Science.gov

Sample records for large public microarray

  1. Navigating Public Microarray Databases

    PubMed Central

    Bähler, Jürg

    2004-01-01

    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources. PMID:18629145

  2. Navigating public microarray databases.

    PubMed

    Penkett, Christopher J; Bähler, Jürg

    2004-01-01

    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources. PMID:18629145

  3. Conceptual Aspects of Large Meta-Analyses with Publicly Available Microarray Data: A Case Study in Oncology

    PubMed Central

    Schmidberger, Markus; Lennert, Sabine; Mansmann, Ulrich

    2011-01-01

    Large public repositories of microarray experiments offer an abundance of biological data. It is of interest to use and to combine the available material to create new biological information and to develop a broader view on biological phenomena. Meta-analyses recombine similar information over a series of experiments to sketch scientific aspects which were not accessible by each of the single experiments. Meta-analysis of high-throughput experiments has to handle methodological as well as technical challenges. Methodological aspects concern the identification of homogeneous material which can be combined by appropriate statistical procedures. Technical challenges come from the data management of large amounts of high-dimensional data, long computation time, as well as the handling of the stored phenotype data. This paper compares in a meta-analysis of a large series of microarray experiments the interaction structure within selected pathways between different tumour entities. The feasibility of such a study is explored and a technical as well as a statistical framework for its completion is presented. Multiple obstacles were met during completion of this project. They are mainly related to the quality of the available data and influence the biological interpretation of the results derived. The sobering experience of our study asks for combined efforts to improve the data quality in public repositories of high-throughput data. The exploration of the available data in large meta-analyses is limited by incomplete documentation of essential aspects of experiments and studies, by technical deficiencies in the data stored, and by careless duplications of data. PMID:21423405

  4. Gene Expression Browser: Large-Scale and Cross-Experiment Microarray Data Management, Search & Visualization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of microarray gene expression data in public repositories has been increasing exponentially for the last couple of decades. High-throughput microarray data integration and analysis has become a critical step in exploring the large amount of expression data for biological discovery. Howeve...

  5. Microarrays

    ERIC Educational Resources Information Center

    Plomin, Robert; Schalkwyk, Leonard C.

    2007-01-01

    Microarrays are revolutionizing genetics by making it possible to genotype hundreds of thousands of DNA markers and to assess the expression (RNA transcripts) of all of the genes in the genome. Microarrays are slides the size of a postage stamp that contain millions of DNA sequences to which single-stranded DNA or RNA can hybridize. This…

  6. Gene Expression Browser: large-scale and cross-experiment microarray data integration, management, search & visualization

    PubMed Central

    2010-01-01

    Background In the last decade, a large amount of microarray gene expression data has been accumulated in public repositories. Integrating and analyzing high-throughput gene expression data have become key activities for exploring gene functions, gene networks and biological pathways. Effectively utilizing these invaluable microarray data remains challenging due to a lack of powerful tools to integrate large-scale gene-expression information across diverse experiments and to search and visualize a large number of gene-expression data points. Results Gene Expression Browser is a microarray data integration, management and processing system with web-based search and visualization functions. An innovative method has been developed to define a treatment over a control for every microarray experiment to standardize and make microarray data from different experiments homogeneous. In the browser, data are pre-processed offline and the resulting data points are visualized online with a 2-layer dynamic web display. Users can view all treatments over control that affect the expression of a selected gene via Gene View, and view all genes that change in a selected treatment over control via treatment over control View. Users can also check the changes of expression profiles of a set of either the treatments over control or genes via Slide View. In addition, the relationships between genes and treatments over control are computed according to gene expression ratio and are shown as co-responsive genes and co-regulation treatments over control. Conclusion Gene Expression Browser is composed of a set of software tools, including a data extraction tool, a microarray data-management system, a data-annotation tool, a microarray data-processing pipeline, and a data search & visualization tool. The browser is deployed as a free public web service (http://www.ExpressionBrowser.com) that integrates 301 ATH1 gene microarray experiments from public data repositories (viz. the Gene

  7. Assessment and integration of publicly available SAGE, cDNA microarray, and oligonucleotide microarray expression data for global coexpression analyses.

    PubMed

    Griffith, Obi L; Pleasance, Erin D; Fulton, Debra L; Oveisi, Mehrdad; Ester, Martin; Siddiqui, Asim S; Jones, Steven J M

    2005-10-01

    Large amounts of gene expression data from several different technologies are becoming available to the scientific community. A common practice is to use these data to calculate global gene coexpression for validation or integration of other "omic" data. To assess the utility of publicly available datasets for this purpose we have analyzed Homo sapiens data from 1202 cDNA microarray experiments, 242 SAGE libraries, and 667 Affymetrix oligonucleotide microarray experiments. The three datasets compared demonstrate significant but low levels of global concordance (rc<0.11). Assessment against Gene Ontology (GO) revealed that all three platforms identify more coexpressed gene pairs with common biological processes than expected by chance. As the Pearson correlation for a gene pair increased it was more likely to be confirmed by GO. The Affymetrix dataset performed best individually with gene pairs of correlation 0.9-1.0 confirmed by GO in 74% of cases. However, in all cases, gene pairs confirmed by multiple platforms were more likely to be confirmed by GO. We show that combining results from different expression platforms increases reliability of coexpression. A comparison with other recently published coexpression studies found similar results in terms of performance against GO but with each method producing distinctly different gene pair lists. PMID:16098712

  8. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    EPA Science Inventory

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  9. A large field CCD system for quantitative imaging of microarrays

    PubMed Central

    Hamilton, G.; Brown, N.; Oseroff, V.; Huey, B.; Segraves, R.; Sudar, D.; Kumler, J.; Albertson, D.; Pinkel, D.

    2006-01-01

    We describe a charge-coupled device (CCD) imaging system for microarrays capable of acquiring quantitative, high dynamic range images of very large fields. Illumination is supplied by an arc lamp, and filters are used to define excitation and emission bands. The system is linear down to fluorochrome densities ≪1 molecule/µm2. The ratios of the illumination intensity distributions for all excitation wavelengths have a maximum deviation ∼±4% over the object field, so that images can be analyzed without computational corrections for the illumination pattern unless higher accuracy is desired. Custom designed detection optics produce achromatic images of the spectral region from ∼ 450 to ∼750 nm. Acquisition of a series of images of multiple fluorochromes from multiple arrays occurs under computer control. The version of the system described in detail provides images of 20 mm square areas using a 27 mm square, 2K × 2K pixel, cooled CCD chip with a well depth of ∼105 electrons, and provides ratio measurements accurate to a few percent over a dynamic range in intensity >1000. Resolution referred to the sample is 10 µm, sufficient for obtaining quantitative multicolor images from >30 000 array elements in an 18 mm × 18 mm square. PMID:16670425

  10. Dealing with missing values in large-scale studies: microarray data imputation and beyond.

    PubMed

    Aittokallio, Tero

    2010-03-01

    High-throughput biotechnologies, such as gene expression microarrays or mass-spectrometry-based proteomic assays, suffer from frequent missing values due to various experimental reasons. Since the missing data points can hinder downstream analyses, there exists a wide variety of ways in which to deal with missing values in large-scale data sets. Nowadays, it has become routine to estimate (or impute) the missing values prior to the actual data analysis. After nearly a decade since the publication of the first missing value imputation methods for gene expression microarray data, new imputation approaches are still being developed at an increasing rate. However, what is lagging behind is a systematic and objective evaluation of the strengths and weaknesses of the different approaches when faced with different types of data sets and experimental questions. In this review, the present strategies for missing value imputation and the measures for evaluating their performance are described. The imputation methods are first reviewed in the context of gene expression microarray data, since most of the methods have been developed for estimating gene expression levels; then, we turn to other large-scale data sets that also suffer from the problems posed by missing values, together with pointers to possible imputation approaches in these settings. Along with a description of the basic principles behind the different imputation approaches, the review tries to provide practical guidance for the users of high-throughput technologies on how to choose the imputation tool for their data and questions, and some additional research directions for the developers of imputation methodologies. PMID:19965979

  11. Large-scale microarray profiling reveals four stages of immune escape in non-Hodgkin lymphomas.

    PubMed

    Tosolini, Marie; Algans, Christelle; Pont, Frédéric; Ycart, Bernard; Fournié, Jean-Jacques

    2016-07-01

    Non-Hodgkin B-cell lymphoma (B-NHL) are aggressive lymphoid malignancies that develop in patients due to oncogenic activation, chemo-resistance, and immune evasion. Tumor biopsies show that B-NHL frequently uses several immune escape strategies, which has hindered the development of checkpoint blockade immunotherapies in these diseases. To gain a better understanding of B-NHL immune editing, we hypothesized that the transcriptional hallmarks of immune escape associated with these diseases could be identified from the meta-analysis of large series of microarrays from B-NHL biopsies. Thus, 1446 transcriptome microarrays from seven types of B-NHL were downloaded and assembled from 33 public Gene Expression Omnibus (GEO) datasets, and a method for scoring the transcriptional hallmarks in single samples was developed. This approach was validated by matching scores to phenotypic hallmarks of B-NHL such as proliferation, signaling, metabolic activity, and leucocyte infiltration. Through this method, we observed a significant enrichment of 33 immune escape genes in most diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) samples, with fewer in mantle cell lymphoma (MCL) and marginal zone lymphoma (MZL) samples. Comparing these gene expression patterns with overall survival data evidenced four stages of cancer immune editing in B-NHL: non-immunogenic tumors (stage 1), immunogenic tumors without immune escape (stage 2), immunogenic tumors with immune escape (stage 3), and fully immuno-edited tumors (stage 4). This model complements the standard international prognostic indices for B-NHL and proposes that immune escape stages 3 and 4 (76% of the FL and DLBCL samples in this data set) identify patients relevant for checkpoint blockade immunotherapies. PMID:27622044

  12. Query Large Scale Microarray Compendium Datasets Using a Model-Based Bayesian Approach with Variable Selection

    PubMed Central

    Hu, Ming; Qin, Zhaohui S.

    2009-01-01

    In microarray gene expression data analysis, it is often of interest to identify genes that share similar expression profiles with a particular gene such as a key regulatory protein. Multiple studies have been conducted using various correlation measures to identify co-expressed genes. While working well for small datasets, the heterogeneity introduced from increased sample size inevitably reduces the sensitivity and specificity of these approaches. This is because most co-expression relationships do not extend to all experimental conditions. With the rapid increase in the size of microarray datasets, identifying functionally related genes from large and diverse microarray gene expression datasets is a key challenge. We develop a model-based gene expression query algorithm built under the Bayesian model selection framework. It is capable of detecting co-expression profiles under a subset of samples/experimental conditions. In addition, it allows linearly transformed expression patterns to be recognized and is robust against sporadic outliers in the data. Both features are critically important for increasing the power of identifying co-expressed genes in large scale gene expression datasets. Our simulation studies suggest that this method outperforms existing correlation coefficients or mutual information-based query tools. When we apply this new method to the Escherichia coli microarray compendium data, it identifies a majority of known regulons as well as novel potential target genes of numerous key transcription factors. PMID:19214232

  13. A Tool for Sheep Product Quality: Custom Microarrays from Public Databases

    PubMed Central

    Bongiorni, Silvia; Chillemi, Giovanni; Prosperini, Gianluca; Bueno, Susana; Valentini, Alessio; Pariset, Lorraine

    2009-01-01

    Milk and dairy products are an essential food and an economic resource in many countries. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. The purpose of this study was to gain an understanding of the genomic influence on milk quality and synthesis by comparing two sheep breeds with different milking attitude (Sarda and Gentile di Puglia) using sheep-specific microarray technology. From sheep ESTs deposited at NCBI, we have generated the first annotated microarray developed for sheep with a coverage of most of the genome. PMID:22253981

  14. ArrayExpress--a public repository for microarray gene expression data at the EBI.

    PubMed

    Brazma, Alvis; Parkinson, Helen; Sarkans, Ugis; Shojatalab, Mohammadreza; Vilo, Jaak; Abeygunawardena, Niran; Holloway, Ele; Kapushesky, Misha; Kemmeren, Patrick; Lara, Gonzalo Garcia; Oezcimen, Ahmet; Rocca-Serra, Philippe; Sansone, Susanna-Assunta

    2003-01-01

    ArrayExpress is a new public database of microarray gene expression data at the EBI, which is a generic gene expression database designed to hold data from all microarray platforms. ArrayExpress uses the annotation standard Minimum Information About a Microarray Experiment (MIAME) and the associated XML data exchange format Microarray Gene Expression Markup Language (MAGE-ML) and it is designed to store well annotated data in a structured way. The ArrayExpress infrastructure consists of the database itself, data submissions in MAGE-ML format or via an online submission tool MIAMExpress, online database query interface, and the Expression Profiler online analysis tool. ArrayExpress accepts three types of submission, arrays, experiments and protocols, each of these is assigned an accession number. Help on data submission and annotation is provided by the curation team. The database can be queried on parameters such as author, laboratory, organism, experiment or array types. With an increasing number of organisations adopting MAGE-ML standard, the volume of submissions to ArrayExpress is increasing rapidly. The database can be accessed at http://www.ebi.ac.uk/arrayexpress. PMID:12519949

  15. Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate

    PubMed Central

    Datson, Nicole A; Morsink, Maarten C; Atanasova, Srebrena; Armstrong, Victor W; Zischler, Hans; Schlumbohm, Christina; Dutilh, Bas E; Huynen, Martijn A; Waegele, Brigitte; Ruepp, Andreas; de Kloet, E Ronald; Fuchs, Eberhard

    2007-01-01

    Background The common marmoset monkey (Callithrix jacchus), a small non-endangered New World primate native to eastern Brazil, is becoming increasingly used as a non-human primate model in biomedical research, drug development and safety assessment. In contrast to the growing interest for the marmoset as an animal model, the molecular tools for genetic analysis are extremely limited. Results Here we report the development of the first marmoset-specific oligonucleotide microarray (EUMAMA) containing probe sets targeting 1541 different marmoset transcripts expressed in hippocampus. These 1541 transcripts represent a wide variety of different functional gene classes. Hybridisation of the marmoset microarray with labelled RNA from hippocampus, cortex and a panel of 7 different peripheral tissues resulted in high detection rates of 85% in the neuronal tissues and on average 70% in the non-neuronal tissues. The expression profiles of the 2 neuronal tissues, hippocampus and cortex, were highly similar, as indicated by a correlation coefficient of 0.96. Several transcripts with a tissue-specific pattern of expression were identified. Besides the marmoset microarray we have generated 3215 ESTs derived from marmoset hippocampus, which have been annotated and submitted to GenBank [GenBank: EF214838 – EF215447, EH380242 – EH382846]. Conclusion We have generated the first marmoset-specific DNA microarray and demonstrated its use to characterise large-scale gene expression profiles of hippocampus but also of other neuronal and non-neuronal tissues. In addition, we have generated a large collection of ESTs of marmoset origin, which are now available in the public domain. These new tools will facilitate molecular genetic research into this non-human primate animal model. PMID:17592630

  16. Unique gene expression profile in osteoarthritis synovium compared with cartilage: analysis of publicly accessible microarray datasets.

    PubMed

    Park, Robin; Ji, Jong Dae

    2016-06-01

    The purpose of this study was to identify a gene expression signature in osteoarthritis (OA) synovium and genomic pathways likely to be involved in the pathogenesis of OA. Four publicly accessible microarray studies from synovium of OA patients were integrated, and a transcriptomic and network-based meta-analysis was performed. Based on pathways according to the Kyoto Encyclopedia of Genes and Genomes, functional enrichment analysis was performed. Meta-analysis results of OA synovium were compared to two previously published studies of OA cartilage to determine the relative number of common and specific DEGs of the cartilage and synovium. According to our meta-analysis, a total of 1350 genes were found to be differentially expressed in the synovium of OA patients as compared to that of healthy controls. Pathway analysis found 41 significant pathways in the total DEGs, and 22 and 16 pathways in the upregulated and downregulated DEGs, respectively. Cell adhesion molecules and cytokine-cytokine receptor interaction were the most significant pathway in the upregulated and downregulated DEGs, respectively. Comparison of meta-analysis results of OA synovium with results of two previous studies of OA cartilage identified 85 common genes and 1632 cartilage-specific DEGs and 1265 synovium-specific DEGs in the first study; and 142 common genes, and 856 cartilage-specific DEGs and 1208 synovium-specific DEGs in the second study. Our results show a small overlap between the DEGs of the synovium compared to DEGs of the cartilage, suggesting different pathogenic mechanisms that are specific to the synovium. PMID:26942917

  17. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses

    PubMed Central

    Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D

    2008-01-01

    Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers

  18. Differentially Expressed RNA from Public Microarray Data Identifies Serum Protein Biomarkers for Cross-Organ Transplant Rejection and Other Conditions

    PubMed Central

    Chen, Rong; Sigdel, Tara K.; Li, Li; Kambham, Neeraja; Dudley, Joel T.; Hsieh, Szu-chuan; Klassen, R. Bryan; Chen, Amery; Caohuu, Tuyen; Morgan, Alexander A.; Valantine, Hannah A.; Khush, Kiran K.; Sarwal, Minnie M.; Butte, Atul J.

    2010-01-01

    Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers. PMID:20885780

  19. A large-area hemispherical perforated bead microarray for monitoring bead based aptamer and target protein interaction

    PubMed Central

    Choi, Jong Seob; Bae, Sunwoong; Kim, Kyung Hoon; Seo, Tae Seok

    2014-01-01

    Herein, we present a large-area 3D hemispherical perforated microwell structure for a bead based bioassay. Such a unique microstructure enables us to perform the rapid and stable localization of the beads at the single bead level and the facile manipulation of the bead capture and retrieval with high speed and efficiency. The fabrication process mainly consisted of three steps: the convex micropatterned nickel (Ni) mold production from the concave micropatterned silicon (Si) wafer, hot embossing on the polymer matrix to generate the concave micropattened acrylate sheet, and reactive ion etching to make the bottom holes. The large-area hemispherical perforated micropatterned acrylate sheet was sandwiched between two polydimethylsiloxane (PDMS) microchannel layers. The bead solution was injected and recovered in the top PDMS microchannel, while the bottom PDMS microchannel was connected with control lines to exert the hydrodynamic force in order to alter the flow direction of the bead solution for the bead capture and release operation. The streptavidin-coated microbead capture was achieved with almost 100% yield within 1 min, and all the beads were retrieved in 10 s. Lysozyme or thrombin binding aptamer labelled microbeads were trapped on the proposed bead microarray, and the in situ fluorescence signal of the bead array was monitored after aptamer-target protein interaction. The protein-aptamer conjugated microbeads were recovered, and the aptamer was isolated for matrix assisted laser desorption/ionization time-of-flight mass spectrometry analysis to confirm the identity of the aptamer. PMID:25587373

  20. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis.

    PubMed

    He, Fei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen; Maslov, Sergei

    2016-06-01

    Transcriptome data sets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by a lack of metadata or differences in annotation styles of different labs. In this study, we carefully selected and integrated 6057 Arabidopsis microarray expression samples from 304 experiments deposited to the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI). Metadata such as tissue type, growth conditions and developmental stage were manually curated for each sample. We then studied the global expression landscape of the integrated data set and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome, compared with aerial tissues, but the transcriptome of cultured root is more similar to the transcriptome of aerial tissues, as the cultured root samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating the re-use of plant transcriptome data. As a proof of principle, we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified the accuracy of our predictions with sample metadata provided by the authors. PMID:27015116

  1. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    DOE PAGESBeta

    He, Fei; Maslov, Sergei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen

    2016-03-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less

  2. Components of the endocannabinoid and dopamine systems are dysregulated in Huntington's disease: analysis of publicly available microarray datasets

    PubMed Central

    Laprairie, Robert B; Bagher, Amina M; Precious, Sophie V; Denovan-Wright, Eileen M

    2015-01-01

    The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington's disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated. The purpose of this study was to determine the changes that were consistently observed in the ECS and DAS during HD progression in the central nervous system (CNS) and in the periphery in different models of HD and human HD tissue. To do this, we conducted a meta-analysis of differential gene expression in the ECS and DAS using publicly available microarray data. The consolidated data were summarized as observed changes in gene expression (OCGE) using a weighted sum for each gene. In addition, consolidated data were compared to previously published studies that were not available in the gene expression omnibus (GEO) database. The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage- and tissue-specific transcriptional dysregulation in HD. The major implication of the systems-wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems. PMID:25692022

  3. CancerMA: a web-based tool for automatic meta-analysis of public cancer microarray data

    PubMed Central

    Feichtinger, Julia; McFarlane, Ramsay J.; Larcombe, Lee D.

    2012-01-01

    The identification of novel candidate markers is a key challenge in the development of cancer therapies. This can be facilitated by putting accessible and automated approaches analysing the current wealth of ‘omic’-scale data in the hands of researchers who are directly addressing biological questions. Data integration techniques and standardized, automated, high-throughput analyses are needed to manage the data available as well as to help narrow down the excessive number of target gene possibilities presented by modern databases and system-level resources. Here we present CancerMA, an online, integrated bioinformatic pipeline for automated identification of novel candidate cancer markers/targets; it operates by means of meta-analysing expression profiles of user-defined sets of biologically significant and related genes across a manually curated database of 80 publicly available cancer microarray datasets covering 13 cancer types. A simple-to-use web interface allows bioinformaticians and non-bioinformaticians alike to initiate new analyses as well as to view and retrieve the meta-analysis results. The functionality of CancerMA is shown by means of two validation datasets. Database URL: http://www.cancerma.org.uk PMID:23241162

  4. DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  5. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  6. Microarrays for Undergraduate Classes

    ERIC Educational Resources Information Center

    Hancock, Dale; Nguyen, Lisa L.; Denyer, Gareth S.; Johnston, Jill M.

    2006-01-01

    A microarray experiment is presented that, in six laboratory sessions, takes undergraduate students from the tissue sample right through to data analysis. The model chosen, the murine erythroleukemia cell line, can be easily cultured in sufficient quantities for class use. Large changes in gene expression can be induced in these cells by…

  7. Chromosome Microarray.

    PubMed

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  8. Communicating Chemistry--From Large Classes to the Larger Public

    ERIC Educational Resources Information Center

    Harpp, David N.

    2004-01-01

    This article is a general summary of the James Flack Norris Award Lecture given in November 2003. It chronicles various events leading up to the award centering on teaching chemistry to very large classes and providing information to the general public through a unique University Office for Science and Society.

  9. Microarray Analysis of Microbial Weathering

    NASA Astrophysics Data System (ADS)

    Olsson-Francis, K.; van Houdt, R.; Leys, N.; Mergeay, M.; Cockell, C. S.

    2010-04-01

    Microarray analysis of the heavy metal resistant bacterium, Cupriavidus metallidurans CH34 was used to investigate the genes involved in the weathering. The results demonstrated that large porin and membrane transporter genes were unregulated.

  10. Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients

    PubMed Central

    Wang, Chih-Yang; Lai, Ming-Derg; Phan, Nam Nhut; Sun, Zhengda; Lin, Yen-Chang

    2015-01-01

    Voltage-gated calcium channels (VGCCs) are well documented to play roles in cell proliferation, migration, and apoptosis; however, whether VGCCs regulate the onset and progression of cancer is still under investigation. The VGCC family consists of five members, which are L-type, N-type, T-type, R-type and P/Q type. To date, no holistic approach has been used to screen VGCC family genes in different types of cancer. We analyzed the transcript expression of VGCCs in clinical cancer tissue samples by accessing ONCOMINE (www.oncomine.org), a web-based microarray database, to perform a systematic analysis. Every member of the VGCCs was examined across 21 different types of cancer by comparing mRNA expression in cancer to that in normal tissue. A previous study showed that altered expression of mRNA in cancer tissue may play an oncogenic role and promote tumor development; therefore, in the present findings, we focus only on the overexpression of VGCCs in different types of cancer. This bioinformatics analysis revealed that different subtypes of VGCCs (CACNA1C, CACNA1D, CACNA1B, CACNA1G, and CACNA1I) are implicated in the development and progression of diverse types of cancer and show dramatic up-regulation in breast cancer. CACNA1F only showed high expression in testis cancer, whereas CACNA1A, CACNA1C, and CACNA1D were highly expressed in most types of cancer. The current analysis revealed that specific VGCCs likely play essential roles in specific types of cancer. Collectively, we identified several VGCC targets and classified them according to different cancer subtypes for prospective studies on the underlying carcinogenic mechanisms. The present findings suggest that VGCCs are possible targets for prospective investigation in cancer treatment. PMID:26147197

  11. Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients.

    PubMed

    Wang, Chih-Yang; Lai, Ming-Derg; Phan, Nam Nhut; Sun, Zhengda; Lin, Yen-Chang

    2015-01-01

    Voltage-gated calcium channels (VGCCs) are well documented to play roles in cell proliferation, migration, and apoptosis; however, whether VGCCs regulate the onset and progression of cancer is still under investigation. The VGCC family consists of five members, which are L-type, N-type, T-type, R-type and P/Q type. To date, no holistic approach has been used to screen VGCC family genes in different types of cancer. We analyzed the transcript expression of VGCCs in clinical cancer tissue samples by accessing ONCOMINE (www.oncomine.org), a web-based microarray database, to perform a systematic analysis. Every member of the VGCCs was examined across 21 different types of cancer by comparing mRNA expression in cancer to that in normal tissue. A previous study showed that altered expression of mRNA in cancer tissue may play an oncogenic role and promote tumor development; therefore, in the present findings, we focus only on the overexpression of VGCCs in different types of cancer. This bioinformatics analysis revealed that different subtypes of VGCCs (CACNA1C, CACNA1D, CACNA1B, CACNA1G, and CACNA1I) are implicated in the development and progression of diverse types of cancer and show dramatic up-regulation in breast cancer. CACNA1F only showed high expression in testis cancer, whereas CACNA1A, CACNA1C, and CACNA1D were highly expressed in most types of cancer. The current analysis revealed that specific VGCCs likely play essential roles in specific types of cancer. Collectively, we identified several VGCC targets and classified them according to different cancer subtypes for prospective studies on the underlying carcinogenic mechanisms. The present findings suggest that VGCCs are possible targets for prospective investigation in cancer treatment. PMID:26147197

  12. Publicly Releasing a Large Simulation Dataset with NDS Labs

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan

    2016-03-01

    Optimally, all publicly funded research should be accompanied by the tools, code, and data necessary to fully reproduce the analysis performed in journal articles describing the research. This ideal can be difficult to attain, particularly when dealing with large (>10 TB) simulation datasets. In this lightning talk, we describe the process of publicly releasing a large simulation dataset to accompany the submission of a journal article. The simulation was performed using Enzo, an open source, community-developed N-body/hydrodynamics code and was analyzed using a wide range of community- developed tools in the scientific Python ecosystem. Although the simulation was performed and analyzed using an ecosystem of sustainably developed tools, we enable sustainable science using our data by making it publicly available. Combining the data release with the NDS Labs infrastructure allows a substantial amount of added value, including web-based access to analysis and visualization using the yt analysis package through an IPython notebook interface. In addition, we are able to accompany the paper submission to the arXiv preprint server with links to the raw simulation data as well as interactive real-time data visualizations that readers can explore on their own or share with colleagues during journal club discussions. It is our hope that the value added by these services will substantially increase the impact and readership of the paper.

  13. The Stanford Tissue Microarray Database.

    PubMed

    Marinelli, Robert J; Montgomery, Kelli; Liu, Chih Long; Shah, Nigam H; Prapong, Wijan; Nitzberg, Michael; Zachariah, Zachariah K; Sherlock, Gavin J; Natkunam, Yasodha; West, Robert B; van de Rijn, Matt; Brown, Patrick O; Ball, Catherine A

    2008-01-01

    The Stanford Tissue Microarray Database (TMAD; http://tma.stanford.edu) is a public resource for disseminating annotated tissue images and associated expression data. Stanford University pathologists, researchers and their collaborators worldwide use TMAD for designing, viewing, scoring and analyzing their tissue microarrays. The use of tissue microarrays allows hundreds of human tissue cores to be simultaneously probed by antibodies to detect protein abundance (Immunohistochemistry; IHC), or by labeled nucleic acids (in situ hybridization; ISH) to detect transcript abundance. TMAD archives multi-wavelength fluorescence and bright-field images of tissue microarrays for scoring and analysis. As of July 2007, TMAD contained 205 161 images archiving 349 distinct probes on 1488 tissue microarray slides. Of these, 31 306 images for 68 probes on 125 slides have been released to the public. To date, 12 publications have been based on these raw public data. TMAD incorporates the NCI Thesaurus ontology for searching tissues in the cancer domain. Image processing researchers can extract images and scores for training and testing classification algorithms. The production server uses the Apache HTTP Server, Oracle Database and Perl application code. Source code is available to interested researchers under a no-cost license. PMID:17989087

  14. Tissue microarrays: applications in genomic research.

    PubMed

    Watanabe, Aprill; Cornelison, Robert; Hostetter, Galen

    2005-03-01

    The widespread application of tissue microarrays in cancer research and the clinical pathology laboratory demonstrates a versatile and portable technology. The rapid integration of tissue microarrays into biomarker discovery and validation processes reflects the forward thinking of researchers who have pioneered the high-density tissue microarray. The precise arrangement of hundreds of archival clinical tissue samples into a composite tissue microarray block is now a proven method for the efficient and standardized analysis of molecular markers. With applications in cancer research, tissue microarrays are a valuable tool in validating candidate markers discovered in highly sensitive genome-wide microarray experiments. With applications in clinical pathology, tissue microarrays are used widely in immunohistochemistry quality control and quality assurance. The timeline of a biomarker implicated in prostate neoplasia, which was identified by complementary DNA expression profiling, validated by tissue microarrays and is now used as a prognostic immunohistochemistry marker, is reviewed. The tissue microarray format provides opportunities for digital imaging acquisition, image processing and database integration. Advances in digital imaging help to alleviate previous bottlenecks in the research pipeline, permit computer image scoring and convey telepathology opportunities for remote image analysis. The tissue microarray industry now includes public and private sectors with varying degrees of research utility and offers a range of potential tissue microarray applications in basic research, prognostic oncology and drug discovery. PMID:15833047

  15. Optics in large-scale architectural projects: public aquariums

    NASA Astrophysics Data System (ADS)

    Tesar, John C.

    2002-09-01

    Submersed aquatic vegetation can survive to a depth of approximately 20% of surface water irradiance. Large displays featured in public aquariums are often open to the sky, but the building roof acts as an aperture and obscures much of the direct solar path. Side-walls within the tank often absorb more than they reflect or scatter and as a result plants and fish get little more than the diffuse solar component without supplemental illumination. The loss mechanisms are detailed and design suggestions are considered, including heliostats, lightpipes and tracked parabolic reflectors with fiber optics.

  16. Minimizing DNA microarrays to a single molecule per spot: using zero-mode waveguide technology to obtain kinetic data for a large number of short oligonucleotide hybridization reactions

    NASA Astrophysics Data System (ADS)

    Sobek, Jens; Rehrauer, Hubert; Kuhn, Gerrit; Schlapbach, Ralph

    2016-03-01

    We have shown recently that the hybridization of short oligonucleotides can be studied in a zero-mode waveguide nanostructure (ZMW) chip using a modified DNA sequencer.[1] Here we present an extension of this method enabling the parallel measurement of kinetic constants of a large number of hybridization reactions on a single chip. This can be achieved by immobilization of a mixture of oligonucleotides, which leads to a statistical and random distribution of single molecules in the 150'000 ZMWs of a SMRT™ cell. This setup is comparable to a classical microarray with ZMWs in place of spots but unknown allocation of probes. The probe surface density is reduced by a factor of ~1010 allowing the study of hybridization in the absence of interactions with neighboring probes. Hybridization with a dye labelled oligonucleotide results in trains of fluorescence pulses from which interpulse durations (IPDs) and pulse widths (PWs) can be extracted. Since the identity of a probe in a ZMW is unknown, the immobilized oligonucleotide is sequenced in a subsequent step. After mapping the fluorescence traces to the sequence, the association and dissociation rate constant for each oligonucleotide can be calculated. By selecting suitable probes, the method can be used to determine rate constants of hybridization for a large number of mismatch oligonucleotides in a single measurement and at single-molecule level.

  17. Chemistry of Natural Glycan Microarray

    PubMed Central

    Song, Xuezheng; Heimburg-Molinaro, Jamie; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Glycan microarrays have become indispensable tools for studying protein-glycan interactions. Along with chemo-enzymatic synthesis, glycans isolated from natural sources have played important roles in array development and will continue to be a major source of glycans. N- and O-glycans from glycoproteins, and glycans from glycosphingolipids can be released from corresponding glycoconjugates with relatively mature methods, although isolation of large numbers and quantities of glycans are still very challenging. Glycosylphosphatidylinositol (GPI)-anchors and glycosaminoglycans (GAGs) are less represented on current glycan microarrays. Glycan microarray development has been greatly facilitated by bifunctional fluorescent linkers, which can be applied in a “Shotgun Glycomics” approach to incorporate isolated natural glycans. Glycan presentation on microarrays may affect glycan binding by GBPs, often through multivalent recognition by the GBP. PMID:24487062

  18. Aptamer Microarrays

    SciTech Connect

    Angel-Syrett, Heather; Collett, Jim; Ellington, Andrew D.

    2009-01-02

    In vitro selection can yield specific, high-affinity aptamers. We and others have devised methods for the automated selection of aptamers, and have begun to use these reagents for the construction of arrays. Arrayed aptamers have proven to be almost as sensitive as their solution phase counterparts, and when ganged together can provide both specific and general diagnostic signals for proteins and other analytes. We describe here technical details regarding the production and processing of aptamer microarrays, including blocking, washing, drying, and scanning. We will also discuss the challenges involved in developing standardized and reproducible methods for binding and quantitating protein targets. While signals from fluorescent analytes or sandwiches are typically captured, it has proven possible for immobilized aptamers to be uniquely coupled to amplification methods not available to protein reagents, thus allowing for protein-binding signals to be greatly amplified. Into the future, many of the biosensor methods described in this book can potentially be adapted to array formats, thus further expanding the utility of and applications for aptamer arrays.

  19. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manufacturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthesized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microarrays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  20. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manu facturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthe-sized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microar-rays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  1. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 Proteins Are Related to Human Glioma Tumor Grade: Immunohistochemistry and Public Microarray Data Meta-Analysis

    PubMed Central

    Pelekanou, Vassiliki; Notas, George; Kampa, Marilena; Tsentelierou, Eleftheria; Stathopoulos, Efstathios N.; Tsapis, Andreas; Castanas, Elias

    2013-01-01

    Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype. PMID:24376672

  2. The Gaia-ESO Large Public Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Randich, S.; Gilmore, G.; Gaia-ESO Consortium

    2013-12-01

    The Gaia-ESO Public Spectroscopic Survey has completed about one third of the data taking and continues to acquire high-quality spectroscopy, with both Giraffe and UVES, of representative samples of all Galactic stellar populations, including open clusters — young and old, nearby and distant, interior and exterior to the Sun — and field stars in the Galactic Halo, the thick Disc, the thin Disc and the Galactic Bulge. A large sample of stars in the Solar Neighbourhood, selected to include all possible ages and metallicities, is also being observed with UVES. This will be the first such large internally homogeneous study of the Milky Way stellar populations. Besides the intrinsic range of exciting scientific results, the Gaia-ESO Survey is also a pathfinder for future massive Gaia follow-up. Equally importantly, we are building an ESO-wide community of stellar spectroscopists, sharing, optimising, refining and cross-calibrating complementary approaches, strengths and experience. Internal Science Verification (SV) has started with several results demonstrating the huge potential of the survey and the first release of spectra to ESO has occurred.

  3. Public Relations Handbook for Vocational Education in Large Cities.

    ERIC Educational Resources Information Center

    Koble, Daniel E., Jr.; And Others

    Intended for use by urban vocational staff members who face public relations problems and need to facilitate the outreach process in their cities, this handbook contains guidelines for organizing the public. First, Sanford's definition of public relations is outlined, followed by an explanation of why vocational education needs public relations.…

  4. Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer

    PubMed Central

    Candido dos Reis, Francisco J.; Lynn, Stuart; Ali, H. Raza; Eccles, Diana; Hanby, Andrew; Provenzano, Elena; Caldas, Carlos; Howat, William J.; McDuffus, Leigh-Anne; Liu, Bin; Daley, Frances; Coulson, Penny; Vyas, Rupesh J.; Harris, Leslie M.; Owens, Joanna M.; Carton, Amy F.M.; McQuillan, Janette P.; Paterson, Andy M.; Hirji, Zohra; Christie, Sarah K.; Holmes, Amber R.; Schmidt, Marjanka K.; Garcia-Closas, Montserrat; Easton, Douglas F.; Bolla, Manjeet K.; Wang, Qin; Benitez, Javier; Milne, Roger L.; Mannermaa, Arto; Couch, Fergus; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Cox, Angela; Cross, Simon S.; Blows, Fiona M.; Sanders, Joyce; de Groot, Renate; Figueroa, Jonine; Sherman, Mark; Hooning, Maartje; Brenner, Hermann; Holleczek, Bernd; Stegmaier, Christa; Lintott, Chris; Pharoah, Paul D.P.

    2015-01-01

    Background Citizen science, scientific research conducted by non-specialists, has the potential to facilitate biomedical research using available large-scale data, however validating the results is challenging. The Cell Slider is a citizen science project that intends to share images from tumors with the general public, enabling them to score tumor markers independently through an internet-based interface. Methods From October 2012 to June 2014, 98,293 Citizen Scientists accessed the Cell Slider web page and scored 180,172 sub-images derived from images of 12,326 tissue microarray cores labeled for estrogen receptor (ER). We evaluated the accuracy of Citizen Scientist's ER classification, and the association between ER status and prognosis by comparing their test performance against trained pathologists. Findings The area under ROC curve was 0.95 (95% CI 0.94 to 0.96) for cancer cell identification and 0.97 (95% CI 0.96 to 0.97) for ER status. ER positive tumors scored by Citizen Scientists were associated with survival in a similar way to that scored by trained pathologists. Survival probability at 15 years were 0.78 (95% CI 0.76 to 0.80) for ER-positive and 0.72 (95% CI 0.68 to 0.77) for ER-negative tumors based on Citizen Scientists classification. Based on pathologist classification, survival probability was 0.79 (95% CI 0.77 to 0.81) for ER-positive and 0.71 (95% CI 0.67 to 0.74) for ER-negative tumors. The hazard ratio for death was 0.26 (95% CI 0.18 to 0.37) at diagnosis and became greater than one after 6.5 years of follow-up for ER scored by Citizen Scientists, and 0.24 (95% CI 0.18 to 0.33) at diagnosis increasing thereafter to one after 6.7 (95% CI 4.1 to 10.9) years of follow-up for ER scored by pathologists. Interpretation Crowdsourcing of the general public to classify cancer pathology data for research is viable, engages the public and provides accurate ER data. Crowdsourced classification of research data may offer a valid solution to problems of

  5. The Genopolis Microarray Database

    PubMed Central

    Splendiani, Andrea; Brandizi, Marco; Even, Gael; Beretta, Ottavio; Pavelka, Norman; Pelizzola, Mattia; Mayhaus, Manuel; Foti, Maria; Mauri, Giancarlo; Ricciardi-Castagnoli, Paola

    2007-01-01

    Background Gene expression databases are key resources for microarray data management and analysis and the importance of a proper annotation of their content is well understood. Public repositories as well as microarray database systems that can be implemented by single laboratories exist. However, there is not yet a tool that can easily support a collaborative environment where different users with different rights of access to data can interact to define a common highly coherent content. The scope of the Genopolis database is to provide a resource that allows different groups performing microarray experiments related to a common subject to create a common coherent knowledge base and to analyse it. The Genopolis database has been implemented as a dedicated system for the scientific community studying dendritic and macrophage cells functions and host-parasite interactions. Results The Genopolis Database system allows the community to build an object based MIAME compliant annotation of their experiments and to store images, raw and processed data from the Affymetrix GeneChip® platform. It supports dynamical definition of controlled vocabularies and provides automated and supervised steps to control the coherence of data and annotations. It allows a precise control of the visibility of the database content to different sub groups in the community and facilitates exports of its content to public repositories. It provides an interactive users interface for data analysis: this allows users to visualize data matrices based on functional lists and sample characterization, and to navigate to other data matrices defined by similarity of expression values as well as functional characterizations of genes involved. A collaborative environment is also provided for the definition and sharing of functional annotation by users. Conclusion The Genopolis Database supports a community in building a common coherent knowledge base and analyse it. This fills a gap between a local

  6. Microarrays, Integrated Analytical Systems

    NASA Astrophysics Data System (ADS)

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  7. Comparing Bacterial DNA Microarray Fingerprints

    SciTech Connect

    Willse, Alan R.; Chandler, Darrell P.; White, Amanda M.; Protic, Miroslava; Daly, Don S.; Wunschel, Sharon C.

    2005-08-15

    Detecting subtle genetic differences between microorganisms is an important problem in molecular epidemiology and microbial forensics. In a typical investigation, gel electrophoresis is used to compare randomly amplified DNA fragments between microbial strains, where the patterns of DNA fragment sizes are proxies for a microbe's genotype. The limited genomic sample captured on a gel is often insufficient to discriminate nearly identical strains. This paper examines the application of microarray technology to DNA fingerprinting as a high-resolution alternative to gel-based methods. The so-called universal microarray, which uses short oligonucleotide probes that do not target specific genes or species, is intended to be applicable to all microorganisms because it does not require prior knowledge of genomic sequence. In principle, closely related strains can be distinguished if the number of probes on the microarray is sufficiently large, i.e., if the genome is sufficiently sampled. In practice, we confront noisy data, imperfectly matched hybridizations, and a high-dimensional inference problem. We describe the statistical problems of microarray fingerprinting, outline similarities with and differences from more conventional microarray applications, and illustrate the statistical fingerprinting problem for 10 closely related strains from three Bacillus species, and 3 strains from non-Bacillus species.

  8. Living-Cell Microarrays

    PubMed Central

    Yarmush, Martin L.; King, Kevin R.

    2011-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment. PMID:19413510

  9. Microarrays in hematology.

    PubMed

    Walker, Josef; Flower, Darren; Rigley, Kevin

    2002-01-01

    Microarrays are fast becoming routine tools for the high-throughput analysis of gene expression in a wide range of biologic systems, including hematology. Although a number of approaches can be taken when implementing microarray-based studies, all are capable of providing important insights into biologic function. Although some technical issues have not been resolved, microarrays will continue to make a significant impact on hematologically important research. PMID:11753074

  10. An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta

    PubMed Central

    Wang, John; Jemielity, Stephanie; Uva, Paolo; Wurm, Yannick; Gräff, Johannes; Keller, Laurent

    2007-01-01

    Ants display a range of fascinating behaviors, a remarkable level of intra-species phenotypic plasticity and many other interesting characteristics. Here we present a new tool to study the molecular mechanisms underlying these traits: a tentatively annotated expressed sequence tag (EST) resource for the fire ant Solenopsis invicta. From a normalized cDNA library we obtained 21,715 ESTs, which represent 11,864 putatively different transcripts with very diverse molecular functions. All ESTs were used to construct a cDNA microarray. PMID:17224046

  11. MARS: Microarray analysis, retrieval, and storage system

    PubMed Central

    Maurer, Michael; Molidor, Robert; Sturn, Alexander; Hartler, Juergen; Hackl, Hubert; Stocker, Gernot; Prokesch, Andreas; Scheideler, Marcel; Trajanoski, Zlatko

    2005-01-01

    Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System) provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS), a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at . PMID:15836795

  12. Managing the Editing Function on Large Publication Tasks with Short Flow Times.

    ERIC Educational Resources Information Center

    Santa, Terry M. Dalla

    Large publication tasks with short flow times require that several editors be assigned to work together as part of a larger publication team that includes management, engineer-writers, publishing logistics personnel, word processor operators, illustrators, and printers. Team-edited publications have special problems, and the technical editing and…

  13. PMD: A Resource for Archiving and Analyzing Protein Microarray data

    PubMed Central

    Xu, Zhaowei; Huang, Likun; Zhang, Hainan; Li, Yang; Guo, Shujuan; Wang, Nan; Wang, Shi-hua; Chen, Ziqing; Wang, Jingfang; Tao, Sheng-ce

    2016-01-01

    Protein microarray is a powerful technology for both basic research and clinical study. However, because there is no database specifically tailored for protein microarray, the majority of the valuable original protein microarray data is still not publically accessible. To address this issue, we constructed Protein Microarray Database (PMD), which is specifically designed for archiving and analyzing protein microarray data. In PMD, users can easily browse and search the entire database by experimental name, protein microarray type, and sample information. Additionally, PMD integrates several data analysis tools and provides an automated data analysis pipeline for users. With just one click, users can obtain a comprehensive analysis report for their protein microarray data. The report includes preliminary data analysis, such as data normalization, candidate identification, and an in-depth bioinformatics analysis of the candidates, which include functional annotation, pathway analysis, and protein-protein interaction network analysis. PMD is now freely available at www.proteinmicroarray.cn. PMID:26813635

  14. Phenotypic MicroRNA Microarrays

    PubMed Central

    Kwon, Yong-Jun; Heo, Jin Yeong; Kim, Hi Chul; Kim, Jin Yeop; Liuzzi, Michel; Soloveva, Veronica

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  15. Microarrays: an overview.

    PubMed

    Lee, Norman H; Saeed, Alexander I

    2007-01-01

    Gene expression microarrays are being used widely to address a myriad of complex biological questions. To gather meaningful expression data, it is crucial to have a firm understanding of the steps involved in the application of microarrays. The available microarray platforms are discussed along with their advantages and disadvantages. Additional considerations include study design, quality control and systematic assessment of microarray performance, RNA-labeling strategies, sample allocation, signal amplification schemes, defining the number of appropriate biological replicates, data normalization, statistical approaches to identify differentially regulated genes, and clustering algorithms for data visualization. In this chapter, the underlying principles regarding microarrays are reviewed, to serve as a guide when navigating through this powerful technology. PMID:17332646

  16. Quality Visualization of Microarray Datasets Using Circos

    PubMed Central

    Koch, Martin; Wiese, Michael

    2012-01-01

    Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform (i.e., GPL 96, GPL570 and GPL571). Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

  17. Microarrays--status and prospects.

    PubMed

    Venkatasubbarao, Srivatsa

    2004-12-01

    Microarrays have become an extremely important research tool for life science researchers and are also beginning to be used in diagnostic, treatment and monitoring applications. This article provides a detailed description of microarrays prepared by in situ synthesis, deposition using microspotting methods, nonplanar bead arrays, flow-through microarrays, optical fiber bundle arrays and nanobarcodes. The problems and challenges in the development of microarrays, development of standards and diagnostic microarrays are described. Tables summarizing the vendor list of various derivatized microarray surfaces, commercially sold premade microarrays, bead arrays and unique microarray products in development are also included. PMID:15542153

  18. Microarray Analysis in Glioblastomas.

    PubMed

    Bhawe, Kaumudi M; Aghi, Manish K

    2016-01-01

    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: i. To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930-2942, 2012). ii. To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013). iii. To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59-70, 2013; Verhaak et al., Cancer Cell 17(1):98-110, 2010). While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  19. Optimisation algorithms for microarray biclustering.

    PubMed

    Perrin, Dimitri; Duhamel, Christophe

    2013-01-01

    In providing simultaneous information on expression profiles for thousands of genes, microarray technologies have, in recent years, been largely used to investigate mechanisms of gene expression. Clustering and classification of such data can, indeed, highlight patterns and provide insight on biological processes. A common approach is to consider genes and samples of microarray datasets as nodes in a bipartite graphs, where edges are weighted e.g. based on the expression levels. In this paper, using a previously-evaluated weighting scheme, we focus on search algorithms and evaluate, in the context of biclustering, several variations of Genetic Algorithms. We also introduce a new heuristic "Propagate", which consists in recursively evaluating neighbour solutions with one more or one less active conditions. The results obtained on three well-known datasets show that, for a given weighting scheme, optimal or near-optimal solutions can be identified. PMID:24109756

  20. Retrieving relevant experiments: The case of microRNA microarrays.

    PubMed

    Açıcı, Koray; Terzi, Yunus Kasım; Oğul, Hasan

    2015-08-01

    Content-based retrieval of biological experiments in large public repositories is a recent challenge in computational biology and bioinformatics. The task is, in general, to search in a database using a query-by-example without any experimental meta-data annotation. Here, we consider a more specific problem that seeks a solution for retrieving relevant microRNA experiments from microarray repositories. A computational framework is proposed with this objective. The framework adapts a normal-uniform mixture model for identifying differentially expressed microRNAs in microarray profiling experiments. A rank-based thresholding scheme is offered to binarize real-valued experiment fingerprints based on differential expression. An effective similarity metric is introduced to compare categorical fingerprints, which in turn infers the relevance between two experiments. Two different views of experimental relevance are evaluated, one for disease association and another for embryonic germ layer, to discern the retrieval ability of the proposed model. To the best of our knowledge, the experiment retrieval task is investigated for the first time in the context of microRNA microarrays. PMID:26116091

  1. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  2. BRCA-Monet: a breast cancer specific drug treatment mode-of-action network for treatment effective prediction using large scale microarray database

    PubMed Central

    2013-01-01

    Background Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are still remaining challenges for accurate predictions. Method Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more effective prediction of drug effects. Result BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased. Conclusions The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased prediction power to cMap and thus will be useful for identification of new therapeutic candidates. Website: The web based application is developed and can be access through the following link http://compgenomics.utsa.edu/BRCAMoNet/ PMID:24564956

  3. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    PubMed Central

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-01-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2–6Galβ, human-origin viruses could bind glycans with Neu5Acα2–8Neu5Acα2–8Neu5Ac and Neu5Gcα2–6Galβ1–4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2–3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms. PMID:26508590

  4. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans.

    PubMed

    Zhao, Nan; Martin, Brigitte E; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-01-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms. PMID:26508590

  5. Biclustering of microarray data with MOSPO based on crowding distance

    PubMed Central

    Liu, Junwan; Li, Zhoujun; Hu, Xiaohua; Chen, Yiming

    2009-01-01

    Background High-throughput microarray technologies have generated and accumulated massive amounts of gene expression datasets that contain expression levels of thousands of genes under hundreds of different experimental conditions. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. The analysis of such datasets can discover local structures composed by sets of genes that show coherent expression patterns under subsets of experimental conditions. It leads to the development of sophisticated algorithms capable of extracting novel and useful knowledge from a biomedical point of view. In the medical domain, these patterns are useful for understanding various diseases, and aid in more accurate diagnosis, prognosis, treatment planning, as well as drug discovery. Results In this work we present the CMOPSOB (Crowding distance based Multi-objective Particle Swarm Optimization Biclustering), a novel clustering approach for microarray datasets to cluster genes and conditions highly related in sub-portions of the microarray data. The objective of biclustering is to find sub-matrices, i.e. maximal subgroups of genes and subgroups of conditions where the genes exhibit highly correlated activities over a subset of conditions. Since these objectives are mutually conflicting, they become suitable candidates for multi-objective modelling. Our approach CMOPSOB is based on a heuristic search technique, multi-objective particle swarm optimization, which simulates the movements of a flock of birds which aim to find food. In the meantime, the nearest neighbour search strategies based on crowding distance and ϵ-dominance can rapidly converge to the Pareto front and guarantee diversity of solutions. We compare the potential of this methodology with other biclustering algorithms by analyzing two common and public datasets of gene expression profiles. In all cases our method can find localized structures

  6. Protein Microarrays for the Detection of Biothreats

    NASA Astrophysics Data System (ADS)

    Herr, Amy E.

    Although protein microarrays have proven to be an important tool in proteomics research, the technology is emerging as useful for public health and defense applications. Recent progress in the measurement and characterization of biothreat agents is reviewed in this chapter. Details concerning validation of various protein microarray formats, from contact-printed sandwich assays to supported lipid bilayers, are presented. The reviewed technologies have important implications for in vitro characterization of toxin-ligand interactions, serotyping of bacteria, screening of potential biothreat inhibitors, and as core components of biosensors, among others, research and engineering applications.

  7. Nanotechnologies in protein microarrays.

    PubMed

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures. PMID:26039143

  8. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    PubMed Central

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J.

    2015-01-01

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  9. QA/QC issues to aid regulatory acceptance of microarray gene expression data.

    PubMed

    Fuscoe, James C; Tong, Weida; Shi, Leming

    2007-06-01

    The U.S. Food and Drug Administration is responsible for (1) promoting and protecting public health by assuring the safety and effectiveness of medicines and medical devices and (2) advancing public health by helping to speed innovations that make medicines and foods safer, more effective, and more affordable. The genomics revolution has dramatically increased our knowledge of basic biology but this has not resulted in the expected acceleration of new medical product development. The Agency's Critical Path to New Medical Products stresses that new tools are needed to address this pipeline problem. Microarray technology is one of these promising tools although questions have risen about the reproducibility of measurements. The Microarray Quality Control (MAQC) Project was initiated by FDA scientists to address this issue. This large project, which evaluated reference RNA samples on seven microarray platforms, found good intralaboratory repeatability and interlaboratory reproducibility. In addition, there was high cross-platform consistency. All data are available free of cost and the reference RNA samples are available for proficiency testing. Thus, current microarray technology appears to provide both reliability and consistency for regulatory submissions. PMID:17567852

  10. PERFORMANCE CHARACTERISTICS OF 65-MER OLIGONUCLEOTIDE MICROARRAYS

    PubMed Central

    Lee, Myoyong; Xiang, Charlie C.; Trent, Jeffrey M.; Bittner, Michael L.

    2009-01-01

    Microarray fabrication using pre-synthesized long oligonucleotide is becoming increasingly important, but a study of large-scale array productions is not published yet. We addressed the issue of fabricating oligonucleotide microarrays by spotting commercial, pre-synthesized 65-mers with 5′ amines representing 7500 murine genes. Amine-modified oligonucleotides were immobilized on glass slides having aldehyde groups via transient Schiff base formation followed by reduction to produce a covalent conjugate. When RNA derived from the same source was used for Cy3 and Cy5 labeling and hybridized to the same array, signal intensities spanning three orders of magnitude were observed, and the coefficient of variation between the two channels for all spots was 8–10%. To ascertain the reproducibility of ratio determination of these arrays, two triplicate hybridizations (with fluorochrome reversal) comparing RNAs from a fibroblast (NIH3T3) and a breast cancer (JC) cell line were carried out. The 95% confidence interval for all spots in the six hybridizations was 0.60 – 1.66. This level of reproducibility allows use of the full range of pattern finding and discriminant analysis typically applied to cDNA microarrays. Further comparative testing was carried out with oligonucleotide microarrays, cDNA microarrays and RT-PCR assays to examine the comparability of results across these different methodologies. PMID:17617369

  11. MICROARRAY QUALITY CONTROL PROJECT: A COMPREHENSIVE GENE EXPRESSION TECHNOLOGY SURVEY DEMONSTRATES MEASURABLE CONSISTENCY AND CONCORDANT RESULTS BETWEEN PLATFORMS

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, h...

  12. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, ...

  13. Expansion of the Public Library Card Catalog in a Large Library

    ERIC Educational Resources Information Center

    Hamann, Edmund

    1972-01-01

    Expanding a large card catalog is a complex process requiring careful planning of procedure, judicious allocation of labor, and simplified techniques. The conclusion is reached that a major catalog expansion can be undertaken economically and without disruption of regular technical and public service activities. (6 references) (Author)

  14. A Case Study Examining the Career Academy Model at a Large Urban Public High School

    ERIC Educational Resources Information Center

    Ho, Howard

    2013-01-01

    This study focused on how career academies were implemented at a large, urban, public high school. Research shows that the career academy model should consist of 3 core components: (a) a small learning community (SLC), (b) a theme-based curriculum, and (c) business partnerships (Stern, Dayton, & Raby, 2010). The purpose of this qualitative…

  15. Assessing Large-Scale Public Job Creation. R&D Monograph 67.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC.

    To assess the feasibility of large-scale, countercyclical public job creation, a study was initiated. Job creation program activities were examined in terms of how many activities could be undertaken; what would be their costs; and what would be their characteristics (labor-intensity, skill-mix, and political acceptability) that might contribute…

  16. Case Study of a Secondary Online Program in a Large, Diverse Midwestern Public School District

    ERIC Educational Resources Information Center

    Cruzan, Carla Dale

    2010-01-01

    In a time of growth in secondary education online programs, there have been few studies directed at understanding secondary online programs and the students they serve. That is particularly true for large, inner-city public school districts with a diverse student body. This is a mixed methods case study which identified that students' primary…

  17. Anomaly-Based Change in Higher Education: The Case of a Large, Turkish Public University.

    ERIC Educational Resources Information Center

    Simsek, Hasan; Aytemiz, Dilkan

    This paper analyzes an institutional change in a large, Turkish public university, the Middle East Technical University (METU), by using an anomaly-based organizational change model. The model explains change as an organizational response to anomalies caused by internal and external organizational conditions. The study used a qualitative case…

  18. Keeping Campus Visits Attuned to Change: The Experience at a Large Public University

    ERIC Educational Resources Information Center

    Head, Joe F.; Dunagan, Margaret W.; Hughes, Thomas M.

    2010-01-01

    Many factors affect an institution's ability to provide campus visitors a high-quality experience: traffic, parking deterrents, street people, navigation mazes, concrete facades, and political agendas, among others. These challenges can be particularly significant for large public, metro, or suburban institutions. Changes as simple as the…

  19. Applications of protein microarrays for biomarker discovery

    PubMed Central

    Ramachandran, Niroshan; Srivastava, Sanjeeva; LaBaer, Joshua

    2011-01-01

    The search for new biomarkers for diagnosis, prognosis and therapeutic monitoring of diseases continues in earnest despite dwindling success at finding novel reliable markers. Some of the current markers in clinical use do not provide optimal sensitivity and specificity, with the prostate cancer antigen (PSA) being one of many such examples. The emergence of proteomic techniques and systems approaches to study disease pathophysiology has rekindled the quest for new biomarkers. In particular the use of protein microarrays has surged as a powerful tool for large scale testing of biological samples. Approximately half the reports on protein microarrays have been published in the last two years especially in the area of biomarker discovery. In this review, we will discuss the application of protein microarray technologies that offer unique opportunities to find novel biomarkers. PMID:21136793

  20. Protein microarrays for parasite antigen discovery.

    PubMed

    Driguez, Patrick; Doolan, Denise L; Molina, Douglas M; Loukas, Alex; Trieu, Angela; Felgner, Phil L; McManus, Donald P

    2015-01-01

    The host serological profile to a parasitic infection, such as schistosomiasis, can be used to define potential vaccine and diagnostic targets. Determining the host antibody response using traditional approaches is hindered by the large number of putative antigens in any parasite proteome. Parasite protein microarrays offer the potential for a high-throughput host antibody screen to simplify this task. In order to construct the array, parasite proteins are selected from available genomic sequence and protein databases using bioinformatic tools. Selected open reading frames are PCR amplified, incorporated into a vector for cell-free protein expression, and printed robotically onto glass slides. The protein microarrays can be probed with antisera from infected/immune animals or humans and the antibody reactivity measured with fluorophore labeled antibodies on a confocal laser microarray scanner to identify potential targets for diagnosis or therapeutic or prophylactic intervention. PMID:25388117

  1. Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows

    PubMed Central

    2011-01-01

    Background The Chinese Taihu is one of the most prolific pig breeds in the world, which farrows at least five more piglets per litter than Western pig breeds partly due to a greater ovulation rate. Variation of ovulation rate maybe associated with the differences in the transcriptome of Chinese Taihu and Large White ovaries. In order to understand the molecular basis of the greater ovulation rate of Chinese Taihu sows, expression profiling experiments were conducted to identify differentially expressed genes in ovarian follicles at the preovulatory stage of a PMSG-hCG stimulated estrous cycle from 3 Chinese Taihu and 3 Large White cycling sows by using the Affymetrix Porcine Genechip™. Results One hundred and thirty-three differentially expressed genes were identified between Chinese Taihu and Large White sows by using Affymetrix porcine GeneChip (p ≤ 0.05, Fold change ≥ 2 or ≤ 0.5). Gene Ontology (GO) analysis revealed that these genes belonged to the class of genes that participated in regulation of cellular process, regulation of biological process, biological regulation, developmental process, cell communication and signal transduction and so on. Significant differential expression of 6 genes including WNT10B and DKK2 in the WNT signaling pathway was detected. Real-time RT-PCR confirmed the expression pattern in seven of eight selected genes. A search of chromosomal location revealed that 92 differentially expressed transcripts located to the intervals of quantitative trait loci (QTLs) for reproduction traits. Furthermore, SNPs of two differentially expressed genes- BAX and BMPR1B were showed to be associated with litter size traits in Large White pigs and Chinese DIV line pigs (p ≤ 0.1 or p ≤ 0.05). Conclusions Our study detected many genes that showed differential expression between ovary follicles of two divergent breeds of pigs. Genes involved with regulation of cellular process, regulation of biological process, in addition to several genes not

  2. Public attitudes toward programs of large-scale technological changes: Some reflections and policy prescriptions, appendix E

    NASA Technical Reports Server (NTRS)

    Shostak, A. B.

    1973-01-01

    The question of how ready the public is for the implementation of large-scale programs of technological change is considered. Four vital aspects of the issue are discussed which include: (1) the ways in which the public mis-perceives the change process, (2) the ways in which recent history impacts on public attitudes, (3) the ways in which the public divides among itself, and (4) the fundamentals of public attitudes towards change. It is concluded that nothing is so critical in the 1970's to securing public approval for large-scale planned change projects as is securing the approval by change-agents of the public.

  3. Photoelectrochemical synthesis of DNA microarrays

    PubMed Central

    Chow, Brian Y.; Emig, Christopher J.; Jacobson, Joseph M.

    2009-01-01

    Optical addressing of semiconductor electrodes represents a powerful technology that enables the independent and parallel control of a very large number of electrical phenomena at the solid-electrolyte interface. To date, it has been used in a wide range of applications including electrophoretic manipulation, biomolecule sensing, and stimulating networks of neurons. Here, we have adapted this approach for the parallel addressing of redox reactions, and report the construction of a DNA microarray synthesis platform based on semiconductor photoelectrochemistry (PEC). An amorphous silicon photoconductor is activated by an optical projection system to create virtual electrodes capable of electrochemically generating protons; these PEC-generated protons then cleave the acid-labile dimethoxytrityl protecting groups of DNA phosphoramidite synthesis reagents with the requisite spatial selectivity to generate DNA microarrays. Furthermore, a thin-film porous glass dramatically increases the amount of DNA synthesized per chip by over an order of magnitude versus uncoated glass. This platform demonstrates that PEC can be used toward combinatorial bio-polymer and small molecule synthesis. PMID:19706433

  4. Microarrays under the microscope.

    PubMed

    Wildsmith, S E; Elcock, F J

    2001-02-01

    Microarray technology is a rapidly advancing area, which is gaining popularity in many biological disciplines from drug target identification to predictive toxicology. Over the past few years, there has been a dramatic increase in the number of methods and techniques available for carrying out this form of gene expression analysis. The techniques and associated peripherals, such as slide types, deposition methods, robotics, and scanning equipment, are undergoing constant improvement, helping to drive the technology forward in terms of robustness and ease of use. These rapid developments, combined with the number of options available and the associated hyperbole, can prove daunting for the new user. This review aims to guide the researcher through the various steps of conducting microarray experiments, from initial strategy to analysing the data, with critical examination of the benefits and disadvantages along the way. PMID:11212888

  5. A hybrid imputation approach for microarray missing value estimation

    PubMed Central

    2015-01-01

    Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate. Methods In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step. Results We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes. Conclusions It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods. PMID:26330180

  6. Building Community Disaster Resilience: Perspectives From a Large Urban County Department of Public Health

    PubMed Central

    Fielding, Jonathan E.; Chandra, Anita; Williams, Malcolm; Eisenman, David; Wells, Kenneth B.; Law, Grace Y.; Fogleman, Stella; Magaña, Aizita

    2013-01-01

    An emerging approach to public health emergency preparedness and response, community resilience encompasses individual preparedness as well as establishing a supportive social context in communities to withstand and recover from disasters. We examine why building community resilience has become a key component of national policy across multiple federal agencies and discuss the core principles embodied in community resilience theory—specifically, the focus on incorporating equity and social justice considerations in preparedness planning and response. We also examine the challenges of integrating community resilience with traditional public health practices and the importance of developing metrics for evaluation and strategic planning purposes. Using the example of the Los Angeles County Community Disaster Resilience Project, we discuss our experience and perspective from a large urban county to better understand how to implement a community resilience framework in public health practice. PMID:23678937

  7. Microarray data classified by artificial neural networks.

    PubMed

    Linder, Roland; Richards, Tereza; Wagner, Mathias

    2007-01-01

    Systems biology has enjoyed explosive growth in both the number of people participating in this area of research and the number of publications on the topic. The field of systems biology encompasses the in silico analysis of high-throughput data as provided by DNA or protein microarrays. Along with the increasing availability of microarray data, attention is focused on methods of analyzing the expression rates. One important type of analysis is the classification task, for example, distinguishing different types of cell functions or tumors. Recently, interest has been awakened toward artificial neural networks (ANN), which have many appealing characteristics such as an exceptional degree of accuracy. Nonlinear relationships or independence from certain assumptions regarding the data distribution are also considered. The current work reviews advantages as well as disadvantages of neural networks in the context of microarray analysis. Comparisons are drawn to alternative methods. Selected solutions are discussed, and finally algorithms for the effective combination of multiple ANNs are presented. The development of approaches to use ANN-processed microarray data applicable to run cell and tissue simulations may be slated for future investigation. PMID:18220242

  8. Raman-based microarray readout: a review.

    PubMed

    Haisch, Christoph

    2016-07-01

    For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout. PMID:26973235

  9. Coffee Shops, Classrooms and Conversations: public engagement and outreach in a large interdisciplinary research Hub

    NASA Astrophysics Data System (ADS)

    Holden, Jennifer A.

    2014-05-01

    Public engagement and outreach activities are increasingly using specialist staff for co-ordination, training and support for researchers, they are also becoming expected for large investments. Here, the experience of public engagement and outreach a large, interdisciplinary Research Hub is described. dot.rural, based at the University of Aberdeen UK, is a £11.8 million Research Councils UK Rural Digital Economy Hub, funded as part of the RCUK Digital Economy Theme (2009-2015). Digital Economy research aims to realise the transformational impact of digital technologies on aspects of the environment, community life, cultural experiences, future society, and the economy. The dot.rural Hub involves 92 researchers from 12 different disciplines, including Geography, Hydrology and Ecology. Public Engagement and Outreach is embedded in the dot.rural Digital Economy Hub via an Outreach Officer. Alongside this position, public engagement and outreach activities are compulsory part of PhD student contracts. Public Engagement and Outreach activities at the dot.rural Hub involve individuals and groups in both formal and informal settings organised by dot.rural and other organisations. Activities in the realms of Education, Public Engagement, Traditional and Social Media are determined by a set of Underlying Principles designed for the Hub by the Outreach Officer. The underlying Engagement and Outreach principles match funding agency requirements and expectations alongside researcher demands and the user-led nature of Digital Economy Research. All activities include researchers alongside the Outreach Officer are research informed and embedded into specific projects that form the Hub. Successful public engagement activities have included participation in Café Scientifique series, workshops in primary and secondary schools, and online activities such as I'm a Scientist Get Me Out of Here. From how to engage 8 year olds with making hydrographs more understandable to members of

  10. Tiling Microarray Analysis Tools

    SciTech Connect

    Nix, Davis Austin

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons), 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)

  11. Facilitating functional annotation of chicken microarray data

    PubMed Central

    2009-01-01

    Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM) tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and will be updated on regular

  12. Compressive Sensing DNA Microarrays

    PubMed Central

    2009-01-01

    Compressive sensing microarrays (CSMs) are DNA-based sensors that operate using group testing and compressive sensing (CS) principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed. PMID:19158952

  13. A Conceptual Framework for Allocation of Federally Stockpiled Ventilators During Large-Scale Public Health Emergencies.

    PubMed

    Zaza, Stephanie; Koonin, Lisa M; Ajao, Adebola; Nystrom, Scott V; Branson, Richard; Patel, Anita; Bray, Bruce; Iademarco, Michael F

    2016-01-01

    Some types of public health emergencies could result in large numbers of patients with respiratory failure who need mechanical ventilation. Federal public health planning has included needs assessment and stockpiling of ventilators. However, additional federal guidance is needed to assist states in further allocating federally supplied ventilators to individual hospitals to ensure that ventilators are shipped to facilities where they can best be used during an emergency. A major consideration in planning is a hospital's ability to absorb additional ventilators, based on available space and staff expertise. A simple pro rata plan that does not take these factors into account might result in suboptimal use or unused scarce resources. This article proposes a conceptual framework that identifies the steps in planning and an important gap in federal guidance regarding the distribution of stockpiled mechanical ventilators during an emergency. PMID:26828799

  14. Deciphering the glycosaminoglycan code with the help of microarrays.

    PubMed

    de Paz, Jose L; Seeberger, Peter H

    2008-07-01

    Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences. PMID:18563243

  15. DNA Microarray-Based Diagnostics.

    PubMed

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications. PMID:26614075

  16. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  17. Public health concerns for neighbors of large-scale swine production operations.

    PubMed

    Thu, K M

    2002-05-01

    This article provides a review and critical synthesis of research related to public health concerns for neighbors exposed to emissions from large-scale swine production operations. The rapid industrialization of pork production in the 1990s produced a generation of confined animal feeding operations (CAFOs) of a size previously unseen in the U.S. Recent research and results from federally sponsored scientific symposia consistently indicate that neighbors of large-scale swine CAFOs can experience health problems at significantly higher rates than controlled comparison populations. Symptoms experienced by swine CAFO neighbors are generally oriented toward irritation of the respiratory tract and are consistent with the types of symptoms among interior confinement workers thathave been well documented in the occupational health literature. However, additional exposure assessment research is required to elucidate the relationship of reported symptoms among swine CAFO neighbors and CAFO emissions. PMID:12046804

  18. Tiling Microarray Analysis Tools

    Energy Science and Technology Software Center (ESTSC)

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons),more » 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)« less

  19. Plant protein kinase substrates identification using protein microarrays.

    PubMed

    Ma, Shisong; Dinesh-Kumar, Savithramma P

    2015-01-01

    Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays. PMID:25930701

  20. Public-private partnerships with large corporations: setting the ground rules for better health.

    PubMed

    Galea, Gauden; McKee, Martin

    2014-04-01

    Public-private partnerships with large corporations offer potential benefits to the health sector but many concerns have been raised, highlighting the need for appropriate safeguards. In this paper we propose five tests that public policy makers may wish to apply when considering engaging in such a public-private partnership. First, are the core products and services provided by the corporation health enhancing or health damaging? In some cases, such as tobacco, the answer is obvious but others, such as food and alcohol, are contested. In such cases, the burden of proof is on the potential partners to show that their activities are health enhancing. Second, do potential partners put their policies into practice in the settings where they can do so, their own workplaces? Third, are the corporate social responsibility activities of potential partners independently audited? Fourth, do potential partners make contributions to the commons rather than to narrow programmes of their choosing? Fifth, is the role of the partner confined to policy implementation rather than policy development, which is ultimately the responsibility of government alone? PMID:24581699

  1. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    PubMed Central

    Biyani, Manish; Ichiki, Takanori

    2015-01-01

    Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA)-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing) a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density), ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  2. AMIC@: All MIcroarray Clusterings @ once

    PubMed Central

    Geraci, Filippo; Pellegrini, Marco; Renda, M. Elena

    2008-01-01

    The AMIC@ Web Server offers a light-weight multi-method clustering engine for microarray gene-expression data. AMIC@ is a highly interactive tool that stresses user-friendliness and robustness by adopting AJAX technology, thus allowing an effective interleaved execution of different clustering algorithms and inspection of results. Among the salient features AMIC@ offers, there are: (i) automatic file format detection, (ii) suggestions on the number of clusters using a variant of the stability-based method of Tibshirani et al. (iii) intuitive visual inspection of the data via heatmaps and (iv) measurements of the clustering quality using cluster homogeneity. Large data sets can be processed efficiently by selecting algorithms (such as FPF-SB and k-Boost), specifically designed for this purpose. In case of very large data sets, the user can opt for a batch-mode use of the system by means of the Clustering wizard that runs all algorithms at once and delivers the results via email. AMIC@ is freely available and open to all users with no login requirement at the following URL http://bioalgo.iit.cnr.it/amica. PMID:18477631

  3. AMIC@: All MIcroarray Clusterings @ once.

    PubMed

    Geraci, Filippo; Pellegrini, Marco; Renda, M Elena

    2008-07-01

    The AMIC@ Web Server offers a light-weight multi-method clustering engine for microarray gene-expression data. AMIC@ is a highly interactive tool that stresses user-friendliness and robustness by adopting AJAX technology, thus allowing an effective interleaved execution of different clustering algorithms and inspection of results. Among the salient features AMIC@ offers, there are: (i) automatic file format detection, (ii) suggestions on the number of clusters using a variant of the stability-based method of Tibshirani et al. (iii) intuitive visual inspection of the data via heatmaps and (iv) measurements of the clustering quality using cluster homogeneity. Large data sets can be processed efficiently by selecting algorithms (such as FPF-SB and k-Boost), specifically designed for this purpose. In case of very large data sets, the user can opt for a batch-mode use of the system by means of the Clustering wizard that runs all algorithms at once and delivers the results via email. AMIC@ is freely available and open to all users with no login requirement at the following URL http://bioalgo.iit.cnr.it/amica. PMID:18477631

  4. DNA microarrays in prostate cancer.

    PubMed

    Ho, Shuk-Mei; Lau, Kin-Mang

    2002-02-01

    DNA microarray technology provides a means to examine large numbers of molecular changes related to a biological process in a high throughput manner. This review discusses plausible utilities of this technology in prostate cancer research, including definition of prostate cancer predisposition, global profiling of gene expression patterns associated with cancer initiation and progression, identification of new diagnostic and prognostic markers, and discovery of novel patient classification schemes. The technology, at present, has only been explored in a limited fashion in prostate cancer research. Some hurdles to be overcome are the high cost of the technology, insufficient sample size and repeated experiments, and the inadequate use of bioinformatics. With the completion of the Human Genome Project and the advance of several highly complementary technologies, such as laser capture microdissection, unbiased RNA amplification, customized functional arrays (eg, single-nucleotide polymorphism chips), and amenable bioinformatics software, this technology will become widely used by investigators in the field. The large amount of novel, unbiased hypotheses and insights generated by this technology is expected to have a significant impact on the diagnosis, treatment, and prevention of prostate cancer. Finally, this review emphasizes existing, but currently underutilized, data-mining tools, such as multivariate statistical analyses, neural networking, and machine learning techniques, to stimulate wider usage. PMID:12084220

  5. Integrating Microarray Data and GRNs.

    PubMed

    Koumakis, L; Potamias, G; Tsiknakis, M; Zervakis, M; Moustakis, V

    2016-01-01

    With the completion of the Human Genome Project and the emergence of high-throughput technologies, a vast amount of molecular and biological data are being produced. Two of the most important and significant data sources come from microarray gene-expression experiments and respective databanks (e,g., Gene Expression Omnibus-GEO (http://www.ncbi.nlm.nih.gov/geo)), and from molecular pathways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of Genes and Genomes-KEGG (http://www.genome.jp/kegg/pathway.html), Reactome (http://www.reactome.org/ReactomeGWT/entrypoint.html)) as well as in commercial repositories (e.g., Ingenuity IPA (http://www.ingenuity.com/products/ipa)). The association of these two sources aims to give new insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.Three major research lines and respective efforts that try to utilize and combine data from both of these sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that support the different types of gene-expression and GRN integration with a focus on methodologies that aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology. PMID:26134183

  6. Microarray platform for omics analysis

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  7. RNAi microarray analysis in cultured mammalian cells.

    PubMed

    Mousses, Spyro; Caplen, Natasha J; Cornelison, Robert; Weaver, Don; Basik, Mark; Hautaniemi, Sampsa; Elkahloun, Abdel G; Lotufo, Roberto A; Choudary, Ashish; Dougherty, Edward R; Suh, Ed; Kallioniemi, Olli

    2003-10-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) is a powerful new tool for analyzing gene knockdown phenotypes in living mammalian cells. To facilitate large-scale, high-throughput functional genomics studies using RNAi, we have developed a microarray-based technology for highly parallel analysis. Specifically, siRNAs in a transfection matrix were first arrayed on glass slides, overlaid with a monolayer of adherent cells, incubated to allow reverse transfection, and assessed for the effects of gene silencing by digital image analysis at a single cell level. Validation experiments with HeLa cells stably expressing GFP showed spatially confined, sequence-specific, time- and dose-dependent inhibition of green fluorescence for those cells growing directly on microspots containing siRNA targeting the GFP sequence. Microarray-based siRNA transfections analyzed with a custom-made quantitative image analysis system produced results that were identical to those from traditional well-based transfection, quantified by flow cytometry. Finally, to integrate experimental details, image analysis, data display, and data archiving, we developed a prototype information management system for high-throughput cell-based analyses. In summary, this RNAi microarray platform, together with ongoing efforts to develop large-scale human siRNA libraries, should facilitate genomic-scale cell-based analyses of gene function. PMID:14525932

  8. [Genomic medicine. Polymorphisms and microarray applications].

    PubMed

    Spalvieri, Mónica P; Rotenberg, Rosa G

    2004-01-01

    This update shows new concepts related to the significance of DNA variations among individuals, as well as to their detection by using a new technology. The sequencing of the human genome is only the beginning of what will enable us to understand genetic diversity. The unit of DNA variability is the polymorphism of a single nucleotide (SNP). At present, studies on SNPs are restricted to basic research but the large number of papers on this subject makes feasible their entrance into clinical practice. We illustrate here the use of SNPs as molecular markers in ethnical genotyping, gene expression in some diseases and as potential targets in pharmacological response, and also introduce the technology of arrays. Microarrays experiments allow the quantification and comparison of gene expression on a large scale, at the same time, by using special chips and array designs. Conventional methods provide data from up to 20 genes, while a single microarray may provide information about thousands of them simultaneously, leading to a more rapid and accurate genotyping. Biotechnology improvements will facilitate our knowledge of each gene sequence, the frequency and exact location of SNPs and their influence on cellular behavior. Although experimental efficiency and validity of results from microarrays are still controversial, the knowledge and characterization of a patient's genetic profile will lead, undoubtedly, to advances in prevention, diagnosis, prognosis and treatment of human diseases. PMID:15637833

  9. Integrating data from heterogeneous DNA microarray platforms.

    PubMed

    Valente, Eduardo; Rocha, Miguel

    2015-01-01

    DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus. PMID:26673932

  10. PROPERTIES OF LARGE-AMPLITUDE VARIABLE STARS DETECTED WITH TWO MICRON ALL SKY SURVEY PUBLIC IMAGES

    SciTech Connect

    Kouzuma, Shinjirou; Yamaoka, Hitoshi

    2009-11-15

    We present a catalog of variable stars in the near-infrared wavelength detected with overlapping regions of the Two Micron All Sky Survey public images, and discuss their properties. The investigated region is in the direction of the Galactic center (-30 deg. {approx}< l {approx}< 20 deg., |b| {approx}< 20 deg.), which covers the entire bulge. We have detected 136 variable stars, of which six are already known and 118 are distributed in the |b| {<=} 5 deg. region. Additionally, 84 variable stars have optical counterparts in Digitized Sky Survey images. The three diagrams (color-magnitude, light variance, and color-color diagrams) indicate that most of the detected variable stars should be large-amplitude and long-period variables such as Mira variables or OH/IR stars. The number density distribution of the detected variable stars implies that they trace the bar structure of the Galactic bulge.

  11. Dynamic biclustering of microarray data by multi-objective immune optimization

    PubMed Central

    2011-01-01

    Abstract Background Newly microarray technologies yield large-scale datasets. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. Systematic analysis of those datasets provides the increasing amount of information, which is urgently needed in the post-genomic era. Biclustering, which is a technique developed to allow simultaneous clustering of rows and columns of a dataset, might be useful to extract more accurate information from those datasets. Biclustering requires the optimization of two conflicting objectives (residue and volume), and a multi-objective artificial immune system capable of performing a multi-population search. As a heuristic search technique, artificial immune systems (AISs) can be considered a new computational paradigm inspired by the immunological system of vertebrates and designed to solve a wide range of optimization problems. During biclustering several objectives in conflict with each other have to be optimized simultaneously, so multi-objective optimization model is suitable for solving biclustering problem. Results Based on dynamic population, this paper proposes a novel dynamic multi-objective immune optimization biclustering (DMOIOB) algorithm to mine coherent patterns from microarray data. Experimental results on two common and public datasets of gene expression profiles show that our approach can effectively find significant localized structures related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The mined patterns present a significant biological relevance in terms of related biological processes, components and molecular functions in a species-independent manner. Conclusions The proposed DMOIOB algorithm is an efficient tool to analyze large microarray datasets. It achieves a good diversity and rapid convergence. PMID:21989068

  12. A centroid-based gene selection method for microarray data classification.

    PubMed

    Guo, Shun; Guo, Donghui; Chen, Lifei; Jiang, Qingshan

    2016-07-01

    For classification problems based on microarray data, the data typically contains a large number of irrelevant and redundant features. In this paper, a new gene selection method is proposed to choose the best subset of features for microarray data with the irrelevant and redundant features removed. We formulate the selection problem as a L1-regularized optimization problem, based on a newly defined linear discriminant analysis criterion. Instead of calculating the mean of the samples, a kernel-based approach is used to estimate the class centroid to define both the between-class separability and the within-class compactness for the criterion. Theoretical analysis indicates that the global optimal solution of the L1-regularized criterion can be reached with a general condition, on which an efficient algorithm is derived to the feature selection problem in a linear time complexity with respect to the number of features and the number of samples. The experimental results on ten publicly available microarray datasets demonstrate that the proposed method performs effectively and competitively compared with state-of-the-art methods. PMID:27056739

  13. Clustering of Local Group Distances: Publication Bias or Correlated Measurements? I. The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Wicker, James E.; Bono, Giuseppe

    2014-05-01

    The distance to the Large Magellanic Cloud (LMC) represents a key local rung of the extragalactic distance ladder yet the galaxy's distance modulus has long been an issue of contention, in particular in view of claims that most newly determined distance moduli cluster tightly—and with a small spread—around the "canonical" distance modulus, (m - M)0 = 18.50 mag. We compiled 233 separate LMC distance determinations published between 1990 and 2013. Our analysis of the individual distance moduli, as well as of their two-year means and standard deviations resulting from this largest data set of LMC distance moduli available to date, focuses specifically on Cepheid and RR Lyrae variable-star tracer populations, as well as on distance estimates based on features in the observational Hertzsprung-Russell diagram. We conclude that strong publication bias is unlikely to have been the main driver of the majority of published LMC distance moduli. However, for a given distance tracer, the body of publications leading to the tightly clustered distances is based on highly non-independent tracer samples and analysis methods, hence leading to significant correlations among the LMC distances reported in subsequent articles. Based on a careful, weighted combination, in a statistical sense, of the main stellar population tracers, we recommend that a slightly adjusted canonical distance modulus of (m - M)0 = 18.49 ± 0.09 mag be used for all practical purposes that require a general distance scale without the need for accuracies of better than a few percent.

  14. Clustering of local group distances: publication bias or correlated measurements? I. The large Magellanic cloud

    SciTech Connect

    De Grijs, Richard; Wicker, James E.; Bono, Giuseppe

    2014-05-01

    The distance to the Large Magellanic Cloud (LMC) represents a key local rung of the extragalactic distance ladder yet the galaxy's distance modulus has long been an issue of contention, in particular in view of claims that most newly determined distance moduli cluster tightly—and with a small spread—around the 'canonical' distance modulus, (m – M){sub 0} = 18.50 mag. We compiled 233 separate LMC distance determinations published between 1990 and 2013. Our analysis of the individual distance moduli, as well as of their two-year means and standard deviations resulting from this largest data set of LMC distance moduli available to date, focuses specifically on Cepheid and RR Lyrae variable-star tracer populations, as well as on distance estimates based on features in the observational Hertzsprung-Russell diagram. We conclude that strong publication bias is unlikely to have been the main driver of the majority of published LMC distance moduli. However, for a given distance tracer, the body of publications leading to the tightly clustered distances is based on highly non-independent tracer samples and analysis methods, hence leading to significant correlations among the LMC distances reported in subsequent articles. Based on a careful, weighted combination, in a statistical sense, of the main stellar population tracers, we recommend that a slightly adjusted canonical distance modulus of (m – M){sub 0} = 18.49 ± 0.09 mag be used for all practical purposes that require a general distance scale without the need for accuracies of better than a few percent.

  15. The Perils of SNP Microarray Testing: Uncovering Unexpected Consanguinity

    PubMed Central

    Tarini, Beth A.; Konczal, Laura; Goldenberg, Aaron J.; Goldman, Edward B.; McCandless, Shawn E.

    2013-01-01

    Background While single nucleotide polymorphism (SNP) chromosomal microarrays identify areas of small genetic deletions/duplications, they can also reveal regions of homozygosity indicative of consanguinity. As more non-geneticists order SNP microarrays, they must prepare for the potential ethical, legal and social issues that result from revelation of unanticipated consanguinity. Patient An infant with multiple congenital anomalies underwent SNP microarray testing. Results The results of the SNP microarray revealed several large regions of homozygosity that indicated identity by descent most consistent with a second or third degree relative mating (e.g., uncle/ niece, half brother/sister, first cousins). Mother was not aware of the test's potential to reveal consanguinity. When informed of the test results, she reluctantly admitted to being raped by her half-brother around the time of conception. Conclusions During the pre-testing consent process, providers should inform parents that SNP microarray testing could reveal consanguinity. Providers must also understand the psychological implications, as well as the legal and moral obligations, that accompany SNP microarray results that indicate consanguinity. PMID:23827427

  16. The contribution of advisory committees and public involvement to large studies: case study

    PubMed Central

    2010-01-01

    Background Many large studies have complex advisory committee structures, yet there is no empirical evidence regarding their optimal composition, scope and contribution. The aim of this study was to inform the committee and advice infrastructure for future research studies. Methods In the context of a five-year study funded by the UK National Institute for Health Research, three advisory committees were formed. In addition, advice was obtained from individual experts. All recommendations received in the start-up phase (first seven months) of the study were recorded, along with the decision about implementation of the recommendation. A particular focus was on the impact of public involvement. Results A total of 172 recommendations were made, including 70 from 20 individual experts. The recommendations were grouped into five emergent themes: Scientific, Pragmatic, Resources, Committee and Collaboration. Most recommendations related to strengthening existing components or adding new components to the study protocol. Very few recommendations either proposed removing study components or contradicted other recommendations. Three 'implementation criteria' were identified: scientific value, pragmatic feasibility, and paradigmatic consistency. 103 (60%) of recommendations were implemented and 25 (15%) were not implemented. The benefits identified by the research team were improved quality and confidence, and the costs were increased cognitive demands, protocol revision time, and slower progress. Conclusions The findings are discussed in the context of the wider literature on public involvement in research. Six recommendations are identified. First, have a clear rationale for each advisory committee expressed as terms of reference, and consider the best balance between committees and individual consultation with experts. Second, an early concern of committees is inter-committee communication, so consider cross-representation and copying minutes between committees. Third

  17. Gene expression profiling in peanut using oligonucleotide microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have a moderately significant number of ESTs been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate l...

  18. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  19. Voluntary rewards mediate the evolution of pool punishment for maintaining public goods in large populations.

    PubMed

    Sasaki, Tatsuya; Uchida, Satoshi; Chen, Xiaojie

    2015-01-01

    Punishment is a popular tool when governing commons in situations where free riders would otherwise take over. It is well known that sanctioning systems, such as the police and courts, are costly and thus can suffer from those who free ride on other's efforts to maintain the sanctioning systems (second-order free riders). Previous game-theory studies showed that if populations are very large, pool punishment rarely emerges in public good games, even when participation is optional, because of second-order free riders. Here we show that a matching fund for rewarding cooperation leads to the emergence of pool punishment, despite the presence of second-order free riders. We demonstrate that reward funds can pave the way for a transition from a population of free riders to a population of pool punishers. A key factor in promoting the transition is also to reward those who contribute to pool punishment, yet not abstaining from participation. Reward funds eventually vanish in raising pool punishment, which is sustainable by punishing the second-order free riders. This suggests that considering the interdependence of reward and punishment may help to better understand the origins and transitions of social norms and institutions. PMID:25753335

  20. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE PAGESBeta

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more » Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  1. Voluntary rewards mediate the evolution of pool punishment for maintaining public goods in large populations

    NASA Astrophysics Data System (ADS)

    Sasaki, Tatsuya; Uchida, Satoshi; Chen, Xiaojie

    2015-03-01

    Punishment is a popular tool when governing commons in situations where free riders would otherwise take over. It is well known that sanctioning systems, such as the police and courts, are costly and thus can suffer from those who free ride on other's efforts to maintain the sanctioning systems (second-order free riders). Previous game-theory studies showed that if populations are very large, pool punishment rarely emerges in public good games, even when participation is optional, because of second-order free riders. Here we show that a matching fund for rewarding cooperation leads to the emergence of pool punishment, despite the presence of second-order free riders. We demonstrate that reward funds can pave the way for a transition from a population of free riders to a population of pool punishers. A key factor in promoting the transition is also to reward those who contribute to pool punishment, yet not abstaining from participation. Reward funds eventually vanish in raising pool punishment, which is sustainable by punishing the second-order free riders. This suggests that considering the interdependence of reward and punishment may help to better understand the origins and transitions of social norms and institutions.

  2. Publications

    Cancer.gov

    Information about NCI publications including PDQ cancer information for patients and health professionals, patient-education publications, fact sheets, dictionaries, NCI blogs and newsletters and major reports.

  3. On the use of standards for microarray lossless image compression.

    PubMed

    Pinho, Armando J; Paiva, António R C; Neves, António J R

    2006-03-01

    The interest in methods that are able to efficiently compress microarray images is relatively new. This is not surprising, since the appearance and fast growth of the technology responsible for producing these images is also quite recent. In this paper, we present a set of compression results obtained with 49 publicly available images, using three image coding standards: lossless JPEG2000, JBIG, and JPEG-LS. We concluded that the compression technology behind JBIG seems to be the one that offers the best combination of compression efficiency and flexibility for microarray image compression. PMID:16532784

  4. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  5. Mining microarray expression data by literature profiling

    PubMed Central

    Chaussabel, Damien; Sher, Alan

    2002-01-01

    Background The rapidly expanding fields of genomics and proteomics have prompted the development of computational methods for managing, analyzing and visualizing expression data derived from microarray screening. Nevertheless, the lack of efficient techniques for assessing the biological implications of gene-expression data remains an important obstacle in exploiting this information. Results To address this need, we have developed a mining technique based on the analysis of literature profiles generated by extracting the frequencies of certain terms from thousands of abstracts stored in the Medline literature database. Terms are then filtered on the basis of both repetitive occurrence and co-occurrence among multiple gene entries. Finally, clustering analysis is performed on the retained frequency values, shaping a coherent picture of the functional relationship among large and heterogeneous lists of genes. Such data treatment also provides information on the nature and pertinence of the associations that were formed. Conclusions The analysis of patterns of term occurrence in abstracts constitutes a means of exploring the biological significance of large and heterogeneous lists of genes. This approach should contribute to optimizing the exploitation of microarray technologies by providing investigators with an interface between complex expression data and large literature resources. PMID:12372143

  6. Characteristic attributes in cancer microarrays.

    PubMed

    Sarkar, I N; Planet, P J; Bael, T E; Stanley, S E; Siddall, M; DeSalle, R; Figurski, D H

    2002-04-01

    Rapid advances in genome sequencing and gene expression microarray technologies are providing unprecedented opportunities to identify specific genes involved in complex biological processes, such as development, signal transduction, and disease. The vast amount of data generated by these technologies has presented new challenges in bioinformatics. To help organize and interpret microarray data, new and efficient computational methods are needed to: (1) distinguish accurately between different biological or clinical categories (e.g., malignant vs. benign), and (2) identify specific genes that play a role in determining those categories. Here we present a novel and simple method that exhaustively scans microarray data for unambiguous gene expression patterns. Such patterns of data can be used as the basis for classification into biological or clinical categories. The method, termed the Characteristic Attribute Organization System (CAOS), is derived from fundamental precepts in systematic biology. In CAOS we define two types of characteristic attributes ('pure' and 'private') that may exist in gene expression microarray data. We also consider additional attributes ('compound') that are composed of expression states of more than one gene that are not characteristic on their own. CAOS was tested on three well-known cancer DNA microarray data sets for its ability to classify new microarray samples. We found CAOS to be a highly accurate and robust class prediction technique. In addition, CAOS identified specific genes, not emphasized in other analyses, that may be crucial to the biology of certain types of cancer. The success of CAOS in this study has significant implications for basic research and the future development of reliable methods for clinical diagnostic tools. PMID:12474425

  7. Microarrayed Materials for Stem Cells

    PubMed Central

    Mei, Ying

    2013-01-01

    Stem cells hold remarkable promise for applications in disease modeling, cancer therapy and regenerative medicine. Despite the significant progress made during the last decade, designing materials to control stem cell fate remains challenging. As an alternative, materials microarray technology has received great attention because it allows for high throughput materials synthesis and screening at a reasonable cost. Here, we discuss recent developments in materials microarray technology and their applications in stem cell engineering. Future opportunities in the field will also be reviewed. PMID:24311967

  8. Immunoprofiling Using NAPPA Protein Microarrays

    PubMed Central

    Sibani, Sahar; LaBaer, Joshua

    2012-01-01

    Protein microarrays provide an efficient method to immunoprofile patients in an effort to rapidly identify disease immunosignatures. The validity of using autoantibodies in diagnosis has been demonstrated in type 1 diabetes, rheumatoid arthritis, and systemic lupus, and is now being strongly considered in cancer. Several types of protein microarrays exist including antibody and antigen arrays. In this chapter, we describe the immunoprofiling application for one type of antigen array called NAPPA (nucleic acids programmable protein array). We provide a guideline for setting up the screening study and designing protein arrays to maximize the likelihood of obtaining quality data. PMID:21370064

  9. Microfluidic microarray systems and methods thereof

    DOEpatents

    West, Jay A. A.; Hukari, Kyle W.; Hux, Gary A.

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  10. Microarray analysis: Uses and Limitations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of microarray technology has exploded in resent years. All areas of biological research have found application for this powerful platform. From human disease studies to microbial detection systems, a plethora of uses for this technology are currently in place with new uses being developed ...

  11. Microarray Developed on Plastic Substrates.

    PubMed

    Bañuls, María-José; Morais, Sergi B; Tortajada-Genaro, Luis A; Maquieira, Ángel

    2016-01-01

    There is a huge potential interest to use synthetic polymers as versatile solid supports for analytical microarraying. Chemical modification of polycarbonate (PC) for covalent immobilization of probes, micro-printing of protein or nucleic acid probes, development of indirect immunoassay, and development of hybridization protocols are described and discussed. PMID:26614067

  12. Microarray studies of psychostimulant-induced changes in gene expression.

    PubMed

    Yuferov, Vadim; Nielsen, David; Butelman, Eduardo; Kreek, Mary Jeanne

    2005-03-01

    Alterations in the expression of multiple genes in many brain regions are likely to contribute to psychostimulant-induced behaviours. Microarray technology provides a powerful tool for the simultaneous interrogation of gene expression levels of a large number of genes. Several recent experimental studies, reviewed here, demonstrate the power, limitations and progress of microarray technology in the field of psychostimulant addiction. These studies vary in the paradigms of cocaine or amphetamine administration, drug doses, route and also mode of administration, duration of treatment, animal species, brain regions studied and time of tissue collection after final drug administration. The studies also utilize different microarray platforms and statistical techniques for analysis of differentially expressed genes. These variables influence substantially the results of these studies. It is clear that current microarray techniques cannot detect small changes reliably in gene expression of genes with low expression levels, including functionally significant changes in components of major neurotransmission systems such as glutamate, dopamine, opioid and GABA receptors, especially those that may occur after chronic drug administration or drug withdrawal. However, the microarray studies reviewed here showed cocaine- or amphetamine-induced alterations in the expression of numerous genes involved in the modulation of neuronal growth, cytoskeletal structures, synaptogenesis, signal transduction, apoptosis and cell metabolism. Application of laser capture microdissection and single-cell cDNA amplification may greatly enhance microarray studies of gene expression profiling. The combination of rapidly evolving microarray technology with established methods of neuroscience, molecular biology and genetics, as well as appropriate behavioural models of drug reinforcement, may provide a productive approach for delineating the neurobiological underpinnings of drug responses that lead to

  13. Inferring genetic networks from microarray data.

    SciTech Connect

    May, Elebeoba Eni; Davidson, George S.; Martin, Shawn Bryan; Werner-Washburne, Margaret C.; Faulon, Jean-Loup Michel

    2004-06-01

    In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.

  14. Publications.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Presents a variety of publications available from government and nongovernment sources. The government publications are from the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) and are designed for educators, students, and the public. (Author/SA)

  15. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs.

    PubMed

    Hui, Dequan; Iqbal, Javeed; Lehmann, Katja; Gase, Klaus; Saluz, Hans Peter; Baldwin, Ian T

    2003-04-01

    We extend our analysis of the transcriptional reorganization that occurs when the native tobacco, Nicotiana attenuata, is attacked by Manduca sexta larvae by cloning 115 transcripts by mRNA differential display reverse transcription-polymerase chain reaction and subtractive hybridization using magnetic beads (SHMB) from the M. sexta-responsive transcriptome. These transcripts were spotted as cDNA with eight others, previously confirmed to be differentially regulated by northern analysis on glass slide microarrays, and hybridized with Cy3- and Cy5-labeled probes derived from plants after 2, 6, 12, and 24 h of continuous attack. Microarray analysis proved to be a powerful means of verifying differential expression; 73 of the cloned genes (63%) were differentially regulated (in equal proportions from differential display reverse transcription-polymerase chain reaction and SHMB procedures), and of these, 24 (32%) had similarity to known genes or putative proteins (more from SHMB). The analysis provided insights into the signaling and transcriptional basis of direct and indirect defenses used against herbivores, suggesting simultaneous activation of salicylic acid-, ethylene-, cytokinin-, WRKY-, MYB-, and oxylipin-signaling pathways and implicating terpenoid-, pathogen-, and cell wall-related transcripts in defense responses. These defense responses require resources that could be made available by decreases in four photosynthetic-related transcripts, increases in transcripts associated with protein and nucleotide turnover, and increases in transcripts associated with carbohydrate metabolism. This putative up-regulation of defense-associated and down-regulation of growth-associated transcripts occur against a backdrop of altered transcripts for RNA-binding proteins, putative ATP/ADP translocators, chaperonins, histones, and water channel proteins, responses consistent with a major metabolic reconfiguration that underscores the complexity of response to herbivore attack

  16. Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata: V. Microarray Analysis and Further Characterization of Large-Scale Changes in Herbivore-Induced mRNAs1

    PubMed Central

    Hui, Dequan; Iqbal, Javeed; Lehmann, Katja; Gase, Klaus; Saluz, Hans Peter; Baldwin, Ian T.

    2003-01-01

    We extend our analysis of the transcriptional reorganization that occurs when the native tobacco, Nicotiana attenuata, is attacked by Manduca sexta larvae by cloning 115 transcripts by mRNA differential display reverse transcription-polymerase chain reaction and subtractive hybridization using magnetic beads (SHMB) from the M. sexta-responsive transcriptome. These transcripts were spotted as cDNA with eight others, previously confirmed to be differentially regulated by northern analysis on glass slide microarrays, and hybridized with Cy3- and Cy5-labeled probes derived from plants after 2, 6, 12, and 24 h of continuous attack. Microarray analysis proved to be a powerful means of verifying differential expression; 73 of the cloned genes (63%) were differentially regulated (in equal proportions from differential display reverse transcription-polymerase chain reaction and SHMB procedures), and of these, 24 (32%) had similarity to known genes or putative proteins (more from SHMB). The analysis provided insights into the signaling and transcriptional basis of direct and indirect defenses used against herbivores, suggesting simultaneous activation of salicylic acid-, ethylene-, cytokinin-, WRKY-, MYB-, and oxylipin-signaling pathways and implicating terpenoid-, pathogen-, and cell wall-related transcripts in defense responses. These defense responses require resources that could be made available by decreases in four photosynthetic-related transcripts, increases in transcripts associated with protein and nucleotide turnover, and increases in transcripts associated with carbohydrate metabolism. This putative up-regulation of defense-associated and down-regulation of growth-associated transcripts occur against a backdrop of altered transcripts for RNA-binding proteins, putative ATP/ADP translocators, chaperonins, histones, and water channel proteins, responses consistent with a major metabolic reconfiguration that underscores the complexity of response to herbivore attack

  17. Perception of Business Studies Teachers on the Infuence of Large Class Size in Public Secondary Schools in Yobe State, Nigeria

    ERIC Educational Resources Information Center

    Mamman, Jummai; Chadi, Aishatu Mohammad; Jirgi, Ibrahim

    2015-01-01

    This is a survey study conducted to determine the perception of business studies teacher's on the influence of large class size in Yobe state public secondary school. Three research questions were raised to guide the study. The population comprised of one hundred and twenty (120) business studies teachers from one hundred and five (105) Secondary…

  18. An Investigation of Leadership in a Professional Learning Community: A Case Study of a Large, Suburban, Public Middle School

    ERIC Educational Resources Information Center

    Liebman, Howard; Maldonado, Nancy; Lacey, Candace H.; Thompson, Steve

    2005-01-01

    This qualitative case study investigated a large, suburban, public middle school focusing on educators' perceptions of leadership within their professional learning community. Participants included the principal, administrative team, and key faculty members. Data were collected using semi-structured interviews and were analyzed by hand coding and…

  19. Modeling Retention at a Large Public University: Can At-Risk Students Be Identified Early Enough to Treat?

    ERIC Educational Resources Information Center

    Singell, Larry D.; Waddell, Glen R.

    2010-01-01

    We examine the extent to which readily available data at a large public university can be used to a priori identify at-risk students who may benefit from targeted retention efforts. Although it is possible to identify such students, there remains an inevitable tradeoff in any resource allocation between not treating the students who are likely to…

  20. Come and Stay a While: Does Financial Aid Effect Enrollment and Retention at a Large Public University?

    ERIC Educational Resources Information Center

    Singell, Larry D., Jr.

    Few studies have examined whether financial aid affects college retention. This paper models the decision to enroll and re-enroll in college, which yields a bivariate probit model that is estimated using detailed individual data from a large public university. The analysis uses the unique detail of institution-specific data to examine the effect…

  1. Demography Is Not Destiny: Increasing the Graduation Rates of Low-Income College Students at Large Public Universities

    ERIC Educational Resources Information Center

    Engle, Jennifer; O'Brien, Colleen

    2007-01-01

    What accounts for the differences in retention and graduation rates among large public colleges and universities that serve high numbers of low-income students? To answer this question, the Pell Institute for the Study of Opportunity in Higher Education has conducted two studies to examine the institutional characteristics, practices, and policies…

  2. The Microarray Revolution: Perspectives from Educators

    ERIC Educational Resources Information Center

    Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.

    2004-01-01

    In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…

  3. Using The Affymetrix Wheat Microarray As An Oat Expression Platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in sequencing have resulted in the sequence of a large number of plant expressed sequence tags (ESTs) to entire plant genomes. Using these EST sequences, oligonucleotide microarray chips have been developed for several species including barley (Hordeum vulgare), maize (Zea mays), ric...

  4. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring

    SciTech Connect

    Gregory Stephanopoulos

    2004-07-31

    Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.

  5. A biomimetic algorithm for the improved detection of microarray features

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Nicolau, Dan V.; Maini, Philip K.

    2007-02-01

    One the major difficulties of microarray technology relate to the processing of large and - importantly - error-loaded images of the dots on the chip surface. Whatever the source of these errors, those obtained in the first stage of data acquisition - segmentation - are passed down to the subsequent processes, with deleterious results. As it has been demonstrated recently that biological systems have evolved algorithms that are mathematically efficient, this contribution attempts to test an algorithm that mimics a bacterial-"patented" algorithm for the search of available space and nutrients to find, "zero-in" and eventually delimitate the features existent on the microarray surface.

  6. Large-Scale Public Transcriptomic Data Mining Reveals a Tight Connection between the Transport of Nitrogen and Other Transport Processes in Arabidopsis.

    PubMed

    He, Fei; Karve, Abhijit A; Maslov, Sergei; Babst, Benjamin A

    2016-01-01

    Movement of nitrogen to the plant tissues where it is needed for growth is an important contribution to nitrogen use efficiency. However, we have very limited knowledge about the mechanisms of nitrogen transport. Loading of nitrogen into the xylem and/or phloem by transporter proteins is likely important, but there are several families of genes that encode transporters of nitrogenous molecules (collectively referred to as N transporters here), each comprised of many gene members. In this study, we leveraged publicly available microarray data of Arabidopsis to investigate the gene networks of N transporters to elucidate their possible biological roles. First, we showed that tissue-specificity of nitrogen (N) transporters was well reflected among the public microarray data. Then, we built coexpression networks of N transporters, which showed relationships between N transporters and particular aspects of plant metabolism, such as phenylpropanoid biosynthesis and carbohydrate metabolism. Furthermore, genes associated with several biological pathways were found to be tightly coexpressed with N transporters in different tissues. Our coexpression networks provide information at the systems-level that will serve as a resource for future investigation of nitrogen transport systems in plants, including candidate gene clusters that may work together in related biological roles. PMID:27563305

  7. Large-Scale Public Transcriptomic Data Mining Reveals a Tight Connection between the Transport of Nitrogen and Other Transport Processes in Arabidopsis

    PubMed Central

    He, Fei; Karve, Abhijit A.; Maslov, Sergei; Babst, Benjamin A.

    2016-01-01

    Movement of nitrogen to the plant tissues where it is needed for growth is an important contribution to nitrogen use efficiency. However, we have very limited knowledge about the mechanisms of nitrogen transport. Loading of nitrogen into the xylem and/or phloem by transporter proteins is likely important, but there are several families of genes that encode transporters of nitrogenous molecules (collectively referred to as N transporters here), each comprised of many gene members. In this study, we leveraged publicly available microarray data of Arabidopsis to investigate the gene networks of N transporters to elucidate their possible biological roles. First, we showed that tissue-specificity of nitrogen (N) transporters was well reflected among the public microarray data. Then, we built coexpression networks of N transporters, which showed relationships between N transporters and particular aspects of plant metabolism, such as phenylpropanoid biosynthesis and carbohydrate metabolism. Furthermore, genes associated with several biological pathways were found to be tightly coexpressed with N transporters in different tissues. Our coexpression networks provide information at the systems-level that will serve as a resource for future investigation of nitrogen transport systems in plants, including candidate gene clusters that may work together in related biological roles. PMID:27563305

  8. An automated method for gridding in microarray images.

    PubMed

    Giannakeas, Nikolaos; Fotiadis, Dimitrios I; Politou, Anastasia S

    2006-01-01

    Microarray technology is a powerful tool for analyzing the expression of a large number of genes in parallel. A typical microarray image consists of a few thousands of spots which determine the level of gene expression in the sample. In this paper we propose a method which automatically addresses each spot area in the image. Initially, a preliminary segmentation of the image is produced using a template matching algorithm. Next, grid and spot finding are realized. The position of non-expressed spots is located and finally a Voronoi diagram is employed to fit the grid on the image. Our method has been evaluated in a set of five images consisting of 45960 spots, from the Stanford microarray database and the reported accuracy for spot detection was 93% PMID:17946343

  9. A Versatile Microarray Platform for Capturing Rare Cells

    NASA Astrophysics Data System (ADS)

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  10. Exploring the feasibility of next-generation sequencing and microarray data meta-analysis

    PubMed Central

    Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    Emerging next-generation sequencing (NGS) technology potentially resolves many issues that prevent widespread clinical use of gene expression microarrays. However, the number of publicly available NGS datasets is still smaller than that of microarrays. This paper explores the possibilities for combining information from both microarray and NGS gene expression datasets for the discovery of differentially expressed genes (DEGs). We evaluate several existing methods in detecting DEGs using individual datasets as well as combined NGS and microarray datasets. Results indicate that analysis of combined NGS and microarray data is feasible, but successful detection of DEGs may depend on careful selection of algorithms as well as on data normalization and pre-processing. PMID:22256102

  11. Caryoscope: An Open Source Java application for viewing microarray data in a genomic context

    PubMed Central

    Awad, Ihab AB; Rees, Christian A; Hernandez-Boussard, Tina; Ball, Catherine A; Sherlock, Gavin

    2004-01-01

    Background Microarray-based comparative genome hybridization experiments generate data that can be mapped onto the genome. These data are interpreted more easily when represented graphically in a genomic context. Results We have developed Caryoscope, which is an open source Java application for visualizing microarray data from array comparative genome hybridization experiments in a genomic context. Caryoscope can read General Feature Format files (GFF files), as well as comma- and tab-delimited files, that define the genomic positions of the microarray reporters for which data are obtained. The microarray data can be browsed using an interactive, zoomable interface, which helps users identify regions of chromosomal deletion or amplification. The graphical representation of the data can be exported in a number of graphic formats, including publication-quality formats such as PostScript. Conclusion Caryoscope is a useful tool that can aid in the visualization, exploration and interpretation of microarray data in a genomic context. PMID:15488149

  12. Biclustering of time series microarray data.

    PubMed

    Meng, Jia; Huang, Yufei

    2012-01-01

    Clustering is a popular data exploration technique widely used in microarray data analysis. In this chapter, we review ideas and algorithms of bicluster and its applications in time series microarray analysis. We introduce first the concept and importance of biclustering and its different variations. We then focus our discussion on the popular iterative signature algorithm (ISA) for searching biclusters in microarray dataset. Next, we discuss in detail the enrichment constraint time-dependent ISA (ECTDISA) for identifying biologically meaningful temporal transcription modules from time series microarray dataset. In the end, we provide an example of ECTDISA application to time series microarray data of Kaposi's Sarcoma-associated Herpesvirus (KSHV) infection. PMID:22130875

  13. Public knowledge and preventive behavior during a large-scale Salmonella outbreak: results from an online survey in the Netherlands

    PubMed Central

    2014-01-01

    Background Food-borne Salmonella infections are a worldwide concern. During a large-scale outbreak, it is important that the public follows preventive advice. To increase compliance, insight in how the public gathers its knowledge and which factors determine whether or not an individual complies with preventive advice is crucial. Methods In 2012, contaminated salmon caused a large Salmonella Thompson outbreak in the Netherlands. During the outbreak, we conducted an online survey (n = 1,057) to assess the general public’s perceptions, knowledge, preventive behavior and sources of information. Results Respondents perceived Salmonella infections and the 2012 outbreak as severe (m = 4.21; five-point scale with 5 as severe). Their knowledge regarding common food sources, the incubation period and regular treatment of Salmonella (gastro-enteritis) was relatively low (e.g., only 28.7% knew that Salmonella is not normally treated with antibiotics). Preventive behavior differed widely, and the majority (64.7%) did not check for contaminated salmon at home. Most information about the outbreak was gathered through traditional media and news and newspaper websites. This was mostly determined by time spent on the medium. Social media played a marginal role. Wikipedia seemed a potentially important source of information. Conclusions To persuade the public to take preventive actions, public health organizations should deliver their message primarily through mass media. Wikipedia seems a promising instrument for educating the public about food-borne Salmonella. PMID:24479614

  14. Multiple criteria optimization joint analyses of microarray experiments in lung cancer: from existing microarray data to new knowledge.

    PubMed

    Camacho-Cáceres, Katia I; Acevedo-Díaz, Juan C; Pérez-Marty, Lynn M; Ortiz, Michael; Irizarry, Juan; Cabrera-Ríos, Mauricio; Isaza, Clara E

    2015-12-01

    Microarrays can provide large amounts of data for genetic relative expression in illnesses of interest such as cancer in short time. These data, however, are stored and often times abandoned when new experimental technologies arrive. This work reexamines lung cancer microarray data with a novel multiple criteria optimization-based strategy aiming to detect highly differentially expressed genes. This strategy does not require any adjustment of parameters by the user and is capable to handle multiple and incommensurate units across microarrays. In the analysis, groups of samples from patients with distinct smoking habits (never smoker, current smoker) and different gender are contrasted to elicit sets of highly differentially expressed genes, several of which are already associated to lung cancer and other types of cancer. The list of genes is provided with a discussion of their role in cancer, as well as the possible research directions for each of them. PMID:26471143

  15. Wagering on a large scale: Relationships between public gambling and game manipulations in two state lotteries

    PubMed Central

    Lyons, Charles A.; Ghezzi, Patrick M.

    1995-01-01

    Public wagering was examined in relation to game adjustments during the first 523 draws of Oregon's “Megabucks” lottery and the first 540 draws of Arizona's “The Pick” lottery. Oregon's lottery was modified five times during this period, and Arizona's lottery underwent four modifications. Public wagering was not related to decreases in the odds of winning in either state. Wagering increased in both states following the introduction of a minimum $1 million jackpot. Wagering also increased following a change in game frequency from weekly to semiweekly draws. Sales trends in both states suggest that over the period examined, larger jackpots were required to maintain previous levels of lottery play. These data suggest that public participation in gambling can be manipulated by state lottery commissions through adjustments in lottery contingencies. PMID:16795861

  16. Microarray analysis in pulmonary hypertension.

    PubMed

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea; Kwapiszewska, Grazyna

    2016-07-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  17. Microarray analysis in pulmonary hypertension

    PubMed Central

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea

    2016-01-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  18. Self-Assembling Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  19. Service Quality: An Unobtrusive Investigation of Interlibrary Loan in Large Public Libraries in Canada.

    ERIC Educational Resources Information Center

    Hebert, Francoise

    1994-01-01

    Describes a study that investigated the quality of interlibrary loan services in Canadian public libraries from the library's and the user's perspectives and then compared results. Measures of interlibrary loan performance are reviewed; an alternative conceptualization of service quality is discussed; and SERVQUAL, a measure of service quality, is…

  20. Routes to Roots: Acquiring Genealogical and Local History Materials in a Large Canadian Public Library

    ERIC Educational Resources Information Center

    McClelland, Arthur G. W.

    2004-01-01

    Using the London Room of the London Public Library in London, Ontario, Canada, as an example, this article will examine the nature of local collections, the sources and methods of acquiring genealogical and local history materials and the constraints related to such acquisitions. This article will also present a brief history of the London Room…

  1. Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.

    PubMed

    Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D

    2016-01-01

    Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation. PMID:26705309

  2. Genomic and microarray approaches to coral reef conservation biology

    NASA Astrophysics Data System (ADS)

    Forêt, S.; Kassahn, K. S.; Grasso, L. C.; Hayward, D. C.; Iguchi, A.; Ball, E. E.; Miller, D. J.

    2007-09-01

    New technologies based on DNA microarrays and comparative genomics hold great promise for providing the background biological information necessary for effective coral reef conservation and management. Microarray analysis has been used in a wide range of applications across the biological sciences, most frequently to examine simultaneous changes in the expression of large numbers of genes in response to experimental manipulation or environmental variation. Other applications of microarray methods include the assessment of divergence in gene sequences between species and the identification of fast-evolving genes. Arrays are presently available for only a limited range of species, but with appropriate controls they can be used for related species, thus avoiding the considerable costs associated with development of a system de novo. Arrays are in use or preparation to study stress responses, early development, and symbiosis in Acropora and Montastraea. Ongoing projects on several corals are making available large numbers of expressed gene sequences, enabling the identification of candidate genes for studies on gamete specificity, allorecognition and symbiont interactions. Over the next few years, microarray and comparative genomic approaches are likely to assume increasingly important and widespread use to study many aspects of the biology of coral reef organisms. Application of these genomic approaches to enhance our understanding of genetic and physiological correlates during stress, environmental disturbance and disease bears direct relevance to the conservation of coral reef ecosystems.

  3. Food Microbial Pathogen Detection and Analysis Using DNA Microarray Technologies

    PubMed Central

    Herold, Keith E.

    2008-01-01

    Abstract Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limitations since they are generally faster and can provide more information than culture-based methods. One limitation of traditional PCR-based methods is that they are normally limited to the analysis of a single pathogen, a small group of related pathogens, or a small number of relevant genes. Microarray technology enables a significant expansion of the capability of DNA-based methods in terms of the number of DNA sequences that can be analyzed simultaneously, enabling molecular identification and characterization of multiple pathogens and many genes in a single array assay. Microarray analysis of microbial pathogens has potential uses in research, food safety, medical, agricultural, regulatory, public health, and industrial settings. In this article, we describe the main technical elements of microarray technology and the application and potential use of DNA microarrays for food microbial analysis. PMID:18673074

  4. Curriculum: Integrating Team-Based Design across the Curriculum at a Large Public University

    ERIC Educational Resources Information Center

    Trenshaw, Kathryn F.; Henderson, Jerrod A.; Miletic, Marina; Seebauer, Edmund G.; Tillman, Ayesha S.; Vogel, Troy J.

    2014-01-01

    Despite high enrollments and budget cutbacks affecting many programs, students still need design experience which prepares them for a globally competitive workforce. We demonstrate that team design projects can be threaded across the curriculum even at large institutions with high departmental student to faculty ratios (~50:1). We assessed student…

  5. Student Perceptions of General Education Requirements at a Large Public University: No Surprises?

    ERIC Educational Resources Information Center

    Thompson, Clarissa A.; Eodice, Michele; Tran, Phuoc

    2015-01-01

    The current study surveyed students' knowledge of and perceptions about general education requirements at a large research-intensive university. Findings revealed that students harbored misconceptions about general education requirements and illuminated the reasons why students were choosing to take required general education courses at other…

  6. 78 FR 61227 - Public Assistance Cost Estimating Format for Large Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...-Bound Percentile of Factor C.1 (Preliminary Engineering Analysis Stage) Should Be Revised To More... Results for Each Large Project Estimated by the CEF 8. The Engineering and Design Services Curves (A and B... and Engineering AASHTO American Association of State and Highway Transportation Officials...

  7. Enzyme family-specific and activity-based screening of chemical libraries using enzyme microarrays.

    PubMed

    Funeriu, Daniel P; Eppinger, Jörg; Denizot, Lucile; Miyake, Masato; Miyake, Jun

    2005-05-01

    The potential of protein microarrays in high-throughput screening (HTS) still remains largely unfulfilled, essentially because of the difficulty of extracting meaningful, quantitative data from such experiments. In the particular case of enzyme microarrays, low-molecular-weight fluorescent affinity labels (FALs) can function as ideally suited activity probes of the microarrayed enzymes. FALs form covalent bonds with enzymes in an activity-dependent manner and therefore can be used to characterize enzyme activity at each enzyme's address, as predetermined by the microarraying process. Relying on this principle, we introduce herein thematic enzyme microarrays (TEMA). In a kinetic setup we used TEMAs to determine the full set of kinetic constants and the reaction mechanism between the microarrayed enzymes (the theme of the microarray) and a family-wide FAL. Based on this kinetic understanding, in an HTS setup we established the practical and theoretical methodology for quantitative, multiplexed determination of the inhibition profile of compounds from a chemical library against each microarrayed enzyme. Finally, in a validation setup, K(i)(app) values and inhibitor profiles were confirmed and refined. PMID:15821728

  8. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research*

    PubMed Central

    Pedersen, Henriette L.; Fangel, Jonatan U.; McCleary, Barry; Ruzanski, Christian; Rydahl, Maja G.; Ralet, Marie-Christine; Farkas, Vladimir; von Schantz, Laura; Marcus, Susan E.; Andersen, Mathias C. F.; Field, Rob; Ohlin, Mats; Knox, J. Paul; Clausen, Mads H.; Willats, William G. T.

    2012-01-01

    Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes. PMID:22988248

  9. Large regional differences in incidence of arthroscopic meniscal procedures in the public and private sector in Denmark

    PubMed Central

    Hare, Kristoffer Borbjerg; Vinther, Jesper Høeg; Lohmander, L Stefan; Thorlund, Jonas Bloch

    2015-01-01

    Objectives A recent study reported a large increase in the number of meniscal procedures from 2000 to 2011 in Denmark. We examined the nation-wide distribution of meniscal procedures performed in the private and public sector in Denmark since different incentives may be present and the use of these procedures may differ from region to region. Setting We included data on all patients who underwent an arthroscopic meniscal procedure performed in the public or private sector in Denmark. Participants Data were retrieved from the Danish National Patient Register on patients who underwent arthroscopic meniscus surgery as a primary or secondary procedure in the years 2000 to 2011. Hospital identification codes enabled linkage of performed procedures to specific hospitals. Primary and secondary outcome measures Yearly incidence of meniscal procedures per 100 000 inhabitants was calculated with 95% CIs for public and private procedures for each region. Results Incidence of meniscal procedures increased at private and at public hospitals. The private sector accounted for the largest relative and absolute increase, rising from an incidence of 1 in 2000 to 98 in 2011. In 2011, the incidence of meniscal procedures was three times higher in the Capital Region than in Region Zealand. Conclusions Our study identified a large increase in the use of meniscal procedures in the public and private sector in Denmark. The increase was particularly conspicuous in the private sector as its proportion of procedures performed increased from 1% to 32%. Substantial regional differences were present in the incidence and trend over time of meniscal procedures. PMID:25712820

  10. Coexpression analysis of human genes across many microarray data sets.

    PubMed

    Lee, Homin K; Hsu, Amy K; Sajdak, Jon; Qin, Jie; Pavlidis, Paul

    2004-06-01

    We present a large-scale analysis of mRNA coexpression based on 60 large human data sets containing a total of 3924 microarrays. We sought pairs of genes that were reliably coexpressed (based on the correlation of their expression profiles) in multiple data sets, establishing a high-confidence network of 8805 genes connected by 220,649 "coexpression links" that are observed in at least three data sets. Confirmed positive correlations between genes were much more common than confirmed negative correlations. We show that confirmation of coexpression in multiple data sets is correlated with functional relatedness, and show how cluster analysis of the network can reveal functionally coherent groups of genes. Our findings demonstrate how the large body of accumulated microarray data can be exploited to increase the reliability of inferences about gene function. PMID:15173114

  11. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    PubMed Central

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-01-01

    Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and

  12. Making a new technology work: the standardization and regulation of microarrays.

    PubMed

    Rogers, Susan; Cambrosio, Alberto

    2007-12-01

    The translation of laboratory innovations into clinical tools is dependent upon the development of regulatory arrangements designed to ensure that the new technology will be used reliably and consistently. A case study of a key post-genomic technology, gene chips or microarrays, exemplifies this claim. The number of microarray publications and patents has increased exponentially during the last decade and diagnostic microarray tests already are making their way into the clinic. Yet starting in the mid-1990s, scientific journals were overrun with criticism concerning the ambiguities involved in interpreting most of the assumptions of a microarray experiment. Questions concerning platform comparability and statistical calculations were and continue to be raised, in spite of the emergence by 2001 of an initial set of standards concerning several components of a microarray experiment. This article probes the history and ongoing efforts aimed at turning microarray experimentation into a viable, meaningful, and consensual technology by focusing on two related elements:1) The history of the development of the Microarray Gene Expression Data Society (MGED), a remarkable bottom-up initiative that brings together different kinds of specialists from academic, commercial, and hybrid settings to produce, maintain, and update microarray standards; and 2) The unusual mix of skills and expertise involved in the development and use of microarrays. The production, accumulation, storage, and mining of microarray data remain multi-skilled endeavors bridging together different types of scientists who embody a diversity of scientific traditions. Beyond standardization, the interfacing of these different skills has become a key issue for further development of the field. PMID:18449388

  13. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    PubMed Central

    Chandler, Darrell P.; Bryant, Lexi; Griesemer, Sara B.; Gu, Rui; Knickerbocker, Christopher; Kukhtin, Alexander; Parker, Jennifer; Zimmerman, Cynthia; George, Kirsten St.; Cooney, Christopher G.

    2012-01-01

    This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  14. The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database

    SciTech Connect

    Tagmount, Abderrahmane; Wang, Mei; Lindquist, Erika; Tanaka, Yoshihiro; Teranishi, Kristen S.; Sunagawa, Shinichi; Wong, Mike; Stillman, Jonathon H.

    2010-01-27

    Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of ~;;30K unique sequences (UniSeqs) representing ~;;19K clusters were generated from ~;;98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66percent of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases.Conclusions/Significance: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in

  15. The State of Sleep among College Students at a Large Public University

    ERIC Educational Resources Information Center

    Orzech, Kathryn M.; Salafsky, David B.; Hamilton, Lee Ann

    2011-01-01

    Objective: Data about college student sleep were collected and used to develop an education campaign to improve sleep. Participants: On-campus residents at a large state university were surveyed on 4 occasions, October 2005 to April 2007. Sample size was 675 to 1,823 students. Fall 2005 mean age = 18.5 years, SD = 1.03 (range 18-30) years. Initial…

  16. Large public display boards: a case study of an OR board and design implications.

    PubMed Central

    Lasome, C. E.; Xiao, Y.

    2001-01-01

    A compelling reason for studying artifacts in collaborative work is to inform design. We present a case study of a public display board (12 ft by 4 ft) in a Level-I trauma center operating room (OR) unit. The board has evolved into a sophisticated coordination tool for clinicians and supporting personnel. This paper draws on study findings about how the OR board is used and organizes the findings into three areas: (1) visual and physical properties of the board that are exploited for collaboration, (2) purposes the board was configured to serve, and (3) types of physical and perceptual interaction with the board. Findings and implications related to layout, size, flexibility, task management, problem-solving, resourcing, shared awareness, and communication are discussed in an effort to propose guidelines to facilitate the design of electronic, computer driven display boards in the OR environment. PMID:11825209

  17. Comprehensive Challenges for the Well Being of Young Children: A Population-Based Study of Publicly Monitored Risks in a Large Urban Center

    ERIC Educational Resources Information Center

    Rouse, Heather L.; Fantuzzo, John W.; LeBoeuf, Whitney

    2011-01-01

    This population-based study investigated the unique and cumulative relations between risks that are monitored by public surveillance systems and academic and behavioral outcomes for an entire cohort of third graders in a large, urban public school system. Using integrated, administrative records from child welfare, public health, housing, and…

  18. THE ABRF MARG MICROARRAY SURVEY 2005: TAKING THE PULSE ON THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years microarray technology has evolved into a critical component of any discovery based program. Since 1999, the Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) has conducted biennial surveys designed to generate a pr...

  19. Clustering Short Time-Series Microarray

    NASA Astrophysics Data System (ADS)

    Ping, Loh Wei; Hasan, Yahya Abu

    2008-01-01

    Most microarray analyses are carried out on static gene expressions. However, the dynamical study of microarrays has lately gained more attention. Most researches on time-series microarray emphasize on the bioscience and medical aspects but few from the numerical aspect. This study attempts to analyze short time-series microarray mathematically using STEM clustering tool which formally preprocess data followed by clustering. We next introduce the Circular Mould Distance (CMD) algorithm with combinations of both preprocessing and clustering analysis. Both methods are subsequently compared in terms of efficiencies.

  20. Living Cell Microarrays: An Overview of Concepts.

    PubMed

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  1. Living Cell Microarrays: An Overview of Concepts

    PubMed Central

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  2. Protein microarrays as tools for functional proteomics.

    PubMed

    LaBaer, Joshua; Ramachandran, Niroshan

    2005-02-01

    Protein microarrays present an innovative and versatile approach to study protein abundance and function at an unprecedented scale. Given the chemical and structural complexity of the proteome, the development of protein microarrays has been challenging. Despite these challenges there has been a marked increase in the use of protein microarrays to map interactions of proteins with various other molecules, and to identify potential disease biomarkers, especially in the area of cancer biology. In this review, we discuss some of the promising advances made in the development and use of protein microarrays. PMID:15701447

  3. Single nucleotide polymorphism genotyping using BeadChip microarrays.

    PubMed

    Lambert, Gilliam; Tsinajinnie, Darwin; Duggan, David

    2013-07-01

    The genotyping of single nucleotide polymorphisms (SNPs) has successfully contributed to the study of complex diseases more than any other technology to date. Genome-wide association studies (GWAS) using 10,000s to >1,000,000 SNPs have identified 1000s of statistically significant SNPs pertaining to 17 different human disease and trait categories. Post-GWAS fine-mapping studies using 10,000s to 100,000s SNPs on a microarray have narrowed the region of interest for many of these GWAS findings; in addition, independent signals within the original GWAS region have been identified. Focused content, SNP-based microarrays such as the human exome, for example, have too been used successfully to identify novel disease associations. Success has come to studies where 100s to 10,000s (mostly) to >100,000 samples were genotyped. For the time being, SNP-based microarrays remain cost-effective especially when studying large numbers of samples compared to other "genotyping" technologies including next generation sequencing. In this unit, protocols for manual (LIMS-free), semi-manual, and automated processing of BeadChip microarrays are presented. Lower throughput studies will find value in the manual and semi-manual protocols, while all types of studies--low-, medium-, and high-throughput--will find value in the semi-manual and automated protocols. PMID:23853082

  4. Impact of microarray technology in nutrition and food research.

    PubMed

    Spielbauer, Bettina; Stahl, Frank

    2005-10-01

    Microarrays have become standard tools for gene expression profiling as the mRNA levels of a large number of genes can be measured in a single assay. Many technical aspects concerning microarray production and laboratory usage have been addressed in great detail, but it remains still crucial to establish this technology in new research fields such as human nutrition and food-related areas. The correlation between diet and inter-individual variation in gene expression is an important and relatively unexplored issue in human nutrition. Therefore, nutritionists changed their research field dramatically from epidemiology and physiology towards the "omics" sciences. Nutrigenomics as a field of research is based on the complete knowledge of the human genome and refers to the entire spectrum of human genes that determine the interactions of nutrition with the organism. Nutrigenetics is based on the inter-individual, genetically determined differences in metabolism. Nutrigenomics and nutrigenetics carry the hope that individualized diet can improve human health and prevent nutrition-related diseases. In this article we give an overview of current DNA and protein microarray techniques (including fabrication, experimental procedure and data analysis), we describe their applications to nutrition and food research and point out the limitations, problems and pitfalls of microarray experiments. PMID:16189797

  5. A Microarray-Based Gene Expression Analysis to Identify Diagnostic Biomarkers for Unknown Primary Cancer

    PubMed Central

    Kurahashi, Issei; Fujita, Yoshihiko; Arao, Tokuzo; Kurata, Takayasu; Koh, Yasuhiro; Sakai, Kazuko; Matsumoto, Koji; Tanioka, Maki; Takeda, Koji; Takiguchi, Yuichi; Yamamoto, Nobuyuki; Tsuya, Asuka; Matsubara, Nobuaki; Mukai, Hirofumi; Minami, Hironobu; Chayahara, Naoko; Yamanaka, Yasuhiro; Miwa, Keisuke; Takahashi, Shin; Takahashi, Shunji; Nakagawa, Kazuhiko; Nishio, Kazuto

    2013-01-01

    Background The biological basis for cancer of unknown primary (CUP) at the molecular level remains largely unknown, with no evidence of whether a common biological entity exists. Here, we assessed the possibility of identifying a common diagnostic biomarker for CUP using a microarray gene expression analysis. Methods Tumor mRNA samples from 60 patients with CUP were analyzed using the Affymetrix U133A Plus 2.0 GeneChip and were normalized by asinh (hyperbolic arc sine) transformation to construct a mean gene-expression profile specific to CUP. A gene-expression profile specific to non-CUP group was constructed using publicly available raw microarray datasets. The t-tests were performed to compare the CUP with non-CUP groups and the top 59 CUP specific genes with the highest fold change were selected (p-value<0.001). Results Among the 44 genes that were up-regulated in the CUP group, 6 genes for ribosomal proteins were identified. Two of these genes (RPS7 and RPL11) are known to be involved in the Mdm2–p53 pathway. We also identified several genes related to metastasis and apoptosis, suggesting a biological attribute of CUP. Conclusions The protein products of the up-regulated and down-regulated genes identified in this study may be clinically useful as unique biomarkers for CUP. PMID:23671674

  6. THE ABRF-MARG MICROARRAY SURVEY 2004: TAKING THE PULSE OF THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. The goal of the surve...

  7. 2008 Microarray Research Group (MARG Survey): Sensing the State of Microarray Technology

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution and transformation, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. Th...

  8. Clinical Utility of Microarrays: Current Status, Existing Challenges and Future Outlook

    PubMed Central

    Li, Xinmin; Quigg, Richard J; Zhou, Jian; Gu, Weikuan; Nagesh Rao, P; Reed, Elaine F

    2008-01-01

    Microarray-based clinical tests have become powerful tools in the diagnosis and treatment of diseases. In contrast to traditional DNA-based tests that largely focus on single genes associated with rare conditions, microarray-based tests are ideal for the study of diseases with underlying complex genetic causes. Several microarray based tests have been translated into clinical practice such as MammaPrint and AmpliChip CYP450. Additional cancer-related microarray-based tests are either in the process of FDA review or under active development, including Tissue of Tumor Origin and AmpliChip p53. All diagnostic microarray testing is ordered by physicians and tested by a Clinical Laboratories Improvement Amendment-certified (CLIA) reference laboratory. Recently, companies offering consumer based microarray testing have emerged. Individuals can order tests online and service providers deliver the results directly to the clients via a password-protected secure website. Navigenics, 23andMe and deCODE Genetics represent pioneering companies in this field. Although the progress of these microarray-based tests is extremely encouraging with the potential to revolutionize the recognition and treatment of common diseases, these tests are still in their infancy and face technical, clinical and marketing challenges. In this article, we review microarray-based tests which are currently approved or under review by the FDA, as well as the consumer-based testing. We also provide a summary of the challenges and strategic solutions in the development and clinical use of the microarray-based tests. Finally, we present a brief outlook for the future of microarray-based clinical applications. PMID:19506735

  9. Cross-platform normalization of microarray and RNA-seq data for machine learning applications.

    PubMed

    Thompson, Jeffrey A; Tan, Jie; Greene, Casey S

    2016-01-01

    Large, publicly available gene expression datasets are often analyzed with the aid of machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data already exist in the form of microarray data. If machine learning models built from legacy data can be applied to RNA-seq data, larger, more diverse training datasets can be created and validation can be performed on newly generated data. We developed Training Distribution Matching (TDM), which transforms RNA-seq data for use with models constructed from legacy platforms. We evaluated TDM, as well as quantile normalization, nonparanormal transformation, and a simple log 2 transformation, on both simulated and biological datasets of gene expression. Our evaluation included both supervised and unsupervised machine learning approaches. We found that TDM exhibited consistently strong performance across settings and that quantile normalization also performed well in many circumstances. We also provide a TDM package for the R programming language. PMID:26844019

  10. Cross-platform normalization of microarray and RNA-seq data for machine learning applications

    PubMed Central

    Thompson, Jeffrey A.; Tan, Jie

    2016-01-01

    Large, publicly available gene expression datasets are often analyzed with the aid of machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data already exist in the form of microarray data. If machine learning models built from legacy data can be applied to RNA-seq data, larger, more diverse training datasets can be created and validation can be performed on newly generated data. We developed Training Distribution Matching (TDM), which transforms RNA-seq data for use with models constructed from legacy platforms. We evaluated TDM, as well as quantile normalization, nonparanormal transformation, and a simple log2 transformation, on both simulated and biological datasets of gene expression. Our evaluation included both supervised and unsupervised machine learning approaches. We found that TDM exhibited consistently strong performance across settings and that quantile normalization also performed well in many circumstances. We also provide a TDM package for the R programming language. PMID:26844019

  11. Public participation in Full dome digital visualisations of large datasets in a planetarium sky theater : An experiment in progress

    NASA Astrophysics Data System (ADS)

    Rathnasree, Nandivada

    2015-08-01

    A full dome digital planetarium system with a userfriendly content creation possibility can be used very effectively for communicating points of interest in large Astronomical datsets, to public and student visitors to a planetarium. Periodic public lectures by Astronomers, "Under the Stars", which use full dome visualisations of data sets, foster a regular interest group which becomes associated with the planetarium, ensuring a regular inflow of students (and a smaller number of non student visitors) willing to contribute to the entries in the full dome datasets.Regardless of whether or not completion is achieved for any of the data sets, the very process of this project is extremely rewarding in terms of generating a quickening of interest, for the casual visitor to a planetarium, in aspects related to intricacies of datasets. The casual visitor who gets interested, may just make one entry in the dataset, following instructions provided in the planetarium public interaction. For students who show sustained interest in this data entry project, it becomes a really fruitful learning process.Combining this purely data entry process with some interactions and discussions with Astronomers on the excitements in the areas related to specific data sets, allows a more organised enrichment possibility for student participants, nudging them towards exploring related possibilities of some "Hands on Astronomy" analysis oriented projects.Datasets like Gamma Ray bursts, variable stars, TGSS, and so on, are being entered within the planetarium production software at the New Delhi planetarium, by public and student visitors to the planetarium, as weekend activities.The Digital Universe data sets pre-existing in the planetarium system, allow preliminary discussions for weekend crowds related to Astronomical data sets, introduction of ever increasing multiwavelength data sets and onwwards to facilitating public participation in data entry within the planetarium software, for some

  12. A data management and publication workflow for a large-scale, heterogeneous sensor network.

    PubMed

    Jones, Amber Spackman; Horsburgh, Jeffery S; Reeder, Stephanie L; Ramírez, Maurier; Caraballo, Juan

    2015-06-01

    It is common for hydrology researchers to collect data using in situ sensors at high frequencies, for extended durations, and with spatial distributions that produce data volumes requiring infrastructure for data storage, management, and sharing. The availability and utility of these data in addressing scientific questions related to water availability, water quality, and natural disasters relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into usable data products. It also depends on the ability of researchers to share and access the data in useable formats. In this paper, we describe a data management and publication workflow and software tools for research groups and sites conducting long-term monitoring using in situ sensors. Functionality includes the ability to track monitoring equipment inventory and events related to field maintenance. Linking this information to the observational data is imperative in ensuring the quality of sensor-based data products. We present these tools in the context of a case study for the innovative Urban Transitions and Aridregion Hydrosustainability (iUTAH) sensor network. The iUTAH monitoring network includes sensors at aquatic and terrestrial sites for continuous monitoring of common meteorological variables, snow accumulation and melt, soil moisture, surface water flow, and surface water quality. We present the overall workflow we have developed for effectively transferring data from field monitoring sites to ultimate end-users and describe the software tools we have deployed for storing, managing, and sharing the sensor data. These tools are all open source and available for others to use. PMID:25968554

  13. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  14. Washing scaling of GeneChip microarray expression

    PubMed Central

    2010-01-01

    Background Post-hybridization washing is an essential part of microarray experiments. Both the quality of the experimental washing protocol and adequate consideration of washing in intensity calibration ultimately affect the quality of the expression estimates extracted from the microarray intensities. Results We conducted experiments on GeneChip microarrays with altered protocols for washing, scanning and staining to study the probe-level intensity changes as a function of the number of washing cycles. For calibration and analysis of the intensity data we make use of the 'hook' method which allows intensity contributions due to non-specific and specific hybridization of perfect match (PM) and mismatch (MM) probes to be disentangled in a sequence specific manner. On average, washing according to the standard protocol removes about 90% of the non-specific background and about 30-50% and less than 10% of the specific targets from the MM and PM, respectively. Analysis of the washing kinetics shows that the signal-to-noise ratio doubles roughly every ten stringent washing cycles. Washing can be characterized by time-dependent rate constants which reflect the heterogeneous character of target binding to microarray probes. We propose an empirical washing function which estimates the survival of probe bound targets. It depends on the intensity contribution due to specific and non-specific hybridization per probe which can be estimated for each probe using existing methods. The washing function allows probe intensities to be calibrated for the effect of washing. On a relative scale, proper calibration for washing markedly increases expression measures, especially in the limit of small and large values. Conclusions Washing is among the factors which potentially distort expression measures. The proposed first-order correction method allows direct implementation in existing calibration algorithms for microarray data. We provide an experimental 'washing data set' which might

  15. Advances in spotted microarray resources for expression profiling.

    PubMed

    Lyons, Paul

    2003-04-01

    The new millennium has ushered in a new era in human biology. The elucidation of the human genome sequence, together with those of model organisms, provides us with an unprecedented insight into the makeup of our genetic blueprint. The challenge now is to figure out how all the constituent pieces fit together to form the whole picture, and the consequences of what happens when the process goes awry. One experimental tool that has the potential to provide enormous insights into this complex process is expression profiling using microarrays. The past few years have seen a considerable growth in the availability and use of microarrays. Fuelled in part by the many genome projects currently underway, there has been a large increase in the number of organisms for which microarray reagents are available from both commercial and academic sources. In addition to the increasing number of genome-wide probe sets that are available, a significant amount of attention has been focussed on generating more targeted probe sets that focus in on specific pathways or biological processes. Finally, the microarray field is starting to see a shift away from the use of cDNAs or polymerase chain reaction (PCR) products as probes towards the use of 50-70mer oligonucleotide probes with all of the potential advantages that they offer. The aim of this review is to provide an overview of what is currently available in terms of spotted microarray reagents both with respect to pre-made arrays and to probe sets available for arraying. PMID:15239940

  16. STIDP: A US Department of Homeland Security program for countering explosives attacks at large public events and mass transit facilities

    SciTech Connect

    Knudson, Christa K.; Kemp, Michael C.; Lombardo, Nicholas J.

    2009-03-07

    The Department of Homeland Security’s Standoff Technology Integration and Demonstration Program is designed to accelerate the development and integration of technologies, concepts of operations, and training to prevent explosives attacks at large public events and mass transit facilities. The program will address threats posed by suicide bombers, vehicle-borne improvised explosive devices, and leave-behind bombs. The program is focused on developing and testing explosives countermeasure architectures using commercial off-the-shelf and near-commercial standoff and remotely operated detection technologies in prototypic operational environments. An important part of the program is the integration of multiple technologies and systems to protect against a wider range of threats, improve countermeasure performance, increase the distance from the venue at which screening is conducted, and reduce staffing requirements. The program will routinely conduct tests in public venues involving successively more advanced technology, higher levels of system integration, and more complex scenarios. This paper describes the initial field test of an integrated countermeasure system that included infrared, millimeter-wave, and video analytics technologies for detecting person-borne improvised explosive devices at a public arena. The test results are being used to develop a concept for the next generation of integrated countermeasures, to refine technical and operational requirements for architectures and technologies, and engage industry and academia in solution development.

  17. Protein-Based Microarray for the Detection of Pathogenic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarrays have been used for gene expression and protein interaction studies, but recently, multianalyte diagnostic assays have employed the microarray platform. We developed a microarray immunoassay for bacteria, with biotinylated capture antibodies on streptavidin slides. To complete the fluor...

  18. Review of the literature examining the correlation among DNA microarray technologies

    PubMed Central

    Yauk, Carole L; Berndt, M Lynn

    2007-01-01

    DNA microarray technologies are used in a variety of biological disciplines. The diversity of platforms and analytical methods employed has raised concerns over the reliability, reproducibility and correlation of data produced across the different approaches. Initial investigations (years 2000–2003) found discrepancies in the gene expression measures produced by different microarray technologies. Increasing knowledge and control of the factors that result in poor correlation among the technologies has led to much higher levels of correlation among more recent publications (years 2004 to present). Here, we review the studies examining the correlation among microarray technologies. We find that with improvements in the technology (optimization and standardization of methods, including data analysis) and annotation, analysis across platforms yields highly correlated and reproducible results. We suggest several key factors that should be controlled in comparing across technologies, and are good microarray practice in general. Environ. Mol. Mutagen. 48:380–394, 2007. © 2007 Wiley-Liss, Inc. PMID:17370338

  19. ArrayPipe: a flexible processing pipeline for microarray data.

    PubMed

    Hokamp, Karsten; Roche, Fiona M; Acab, Michael; Rousseau, Marc-Etienne; Kuo, Byron; Goode, David; Aeschliman, Dana; Bryan, Jenny; Babiuk, Lorne A; Hancock, Robert E W; Brinkman, Fiona S L

    2004-07-01

    A number of microarray analysis software packages exist already; however, none combines the user-friendly features of a web-based interface with potential ability to analyse multiple arrays at once using flexible analysis steps. The ArrayPipe web server (freely available at www.pathogenomics.ca/arraypipe) allows the automated application of complex analyses to microarray data which can range from single slides to large data sets including replicates and dye-swaps. It handles output from most commonly used quantification software packages for dual-labelled arrays. Application features range from quality assessment of slides through various data visualizations to multi-step analyses including normalization, detection of differentially expressed genes, andcomparison and highlighting of gene lists. A highly customizable action set-up facilitates unrestricted arrangement of functions, which can be stored as action profiles. A unique combination of web-based and command-line functionality enables comfortable configuration of processes that can be repeatedly applied to large data sets in high throughput. The output consists of reports formatted as standard web pages and tab-delimited lists of calculated values that can be inserted into other analysis programs. Additional features, such as web-based spreadsheet functionality, auto-parallelization and password protection make this a powerful tool in microarray research for individuals and large groups alike. PMID:15215429

  20. Tissue Microarrays in Clinical Oncology

    PubMed Central

    Voduc, David; Kenney, Challayne; Nielsen, Torsten O.

    2008-01-01

    The tissue microarray is a recently-implemented, high-throughput technology for the analysis of molecular markers in oncology. This research tool permits the rapid assessment of a biomarker in thousands of tumor samples, using commonly available laboratory assays such as immunohistochemistry and in-situ hybridization. Although introduced less than a decade ago, the TMA has proven to be invaluable in the study of tumor biology, the development of diagnostic tests, and the investigation of oncological biomarkers. This review describes the impact of TMA-based research in clinical oncology and its potential future applications. Technical aspects of TMA construction, and the advantages and disadvantages inherent to this technology are also discussed. PMID:18314063

  1. DNA Microarrays for Identifying Fishes

    PubMed Central

    Nölte, M.; Weber, H.; Silkenbeumer, N.; Hjörleifsdottir, S.; Hreggvidsson, G. O.; Marteinsson, V.; Kappel, K.; Planes, S.; Tinti, F.; Magoulas, A.; Garcia Vazquez, E.; Turan, C.; Hervet, C.; Campo Falgueras, D.; Antoniou, A.; Landi, M.; Blohm, D.

    2008-01-01

    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products. PMID:18270778

  2. Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability

    PubMed Central

    Uziela, Karolis; Honkela, Antti

    2015-01-01

    Rapidly growing public gene expression databases contain a wealth of data for building an unprecedentedly detailed picture of human biology and disease. This data comes from many diverse measurement platforms that make integrating it all difficult. Although RNA-sequencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray studies submitted to public databases far exceeds the rate of new RNA-seq studies. There is clearly a need for methods that make it easier to combine data from different technologies. In this paper, we propose a new method for processing RNA-seq data that yields gene expression estimates that are much more similar to corresponding estimates from microarray data, hence greatly improving cross-platform comparability. The method we call PREBS is based on estimating the expression from RNA-seq reads overlapping the microarray probe regions, and processing these estimates with standard microarray summarisation algorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we show that PREBS expression estimates derived from RNA-seq are more similar to microarray-based expression estimates than those from other RNA-seq processing methods. In an experiment to retrieve paired microarray samples from a database using an RNA-seq query sample, gene signatures defined based on PREBS expression estimates were found to be much more accurate than those from other methods. PREBS also allows new ways of using RNA-seq data, such as expression estimation for microarray probe sets. An implementation of the proposed method is available in the Bioconductor package “prebs.” PMID:25966034

  3. Using Pre-existing Microarray Datasets to Increase Experimental Power: Application to Insulin Resistance

    PubMed Central

    Daigle, Bernie J.; Deng, Alicia; McLaughlin, Tracey; Cushman, Samuel W.; Cam, Margaret C.; Reaven, Gerald; Tsao, Philip S.; Altman, Russ B.

    2010-01-01

    Although they have become a widely used experimental technique for identifying differentially expressed (DE) genes, DNA microarrays are notorious for generating noisy data. A common strategy for mitigating the effects of noise is to perform many experimental replicates. This approach is often costly and sometimes impossible given limited resources; thus, analytical methods are needed which increase accuracy at no additional cost. One inexpensive source of microarray replicates comes from prior work: to date, data from hundreds of thousands of microarray experiments are in the public domain. Although these data assay a wide range of conditions, they cannot be used directly to inform any particular experiment and are thus ignored by most DE gene methods. We present the SVD Augmented Gene expression Analysis Tool (SAGAT), a mathematically principled, data-driven approach for identifying DE genes. SAGAT increases the power of a microarray experiment by using observed coexpression relationships from publicly available microarray datasets to reduce uncertainty in individual genes' expression measurements. We tested the method on three well-replicated human microarray datasets and demonstrate that use of SAGAT increased effective sample sizes by as many as 2.72 arrays. We applied SAGAT to unpublished data from a microarray study investigating transcriptional responses to insulin resistance, resulting in a 50% increase in the number of significant genes detected. We evaluated 11 (58%) of these genes experimentally using qPCR, confirming the directions of expression change for all 11 and statistical significance for three. Use of SAGAT revealed coherent biological changes in three pathways: inflammation, differentiation, and fatty acid synthesis, furthering our molecular understanding of a type 2 diabetes risk factor. We envision SAGAT as a means to maximize the potential for biological discovery from subtle transcriptional responses, and we provide it as a freely available

  4. Microarray-integrated optoelectrofluidic immunoassay system.

    PubMed

    Han, Dongsik; Park, Je-Kyun

    2016-05-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection. PMID:27190571

  5. Bioinformatics and Microarray Data Analysis on the Cloud.

    PubMed

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data. PMID:25863787

  6. How do you assign persistent identifiers to extracts from large, complex, dynamic data sets that underpin scholarly publications?

    NASA Astrophysics Data System (ADS)

    Wyborn, Lesley; Car, Nicholas; Evans, Benjamin; Klump, Jens

    2016-04-01

    Persistent identifiers in the form of a Digital Object Identifier (DOI) are becoming more mainstream, assigned at both the collection and dataset level. For static datasets, this is a relatively straight-forward matter. However, many new data collections are dynamic, with new data being appended, models and derivative products being revised with new data, or the data itself revised as processing methods are improved. Further, because data collections are becoming accessible as services, researchers can log in and dynamically create user-defined subsets for specific research projects: they also can easily mix and match data from multiple collections, each of which can have a complex history. Inevitably extracts from such dynamic data sets underpin scholarly publications, and this presents new challenges. The National Computational Infrastructure (NCI) has been experiencing and making progress towards addressing these issues. The NCI is large node of the Research Data Services initiative (RDS) of the Australian Government's research infrastructure, which currently makes available over 10 PBytes of priority research collections, ranging from geosciences, geophysics, environment, and climate, through to astronomy, bioinformatics, and social sciences. Data are replicated to, or are produced at, NCI and then processed there to higher-level data products or directly analysed. Individual datasets range from multi-petabyte computational models and large volume raster arrays, down to gigabyte size, ultra-high resolution datasets. To facilitate access, maximise reuse and enable integration across the disciplines, datasets have been organized on a platform called the National Environmental Research Data Interoperability Platform (NERDIP). Combined, the NERDIP data collections form a rich and diverse asset for researchers: their co-location and standardization optimises the value of existing data, and forms a new resource to underpin data-intensive Science. New publication

  7. Pipeline for macro- and microarray analyses.

    PubMed

    Vicentini, R; Menossi, M

    2007-05-01

    The pipeline for macro- and microarray analyses (PMmA) is a set of scripts with a web interface developed to analyze DNA array data generated by array image quantification software. PMmA is designed for use with single- or double-color array data and to work as a pipeline in five classes (data format, normalization, data analysis, clustering, and array maps). It can also be used as a plugin in the BioArray Software Environment, an open-source database for array analysis, or used in a local version of the web service. All scripts in PMmA were developed in the PERL programming language and statistical analysis functions were implemented in the R statistical language. Consequently, our package is a platform-independent software. Our algorithms can correctly select almost 90% of the differentially expressed genes, showing a superior performance compared to other methods of analysis. The pipeline software has been applied to 1536 expressed sequence tags macroarray public data of sugarcane exposed to cold for 3 to 48 h. PMmA identified thirty cold-responsive genes previously unidentified in this public dataset. Fourteen genes were up-regulated, two had a variable expression and the other fourteen were down-regulated in the treatments. These new findings certainly were a consequence of using a superior statistical analysis approach, since the original study did not take into account the dependence of data variability on the average signal intensity of each gene. The web interface, supplementary information, and the package source code are available, free, to non-commercial users at http://ipe.cbmeg.unicamp.br/pub/PMmA. PMID:17464422

  8. DNA Microarrays in Herbal Drug Research

    PubMed Central

    Chavan, Preeti; Joshi, Kalpana; Patwardhan, Bhushan

    2006-01-01

    Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts. PMID:17173108

  9. Progress in the application of DNA microarrays.

    PubMed Central

    Lobenhofer, E K; Bushel, P R; Afshari, C A; Hamadeh, H K

    2001-01-01

    Microarray technology has been applied to a variety of different fields to address fundamental research questions. The use of microarrays, or DNA chips, to study the gene expression profiles of biologic samples began in 1995. Since that time, the fundamental concepts behind the chip, the technology required for making and using these chips, and the multitude of statistical tools for analyzing the data have been extensively reviewed. For this reason, the focus of this review will be not on the technology itself but on the application of microarrays as a research tool and the future challenges of the field. PMID:11673116

  10. Retention and Risk Factors for Attrition in a Large Public Health ART Program in Myanmar: A Retrospective Cohort Analysis

    PubMed Central

    Thida, Aye; Tun, Sai Thein Than; Zaw, Sai Ko Ko; Lover, Andrew A.; Cavailler, Philippe; Chunn, Jennifer; Aye, Mar Mar; Par, Par; Naing, Kyaw Win; Zan, Kaung Nyunt; Shwe, Myint; Kyaw, Thar Tun; Waing, Zaw Htoon; Clevenbergh, Philippe

    2014-01-01

    Background The outcomes from an antiretroviral treatment (ART) program within the public sector in Myanmar have not been reported. This study documents retention and the risk factors for attrition in a large ART public health program in Myanmar. Methods A retrospective analysis of a cohort of adult patients enrolled in the Integrated HIV Care (IHC) Program between June 2005 and October 2011 and followed up until April 2012 is presented. The primary outcome was attrition (death or loss-follow up); a total of 10,223 patients were included in the 5-year cumulative survival analysis. Overall 5,718 patients were analyzed for the risk factors for attrition using both logistic regression and flexible parametric survival models. Result The mean age was 36 years, 61% of patients were male, and the median follow up was 13.7 months. Overall 8,564 (84%) patients were retained in ART program: 750 (7%) were lost to follow-up and 909 (9%) died. During the 3 years follow-up, 1,542 attritions occurred over 17,524 person years at risk, giving an incidence density of 8.8% per year. The retention rates of participants at 12, 24, 36, 48 and 60 months were 86, 82, 80, 77 and 74% respectively. In multivariate analysis, being male, having high WHO staging, a low CD4 count, being anaemic or having low BMI at baseline were independent risk factors for attrition; tuberculosis (TB) treatment at ART initiation, a prior ART course before program enrollment and literacy were predictors for retention in the program. Conclusion High retention rate of IHC program was documented within the public sector in Myanmar. Early diagnosis of HIV, nutritional support, proper investigation and treatment for patients with low CD4 counts and for those presenting with anaemia are crucial issues towards improvement of HIV program outcomes in resource-limited settings. PMID:25268903

  11. The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Greig, Bradley; Sobacchi, Emanuele

    2016-07-01

    We introduce the Evolution Of 21 cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21 cm simulations. 21 cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Progress will depend on sophisticated data analysis pipelines, initially tested on large-scale mock observations. Here we present the 2016 EOS release: 10243, 1.6 Gpc, 21 cm simulations of the CD and EoR, calibrated to the Planck 2015 measurements. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photoheating suppression of star formation in small-mass galaxies. Leaving the efficiency of supernovae feedback as a free parameter, we present two runs which bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 ≲ Δzre ≲ 5.7. The large-scale 21 cm power during the advanced EoR stages can be different by up to a factor of ˜10, depending on the model. This difference has a comparable contribution from (i) the typical bias of sources and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also present detectability forecasts. With a 1000 h integration, Hydrogen Epoch of Reionization Array and (Square Kilometre Array phase 1) SKA1 should achieve a signal-to-noise of ˜few to hundreds throughout the EoR/CD. We caution that our ability to clean foregrounds determines the relative performance of narrow/deep versus wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.

  12. The emergence and diffusion of DNA microarray technology

    PubMed Central

    Lenoir, Tim; Giannella, Eric

    2006-01-01

    The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental

  13. Delivering Science to Large Audiences: Experiments in Active Learning and Public Lectures at the University of Michigan

    NASA Astrophysics Data System (ADS)

    McKay, T.

    1999-12-01

    The problem of disseminating scientific knowledge to the broader community in an effective and efficient way is always with us. At the University of Michigan we have been addressing this problem in several ways. Every year we teach introductory physics to about 3000 students. We believe that, in addition to a pedagogical responsibility, this is an important opportunity for outreach. We report on a variety of approaches to active learning in large lecture classes which are aimed at aiding student comprehension of conceptual material. These have the side affect of improving their general impression of science. In addition to the traditional classroom, we have also engaged in a broader outreach program through the Saturday Morning Physics lecture series, which through a combination of programming and advertising draws audiences of 250 a week to 15 weeks of lectures on topics of current research. We conclude with some general observations about the relation between the success of these public lectures and our large lecture classes. This work is supported by a CAREER award from the National Science Foundation, the University of Michigan, and the Ted Annis Foundation.

  14. Microarray: an approach for current drug targets.

    PubMed

    Gomase, Virendra S; Tagore, Somnath; Kale, Karbhari V

    2008-03-01

    Microarrays are a powerful tool has multiple applications both in clinical and cellular and molecular biology arenas. Early assessment of the probable biological importance of drug targets, pharmacogenomics, toxicogenomics and single nucleotide polymorphisms (SNPs). A list of new drug candidates along with proposed targets for intervention is described. Recent advances in the knowledge of microarrays analysis of organisms and the availability of the genomics sequences provide a wide range of novel targets for drug design. This review gives different process of microarray technologies; methods for comparative gene expression study, applications of microarrays in medicine and pharmacogenomics and current drug targets in research, which are relevant to common diseases as they relate to clinical and future perspectives. PMID:18336225

  15. Ontology-Based Analysis of Microarray Data.

    PubMed

    Giuseppe, Agapito; Milano, Marianna

    2016-01-01

    The importance of semantic-based methods and algorithms for the analysis and management of biological data is growing for two main reasons. From a biological side, knowledge contained in ontologies is more and more accurate and complete, from a computational side, recent algorithms are using in a valuable way such knowledge. Here we focus on semantic-based management and analysis of protein interaction networks referring to all the approaches of analysis of protein-protein interaction data that uses knowledge encoded into biological ontologies. Semantic approaches for studying high-throughput data have been largely used in the past to mine genomic and expression data. Recently, the emergence of network approaches for investigating molecular machineries has stimulated in a parallel way the introduction of semantic-based techniques for analysis and management of network data. The application of these computational approaches to the study of microarray data can broad the application scenario of them and simultaneously can help the understanding of disease development and progress. PMID:25971913

  16. Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays

    PubMed Central

    Takahashi, Hirokazu; Shiono, Katsuhiro; Yano, Kentaro; Tsutsumi, Nobuhiro; Nakazono, Mikio; Nagamura, Yoshiaki; Matsuoka, Makoto; Watanabe, Masao

    2011-01-01

    Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network

  17. Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays.

    PubMed

    Aya, Koichiro; Suzuki, Go; Suwabe, Keita; Hobo, Tokunori; Takahashi, Hirokazu; Shiono, Katsuhiro; Yano, Kentaro; Tsutsumi, Nobuhiro; Nakazono, Mikio; Nagamura, Yoshiaki; Matsuoka, Makoto; Watanabe, Masao

    2011-01-01

    Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, "meiosis" and "pollen wall synthesis". The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data

  18. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  19. The Impact of Photobleaching on Microarray Analysis

    PubMed Central

    von der Haar, Marcel; Preuß, John-Alexander; von der Haar, Kathrin; Lindner, Patrick; Scheper, Thomas; Stahl, Frank

    2015-01-01

    DNA-Microarrays have become a potent technology for high-throughput analysis of genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key benefit of microarray technology: parallelization. The implementation of multi-scan techniques represents a promising approach to overcome these limitations. These techniques are, in turn, limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching and imaging are investigated. The resulting data is used to develop a model capable of simulating the expected degree of signal intensity reduction caused by photobleaching for each fluorophore individually, allowing for the removal of photobleaching-induced, systematic bias in multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to determine the optimal scanner settings. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the lab-to-lab comparability of microarray experiment results. PMID:26378589

  20. Evaluation of Surface Chemistries for Antibody Microarrays

    SciTech Connect

    Seurynck-Servoss, Shannon L.; White, Amanda M.; Baird, Cheryl L.; Rodland, Karin D.; Zangar, Richard C.

    2007-12-01

    Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been primarily derived from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but no rigorous studies that compare these different surfaces. Therefore, we have used an enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 16 different commercially available slide types. Full standard curves were generated for 24 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types can produce useful data, glass slides coated with poly-L-lysine or aminosilane, with or without activation with a crosslinker, consistently produce superior results in the ELISA microarray analyses we performed.

  1. Autonomous system for Web-based microarray image analysis.

    PubMed

    Bozinov, Daniel

    2003-12-01

    Software-based feature extraction from DNA microarray images still requires human intervention on various levels. Manual adjustment of grid and metagrid parameters, precise alignment of superimposed grid templates and gene spots, or simply identification of large-scale artifacts have to be performed beforehand to reliably analyze DNA signals and correctly quantify their expression values. Ideally, a Web-based system with input solely confined to a single microarray image and a data table as output containing measurements for all gene spots would directly transform raw image data into abstracted gene expression tables. Sophisticated algorithms with advanced procedures for iterative correction function can overcome imminent challenges in image processing. Herein is introduced an integrated software system with a Java-based interface on the client side that allows for decentralized access and furthermore enables the scientist to instantly employ the most updated software version at any given time. This software tool is extended from PixClust as used in Extractiff incorporated with Java Web Start deployment technology. Ultimately, this setup is destined for high-throughput pipelines in genome-wide medical diagnostics labs or microarray core facilities aimed at providing fully automated service to its users. PMID:15376911

  2. A Versatile Microarray Platform for Capturing Rare Cells

    PubMed Central

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-01-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) – about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences. PMID:26493176

  3. Genopal™: A Novel Hollow Fibre Array for Focused Microarray Analysis

    PubMed Central

    Okuzaki, Daisuke; Fukushima, Tatsunobu; Tougan, Takahiro; Ishii, Tomonori; Kobayashi, Shigeto; Yoshizaki, Kazuyuki; Akita, Takashi; Nojima, Hiroshi

    2010-01-01

    Expression profiling of target genes in patient blood is a powerful tool for RNA diagnosis. Here, we describe Genopal™, a novel platform ideal for efficient focused microarray analysis. Genopal™, which consists of gel-filled fibres, is advantageous for high-quality mass production via large-scale slicing of the Genopal™ block. We prepared two arrays, infectant and autoimmunity, that provided highly reliable data in terms of repetitive scanning of the same and/or distinct microarrays. Moreover, we demonstrated that Genopal™ had sensitivity sufficient to yield signals in short hybridization times (0.5 h). Application of the autoimmunity array to blood samples allowed us to identify an expression pattern specific to Takayasu arteritis based on the Spearman rank correlation by comparing the reference profile with those of several autoimmune diseases and healthy volunteers (HVs). The comparison of these data with those obtained by other methods revealed that they exhibited similar expression profiles of many target genes. Taken together, these data demonstrate that Genopal™ is an advantageous platform for focused microarrays with regard to its low cost, rapid results and reliable quality. PMID:21059707

  4. Chromosome microarrays in diagnostic testing: interpreting the genomic data.

    PubMed

    Peters, Greg B; Pertile, Mark D

    2014-01-01

    DNA-based Chromosome MicroArrays (CMAs) are now well established as diagnostic tools in clinical genetics laboratories. Over the last decade, the primary application of CMAs has been the genome-wide detection of a particular class of mutation known as copy number variants (CNVs). Since 2010, CMA testing has been recommended as a first-tier test for detection of CNVs associated with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies…in the post-natal setting. CNVs are now regarded as pathogenic in 14-18 % of patients referred for these (and related) disorders.Through consideration of clinical examples, and several microarray platforms, we attempt to provide an appreciation of microarray diagnostics, from the initial inspection of the microarray data, to the composing of the patient report. In CMA data interpretation, a major challenge comes from the high frequency of clinically irrelevant CNVs observed within "patient" and "normal" populations. As might be predicted, the more common and clinically insignificant CNVs tend to be the smaller ones <100 kb in length, involving few or no known genes. However, this relationship is not at all straightforward: CNV length and gene content are only very imperfect indicators of CNV pathogenicity. Presently, there are no reliable means of separating, a priori, the benign from the pathological CNV classes.This chapter also considers sources of technical "noise" within CMA data sets. Some level of noise is inevitable in diagnostic genomics, given the very large number of data points generated in any one test. Noise further limits CMA resolution, and some miscalling of CNVs is unavoidable. In this, there is no ideal solution, but various strategies for handling noise are available. Even without solutions, consideration of these diagnostic problems per se is informative, as they afford critical insights into the biological and technical underpinnings of CNV discovery. These are indispensable

  5. Variations in the Quality of Care at Large Public Hospitals in Beijing, China: A Condition-Based Outcome Approach

    PubMed Central

    Xu, Ye; Liu, Yuanli; Shu, Ting; Yang, Wei; Liang, Minghui

    2015-01-01

    Background Public hospitals deliver over ninety percent of all outpatient and inpatient services in China. Their quality is graded into three levels (A, B, and C) largely based on structural resources, but empirical evidence on the quality of process and outcome of care is extremely scarce. As expectations for quality care rise with higher living standards and cost of care, such evidence is urgently needed and vital to improve care and to inform future health reforms. Methods We compiled and analyzed a multicenter database of over 4 million inpatient discharge summary records to provide a comprehensive assessment of the level and variations in clinical outcomes of hospitalization at 39 tertiary hospitals in Beijing. We assessed six outcome measures of clinical quality: in-hospital mortality rates (RSMR) for AMI, stroke, pneumonia and CABG, post-procedural complication rate (RS-CR), and failure-to-rescue rate (RS-FTR). The measures were adjusted for pre-admission patient case-mix using indirect standardization method with hierarchical linear mixed models. Results We found good overall quality with large variations by hospital and condition (mean/range, in %): RSMR-AMI: 6.23 (2.37–14.48), RSMR-stroke: 4.18 (3.58–4.44), RSMR-pneumonia: 7.78 (7.20–8.59), RSMR-CABG: 1.93 (1.55–2.23), RS-CR: 11.38 (9.9–12.88), and RS-FTR: 6.41 (5.17–7.58). Hospital grade was not significantly associated with any risk-adjusted outcome measures. Conclusions Going to a higher grade public hospital does not always lead to better patient outcome because hospital grade only contains information about hospital structural resources. A hospital report card with some outcome measures of quality would provide valuable information to patients in choosing providers, and for regulators to identify gaps in health care quality. Reducing the variations in clinical practice and patient outcome should be a focus for policy makers in the next round of health sector reforms in China. PMID

  6. A Visual Aid for Statisticians and Molecular Biologists Working With Microarray Experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of microarrays to measure the expression of large numbers of genes simultaneously is increasing in agriculture. Statisticians are expected to help biologists analyze these large data sets to identify biologically important genes that are differentially regulated in the samples under investig...

  7. Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species.

    PubMed

    Giles, Timothy; Yon, Lisa; Hannant, Duncan; Barrow, Paul; Abu-Median, Abu-Bakr

    2015-12-01

    The demand for diagnostic tools that allow simultaneous screening of samples for multiple pathogens is increasing because they overcome the limitations of other methods, which can only screen for a single or a few pathogens at a time. Microarrays offer the advantages of being capable to test a large number of samples simultaneously, screening for multiple pathogen types per sample and having comparable sensitivity to existing methods such as PCR. Array design is often considered the most important process in any microarray experiment and can be the deciding factor in the success of a study. There are currently no microarrays for simultaneous detection of rodent-borne pathogens. The aim of this report is to explicate the design, development and evaluation of a microarray platform for use as a screening tool that combines ease of use and rapid identification of a number of rodent-borne pathogens of zoonotic importance. Nucleic acid was amplified by multiplex biotinylation PCR prior to hybridisation onto microarrays. The array sensitivity was comparable to standard PCR, though less sensitive than real-time PCR. The array presented here is a prototype microarray identification system for zoonotic pathogens that can infect rodent species. PMID:26188129

  8. Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus.

    PubMed

    Garneau, P; Labrecque, O; Maynard, C; Messier, S; Masson, L; Archambault, M; Harel, J

    2010-11-01

    As diagnostic and surveillance activities are vital to determine measures needed to control antimicrobial resistance (AMR), new and rapid laboratory methods are necessary to facilitate this important effort. DNA microarray technology allows the detection of a large number of genes in a single reaction. This technology is simple, specific and high-throughput. We have developed a bacterial antimicrobial resistance gene DNA microarray that will allow rapid antimicrobial resistance gene screening for all Gram-positive and Gram-negative bacteria. A prototype microarray was designed using a 70-mer based oligonucleotide set targeting AMR genes of Gram-negative and Gram-positive bacteria. In the present version, the microarray consists of 182 oligonucleotides corresponding to 166 different acquired AMR gene targets, covering most of the resistance genes found in both Gram-negative and -positive bacteria. A test study was performed on a collection of Staphylococcus aureus isolates from milk samples from dairy farms in Québec, Canada. The reproducibility of the hybridizations was determined, and the microarray results were compared with those obtained by phenotypic resistance tests (either MIC or Kirby-Bauer). The microarray genotyping demonstrated a correlation between penicillin, tetracycline and erythromycin resistance phenotypes with the corresponding acquired resistance genes. The hybridizations showed that the 38 antimicrobial resistant S. aureus isolates possessed at least one AMR gene. PMID:21083822

  9. A microarray system for Y chromosomal and mitochondrial single nucleotide polymorphism analysis in chimpanzee populations.

    PubMed

    Andrés, Olga; Rönn, Ann-Charlotte; Bonhomme, Maxime; Kellermann, Thomas; Crouau-Roy, Brigitte; Doxiadis, Gaby; Verschoor, Ernst J; Goossens, Benoît; Domingo-Roura, Xavier; Bruford, Michael W; Bosch, Montserrat; Syvänen, Ann-Christine

    2008-05-01

    Chimpanzee populations are diminishing as a consequence of human activities, and as a result this species is now endangered. In the context of conservation programmes, genetic data can add vital information, for instance on the genetic diversity and structure of threatened populations. Single nucleotide polymorphisms (SNP) are biallelic markers that are widely used in human molecular studies and can be implemented in efficient microarray systems. This technology offers the potential of robust, multiplexed SNP genotyping at low reagent cost in other organisms than humans, but it is not commonly used yet in wild population studies. Here, we describe the characterization of new SNPs in Y-chromosomal intronic regions in chimpanzees and also identify SNPs from mitochondrial genes, with the aim of developing a microarray system that permits the simultaneous study of both paternal and maternal lineages. Our system consists of 42 SNPs for the Y chromosome and 45 SNPs for the mitochondrial genome. We demonstrate the applicability of this microarray in a captive population where genotypes accurately reflected its large pedigree. Two wild-living populations were also analysed and the results show that the microarray will be a useful tool alongside microsatellite markers, since it supplies complementary information about population structure and ecology. SNP genotyping using microarray technology, therefore, is a promising approach and may become an essential tool in conservation genetics to help in the management and study of captive and wild-living populations. Moreover, microarrays that combine SNPs from different genomic regions could replace microsatellite typing in the future. PMID:21585830

  10. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  11. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    PubMed

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement. PMID:23110046

  12. Development, Characterization and Experimental Validation of a Cultivated Sunflower (Helianthus annuus L.) Gene Expression Oligonucleotide Microarray

    PubMed Central

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement. PMID:23110046

  13. Development of low-density oligonucleotide microarrays for detecting mutations causing Wilson's disease

    PubMed Central

    Mathur, Manjula; Singh, Ekta; Poduval, T.B.; Rao, Akkipeddi V.S.S.N.

    2015-01-01

    Background & objectives: Wilson's disease (WD) is an autosomal recessive disorder caused by mutations in ATP7B, a copper transporter gene, leading to hepatic and neuropsychiatric manifestations due to copper accumulation. If diagnosed early, WD patients can be managed by medicines reducing morbidity and mortality. Diagnosis of this disease requires a combination of tests and at times is inconclusive due to overlap of the symptoms with other disorders. Genetic testing is the preferred alternative in such cases particularly for individuals with a family history. Use of DNA microarray for detecting mutations in ATP7B gene is gaining popularity because of the advantages it offers in terms of throughput and sensitivity. This study attempts to establish the quality analysis procedures for microarray based diagnosis of Wilson's disease. Methods: A home-made microarrayer was used to print oligonucleotide based low-density microarrays for addressing 62 mutations causing Wilson's disease reported from Indian population. Inter- and intra- array comparisons were used to study quality of the arrays. The arrays were validated by using mutant samples generated by site directed mutagenesis. Results: The hybridization reaction were found to be consistent across the surface of a given microarray. Our results have shown that 52 °C post-hybridization wash yields better reproducibility across experiments compared to 42 °C. Our arrays have shown > 80 per cent sensitivity in detecting these 62 mutations. Interpretation & conclusions: The present results demonstrate the design and evaluation of a low-density microarray for the detection of 62 mutations in ATP7B gene, and show that a microarray based approach can be cost-effective for detecting a large number of mutations simultaneously. This study also provides information on some of the important parameters required for microarray based diagnosis of genetic disorders. PMID:25900953

  14. An Update on Soybean Functional Genomics and Microarray Resources for Gene Discovery and Crop Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA microarrays are powerful tools to analyze the expression patterns of thousands of genes simultaneously. We review recent soybean genomics projects that have produced public-sector resources for this important legume crop. As part of the NSF-sponsored “Soybean Functional Genomics Program”, we hav...

  15. Erratum: Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing.

    PubMed

    2015-01-01

    The author's email has been corrected in the publication of Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing. There was an error with the author, Jerry Zhou's, email. The author's email has been updated to: j.zhou@uws.edu.au from: jzho7551@mail.usyd.edu.au. PMID:26167960

  16. Caught you: threats to confidentiality due to the public release of large-scale genetic data sets

    PubMed Central

    2010-01-01

    Background Large-scale genetic data sets are frequently shared with other research groups and even released on the Internet to allow for secondary analysis. Study participants are usually not informed about such data sharing because data sets are assumed to be anonymous after stripping off personal identifiers. Discussion The assumption of anonymity of genetic data sets, however, is tenuous because genetic data are intrinsically self-identifying. Two types of re-identification are possible: the "Netflix" type and the "profiling" type. The "Netflix" type needs another small genetic data set, usually with less than 100 SNPs but including a personal identifier. This second data set might originate from another clinical examination, a study of leftover samples or forensic testing. When merged to the primary, unidentified set it will re-identify all samples of that individual. Even with no second data set at hand, a "profiling" strategy can be developed to extract as much information as possible from a sample collection. Starting with the identification of ethnic subgroups along with predictions of body characteristics and diseases, the asthma kids case as a real-life example is used to illustrate that approach. Summary Depending on the degree of supplemental information, there is a good chance that at least a few individuals can be identified from an anonymized data set. Any re-identification, however, may potentially harm study participants because it will release individual genetic disease risks to the public. PMID:21190545

  17. Quantifying the Antibody Binding on Protein Microarrays using Microarray Nonlinear Calibration

    PubMed Central

    Yu, Xiaobo; Wallstrom, Garrick; Magee, Dewey Mitchell; Qiu, Ji; Mendoza, D. Eliseo A.; Wang, Jie; Bian, Xiaofang; Graves, Morgan; LaBaer, Joshua

    2015-01-01

    To address the issue of quantification for antibody assays with protein microarrays, we firstly developed a Microarray Nonlinear Calibration (MiNC) method that applies in the quantification of antibody binding to the surface of microarray spots. We found that MiNC significantly increased the linear dynamic range and reduced assay variations. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen targets were identified with MiNC, which is consistent with the improved assay performance of protein microarrays. We expect that our cumulative results will provide scientists with a new appreciation of antibody assays with protein microarrays. Our MiNC method has the potential to be employed in biomedical research with multiplex antibody assays which need quantitation, including the discovery of antibody biomarkers, clinical diagnostics with multi-antibody signatures and construction of immune mathematical models. PMID:23662896

  18. Advancing microarray assembly with acoustic dispensing technology.

    PubMed

    Wong, E Y; Diamond, S L

    2009-01-01

    In the assembly of microarrays and microarray-based chemical assays and enzymatic bioassays, most approaches use pins for contact spotting. Acoustic dispensing is a technology capable of nanoliter transfers by using acoustic energy to eject liquid sample from an open source well. Although typically used for well plate transfers, when applied to microarraying, it avoids the drawbacks of undesired physical contact with the sample; difficulty in assembling multicomponent reactions on a chip by readdressing, a rigid mode of printing that lacks patterning capabilities; and time-consuming wash steps. We demonstrated the utility of acoustic dispensing by delivering human cathepsin L in a drop-on-drop fashion into individual 50-nanoliter, prespotted reaction volumes to activate enzyme reactions at targeted positions on a microarray. We generated variable-sized spots ranging from 200 to 750 microm (and higher) and handled the transfer of fluorescent bead suspensions with increasing source well concentrations of 0.1 to 10 x 10(8) beads/mL in a linear fashion. There are no tips that can clog, and liquid dispensing CVs are generally below 5%. This platform expands the toolbox for generating analytical arrays and meets needs associated with spatially addressed assembly of multicomponent microarrays on the nanoliter scale. PMID:19035650

  19. A Synthetic Kinome Microarray Data Generator

    PubMed Central

    Maleki, Farhad; Kusalik, Anthony

    2015-01-01

    Cellular pathways involve the phosphorylation and dephosphorylation of proteins. Peptide microarrays called kinome arrays facilitate the measurement of the phosphorylation activity of hundreds of proteins in a single experiment. Analyzing the data from kinome microarrays is a multi-step process. Typically, various techniques are possible for a particular step, and it is necessary to compare and evaluate them. Such evaluations require data for which correct analysis results are known. Unfortunately, such kinome data is not readily available in the community. Further, there are no established techniques for creating artificial kinome datasets with known results and with the same characteristics as real kinome datasets. In this paper, a methodology for generating synthetic kinome array data is proposed. The methodology relies on actual intensity measurements from kinome microarray experiments and preserves their subtle characteristics. The utility of the methodology is demonstrated by evaluating methods for eliminating heterogeneous variance in kinome microarray data. Phosphorylation intensities from kinome microarrays often exhibit such heterogeneous variance and its presence can negatively impact downstream statistical techniques that rely on homogeneity of variance. It is shown that using the output from the proposed synthetic data generator, it is possible to critically compare two variance stabilization methods.

  20. Individual and organizational factors related to community clinicians’ use of therapy techniques in a large public mental health system

    PubMed Central

    Marcus, Steven; Aarons, Gregory A.; Hoagwood, Kimberly E.; Schoenwald, Sonja; Evans, Arthur C.; Hurford, Matthew O.; Hadley, Trevor; Barg, Frances K.; Walsh, Lucia M.; Adams, Danielle R.; Mandell, David S.

    2015-01-01

    Importance Few studies have examined the effects of both clinician and organizational characteristics on the use of evidence-based practices in mental healthcare. Improved understanding of these factors could guide future implementation efforts to ensure effective adoption, implementation, and sustainment of evidence-based practices. Objective To estimate the relative contribution of clinician and organizational factors on clinician self-reported use of cognitive-behavioral, family, and psychodynamic techniques within the context of a large-scale effort to increase use of evidence-based practices in an urban public mental health system serving youth and families. Design Observational and cross-sectional. Data collected in 2013. Setting Twenty-three organizations. Participants We used purposive sampling to recruit the 29 largest child-serving agencies, which together serve approximately 80% of youth receiving publically funded mental health care. The final sample included 19 agencies with 23 sites, 130 therapists, 36 supervisors, and 22 executive administrators. Main Outcome Measures Clinician self-reported use of cognitive-behavioral, family, and psychodynamic techniques, as measured by the Therapist Procedures Checklist – Family Revised. Results Linear mixed-effects regression models were used; models included random intercepts for organization to account for nesting of clinicians within organization. Clinician factors accounted for the following percentage of the overall variation: cognitive-behavioral (16%), family (7%), psychodynamic (20%). Organizational factors accounted for the following percentage of the overall variation: cognitive-behavioral (23%), family (19%), psychodynamic (7%). Older clinicians and clinicians with more open attitudes were more likely to endorse use of cognitive behavioral techniques, as were those in organizations that had spent fewer years participating in evidence-based practice initiatives, had more resistant cultures, and had

  1. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    PubMed Central

    Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA

    2008-01-01

    Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks

  2. A software framework for microarray and gene expression object model (MAGE-OM) array design annotation

    PubMed Central

    Qureshi, Matloob; Ivens, Alasdair

    2008-01-01

    Background The MIAME and MAGE-OM standards defined by the MGED society provide a specification and implementation of a software infrastructure to facilitate the submission and sharing of data from microarray studies via public repositories. However, although the MAGE object model is flexible enough to support different annotation strategies, the annotation of array descriptions can be complex. Results We have developed a graphical Java-based application (Adamant) to assist with submission of Microarray designs to public repositories. Output of the application is fully compliant with the standards prescribed by the various public data repositories. Conclusion Adamant will allow researchers to annotate and submit their own array designs to public repositories without requiring programming expertise, knowledge of the MAGE-OM or XML. The application has been used to submit a number of ArrayDesigns to the Array Express database. PMID:18366695

  3. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  4. Evaluation of two outlier-detection-based methods for detecting tissue-selective genes from microarray data.

    PubMed

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-01-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU. PMID:19936074

  5. Long synthetic oligonucleotides for microarray expression measurement

    NASA Astrophysics Data System (ADS)

    Li, Jiong; Wang, Hong; Liu, Heping; Zhang, M.; Zhang, Chunxiu; Lu, Zu-Hong; Gao, Xiang; Kong, Dong

    2001-09-01

    There are generally two kinds of DNA microarray used for genomic-scale gene expression profiling of mRNA: cDNA and DNA chip, but both of them suffer from some drawbacks. To meet more requirements, another oligonucleotide microarray with long was produced. This type of microarray had the advantages of low cost, minimal Cross-hybridization, flexible and easy to make, which is most fit for small laboratories with special purposes. In this paper, we devised different probes with different probe lengths, GC contents and gene positions to optimization the probe design. Experiments showed 70 mer probes are suitable for both sufficient sensitivity and reasonable costs. Higher G-C content produces stronger signal intensity thus better sensitivity and probes designed at 3 untranslated region of gene within the range of 300 pb should be best for both sensitivity and specificity.

  6. MicroGen: a MIAME compliant web system for microarray experiment information and workflow management

    PubMed Central

    Burgarella, Sarah; Cattaneo, Dario; Pinciroli, Francesco; Masseroli, Marco

    2005-01-01

    Background Improvements of bio-nano-technologies and biomolecular techniques have led to increasing production of high-throughput experimental data. Spotted cDNA microarray is one of the most diffuse technologies, used in single research laboratories and in biotechnology service facilities. Although they are routinely performed, spotted microarray experiments are complex procedures entailing several experimental steps and actors with different technical skills and roles. During an experiment, involved actors, who can also be located in a distance, need to access and share specific experiment information according to their roles. Furthermore, complete information describing all experimental steps must be orderly collected to allow subsequent correct interpretation of experimental results. Results We developed MicroGen, a web system for managing information and workflow in the production pipeline of spotted microarray experiments. It is constituted of a core multi-database system able to store all data completely characterizing different spotted microarray experiments according to the Minimum Information About Microarray Experiments (MIAME) standard, and of an intuitive and user-friendly web interface able to support the collaborative work required among multidisciplinary actors and roles involved in spotted microarray experiment production. MicroGen supports six types of user roles: the researcher who designs and requests the experiment, the spotting operator, the hybridisation operator, the image processing operator, the system administrator, and the generic public user who can access the unrestricted part of the system to get information about MicroGen services. Conclusion MicroGen represents a MIAME compliant information system that enables managing workflow and supporting collaborative work in spotted microarray experiment production. PMID:16351755

  7. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  8. Overview of DNA microarrays: types, applications, and their future.

    PubMed

    Bumgarner, Roger

    2013-01-01

    This unit provides an overview of DNA microarrays. Microarrays are a technology in which thousands of nucleic acids are bound to a surface and are used to measure the relative concentration of nucleic acid sequences in a mixture via hybridization and subsequent detection of the hybridization events. This overview first discusses the history of microarrays and the antecedent technologies that led to their development. This is followed by discussion of the methods of manufacture of microarrays and the most common biological applications. The unit ends with a brief description of the limitations of microarrays and discusses how microarrays are being rapidly replaced by DNA sequencing technologies. PMID:23288464

  9. Analysis of High-Throughput ELISA Microarray Data

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    2011-02-23

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  10. Construction of citrus gene coexpression networks from microarray data using random matrix theory

    PubMed Central

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G.

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus. PMID:26504573