanessa; Dunbar, David

    2016-01-01

    Mycobacteriophage Cabrinians is a newly isolated phage capable of infecting both Mycobacterium phlei and Mycobacterium smegmatis and was recovered from a soil sample in New York City, NY. Cabrinians has a genome length of 56,669 bp, encodes 101 predicted proteins, and is a member of mycobacteriophages in cluster F. PMID:26847904

  20. Genome Sequence of the Palaeopolyploid soybean

    SciTech Connect

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  1. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  2. Improved Complete Genome Sequence of the Extremely Radioresistant Bacterium Deinococcus radiodurans R1 Obtained Using PacBio Single-Molecule Sequencing.

    PubMed

    Hua, Xiaoting; Hua, Yuejin

    2016-01-01

    The genome sequence of Deinococcus radiodurans R1 was published in 1999. We resequenced D. radiodurans R1 using PacBio and compared the sequence with the published one. Large insertions and single nucleotide polymorphisms (SNPs) were observed among the genome sequences. A more accurate genome sequence will be helpful to studies of D. radiodurans. PMID:27587813

  3. Improved Complete Genome Sequence of the Extremely Radioresistant Bacterium Deinococcus radiodurans R1 Obtained Using PacBio Single-Molecule Sequencing

    PubMed Central

    Hua, Xiaoting

    2016-01-01

    The genome sequence of Deinococcus radiodurans R1 was published in 1999. We resequenced D. radiodurans R1 using PacBio and compared the sequence with the published one. Large insertions and single nucleotide polymorphisms (SNPs) were observed among the genome sequences. A more accurate genome sequence will be helpful to studies of D. radiodurans. PMID:27587813

  4. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  5. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    PubMed

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC. PMID:23589541

  6. Initial sequence and comparative analysis of the cat genome

    PubMed Central

    Pontius, Joan U.; Mullikin, James C.; Smith, Douglas R.; Lindblad-Toh, Kerstin; Gnerre, Sante; Clamp, Michele; Chang, Jean; Stephens, Robert; Neelam, Beena; Volfovsky, Natalia; Schäffer, Alejandro A.; Agarwala, Richa; Narfström, Kristina; Murphy, William J.; Giger, Urs; Roca, Alfred L.; Antunes, Agostinho; Menotti-Raymond, Marilyn; Yuhki, Naoya; Pecon-Slattery, Jill; Johnson, Warren E.; Bourque, Guillaume; Tesler, Glenn; O’Brien, Stephen J.

    2007-01-01

    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence. PMID:17975172

  7. Accelerating Genome Sequencing 100X with FPGAs

    SciTech Connect

    Storaasli, Olaf O; Strenski, Dave

    2007-01-01

    The performance of two Cray XD1 systems with Virtex-II Pro 50 and Virtex-4 LX160 FPGAs was evaluated using the FASTA computational biology program for human genome (DNA and protein) sequence comparisons. FPGA speedups of 50X (Virtex-II Pro 50) and 100X (Virtex-4 LX160) over a 2.2 GHz Opteron were obtained. FPGA coding issues for human genome data are described.

  8. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    SciTech Connect

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  9. Microbial species delineation using whole genome sequences

    PubMed Central

    Varghese, Neha J.; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T.; Mavrommatis, Kostas; Kyrpides, Nikos C.; Pati, Amrita

    2015-01-01

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. PMID:26150420

  10. Sequencing the AML Genome, Transcriptome, and Epigenome

    PubMed Central

    Mardis, Elaine R.

    2014-01-01

    Leukemia is a disease that develops as a result of changes in the genomes of hematopoietic cells, a fact first appreciated by microscopic examination of the bone marrow cell chromosomes of affected patients. These studies revealed that specific subtypes of leukemia diagnosis correlated with specific chromosomal abnormalities, such as the t(15;17) of acute promyelocytic leukemia1 and the t(9;22) of chronic myeloid leukemia2. Over time, our genomic characterization of hematologic malignancies has moved beyond the resolution of the microscope to that of individual nucleotides in the analysis of whole genome sequencing data using state-of-the-art massively parallel sequencing (MPS) instruments and algorithmic analyses of the resulting data. In addition to studying the genomic sequence alterations that occur in patient’s genomes, these same instruments can decode the methylation landscape of the leukemia genome and the resulting RNA expression landscape of the leukemia transcriptome. Broad correlative analyses can then integrate these three data types to better inform researchers and clinicians about the biology of individual acute myeloid leukemia (AML) cases, facilitating improvements in care and prognosis. PMID:25311738

  11. Strong nucleosomes of mouse genome including recovered centromeric sequences.

    PubMed

    Salih, Bilal F; Teif, Vladimir B; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies. PMID:24998943

  12. Sorghum genome sequencing by methylation filtration.

    PubMed

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis. PMID:15660154

  13. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    PubMed Central

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  14. Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome.

    PubMed

    Syring, John V; Tennessen, Jacob A; Jennings, Tara N; Wegrzyn, Jill; Scelfo-Dalbey, Camille; Cronn, Richard

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats - climate change, white pine blister rust, mountain pine beetle, and fire exclusion - and it is suffering significant mortality range-wide, prompting the tree to be listed as 'globally endangered' by the International Union for Conservation of Nature and 'endangered' by the Canadian government. Conservation collections (in situ and ex situ) are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 27 GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp), and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits), targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect. Quinquefolia) due to their

  15. Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome

    PubMed Central

    Syring, John V.; Tennessen, Jacob A.; Jennings, Tara N.; Wegrzyn, Jill; Scelfo-Dalbey, Camille; Cronn, Richard

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats – climate change, white pine blister rust, mountain pine beetle, and fire exclusion – and it is suffering significant mortality range-wide, prompting the tree to be listed as ‘globally endangered’ by the International Union for Conservation of Nature and ‘endangered’ by the Canadian government. Conservation collections (in situ and ex situ) are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 27 GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp), and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits), targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect. Quinquefolia) due to

  16. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum.

    PubMed

    Grativol, Clícia; Regulski, Michael; Bertalan, Marcelo; McCombie, W Richard; da Silva, Felipe Rodrigues; Zerlotini Neto, Adhemar; Vicentini, Renato; Farinelli, Laurent; Hemerly, Adriana Silva; Martienssen, Robert A; Ferreira, Paulo Cavalcanti Gomes

    2014-07-01

    Many economically important crops have large and complex genomes that hamper their sequencing by standard methods such as whole genome shotgun (WGS). Large tracts of methylated repeats occur in plant genomes that are interspersed by hypomethylated gene-rich regions. Gene-enrichment strategies based on methylation profiles offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration with McrBC endonuclease digestion to enrich for euchromatic regions in the sugarcane genome. To verify the efficiency of methylation filtration and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using methyl-filtered (MF) and unfiltered (UF) libraries. The use of methy filtration allowed a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5× more scaffolds and 1.7× more assembled Mb in length compared with unfiltered dataset. The coverage of sorghum coding sequences (CDS) by MF scaffolds was at least 36% higher than by the use of UF scaffolds. Using MF technology, we increased by 134× the coverage of gene regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds that covered all genes of the sugarcane bacterial artificial chromosomes (BACs), 97.2% of sugarcane expressed sequence tags (ESTs), 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds from encoded enzymes of the sucrose/starch pathway discovered 291 single-nucleotide polymorphisms (SNPs) in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes was also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and for improvement of sugarcane as a biofuel crop. PMID:24773339

  17. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry.

    PubMed

    Protasova, Maria S; Grigorenko, Anastasia P; Tyazhelova, Tatiana V; Andreeva, Tatiana V; Reshetov, Denis A; Gusev, Fedor E; Laptenko, Alexander E; Kuznetsova, Irina L; Goltsov, Andrey Y; Klyushnikov, Sergey A; Illarioshkin, Sergey N; Rogaev, Evgeny I

    2016-04-01

    X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previously associated with sideroblastic anemia and ataxia. The mutation resulting in a substitution of a highly conserved glycine to serine in position 682 is apparently a major causative factor of the cerebellar hypoplasia/atrophy found in affected individuals of a Buryat family who had no evidence of sideroblastic anemia. Moreover, in these affected men we also found the genetic defects in two other genes closely linked to ABCB7 on chromosome X: a deletion of a genomic region harboring the second exon of copper-transporter gene (ATP7A) and a complete deletion of PGAM4 (phosphoglycerate mutase family member 4) retrogene located in the intronic region of the ATP7A gene. Despite the deletion, eliminating the first of six metal-binding domains in ATP7A, no signs for Menkes disease or occipital horn syndrome associated with ATP7A mutations were found in male carriers. The role of the PGAM4 gene has been previously implicated in human reproduction, but our data indicate that its complete loss does not disrupt male fertility. Our finding links cerebellar pathology to the genetic defect in ABCB7 and ATP7A structural variant inherited as X-linked trait, and further reveals the genetic heterogeneity of X-linked cerebellar disorders. PMID:26242992

  18. The complete chloroplast genome sequence of Chloranthus japonicus.

    PubMed

    Sun, Jing; Zhang, Gang; Li, Yimin; Chen, Ying; Zhang, Xiaofei; Tang, Zhishu; Wu, Haifeng

    2016-09-01

    The complete chloroplast genome of Chloranthus japonicus, an important traditional Chinese herbal medicine, was sequenced and characterized in this study. The genome size is 158,640 bp in length with 38.9% GC content. Two inverted repeats of 26,149 bp are separated by a large single-copy region (87,724 bp) and a small single-copy region (18,618 bp). The genome contains 131 individual genes, including 86 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Eighteen genes contain one or two introns. PMID:25707409

  19. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    PubMed

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions. PMID:26367332

  20. An International Plan to Sequence the Onion Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of DNA sequencing continues to decline and, in the near future, it will become reasonable to undertake sequencing of the enormous nuclear genome of onion. We undertook sequencing of expressed and genomic regions of the onion genome to learn about the structure of the onion genome, as well a...

  1. The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis.

    PubMed

    Duan, Naibin; Sun, Honghe; Wang, Nan; Fei, Zhangjun; Chen, Xuesen

    2016-07-01

    The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis, a widely used apple rootstock, was determined using the Illumina high-throughput sequencing approach. The genome is 422,555 bp in length and has a GC content of 45.21%. It is separated by a pair of inverted repeats of 32,504 bp, to form a large single copy region of 213,055 bp and a small single copy region of 144,492 bp. The genome contains 38 protein-coding genes, four pseudogenes, 25 tRNA genes, and three rRNA genes. The genome is 25,608 bp longer than that of M. domestica, and several structural variations between these two mitogenomes were detected. PMID:26539696

  2. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing.

    PubMed

    Vrancken, Bram; Trovão, Nídia Sequeira; Baele, Guy; van Wijngaerden, Eric; Vandamme, Anne-Mieke; van Laethem, Kristel; Lemey, Philippe

    2016-01-01

    Genetic analyses play a central role in infectious disease research. Massively parallelized "mechanical cloning" and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure--from nucleic acid extraction to sequencing--should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping. PMID:26751471

  3. Mapping and sequencing the human genome

    SciTech Connect

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  4. Mapping and Sequencing the Human Genome

    DOE R&D Accomplishments Database

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  5. Exploring genome characteristics and sequence quality without a reference

    PubMed Central

    2014-01-01

    Motivation: The de novo assembly of large, complex genomes is a significant challenge with currently available DNA sequencing technology. While many de novo assembly software packages are available, comparatively little attention has been paid to assisting the user with the assembly. Results: This article addresses the practical aspects of de novo assembly by introducing new ways to perform quality assessment on a collection of sequence reads. The software implementation calculates per-base error rates, paired-end fragment-size distributions and coverage metrics in the absence of a reference genome. Additionally, the software will estimate characteristics of the sequenced genome, such as repeat content and heterozygosity that are key determinants of assembly difficulty. Availability: The software described is freely available online (https://github.com/jts/sga) and open source under the GNU Public License. Contact: jared.simpson@oicr.on.ca Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24443382

  6. Genome Sequence of Gordonia Phage Emalyn

    PubMed Central

    Guido, Madeline J.; Iyengar, Pragnya; Nigra, Jonathan T.; Serbin, Matthew B.; Kasturiarachi, Naomi S.; Pressimone, Catherine A.; Schiebel, Johnathon G.; Furbee, Emily C.; Grubb, Sarah R.; Warner, Marcie H.; Montgomery, Matthew T.; Garlena, Rebecca A.; Russell, Daniel A.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2016-01-01

    Emalyn is a newly isolated bacteriophage of Gordonia terrae 3612 and has a double-stranded DNA genome 43,982 bp long with 67 predicted protein-encoding genes, 32 of which we can assign putative functions. Emalyn has a prolate capsid and has extensive nucleotide similarity with several previously sequenced phages. PMID:27516499

  7. Genome Sequence of Gordonia Phage Emalyn.

    PubMed

    Pope, Welkin H; Guido, Madeline J; Iyengar, Pragnya; Nigra, Jonathan T; Serbin, Matthew B; Kasturiarachi, Naomi S; Pressimone, Catherine A; Schiebel, Johnathon G; Furbee, Emily C; Grubb, Sarah R; Warner, Marcie H; Montgomery, Matthew T; Garlena, Rebecca A; Russell, Daniel A; Jacobs-Sera, Deborah; Hatfull, Graham F

    2016-01-01

    Emalyn is a newly isolated bacteriophage of Gordonia terrae 3612 and has a double-stranded DNA genome 43,982 bp long with 67 predicted protein-encoding genes, 32 of which we can assign putative functions. Emalyn has a prolate capsid and has extensive nucleotide similarity with several previously sequenced phages. PMID:27516499

  8. Genome sequence of Lactobacillus amylovorus GRL1112.

    PubMed

    Kant, Ravi; Paulin, Lars; Alatalo, Edward; de Vos, Willem M; Palva, Airi

    2011-02-01

    Lactobacillus amylovorus is a common member of the normal gastrointestinal tract (GIT) microbiota in pigs. Here, we report the genome sequence of L. amylovorus GRL1112, a porcine feces isolate displaying strong adherence to the pig intestinal epithelial cells. The strain is of interest, as it is a potential probiotic bacterium. PMID:21131492

  9. Complete Genome Sequences of 61 Mycobacteriophages.

    PubMed

    Hatfull, Graham F

    2016-01-01

    Mycobacteriophages-viruses of mycobacteria-provide insights into viral diversity and evolution as well as numerous tools for genetic dissection of Mycobacterium tuberculosis Here we report the complete genome sequences of 61 mycobacteriophages newly isolated from environmental samples using Mycobacterium smegmatis mc(2)155 that expand our understanding of phage diversity. PMID:27389257

  10. Genome Sequence of Corynebacterium ulcerans Strain 210932

    PubMed Central

    Viana, Marcus Vinicius Canário; de Jesus Benevides, Leandro; Batista Mariano, Diego Cesar; de Souza Rocha, Flávia; Bagano Vilas Boas, Priscilla Carolinne; Folador, Edson Luiz; Pereira, Felipe Luiz; Alves Dorella, Fernanda; Gomes Leal, Carlos Augusto; Fiorini de Carvalho, Alex; Silva, Artur; de Castro Soares, Siomar; Pereira Figueiredo, Henrique Cesar; Guimarães, Luis Carlos

    2014-01-01

    In this work, we present the complete genome sequence of Corynebacterium ulcerans strain 210932, isolated from a human. The species is an emergent pathogen that infects a variety of wild and domesticated animals and humans. It is associated with a growing number of cases of a diphtheria-like disease around the world. PMID:25428977

  11. Complete Genome Sequences of 61 Mycobacteriophages

    PubMed Central

    2016-01-01

    Mycobacteriophages—viruses of mycobacteria—provide insights into viral diversity and evolution as well as numerous tools for genetic dissection of Mycobacterium tuberculosis. Here we report the complete genome sequences of 61 mycobacteriophages newly isolated from environmental samples using Mycobacterium smegmatis mc2155 that expand our understanding of phage diversity. PMID:27389257

  12. Whole genome sequences of four Brucella strains.

    PubMed

    Ding, Jiabo; Pan, Yuanlong; Jiang, Hai; Cheng, Junsheng; Liu, Taotao; Qin, Nan; Yang, Yi; Cui, Buyun; Chen, Chen; Liu, Cuihua; Mao, Kairong; Zhu, Baoli

    2011-07-01

    Brucella melitensis and Brucella suis are intracellular pathogens of livestock and humans. Here we report four genome sequences, those of the virulent strain B. melitensis M28-12 and vaccine strains B. melitensis M5 and M111 and B. suis S2, which show different virulences and pathogenicities, which will help to design a more effective brucellosis vaccine. PMID:21602346

  13. Draft Genome Sequence of Virgibacillus halodenitrificans 1806

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Jeong, Haeyoung; Lee, Sang Jun; Lee, Han-Seung; Pan, Jae-Gu

    2012-01-01

    Virgibacillus halodenitrificans 1806 is an endospore-forming halophilic bacterium isolated from salterns in Korea. Here, we report the draft genome sequence of V. halodenitrificans 1806, which may reveal the molecular basis of osmoadaptation and insights into carbon and anaerobic metabolism in moderate halophiles. PMID:23105070

  14. Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease. High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals. Comparisons between these s...

  15. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    PubMed Central

    2012-01-01

    Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution. PMID:22548759

  16. Gambling on a shortcut to genome sequencing

    SciTech Connect

    Roberts, L.

    1991-06-21

    Almost from the start of the Human Genome Project, a debate has been raging over whether to sequence the entire human genome, all 3 billion bases, or just the genes - a mere 2% or 3% of the genome, and by far the most interesting part. In England, Sydney Brenner convinced the Medical Research Council (MRC) to start with the expressed genes, or complementary DNAs. But the US stance has been that the entire sequence is essential if we are to understand the blueprint of man. Craig Venter of the National Institute of Neurological Disorders and Stroke says that focusing on the expressed genes may be even more useful than expected. His strategy involves randomly selecting clones from cDNA libraries which theoretically contain all the genes that are switched on at a particular time in a particular tissue. Then the researchers sequence just a short stretch of each clone, about 400 to 500 bases, to create can expressed sequence tag or EST. The sequences of these ESTs are then stored in a database. Using that information, other researchers can then recreate that EST by using polymerase chain reaction techniques.

  17. Genome comparison of Pseudomonas aeruginosa large phages.

    PubMed

    Hertveldt, Kirsten; Lavigne, Rob; Pleteneva, Elena; Sernova, Natalia; Kurochkina, Lidia; Korchevskii, Roman; Robben, Johan; Mesyanzhinov, Vadim; Krylov, Victor N; Volckaert, Guido

    2005-12-01

    Pseudomonas aeruginosa phage EL is a dsDNA phage related to the giant phiKZ-like Myoviridae. The EL genome sequence comprises 211,215 bp and has 201 predicted open reading frames (ORFs). The EL genome does not share DNA sequence homology with other viruses and micro-organisms sequenced to date. However, one-third of the predicted EL gene products (gps) shares similarity (Blast alignments of 17-55% amino acid identity) with phiKZ proteins. Comparative EL and phiKZ genomics reveals that these giant phages are an example of substantially diverged genetic mosaics. Based on the position of similar EL and phiKZ predicted gene products, five genome regions can be delineated in EL, four of which are relatively conserved between EL and phiKZ. Region IV, a 17.7 kb genome region with 28 predicted ORFs, is unique to EL. Fourteen EL ORFs have been assigned a putative function based on protein similarity. Assigned proteins are involved in DNA replication and nucleotide metabolism (NAD+-dependent DNA ligase, ribonuclease HI, helicase, thymidylate kinase), host lysis and particle structure. EL-gp146 is the first chaperonin GroEL sequence identified in a viral genome. Besides a putative transposase, EL harbours predicted mobile endonucleases related to H-N-H and LAGLIDADG homing endonucleases associated with group I intron and intein intervening sequences. PMID:16256135

  18. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing

    PubMed Central

    Vrancken, Bram; Trovão, Nídia Sequeira; Baele, Guy; van Wijngaerden, Eric; Vandamme, Anne-Mieke; van Laethem, Kristel; Lemey, Philippe

    2016-01-01

    Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping. PMID:26751471

  19. The first complete genome sequence of iris severe mosaic virus.

    PubMed

    Li, Yongqiang; Deng, Congliang; Shang, Qiaoxia; Zhao, Xiaoli; Liu, Xingliang; Zhou, Qi

    2016-04-01

    The first complete genome sequence of ISMV was determined by deep sequencing of a small RNA library constructed from ISMV-infected samples and rapid amplification of cDNA ends (RACE) PCR. The ISMV genome consists of 10,403 nucleotides excluding the poly(A) tail and contains a large open reading frame encoding a polyprotein of 3316 amino acids. Putative proteolytic cleavage sites were identified by BLAST analysis. The ISMV polyprotein showed highest amino acid sequence identity to that encoded by onion yellow dwarf virus. Phylogenetic analysis of the polyprotein amino acid sequence confirmed that ISMV forms a cluster with shallot yellow stripe virus, Cyrtanthus elatus virus A, narcissus degeneration virus and onion yellow dwarf virus. These results confirm that ISMV is a distinct member of the genus Potyvirus. PMID:26729478

  20. Genome sequence of the human malaria parasite Plasmodium falciparum

    PubMed Central

    Gardner, Malcolm J.; Hall, Neil; Fung, Eula; White, Owen; Berriman, Matthew; Hyman, Richard W.; Carlton, Jane M.; Pain, Arnab; Nelson, Karen E.; Bowman, Sharen; Paulsen, Ian T.; James, Keith; Eisen, Jonathan A.; Rutherford, Kim; Salzberg, Steven L.; Craig, Alister; Kyes, Sue; Chan, Man-Suen; Nene, Vishvanath; Shallom, Shamira J.; Suh, Bernard; Peterson, Jeremy; Angiuoli, Sam; Pertea, Mihaela; Allen, Jonathan; Selengut, Jeremy; Haft, Daniel; Mather, Michael W.; Vaidya, Akhil B.; Martin, David M. A.; Fairlamb, Alan H.; Fraunholz, Martin J.; Roos, David S.; Ralph, Stuart A.; McFadden, Geoffrey I.; Cummings, Leda M.; Subramanian, G. Mani; Mungall, Chris; Venter, J. Craig; Carucci, Daniel J.; Hoffman, Stephen L.; Newbold, Chris; Davis, Ronald W.; Fraser, Claire M.; Barrell, Bart

    2013-01-01

    The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria. PMID:12368864

  1. A cryptographic approach to securely share and query genomic sequences.

    PubMed

    Kantarcioglu, Murat; Jiang, Wei; Liu, Ying; Malin, Bradley

    2008-09-01

    To support large-scale biomedical research projects, organizations need to share person-specific genomic sequences without violating the privacy of their data subjects. In the past, organizations protected subjects' identities by removing identifiers, such as name and social security number; however, recent investigations illustrate that deidentified genomic data can be "reidentified" to named individuals using simple automated methods. In this paper, we present a novel cryptographic framework that enables organizations to support genomic data mining without disclosing the raw genomic sequences. Organizations contribute encrypted genomic sequence records into a centralized repository, where the administrator can perform queries, such as frequency counts, without decrypting the data. We evaluate the efficiency of our framework with existing databases of single nucleotide polymorphism (SNP) sequences and demonstrate that the time needed to complete count queries is feasible for real world applications. For example, our experiments indicate that a count query over 40 SNPs in a database of 5000 records can be completed in approximately 30 min with off-the-shelf technology. We further show that approximation strategies can be applied to significantly speed up query execution times with minimal loss in accuracy. The framework can be implemented on top of existing information and network technologies in biomedical environments. PMID:18779075

  2. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    PubMed Central

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  3. Genome sequence and analysis of the tuber crop potato.

    PubMed

    Xu, Xun; Pan, Shengkai; Cheng, Shifeng; Zhang, Bo; Mu, Desheng; Ni, Peixiang; Zhang, Gengyun; Yang, Shuang; Li, Ruiqiang; Wang, Jun; Orjeda, Gisella; Guzman, Frank; Torres, Michael; Lozano, Roberto; Ponce, Olga; Martinez, Diana; De la Cruz, Germán; Chakrabarti, S K; Patil, Virupaksh U; Skryabin, Konstantin G; Kuznetsov, Boris B; Ravin, Nikolai V; Kolganova, Tatjana V; Beletsky, Alexey V; Mardanov, Andrei V; Di Genova, Alex; Bolser, Daniel M; Martin, David M A; Li, Guangcun; Yang, Yu; Kuang, Hanhui; Hu, Qun; Xiong, Xingyao; Bishop, Gerard J; Sagredo, Boris; Mejía, Nilo; Zagorski, Wlodzimierz; Gromadka, Robert; Gawor, Jan; Szczesny, Pawel; Huang, Sanwen; Zhang, Zhonghua; Liang, Chunbo; He, Jun; Li, Ying; He, Ying; Xu, Jianfei; Zhang, Youjun; Xie, Binyan; Du, Yongchen; Qu, Dongyu; Bonierbale, Merideth; Ghislain, Marc; Herrera, Maria del Rosario; Giuliano, Giovanni; Pietrella, Marco; Perrotta, Gaetano; Facella, Paolo; O'Brien, Kimberly; Feingold, Sergio E; Barreiro, Leandro E; Massa, Gabriela A; Diambra, Luis; Whitty, Brett R; Vaillancourt, Brieanne; Lin, Haining; Massa, Alicia N; Geoffroy, Michael; Lundback, Steven; DellaPenna, Dean; Buell, C Robin; Sharma, Sanjeev Kumar; Marshall, David F; Waugh, Robbie; Bryan, Glenn J; Destefanis, Marialaura; Nagy, Istvan; Milbourne, Dan; Thomson, Susan J; Fiers, Mark; Jacobs, Jeanne M E; Nielsen, Kåre L; Sønderkær, Mads; Iovene, Marina; Torres, Giovana A; Jiang, Jiming; Veilleux, Richard E; Bachem, Christian W B; de Boer, Jan; Borm, Theo; Kloosterman, Bjorn; van Eck, Herman; Datema, Erwin; Hekkert, Bas te Lintel; Goverse, Aska; van Ham, Roeland C H J; Visser, Richard G F

    2011-07-14

    Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop. PMID:21743474

  4. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-21

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome. PMID:21776081

  5. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  6. Draft Genome Sequence of Mycobacterium brumae ATCC 51384

    PubMed Central

    D'Auria, Giuseppe

    2016-01-01

    Here, we report the draft genome sequence of Mycobacterium brumae type strain ATCC 51384. This is the first draft genome sequence of M. brumae, a nonpathogenic, rapidly growing, nonchromogenic mycobacterium, with immunotherapeutic capacities. PMID:27125480

  7. Whole Genome Sequencing: Cracking the Genetic Code for Foodborne Illness

    MedlinePlus

    ... Consumers Consumer Updates Whole Genome Sequencing: Cracking the Genetic Code for Foodborne Illness Share Tweet Linkedin Pin ... have millions of different genomes, or sequences of genetic code, each as unique as a fingerprint. Get ...

  8. Genome Sequence of Psychrobacter cibarius Strain W1

    PubMed Central

    Raghupathi, Prem K.; Herschend, Jakob; Røder, Henriette L.; Sørensen, Søren J.

    2016-01-01

    Here, we report the draft genome sequence of Psychrobacter cibarius strain W1, which was isolated at a slaughterhouse in Denmark. The 3.63-Mb genome sequence was assembled into 241 contigs. PMID:27231353

  9. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum

    PubMed Central

    Grativol, Clícia; Regulski, Michael; Bertalan, Marcelo; McCombie, W. Richard; da Silva, Felipe Rodrigues; Neto, Adhemar Zerlotini; Vicentini, Renato; Farinelli, Laurent; Hemerly, Adriana Silva; Martienssen, Robert A.; Ferreira, Paulo Cavalcanti Gomes

    2015-01-01

    SUMMARY Many economically important crops have large and complex genomes, which hampers sequencing of their genome by standard methods such as WGS. Large tracts of methylated repeats occur at plant genomes interspersed by hypomethylated gene-rich regions. Gene enrichment strategies based on methylation profile offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration (MF) with McrBC digestion to enrich for euchromatic regions of sugarcane genome. To verify the efficiency of MF and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using MF and unfiltered (UF) libraries. The MF allowed the achievement of a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5 times more scaffolds and 1.7 times more assembled Mb compared to unfiltered scaffolds. The coverage of sorghum CDS by MF scaffolds was at least 36% higher than by UF scaffolds. Using MF technology, we increased by 134X the coverage of genic regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds covering all genes at sugarcane BACs, 97.2% of sugarcane ESTs, 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds encoding enzymes of the sucrose/starch pathway discovered 291 SNPs in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes were also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and improvement of sugarcane as a biofuel crop. PMID:24773339

  10. [Sequencing and analysis of the complete genome sequence of WU polyomavirus in Fuzhou, China].

    PubMed

    Xiu, Wen-qiong; Shen, Xiao-na; Liu, Guang-hua; Xie, Jian-feng; Kang, Yu-lan; Wang, Mei-ai; Zhang, Wen-qing; Weng, Qi-zhu; Yan, Yan-sheng

    2011-03-01

    WU polyomavirus (WUPyV), a new member of the genus Polyomavirus in the family Polyomaviridae, is recently found in patients with respiratory tract infections. In our study, the complete genome of the two WUPyV isolates (FZ18, FZTF) were sequenced and deposited in GenBank (accession nos. FJ890981, FJ890982). The two sequences of the WUPyV isolates in this study varied little from each other. Compared with other complete genome sequences of WUPyV in GenBank (strain B0, S1-S4, CLFF, accession nos. EF444549, EF444550, EF444551, EF444552, EF444553, EU296475 respectively), the sequence length in nucleotides is 5228bp, 1bp shorter than the known sequences. The deleted base pair was at nucleotide position 4536 in the non-coding region of large T antigen (LTAg). The genome of the WUPyV encoded for five proteins. They were three capsid proteins: VP2, VP1, VP3 and LTAg, small T antigen (STAg), respectively. To investigate whether these nucleotide sequences had any unique features, we compared the genome sequence of the 2 WUPyV isolates in Fuzhou, China to those documented in the GenBank database by using PHYLIP software version 3.65 and the neighbor-joining method. The 2 WUPyV strains in our study were clustered together. Strain FZTF was more closed to the reference strain B0 of Australian than strain FZ18. PMID:21528542

  11. Whole genome sequence analysis of Mycobacterium suricattae.

    PubMed

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; van der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah Musa; Siame, Kabengele Keith; Gey van Pittius, Nicolaas Claudius; van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-12-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi. PMID:26542221

  12. Elucidating population histories using genomic DNA sequences.

    PubMed

    Vigilant, Linda

    2009-04-01

    In 1993, Cliff Jolly suggested that rather than debating species definitions and classifications, energy would be better spent investigating multidimensional patterns of variation and gene flow among populations. Until now, however, genetic studies of wild primate populations have been limited to very small portions of the genome. Access to complete genome sequences of humans, chimpanzees, macaques, and other primates makes it possible to design studies surveying substantial amounts of DNA sequence variation at multiple genetic loci in representatives of closely related but distinct wild primate populations. Such data can be analyzed with new approaches that estimate not only when populations diverged but also the relative amounts and directions of subsequent gene flow. These analyses will reemphasize the difficulty of achieving consistent species and subspecies definitions by revealing the extent of variation in the amount and duration of gene flow accompanying population divergences. PMID:19817223

  13. Complete genome sequence of Piry vesiculovirus.

    PubMed

    de Souza, William Marciel; Acrani, Gustavo Olszanski; Romeiro, Marilia Farignoli; Júnior, Osvaldo Reis; Tolardo, Aline Lavado; de Andrade, Amanda Araújo Serrão; da Silva Gonçalves Vianez Júnior, João Lídio; de Almeida Medeiros, Daniele Barbosa; Nunes, Márcio Roberto Teixeira; Figueiredo, Luiz Tadeu Moraes

    2016-08-01

    Piry virus (PIRYV) is a rhabdovirus (genus Vesiculovirus) and is described as a possible human pathogen, originally isolated from a Philander opossum trapped in Para State, Northern Brazil. This study describes the complete full coding sequence and the genetic characterization of PIRYV. The genome sequence reveals that PIRYV has a typical vesiculovirus-like organization, encoding the five genes typical of the genus. Phylogenetic analysis confirmed that PIRYV is most closely related to Perinet virus and clustered in the same clade as Chandipura and Isfahan vesiculoviruses. PMID:27216928

  14. The complete plastid genome sequence of Picea jezoensis (Pinaceae: Piceoideae).

    PubMed

    Yang, Jong Cheol; Joo, Minjung; So, Soonku; Yi, Dong-Keun; Shin, Chang Ho; Lee, You-Mi; Choi, Kyung

    2016-09-01

    The nucleotide sequence of the complete chloroplast genome of P. jezoensis was completed. The total genome size was 124 146 bp, containing a pair of very short inverted repeats (IRa and IRb) of 422 bp, which were separated by large single copy (LSC) and small single copy (SSC) with 66 956 bp and 56 346 bp, respectively. The overall GC contents of the plastid genome were determined as 38.8%. One hundred fifteen genes including 68 peptide-encoding genes, 35 tRNA genes, four rRNA genes, six open-reading frames, and two pseudogenes were annotated. In these genes, 15 genes contained only one or two introns. Phylogenetic analyses using maximum likelihood (ML) methods were performed from fully sequenced Gymnosperms and other species of dataset composed of 69 protein-coding genes. PMID:26332576

  15. Population genetic studies in the genomic sequencing era

    PubMed Central

    CHEN, Hua

    2015-01-01

    Recent advances in high-throughput sequencing technologies have revolutionized the field of population genetics. Data now routinely contain genomic level polymorphism information, and the low cost of DNA sequencing enables researchers to investigate tens of thousands of subjects at a time. This provides an unprecedented opportunity to address fundamental evolutionary questions, while posing challenges on traditional population genetic theories and methods. This review provides an overview of the recent methodological developments in the field of population genetics, specifically methods used to infer ancient population history and investigate natural selection using large-sample, large-scale genetic data. Several open questions are also discussed at the end of the review. PMID:26228473

  16. Genome Sequence of the Zoonotic Pathogen Chlamydophila psittaci▿

    PubMed Central

    Seth-Smith, Helena M. B.; Harris, Simon R.; Rance, Richard; West, Anthony P.; Severin, Juliette A.; Ossewaarde, Jacobus M.; Cutcliffe, Lesley T.; Skilton, Rachel J.; Marsh, Pete; Parkhill, Julian; Clarke, Ian N.; Thomson, Nicholas R.

    2011-01-01

    We present the first genome sequence of Chlamydophila psittaci, an intracellular pathogen of birds and a human zoonotic pathogen. A comparison with previously sequenced Chlamydophila genomes shows that, as in other chlamydiae, most of the genome diversity is restricted to the plasticity zone. The C. psittaci plasmid was also sequenced. PMID:21183672

  17. Complete Genome Sequence of Mycobacterium abscessus subsp. bolletii

    PubMed Central

    Spilker, Theodore; LiPuma, John J.

    2016-01-01

    We report the complete genome sequence of a Mycobacterium abscessus subsp. bolletii isolate recovered from a sputum culture from an individual with cystic fibrosis. This sequence is the first completed whole-genome sequence of M. abscessus subsp. bolletii and adds value to studies of M. abscessus complex genomics. PMID:27284156

  18. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    SciTech Connect

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan; DiFazio, Steven P; Tuskan, Gerald A

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  19. Downsizing genomic medicine: approaching the ethical complexity of whole-genome sequencing by starting small.

    PubMed

    Sharp, Richard R

    2011-03-01

    As we look to a time when whole-genome sequencing is integrated into patient care, it is possible to anticipate a number of ethical challenges that will need to be addressed. The most intractable of these concern informed consent and the responsible management of very large amounts of genetic information. Given the range of possible findings, it remains unclear to what extent it will be possible to obtain meaningful patient consent to genomic testing. Equally unclear is how clinicians will disseminate the enormous volume of genetic information produced by whole-genome sequencing. Toward developing practical strategies for managing these ethical challenges, we propose a research agenda that approaches multiplexed forms of clinical genetic testing as natural laboratories in which to develop best practices for managing the ethical complexities of genomic medicine. PMID:21311340

  20. Draft Genome Sequence of Rubrivivax gelatinosus CBS

    SciTech Connect

    Hu, P. S.; Lang, J.; Wawrousek, K.; Yu, J. P.; Maness, P. C.; Chen, J.

    2012-06-01

    Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N{sub 2} as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H{sub 2}. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.

  1. Complete Genome Sequences of 138 Mycobacteriophages

    PubMed Central

    2012-01-01

    Bacteriophages are the most numerous biological entities in the biosphere, and although their genetic diversity is high, it remains ill defined. Mycobacteriophages—the viruses of mycobacterial hosts—provide insights into this diversity as well as tools for manipulating Mycobacterium tuberculosis. We report here the complete genome sequences of 138 new mycobacteriophages, which—together with the 83 mycobacteriophages previously reported—represent the largest collection of phages known to infect a single common host, Mycobacterium smegmatis mc2 155. PMID:22282335

  2. Genome-wide synteny through highly sensitive sequence alignment: Satsuma

    PubMed Central

    Grabherr, Manfred G.; Russell, Pamela; Meyer, Miriah; Mauceli, Evan; Alföldi, Jessica; Di Palma, Federica; Lindblad-Toh, Kerstin

    2010-01-01

    Motivation: Comparative genomics heavily relies on alignments of large and often complex DNA sequences. From an engineering perspective, the problem here is to provide maximum sensitivity (to find all there is to find), specificity (to only find real homology) and speed (to accommodate the billions of base pairs of vertebrate genomes). Results: Satsuma addresses all three issues through novel strategies: (i) cross-correlation, implemented via fast Fourier transform; (ii) a match scoring scheme that eliminates almost all false hits; and (iii) an asynchronous ‘battleship’-like search that allows for aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours using 15 processors on a single machine. Availability: Satsuma is part of the Spines software package, implemented in C++ on Linux. The latest version of Spines can be freely downloaded under the LGPL license from http://www.broadinstitute.org/science/programs/genome-biology/spines/ Contact: grabherr@broadinstitute.org PMID:20208069

  3. Analysis of the bread wheat genome using whole-genome shotgun sequencing.

    PubMed

    Brenchley, Rachel; Spannagl, Manuel; Pfeifer, Matthias; Barker, Gary L A; D'Amore, Rosalinda; Allen, Alexandra M; McKenzie, Neil; Kramer, Melissa; Kerhornou, Arnaud; Bolser, Dan; Kay, Suzanne; Waite, Darren; Trick, Martin; Bancroft, Ian; Gu, Yong; Huo, Naxin; Luo, Ming-Cheng; Sehgal, Sunish; Gill, Bikram; Kianian, Sharyar; Anderson, Olin; Kersey, Paul; Dvorak, Jan; McCombie, W Richard; Hall, Anthony; Mayer, Klaus F X; Edwards, Keith J; Bevan, Michael W; Hall, Neil

    2012-11-29

    Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop. PMID:23192148

  4. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis

    PubMed Central

    Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  5. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  6. The complete plastid genome sequence of Abies koreana (Pinaceae: Abietoideae).

    PubMed

    Yi, Dong-Keun; Yang, Jong Cheol; So, Soonku; Joo, Minjung; Kim, Dong-Kap; Shin, Chang Ho; Lee, You-Mi; Choi, Kyung

    2016-07-01

    The nucleotide sequence of the chloroplast genome from Abies koreana is the first to have complete genome sequence from genus Abies of family Pinaceae. The circular double-stranded DNA, which consists of 121,373 base pairs (bp), contains a pair of very short inverted repeat regions (IRa and IRb) of 264 bp each, which are separated by a small and large single-copy regions (SSC and LSC) of 54,197 and 66,648 bp, respectively. The genome contents of 114 genes (68 peptide-encoding genes, 35 tRNA genes, four rRNA genes, six open reading frames and one pseudogene) are similar to the chloroplast DNA of other species of Abietoideae. Loss of ndh genes was also identified in the genome of A. koreana like other genomes in the family Pinaceae. Thirteen genes contain one (11 genes) or two (rps12 and ycf3 genes) introns. In phylogenetic analysis, the tree confirms that Abies, Keteleeria and Cedrus are strongly supported as monophyletic. Other inverted repeat sequences located in 42-kb inversion points (1186 bp) include trnS-psaM-ycf12- ψtrnG genes. PMID:25812052

  7. A method to capture large DNA fragments from genomic DNA.

    PubMed

    Ball, Geneviève; Filloux, Alain; Voulhoux, Romé

    2014-01-01

    The gene capture technique is a powerful tool that allows the cloning of large DNA regions (up to 80 kb), such as entire genomic islands, without using restriction enzymes or DNA amplification. This technique takes advantage of the high recombinant capacity of the yeast. A "capture" vector containing both ends of the target DNA region must first be constructed. The target region is then captured by co-transformation and recombination in yeast between the "capture" vector and appropriate genomic DNA. The selected recombinant plasmid can be verified by sequencing and transferred in the bacteria for multiple applications. This chapter describes a protocol specifically adapted for Pseudomonas aeruginosa genomic DNA capture. PMID:24818928

  8. Simple repetitive sequences in the genome: structure and functional significance.

    PubMed

    Brahmachari, S K; Meera, G; Sarkar, P S; Balagurumoorthy, P; Tripathi, J; Raghavan, S; Shaligram, U; Pataskar, S

    1995-09-01

    The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized. PMID:8582360

  9. Rapid genome mapping in nano channel array for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences...

  10. Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1

    PubMed Central

    Yan, Lei; Zhang, Shuang; Wang, Weidong; Hu, Huixin; Wang, Yanjie; Yu, Gaobo; Chen, Peng

    2015-01-01

    Acidithiobacillus ferrooxidans YQH-1 is a moderate acidophilic bacterium isolated from a river in a volcano of Northeast China. Here, we describe the draft genome of strain YQH-1, which was assembled into 123 contigs containing 3,111,222 bp with a G + C content of 58.63%. A large number of genes related to carbon dioxide fixation, dinitrogen fixation, pH tolerance, heavy metal detoxification, and oxidative stress defense were detected. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LJBT00000000. PMID:26697394

  11. The complete chloroplast genome sequence of Hibiscus syriacus.

    PubMed

    Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin

    2016-09-01

    The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes. PMID:26357910

  12. Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1.

    PubMed

    Yan, Lei; Zhang, Shuang; Wang, Weidong; Hu, Huixin; Wang, Yanjie; Yu, Gaobo; Chen, Peng

    2015-12-01

    Acidithiobacillus ferrooxidans YQH-1 is a moderate acidophilic bacterium isolated from a river in a volcano of Northeast China. Here, we describe the draft genome of strain YQH-1, which was assembled into 123 contigs containing 3,111,222 bp with a G + C content of 58.63%. A large number of genes related to carbon dioxide fixation, dinitrogen fixation, pH tolerance, heavy metal detoxification, and oxidative stress defense were detected. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LJBT00000000. PMID:26697394

  13. Large-scale sequencing trials begin

    SciTech Connect

    Roberts, L.

    1990-12-07

    As genome sequencing gets under way, investigators are grappling not just with new techniques but also with questions about what is acceptable accuracy and when data should be released. Four groups are embarking on projects that could make or break the human genome project. They are setting out to sequence the longest stretches of DNA ever tackled-several million bases each-and to do it faster and cheaper than anyone has before. If these groups can't pull it off, then prospects for knocking off the entire human genome, all 3 billion bases, in 15 years and for $3 billion will look increasingly unlikely. Harvard's Walter Gilbert, is first tackling the genome of Mycoplasma capricolum. At Stanford, David Botstein and Ron Davis are sequencing Saccharomyces cerevisiae. In a collaborative effort, Robert Waterson at Washington University and John Sulston at the Medical Research Council lab in Cambridge, England, have already started on the nematode Caenorhabditis elegans. And in the only longstanding project of the bunch, University of Wisconsin geneticist Fred Blattner is already several hundred kilobases into the Escherichia coli genome.

  14. Assessing the Costs and Cost-Effectiveness of Genomic Sequencing

    PubMed Central

    Christensen, Kurt D.; Dukhovny, Dmitry; Siebert, Uwe; Green, Robert C.

    2015-01-01

    Despite dramatic drops in DNA sequencing costs, concerns are great that the integration of genomic sequencing into clinical settings will drastically increase health care expenditures. This commentary presents an overview of what is known about the costs and cost-effectiveness of genomic sequencing. We discuss the cost of germline genomic sequencing, addressing factors that have facilitated the decrease in sequencing costs to date and anticipating the factors that will drive sequencing costs in the future. We then address the cost-effectiveness of diagnostic and pharmacogenomic applications of genomic sequencing, with an emphasis on the implications for secondary findings disclosure and the integration of genomic sequencing into general patient care. Throughout, we ground the discussion by describing efforts in the MedSeq Project, an ongoing randomized controlled clinical trial, to understand the costs and cost-effectiveness of integrating whole genome sequencing into cardiology and primary care settings. PMID:26690481

  15. FIGG: Simulating populations of whole genome sequences for heterogeneous data analyses

    PubMed Central

    2014-01-01

    Background High-throughput sequencing has become one of the primary tools for investigation of the molecular basis of disease. The increasing use of sequencing in investigations that aim to understand both individuals and populations is challenging our ability to develop analysis tools that scale with the data. This issue is of particular concern in studies that exhibit a wide degree of heterogeneity or deviation from the standard reference genome. The advent of population scale sequencing studies requires analysis tools that are developed and tested against matching quantities of heterogeneous data. Results We developed a large-scale whole genome simulation tool, FIGG, which generates large numbers of whole genomes with known sequence characteristics based on direct sampling of experimentally known or theorized variations. For normal variations we used publicly available data to determine the frequency of different mutation classes across the genome. FIGG then uses this information as a background to generate new sequences from a parent sequence with matching frequencies, but different actual mutations. The background can be normal variations, known disease variations, or a theoretical frequency distribution of variations. Conclusion In order to enable the creation of large numbers of genomes, FIGG generates simulated sequences from known genomic variation and iteratively mutates each genome separately. The result is multiple whole genome sequences with unique variations that can primarily be used to provide different reference genomes, model heterogeneous populations, and can offer a standard test environment for new analysis algorithms or bioinformatics tools. PMID:24885193

  16. A Glance at Microsatellite Motifs from 454 Sequencing Reads of Watermelon Genomic DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single 454 (Life Sciences Sequencing Technology) run of Charleston Gray watermelon (Citrullus lanatus var. lanatus) genomic DNA was performed and sequence data were assembled. A large scale identification of simple sequence repeat (SSR) was performed and SSR sequence data were used for the develo...

  17. Why Assembling Plant Genome Sequences Is So Challenging

    PubMed Central

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  18. Functional genomics of tomato in a post-genome-sequencing phase

    PubMed Central

    Aoki, Koh; Ogata, Yoshiyuki; Igarashi, Kaori; Yano, Kentaro; Nagasaki, Hideki; Kaminuma, Eli; Toyoda, Atsushi

    2013-01-01

    Completion of tomato genome sequencing project has broad impacts on genetic and genomic studies of tomato and Solanaceae plants. The reference genome sequence derived from Solanum lycopersicum cv ‘Heinz 1706’ serves as the firm basis for sequencing-based approaches to tomato genomics. In this article, we first present a brief summary of the genome sequencing project and a summary of the reference genome sequence. We then focus on recent progress in transcriptome sequencing and small RNA sequencing and show how the reference genome sequence makes these analyses more comprehensive than before. We discuss the potential of in-depth analysis that is based on DNA methylome sequencing and transcription start-site detection. Finally, we describe the current status of efforts to resequence S. lycopersicum cultivars to demonstrate how resequencing can allow the use of intraspecific genomic diversity for detailed phenotyping and breeding. PMID:23641177

  19. [Genome sequencing and personalized medicine: perspectives and limitations].

    PubMed

    Le Gall, Jean-Yves; Debré, Patrice

    2014-01-01

    DNA sequencing technologies have advanced at an exponential rate in recent years: the first human genome was sequenced in 2001 after many years of effort by dozens of international laboratories at a cost of tens of millions of dollars, while in 2013 a genome can be sequenced within 24 hours for a few hundred dollars (exome sequencing takes only a few hours). More and more hospital laboratories are acquiring new high-throughput sequencing devices ("next-generation sequencers", NGS), allowing them to analyze tens or hundreds of genes, or even the entire exome. This is having a major impact on medical concepts and practices, especially with respect to genetics and oncology. This ability to search for mutations simultaneously in a large number of genes is finding applications in the diagnosis of Mendelian diseases (including at birth), routine screening for heterozygotes, and pre-conception diagnosis. NGS is now sufficiently sensitive to analyze circulating fetal DNA in maternal blood (cell-free fetal DNA, cffDNA), enabling applications such as non invasive diagnosis of fetal sex (and X-linked diseases), fetal rhesus among rhesus-negative women, trisomy and, in the near future, Mendelian mutations. Data on multifactorial diseases are still preliminary, but it should soon be possible to identify "strong" factors of genetic predisposition that have so far been beyond the scope of genome-wide association studies (GWAS). In the field of constitutional oncogenetics, NGS can also be used for simultaneous analysis of genes involved in " hereditary " cancers (21 breast cancer genes, 6 colon cancer genes, etc.). More generally, NGS can identify all genomic abnormalities (deletions, translocations, mutations) in a given malignant tissue (hemopathy or solid tumor), and has the potential to distinguish between important mutations (those that drive tumor progression) from " bystander " or accessory mutations, and also to identify "druggable" mutations amenable to targeted therapies

  20. Whole genome sequencing of a begomovirus-resistant tomato inbred reveals introgressions from wild Solanum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low cost of next generation sequencing (NGS) technology and the availability of a large number of well annotated plant genomes has made sequencing technology useful to breeding programs. With the published high quality tomato reference genome of the processing cultivar Heinz 1706, we can now uti...

  1. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities

    PubMed Central

    Williams, Bryony AP; Lee, Renny CH; Becnel, James J; Weiss, Louis M; Fast, Naomi M; Keeling, Patrick J

    2008-01-01

    Background Microsporidia are well known models of extreme nuclear genome reduction and compaction. The smallest microsporidian genomes have received the most attention, but genomes of different species range in size from 2.3 Mb to 19.5 Mb and the nature of the larger genomes remains unknown. Results Here we have undertaken genome sequence surveys of two diverse microsporidia, Brachiola algerae and Edhazardia aedis. In both species we find very large intergenic regions, many transposable elements, and a low gene-density, all in contrast to the small, model microsporidian genomes. We also find no recognizable genes that are not also found in other surveyed or sequenced microsporidian genomes. Conclusion Our results demonstrate that microsporidian genome architecture varies greatly between microsporidia. Much of the genome size difference could be accounted for by non-coding material, such as intergenic spaces and retrotransposons, and this suggests that the forces dictating genome size may vary across the phylum. PMID:18445287

  2. CGCI Investigators Reveal Comprehensive Landscape of Diffuse Large B-Cell Lymphoma (DLBCL) Genomes | Office of Cancer Genomics

    Cancer.gov

    Researchers from British Columbia Cancer Agency used whole genome sequencing to analyze 40 DLBCL cases and 13 cell lines in order to fill in the gaps of the complex landscape of DLBCL genomes. Their analysis, “Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing,” was published online in Blood on May 22. The authors are Ryan Morin, Marco Marra, and colleagues.  

  3. Whole Chloroplast Genome Sequencing in Fragaria Using Deep Sequencing: A Comparison of Three Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloroplast sequences previously investigated in Fragaria revealed low amounts of variation. Deep sequencing technologies enable economical sequencing of complete chloroplast genomes. These sequences can potentially provide robust phylogenetic resolution, even at low taxonomic levels within plant gr...

  4. Simple sequence repeats in bryophyte mitochondrial genomes.

    PubMed

    Zhao, Chao-Xian; Zhu, Rui-Liang; Liu, Yang

    2016-01-01

    Simple sequence repeats (SSRs) are thought to be common in plant mitochondrial (mt) genomes, but have yet to be fully described for bryophytes. We screened the mt genomes of two liverworts (Marchantia polymorpha and Pleurozia purpurea), two mosses (Physcomitrella patens and Anomodon rugelii) and two hornworts (Phaeoceros laevis and Nothoceros aenigmaticus), and detected 475 SSRs. Some SSRs are found conserved during the evolution, among which except one exists in both liverworts and mosses, all others are shared only by the two liverworts, mosses or hornworts. SSRs are known as DNA tracts having high mutation rates; however, according to our observations, they still can evolve slowly. The conservativeness of these SSRs suggests that they are under strong selection and could play critical roles in maintaining the gene functions. PMID:24491104

  5. Corruption of genomic databases with anomalous sequence.

    PubMed Central

    Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L

    1992-01-01

    We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%. PMID:1614861

  6. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    PubMed

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis. PMID:24328820

  7. The complete chloroplast genome sequence of Dioscorea zingiberensis (Dioscoreceae).

    PubMed

    Zhou, Wen; Chen, Chen; Hua, Wen-Ping; Wang, Zhe-Zhi

    2016-07-01

    Dioscorea zingiberensis (Dioscoreceae) is an important medicinal plant endemic to China. Here, its chloroplast genome sequence is reconstructed from the whole-genome Illumina sequencing data. The circular genome is 153,970 bp in length, and comprises a pair of inverted repeat (IR) regions of 25,491 bp each, a large single-copy (LSC) region of 83,950 bp and a small single-copy (SSC) region of 19,038 bp. The chloroplast genome contains 132 genes, including 86 protein-coding genes (79 PCG species), 8 ribosomal RNA genes (four rRNA species) and 38 transfer RNA genes (30 tRNA species). Out of these genes, 10 harbor a single intron, and 7 contain a couple of introns. The overall A + T content of the whole genome is 62.8%, while the corresponding values of the LSC, SSC and IR regions are 64.9%, 68.8% and 57.0%, respectively. PMID:26066025

  8. Effort required to finish shotgun-generated genome sequences differs significantly among vertebrates

    PubMed Central

    2010-01-01

    Background The approaches for shotgun-based sequencing of vertebrate genomes are now well-established, and have resulted in the generation of numerous draft whole-genome sequence assemblies. In contrast, the process of refining those assemblies to improve contiguity and increase accuracy (known as 'sequence finishing') remains tedious, labor-intensive, and expensive. As a result, the vast majority of vertebrate genome sequences generated to date remain at a draft stage. Results To date, our genome sequencing efforts have focused on comparative studies of targeted genomic regions, requiring sequence finishing of large blocks of orthologous sequence (average size 0.5-2 Mb) from various subsets of 75 vertebrates. This experience has provided a unique opportunity to compare the relative effort required to finish shotgun-generated genome sequence assemblies from different species, which we report here. Importantly, we found that the sequence assemblies generated for the same orthologous regions from various vertebrates show substantial variation with respect to misassemblies and, in particular, the frequency and characteristics of sequence gaps. As a consequence, the work required to finish different species' sequences varied greatly. Application of the same standardized methods for finishing provided a novel opportunity to "assay" characteristics of genome sequences among many vertebrate species. It is important to note that many of the problems we have encountered during sequence finishing reflect unique architectural features of a particular vertebrate's genome, which in some cases may have important functional and/or evolutionary implications. Finally, based on our analyses, we have been able to improve our procedures to overcome some of these problems and to increase the overall efficiency of the sequence-finishing process, although significant challenges still remain. Conclusion Our findings have important implications for the eventual finishing of the draft whole-genome

  9. Draft Genome Sequence of Fungus Clonostachys rosea Strain YKD0085

    PubMed Central

    Liu, Shuai; Chang, Yaowen; Hu, Xujia; Gong, Xuanyun; Hao, Xiaojiang

    2016-01-01

    Here, we report the draft genome sequence of Clonostachys rosea (strain YKD0085). The functional annotation of C. rosea provides important information related to its ability to produce secondary metabolites. The genome sequence presented here builds the basis for further genome mining. PMID:27340057

  10. Complete Genome Sequence of Staphylococcus aureus Siphovirus Phage JS01

    PubMed Central

    Jia, Hongying; Bai, Qinqin; Yang, Yongchun

    2013-01-01

    Staphylococcus aureus is the most prevalent and economically significant pathogen causing bovine mastitis. We isolated and characterized one staphylophage from the milk of mastitis-affected cattle and sequenced its genome. Transmission electron microscopy (TEM) observation shows that it belongs to the family Siphovirus. We announce here its complete genome sequence and report major findings from the genomic analysis. PMID:24233583

  11. First Draft Genome Sequence of Staphylococcus condimenti F-2T

    PubMed Central

    Zheng, Beiwen; Hu, Xinjun; Jiang, Xiawei; Li, Ang; Yao, Jian

    2016-01-01

    This report describes the draft genome sequence of S. condimenti strain F-2T (DSM 11674), a potential starter culture. The genome assembly comprised 2,616,174 bp with 34.6% GC content. To the best of our knowledge, this is the first documentation that reports the whole-genome sequence of S. condimenti. PMID:27257207

  12. Draft Genome Sequence of Fungus Clonostachys rosea Strain YKD0085.

    PubMed

    Liu, Shuai; Chang, Yaowen; Hu, Xujia; Gong, Xuanyun; Di, Yingtong; Dong, Jinyan; Hao, Xiaojiang

    2016-01-01

    Here, we report the draft genome sequence of Clonostachys rosea (strain YKD0085). The functional annotation of C. rosea provides important information related to its ability to produce secondary metabolites. The genome sequence presented here builds the basis for further genome mining. PMID:27340057

  13. Draft Genome Sequence of the Fungus Trametes hirsuta 072

    PubMed Central

    Tyazhelova, Tatiana V.; Moiseenko, Konstantin V.; Vasina, Daria V.; Mosunova, Olga V.; Fedorova, Tatiana V.; Maloshenok, Lilya G.; Landesman, Elena O.; Bruskin, Sergei A.; Psurtseva, Nadezhda V.; Slesarev, Alexei I.; Kozyavkin, Sergei A.; Koroleva, Olga V.

    2015-01-01

    A standard draft genome sequence of the white rot saprotrophic fungus Trametes hirsuta 072 (Basidiomycota, Polyporales) is presented. The genome sequence contains about 33.6 Mb assembled in 141 scaffolds with a G+C content of ~57.6%. The draft genome annotation predicts 14,598 putative protein-coding open reading frames (ORFs). PMID:26586872

  14. Draft Genome Sequence of Streptomyces hygroscopicus subsp. hygroscopicus NBRC 16556.

    PubMed

    Komaki, Hisayuki; Ichikawa, Natsuko; Oguchi, Akio; Hamada, Moriyuki; Tamura, Tomohiko; Suzuki, Ken-Ichiro; Fujita, Nobuyuki

    2016-01-01

    Here, we report the draft genome sequence of strain NBRC 16556, deposited as Streptomyces hygroscopicus subsp. hygroscopicus into the NBRC culture collection. An average nucleotide identity analysis confirmed that the taxonomic identification is correct. The genome sequence will serve as a valuable reference for genome mining to search new secondary metabolites. PMID:27198007

  15. Draft Genome Sequence of Alternaria alternata ATCC 34957.

    PubMed

    Nguyen, Hai D T; Lewis, Christopher T; Lévesque, C André; Gräfenhan, Tom

    2016-01-01

    We report the draft genome sequence of Alternaria alternata ATCC 34957. This strain was previously reported to produce alternariol and alternariol monomethyl ether on weathered grain sorghum. The genome was sequenced with PacBio technology and assembled into 27 scaffolds with a total genome size of 33.5 Mb. PMID:26769939

  16. First Draft Genome Sequence of Staphylococcus condimenti F-2T.

    PubMed

    Zheng, Beiwen; Hu, Xinjun; Jiang, Xiawei; Li, Ang; Yao, Jian; Li, Lanjuan

    2016-01-01

    This report describes the draft genome sequence of S. condimenti strain F-2(T) (DSM 11674), a potential starter culture. The genome assembly comprised 2,616,174 bp with 34.6% GC content. To the best of our knowledge, this is the first documentation that reports the whole-genome sequence of S. condimenti. PMID:27257207

  17. Whole-Genome Shotgun Sequencing of a Colonizing Multilocus Sequence Type 17 Streptococcus agalactiae Strain

    PubMed Central

    Singh, Pallavi; Springman, A. Cody; Davies, H. Dele

    2012-01-01

    This report highlights the whole-genome shotgun draft sequence for a Streptococcus agalactiae strain representing multilocus sequence type (ST) 17, isolated from a colonized woman at 8 weeks postpartum. This sequence represents an important addition to the published genomes and will promote comparative genomic studies of S. agalactiae recovered from diverse sources. PMID:23045509

  18. The complete genome of an individual by massively parallel DNA sequencing.

    PubMed

    Wheeler, David A; Srinivasan, Maithreyan; Egholm, Michael; Shen, Yufeng; Chen, Lei; McGuire, Amy; He, Wen; Chen, Yi-Ju; Makhijani, Vinod; Roth, G Thomas; Gomes, Xavier; Tartaro, Karrie; Niazi, Faheem; Turcotte, Cynthia L; Irzyk, Gerard P; Lupski, James R; Chinault, Craig; Song, Xing-zhi; Liu, Yue; Yuan, Ye; Nazareth, Lynne; Qin, Xiang; Muzny, Donna M; Margulies, Marcel; Weinstock, George M; Gibbs, Richard A; Rothberg, Jonathan M

    2008-04-17

    The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'. PMID:18421352

  19. Analysis of singleton ORFans in fully sequenced microbial genomes.

    PubMed

    Siew, Naomi; Fischer, Daniel

    2003-11-01

    Singleton sequence ORFans are orphan ORFs (open reading frames) that have no detectable sequence similarity to any other sequence in the databases. ORFans are of particular interest not only as evolutionary puzzles but also because we can learn little about them using bioinformatics tools. Here, we present a first systematic analysis of singleton ORFans in the first 60 fully sequenced microbial genomes. We show that although ORFans have been underemphasized, the number of ORFans is steadily growing, currently accounting for 23,634 sequences. At the same time, the percentage of ORFans as a fraction of all sequences is slowly diminishing, and is currently about 14%. Short ORFans comprise about 61% of all ORFans. The abundance of short ORFans may be due to a yet unexplained artifact. The data also suggest that the number of longer ORFans may soon diminish as more genomes of closely related organisms become available. To better address the questions about the functions and origins of ORFans, we propose to focus further studies on the longer ORFans, with emphasis on three new types of ORFans: ORFan modules, paralogous ORFans, and orthologous ORFans. We conclude that the large number of ORFans reflects an intrinsic property of the genetic material not yet fully understood. Further computational and experimental studies aimed at understanding Nature's protein diversity should also include ORFans. PMID:14517975

  20. Sequencing the yeast genome: the European effort.

    PubMed

    Vassarotti, A; Goffeau, A

    1992-01-01

    For ethical, practical and economic reasons, scientists have traditionally relied on model organisms for biological research. Although model organisms do not always quite constitute the 'real thing', the significant advantages of their use contribute to making their study a viable alternative. The decision to use a specific model, particularly in large-scale studies such as genome projects, will be governed not only by biological consideration, but also by the prevailing financial and organizational infrastructure and expertise of the research community. PMID:1367925

  1. Complete, Annotated Sequence of the Pseudorabies Virus Genome

    PubMed Central

    Klupp, Barbara G.; Hengartner, Christoph J.; Mettenleiter, Thomas C.; Enquist, Lynn W.

    2004-01-01

    We have obtained the complete DNA sequence of pseudorabies virus (PRV), an alphaherpesvirus also known as Aujeszky's disease virus or suid herpesvirus 1, using sequence fragments derived from six different strains (Kaplan, Becker, Rice, Indiana-Funkhauser, NIA-3, and TNL). The assembled PRV genome sequence comprises 143,461 nucleotides. As expected, it matches the predicted gene arrangement, genome size, and restriction enzyme digest patterns. More than 70 open reading frames were identified with homologs in related alphaherpesviruses; none were unique to PRV. RNA polymerase II transcriptional control elements in the PRV genome, including core promoters, splice sites, and polyadenylation sites, were identified with computer prediction programs. The correlation between predicted and experimentally determined transcription start and stop sites was excellent. The transcriptional control architecture is characterized by three key features: core transcription elements shared between genes, yielding divergent transcripts and a large number of coterminal transcripts; bifunctional transcriptional elements, yielding head-to-tail transcripts; and short repetitive sequences that could function as insulators against improperly terminated transcripts. Many of these features are conserved in the alphaherpesvirus subfamily and have important implications for gene array analyses. PMID:14671123

  2. A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast

    PubMed Central

    Hirashima, Kyotaro; Iwaki, Tomoko; Takegawa, Kaoru; Giga-Hama, Yuko; Tohda, Hideki

    2006-01-01

    The technologies for chromosome modification developed to date are not satisfactorily universal, owing to the typical requirements for special enzymes and sequences. In the present report, we propose a new approach for chromosome modification in Schizosaccharomyces pombe that does not involve any special enzymes or sequences. This method, designated the ‘Latour system’, has wide applicability with extremely high efficiency, although both the basic principle and the operation are very simple. We demonstrate the ability of the Latour system to discriminate essential genes, with a long chromosomal area of 100 kb containing 33 genes deleted simultaneously and efficiently. Since no foreign sequences are retained after deletion using the Latour system, this system can be repeatedly applied at other sites. Provided that a negative selectable marker is available, the Latour system relies solely upon homologous recombination, which is highly conserved in living organisms. For this reason, it is expected that the system will be applicable to various yeasts. PMID:16434698

  3. Genomic Sequence Comparisons, 1987-2003 Final Report

    SciTech Connect

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  4. Complete genome sequence of Methanoculleus marisnigri type strain JR1

    SciTech Connect

    Anderson, Iain; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Saunders, Elizabeth H; Han, Cliff; Brettin, Tom; Detter, J. Chris; Bruce, David; Mikhailova, Natalia; Pitluck, Sam; Hauser, Loren John; Land, Miriam L; Lucas, Susan; Richardson, P M; Whitman, W. B.; Kyrpides, Nikos C

    2009-01-01

    Methanoculleus marisnigri Romesser et al. 1981 is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain, JR1, was isolated from anoxic sediments of the Black Sea. M. marisnigri is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. marisnigri type strain JR1 and its annotation. This is part of a Joint Genome Institute 2006 Community Sequencing Program to sequence genomes of diverse Archaea.

  5. Complete genome sequence of Methanocorpusculum labreanum type strain Z

    SciTech Connect

    Anderson, Iain; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Pitluck, Sam; Hauser, Loren John; Land, Miriam L; Lucas, Susan; Richardson, P M; Whitman, W. B.; Kyrpides, Nikos C

    2009-01-01

    Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  6. Complete genome sequence of Methanocorpusculum labreanum type strain Z

    PubMed Central

    Anderson, Iain J.; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Pitluck, Sam; Hauser, Loren; Land, Miriam; Lucas, Susan; Richardson, Paul; Whitman, William B.; Kyrpides, Nikos C.

    2009-01-01

    Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicrobiales within the archaeal kingdom Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. PMID:21304657

  7. The complete chloroplast genome sequence of Chikusichloa aquatica (Poaceae: Oryzeae).

    PubMed

    Zhang, Jie; Zhang, Dan; Shi, Chao; Gao, Ju; Gao, Li-Zhi

    2016-07-01

    The complete chloroplast sequence of the Chikusichloa aquatica was determined in this study. The genome consists of 136 563 bp containing a pair of inverted repeats (IRs) of 20 837 bp, which was separated by a large single-copy region and a small single-copy region of 82 315 bp and 33 411 bp, respectively. The C. aquatica cp genome encodes 111 functional genes (71 protein-coding genes, four rRNA genes, and 36 tRNA genes): 92 are unique, while 19 are duplicated in the IR regions. The genic regions account for 58.9% of whole cp genome, and the GC content of the plastome is 39.0%. A phylogenomic analysis showed that C. aquatica is closely related to Rhynchoryza subulata that belongs to the tribe Oryzeae. PMID:26190082

  8. The complete chloroplast genome sequence of Anoectochilus emeiensis.

    PubMed

    Zhu, Shuying; Niu, Zhitao; Yan, Wenjin; Xue, Qingyun; Ding, Xiaoyu

    2016-09-01

    The complete chloroplast (cp) genome sequence of Anoectochilus emeiensis, an extremely endangered medical plant with important economic value, was determined and characterized. The genome size was 152 650 bp, containing a pair of inverted repeats (IRs) (26 319 bp) which were separated by a large single copy (LSC) (82 670 bp) and a small single copy (SSC) (17 342 bp). The cpDNA of A. emeiensis contained 113 unique genes, including 79 protein coding genes, 30 tRNA genes and 4 rRNA genes. Among them, 18 genes contained one or two introns. The overall AT content of the genome was 63.1%. PMID:26403535

  9. Inferring Demography from Runs of Homozygosity in Whole-Genome Sequence, with Correction for Sequence Errors

    PubMed Central

    MacLeod, Iona M.; Larkin, Denis M.; Lewin, Harris A.; Hayes, Ben J.; Goddard, Mike E.

    2013-01-01

    Whole-genome sequence is potentially the richest source of genetic data for inferring ancestral demography. However, full sequence also presents significant challenges to fully utilize such large data sets and to ensure that sequencing errors do not introduce bias into the inferred demography. Using whole-genome sequence data from two Holstein cattle, we demonstrate a new method to correct for bias caused by hidden errors and then infer stepwise changes in ancestral demography up to present. There was a strong upward bias in estimates of recent effective population size (Ne) if the correction method was not applied to the data, both for our method and the Li and Durbin (Inference of human population history from individual whole-genome sequences. Nature 475:493–496) pairwise sequentially Markovian coalescent method. To infer demography, we use an analytical predictor of multiloci linkage disequilibrium (LD) based on a simple coalescent model that allows for changes in Ne. The LD statistic summarizes the distribution of runs of homozygosity for any given demography. We infer a best fit demography as one that predicts a match with the observed distribution of runs of homozygosity in the corrected sequence data. We use multiloci LD because it potentially holds more information about ancestral demography than pairwise LD. The inferred demography indicates a strong reduction in the Ne around 170,000 years ago, possibly related to the divergence of African and European Bos taurus cattle. This is followed by a further reduction coinciding with the period of cattle domestication, with Ne of between 3,500 and 6,000. The most recent reduction of Ne to approximately 100 in the Holstein breed agrees well with estimates from pedigrees. Our approach can be applied to whole-genome sequence from any diploid species and can be scaled up to use sequence from multiple individuals. PMID:23842528

  10. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    PubMed Central

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256

  11. Initial genome sequencing and analysis of multiple myeloma.

    PubMed

    Chapman, Michael A; Lawrence, Michael S; Keats, Jonathan J; Cibulskis, Kristian; Sougnez, Carrie; Schinzel, Anna C; Harview, Christina L; Brunet, Jean-Philippe; Ahmann, Gregory J; Adli, Mazhar; Anderson, Kenneth C; Ardlie, Kristin G; Auclair, Daniel; Baker, Angela; Bergsagel, P Leif; Bernstein, Bradley E; Drier, Yotam; Fonseca, Rafael; Gabriel, Stacey B; Hofmeister, Craig C; Jagannath, Sundar; Jakubowiak, Andrzej J; Krishnan, Amrita; Levy, Joan; Liefeld, Ted; Lonial, Sagar; Mahan, Scott; Mfuko, Bunmi; Monti, Stefano; Perkins, Louise M; Onofrio, Robb; Pugh, Trevor J; Rajkumar, S Vincent; Ramos, Alex H; Siegel, David S; Sivachenko, Andrey; Stewart, A Keith; Trudel, Suzanne; Vij, Ravi; Voet, Douglas; Winckler, Wendy; Zimmerman, Todd; Carpten, John; Trent, Jeff; Hahn, William C; Garraway, Levi A; Meyerson, Matthew; Lander, Eric S; Getz, Gad; Golub, Todd R

    2011-03-24

    Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge. PMID:21430775

  12. Initial genome sequencing and analysis of multiple myeloma

    PubMed Central

    Chapman, Michael A.; Lawrence, Michael S.; Keats, Jonathan J.; Cibulskis, Kristian; Sougnez, Carrie; Schinzel, Anna C.; Harview, Christina L.; Brunet, Jean-Philippe; Ahmann, Gregory J.; Adli, Mazhar; Anderson, Kenneth C.; Ardlie, Kristin G.; Auclair, Daniel; Baker, Angela; Bergsagel, P. Leif; Bernstein, Bradley E.; Drier, Yotam; Fonseca, Rafael; Gabriel, Stacey B.; Hofmeister, Craig C.; Jagannath, Sundar; Jakubowiak, Andrzej J.; Krishnan, Amrita; Levy, Joan; Liefeld, Ted; Lonial, Sagar; Mahan, Scott; Mfuko, Bunmi; Monti, Stefano; Perkins, Louise M.; Onofrio, Robb; Pugh, Trevor J.; Vincent Rajkumar, S.; Ramos, Alex H.; Siegel, David S.; Sivachenko, Andrey; Trudel, Suzanne; Vij, Ravi; Voet, Douglas; Winckler, Wendy; Zimmerman, Todd; Carpten, John; Trent, Jeff; Hahn, William C.; Garraway, Levi A.; Meyerson, Matthew; Lander, Eric S.; Getz, Gad; Golub, Todd R.

    2013-01-01

    Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumor genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the dataset. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signaling was suggested by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge. PMID:21430775

  13. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus. PMID:26407184

  14. Complete Genome Sequence of the Soil Actinomycete Kocuria rhizophila▿

    PubMed Central

    Takarada, Hiromi; Sekine, Mitsuo; Kosugi, Hiroki; Matsuo, Yasunori; Fujisawa, Takatomo; Omata, Seiha; Kishi, Emi; Shimizu, Ai; Tsukatani, Naofumi; Tanikawa, Satoshi; Fujita, Nobuyuki; Harayama, Shigeaki

    2008-01-01

    The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds. PMID:18408034

  15. Mitochondrial genome sequencing in atherosclerosis: what's next?

    PubMed

    Sazonova, Margarita A; Shkurat, Tatiana P; Demakova, Natalya A; Zhelankin, Andrey V; Barinova, Valeria A; Sobenin, Igor A; Orekhov, Alexander N

    2016-01-01

    Cardiovascular diseases are currently a basic cause of mortality in highly developed countries. The major reason for genesis and development of cardiovascular diseases is atherosclerosis. At the present time high technology methods of molecular genetic diagnostics can significantly simplify early presymptomatic recognition of patients with atherosclerosis, to detect risk groups and to perform a family analysis of this pathology. A Next-Generation Sequencing (NGS) technology can be characterized by high productivity and cheapness of full genome analysis of each DNA sample. We suppose that in the nearest future NGS methods will be widely used for scientific and diagnostic purposes, including personalized medicine. In the present review article literature data on using NGS technology were described in studying mitochondrial genome mutations associated with atherosclerosis and its risk factors, such as mitochondrial diabetes, mitochondrial cardiomyopathy, diabetic nephropathy and left ventricular hypertrophy. With the use of the NGS technology it proved to be possible to detect a range of homoplasmic and heteroplasmic mutations and mitochondrial genome haplogroups which are associated with these pathologies. Meanwhile some mutations and haplogroups were detected both in atherosclerosis and in its risk factors. It conveys the suggestion that there are common pathogenetic mechanisms causing these pathologies. What comes next? New paradigm of crosstalk between non-pharmaceutical (including molecular genetic) and true pharmaceutical approaches may be developed to fill the niche of effective and pathogenically targeted pretreatment and treatment of preclinical and subclinical atherosclerosis to avoid the development of chronic life-threatening disease. PMID:26561059

  16. De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data

    PubMed Central

    DiGuistini, Scott; Liao, Nancy Y; Platt, Darren; Robertson, Gordon; Seidel, Michael; Chan, Simon K; Docking, T Roderick; Birol, Inanc; Holt, Robert A; Hirst, Martin; Mardis, Elaine; Marra, Marco A; Hamelin, Richard C; Bohlmann, Jörg; Breuil, Colette; Jones, Steven JM

    2009-01-01

    Sequencing-by-synthesis technologies can reduce the cost of generating de novo genome assemblies. We report a method for assembling draft genome sequences of eukaryotic organisms that integrates sequence information from different sources, and demonstrate its effectiveness by assembling an approximately 32.5 Mb draft genome sequence for the forest pathogen Grosmannia clavigera, an ascomycete fungus. We also developed a method for assessing draft assemblies using Illumina paired end read data and demonstrate how we are using it to guide future sequence finishing. Our results demonstrate that eukaryotic genome sequences can be accurately assembled by combining Illumina, 454 and Sanger sequence data. PMID:19747388

  17. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture.

    PubMed

    Seth-Smith, Helena M B; Harris, Simon R; Skilton, Rachel J; Radebe, Frans M; Golparian, Daniel; Shipitsyna, Elena; Duy, Pham Thanh; Scott, Paul; Cutcliffe, Lesley T; O'Neill, Colette; Parmar, Surendra; Pitt, Rachel; Baker, Stephen; Ison, Catherine A; Marsh, Peter; Jalal, Hamid; Lewis, David A; Unemo, Magnus; Clarke, Ian N; Parkhill, Julian; Thomson, Nicholas R

    2013-05-01

    The use of whole-genome sequencing as a tool for the study of infectious bacteria is of growing clinical interest. Chlamydia trachomatis is responsible for sexually transmitted infections and the blinding disease trachoma, which affect hundreds of millions of people worldwide. Recombination is widespread within the genome of C. trachomatis, thus whole-genome sequencing is necessary to understand the evolution, diversity, and epidemiology of this pathogen. Culture of C. trachomatis has, until now, been a prerequisite to obtain DNA for whole-genome sequencing; however, as C. trachomatis is an obligate intracellular pathogen, this procedure is technically demanding and time consuming. Discarded clinical samples represent a large resource for sequencing the genomes of pathogens, yet clinical swabs frequently contain very low levels of C. trachomatis DNA and large amounts of contaminating microbial and human DNA. To determine whether it is possible to obtain whole-genome sequences from bacteria without the need for culture, we have devised an approach that combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification. Using IMS-MDA in conjunction with high-throughput multiplexed Illumina sequencing, we have produced the first whole bacterial genome sequences direct from clinical samples. We also show that this method can be used to generate genome data from nonviable archived samples. This method will prove a useful tool in answering questions relating to the biology of many difficult-to-culture or fastidious bacteria of clinical concern. PMID:23525359

  18. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture

    PubMed Central

    Seth-Smith, Helena M.B.; Harris, Simon R.; Skilton, Rachel J.; Radebe, Frans M.; Golparian, Daniel; Shipitsyna, Elena; Duy, Pham Thanh; Scott, Paul; Cutcliffe, Lesley T.; O’Neill, Colette; Parmar, Surendra; Pitt, Rachel; Baker, Stephen; Ison, Catherine A.; Marsh, Peter; Jalal, Hamid; Lewis, David A.; Unemo, Magnus; Clarke, Ian N.; Parkhill, Julian; Thomson, Nicholas R.

    2013-01-01

    The use of whole-genome sequencing as a tool for the study of infectious bacteria is of growing clinical interest. Chlamydia trachomatis is responsible for sexually transmitted infections and the blinding disease trachoma, which affect hundreds of millions of people worldwide. Recombination is widespread within the genome of C. trachomatis, thus whole-genome sequencing is necessary to understand the evolution, diversity, and epidemiology of this pathogen. Culture of C. trachomatis has, until now, been a prerequisite to obtain DNA for whole-genome sequencing; however, as C. trachomatis is an obligate intracellular pathogen, this procedure is technically demanding and time consuming. Discarded clinical samples represent a large resource for sequencing the genomes of pathogens, yet clinical swabs frequently contain very low levels of C. trachomatis DNA and large amounts of contaminating microbial and human DNA. To determine whether it is possible to obtain whole-genome sequences from bacteria without the need for culture, we have devised an approach that combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification. Using IMS-MDA in conjunction with high-throughput multiplexed Illumina sequencing, we have produced the first whole bacterial genome sequences direct from clinical samples. We also show that this method can be used to generate genome data from nonviable archived samples. This method will prove a useful tool in answering questions relating to the biology of many difficult-to-culture or fastidious bacteria of clinical concern. PMID:23525359

  19. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo

    PubMed Central

    Horton, Daniel L.; Marston, Denise A.; Johnson, Nicholas; Ellis, Richard J.; Fooks, Anthony R.; Hewson, Roger

    2016-01-01

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates. PMID:27081121

  20. First Complete Genome Sequence of Cherry virus A

    PubMed Central

    Koinuma, Hiroaki; Nijo, Takamichi; Iwabuchi, Nozomu; Yoshida, Tetsuya; Keima, Takuya; Okano, Yukari; Maejima, Kensaku; Yamaji, Yasuyuki

    2016-01-01

    The 5′-terminal genomic sequence of Cherry virus A (CVA) has long been unknown. We determined the first complete genome sequence of an apricot isolate of CVA (7,434 nucleotides [nt]). The 5′-untranslated region was 107 nt in length, which was 53 nt longer than those of known CVA sequences. PMID:27284130

  1. Complete Genomic Sequence of Duck Flavivirus from China

    PubMed Central

    Liu, Ming; Liu, Chunguo; Li, Gang; Li, Xiaojun; Yin, Xiuchen; Chen, Yuhuan

    2012-01-01

    We report here the complete genomic sequence of the Chinese duck flavivirus TA strain. This work is the first to document the complete genomic sequence of this previously unknown duck flavivirus strain. The sequence will help further relevant epidemiological studies and extend our general knowledge of flaviviruses. PMID:22354941

  2. Draft Genome Sequence of the Archiascomycetous Yeast Saitoella complicata

    PubMed Central

    Yamauchi, Kenta; Hamamoto, Makiko; Takahashi, Yurika; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2015-01-01

    The draft genome sequence of the archiasomycetous yeast Saitoella complicata was determined. The assembly of newly and previously sequenced data sets resulted in 104 contigs (total of 14.1 Mbp; N50, 239 kbp). On the newly assembled genome, a total of 6,933 protein-coding sequences (7,119 transcripts, including alternative splicing forms) were identified. PMID:26021914

  3. First Complete Genome Sequence of Cherry virus A.

    PubMed

    Koinuma, Hiroaki; Nijo, Takamichi; Iwabuchi, Nozomu; Yoshida, Tetsuya; Keima, Takuya; Okano, Yukari; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The 5'-terminal genomic sequence of Cherry virus A (CVA) has long been unknown. We determined the first complete genome sequence of an apricot isolate of CVA (7,434 nucleotides [nt]). The 5'-untranslated region was 107 nt in length, which was 53 nt longer than those of known CVA sequences. PMID:27284130

  4. Next Generation Sequencing at the University of Chicago Genomics Core

    SciTech Connect

    Faber, Pieter

    2013-04-24

    The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.

  5. Adaptive seeds tame genomic sequence comparison.

    PubMed

    Kiełbasa, Szymon M; Wan, Raymond; Sato, Kengo; Horton, Paul; Frith, Martin C

    2011-03-01

    The main way of analyzing biological sequences is by comparing and aligning them to each other. It remains difficult, however, to compare modern multi-billionbase DNA data sets. The difficulty is caused by the nonuniform (oligo)nucleotide composition of these sequences, rather than their size per se. To solve this problem, we modified the standard seed-and-extend approach (e.g., BLAST) to use adaptive seeds. Adaptive seeds are matches that are chosen based on their rareness, instead of using fixed-length matches. This method guarantees that the number of matches, and thus the running time, increases linearly, instead of quadratically, with sequence length. LAST, our open source implementation of adaptive seeds, enables fast and sensitive comparison of large sequences with arbitrarily nonuniform composition. PMID:21209072

  6. Current challenges in de novo plant genome sequencing and assembly

    PubMed Central

    2012-01-01

    Genome sequencing is now affordable, but assembling plant genomes de novo remains challenging. We assess the state of the art of assembly and review the best practices for the community. PMID:22546054

  7. Genome sequencing of the important oilseed crop Sesamum indicum L.

    PubMed

    Zhang, Haiyang; Miao, Hongmei; Wang, Lei; Qu, Lingbo; Liu, Hongyan; Wang, Qiang; Yue, Meiwang

    2013-01-01

    The Sesame Genome Working Group (SGWG) has been formed to sequence and assemble the sesame (Sesamum indicum L.) genome. The status of this project and our planned analyses are described. PMID:23369264

  8. Roary: rapid large-scale prokaryote pan genome analysis

    PubMed Central

    Page, Andrew J.; Cummins, Carla A.; Hunt, Martin; Wong, Vanessa K.; Reuter, Sandra; Holden, Matthew T.G.; Fookes, Maria; Falush, Daniel; Keane, Jacqueline A.; Parkhill, Julian

    2015-01-01

    Summary: A typical prokaryote population sequencing study can now consist of hundreds or thousands of isolates. Interrogating these datasets can provide detailed insights into the genetic structure of prokaryotic genomes. We introduce Roary, a tool that rapidly builds large-scale pan genomes, identifying the core and accessory genes. Roary makes construction of the pan genome of thousands of prokaryote samples possible on a standard desktop without compromising on the accuracy of results. Using a single CPU Roary can produce a pan genome consisting of 1000 isolates in 4.5 hours using 13 GB of RAM, with further speedups possible using multiple processors. Availability and implementation: Roary is implemented in Perl and is freely available under an open source GPLv3 license from http://sanger-pathogens.github.io/Roary Contact: roary@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26198102

  9. Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus

    PubMed Central

    2010-01-01

    Background The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence fiscally and technically problematic. To selectively obtain gene-enriched regions of this tick's genome, Cot filtration was performed, and Cot-filtered DNA was sequenced via 454 FLX pyrosequencing. Results The sequenced Cot-filtered genomic DNA was assembled with an EST-based gene index of 14,586 unique entries where each EST served as a potential "seed" for scaffold formation. The new sequence assembly extended the lengths of 3,913 of the 14,586 gene index entries. Over half of the extensions corresponded to extensions of over 30 amino acids. To survey the repetitive elements in the tick genome, the complete sequences of five BAC clones were determined. Both Class I and II transposable elements were found. Comparison of the BAC and Cot filtration data indicates that Cot filtration was highly successful in filtering repetitive DNA out of the genomic DNA used in 454 sequencing. Conclusion Cot filtration is a very useful strategy to incorporate into genome sequencing projects on organisms with large genome sizes and which contain high percentages of repetitive, difficult to assemble, genomic DNA. Combining the Cot selection approach with 454 sequencing and assembly with a pre-existing EST database as seeds resulted in extensions of 27% of the members of the EST database. PMID:20540747

  10. Complete genome sequence of Arcanobacterium haemolyticum type strain (11018T)

    SciTech Connect

    Yasawong, Montri; Teshima, Hazuki; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Sikorski, Johannes; Pukall, Rudiger; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Vulcanisaeta distributa Itoh et al. 2002 belongs to the family Thermoproteaceae in the phylum Crenarchaeota. The genus Vulcanisaeta is characterized by a global distribution in hot and acidic springs. This is the first genome sequence from a member of the genus Vulcanisaeta and seventh genome sequence in the family Thermoproteaceae. The 2,374,137 bp long genome with its 2,544 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Draft Genome Sequences of Klebsiella variicola Plant Isolates

    PubMed Central

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena

    2015-01-01

    Three endophytic Klebsiella variicola isolates—T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively—were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts. PMID:26358599

  12. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    PubMed

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-01-01

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts. PMID:26358599

  13. Sequence and comparative genomic analysis of actin-related proteins.

    PubMed

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4. PMID:16195354

  14. Integration of new alternative reference strain genome sequences into the Saccharomyces genome database.

    PubMed

    Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla; Demeter, Janos; Engel, Stacia; Hellerstedt, Sage T; Karra, Kalpana; Hitz, Benjamin C; Nash, Robert S; Paskov, Kelley; Sheppard, Travis; Skrzypek, Marek; Weng, Shuai; Wong, Edith; Michael Cherry, J

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences.Database URL: www.yeastgenome.org. PMID:27252399

  15. Integration of new alternative reference strain genome sequences into the Saccharomyces genome database

    PubMed Central

    Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C.; Dalusag, Kyla; Demeter, Janos; Engel, Stacia; Hellerstedt, Sage T.; Karra, Kalpana; Hitz, Benjamin C.; Nash, Robert S.; Paskov, Kelley; Sheppard, Travis; Skrzypek, Marek; Weng, Shuai; Wong, Edith; Michael Cherry, J.

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences. Database URL: www.yeastgenome.org PMID:27252399

  16. Megabase sequencing of human genome by ordered-shotgun-sequencing (OSS) strategy

    NASA Astrophysics Data System (ADS)

    Chen, Ellson Y.

    1997-05-01

    So far we have used OSS strategy to sequence over 2 megabases DNA in large-insert clones from regions of human X chromosomes with different characteristic levels of GC content. The method starts by randomly fragmenting a BAC, YAC or PAC to 8-12 kb pieces and subcloning those into lambda phage. Insert-ends of these clones are sequenced and overlapped to create a partial map. Complete sequencing is then done on a minimal tiling path of selected subclones, recursively focusing on those at the edges of contigs to facilitate mergers of clones across the entire target. To reduce manual labor, PCR processes have been adapted to prepare sequencing templates throughout the entire operation. The streamlined process can thus lend itself to further automation. The OSS approach is suitable for large- scale genomic sequencing, providing considerable flexibility in the choice of subclones or regions for more or less intensive sequencing. For example, subclones containing contaminating host cell DNA or cloning vector can be recognized and ignored with minimal sequencing effort; regions overlapping a neighboring clone already sequenced need not be redone; and segments containing tandem repeats or long repetitive sequences can be spotted early on and targeted for additional attention.

  17. Evaluation of Target Preparation Methods for Single Feature Polymorphism Detection in Large Complex Plant Genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For those genomes low in repetitive DNA, hybridizing total genomic DNA to high-density expression arrays offers an effective strategy for scoring single feature polymorphisms (SFPs). Of the ~2.5 Gb that constitute the maize genome (Zea mays L.), only 10-20% are genic sequences, with large amounts o...

  18. Complete Genome Sequence of Streptococcus pneumoniae Serotype 19A, a Blood Clinical Isolate from Northeast Mexico

    PubMed Central

    Hinojosa-Robles, Rosa Maria; Barcenas-Walls, Jose Ramon; Vignau-Cantu, Armando; Barrera-Saldaña, Hugo A.

    2016-01-01

    We report here the draft genome sequence of a Streptococcus pneumoniae strain isolated in Monterrey, Mexico, MTY1662SN214, from a man with purpura fulminans. The strain belongs to the invasive and multidrug-resistant serogroup 19A, sequence type 320 (ST320). The draft genome sequence consists of 60 large contigs, a total of 2,069,474 bp, and has a G+C content of 39.7%. PMID:27034499

  19. Genome sequencing and annotation of Proteus sp. SAS71

    PubMed Central

    Selim, Samy; Hassan, Sherif; Hagagy, Nashwa

    2015-01-01

    We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000. PMID:26697338

  20. Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries.

    PubMed

    Saski, Christopher A; Bhattacharjee, Ranjana; Scheffler, Brian E; Asiedu, Robert

    2015-01-01

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches

  1. Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries

    PubMed Central

    Saski, Christopher A.; Bhattacharjee, Ranjana; Scheffler, Brian E.; Asiedu, Robert

    2015-01-01

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches

  2. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes

    PubMed Central

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M.; Murphy, Robert W.; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-01-01

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies. PMID:25733869

  3. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies. PMID:25733869

  4. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis

    PubMed Central

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5’ portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids. PMID:26046631

  5. Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis

    PubMed Central

    Schüler, Wolfgang; Bunikis, Ignas; Weber-Lehman, Jacqueline; Comstedt, Pär; Kutschan-Bunikis, Sabrina; Stanek, Gerold; Huber, Jutta; Meinke, Andreas; Bergström, Sven; Lundberg, Urban

    2015-01-01

    The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes. PMID:25798594

  6. Heterogeneous Cloud Framework for Big Data Genome Sequencing.

    PubMed

    Wang, Chao; Li, Xi; Chen, Peng; Wang, Aili; Zhou, Xuehai; Yu, Hong

    2015-01-01

    The next generation genome sequencing problem with short (long) reads is an emerging field in numerous scientific and big data research domains. However, data sizes and ease of access for scientific researchers are growing and most current methodologies rely on one acceleration approach and so cannot meet the requirements imposed by explosive data scales and complexities. In this paper, we propose a novel FPGA-based acceleration solution with MapReduce framework on multiple hardware accelerators. The combination of hardware acceleration and MapReduce execution flow could greatly accelerate the task of aligning short length reads to a known reference genome. To evaluate the performance and other metrics, we conducted a theoretical speedup analysis on a MapReduce programming platform, which demonstrates that our proposed architecture have efficient potential to improve the speedup for large scale genome sequencing applications. Also, as a practical study, we have built a hardware prototype on the real Xilinx FPGA chip. Significant metrics on speedup, sensitivity, mapping quality, error rate, and hardware cost are evaluated, respectively. Experimental results demonstrate that the proposed platform could efficiently accelerate the next generation sequencing problem with satisfactory accuracy and acceptable hardware cost. PMID:26357087

  7. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species

    PubMed Central

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-01-01

    Background The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. Results The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. Conclusion The observed differences in genomic structure between C. japonica and other land plants, including

  8. Sequencing and assembly of the 22-gb loblolly pine genome.

    PubMed

    Zimin, Aleksey; Stevens, Kristian A; Crepeau, Marc W; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L; de Jong, Pieter J; Neale, David B; Salzberg, Steven L; Yorke, James A; Langley, Charles H

    2014-03-01

    Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp. PMID:24653210

  9. Capturing genomic signatures of DNA sequence variation using a standard anonymous microarray platform

    PubMed Central

    Cannon, C. H.; Kua, C. S.; Lobenhofer, E. K.; Hurban, P.

    2006-01-01

    Comparative genomics, using the model organism approach, has provided powerful insights into the structure and evolution of whole genomes. Unfortunately, only a small fraction of Earth's biodiversity will have its genome sequenced in the foreseeable future. Most wild organisms have radically different life histories and evolutionary genomics than current model systems. A novel technique is needed to expand comparative genomics to a wider range of organisms. Here, we describe a novel approach using an anonymous DNA microarray platform that gathers genomic samples of sequence variation from any organism. Oligonucleotide probe sequences placed on a custom 44 K array were 25 bp long and designed using a simple set of criteria to maximize their complexity and dispersion in sequence probability space. Using whole genomic samples from three known genomes (mouse, rat and human) and one unknown (Gonystylus bancanus), we demonstrate and validate its power, reliability, transitivity and sensitivity. Using two separate statistical analyses, a large numbers of genomic ‘indicator’ probes were discovered. The construction of a genomic signature database based upon this technique would allow virtual comparisons and simple queries could generate optimal subsets of markers to be used in large-scale assays, using simple downstream techniques. Biologists from a wide range of fields, studying almost any organism, could efficiently perform genomic comparisons, at potentially any phylogenetic level after performing a small number of standardized DNA microarray hybridizations. Possibilities for refining and expanding the approach are discussed. PMID:17000641

  10. The reference genome sequence of Saccharomyces cerevisiae: then and now.

    PubMed

    Engel, Stacia R; Dietrich, Fred S; Fisk, Dianna G; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C; Dwight, Selina S; Hitz, Benjamin C; Karra, Kalpana; Nash, Robert S; Weng, Shuai; Wong, Edith D; Lloyd, Paul; Skrzypek, Marek S; Miyasato, Stuart R; Simison, Matt; Cherry, J Michael

    2014-03-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  11. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now

    PubMed Central

    Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael

    2014-01-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  12. Selection to sequence: opportunities in fungal genomics

    SciTech Connect

    Baker, Scott E.

    2009-12-01

    Selection is a biological force, causing genotypic and phenotypic change over time. Whether environmental or human induced, selective pressures shape the genotypes and the phenotypes of organisms both in nature and in the laboratory. In nature, selective pressure is highly dynamic and the sum of the environment and other organisms. In the laboratory, selection is used in genetic studies and industrial strain development programs to isolate mutants affecting biological processes of interest to researchers. Selective pressures are important considerations for fungal biology. In the laboratory a number of fungi are used as experimental systems to study a wide range of biological processes and in nature fungi are important pathogens of plants and animals and play key roles in carbon and nitrogen cycling. The continued development of high throughput sequencing technologies makes it possible to characterize at the genomic level, the effect of selective pressures both in the lab and in nature for filamentous fungi as well as other organisms.

  13. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    PubMed

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information. PMID:25919136

  14. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies. PMID:27531607

  15. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions

    PubMed Central

    Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2015-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information. PMID:25919136

  16. A taste of pineapple evolution through genome sequencing.

    PubMed

    Xu, Qing; Liu, Zhong-Jian

    2015-12-01

    The genome sequence assembly of the highly heterozygous Ananas comosus and its varieties is an impressive technical achievement. The sequence opens the door to a greater understanding of pineapple morphology and evolution. PMID:26620110

  17. Coevolution between simple sequence repeats (SSRs) and virus genome size

    PubMed Central

    2012-01-01

    Background Relationship between the level of repetitiveness in genomic sequence and genome size has been investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely made in virus genomes. Results In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that simple sequence repeats (SSRs) is strongly, positively and significantly correlated with genome size. Certain repeat class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in the range of genome < 100 kb, genomes containing penta- and hexa- SSRs are not more than 50%. Principal components analysis (PCA) indicated that dinucleotide repeat affects the differences of SSRs most strongly among virus genomes. Results showed that SSRs tend to accumulate in larger virus genomes; and the longer genome sequence, the longer repeat units. Conclusions We conducted this research standing on the height of the whole virus. We concluded that genome size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs content to a certain degree. PMID:22931422

  18. The zebrafish reference genome sequence and its relationship to the human genome

    PubMed Central

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  19. The zebrafish reference genome sequence and its relationship to the human genome.

    PubMed

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  20. Genome Sequence of the Repetitive-Sequence-Rich Mycoplasma fermentans Strain M64▿

    PubMed Central

    Shu, Hung-Wei; Liu, Tze-Tze; Chan, Huang-I; Liu, Yen-Ming; Wu, Keh-Ming; Shu, Hung-Yu; Tsai, Shih-Feng; Hsiao, Kwang-Jen; Hu, Wensi S.; Ng, Wailap Victor

    2011-01-01

    Mycoplasma fermentans is a microorganism commonly found in the genitourinary and respiratory tracts of healthy individuals and AIDS patients. The complete genome of the repetitive-sequence-rich M. fermentans strain M64 is reported here. Comparative genomics analysis revealed dramatic differences in genome size between this strain and the recently completely sequenced JER strain. PMID:21642450

  1. DNA Data Bank of Japan at work on genome sequence data.

    PubMed

    Tateno, Y; Fukami-Kobayashi, K; Miyazaki, S; Sugawara, H; Gojobori, T

    1998-01-01

    We at the DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) have recently begun receiving, processing and releasing EST and genome sequence data submitted by various Japanese genome projects. The data include those for human, Arabidopsis thaliana, rice, nematode, Synechocystis sp. and Escherichia coli. Since the quantity of data is very large, we organized teams to conduct preliminary discussions with project teams about data submission and handling for release to the public. We also developed a mass submission tool to cope with a large quantity of data. In addition, to provide genome data on WWW, we developed a genome information system using Java. This system (http://mol.genes.nig.ac.jp/ecoli/) can in theory be used for any genome sequence data. These activities will facilitate processing of large quantities of EST and genome data. PMID:9399792

  2. Whole-genome sequencing in outbreak analysis.

    PubMed

    Gilchrist, Carol A; Turner, Stephen D; Riley, Margaret F; Petri, William A; Hewlett, Erik L

    2015-07-01

    In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed. PMID:25876885

  3. Whole-Genome Sequencing in Outbreak Analysis

    PubMed Central

    Turner, Stephen D.; Riley, Margaret F.; Petri, William A.; Hewlett, Erik L.

    2015-01-01

    SUMMARY In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed. PMID:25876885

  4. Selective enrichment of damaged DNA molecules for ancient genome sequencing

    PubMed Central

    2014-01-01

    Contamination by present-day human and microbial DNA is one of the major hindrances for large-scale genomic studies using ancient biological material. We describe a new molecular method, U selection, which exploits one of the most distinctive features of ancient DNA—the presence of deoxyuracils—for selective enrichment of endogenous DNA against a complex background of contamination during DNA library preparation. By applying the method to Neanderthal DNA extracts that are heavily contaminated with present-day human DNA, we show that the fraction of useful sequence information increases ∼10-fold and that the resulting sequences are more efficiently depleted of human contamination than when using purely computational approaches. Furthermore, we show that U selection can lead to a four- to fivefold increase in the proportion of endogenous DNA sequences relative to those of microbial contaminants in some samples. U selection may thus help to lower the costs for ancient genome sequencing of nonhuman samples also. PMID:25081630

  5. Genome Project Standards in a New Era of Sequencing

    SciTech Connect

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better reflect the

  6. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition

    PubMed Central

    Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for

  7. Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....

  8. Genome Wide Characterization of Simple Sequence Repeats in Cucumber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...

  9. Finishing The Euchromatic Sequence Of The Human Genome

    SciTech Connect

    Rubin, Edward M.; Lucas, Susan; Richardson, Paul; Rokhsar, Daniel; Pennacchio, Len

    2004-09-07

    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process.The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers {approx}99% of the euchromatic genome and is accurate to an error rate of {approx}1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number,birth and death. Notably, the human genome seems to encode only20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

  10. Complete sequence and genomic analysis of murine gammaherpesvirus 68.

    PubMed Central

    Virgin, H W; Latreille, P; Wamsley, P; Hallsworth, K; Weck, K E; Dal Canto, A J; Speck, S H

    1997-01-01

    Murine gammaherpesvirus 68 (gammaHV68) infects mice, thus providing a tractable small-animal model for analysis of the acute and chronic pathogenesis of gammaherpesviruses. To facilitate molecular analysis of gammaHV68 pathogenesis, we have sequenced the gammaHV68 genome. The genome contains 118,237 bp of unique sequence flanked by multiple copies of a 1,213-bp terminal repeat. The GC content of the unique portion of the genome is 46%, while the GC content of the terminal repeat is 78%. The unique portion of the genome is estimated to encode at least 80 genes and is largely colinear with the genomes of Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8), herpesvirus saimiri (HVS), and Epstein-Barr virus (EBV). We detected 63 open reading frames (ORFs) homologous to HVS and KSHV ORFs and used the HVS/KSHV numbering system to designate these ORFs. gammaHV68 shares with HVS and KSHV ORFs homologous to a complement regulatory protein (ORF 4), a D-type cyclin (ORF 72), and a G-protein-coupled receptor with close homology to the interleukin-8 receptor (ORF 74). One ORF (K3) was identified in gammaHV68 as homologous to both ORFs K3 and K5 of KSHV and contains a domain found in a bovine herpesvirus 4 major immediate-early protein. We also detected 16 methionine-initiated ORFs predicted to encode proteins at least 100 amino acids in length that are unique to gammaHV68 (ORFs M1 to 14). ORF M1 has striking homology to poxvirus serpins, while ORF M11 encodes a potential homolog of Bcl-2-like molecules encoded by other gammaherpesviruses (gene 16 of HVS and KSHV and the BHRF1 gene of EBV). In addition, clustered at the left end of the unique region are eight sequences with significant homology to bacterial tRNAs. The unique region of the genome contains two internal repeats: a 40-bp repeat located between bp 26778 and 28191 in the genome and a 100-bp repeat located between bp 98981 and 101170. Analysis of the gammaHV68, HVS, EBV, and KSHV genomes demonstrated

  11. Genome Sequence of Mushroom Soft-Rot Pathogen Janthinobacterium agaricidamnosum

    PubMed Central

    Graupner, Katharina; Lackner, Gerald

    2015-01-01

    Janthinobacterium agaricidamnosum causes soft-rot disease of the cultured button mushroom Agaricus bisporus and is thus responsible for agricultural losses. Here, we present the genome sequence of J. agaricidamnosum DSM 9628. The 5.9-Mb genome harbors several secondary metabolite biosynthesis gene clusters, which renders this neglected bacterium a promising source for genome mining approaches. PMID:25883287

  12. Genome Sequence of Mushroom Soft-Rot Pathogen Janthinobacterium agaricidamnosum.

    PubMed

    Graupner, Katharina; Lackner, Gerald; Hertweck, Christian

    2015-01-01

    Janthinobacterium agaricidamnosum causes soft-rot disease of the cultured button mushroom Agaricus bisporus and is thus responsible for agricultural losses. Here, we present the genome sequence of J. agaricidamnosum DSM 9628. The 5.9-Mb genome harbors several secondary metabolite biosynthesis gene clusters, which renders this neglected bacterium a promising source for genome mining approaches. PMID:25883287

  13. SEQUENCING THE PIG GENOME USING A BAC BY BAC APPROACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have generated a highly contiguous physical map covering >98% of the pig genome in just 176 contigs. The map is localized to the genome through integration with the UIVC RH map as well BAC end sequence alignments to the human genome. Over 265k HindIII restriction digest fingerprints totaling 16.2...

  14. First Complete Genome Sequence of a Subdivision 6 Acidobacterium Strain

    PubMed Central

    Vieira, Selma; Bunk, Boyke; Riedel, Thomas; Spröer, Cathrin; Overmann, Jörg

    2016-01-01

    Although ubiquitous and abundant in soils, acidobacteria have mostly escaped isolation and remain poorly investigated. Only a few cultured representatives and just eight genomes of subdivisions 1, 3, and 4 are available to date. Here, we determined the complete genome sequence of strain HEG_-6_39, the first genome of Acidobacterium subdivision 6. PMID:27231379

  15. Genome Sequence of Xanthomonas axonopodis pv. punicae Strain LMG 859

    PubMed Central

    Sharma, Vikas; Midha, Samriti; Ranjan, Manish; Pinnaka, Anil Kumar

    2012-01-01

    We report the 4.94-Mb genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859, the causal agent of bacterial leaf blight disease in pomegranate. The draft genome will aid in comparative genomics, epidemiological studies, and quarantine of this devastating phytopathogen. PMID:22493202

  16. Draft Genome Sequence of a Diarrheagenic Morganella morganii Isolate

    PubMed Central

    Singh, Pallavi; Mosci, Rebekah; Rudrik, James T.

    2015-01-01

    This is a report of the whole-genome draft sequence of a diarrheagenic Morganella morganii isolate from a patient in Michigan, USA. This genome represents an important addition to the limited number of pathogenic M. morganii genomes available. PMID:26450735

  17. Genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859.

    PubMed

    Sharma, Vikas; Midha, Samriti; Ranjan, Manish; Pinnaka, Anil Kumar; Patil, Prabhu B

    2012-05-01

    We report the 4.94-Mb genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859, the causal agent of bacterial leaf blight disease in pomegranate. The draft genome will aid in comparative genomics, epidemiological studies, and quarantine of this devastating phytopathogen. PMID:22493202

  18. A field guide to whole-genome sequencing, assembly and annotation

    PubMed Central

    Ekblom, Robert; Wolf, Jochen B W

    2014-01-01

    Genome sequencing projects were long confined to biomedical model organisms and required the concerted effort of large consortia. Rapid progress in high-throughput sequencing technology and the simultaneous development of bioinformatic tools have democratized the field. It is now within reach for individual research groups in the eco-evolutionary and conservation community to generate de novo draft genome sequences for any organism of choice. Because of the cost and considerable effort involved in such an endeavour, the important first step is to thoroughly consider whether a genome sequence is necessary for addressing the biological question at hand. Once this decision is taken, a genome project requires careful planning with respect to the organism involved and the intended quality of the genome draft. Here, we briefly review the state of the art within this field and provide a step-by-step introduction to the workflow involved in genome sequencing, assembly and annotation with particular reference to large and complex genomes. This tutorial is targeted at scientists with a background in conservation genetics, but more generally, provides useful practical guidance for researchers engaging in whole-genome sequencing projects. PMID:25553065

  19. A Comprehensive Genome-Wide Map of Autonomously Replicating Sequences in a Naive Genome

    PubMed Central

    Liachko, Ivan; Bhaskar, Anand; Lee, Chanmi; Chung, Shau Chee Claire

    2010-01-01

    Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change. PMID:20485513

  20. Draft Genome Sequence of Neurospora crassa Strain FGSC 73

    SciTech Connect

    Baker, Scott E.; Schackwitz, Wendy; Lipzen, Anna; Martin, Joel; Haridas, Sajeet; LaButti, Kurt; Grigoriev, Igor V.; Simmons, Blake A.; McCluskey, Kevin

    2015-04-02

    We report the elucidation of the complete genome of the Neurospora crassa (Shear and Dodge) strain FGSC 73, a mat-a, trp-3 mutant strain. The genome sequence around the idiotypic mating type locus represents the only publicly available sequence for a mat-a strain. 40.42 Megabases are assembled into 358 scaffolds carrying 11,978 gene models.

  1. Complete Genome Sequence of Bacillus megaterium Bacteriophage Eldridge

    PubMed Central

    Reveille, Alexandra M.; Eldridge, Kimberly A.

    2016-01-01

    In this study the complete genome sequence of the unique bacteriophage Eldridge, isolated from soil using Bacillus megaterium as the host organism, was determined. Eldridge is a myovirus with a genome consisting of 242 genes and is unique when compared to phage sequences in GenBank. PMID:27103735

  2. Draft Genome Sequence of the Fish Pathogen Piscirickettsia salmonis.

    PubMed

    Eppinger, Mark; McNair, Katelyn; Zogaj, Xhavit; Dinsdale, Elizabeth A; Edwards, Robert A; Klose, Karl E

    2013-01-01

    Piscirickettsia salmonis is a Gram-negative intracellular fish pathogen that has a significant impact on the salmon industry. Here, we report the genome sequence of P. salmonis strain LF-89. This is the first draft genome sequence of P. salmonis, and it reveals interesting attributes, including flagellar genes, despite this bacterium being considered nonmotile. PMID:24201203

  3. Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages.

    PubMed

    Sheflo, Michael A; Gardner, Adam V; Merrill, Bryan D; Fisher, Joshua N B; Lunt, Bryce L; Breakwell, Donald P; Grose, Julianne H; Burnett, Sandra H

    2013-01-01

    Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage. PMID:24233582

  4. Initial sequencing and analysis of the human genome.

    PubMed

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence. PMID:11237011

  5. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  6. Draft Genome Sequence of the Fish Pathogen Piscirickettsia salmonis

    PubMed Central

    Eppinger, Mark; McNair, Katelyn; Zogaj, Xhavit; Dinsdale, Elizabeth A.; Edwards, Robert A.

    2013-01-01

    Piscirickettsia salmonis is a Gram-negative intracellular fish pathogen that has a significant impact on the salmon industry. Here, we report the genome sequence of P. salmonis strain LF-89. This is the first draft genome sequence of P. salmonis, and it reveals interesting attributes, including flagellar genes, despite this bacterium being considered nonmotile. PMID:24201203

  7. Selection of sequence variants to improve dairy cattle genomic predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic prediction reliabilities improved when adding selected sequence variants from run 5 of the 1,000 bull genomes project. High density (HD) imputed genotypes for 26,970 progeny tested Holstein bulls were combined with sequence variants for 444 Holstein animals. The first test included 481,904 c...

  8. The carrot genome sequence brings colors out of the dark.

    PubMed

    Garcia-Mas, Jordi; Rodriguez-Concepcion, Manuel

    2016-05-27

    The genome sequence of carrot (Daucus carota L.) is the first completed for an Apiaceae species, furthering knowledge of the evolution of the important euasterid II clade. Analyzing the whole-genome sequence allowed for the identification of a gene that may regulate the accumulation of carotenoids in the root. PMID:27230684

  9. Draft Genome Sequence of “Cohnella kolymensis” B-2846

    PubMed Central

    Kudryashova, Ekaterina B.; Ariskina, Elena V.

    2016-01-01

    A draft genome sequence of “Cohnella kolymensis” strain B-2846 was derived using IonTorrent sequencing technology. The size of the assembly and G+C content were in agreement with those of other species of this genus. Characterization of the genome of a novel species of Cohnella will assist in bacterial systematics. PMID:26769947

  10. Complete Genome Sequence of Enterococcus faecium ATCC 700221.

    PubMed

    McKenney, Peter T; Ling, Lilan; Wang, Guilin; Mane, Shrikant; Pamer, Eric G

    2016-01-01

    We report the complete genome sequence of a vancomycin-resistant isolate of Enterococcus faecium derived from human feces. The genome comprises one chromosome of 2.9 Mb and three plasmids. The strain harbors a plasmid-borne vanA-type vancomycin resistance locus and is a member of multilocus sequencing type (MLST) cluster ST-17. PMID:27198022

  11. Full Genome Sequence of a Bovine Enterovirus Isolated in China

    PubMed Central

    Peng, Xiao-wei; Dong, Hao; Wu, Qing-min

    2014-01-01

    We report the full genome sequence of an isolate of bovine enterovirus type B from China. The virus (BEV-BJ001) was isolated from Beijing, China, from fecal swabs of cattle suffering from severe diarrhea. This genome sequence will give useful insight for future molecular epidemiological studies in China. PMID:24970832

  12. Complete Genome Sequence of a Clinical Isolate of Enterobacter asburiae

    PubMed Central

    Liu, Feng; Yang, Jian; Xiao, Yan; Li, Li; Jin, Qi

    2016-01-01

    We report here the complete genome sequence of Enterobacter asburiae strain ENIPBJ-CG1, isolated from a bone marrow transplant patient. The size of the genome sequence is approximately 4.65 Mb, with a G+C content of 55.76%, and it is predicted to contain 4,790 protein-coding genes. PMID:27284137

  13. Almost finished: the complete genome sequence of Mycosphaerella graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella graminicola causes septoria tritici blotch of wheat. An 8.9x shotgun sequence of bread wheat strain IPO323 was generated through the Community Sequencing Program of the U.S. Department of Energy’s Joint Genome Institute (JGI), and was finished at the Stanford Human Genome Center. The ...

  14. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    PubMed Central

    Bayjanov, Jumamurat R.; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; Siezen, Roland; van Hijum, Sacha A. F. T.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence. PMID:26607887

  15. On the current status of Phakopsora pachyrhizi genome sequencing

    PubMed Central

    Loehrer, Marco; Vogel, Alexander; Huettel, Bruno; Reinhardt, Richard; Benes, Vladimir; Duplessis, Sébastien; Usadel, Björn; Schaffrath, Ulrich

    2014-01-01

    Recent advances in the field of sequencing technologies and bioinformatics allow a more rapid access to genomes of non-model organisms at sinking costs. Accordingly, draft genomes of several economically important cereal rust fungi have been released in the last 3 years. Aside from the very recent flax rust and poplar rust draft assemblies there are no genomic data available for other dicot-infecting rust fungi. In this article we outline rust fungus sequencing efforts and comment on the current status of Phakopsora pachyrhizi (Asian soybean rust) genome sequencing. PMID:25221558

  16. On the current status of Phakopsora pachyrhizi genome sequencing.

    PubMed

    Loehrer, Marco; Vogel, Alexander; Huettel, Bruno; Reinhardt, Richard; Benes, Vladimir; Duplessis, Sébastien; Usadel, Björn; Schaffrath, Ulrich

    2014-01-01

    Recent advances in the field of sequencing technologies and bioinformatics allow a more rapid access to genomes of non-model organisms at sinking costs. Accordingly, draft genomes of several economically important cereal rust fungi have been released in the last 3 years. Aside from the very recent flax rust and poplar rust draft assemblies there are no genomic data available for other dicot-infecting rust fungi. In this article we outline rust fungus sequencing efforts and comment on the current status of Phakopsora pachyrhizi (Asian soybean rust) genome sequencing. PMID:25221558

  17. The complete chloroplast genome sequence of Dendrobium officinale.

    PubMed

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns. PMID:25103425

  18. Minimum taxonomic criteria for bacterial genome sequence depositions and announcements.

    PubMed

    Bull, Matthew J; Marchesi, Julian R; Vandamme, Peter; Plummer, Sue; Mahenthiralingam, Eshwar

    2012-04-01

    Multiple bioinformatic methods are available to analyse the information encoded within the complete genome sequence of a bacterium and accurately assign its species status or nearest phylogenetic neighbour. However, it is clear that even now in what is the third decade of bacterial genomics, taxonomically incorrect genome sequence depositions are still being made. We outline a simple scheme of bioinformatic analysis and a set of minimum criteria that should be applied to all bacterial genomic data to ensure that they are accurately assigned to the species or genus level prior to database deposition. To illustrate the utility of the bioinformatic workflow, we analysed the recently deposited genome sequence of Lactobacillus acidophilus 30SC and demonstrated that this DNA was in fact derived from a strain of Lactobacillus amylovorus. Using these methods researchers can ensure that the taxonomic accuracy of genome sequence depositions is maintained within the ever increasing nucleic acid datasets. PMID:22366464

  19. From complete genome sequence to “complete“ understanding?

    PubMed Central

    Galperin, Michael Y.; Koonin, Eugene V.

    2011-01-01

    The rapidly accumulating genome sequence data allow researchers to address fundamental biological questions that were not even asked just a few years ago. A major problem in genomics is the widening gap between the rapid progress in genome sequencing and the comparatively slow progress in the functional characterization of sequenced genomes. Here we discuss two key questions of genome biology: whether we need more genomes, and how deep is our understanding of biology based on genomic analysis. We argue that overly specific annotations of gene functions are often less useful than the more generic, but also more robust, functional assignments based on protein family classification. We also discuss problems in understanding the functions of the remaining “conserved hypothetical” genes. PMID:20647113

  20. De novo assembly of a bell pepper endornavirus genome sequence using RNA sequencing data.

    PubMed

    Jo, Yeonhwa; Choi, Hoseng; Cho, Won Kyong

    2015-01-01

    The genus Endornavirus is a double-stranded RNA virus that infects a wide range of hosts. In this study, we report on the de novo assembly of a bell pepper endornavirus genome sequence by RNA sequencing (RNA-Seq). Our result demonstrates the successful application of RNA-Seq to obtain a complete viral genome sequence from the transcriptome data. PMID:25792042

  1. Genomic Sequencing and Characterization of Cynomolgus Macaque Cytomegalovirus▿

    PubMed Central

    Marsh, Angie K.; Willer, David O.; Ambagala, Aruna P. N.; Dzamba, Misko; Chan, Jacqueline K.; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Brudno, Michael; MacDonald, Kelly S.

    2011-01-01

    Cytomegalovirus (CMV) infection is the most common opportunistic infection in immunosuppressed individuals, such as transplant recipients or people living with HIV/AIDS, and congenital CMV is the leading viral cause of developmental disabilities in infants. Due to the highly species-specific nature of CMV, animal models that closely recapitulate human CMV (HCMV) are of growing importance for vaccine development. Here we present the genomic sequence of a novel nonhuman primate CMV from cynomolgus macaques (Macaca fascicularis; CyCMV). CyCMV (Ottawa strain) was isolated from the urine of a healthy, captive-bred, 4-year-old cynomolgus macaque of Philippine origin, and the viral genome was sequenced using next-generation Illumina sequencing to an average of 516-fold coverage. The CyCMV genome is 218,041 bp in length, with 49.5% G+C content and 84% protein-coding density. We have identified 262 putative open reading frames (ORFs) with an average coding length of 789 bp. The genomic organization of CyCMV is largely colinear with that of rhesus macaque CMV (RhCMV). Of the 262 CyCMV ORFs, 137 are homologous to HCMV genes, 243 are homologous to RhCMV 68.1, and 200 are homologous to RhCMV 180.92. CyCMV encodes four ORFs that are not present in RhCMV strain 68.1 or 180.92 but have homologies with HCMV (UL30, UL74A, UL126, and UL146). Similar to HCMV, CyCMV does not produce the RhCMV-specific viral homologue of cyclooxygenase-2. This newly characterized CMV may provide a novel model in which to study CMV biology and HCMV vaccine development. PMID:21994460

  2. Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07T)

    SciTech Connect

    Foster, Brian; Pukall, Rudiger; Abt, Birte; Nolan, Matt; Glavina Del Rio, Tijana; Chen, Feng; Lucas, Susan; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J C; Bruce, David; Goodwin, Lynne A.; Ivanova, N; Mavromatis, K; Pati, Amrita; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla L.

    2010-01-01

    Xylanimonas cellulosilytica Rivas et al. 2003 is the type species of the genus Xylanimonas of the actinobacterial family Promicromonosporaceae. The species X. cellulosilytica is of interest because of its ability to hydrolyze cellulose and xylan. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the large family Promicromonosporaceae, and the 3,831,380 bp long genome (one chromosome plus an 88,604 bp long plasmid) with its 3485 protein-coding and 61 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. No Genome-Wide Protein Sequence Convergence for Echolocation

    PubMed Central

    Zou, Zhengting; Zhang, Jianzhi

    2015-01-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. PMID:25631925

  4. No genome-wide protein sequence convergence for echolocation.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2015-05-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. PMID:25631925

  5. The complete chloroplast genome sequence of Anoectochilus roxburghii.

    PubMed

    Yu, Chao-Wei; Lian, Qin; Wu, Kang-Cheng; Yu, Shu-Han; Xie, Li-Yan; Wu, Zu-Jian

    2016-07-01

    The complete chloroplast sequence of the Anoectochilus roxburghii, a popular traditional Chinese medicine for the treatment of cancer, was determined in this study. The chloroplast genome (cpDNA)^ was 152,802 bp in length, containing a pair of inverted repeats of 52,728 bp separated by a large single-copy region and a small single-copy region of 82,641 bp and 17,433 bp, respectively. The chloroplast genome encodes 116 predicted functional genes, including 81 protein-coding genes, four ribosomal RNA genes, and 31 transfer RNA genes, 25 of which are duplicated in the inverted repeat regions. The cpDNA is GC-rich (36.9%). PMID:25865497

  6. The complete chloroplast genome sequence of Alocasia macrorrhizos.

    PubMed

    Wang, Bin; Han, Limin

    2016-09-01

    The complete chloroplast sequence of Alocasia macrorrhizos is 154 995 bp in length, containing a pair of inverted repeats of 25 944 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region of 87 366 bp and 15 741 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, four ribosomal RNA genes, and 37 transfer RNA genes, 18 of which are duplicated in the inverted repeat regions. In these genes, 16 genes contained single intron and two genes comprising double introns. A maximum-likelihood phylogenetic analysis using complete chloroplast genome revealed that A. macrorrhizos does not belong to Araceae family, which infers that the A. macrorrhizos is distant from the species in Araceae family. PMID:26258514

  7. The complete chloroplast genome sequence of Spathiphyllum kochii.

    PubMed

    Han, Limin; Wang, Bin; Wang, Zhe Zhi

    2016-07-01

    The complete chloroplast sequence of the Spathiphyllum kochii is 163 368 bp in length, containing a pair of inverted repeats of 25 270 bp separated by a large single-copy region and a small single-copy region of 90 482 bp and 22 346 bp, respectively. The chloroplast genome encodes 133 predicted functional genes, including 88 protein-coding genes, four ribosomal RNA genes and 37 transfer RNA genes, 18 of which are duplicated in the inverted repeat regions. The cpDNA is GC-rich (37.6%). The chloroplast genome of S. kochii reported here will lay basis for identification, utilization and protection of its germplasm resources. PMID:26134343

  8. Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes.

    PubMed

    Beier, Sebastian; Himmelbach, Axel; Schmutzer, Thomas; Felder, Marius; Taudien, Stefan; Mayer, Klaus F X; Platzer, Matthias; Stein, Nils; Scholz, Uwe; Mascher, Martin

    2016-07-01

    Hierarchical shotgun sequencing remains the method of choice for assembling high-quality reference sequences of complex plant genomes. The efficient exploitation of current high-throughput technologies and powerful computational facilities for large-insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole-genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high-quality assemblies of a large number of clones to assemble map-based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path. PMID:26801048

  9. Genome sequencing and annotation of Serratia sp. strain TEL.

    PubMed

    Lephoto, Tiisetso E; Gray, Vincent M

    2015-12-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000. PMID:26697332

  10. Draft Genome Sequence of the Aureocin A53-Producing Strain Staphylococcus aureus A53.

    PubMed

    Santos, Olinda Cabral Silva; Duarte, Andreza Freitas Souza; Albano, Rodolpho Mattos; Bastos, Maria Carmo Freire

    2016-01-01

    Here, we present the 2,658,363-bp draft genome sequence of the aureocin A53-producing strain Staphylococcus aureus A53. This genome information may contribute to the optimal and rational exploitation of aureocin A53 as an antimicrobial agent and to its production in large scale. PMID:27563042

  11. Draft Genome Sequence of the Commercial Biocontrol Strain Pantoea agglomerans P10c

    PubMed Central

    Rezzonico, Fabio; Blom, Jochen; Goesmann, Alexander; Abelli, Azzurra; Kron Morelli, Roberto; Vanneste, Joël L.; Duffy, Brion

    2015-01-01

    We report here the draft genome sequence of the biocontrol strain Pantoea agglomerans P10c, composed of a draft chromosome and two plasmids: the 559-kb large Pantoea plasmid 1 (pPag3) and a 182-kb plasmid (pPag1). A genomic island containing pantocin A biosynthesis genes was identified. PMID:26659685

  12. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this Genomics Era, vast amounts of next generation sequencing data have become publicly-available for multiple genomes across hundreds of species. Analysis of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset...

  13. Draft Genome Sequence of the Commercial Biocontrol Strain Pantoea agglomerans P10c.

    PubMed

    Smits, Theo H M; Rezzonico, Fabio; Blom, Jochen; Goesmann, Alexander; Abelli, Azzurra; Kron Morelli, Roberto; Vanneste, Joël L; Duffy, Brion

    2015-01-01

    We report here the draft genome sequence of the biocontrol strain Pantoea agglomerans P10c, composed of a draft chromosome and two plasmids: the 559-kb large Pantoea plasmid 1 (pPag3) and a 182-kb plasmid (pPag1). A genomic island containing pantocin A biosynthesis genes was identified. PMID:26659685

  14. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  15. Genome-wide Characterization of Simple Sequence Repeats in Cucumber (Cucumis Sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber is an important vegetable crop worldwide, but progress in genetic and genomics research in this crop is slow. Recently the genomes of two cucumber genotypes were sequenced, (ibred line ‘9930’ and pickling cultivar ‘Gy14’), which provides a powerful tool for developing markers in large scale...

  16. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber is an important vegetable crop worldwide, but progress in genetic and genomics research in this crop is slow. Recently the genomes of two cucumber genotypes were sequenced, (ibred line ‘9930’ and pickling cultivar ‘Gy14’), which provides a powerful tool for developing markers in large scale...

  17. Draft Genome Sequence of the Aureocin A53–Producing Strain Staphylococcus aureus A53

    PubMed Central

    Santos, Olinda Cabral Silva; Duarte, Andreza Freitas Souza; Albano, Rodolpho Mattos

    2016-01-01

    Here, we present the 2,658,363-bp draft genome sequence of the aureocin A53–producing strain Staphylococcus aureus A53. This genome information may contribute to the optimal and rational exploitation of aureocin A53 as an antimicrobial agent and to its production in large scale. PMID:27563042

  18. Microbial genome sequencing using optical mapping and Illumina sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...

  19. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  20. Complete genome sequence of Hirschia baltica type strain (IFAM 1418T)

    SciTech Connect

    Chertkov, Olga; Brown, Pamela J.B.; Kysela, David T.; De Pedro, Miguel A.; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Detter, J. Chris; Han, Cliff; Larimer, Frank W; Chang, Yun-Juan; Jeffries, Cynthia; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ivanova, N; Ovchinnikova, Galina; Tindall, Brian; Goker, Markus; Klenk, Hans-Peter; Brun, Yves V.

    2011-01-01

    The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacte- ria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. bal- tica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacte- rium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 pro- tein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008.

  1. Complete genome sequence of Hirschia baltica type strain (IFAM 1418T)

    PubMed Central

    Chertkov, Olga; Brown, Pamela J.B.; Kysela, David T.; de Pedro, Miguel A.; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Detter, John C.; Han, Cliff; Larimer, Frank; Chang, Yun-juan; Jeffries, Cynthia D.; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia; Ovchinnikova, Galina; Tindall, Brian J.; Göker, Markus; Klenk, Hans-Peter; Brun, Yves V.

    2011-01-01

    The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacteria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. baltica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacterium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 protein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008. PMID:22675580

  2. Complete Genome Sequence of Probiotic Strain Lactobacillus acidophilus La-14.

    PubMed

    Stahl, Buffy; Barrangou, Rodolphe

    2013-01-01

    We present the 1,991,830-bp complete genome sequence of Lactobacillus acidophilus strain La-14 (SD-5212). Comparative genomic analysis revealed 99.98% similarity overall to the L. acidophilus NCFM genome. Globally, 111 single nucleotide polymorphisms (SNPs) (95 SNPs, 16 indels) were observed throughout the genome. Also, a 416-bp deletion in the LA14_1146 sugar ABC transporter was identified. PMID:23788546

  3. Optimization of AFLP for extremely large genomes over 70 Gb.

    PubMed

    Veselá, Petra; Volařík, Daniel; Mráček, Jaroslav

    2016-07-01

    Here, we present an improved amplified fragment length polymorphism (AFLP) protocol using restriction enzymes (AscI and SbfI) that recognize 8-base pair sequences to provide alternative optimization suitable for species with a genome size over 70 Gb. This cost-effective optimization massively reduces the number of amplified fragments using only +3 selective bases per primer during selective amplification. We demonstrate the effects of the number of fragments and genome size on the appearance of nonidentical comigrating fragments (size homoplasy), which has a negative impact on the informative value of AFLP genotypes. We also present various reaction conditions and their effects on reproducibility and the band intensity of the extremely large genome of Viscum album. The reproducibility of this octo-cutter protocol was calculated using several species with genome sizes ranging from 1 Gb (Carex panicea) to 76 Gb (V. album). The improved protocol also succeeded in detecting high intraspecific variability in species with large genomes (V. album, Galanthus nivalis and Pinus pumila). PMID:26849414

  4. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  5. Volume visualization of multiple alignment of large genomicDNA

    SciTech Connect

    Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H.; Hamann, Bernd

    2005-07-25

    Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.

  6. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants

    PubMed Central

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A.; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. Methodology/Principal Findings The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. Conclusion The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be

  7. MIPS: a database for genomes and protein sequences

    PubMed Central

    Mewes, H. W.; Frishman, D.; Gruber, C.; Geier, B.; Haase, D.; Kaps, A.; Lemcke, K.; Mannhaupt, G.; Pfeiffer, F.; Schüller, C.; Stocker, S.; Weil, B.

    2000-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried, near Munich, Germany, continues its longstanding tradition to develop and maintain high quality curated genome databases. In addition, efforts have been intensified to cover the wealth of complete genome sequences in a systematic, comprehensive form. Bioinformatics, supporting national as well as European sequencing and functional analysis projects, has resulted in several up-to-date genome-oriented databases. This report describes growing databases reflecting the progress of sequencing the Arabidopsis thaliana (MATDB) and Neurospora crassa genomes (MNCDB), the yeast genome database (MYGD) extended by functional analysis data, the database of annotated human EST-clusters (HIB) and the database of the complete cDNA sequences from the DHGP (German Human Genome Project). It also contains information on the up-to-date database of complete genomes (PEDANT), the classification of protein sequences (ProtFam) and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database. These databases can be accessed through the MIPS WWW server (http://www. mips.biochem.mpg.de ). PMID:10592176

  8. The diploid genome sequence of an Asian individual

    PubMed Central

    Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian

    2009-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735

  9. Sequencing genomes from single cells by polymerase cloning.

    PubMed

    Zhang, Kun; Martiny, Adam C; Reppas, Nikos B; Barry, Kerrie W; Malek, Joel; Chisholm, Sallie W; Church, George M

    2006-06-01

    Genome sequencing currently requires DNA from pools of numerous nearly identical cells (clones), leaving the genome sequences of many difficult-to-culture microorganisms unattainable. We report a sequencing strategy that eliminates culturing of microorganisms by using real-time isothermal amplification to form polymerase clones (plones) from the DNA of single cells. Two Escherichia coli plones, analyzed by Affymetrix chip hybridization, demonstrate that plonal amplification is specific and the bias is randomly distributed. Whole-genome shotgun sequencing of Prochlorococcus MIT9312 plones showed 62% coverage of the genome from one plone at a sequencing depth of 3.5x, and 66% coverage from a second plone at a depth of 4.7x. Genomic regions not revealed in the initial round of sequencing are recovered by sequencing PCR amplicons derived from plonal DNA. The mutation rate in single-cell amplification is <2 x 10(5), better than that of current genome sequencing standards. Polymerase cloning should provide a critical tool for systematic characterization of genome diversity in the biosphere. PMID:16732271

  10. The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation

    SciTech Connect

    Mavromatis, K; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, A; Clum, Alicia; Goodwin, Lynne A.; Woyke, Tanja; Lapidus, Alla L.; Klenk, Hans-Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    Background: The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. Methodology/Principal Findings: In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. Conclusion: These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  11. Genome Sequence of the Trichosporon asahii Environmental Strain CBS 8904

    PubMed Central

    Li, Hai Tao; Zhu, He; Zhou, Guang Peng; Wang, Meng; Wang, Lei

    2012-01-01

    This is the first report of the genome sequence of Trichosporon asahii environmental strain CBS 8904, which was isolated from maize cobs. Comparison of the genome sequence with that of clinical strain CBS 2479 revealed that they have >99% chromosomal and mitochondrial sequence identity, yet CBS 8904 has 368 specific genes. Analysis of clusters of orthologous groups predicted that 3,307 genes belong to 23 functional categories and 703 genes were predicted to have a general function. PMID:23193141

  12. The complete plastid genome sequence of Eustrephus latifolius (Asparagaceae: Lomandroideae).

    PubMed

    Kim, Hyoung Tae; Kim, Jung Sung; Kim, Joo-Hwan

    2016-01-01

    The complete chloroplast (cp) genome sequence of Eustrephus latifolius was firstly determined in subfamily Lomandriodeae of family Asparagaceae. It was 159,736 bp and contained a large single copy region (82,403 bp) and a small single copy region (13,607 bp) which were separated by two inverted repeat regions (31,863 bp). In total, 132 genes were identified and they were consisted of 83 coding genes, 8 rRNA genes, 38 tRNA genes, 3 pseudogenes. rpl23 and clpP were pseudogenes due to sequence deletions. Among 23 genes containing introns, rps12 and ycf3 contained two introns and the rest had just one intron. The intact ycf68 was identified within an intron of trnI-GAU. The amino acid sequence was almost identical with Phoenix dactylifera in Aracales. Ycf1 of E. latifolius was completely located in IR. It was similar to cp genome structure of Lemna minor, Spirodela polyrhiza, Wolffiella lingulata, Wolffia australiana in Alismatales. PMID:25186113

  13. The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)

    SciTech Connect

    Nylund, Stian Karlsen, Marius; Nylund, Are

    2008-03-30

    The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses, which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae.

  14. Integrating Sequencing Technologies in Personal Genomics: Optimal Low Cost Reconstruction of Structural Variants

    PubMed Central

    Du, Jiang; Bjornson, Robert D.; Zhang, Zhengdong D.; Kong, Yong; Snyder, Michael; Gerstein, Mark B.

    2009-01-01

    The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen), with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs). SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome.) To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of human genomes at

  15. Recombination-mediated genetic engineering of large genomic DNA transgenes.

    PubMed

    Ejsmont, Radoslaw Kamil; Ahlfeld, Peter; Pozniakovsky, Andrei; Stewart, A Francis; Tomancak, Pavel; Sarov, Mihail

    2011-01-01

    Faithful gene activity reporters are a useful tool for evo-devo studies enabling selective introduction of specific loci between species and assaying the activity of large gene regulatory sequences. The use of large genomic constructs such as BACs and fosmids provides an efficient platform for exploration of gene function under endogenous regulatory control. Despite their large size they can be easily engineered using in vivo homologous recombination in Escherichia coli (recombineering). We have previously demonstrated that the efficiency and fidelity of recombineering are sufficient to allow high-throughput transgene engineering in liquid culture, and have successfully applied this approach in several model systems. Here, we present a detailed protocol for recombineering of BAC/fosmid transgenes for expression of fluorescent or affinity tagged proteins in Drosophila under endogenous in vivo regulatory control. The tag coding sequence is seamlessly recombineered into the genomic region contained in the BAC/fosmid clone, which is then integrated into the fly genome using ϕC31 recombination. This protocol can be easily adapted to other recombineering projects. PMID:22065454

  16. Whole-genome sequencing to control antimicrobial resistance

    PubMed Central

    Köser, Claudio U.; Ellington, Matthew J.; Peacock, Sharon J.

    2014-01-01

    Following recent improvements in sequencing technologies, whole-genome sequencing (WGS) is positioned to become an essential tool in the control of antibiotic resistance, a major threat in modern healthcare. WGS has already found numerous applications in this area, ranging from the development of novel antibiotics and diagnostic tests through to antibiotic stewardship of currently available drugs via surveillance and the elucidation of the factors that allow the emergence and persistence of resistance. Numerous proof-of-principle studies have also highlighted the value of WGS as a tool for day-to-day infection control and, for some pathogens, as a primary diagnostic tool to detect antibiotic resistance. However, appropriate data analysis platforms will need to be developed before routine WGS can be introduced on a large scale. PMID:25096945

  17. A new strategy for genome assembly using short sequence reads and reduced representation libraries.

    PubMed

    Young, Andrew L; Abaan, Hatice Ozel; Zerbino, Daniel; Mullikin, James C; Birney, Ewan; Margulies, Elliott H

    2010-02-01

    We have developed a novel approach for using massively parallel short-read sequencing to generate fast and inexpensive de novo genomic assemblies comparable to those generated by capillary-based methods. The ultrashort (<100 base) sequences generated by this technology pose specific biological and computational challenges for de novo assembly of large genomes. To account for this, we devised a method for experimentally partitioning the genome using reduced representation (RR) libraries prior to assembly. We use two restriction enzymes independently to create a series of overlapping fragment libraries, each containing a tractable subset of the genome. Together, these libraries allow us to reassemble the entire genome without the need of a reference sequence. As proof of concept, we applied this approach to sequence and assembled the majority of the 125-Mb Drosophila melanogaster genome. We subsequently demonstrate the accuracy of our assembly method with meaningful comparisons against the current available D. melanogaster reference genome (dm3). The ease of assembly and accuracy for comparative genomics suggest that our approach will scale to future mammalian genome-sequencing efforts, saving both time and money without sacrificing quality. PMID:20123915

  18. Real-time, portable genome sequencing for Ebola surveillance.

    PubMed

    Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan H J; Becker-Ziaja, Beate; Boettcher, Jan Peter; Cabeza-Cabrerizo, Mar; Camino-Sánchez, Álvaro; Carter, Lisa L; Doerrbecker, Juliane; Enkirch, Theresa; García-Dorival, Isabel; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigael; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallasch, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Y; Sachse, Andreas; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Racine, Trina; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Frank; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, James; Rachwal, Phillip; Turner, Daniel J; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keïta, Sakoba; Rambaut, Andrew; Formenty, Pierre; Günther, Stephan; Carroll, Miles W

    2016-02-11

    The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485

  19. Using BLAT to find sequence similarity in closely related genomes.

    PubMed

    Bhagwat, Medha; Young, Lynn; Robison, Rex R

    2012-03-01

    The BLAST-Like Alignment Tool (BLAT) is used to find genomic sequences that match a protein or DNA sequence submitted by the user. BLAT is typically used for searching similar sequences within the same or closely related species. It was developed to align millions of expressed sequence tags and mouse whole-genome random reads to the human genome at a higher speed. It is freely available either on the Web or as a downloadable stand-alone program. BLAT search results provide a link for visualization in the University of California, Santa Cruz (UCSC) Genome Browser, where associated biological information may be obtained. Three example protocols are given: using an mRNA sequence to identify the exon-intron locations and associated gene in the genomic sequence of the same species, using a protein sequence to identify the coding regions in a genomic sequence and to search for gene family members in the same species, and using a protein sequence to find homologs in another species. PMID:22389010

  20. Are We There Yet? Reliably Estimating the Completeness of Plant Genome Sequences.

    PubMed

    Veeckman, Elisabeth; Ruttink, Tom; Vandepoele, Klaas

    2016-08-01

    Genome sequencing is becoming cheaper and faster thanks to the introduction of next-generation sequencing techniques. Dozens of new plant genome sequences have been released in recent years, ranging from small to gigantic repeat-rich or polyploid genomes. Most genome projects have a dual purpose: delivering a contiguous, complete genome assembly and creating a full catalog of correctly predicted genes. Frequently, the completeness of a species' gene catalog is measured using a set of marker genes that are expected to be present. This expectation can be defined along an evolutionary gradient, ranging from highly conserved genes to species-specific genes. Large-scale population resequencing studies have revealed that gene space is fairly variable even between closely related individuals, which limits the definition of the expected gene space, and, consequently, the accuracy of estimates used to assess genome and gene space completeness. We argue that, based on the desired applications of a genome sequencing project, different completeness scores for the genome assembly and/or gene space should be determined. Using examples from several dicot and monocot genomes, we outline some pitfalls and recommendations regarding methods to estimate completeness during different steps of genome assembly and annotation. PMID:27512012

  1. Are We There Yet? Reliably Estimating the Completeness of Plant Genome Sequences[OPEN

    PubMed Central

    2016-01-01

    Genome sequencing is becoming cheaper and faster thanks to the introduction of next-generation sequencing techniques. Dozens of new plant genome sequences have been released in recent years, ranging from small to gigantic repeat-rich or polyploid genomes. Most genome projects have a dual purpose: delivering a contiguous, complete genome assembly and creating a full catalog of correctly predicted genes. Frequently, the completeness of a species’ gene catalog is measured using a set of marker genes that are expected to be present. This expectation can be defined along an evolutionary gradient, ranging from highly conserved genes to species-specific genes. Large-scale population resequencing studies have revealed that gene space is fairly variable even between closely related individuals, which limits the definition of the expected gene space, and, consequently, the accuracy of estimates used to assess genome and gene space completeness. We argue that, based on the desired applications of a genome sequencing project, different completeness scores for the genome assembly and/or gene space should be determined. Using examples from several dicot and monocot genomes, we outline some pitfalls and recommendations regarding methods to estimate completeness during different steps of genome assembly and annotation. PMID:27512012

  2. The Complete Genome Sequence and Comparative Genome Analysis of the High Pathogenicity Yersinia enterocolitica Strain 8081

    PubMed Central

    Thomson, Nicholas R; Howard, Sarah; Wren, Brendan W; Holden, Matthew T. G; Crossman, Lisa; Challis, Gregory L; Churcher, Carol; Mungall, Karen; Brooks, Karen; Chillingworth, Tracey; Feltwell, Theresa; Abdellah, Zahra; Hauser, Heidi; Jagels, Kay; Maddison, Mark; Moule, Sharon; Sanders, Mandy; Whitehead, Sally; Quail, Michael A; Dougan, Gordon; Parkhill, Julian; Prentice, Michael B

    2006-01-01

    The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the

  3. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    PubMed

    Thomson, Nicholas R; Howard, Sarah; Wren, Brendan W; Holden, Matthew T G; Crossman, Lisa; Challis, Gregory L; Churcher, Carol; Mungall, Karen; Brooks, Karen; Chillingworth, Tracey; Feltwell, Theresa; Abdellah, Zahra; Hauser, Heidi; Jagels, Kay; Maddison, Mark; Moule, Sharon; Sanders, Mandy; Whitehead, Sally; Quail, Michael A; Dougan, Gordon; Parkhill, Julian; Prentice, Michael B

    2006-12-15

    The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the

  4. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C.; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chuyu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela; Panaud, Olivier; Kellogg, Elizabeth A.; Brutnell, Thomas P.; Doust, Andrew N.; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  5. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Yang, Xiaohan; Ye, Chuyu; Tuskan, Gerald A

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  6. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  7. Marsupial genome sequences: providing insight into evolution and disease.

    PubMed

    Deakin, Janine E

    2012-01-01

    Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences. PMID:24278712

  8. Complete genomic sequence of barley (Hordeum vulgare) endornavirus (HvEV) determined by next-generation sequencing.

    PubMed

    Candresse, Thierry; Marais, Armelle; Sorrentino, Roberto; Faure, Chantal; Theil, Sébastien; Cadot, Valérie; Rolland, Mathieu; Villemot, Julie; Rabenstein, Frank

    2016-03-01

    Endornaviruses are unusual plant-, fungus- and oomycete-infecting viruses with a large, ca 14- to 17-kb linear double-stranded RNA (dsRNA) genome and a persistent lifestyle. The complete genome sequence of an endornavirus from the barley (Hordeum vulgare) Nerz variety was determined from paired Illumina MySeq reads derived from purified dsRNAs. The genome is 14,243 nt long, with 5' and 3' non-coding regions of 207 and 47 nt, respectively. It encodes a single large protein of 4663 amino acids that carries conserved motifs for a methyltransferase, a helicase and an RNA-dependent RNA polymerase. The sequence of Hordeum vulgare endornavirus (HvEV) carries all the hallmarks of a typical member of the genus Endornavirus, with the exception of an UDP-glycosyltransferase motif observed in many, but not all, endornaviral genomes. PMID:26666441

  9. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    PubMed Central

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  10. Genome sequencing of the redbanded stink bug (Piezodorus guildinii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assembled a partial genome sequence from the redbanded stink bug, Piezodorus guildinii from Illumina MiSeq sequencing runs. The sequence has been submitted and published under NCBI GenBank Accession Number JTEQ01000000. The BioProject and BioSample Accession numbers are PRJNA263369 and SAMN030997...

  11. Complete genome sequence of Sulfurospirillum deleyianum type strain (5175T)

    SciTech Connect

    Sikorski, Johannes; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Elizabeth H; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, N; Mavromatis, K; Chen, Amy; Palaniappan, Krishna; Chain, Patrick S. G.; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Detter, J. Chris; Han, Cliff; Rohde, Manfred; Lang, Elke; Spring, Stefan; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Sulfurospirillum deleyianum Schumacher et al. 1993 is the type species of the genus Sulfurospirillum. S. deleyianum is a model organism for studying sulfur reduction and dissimilatory nitrate reduction as energy source for growth. Also, it is a prominent model organism for studying the structural and functional characteristics of the cytochrome c nitrite reductase. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the genus Sulfurospirillum. The 2,306,351 bp long genome with its 2291 protein-coding and 52 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    SciTech Connect

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. Complete genome sequence of Spirosoma linguale type strain (1T)

    SciTech Connect

    Lail, Kathleen; Sikorski, Johannes; Saunders, Elizabeth H; Lapidus, Alla L.; Glavina Del Rio, Tijana; Copeland, A; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Detter, J. Chris; Schutze, Andrea; Rohde, Manfred; Tindall, Brian; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-01-01

    Spirosoma linguale Migula 1894 is the type species of the genus. S. linguale is a free-living and non-pathogenic organism, known for its peculiar ringlike and horseshoe-shaped cell morphology. Here we describe the features of this organism, together with the complete ge-nome sequence and annotation. This is only the third completed genome sequence of a member of the family Cytophagaceae. The 8,491,258 bp long genome with its eight plas-mids, 7,069 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacte-ria and Archaea project.

  14. Draft genome sequence of Enterococcus faecium strain LMG 8148.

    PubMed

    Michiels, Joran E; Van den Bergh, Bram; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Enterococcus faecium, traditionally considered a harmless gut commensal, is emerging as an important nosocomial pathogen showing increasing rates of multidrug resistance. We report the draft genome sequence of E. faecium strain LMG 8148, isolated in 1968 from a human in Gothenburg, Sweden. The draft genome has a total length of 2,697,490 bp, a GC-content of 38.3 %, and 2,402 predicted protein-coding sequences. The isolation of this strain predates the emergence of E. faecium as a nosocomial pathogen. Consequently, its genome can be useful in comparative genomic studies investigating the evolution of E. faecium as a pathogen. PMID:27610213

  15. Complete genome sequence of Thermomonospora curvata type strain (B9)

    SciTech Connect

    Chertkov, Olga; Sikorski, Johannes; Nolan, Matt; Lapidus, Alla L.; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Ngatchou, Olivier Duplex; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-01-01

    Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats

    PubMed Central

    van der Weide, Robin H.; Simonis, Marieke; Hermsen, Roel; Toonen, Pim; Cuppen, Edwin; de Ligt, Joep

    2016-01-01

    Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts. PMID:27501045

  17. Genome sequencing: a systematic review of health economic evidence

    PubMed Central

    2013-01-01

    Recently the sequencing of the human genome has become a major biological and clinical research field. However, the public health impact of this new technology with focus on the financial effect is not yet to be foreseen. To provide an overview of the current health economic evidence for genome sequencing, we conducted a thorough systematic review of the literature from 17 databases. In addition, we conducted a hand search. Starting with 5 520 records we ultimately included five full-text publications and one internet source, all focused on cost calculations. The results were very heterogeneous and, therefore, difficult to compare. Furthermore, because the methodology of the publications was quite poor, the reliability and validity of the results were questionable. The real costs for the whole sequencing workflow, including data management and analysis, remain unknown. Overall, our review indicates that the current health economic evidence for genome sequencing is quite poor. Therefore, we listed aspects that needed to be considered when conducting health economic analyses of genome sequencing. Thereby, specifics regarding the overall aim, technology, population, indication, comparator, alternatives after sequencing, outcomes, probabilities, and costs with respect to genome sequencing are discussed. For further research, at the outset, a comprehensive cost calculation of genome sequencing is needed, because all further health economic studies rely on valid cost data. The results will serve as an input parameter for budget-impact analyses or cost-effectiveness analyses. PMID:24330507

  18. Complete genome sequence of Staphylothermus hellenicus P8T

    SciTech Connect

    Anderson, Iain; Wirth, Reinhard; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Pati, Amrita; Mikhailova, Natalia; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Ivanova, N

    2011-01-01

    Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

  19. Draft Genome Sequence of Carbaryl-Degrading Soil Isolate Pseudomonas sp. Strain C5pp

    PubMed Central

    Trivedi, Vikas D.; Jangir, Pramod Kumar; Phale, Prashant S.

    2016-01-01

    We report the draft genome sequence of carbaryl-degrading Pseudomonas sp. strain C5pp. Genes encoding salicylate and gentisate metabolism, large amounts of oxygenase, nitrogen metabolism, and heavy metal tolerance were identified. The sequence will provide further insight into the biochemical and evolutionary aspects of carbaryl degradation. PMID:27284139

  20. Use of gene sequence analyses and genome comparisons for yeast systematics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection, identification, and classification of yeasts has undergone a major transformation in the past decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined gene sequences from domains 1 and 2 of large sub...

  1. Draft Genome Sequence of Carbaryl-Degrading Soil Isolate Pseudomonas sp. Strain C5pp.

    PubMed

    Trivedi, Vikas D; Jangir, Pramod Kumar; Sharma, Rakesh; Phale, Prashant S

    2016-01-01

    We report the draft genome sequence of carbaryl-degrading Pseudomonas sp. strain C5pp. Genes encoding salicylate and gentisate metabolism, large amounts of oxygenase, nitrogen metabolism, and heavy metal tolerance were identified. The sequence will provide further insight into the biochemical and evolutionary aspects of carbaryl degradation. PMID:27284139

  2. Indexes of Large Genome Collections on a PC

    PubMed Central

    Danek, Agnieszka; Deorowicz, Sebastian; Grabowski, Szymon

    2014-01-01

    The availability of thousands of individual genomes of one species should boost rapid progress in personalized medicine or understanding of the interaction between genotype and phenotype, to name a few applications. A key operation useful in such analyses is aligning sequencing reads against a collection of genomes, which is costly with the use of existing algorithms due to their large memory requirements. We present MuGI, Multiple Genome Index, which reports all occurrences of a given pattern, in exact and approximate matching model, against a collection of thousand(s) genomes. Its unique feature is the small index size, which is customisable. It fits in a standard computer with 16–32 GB, or even 8 GB, of RAM, for the 1000GP collection of 1092 diploid human genomes. The solution is also fast. For example, the exact matching queries (of average length 150 bp) are handled in average time of 39 µs and with up to 3 mismatches in 373 µs on the test PC with the index size of 13.4 GB. For a smaller index, occupying 7.4 GB in memory, the respective times grow to 76 µs and 917 µs. Software is available at http://sun.aei.polsl.pl/mugi under a free license. Data S1 is available at PLOS One online. PMID:25289699

  3. ICDS database: interrupted CoDing sequences in prokaryotic genomes.

    PubMed

    Perrodou, Emmanuel; Deshayes, Caroline; Muller, Jean; Schaeffer, Christine; Van Dorsselaer, Alain; Ripp, Raymond; Poch, Olivier; Reyrat, Jean-Marc; Lecompte, Odile

    2006-01-01

    Unrecognized frameshifts, in-frame stop codons and sequencing errors lead to Interrupted CoDing Sequence (ICDS) that can seriously affect all subsequent steps of functional characterization, from in silico analysis to high-throughput proteomic projects. Here, we describe the Interrupted CoDing Sequence database containing ICDS detected by a similarity-based approach in 80 complete prokaryotic genomes. ICDS can be retrieved by species browsing or similarity searches via a web interface (http://www-bio3d-igbmc.u-strasbg.fr/ICDS/). The definition of each interrupted gene is provided as well as the ICDS genomic localization with the surrounding sequence. Furthermore, to facilitate the experimental characterization of ICDS, we propose optimized primers for re-sequencing purposes. The database will be regularly updated with additional data from ongoing sequenced genomes. Our strategy has been validated by three independent tests: (i) ICDS prediction on a benchmark of artificially created frameshifts, (ii) comparison of predicted ICDS and results obtained from the comparison of the two genomic sequences of Bacillus licheniformis strain ATCC 14580 and (iii) re-sequencing of 25 predicted ICDS of the recently sequenced genome of Mycobacterium smegmatis. This allows us to estimate the specificity and sensitivity (95 and 82%, respectively) of our program and the efficiency of primer determination. PMID:16381882

  4. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    SciTech Connect

    Ivanova, Natalia; Gronow, Sabine; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Liz; Bruce, David; Goodwin, Lynne; Brettin, Thomas; Detter, John C.; Han, Cliff; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Rohde, Christine; Goker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large fusiform non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from the phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genome sequence of Aminobacterium colombiense type strain (ALA-1T)

    SciTech Connect

    Chertkov, Olga; Sikorski, Johannes; Brambilla, Evelyne-Marie; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, J. Chris; Bruce, David; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Spring, Stefan; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Aminobacterium colombiense Baena et al. 1999 is the type species of the genus Aminobacterium. This genus is of large interest because of its isolated phylogenetic location in the family Synergistaceae, its stricty anaerobic lifestyle, and its ability to grow by fermentation of a limited range of amino acids but not carbohydrates. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the family Synergistaceae and the first genome sequence of a member of the genus Aminobacterium. The 1,980,592 bp long genome with its 1,914 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    SciTech Connect

    Ivanova, N; Gronow, Sabine; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Elizabeth H; Bruce, David; Goodwin, Lynne A.; Detter, J. Chris; Han, Cliff; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Mavromatis, K; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Rohde, Christine; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-01-01

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large, fusiform, non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from the phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. The sequence and de novo assembly of the giant panda genome

    PubMed Central

    Li, Ruiqiang; Fan, Wei; Tian, Geng; Zhu, Hongmei; He, Lin; Cai, Jing; Huang, Quanfei; Cai, Qingle; Li, Bo; Bai, Yinqi; Zhang, Zhihe; Zhang, Yaping; Wang, Wen; Li, Jun; Wei, Fuwen; Li, Heng; Jian, Min; Li, Jianwen; Zhang, Zhaolei; Nielsen, Rasmus; Li, Dawei; Gu, Wanjun; Yang, Zhentao; Xuan, Zhaoling; Ryder, Oliver A.; Leung, Frederick Chi-Ching; Zhou, Yan; Cao, Jianjun; Sun, Xiao; Fu, Yonggui; Fang, Xiaodong; Guo, Xiaosen; Wang, Bo; Hou, Rong; Shen, Fujun; Mu, Bo; Ni, Peixiang; Lin, Runmao; Qian, Wubin; Wang, Guodong; Yu, Chang; Nie, Wenhui; Wang, Jinhuan; Wu, Zhigang; Liang, Huiqing; Min, Jiumeng; Wu, Qi; Cheng, Shifeng; Ruan, Jue; Wang, Mingwei; Shi, Zhongbin; Wen, Ming; Liu, Binghang; Ren, Xiaoli; Zheng, Huisong; Dong, Dong; Cook, Kathleen; Shan, Gao; Zhang, Hao; Kosiol, Carolin; Xie, Xueying; Lu, Zuhong; Zheng, Hancheng; Li, Yingrui; Steiner, Cynthia C.; Lam, Tommy Tsan-Yuk; Lin, Siyuan; Zhang, Qinghui; Li, Guoqing; Tian, Jing; Gong, Timing; Liu, Hongde; Zhang, Dejin; Fang, Lin; Ye, Chen; Zhang, Juanbin; Hu, Wenbo; Xu, Anlong; Ren, Yuanyuan; Zhang, Guojie; Bruford, Michael W.; Li, Qibin; Ma, Lijia; Guo, Yiran; An, Na; Hu, Yujie; Zheng, Yang; Shi, Yongyong; Li, Zhiqiang; Liu, Qing; Chen, Yanling; Zhao, Jing; Qu, Ning; Zhao, Shancen; Tian, Feng; Wang, Xiaoling; Wang, Haiyin; Xu, Lizhi; Liu, Xiao; Vinar, Tomas; Wang, Yajun; Lam, Tak-Wah; Yiu, Siu-Ming; Liu, Shiping; Zhang, Hemin; Li, Desheng; Huang, Yan; Wang, Xia; Yang, Guohua; Jiang, Zhi; Wang, Junyi; Qin, Nan; Li, Li; Li, Jingxiang; Bolund, Lars; Kristiansen, Karsten; Wong, Gane Ka-Shu; Olson, Maynard; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun

    2013-01-01

    Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes. PMID:20010809

  8. Complete genome sequence of Aminobacterium colombiense type strain (ALA-1T)

    PubMed Central

    Chertkov, Olga; Sikorski, Johannes; Brambilla, Evelyne; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Bruce, David; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Spring, Stefan; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Aminobacterium colombiense Baena et al. 1999 is the type species of the genus Aminobacterium. This genus is of large interest because of its isolated phylogenetic location in the family Synergistaceae, its strictly anaerobic lifestyle, and its ability to grow by fermentation of a limited range of amino acids but not carbohydrates. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the family Synergistaceae and the first genome sequence of a member of the genus Aminobacterium. The 1,980,592 bp long genome with its 1,914 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304712

  9. The complete sequence of the chloroplast genome of the green microalga Lobosphaera (Parietochloris) incisa.

    PubMed

    Tourasse, Nicolas J; Barbi, Tommaso; Waterhouse, Janet C; Shtaida, Nastassia; Leu, Stefan; Boussiba, Sammy; Purton, Saul; Vallon, Olivier

    2016-05-01

    We hereby report the complete chloroplast genome sequence of the green unicellular alga Lobosphaera (Parietochloris) incisa (strain SAG 2468). The genome consists of a circular chromosome of 156,028 bp, which is 72% A-T rich and does not contain a large rRNA-encoding inverted repeat. It is predicted to encode a total of 111 genes including 78 protein-coding, three rRNA, and 30 tRNA genes. The genome sequence also carries a self-splicing group I intron and a group II intron remnant. Overall, the gene and intron content of the L. incisa chloroplast genome is highly similar to that of other species of Trebouxiophyceae. In contrast, the L. incisa chloroplast genome harbors 88 copies of various intergenic dispersed DNA repeat sequences that are all unique to L. incisa. PMID:25423517

  10. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    PubMed

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  11. The Release 6 reference sequence of the Drosophila melanogaster genome

    SciTech Connect

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V.; Andreyeva, Evgeniya N.; Boldyreva, Lidiya V.; Marra, Marco; Carvalho, A. Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F.; Rubin, Gerald M.; Karpen, Gary H.; Celniker, Susan E.

    2015-01-14

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.

  12. De novo SNP discovery and development of an interspecific cotton genome map using a simplified genotyping-by-sequencing (GBS) approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in next-generation sequencing (NGS) technology have lowered the cost of sequencing per base and enabled whole genome re-sequencing, genome-wide association studies, and for some species, unprecedented discovery of molecular markers. For species with large, complex genomes, genot...

  13. Real-time, portable genome sequencing for Ebola surveillance

    PubMed Central

    Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan HJ; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L.; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N’Faly; Williams, Cecelia V.; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A.; Matthews, David A.; O’Shea, Matthew K.; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A.; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W.

    2016-01-01

    The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485

  14. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and genomic analyses of Upland cotton (Gossypium hirsutum) are difficult because it has a complex allotetraploid (AADD; 2n = 4x = 52) genome. Here we sequenced, assembled and analyzed the world's most important cultivated cotton genome with 246.2 gigabase (Gb) clean data obtained using whol...

  15. Diversity through duplication: whole-genome sequencing reveals novel gene retrocopies in the human population.

    PubMed

    Richardson, Sandra R; Salvador-Palomeque, Carmen; Faulkner, Geoffrey J

    2014-05-01

    Gene retrocopies are generated by reverse transcription and genomic integration of mRNA. As such, retrocopies present an important exception to the central dogma of molecular biology, and have substantially impacted the functional landscape of the metazoan genome. While an estimated 8,000-17,000 retrocopies exist in the human genome reference sequence, the extent of variation between individuals in terms of retrocopy content has remained largely unexplored. Three recent studies by Abyzov et al., Ewing et al. and Schrider et al. have exploited 1,000 Genomes Project Consortium data, as well as other sources of whole-genome sequencing data, to uncover novel gene retrocopies. Here, we compare the methods and results of these three studies, highlight the impact of retrocopies in human diversity and genome evolution, and speculate on the potential for somatic gene retrocopies to impact cancer etiology and genetic diversity among individual neurons in the mammalian brain. PMID:24615986

  16. The complete chloroplast genome sequence of Dendropanax morbifera (Léveillé).

    PubMed

    Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Dendropanax morbifera, an economically and medicinally important endemic tree species in Korea, was obtained by de novo assembly with whole-genome sequence data and manual correction. A circular 156 366-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 475 bp, a small single copy region of 18 125 bp, and a pair of inverted repeats of 25 883 bp. The chloroplast genome harbored 87 protein-coding genes. Phylogenetic analysis with the chloroplast genome revealed that D. morbifera is most closely related to Dendropanax dentiger, an evergreen tree species in China and Southeastern Asia. PMID:26153746

  17. Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P. sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete sequences of the mitochondrial genomes of the oomycetes Phytophthora ramorum and P. sojae were determined during the course of their complete nuclear genome sequencing (Tyler et al. 2006). Both are circular, with sizes of 39,314 bp for P. ramorum and 42,977 bp for P. sojae. Each contain...

  18. Genome sequence of Roseivirga sp. strain D-25 and its potential applications from the genomic aspect.

    PubMed

    Selvaratnam, Chitra; Thevarajoo, Suganthi; Ee, Robson; Chan, Kok-Gan; Bennett, Joseph P; Goh, Kian Mau; Chong, Chun Shiong

    2016-08-01

    Roseivirga sp. strain D-25 is an aerobic marine bacterium isolated from seawater collected from Desaru beach, Malaysia. To date, the genus Roseivirga consists of only four species with no genome sequence reported. Here, we present the genome sequence of Roseivirga sp. strain D-25 (=KCTC 42709=DSM 101709), with a genome size of approximately 4.08Mbp and G+C content of 39.18%. Genome sequence analysis of strain D-25 revealed the presence of genes related to petroleum hydrocarbon degradation, 2,4,6-trinitrotoluene detoxification, heavy metals bioremediation and production of carotenoids, which shed light on the potential application of this strain. PMID:27107724

  19. DNA sequence copy number analysis by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Pinkel, D.; Kallioniemi, A.; Kallioniemi, O.; Waldman, F.; Sudar, D.; Gray, I. ); Rutovitz, D.; Piper, I. )

    1993-01-01

    Comparative Genomic Hybridization (CGH) uses the kinetics of in situ hybridization to compare the copy numbers of different DNA sequences within the same genome and the copy numbers of the same sequences among different genomes. In a typical application genomic DNA from a tumor and from normal cells are differentially labeled and simultaneously hybridized to normal metaphase chromosomes, and detected with different fluorochromes. Properly registered images of each fluorochrome are obtained using a microscope equipped with multi-band filters and a CCD camera. Digital image analysis permits measurement of intensity ratio profiles along each of the target chromosomes. Studies of cells with known aberrations indicate that the intensity ratio at each position is proportional to the ratio of the copy numbers of the sequences that bind there in the tumor and normal genomes. Analytical challenges posed by the need to efficiently obtain copy number karyotypes are discussed.

  20. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    SciTech Connect

    Abt, Birte; Foster, Brian; Lapidus, Alla L.; Clum, Alicia; Sun, Hui; Pukall, Rudiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne A.; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    SciTech Connect

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  2. The complete chloroplast genome sequence of medicinal plant Pinellia ternata.

    PubMed

    Han, Limin; Chen, Chen; Wang, Bin; Wang, Zhe-Zhi

    2016-07-01

    Pinellia ternata is an important medicinal plant used in the treatment of cough, to dispel phlegm, to calm vomiting and to terminate early pregnancy, as an anti-ulcer and anti-tumor medicine. In this study, we found that the complete chloroplast genome of Pinellia ternata was 164 013 bp in length, containing a pair of inverted repeats of 25 625 bp separated by a large single-copy region and a small single-copy region of 89 783 bp and 22 980 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The chloroplast DNA is GC-rich (36.7%). The phylogenetic analysis showed a strong sister relationship with Colocasia esculenta, which also strongly supports the position of Pinellia ternata. The complete chloroplast genome sequence of Pinellia ternata reported here has the potential to advance population and phylogenetic studies of this medicinal plant. PMID:26153849

  3. The complete mitochondrial genome sequence of Aspergillus flavus.

    PubMed

    Yan, Zhengsong; Chen, Dan; Shen, Yiping; Ye, Baodong

    2016-07-01

    Aspergillus flavus is a haploid filamentous fungus that is common in the environment and has been implicated in human infections. The complete mitochondrial genome of A. flavus has been determined by high-throughput sequencing technology in this work. Our study revealed that the mitochondrial genome of A. flavus is 31,602 bp long, with an A + T content of 74.83%, which consists of a usual set of mitochondrial proteins and RNA genes, including large and small ribosomal RNAs, 15 proteins, and 20 tRNA genes and contains two introns. Notably, it also contains two hypothetical proteins without obvious homology to any known proteins. All structural genes are located on one strand and are apparently transcribed in one direction. Codon usage analysis indicated that all protein coding genes employ the standard fungal mitochondrial start and stop codons; and the nucleotide bias toward AT was also reflected in the codon usage. The complete mitochondrial genomes of A. flavus would be useful for future investigation of the genetic, evolution, and clinical identification of Aspergillus species. PMID:25922962

  4. Perspectives of integrative cancer genomics in next generation sequencing era.

    PubMed

    Kwon, So Mee; Cho, Hyunwoo; Choi, Ji Hye; Jee, Byul A; Jo, Yuna; Woo, Hyun Goo

    2012-06-01

    The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research. PMID:23105932

  5. Extensive sequencing of seven human genomes to characterize benchmark reference materials.

    PubMed

    Zook, Justin M; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B R; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M; Chang, Christopher C; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T; Zaranek, Alexander W; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X Y; Schnall-Levin, Michael; Ordonez, Heather S; Mudivarti, Patrice A; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-01-01

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly. PMID:27271295

  6. Extensive sequencing of seven human genomes to characterize benchmark reference materials

    PubMed Central

    Zook, Justin M.; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E.; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B.R.; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M.; Chang, Christopher C.; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T.; Zaranek, Alexander W.; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M.; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X.Y.; Schnall-Levin, Michael; Ordonez, Heather S.; Mudivarti, Patrice A.; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-01-01

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly. PMID:27271295

  7. Genome Sequence of Streptomyces aureofaciens ATCC Strain 10762

    PubMed Central

    Gradnigo, Julien S.; Somerville, Greg A.; Huether, Michael J.; Kemmy, Richard J.; Johnson, Craig M.; Oliver, Michael G.

    2016-01-01

    Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlortetracycline. Here, we report the assembly and initial annotation of the draft genome sequence of S. aureofaciens ATCC strain 10762. PMID:27340076

  8. Complete genome sequence of Allochromatium vinosum DSM 180T

    PubMed Central

    Weissgerber, Thomas; Zigann, Renate; Bruce, David; Chang, Yun-juan; Detter, John C.; Han, Cliff; Hauser, Loren; Jeffries, Cynthia D.; Land, Miriam; Munk, A. Christine; Tapia, Roxanne; Dahl, Christiane

    2011-01-01

    Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program. PMID:22675582

  9. Draft Genome Sequence of Paecilomyces hepiali, Isolated from Cordyceps sinensis.

    PubMed

    Yu, Yi; Wang, Wenting; Wang, Linping; Pang, Fang; Guo, Lanping; Song, Lai; Liu, Guiming; Feng, Chengqiang

    2016-01-01

    Paecilomyces hepiali is an endoparasitic fungus that commonly exists in the natural Cordyceps sinensis Here, we report the draft genome sequence of P. hepiali, which will facilitate the exploitation of medicinal compounds produced by the fungus. PMID:27389266

  10. Complete Genome Sequence of Rahnella aquatilis CIP 78.65

    PubMed Central

    Bruce, David; Detter, Chris; Goodwin, Lynne A.; Han, James; Han, Cliff S.; Held, Brittany; Land, Miriam L.; Mikhailova, Natalia; Nolan, Matt; Pennacchio, Len; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Sobecky, Patricia A.

    2012-01-01

    Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis. PMID:22582378

  11. Genome Sequence of the Immunomodulatory Strain Bifidobacterium bifidum LMG 13195

    PubMed Central

    Gueimonde, Miguel; Ventura, Marco; Margolles, Abelardo

    2012-01-01

    In this work, we report the genome sequences of Bifidobacterium bifidum strain LMG13195. Results from our research group show that this strain is able to interact with human immune cells, generating functional regulatory T cells. PMID:23209243

  12. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  13. Sequence analysis of the complete mitochondrial genome of Youxian sheldrake.

    PubMed

    He, Shao-Ping; Liu, Li-Li; Yu, Qi-Fang; Li, Si; He, Jian-Hua

    2016-01-01

    Youxian sheldrake is excellent native breeds in Hunan province in China. The complete mitochondrial (mt) genome sequence plays an important role in the accurate determination of phylogenetic relationships among metazoans. This is the first study to determine the complete mitochondrial genome sequence of Youxian sheldrake using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, the total length of the mitogenome is 16,605 bp, with the base composition of 29.21% A, 22.18% T, 32.84% C, 15.77% G in the Youxian sheldrake. It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Youxian sheldrake provided an important data for further study of the phylogenetics of poultry, and available data for the genetics and breeding. PMID:25090395

  14. Complete Genome Sequences of Six Strains of the Genus Methylobacterium

    SciTech Connect

    Marx, Christopher J; Bringel, Francoise O.; Christoserdova, Ludmila; Moulin, Lionel; UI Hague, Muhammad Farhan; Fleischman, Darrell E.; Gruffaz, Christelle; Jourand, Philippe; Knief, Claudia; Lee, Ming-Chun; Muller, Emilie E. L.; Nadalig, Thierry; Peyraud, Remi; Roselli, Sandro; Russ, Lina; Goodwin, Lynne A.; Ivanov, Pavel S.; Ivanova, N; Kyrpides, Nikos C; Lajus, Aurelie; Medigue, Claudine; Nolan, Matt; Woyke, Tanja; Stolyar, Sergey; Vorholt, Julia A.; Vuilleumier, Stephane

    2012-01-01

    The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.

  15. Complete genome sequences of six strains of the genus methylobacterium

    SciTech Connect

    Marx, Christopher J; Bringel, Francoise O.; Christoserdova, Ludmila; Moulin, Lionel; Farhan Ul Haque, Muhammad; Fleischman, Darrell E.; Gruffaz, Christelle; Jourand, Philippe; Knief, Claudia; Lee, Ming-Chun; Muller, Emilie E. L.; Nadalig, Thierry; Peyraud, Remi; Roselli, Sandro; Russ, Lina; Aguero, Fernan; Goodwin, Lynne A.; Ivanova, N; Kyrpides, Nikos C; Lajus, Aurelie; Medigue, Claudine; Nolan, Matt; Woyke, Tanja; Stolyar, Sergey; Vorholt, Julia A.; Vuilleumier, Stephane

    2012-01-01

    The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.

  16. Bacterial epidemiology and biology - lessons from genome sequencing

    PubMed Central

    2011-01-01

    Next-generation sequencing has ushered in a new era of microbial genomics, enabling the detailed historical and geographical tracing of bacteria. This is helping to shape our understanding of bacterial evolution. PMID:22027015

  17. Complete Genome Sequence of Fish Pathogen Aeromonas hydrophila JBN2301.

    PubMed

    Yang, Wuming; Li, Ningqiu; Li, Ming; Zhang, Defeng; An, Guannan

    2016-01-01

    Aeromonas hydrophila is one of the most important fish pathogens in China. Here, we report complete genome sequence of a virulent strain, A. hydrophila JBN2301, which was isolated from diseased crucian carp. PMID:26823580

  18. Complete Genome Sequence of Rahnella aquatilis CIP 78.65

    SciTech Connect

    Martinez, Robert J; Bruce, David; Detter, J C; Goodwin, Lynne A.; Han, James; Han, Cliff; Held, Brittany; Land, Miriam L; Mikhailova, Natalia; Nolan, Matt; Pennacchio, Len; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Sobeckya, Patricia A.

    2012-01-01

    Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis.

  19. Draft Genome Sequence of Lactobacillus casei W56

    PubMed Central

    Hochwind, Kerstin; Weinmaier, Thomas; Schmid, Michael; van Hemert, Saskia; Hartmann, Anton; Rattei, Thomas

    2012-01-01

    We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products. PMID:23144392

  20. Draft genome sequence of Lactobacillus casei W56.

    PubMed

    Hochwind, Kerstin; Weinmaier, Thomas; Schmid, Michael; van Hemert, Saskia; Hartmann, Anton; Rattei, Thomas; Rothballer, Michael

    2012-12-01

    We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products. PMID:23144392

  1. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a Gram-negative, rod shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512. ...

  2. First Draft Genome Sequence of a Mycobacterium gordonae Clinical Isolate

    PubMed Central

    Smirnova, T.; Blagodatskikh, K.; Varlamov, D.; Sochivko, D.; Larionova, E.; Andreevskaya, S.; Andrievskaya, I.; Chernousova, L.

    2016-01-01

    Here, we report the first draft genome sequence of the clinically relevant species Mycobacterium gordonae. The clinical isolate Mycobacterium gordonae 14-8773 was obtained from the sputum of a patient with mycobacteriosis. PMID:27365356

  3. Complete Genome Sequence of Fish Pathogen Aeromonas hydrophila JBN2301

    PubMed Central

    Yang, Wuming; Li, Ming; Zhang, Defeng; An, Guannan

    2016-01-01

    Aeromonas hydrophila is one of the most important fish pathogens in China. Here, we report complete genome sequence of a virulent strain, A. hydrophila JBN2301, which was isolated from diseased crucian carp. PMID:26823580

  4. Draft Genome Sequence of Pseudomonas syringae pv. persicae NCPPB 2254.

    PubMed

    Zhao, Wenjun; Jiang, Hongshan; Tian, Qian; Hu, Jie

    2015-01-01

    Pseudomonas syringae pv. persicae is a pathogen that causes bacterial decline of stone fruit. Here, we report the draft genome sequence for P. syringae pv. persicae, which was isolated from Prunus persica. PMID:26044420

  5. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    PubMed Central

    Li, Lijin; Goedegebuure, Peter; Mardis, Elaine R.; Ellis, Matthew J.C.; Zhang, Xiuli; Herndon, John M.; Fleming, Timothy P.; Carreno, Beatriz M.; Hansen, Ted H.; Gillanders, William E.

    2011-01-01

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines. PMID:24213133

  6. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems.

    PubMed

    Flynn, James D; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F; Klotz, Martin G; Knief, Claudia; Op den Camp, Huub J M; Jetten, Mike S M; Khmelenina, Valentina N; Trotsenko, Yuri A; Murrell, J Colin; Semrau, Jeremy D; Svenning, Mette M; Stein, Lisa Y; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A; Kalyuzhnaya, Marina G

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  7. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

    PubMed Central

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  8. Draft Genome Sequence of Paecilomyces hepiali, Isolated from Cordyceps sinensis

    PubMed Central

    Yu, Yi; Wang, Wenting; Wang, Linping; Pang, Fang; Guo, Lanping; Song, Lai

    2016-01-01

    Paecilomyces hepiali is an endoparasitic fungus that commonly exists in the natural Cordyceps sinensis. Here, we report the draft genome sequence of P. hepiali, which will facilitate the exploitation of medicinal compounds produced by the fungus. PMID:27389266

  9. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    PubMed

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus. PMID:25252813

  10. Complete genome sequence of Treponema pallidum strain DAL-1

    PubMed Central

    Zobaníková, Marie; Mikolka, Pavol; Čejková, Darina; Pospíšilová, Petra; Chen, Lei; Strouhal, Michal; Qin, Xiang; Weinstock, George M.; Šmajs, David

    2012-01-01

    Treponema pallidum strain DAL-1 is a human uncultivable pathogen causing the sexually transmitted disease syphilis. Strain DAL-1 was isolated from the amniotic fluid of a pregnant woman in the secondary stage of syphilis. Here we describe the 1,139,971 bp long genome of T. pallidum strain DAL-1 which was sequenced using two independent sequencing methods (454 pyrosequencing and Illumina). In rabbits, strain DAL-1 replicated better than the T. pallidum strain Nichols. The comparison of the complete DAL-1 genome sequence with the Nichols sequence revealed a list of genetic differences that are potentially responsible for the increased rabbit virulence of the DAL-1 strain. PMID:23449808

  11. Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7.

    PubMed

    Rey, Andrés; Silva-Quintero, Laura; Dussán, Jenny

    2016-09-01

    Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41. PMID:27419068

  12. The influence of large scale genomics and the changing role of ex situ collections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of large scale genomics resources in non-model organisms promises to have a fundamental impact on the utilization of genetic resources. Technical innovation in high through-put sequencing has reduced the cost to a point where genome-wide SNP development is feasible across a range of ...

  13. Draft genome sequence of Therminicola potens strain JR

    SciTech Connect

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.; Agbo, P.; Hazen, T.C.; Coates, J.D.

    2010-07-01

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  14. Draft Genome Sequence of Lactobacillus fermentum Strain 3872

    PubMed Central

    Raju, Kavita; Abramov, Vyacheslav M.

    2013-01-01

    This report describes a draft genome sequence of Lactobacillus fermentum strain 3872. The data revealed remarkable similarity to and dissimilarity with the published genome sequences of other strains of the species. The absence of and variation in structures of some adhesins and the presence of an additional adhesin may reflect adaptation of the bacterium to different host systems and may contribute to specific properties of this strain as a new probiotic. PMID:24285652

  15. Whole Genome and Transcriptome Sequencing of a B3 Thymoma

    PubMed Central

    Petrini, Iacopo; Rajan, Arun; Pham, Trung; Voeller, Donna; Davis, Sean; Gao, James; Wang, Yisong; Giaccone, Giuseppe

    2013-01-01

    Molecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels. A 55-year-old Caucasian female underwent complete resection of a stage IVA B3 thymoma. RNA and DNA were extracted from a snap frozen tumor sample with a fraction of cancer cells over 80%. We performed array comparative genomic hybridization using Agilent platform, transcriptome sequencing using HiSeq 2000 (Illumina) and whole genome sequencing using Complete Genomics Inc platform. Whole genome sequencing determined, in tumor and normal, the sequence of both alleles in more than 95% of the reference genome (NCBI Build 37). Copy number (CN) aberrations were comparable with those previously described for B3 thymomas, with CN gain of chromosome 1q, 5, 7 and X and CN loss of 3p, 6, 11q42.2-qter and q13. One translocation t(11;X) was identified by whole genome sequencing and confirmed by PCR and Sanger sequencing. Ten single nucleotide variations (SNVs) and 2 insertion/deletions (INDELs) were identified; these mutations resulted in non-synonymous amino acid changes or affected splicing sites. The lack of common cancer-associated mutations in this patient suggests that thymomas may evolve through mechanisms distinctive from other tumor types, and supports the rationale for additional high-throughput sequencing screens to better understand the somatic genetic architecture of thymoma. PMID:23577124

  16. A computational genomics pipeline for prokaryotic sequencing projects

    PubMed Central

    Kislyuk, Andrey O.; Katz, Lee S.; Agrawal, Sonia; Hagen, Matthew S.; Conley, Andrew B.; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C.; Sammons, Scott A.; Govil, Dhwani; Mair, Raydel D.; Tatti, Kathleen M.; Tondella, Maria L.; Harcourt, Brian H.; Mayer, Leonard W.; Jordan, I. King

    2010-01-01

    Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. Results: We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. Availability and implementation: The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems. Contact: king.jordan@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20519285

  17. Genome Sequence of Pantoea agglomerans Strain IG1

    PubMed Central

    Matsuzawa, Tomohiko; Mori, Kazuki; Kadowaki, Takeshi; Shimada, Misato; Tashiro, Kosuke; Kuhara, Satoru; Inagawa, Hiroyuki; Soma, Gen-ichiro

    2012-01-01

    Pantoea agglomerans is a Gram-negative bacterium that grows symbiotically with various plants. Here we report the 4.8-Mb genome sequence of P. agglomerans strain IG1. The lipopolysaccharides derived from P. agglomerans IG1 have been shown to be effective in the prevention of various diseases, such as bacterial or viral infection, lifestyle-related diseases. This genome sequence represents a substantial step toward the elucidation of pathways for production of lipopolysaccharides. PMID:22328756

  18. Draft genome sequence of Gluconobacter thailandicus NBRC 3257

    PubMed Central

    Matsutani, Minenosuke; Yakushi, Toshiharu

    2014-01-01

    Gluconobacter thailandicus strain NBRC 3257, isolated from downy cherry (Prunus tomentosa), is a strict aerobic rod-shaped Gram-negative bacterium. Here, we report the features of this organism, together with the draft genome sequence and annotation. The draft genome sequence is composed of 107 contigs for 3,446,046 bp with 56.17% G+C content and contains 3,360 protein-coding genes and 54 RNA genes. PMID:25197448

  19. Draft Genome Sequence of Rhodococcus sp. Strain 311R

    PubMed Central

    Ehsani, Elham; Jauregui, Ruy; Geffers, Robert; Jareck, Michael; Boon, Nico; Pieper, Dietmar H.

    2015-01-01

    Here, we report the draft genome sequence of Rhodococcus sp. strain 311R, which was isolated from a site contaminated with alkanes and aromatic compounds. Strain 311R shares 90% of the genome of Rhodococcus erythropolis SK121, which is the closest related bacteria. PMID:25999565

  20. Draft Genome Sequence of Mycobacterium vulneris DSM 45247T

    PubMed Central

    Croce, Olivier; Robert, Catherine; Raoult, Didier

    2014-01-01

    We report the draft genome sequence of Mycobacterium vulneris DSM 45247T strain, an emerging, opportunistic pathogen of the Mycobacterium avium complex. The genome described here is composed of 6,981,439 bp (with a G+C content of 67.14%) and has 6,653 protein-coding genes and 84 predicted RNA genes. PMID:24812218

  1. Draft Genome Sequence of Mycobacterium vulneris DSM 45247T.

    PubMed

    Croce, Olivier; Robert, Catherine; Raoult, Didier; Drancourt, Michel

    2014-01-01

    We report the draft genome sequence of Mycobacterium vulneris DSM 45247(T) strain, an emerging, opportunistic pathogen of the Mycobacterium avium complex. The genome described here is composed of 6,981,439 bp (with a G+C content of 67.14%) and has 6,653 protein-coding genes and 84 predicted RNA genes. PMID:24812218

  2. Genome Sequence of Type Strain Lysinibacillus macroides DSM 54T

    PubMed Central

    Liu, Guo-hong; Wang, Jie-ping; Che, Jian-Mei; Chen, Qian-Qian; Chen, Zheng; Ge, Ci-bin

    2015-01-01

    Lysinibacillus macroides DSM 54T is a Gram-positive, spore-forming bacterium. Here, we report the 4,866,035-bp genome sequence of Lysinibacillus macroides DSM 54T, which will accelerate the application of degrading xylan and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26543111

  3. Complete Genome Sequence of Mycoplasma synoviae Strain WVU 1853T

    PubMed Central

    Kutish, Gerald F.; Barbet, Anthony F.; Michaels, Dina L.

    2015-01-01

    A hybrid sequence assembly of the complete Mycoplasma synoviae type strain WVU 1853T genome was compared to that of strain MS53. The findings support prior conclusions about M. synoviae, based on the genome of that otherwise uncharacterized field strain, and provide the first evidence of epigenetic modifications in M. synoviae. PMID:26021934

  4. Whole-genome sequences of three symbiotic endozoicomonas strains.

    PubMed

    Neave, Matthew J; Michell, Craig T; Apprill, Amy; Voolstra, Christian R

    2014-01-01

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp. PMID:25125646

  5. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Bacteria

    PubMed Central

    Neave, Matthew J.; Michell, Craig T.

    2014-01-01

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp. PMID:25125646

  6. Response to 'pervasive sequence patents cover the entire human genome'.

    PubMed

    Tu, Shine; Holman, Christopher; Mossoff, Adam; Sichelman, Ted; Risch, Michael; Conteras, Jorge L; Heled, Yaniv; Dolin, Greg; Petherbridge, Lee

    2014-01-01

    A response to Pervasive sequence patents cover the entire human genome by J Rosenfeld and C Mason. Genome Med 2013, 5:27. See related Correspondence by Rosenfeld and Mason, http://genomemedicine.com/content/5/3/27 and related letter by Rosenfeld and Mason, http://genomemedicine.com/content/6/2/15. PMID:25031614

  7. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge.

    PubMed

    Cornell, Jessica L; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj; Temple, Louise

    2016-01-01

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages. PMID:27540049

  8. Complete Genome Sequence of the Oncolytic Sendai virus Strain Moscow.

    PubMed

    Zainutdinov, Sergei S; Tikunov, Artem Y; Matveeva, Olga V; Netesov, Sergei V; Kochneva, Galina V

    2016-01-01

    We report here the complete genome sequence of Sendai virus Moscow strain. Anecdotal evidence for the efficacy of oncolytic virotherapy exists for this strain. The RNA genome of the Moscow strain is 15,384 nucleotides in length and differs from the nearest strain, BB1, by 18 nucleotides and 11 amino acids. PMID:27516510

  9. Complete Genome Sequence of the Oncolytic Sendai virus Strain Moscow

    PubMed Central

    Zainutdinov, Sergei S.; Tikunov, Artem Y.; Matveeva, Olga V.

    2016-01-01

    We report here the complete genome sequence of Sendai virus Moscow strain. Anecdotal evidence for the efficacy of oncolytic virotherapy exists for this strain. The RNA genome of the Moscow strain is 15,384 nucleotides in length and differs from the nearest strain, BB1, by 18 nucleotides and 11 amino acids. PMID:27516510

  10. Complete genome sequence of Aeromonas hydrophila AL06-06

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeromonas hydrophila occurs in freshwater environments and infects fish and mammals. In this work, we report the complete genome sequence of Aeromonas hydrophila AL06-06, which was isolated from diseased goldfish and is being used for comparative genomic studies with A. hydrophila strains causing ba...

  11. Complete Genome Sequence of Klebsiella pneumoniae YH43.

    PubMed

    Iwase, Tadayuki; Ogura, Yoshitoshi; Hayashi, Tetsuya; Mizunoe, Yoshimitsu

    2016-01-01

    We report here the complete genome sequence ofKlebsiella pneumoniaestrain YH43, isolated from sweet potato. The genome consists of a single circular chromosome of 5,520,319 bp in length. It carries 8 copies of rRNA operons, 86 tRNA genes, 5,154 protein-coding genes, and thenifgene cluster for nitrogen fixation. PMID:27081127

  12. Draft Genome Sequence of "Candidatus Liberibacter asiaticus" from California.

    PubMed

    Zheng, Z; Deng, X; Chen, J

    2014-01-01

    We report here the draft genome sequence of "Candidatus Liberibacter asiaticus" strain HHCA, collected from a lemon tree in California. The HHCA strain has a genome size of 1,150,620 bp, 36.5% G+C content, 1,119 predicted open reading frames, and 51 RNA genes. PMID:25278540

  13. Draft Genome Sequence of Mycobacterium cosmeticum DSM 44829

    PubMed Central

    Croce, Olivier; Robert, Catherine; Raoult, Didier

    2014-01-01

    We announce the draft genome sequence of Mycobacterium cosmeticum strain DSM 44829, a nontuberculous species responsible for opportunistic infection. The genome described here is composed of 6,462,090 bp, with a G+C content of 68.24%. It contains 6,281 protein-coding genes and 75 predicted RNA genes. PMID:24723727

  14. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1

    PubMed Central

    Andrade-Domínguez, Andrés

    2016-01-01

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. PMID:27563032

  15. A snapshot of the emerging tomato genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Proje...

  16. Whole-Genome Sequence of Staphylococcus epidermidis Tü3298

    PubMed Central

    Moran, Josephine C.

    2016-01-01

    Staphylococcus epidermidis Tü3298 is a frequently used laboratory strain, known for its production of epidermin and absence of the icaABCD operon. We report the whole-genome sequence of this strain, a 2.5-kb genome containing 2,332 genes. PMID:26966218

  17. Complete Genome Sequence of Mycobacterium bovis Strain BCG-1 (Russia)

    PubMed Central

    Shitikov, Egor A.; Malakhova, Maja V.; Kostryukova, Elena S.; Ilina, Elena N.; Atrasheuskaya, Alena V.; Ignatyev, Georgy M.; Vinokurova, Nataliya V.; Gorbachyov, Vyacheslav Y.

    2016-01-01

    Mycobacterium bovis BCG (Bacille Calmette-Guérin) is a vaccine strain used for protection against tuberculosis. Here, we announce the complete genome sequence of M. bovis strain BCG-1 (Russia). Extensive use of this strain necessitates the study of its genome stability by comparative analysis. PMID:27034492

  18. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1.

    PubMed

    Andrade-Domínguez, Andrés; Kolter, Roberto

    2016-01-01

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. PMID:27563032

  19. Complete Genome Sequence of Mycobacterium bovis Strain BCG-1 (Russia).

    PubMed

    Sotnikova, Evgeniya A; Shitikov, Egor A; Malakhova, Maja V; Kostryukova, Elena S; Ilina, Elena N; Atrasheuskaya, Alena V; Ignatyev, Georgy M; Vinokurova, Nataliya V; Gorbachyov, Vyacheslav Y

    2016-01-01

    Mycobacterium bovisBCG (Bacille Calmette-Guérin) is a vaccine strain used for protection against tuberculosis. Here, we announce the complete genome sequence ofM. bovisstrain BCG-1 (Russia). Extensive use of this strain necessitates the study of its genome stability by comparative analysis. PMID:27034492

  20. Genome Sequence of Xanthomonas citri pv. mangiferaeindicae Strain LMG 941

    PubMed Central

    Midha, Samriti; Ranjan, Manish; Sharma, Vikas; Pinnaka, Anil Kumar

    2012-01-01

    We report the 5.1-Mb genome sequence of Xanthomonas citri pv. mangiferaeindicae strain LMG 941, the causal agent of bacterial black spot in mango. Apart from evolutionary studies, the draft genome will be a valuable resource for the epidemiological studies and quarantine of this phytopathogen. PMID:22582385