Science.gov

Sample records for large recirculation zone

  1. Optimal mixing in recirculation zones Bernd R. Noacka)

    E-print Network

    Noack, Bernd R.

    Optimal mixing in recirculation zones Bernd R. Noacka) Hermann-Fo¨ttinger-Institut fu¨r Stro February 2004 Coarse-scale mixing in a recirculation zone is described with a simple vortex model. Time is defined in which the flux across the recirculation region shall be maximized under the side

  2. Prediction of recirculation zones in isothermal coaxial jet flows relevant to combustors

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1987-01-01

    The characteristics of the recirculation zones in confined coaxial turbulent jets are investigated numerically employing the kappa - epsilon turbulence model. The geometrical arrangement corresponds to the experimental study of Owen (AIAA J. 1976) and the investigation is undertaken to provide information for isothermal flow relevant to combustor flows. For the first time, the shape, size, and location of the recirculation zones for the above experimental configuration are correctly predicted. The processes leading to the observed results are explained. Detailed comparisons of the prediction with measurements are made. It is shown that the recirculation zones are very sensitive to the central jet exit configuration and the velocity ratio of the jets.

  3. Vortex formation and recirculation zones in left anterior descending artery stenoses: computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Katritsis, D. G.; Theodorakakos, A.; Pantos, I.; Andriotis, A.; Efstathopoulos, E. P.; Siontis, G.; Karcanias, N.; Redwood, S.; Gavaises, M.

    2010-03-01

    Flow patterns may affect the potential of thrombus formation following plaque rupture. Computational fluid dynamics (CFD) were employed to assess hemodynamic conditions, and particularly flow recirculation and vortex formation in reconstructed arterial models associated with ST-elevation myocardial infraction (STEMI) or stable coronary stenosis (SCS) in the left anterior descending coronary artery (LAD). Results indicate that in the arterial models associated with STEMI, a 50% diameter stenosis immediately before or after a bifurcation creates a recirculation zone and vortex formation at the orifice of the bifurcation branch, for most of the cardiac cycle, thus allowing the creation of stagnating flow. These flow patterns are not seen in the SCS model with an identical stenosis. Post-stenotic recirculation in the presence of a 90% stenosis was evident at both the STEMI and SCS models. The presence of 90% diameter stenosis resulted in flow reduction in the LAD of 51.5% and 35.9% in the STEMI models and 37.6% in the SCS model, for a 10 mmHg pressure drop. CFD simulations in a reconstructed model of stenotic LAD segments indicate that specific anatomic characteristics create zones of vortices and flow recirculation that promote thrombus formation and potentially myocardial infarction.

  4. Experimental verification of a secondary recirculation zone in a labyrinth seal

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.

    1988-01-01

    The existence of a secondary recirculation zone inside the cavities of a labyrinth seal operating at a Reynolds number of 15,000 and a Taylor number of 10,300 has been experimentally verified. A three-dimensional laser Doppler anemometer system was used to measure the complete mean velocity and Reynolds stress tensor distributions in the first, third, fifth and seventh cavities of a seven cavity labyrinth seal which had a clearance of 1.27 mm.

  5. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    E-print Network

    Ghoniem, Ahmed F.

    We investigate the dependence of the recirculation zone (RZ) size and structure on the fuel composition using high-speed particle image velocimetry (PIV) and chemiluminescence measurements for C[subscript 3]H[subscript ...

  6. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  7. Capture Zone Analyses of Two Airlift Recirculation Wells in the Southern Sector of A/M Area

    SciTech Connect

    Aleman, S.E.

    1999-09-14

    This report documents a series of capture zone analyses performed to access the expected overall performance of two (of the twelve) vertical airlift recirculation wells (ARWs) (specifically, SSR-011 and SRR-012) located in the Southern Sector of A/M Area.

  8. Exhaust gas recirculation control

    SciTech Connect

    Stoltman, D.D.

    1983-08-23

    In an internal combustion engine, recirculation of exhaust gases is controlled to maintain the control pressure in a zone of the recirculation passage proportional to a reference pressure and thus to provide exhaust gas recirculation as a proportion of induction air flow. A duty cycle modulated valve controls an exhaust backpressure port and an atmospheric pressure port to create the reference pressure, whereby the proportion of exhaust gases recirculated is established by the duty cycle and is independent of the induction air flow.

  9. Performance degradation of a large production reactor recirculation pump during off-design conditions

    SciTech Connect

    Whitehouse, J.C.

    1993-11-01

    In order to accurately predict reactor hydraulic behavior during a hypothetical Loss-of-Coolant-Accident (LOCA) the performance of reactor coolant pumps under off-design conditions must be understood. The LOCA of primary interest for the Savannah River Site (SRS) production reactors involves the aspiration of air into the recirculated heavy water flow as reactor tank inventory is lost, (system temperatures are too low to result in significant flashing of water coolant into steam). Entrained air causes degradation in the performance of the large recirculation pumps. The amount of degradation is a parameter used in computer codes which predict the course of the accident. This paper describes the analysis of data obtained during in-reactor simulated LOCA tests, and presents the head degradation curve for the SRS reactor recirculation pumps. The greatest challenge of the analysis was to determine a reasonable estimate of mixture density at the pump suction. Specially designed three-beam densitometers were used to determine mixture density. Since it was not feasible to place them in the most advantageous location, measured pump motor power along with other techniques, were used to calculate the average mixture density at the pump impeller. This technique provides a good estimate of pump suction mixture density. Measurements from more conventional instruments were used to arrive at the value of pump two-component head over a wide range of flows. The results were significantly different from previous work with commercial reactor recirculation pumps. Further experimental work using a 1/4 scale model of the SRS pump should provide an opportunity to confirm these results, and is currently in progress.

  10. Zone generator for Large Space Telescope technology

    NASA Technical Reports Server (NTRS)

    Erickson, K. E.

    1974-01-01

    A concept is presented for monitoring the optical adjustment and performance of a Large Space Telescope which consists of a 1.2m diameter turntable with a laser stylus to operate at speeds up to 30 rpm. The focus of the laser stylus is under closed loop control. A technique for scribing zones of suitable depth, width, and uniformity applicable to large telescope mirrors is also reported.

  11. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  12. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  13. Wind tunnel investigation on the retention of air pollutants in three-dimensional recirculation zones in urban areas

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos Sebastião de Paula; Isnard, André Augusto; Pinto, José Maurício do Carmo

    The article discusses an experimental investigation of turbulent dispersion processes in a typical three-dimensional urban geometry, in reduced scale, in neutrally stable conditions. Wind tunnel experiments were carried out for characterizing the flow and the dispersion of a pollutant around a scaled model (1:400) of a group of eight 10-floor buildings surrounding a square. The situation corresponded to the dispersion of fine inertialess particles released from a line source positioned upstream of the urban geometry. After the sudden interruption of the source generation, the particles persisted in the recirculation cavity between the buildings, with the concentration decaying exponentially with time. This is in accordance with previous works on the dispersion process around bluff bodies of different shapes [e.g., Humphries and Vincent, 1976. An experimental investigation of the detention of airborne smoke in the wake bubble behind a disk. Journal of Fluid Mechanics 73, 453-464; Vincent, 1977. Model experiments on the nature of air pollution transport near buildings. Atmospheric Environment 11, 765-774; Fackrell, 1984. Parameters characterizing dispersion in the near wake of buildings. Journal of Wind Engineering and Industrial Aerodynamics 16, 97-118]. The main parameter in the investigation was the characteristic time constant for the concentration decay. The measurements of the variation in the concentration of the fine particles were performed by means of a photo-detection technique based on the attenuation of light. The velocity fields were evaluated with the particle image velocimetry (PIV) technique. The dimensionless residence time H for the particles ( H= ?U/ L, where ? is the time constant for the concentration decay, U the free-stream velocity, and L is a characteristic dimension for the urban geometry, as defined by Humphries and Vincent [1976. An experimental investigation of the detention of airborne smoke in the wake bubble behind a disk. Journal of Fluid Mechanics 73, 453-464] was determined for various locations in the scaled model, in the range of Reynolds numbers ( Re) between 8000 and 64,000. H was found to be 6.5±1.0.

  14. Gas turbine combustor stabilization by heat recirculation

    NASA Technical Reports Server (NTRS)

    Ganji, A.; Short, J.; Branch, M. C.; Oppenheim, A. K.

    1975-01-01

    The feasibility of heat recirculation for stabilization of lean mixtures and emission reduction has been studied in detail for a typical aircraft gas turbine combustor. Thermodynamic calculations have indicated temperature and heat recirculation rates for operation of the combustor over a range of combustion zone equivalence ratios and for varying modes of desired engine operation. Calculations indicate the feasibility of stabilizing the combustion zone at equivalence ratios as low as 0.2 with achievable heat recirculation rates. Detailed chemical kinetic calculations suggest that combustor heat release is maintained with reaction completion substantially before the NO forming reactions, even though CO is rapidly oxidized in this same region.

  15. Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell

    SciTech Connect

    Olivier, Franck . E-mail: franck.olivier@ujf-grenoble.fr; Gourc, Jean-Pierre . E-mail: gourc@ujf-grenoble.fr

    2007-07-01

    The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m{sup 3} instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.

  16. A satellite magnetic perspective of subduction zones, large igneous provinces, rifts, and diffuse plate boundary zones

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Whaler, K. A.

    2008-12-01

    Large and intermediate-scale tectonic features such as subduction zones, large igneous provinces, rifts, and diffuse plate boundary zones are often seen to have a magnetic signature visible from the perspective of near-Earth magnetic field satellites such as CHAMP and Orsted. Why do these tectonic features have a magnetic signature, while others do not? A new model of the lithospheric field (MF-6, Maus et al., 2008) extending to spherical harmonic degree 120 (333 km wavelength) has been used to evaluate the magnetic state of the lithosphere under the assumption that the magnetization is either induced (with a seismic starting model), or remanent (with a minimum norm approach). Some of the features identified from these images include the Tethyan and NE Siberian diffuse plate boundary zones, the Red Sea rift, and Cretaceous rift basins developed on the West African shield. Almost without exception, subduction zones exhibit a magnetic signature, as do many large igneous provinces. In this talk we discuss some of the new insights this magnetic perspective provides, and speculate on the controls which determine whether tectonic features will be expressed magnetically.

  17. Monitoring industrial process exhaust for recirculation

    SciTech Connect

    Eshelman, P.S.

    1982-01-01

    The recirculation of industrial exhaust air is only one of a number of engineering approaches that can be used for energy conservation. For industry, a recirculation system refers to any ventilation system in which air is removed from an operation, cleaned where required, and re-introduced back into the building. Recirculation has a potentially wide application throughout industry, since it can help reduce the tempering of large volumes of make-up air. Although the practice of recirculation can result in a substantial reduction in the volumes of make-up air required, a safe and healthful workplace must be maintained at all times.

  18. Flume simulation of sedimentation in recirculating flow

    SciTech Connect

    Schmidt, J.C. ); Rubin, D.M. ); Ikeda, H. )

    1990-05-01

    A 4-m-wide flume at the University of Tsukuba Environmental Research Center was used to simulate flow conditions near debris fans in bedrock gorges. Flow was constricted to 2 m by a semicircular obstruction. During the authors experiments (discharge = 600 L/sec; Froude number of constricted flow = 1) a zone of recirculating current extended 25-30 m downstream from the separation point at the constriction. The pattern and velocity of surface flow was determined using time-lapse photography; subsurface velocity was measured with a two-dimensional electromagnetic current meter. During 32-hr of run time, a fine, very coarse sand mixture was fed into the flow at a rate between 0.5-1 kg/sec. Oscillation ripples developed beneath the separation surface that bounds the recirculation zone, and upstream-migrating dunes and ripples developed within the recirculation zone upstream from the reattachment point. A mid-channel expansion bar was deposited downstream from the reattachment point. Sedimentation within the recirculation zone continued by vertical aggradation and by upstream migration of dunes and ripples. Sediments within the recirculation zone were areally sorted with the finest sediment deposited near the separation point. These patterns are consistent with field observations of bars along the Colorado River in the Grand Canyon.

  19. Validation for a recirculation model.

    PubMed

    LaPuma, P T

    2001-04-01

    Recent Clean Air Act regulations designed to reduce volatile organic compound (VOC) emissions have placed new restrictions on painting operations. Treating large volumes of air which contain dilute quantities of VOCs can be expensive. Recirculating some fraction of the air allows an operator to comply with environmental regulations at reduced cost. However, there is a potential impact on employee safety because indoor pollutants will inevitably increase when air is recirculated. A computer model was developed, written in Microsoft Excel 97, to predict compliance costs and indoor air concentration changes with respect to changes in the level of recirculation for a given facility. The model predicts indoor air concentrations based on product usage and mass balance equations. This article validates the recirculation model using data collected from a C-130 aircraft painting facility at Hill Air Force Base, Utah. Air sampling data and air control cost quotes from vendors were collected for the Hill AFB painting facility and compared to the model's predictions. The model's predictions for strontium chromate and isocyanate air concentrations were generally between the maximum and minimum air sampling points with a tendency to predict near the maximum sampling points. The model's capital cost predictions for a thermal VOC control device ranged from a 14 percent underestimate to a 50 percent overestimate of the average cost quotes. A sensitivity analysis of the variables is also included. The model is demonstrated to be a good evaluation tool in understanding the impact of recirculation. PMID:11318387

  20. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  1. ROSSBY WAVES ON A SHEAR FLOW WITH RECIRCULATION CORES

    E-print Network

    ROSSBY WAVES ON A SHEAR FLOW WITH RECIRCULATION CORES Oleg G. Derzho1 and Roger Grimshaw2 1 of recirculating fluid. In this paper, we use the simplest model of nonlin- ear Rossby waves, namely the barotropic of recirculating fluid. In this paper we apply the same technique for long large amplitude Rossby waves, thus

  2. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project

    E-print Network

    Ma, Kuo-Fong

    LETTERS Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling and development of a fault zone requires a combination of both seismological and geo- logical field data1 . The actual thickness of the zone that slips dur- ing the rupture of a large earthquake is not known

  3. Lattice Design for the LHEC Recirculating Linac

    SciTech Connect

    Sun, Yipeng; Eide, Anders; Zimmermann, Frank; Adolphsen, Chris; /SLAC

    2011-05-20

    In this paper, we present a lattice design for the Large Hadron Electron Collider (LHeC) recirculating linac. The recirculating linac consists of one roughly 3-km long linac hosting superconducting RF (SRF) accelerating cavities, two arcs and one transfer line for the recirculation. In two passes through a pulsed SRF linac the electron beam can get a maximum energy of 140 GeV. Alternatively, in the Energy Recovery Linac (ERL) option the beam passes through a CW linac four times (two passes for acceleration and two for deceleration) for a maximum energy of 60 GeV.

  4. 33 CFR 165.839 - Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest...165.839 Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest...are established around all large cruise ships transiting between the Southwest Pass...

  5. 33 CFR 165.839 - Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest...165.839 Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest...are established around all large cruise ships transiting between the Southwest Pass...

  6. A simple method to recover Norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a recirculating affinity magnetic separation system (RCAMS).

    PubMed

    Tian, Peng; Yang, David; Mandrell, Robert

    2011-06-30

    Human norovirus (NoV) outbreaks are major food safety concerns. The virus has to be concentrated from food samples in order to be detected. PEG precipitation is the most common method to recover the virus. Recently, histo-blood group antigens (HBGA) have been recognized as receptors for human NoV, and have been utilized as an alternative method to concentrate human NoV for samples up to 40 mL in volume. However, to wash off the virus from contaminated fresh food samples, at least 250 mL of wash volume is required. Recirculating affinity magnetic separation system (RCAMS) has been tried by others to concentrate human NoV from large-volume samples and failed to yield consistent results with the standard procedure of 30 min of recirculation at the default flow rate. Our work here demonstrates that proper recirculation time and flow rate are key factors for success in using the RCAMS. The bead recovery rate was increased from 28% to 47%, 67% and 90% when recirculation times were extended from 30 min to 60 min, 120 min and 180 min, respectively. The kinetics study suggests that at least 120 min recirculation is required to obtain a good recovery of NoV. In addition, different binding and elution conditions were compared for releasing NoV from inoculated lettuce. Phosphate-buffered saline (PBS) and water results in similar efficacy for virus release, but the released virus does not bind to RCAMS effectively unless pH was adjusted to acidic. Either citrate-buffered saline (CBS) wash, or water wash followed by CBS adjustment, resulted in an enhanced recovery of virus. We also demonstrated that the standard curve generated from viral RNA extracted from serially-diluted virus samples is more accurate for quantitative analysis than standard curves generated from serially-diluted plasmid DNA or transcribed-RNA templates, both of which tend to overestimate the concentration power. The efficacy of recovery of NoV from produce using RCAMS was directly compared with that of the PEG method in NoV inoculated lettuce. 40, 4, 0.4, and 0.04 RTU can be detected by both methods. At 0.004 RTU, NoV was detectable in all three samples concentrated by the RCAMS method, while none could be detected by the PEG precipitation method. RCAMS is a simple and rapid method that is more sensitive than conventional methods for recovery of NoV from food samples with a large sample size. In addition, the RTU value detected through RCAMS-processed samples is more biologically relevant. PMID:21546111

  7. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon

    E-print Network

    Hoeinghaus, David J.

    Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal, Texas A&M University, College Station, TX 77843-2258, USA Received 29 May 2006; accepted 2 February 2007 in freshwater, whereas more enriched signatures (from À19.1& to À12.3&) were obtained within the estuarine zone

  8. LARGE-AMPLITUDE SOLITARY WAVES WITH VORTEX CORES IN STRATIFIED AND ROTATING FLOWS

    E-print Network

    models, which describe explicitly the structure of solitary waves with recirculation zones, for certain to an inner zone containing a recirculation zone. These recirculation zones exist for wave amplitudes just greater than a certain critical amplitude for which there is incipient flow reversal. The recirculation

  9. Airlift recirculation well test results -- Southern sector

    SciTech Connect

    White, R.M.; Hiergesell, R.A.

    1997-08-01

    Chlorinated solvents used in the A and M-Areas at the Savannah River Site (SRS) from 1952--1982 have contaminated the groundwater under the site. A plume of groundwater contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) in the Lost Lake aquifer is moving generally southward with the natural flow of groundwater. To comply with the requirements of the current SCDHEC Part B Permit, a series of wells is being installed to contain and treat the plume. Airlift Recirculation Wells (ARW) are a new and innovative technology with potential for more cost effective implementation than conventional pump and treat systems. Two Airlift Recirculation Wells have been installed and tested to quantify performance parameters needed to locate a line of these wells along the leading edge of the contaminant plume. The wells proved to be very sensitive to proper development, but after this requirement was met, performance was very good. The Zone of Capture has been estimated to be within a radius of 130--160 ft. around the wells. Thus a line of wells spaced at 250 ft. intervals could intercept the contaminant plume. At SSR-012, TCE was stripped from the groundwater at approximately 1.2 lb./day. The longer term effect of the recirculation wells upon the plume and the degree of recirculation within the aquifer itself will require additional data over a longer time period for an accurate review. Data collection is ongoing.

  10. Cooling Along Hyporheic Pathlines in a Large River Riparian Zone

    EPA Science Inventory

    Floodplains can contribute to hyporheic cooling and moderation of temperature for rivers, but extent and magnitude are dependent on ground water hydrology. Here we illustrate the controls and dynamics of hyporheic cooling in the ground water of a large river floodplain with field...

  11. Journal of Marine Research, 52, 10.51-1080,1994 Wave-induced abyssal recirculations

    E-print Network

    Journal of Marine Research, 52, 10.51-1080,1994 Wave-induced abyssal recirculations by Michael A. There appear to exist significant large-scale recirculation gyres, cross- basin flows, eastern boundary. Understanding the structure and forcing mechanisms of abyssal recirculation gyres, and their relation

  12. The Evolution and Natural State of Large-Scale Vapor-Dominated Zones

    SciTech Connect

    Ingebritsen, S.E.

    1986-01-21

    Numerical simulation is used to define the rather special conditions under which large-scale vapor-dominated zones can evolve. Given an adequate supply of heat, a vapor-dominated zone can evolve within low-permeability barriers without changes in rock properties or boundary conditions. However, the evolution of the system is accelerated in cases involving an initially high fluid throughflow rate that decreases with time. Near-steady-state pressures within the vapor-dominated zone are shown to vary with depth to the caprock.

  13. Mechanisms of recirculating liquid flow on distillation sieve plates

    SciTech Connect

    Biddulph, M.W. . Dept. of Chemical Engineering); Burton, A.C. )

    1994-11-01

    This paper describes an experimental investigation into the phenomenon of flow recirculation on distillation sieve trays. A novel dye injection technique has been applied to a 1.81 m air-water simulation column and has yielded new information concerning the nature of the boundary layer of gas-liquid biphase as it detaches from the column wall. The study has shown that recirculation is strongly influenced by inlet conditions. A critical factor is the underflow clearance between the inlet downcomer apron and the tray floor. As this clearance is increased, the size of the recirculating zones passes through a minimum, indicating the existence of two different mechanisms responsible for the nonuniform flow patterns. A significant implication of this work is that tray designers may minimize the impact of recirculating on mass transfer efficiency by appropriate choice of underflow clearance.

  14. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  15. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, John F. (601 Oakwood Pl., NE., Albuquerque, NM 87123)

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  16. Large-scale laboratory measurements of sheet flow sediment transport in the swash zone

    NASA Astrophysics Data System (ADS)

    Lanckriet, T. M.; Puleo, J. A.; Foster, D. L.

    2013-12-01

    Existing sediment transport models show poor predictive quality when applied to the swash zone, indicating that the underlying processes of swash zone sediment transport are not yet fully understood. The recognition that more detailed measurements are needed to improve understanding of swash-zone processes has led to several recent innovations in swash-zone measurement techniques. One of these innovative measurement techniques, the Conductivity Concentration Profiler (CCP), was developed to address the issue of near-bed (sheet flow) sediment transport, which is believed to be an important part of the overall swash-zone sediment transport. Measurements of sheet flow processes in the swash zone from the Barrier Dynamics Experiment (Bardex-II) are presented. The aim of this study was to investigate the dynamics of a coastal barrier system and develop an increased understanding of cross-shore sediment transport processes in the nearshore zone of sandy beaches. A 70-m long, near-prototype scale sandy barrier was constructed in a large wave flume facility and equipped with over 200 sensors to measure hydrodynamics and sediment processes ranging from the shoaling-wave zone to the back barrier. CCP sensors were deployed at three locations in the swash zone as part of the ';swash and berm dynamics' work package. Onshore-directed pressure gradients, observed during the initial stages of uprush, enhanced sediment mobilization. The combination of near-bed sediment mobilization due to pressure gradients (known as plug flow) and shear stress (sheet flow) is examined. Sediment load in the sheet flow layer is also compared to suspended load and total load measured using an array of optical backscatter sensors. The sheet flow layer thickness is compared to hydrodynamic forcing such as bed shear stress and the effect of groundwater exchange.

  17. Architecture of the parallel recirculating pipeline

    NASA Astrophysics Data System (ADS)

    Wehner, William W., II; Brandt, James

    1990-11-01

    Current image analysis and image understanding applications in DoD systems require very high performance image pixel processing in real time. To attain the necessary performance within stringent system size weight and power constraints requires special-purpose parallel processing hardware architectures. At the same time it is desirable to retain as much programmability as possible in order to rapidly adapt the hardware to new applications or evolving system requirements. The Parallel Recirculating Pipeline processor uses techniques adopted from image algebra and mathematical morphology to provide a low-cost low-complexity high-performance architecture that is suitable for silicon implementation and programmable in high-order languages. The parallel recirculating pipeline hardware architecture is based on a cellular array structure in which each cell is a pipelined neighborhood processor. Each processor cell transforms an entire image segment by successively executing an operation on small fixed-size neighborhoods around each pixel. By cascading a series of these operations transforms on larger neighborhoods can be achieved. The parallel recirculating pipeline achieves cascading by allowing a series of cells to be connected in a pipelined fashion. Partial results can recirculate several times through the hardware pipeline via an external buffer memory. A virtual pipeline of any length is thus achieved. Several novel features of the architecture allow multiple pipelines to operate in parallel on strips of the same image. These features can support parallel expansion to a large number of processors with correspondingly

  18. Model of Predicting Multi Tsunami Scenarios considering Large Slip Zone and Super Large Slip Zone and Its Application in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Seto, S.; Takahashi, T.

    2014-12-01

    In the 2011 Tohoku Earthquake Tsunami Disaster, the actual tsunami heights had exceeded the estimated heights extremely and the underestimation caused serious damages in Japan. To reduce such a risk, multi tsunami scenarios were examined especially considering Large Slip Zone (LSZ) and Super Large Slip Zone (SLSZ) suggested by the Cabinet Office, Government of Japan. In the Nankai trough, 11 tsunami faults were assumed. Even if their magnitudes are same, the tsunami heights attacking coastal cities are quite different due to locations of LSZ and SLSZ. For example, the difference is about 5 meters at Tanabe city, Wakayama prefecture. Therefore, the multi tsunami scenario considering LSZ and SLSZ is very important in the tsunami disaster mitigation. However, it is not cleared how to consider the uncertainly in tsunami scenario. A model of predicting the scenarios is proposed in this study. The model consists of areas, dislocations, shapes, locations of LSZ and SLSZ, and the initial crack location. A couple or two couples of LSZ and SLSZ are examined. This model can be applied to any plate boundaries in the world. And it can make the multi tsunami scenario systematically after determining some parameters such as the ratios of area and dislocation of LSZ to a tsunami fault. The model was applied for the Nankai Trough to predict multi scenario of future large tsunamis and its detailed procedure was shown.

  19. The Impact of Laptop-Free Zones on Student Performance and Attitudes in Large Lectures

    ERIC Educational Resources Information Center

    Aguilar-Roca, Nancy M.; Williams, Adrienne E.; O'Dowd, Diane K.

    2012-01-01

    The goal of this study was to determine if laptop use in lecture negatively impacts learning outcomes of surrounding students taking notes on paper. Two sections of a large introductory biology course (greater than 400 students/section) were zoned into a laptop-permitted and a laptop-free area. Two sections in which laptop users could sit anywhere…

  20. The "dead zone" is a large area of decreased dissolved oxygen concentration in bottom waters that forms

    E-print Network

    Dodds, Walter

    The "dead zone" is a large area of decreased dissolved oxygen concentration in bottom waters.frontiersinecology.org REVIEWS REVIEWS REVIEWS Nutrients and the "dead zone": the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico Walter K Dodds The "dead zone", an area with reduced concentrations

  1. Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth of large silicon

    E-print Network

    Guo, Zhixiong "James"

    1998-01-01

    Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth the combined heat transfer in floating zone growth of large Si crystals with needle-eye technique factors associated with the components in the float zone furnace and both the diffuse and specular

  2. arXiv:astro-ph/0410725v129Oct2004 Nearby Large-Scale Structures and the Zone of Avoidance

    E-print Network

    Kraan-Korteweg, Renée C.

    in the Zone of Avoidance are discussed in some detail. In particular the effects (uncertainties, systematicsarXiv:astro-ph/0410725v129Oct2004 Nearby Large-Scale Structures and the Zone of Avoidance ASP Conference Series, Vol. ***, 2004 A.P. Fairall and P.A. Woudt Peculiar Velocities in the Zone of Avoidance

  3. Large-scale folding in the upper part of the Ivrea-Verbano zone, NW Italy

    NASA Astrophysics Data System (ADS)

    Rutter, Ernest; Brodie, Katharine; James, Tony; Burlini, Luigi

    2007-01-01

    New geological mapping has led to a new interpretation of the large-scale superimposed folding in the upper part of the Ivrea-Verbano zone, Italian Alps. The region is widely held to represent an upended section through lower continental crust of northern Italy. The dominant fold structure, extending some 40 km along strike, is the Massone tight to isoclinal antiform, with a hinge line strongly curved through 115°. This folds pre-existing large-scale folds that formed during regional migmatization, probably during the Hercynian orogeny, to form a type-2 interference geometry. The region then suffered post-orogenic mafic magmatic underplating and other magmatism, accompanied by crustal stretching, with contact metamorphism and migmatization causing the imposition of the final pattern of metamorphic isograds. The Ivrea-Verbano zone was brought into contact with the overlying metamorphic rocks of the Serie dei Laghi on a major shear zone. Sub-solidus stretching continued though displacements on low-angle, high-temperature shear zones. Most of the Ivrea-Verbano zone was finally tilted to the vertical and emplaced into its present position after the Mesozoic era and probably during Alpine orogenesis, forming the vertical limb of a crustal-scale double kink.

  4. Seismic gaps and source zones of recent large earthquakes in coastal Peru

    USGS Publications Warehouse

    Dewey, J.W.; Spence, W.

    1979-01-01

    The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station adjustments computed by the method of joint hypocenter determination. ?? 1979 Birkha??user Verlag.

  5. Recirculation in venovenous extracorporeal membrane oxygenation.

    PubMed

    Abrams, Darryl; Bacchetta, Matthew; Brodie, Daniel

    2015-01-01

    Recirculation, a phenomenon in which reinfused oxygenated blood is withdrawn by the drainage cannula without passing through the systemic circulation, decreases the efficiency with which venovenous extracorporeal membrane oxygenation (ECMO) provides oxygenation. The precise amount of recirculation may be difficult to quantify. However, interventions should be attempted to reduce recirculation when oxygen delivery is suboptimal and recirculation is suspected. Several techniques, including the use of dual-lumen cannulae, have been successful in minimizing recirculation in venovenous ECMO. This article will provide an overview of the factors that affect recirculation, methods that may be used to quantify recirculation, and interventions that may reduce recirculation, thereby increasing ECMO efficiency. PMID:25423117

  6. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    PubMed

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management. PMID:23076973

  7. Hydroxyl time series and recirculation in turbulent nonpremixed swirling flames

    SciTech Connect

    Guttenfelder, Walter A.; Laurendeau, Normand M.; Ji, Jun; King, Galen B.; Gore, Jay P.; Renfro, Michael W.

    2006-10-15

    Time-series measurements of OH, as related to accompanying flow structures, are reported using picosecond time-resolved laser-induced fluorescence (PITLIF) and particle-imaging velocimetry (PIV) for turbulent, swirling, nonpremixed methane-air flames. The [OH] data portray a primary reaction zone surrounding the internal recirculation zone, with residual OH in the recirculation zone approaching chemical equilibrium. Modeling of the OH electronic quenching environment, when compared to fluorescence lifetime measurements, offers additional evidence that the reaction zone burns as a partially premixed flame. A time-series analysis affirms the presence of thin flamelet-like regions based on the relation between swirl-induced turbulence and fluctuations of [OH] in the reaction and recirculation zones. The OH integral time-scales are found to correspond qualitatively to local mean velocities. Furthermore, quantitative dependencies can be established with respect to axial position, Reynolds number, and global equivalence ratio. Given these relationships, the OH time-scales, and thus the primary reaction zone, appear to be dominated by convection-driven fluctuations. Surprisingly, the OH time-scales for these nominally swirling flames demonstrate significant similarities to previous PITLIF results in nonpremixed jet flames. (author)

  8. The impact of recirculating industrial air on aircraft painting operations.

    PubMed

    LaPuma, P T; Bolch, W E

    1999-10-01

    The 1990 Clean Air Act Amendments resulted in new environmental regulations for hazardous air pollutants. Industries such as painting facilities may have to treat large volumes of air, which increases the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. The authors of this study developed a computer model written in Microsoft Excel 97 to analyze the impact of recirculation on worker safety and compliance costs. The model has a chemical database with over 1300 chemicals. The model will predict indoor air concentrations using mass balance calculations and results are compared to occupational exposure limits. A case study is performed on a C-130 aircraft painting facility at Hill Air Force Base, Utah. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the exposure limit. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered during recirculation. The next highest chemical, hexamethylene diisocyanate, increases from 2.6 to 10.5 times the exposure limit at 0 percent and 75 percent recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75 percent of the air. The initial cost of an air control system is $4.5 million with no recirculation and $1.8 million at 75 percent recirculation. The model is an excellent tool to evaluate air control options with a focus on worker safety. In the case study, the model highlights strontium chromate primers as good candidates for substitution. The model shows that recirculating 75 percent of the air at the Hill painting facility has a negligible impact on safety and could save $2.7 million on the initial expenses of a thermal treatment system. PMID:10561879

  9. 77 FR 29254 - Safety Zones, Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ...1625-AA00 Safety Zones, Large Cruise Ships; Lower Mississippi River, Southwest Pass...moving safety zone around large cruise ships as they transit the Lower Mississippi River between the Port of New Orleans Cruise Ship Terminal, mile marker 96.0 and the...

  10. 77 FR 65816 - Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ...1625-AA00 Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass...moving safety zone around large cruise ships as they transit the Lower Mississippi River between the Port of New Orleans Cruise Ship Terminal, mile marker 96.0, and...

  11. 77 FR 29254 - Safety Zones, Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ..., 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public... when the safety zone is in place. The pilot onboard the large cruise ship will be authorized to allow... arrangements with the pilot onboard the large cruise ship may enter into this safety zone in accordance...

  12. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean (Lacon, IL)

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  13. BWR turbopump recirculation system

    SciTech Connect

    Townsend, H.E.

    1991-12-17

    This paper describes a recirculation system for driving reactor coolant water in an annular downcomer defined between a boiling water nuclear reactor vessel and a core shroud spaced radially inwardly therefrom. It comprises: means for supplying feedwater to the vessel; and a turbopump disposed inside the downcomer and including: a stationary axle; inlet guide vanes fixedly joined to an upstream end of the axle for receiving the coolant water from the downcomer; a pump impeller rotatably joined to the axle and having an inlet end for receiving the coolant water, and an outlet end for discharging the coolant water at an increased pressure; outlet guide vanes fixedly joined to a down-stream end of the axle for channeling the discharged coolant water back into the downcomer; an annular plenum surrounding the impeller and joined to the feedwater supplying means for receiving the feedwater; circumferentially spaced turbine blades fixedly joined to the impeller and disposed in flow communication with the plenum for receiving the feedwater for rotating the impeller for driving the coolant water; and means for lubricating the impeller solely by the feedwater upon rotation of the impeller about the axle.

  14. Modeling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Zhang, Xu; Xie, Hai-Jian

    2015-06-01

    Leachate recirculation (LR) in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. The subsurface application method of vertical wells is one of the most common LR techniques. The objective of this study was to develop a novel two-dimensional model of leachate recirculation using vertical wells. This novel method can describe leachate flow considering the effects of MSW settlement while also accounting separately for leachate flow in saturated and unsaturated zones. In this paper, a settlement model for MSW when considering the effects of compression and biodegradation on the MSW porosity was adopted. A numerical model was proposed using new governing equations for the saturated and unsaturated zones of a landfill. The following design parameters were evaluated by simulating the recirculated leachate volume and the influence zones of waste under steady-state flow conditions: (1) the effect of MSW settlement, (2) the effect of the initial void ratio, (3) the effect of the injected head, (4) the effect of the unit weight, (5) the effect of the biodegradation rate, and (6) the effect of the compression coefficient. The influence zones of LR when considering the effect of MSW settlement are smaller than those when neglecting the effect. The influence zones and LR volume increased with an increase in the injection pressure head and initial void ratio of MSW. The proposed method and the calculation results can provide important insight into the hydrological behavior of bioreactor landfills. PMID:25874416

  15. Geometrical and material properties of large transform fault zone structures (Invited)

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2009-12-01

    The degree of strain localization in the brittle crust depends on rheology, boundary conditions, pre-existing heterogeneities and inherited large-scale-structures (e.g. lithological contrasts). For cases with weakening rheology, stress boundary conditions and moderate initial heterogeneities, the results depend on the ratio Q of loading rate over damage healing rate. Relatively high Q values lead to progressive development with increasing slip of geometrically regular structures, while relatively low Q values produce persisting disordered fault zones (Ben-Zion et al. 1999; Lyakhovsky et al. 2001). The fault zone damage follows generally a flower structure with significant damage only in the top few km of the crust (Ben-Zion and Shi 2005; Ma 2008; Finzi et al. 2009). Large-scale heterogeneities (e.g. changes of Moho depth and large stepovers) can produce distributed structures with significant damage at depth (Finzi et al. 2009; Lyakhovsky and Ben-Zion 2009). Systematic analyses of seismic fault zone trapped waves indicate that the trapping structures are associated typically with ~100 m wide layers that extend generally only to ~3.5 km depth and are characterized by 30-50% velocity reduction and strong attenuation (e.g., Ben-Zion et al. 2003; Peng et al. 2003; Lewis and Ben-Zion this meeting). The trapping structures are surrounded by broader anisotropic and scattering zones limited primarily also to the shallow crust (e.g., Boness and Zoback 2004; Peng and Ben-Zion 2004, 2006). Contrasts of elastic properties across faults tend to suppress branching and produce strong along-strike asymmetry of rupture properties, with larger slip-velocity and slip in the direction of particle motion in the compliant solid (e.g., Ben-Zion 2001; Ampuero and Ben-Zion 2008; Brietzke et al. 2009). This leads to strongly asymmetric damage across the fault, with more damage on the stiffer side (Ben-Zion and Shi 2005). Systematic analyses of head waves along several sections of the San Andreas, Calaveras and Hayward faults reveal bimaterial interfaces that extend to the bottom of the seismogenic zone, with velocity contrasts of 20% or more in the top ~3 km and lower contrasts of 5-15% in the deeper section (e.g., Ben-Zion et al. 1992; McGuire and Ben-Zion 2005; Lewis et al. 2007; Zhao and Peng 2008). In several places, analyses of seismic fault zone waves and geological data indicate that the shallow damaged layers are asymmetric across the fault, as expected for ruptures along a bimaterial interface (Lewis et al. 2005, 2007; Dor et al. 2006, 2008; Wechsler et al. 2009).

  16. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  17. Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows

    USGS Publications Warehouse

    Schilling, Steve P.; Iverson, Richard M.

    1997-01-01

    Large debris flows can pose hazards to people and property downstream from volcanoes. We have developed a rapid, reproducible, objective, and inexpensive method to delineate distal debris-flow hazard zones. Our method employs the results of scaling and statistical analyses of the geometry of volcanic debris flows (lahars) to predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume. We use a range of specified lahar volumes to evaluate A and B. In a Geographic Information System (GIS) we employ the resulting range of predicted A and B to delineate gradations in inundation hazard, which is highest near the volcano and along valley thalwegs and diminishes as distances from the volcano and elevations above valley floors increase. Comparison of our computer-generated hazard maps with those constructed using traditional, field-based methods indicates that our method can provide an accurate means of delineating lahar hazard zones.

  18. Demonstration of the Feasibility of Large Port Count Optical Switching Using a Hybrid MZI SOA Switch Module in a Recirculating Loop

    E-print Network

    Cheng, Q.; Wonfor, A.; Wei, J. L.; Penty, R. V.; White, I. H.

    2014-09-02

    considerable number of potential integrated optical switch fabrics have been studied [3-12]. Large port count optical switches have been realized based on Micro-electro-mechanical systems (MEMS) [13] and thermo-optic technologies [3, 4] for example... . Robbins, M. J. Wale, N. Grote, and M. Schell, “A generic foundry model for InP-based photonic ICs,” presented at the Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2012, Paper OM3E.3. [17] H. Bukkems and C. Herben, “Minimization of the loss...

  19. Coulomb stress changes in the South Iceland Seismic Zone due to two large earthquakes in June 2000

    E-print Network

    Pedersen, Rikke

    Coulomb stress changes in the South Iceland Seismic Zone due to two large earthquakes in June 2000 Iceland Seismic Zone experienced the largest earthquakes for 88 years in June 2000, with a MS = 6.6 event on June 17, followed by another MS = 6.6 earthquake on June 21. These events occurred on two parallel N

  20. 33 CFR 165.1318 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Portland, OR Captain of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...River Bar “C” buoy and extending eastward on the Columbia River to Kennewick, WA and upriver through Lewiston, ID on the Snake River. (d) Compliance. The large passenger vessel security and safety zone established by this section...

  1. Investigation of induced recirculation during planned ventilation system maintenance

    PubMed Central

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter (DPM) levels showed a high increase in district intake mass flow, but minor increases in exposure levels related to the recirculation percentage. Utilization of DPM mass flow rates allows input into ventilation modeling programs to better understand and plan for ventilation changes and district recirculation effects on miners’ health. PMID:26190862

  2. Large area x-ray collimator-the zone plate approach.

    PubMed

    Menz, Benedikt; Braig, Christoph; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-10

    One question of particular interest in the measurement of x-ray imaging optics for space telescopes concerns the characteristics of the point spread function (PSF) in orbit and the focal length for an infinite source distance. In order to measure such a PSF, a parallel x-ray beam with a diameter of several centimeters to meters is required. For this purpose a large area transmission x-ray zone plate (ZP) for collimating x-ray beams has been designed, built, and tested. Furthermore we present a setup to determine large-scale aberrations of the collimated beam. From x-ray measurements we obtain an upper limit for the angular resolution of ±0.2 arc sec and a first-order diffraction efficiency of ?13%. These results show that it is possible to use a ZP as a collimator for the PANTER x-ray test facility. PMID:26368954

  3. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  4. Modelling stream flow for use in ecological studies in a large, arid zone river, central Australia

    NASA Astrophysics Data System (ADS)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.

    2005-04-01

    Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time-step, grid-based, conceptual rainfall-runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream-flow events in the river system. In conjunction with opportunistic gaugings of stream-flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream-flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment-wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream-flow events makes the development of relatively complex rainfall-runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid-based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall-runoff responses, flexibility in defining data output points and a parsimonious water-balance-routing model.

  5. Chronology of historical tsunamis in Mexico and its relation to large earthquakes along the subduction zone

    NASA Astrophysics Data System (ADS)

    Suarez, G.; Mortera, C.

    2013-05-01

    The chronology of historical earthquakes along the subduction zone in Mexico spans a time period of approximately 400 years. Although the population density along the coast of Mexico has always been low, relative to that of central Mexico, several of the large subduction earthquakes reports include references to the presence of tsunamis invading the southern coast of Mexico. Here we present a chronology of historical tsunamis affecting the Pacific coast of Mexico and compare this with the historical record of subduction events and to the existing Mexican and worldwide catalogs of tsunamis in the Pacific basin. Due to the geographical orientation of the Pacific coat of Mexico, tsunamis generated on the other subduction zones of the Pacific have not had damaging effects in the country. Among the tsunamis generated by local earthquakes, the largest one by far is the one produced by the earthquake of 28 March 1787. The reported tsunami has an inundation area that reaches for over 6 km inland. The length of the coast where the tsunami was reported extends for over 450 km. In the last 100 years two large tsunamis have been reported along the Pacific coast of Mexico. On 22 June 1932 a tsunami with reported wave heights of up to 11 m hit the coast of Jalisco and Colima. The town of Cuyutlan was heavily damaged and approximately 50 people lost their lives do to the impact of the tsunami. This unusual tsunami was generated by an aftershock (M 6.9) of the large 3 June 1932 event (M 8.1). The main shock of 3 June did not produce a perceptible tsunami. It has been proposed that the 22 June event is a tsunami earthquake generated on the shallow part of the subduction zone. On 16 November 1925 an unusual tsunami was reported in the town of Zihuatanejo in the state of Guerrero, Mexico. No earthquake on the Pacific rim occurs at the same time as this tsunami and the historical record of hurricanes and tropical storms do not list the presence of a meteorological disturbance that could explain a surge wave of the height reported. Here we investigate the morphology of the trench in this region to analyze whether a local landslide on the trench slope or in the continental shelf could be the cause of this tsunami.

  6. Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes

    NASA Astrophysics Data System (ADS)

    Fan, Ying

    2015-05-01

    Although we have an intuitive understanding of the behavior and functions of groundwater in the Earth's critical zone at the scales of a column (atmosphere-plant-soil-bedrock), along a toposequence (ridge to valley), and across a small catchment (up to third-order streams), this paper attempts to assess the relevance of groundwater to understanding large-scale patterns and processes such as represented in global climate and Earth system models. Through observation syntheses and conceptual models, evidence are presented that groundwater influence is globally prevalent, it forms an environmental gradient not fully captured by the climate, and it can profoundly shape critical zone evolution at continental to global scales. Four examples are used to illustrate these ideas: (1) groundwater as a water source for plants in rainless periods, (2) water table depth as a driver of plant rooting depth, (3) the accessibility of groundwater as an ecological niche separator, and (4) groundwater as the lower boundary of land drainage and a global driver of wetlands. The implications to understanding past and future global environmental change are briefly discussed, as well as critical discipline, scale, and data gaps that must be bridged in order for us to translate what we learn in the field at column, hillslope and catchment scales, to what we must predict at regional, continental, and global scales.

  7. In Situ Biotreatment of TBA with Recirculation/Oxygenation.

    PubMed

    North, Katharine P; Mackay, Douglas M; Kayne, Julian S; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B; Scow, Kate M

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 ?g/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  8. Multi-scale multireference configuration interaction calculations for large systems using localized orbitals: partition in zones.

    PubMed

    Chang, Cristian; Calzado, Carmen J; Ben Amor, Nadia; Sanchez Marin, Jose; Maynau, Daniel

    2012-09-14

    A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerations, but on the nature, ? or ?, of the localised orbitals, which puts in evidence the generality of the approach. PMID:22979845

  9. Austral winter distributions of large tintinnid and large sarcodinid protozooplankton in the ice-edge zone of the Weddell/Scotia Seas

    NASA Astrophysics Data System (ADS)

    Gowing, Marcia M.; Garrison, David L.

    1991-07-01

    Seasonal distribution and abundance data for large sarcodinid protozooplankton (Radiolaria, Foraminifera, Acantharia and the heliozoan Sticholonche spp.) and larger tintinnid ciliates (e.g., Laackmaniella spp.) are necessary for evaluating their roles in food webs and particle fluxes. As part of the Antarctic Marine Ecosystem Research in the Ice Edge Zone (AMERIEZ) project, we sampled these large (? 50 ?m) protozooplankton in the winter ice edge zone of the Scotia/Weddell Seas. Organisms alive at the time of capture were counted in large volume (60 1) water samples from 5 paired depths in the upper 210 m from 17 stations. Relationships between abundances and environmental factors in ice-covered, ice edge, and open waters were assessed with correlation, cluster, and multidimensional scaling analyses. Mean abundances of large tintinnids were less than 3150 per m 3, and mean abundances of the individual sarcodine groups were generally less than 1000 per m 3. The most pronounced distributional patterns were related to depth. In general, large tintinnids were more abundant in the colder waters from 0-85 m, a zone encompassed by the mixed layer and the euphotic zone. Acantharians were more abundant in this upper zone only in ice-covered waters. Radiolaria (predominantly phaeodarians) and the heliozoan Sticholonche spp. were more abundant from 115 to 210 m, a zone of warmer, more saline water. Foraminiferan distributions showed little pattern with depth. Results of the cluster analyses also suggested that depth was the most significant effect determining similarity among assemblages of large protozooplankton at the 17 stations. The few correlations between abundances of the groups and chlorophyll a probably reflect relationships more complex than grazing. Abundances of large tintinnids were higher in surface waters under the ice than at the ice edge or in open water. This could result from their feeding on algal cells released from the base of the ice or it may be a result of higher populations in the outflow of Weddell Sea water. There were no consistent abundance patterns among large sarcodines that could be related to ice cover. It is suggested that the combination of low winter productivity, a dynamic environment, and slower growth rates of these large protozoans may prevent them from responding to local enhanced production with increased abundances in the winter ice edge zone. Furthermore, although there is enhanced productivity at the ice edge, this signal may not reach the protozooplankton groups most abundant in the water layer below the euphotic zone.

  10. Engine exhaust gas recirculation control system

    SciTech Connect

    Asayama, Y.

    1986-09-30

    This patent describes an exhaust gas recirculation control system for an engine comprising: a rotational speed sensor for sensing rotational speed of the engine; a pressure sensor for sensing pressure in an inlet pipe of the engine; an exhaust gas recirculation control valve for controlling an amount of exhaust gas recirculated from an exhaust pipe of the engine to the inlet pipe; an oxygen sensing means for sensing oxygen concentration of a gas mixture of inlet air flowing in the inlet pipe and the recirculated exhaust gas; and control means responsive to the oxygen sensing means for controlling opening of the exhaust gas recirculation control valve to recirculate the exhaust gas at a recirculation rate predetermined according to the engine speed and inlet pipe pressure sensed by the sensors.

  11. Large-Scale Structures in the Zone of Avoidance: The Galactic Anticenter Region

    NASA Technical Reports Server (NTRS)

    Lu, Nanyao Y.; Freudling, Wolfram

    1995-01-01

    We have selected a sample of 876 galaxy candidates from the IRAS Point Source Catalog in the region of 2(exp h) < alpha < 10(exp h) and 0 deg < delta < 36 deg, which crosses the Galactic anticenter part of the Zone of Avoidance (ZOA) and includes most of the highly obscured Orion-Taurus complex region. We have identified galaxies among the candidate sources by attempting to detect the 21 cm H I line of those sources which were not known to be galaxies at the beginning of the survey. In this manner, we constructed a galaxy sample which is largely free from Galactic reddening. Of the 272 observed candidates, 89 were detected in the H I line up to a heliocentric velocity of v(sub h) approximately 16,000 km/s. The resulting galaxy sample of 717 galaxies is fairly complete (within about 10%) and uniform (within about 4%) in the part of the survey area 10 deg away from the Galactic plane and for velocities up to at least 9000 km/s. This provides, for the first time, a largely unbiased view on the large-scale structures in much of the survey area. Our main results are the following: (1) Several large voids are identified. In particular, a void between alpha approximately equals 3(sup h) and 4(sup h), up to v(sub h) approximately 6000 km/s, separates the Pisces-Perseus supercluster at alpha < 3(sup h) from structures at alpha > 4(sup h); and a "nearby void" occupies most of our survey area and reaches out to a redshift of nearly 3000 km/s. (2) We found no nearby galaxy concentration that could significantly contribute to the "Local Velocity Anomoly" (LVA), but a general excess of galaxies around v(sub h) approximately 5000 km/s in the survey area. (3) The contrast between the "Great Wall" at v(sub h) approximately 8500 km/s and the void in front of it appears to gradually diffuse out after it enters the Zone of Avoidance from the northern Galactic hemisphere. (4) Our data combined with other galaxy surveys in or near the Galactic anticenter part of the ZOA suggest that the main ridge of the Pisces-Perseus supercluster does not extend to Abell 569, a cluster in the northern Galactic hemisphere, and that the simple gravitational model consisting of the Local Void of Tully & Fisher, our nearby void, and Puppis and Fornax-Eridanus clusters would predict a LVA whose direction is probably too far away from that derived from observations.

  12. Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recirculating aquaculture systems may require an internal disinfection process to control population growth of pathogens and heterotrophic bacteria. Ozonation and ultraviolet (UV) irradiation are two technologies that have been used to treat relatively large aquaculture flows, including flows withi...

  13. Large, pre-digital earthquakes of the Bonin-Mariana subduction zone, 1930-1974

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.; Reymond, Dominique; Hongsresawat, Sutatcha

    2013-02-01

    The Bonin-Mariana subduction zone is the end-member example of a decoupled system, as described by Uyeda and Kanamori (1979), with no interplate thrust solutions of moments greater than 8 × 1025 dyn cm known in the CMT catalog, although a number of earthquakes are reported with assigned magnitudes around or above 7, both during the WWSSN period and the historical pre-1962 era. We present a systematic study of these events, including relocation and inversion of moment tensors. We obtain 15 new moment tensor solutions, featuring a wide variety of focal mechanisms both in the fore-arc and the outer rise, and most importantly a shallow-dipping interplate thrust mechanism with a moment of 4 × 1027 dyn cm for the event of 28 December 1940 at a location 175 km East of Pagan. Our results show that the modern CMT catalog still undersamples the seismicity of the Mariana arc, which is thus not immune to relatively large, albeit rare, interplate thrust events, with moments 40 times that of the largest Global-CMT solution. Frequency-magnitude relations would then suggest a return time of 320 years for a magnitude 8 interplate thrust faulting earthquake in the Bonin-Mariana system.

  14. Quality Evaluation of Cone Biopsy Specimens Obtained by Large Loop Excision of the Transformation Zone

    PubMed Central

    Garcia Ramos, Aristoteles Mauricio; Garcia Ramos, Erika Souza; dos Reis, Helena Lucia Barroso; de Rezende, Ricardo Bueno

    2015-01-01

    Background Large loop excision of the transformation zone (LLETZ) has been used for the diagnosis and treatment of precancerous cervical lesions, and it is the first choice of treatment in the majority of cervical pathology services. The aim of this study was to evaluate the presence of thermal artifacts, the need for serial sections, the percentage of clear and involved resection margins and the relationship between endocervical gland involvement and the severity of the lesion in samples resected using LLETZ. Methods A retrospective study was performed at Santa Casa de Misericordia School of Science (HSCMV), Vitoria, Espirito Santo, Brazil with a sample of 52 histopathology slides from patients submitted to conization because of abnormal cytology findings and a biopsy result of cervical intraepithelial neoplasia (CIN) 2, CIN 3 and adenocarcinoma in situ. Statistical analysis was performed using Student’s t-test. Results Serial sections were required to confirm diagnosis in four of 52 cases. Thermal artifacts were present in all cases, with grade I being the most common (94.2% of cases). Clear margins were found in 96.2% of cases. No association was found between glandular involvement and CIN 1 (P > 0.05); however, there was an association with CIN 2 and CIN 3 (P < 0.05). Conclusion The amount of excised tissue was sufficient, thermal artifacts were slight, resection margins were clear in most of cases, and a possible association was found between glandular involvement and the severity of the lesion. PMID:25699117

  15. 77 FR 65816 - Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... Proposed Rulemaking on May 17, 2012, in the Federal Register, 77 FR 29254. The Coast Guard received one... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Large Cruise Ships; Lower Mississippi...

  16. Recirculation in multiple wave conversions

    SciTech Connect

    Brizard, A. J.; Kaufman, A. N.; Tracy, E. R.

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  17. Recirculation in multiple wave conversions

    SciTech Connect

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  18. Study of sedimentation zones in a large sand-bed braided river: an example from the Hanjiang River of China

    NASA Astrophysics Data System (ADS)

    Jiongxin, Xu

    1997-12-01

    The concept of sedimentation zone is applied to the study of spatial and temporal variations of mid-channel bars in the middle Hanjiang River, a large sand-bed braided river in China. The river channel can be divided into alternating sedimentation zones and transport zones, the formation of which is basically controlled by local channel boundary conditions such as natural and artificial bank controls (bedrock outcrops, local hill spurs, terraces, artificial dikes and influence of tributaries). A systematic comparison between sedimentation and transport zones is made in this study, including the flow shear stress, stream power, mid-channel bar features and channel stability. The results obtained indicate that different channel boundary conditions in sedimentation and transport zones control channel width and width-depth ratio, which in turn control the reach's hydraulic and sediment transport characteristics. The storage and removal of sediment in sedimentation zones correspond to the increase and decrease of the degree to which mid-channel bars develop. When the sediment input of the channel system is altered by reservoir construction, the bed-load sediment historically accumulated is released by clear water scour, thus a macroscopic bed-load `wave' forms and moves gradually downstream. Associated with this is the complex response phenomenon of mid-channel bar evolution.

  19. Holocene Tsunami Deposits From Large Tsunamis Along the Kuril Subduction Zone, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Satake, K.; Soeda, Y.; Shigeno, K.

    2003-12-01

    Holocene tsunami deposits in eastern Hokkaido between Nemuro and Tokachi show that the Kuril subduction zone repeatedly produced earthquakes and tsunamis larger than those recorded in this region since AD 1804 (Nanayama et al., Nature, 424, 660-663, 2003). Twenty-two postulated tsunami sand layers from the past 9500 years are preserved on lake bottom near Kushiro City, and about ten postulated tsunami sand layers from the past 3000 years are preserved in peat layers on the coastal marsh of Kiritappu. We dated these ten tsunami deposits (named Ts1 to Ts10 from shallower to deeper) in peat layers by radiocarbon and tephrochronology, correlated them with historical earthquakes and tsunamis, and surveyed their spatial distribution to estimate the tsunamisO inland inundation limits. Ts10 and Ts9 are under regional tephra Ta-c2 (ca. 2.5 ka) and represent prehistorical events. Ts8 to Ts5 are between two regional tephra layers Ta-c2 and B-Tm (ca. 9th century). In particular, Ts5 is found just below B-Tm, so it is dated 9th century (Heian era). Ts4 is dated ca 13th century (Kamakura era), while Ts3, found just below Us-b and Ta-b (AD 1667-1663), is dated 17th century (Edo era). Ts2 is dated 19th century (Edo era) and may correspond to the AD 1843 Tempo Tokachi-oki earthquake (Mt 8.0) recorded in a historical document Nikkanki of Kokutai-ji temple at Akkeshi. Ts1 is inferred 20th century and may correspond to the tsunami from the AD 1960 Chilean earthquake (M 9.5) or the AD 1952 Tokachi-oki earthquake (Mt 8.2). Our detailed surveys indicate that Ts3 and Ts4 can be traced more than 3 km from the present coast line in Kirittapu marsh, much longer than the limits (< 1 km) of recent deposits Ts1 and Ts2 or documented inundation of the 19th and 20th century tsunamis. The recurrence intervals of great tsunami inundation are about 400 to 500 years, longer than that of typical interplate earthquakes along the Kuril subduction zone. The longer interval and the apparent large tsunami inundation indicate unusual origin of these tsunamis.

  20. A Study of NO{sub x} Reduction by Fuel Injection Recirculation

    SciTech Connect

    Feese, J.J.; Turns, S.R.

    1996-08-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub X}) in industrial burner applications. Recent small- and large-scale experiments in natural-gas fired boilers have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub X}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of the present investigation is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub X} reduction observed between FIR and FGR by studying laminar diffusion flames. The purpose of studying laminar flames is to isolate chemical effects from the effects of turbulent mixing and heat transfer, which are inherent in practical boilers. Numerical simulations of H{sub 2}-air and CH{sub 4}-air counterflow diffusion flames using full kinetics were performed and NO{sub X} emission indices calculated for various conditions. Studies were conducted in which a N{sub 2} diluent was added either on the fuel- or air-side of the flame for conditions of either fixed initial velocities or fixed fuel mass flux. Results from these simulation studies indicate that a major factor in diluent effectiveness is the differential effect on flame zone residence times associated with fuel-side verses air-side dilution. Simulations in which flow velocities were fixed as diluent was added either to the air or fuel stream showed lower NO{sub X} emissions for air-side dilution; however, if instead, fuel mass fluxes were fixed as diluent was added, which results in an increase in the velocity of the streams, fuel-side dilution was more effective. These results were independent of whether H{sub 2} or Ch{sub 4} was used as the fuel.

  1. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children

    PubMed Central

    Oschlies, Ilske; Burkhardt, Birgit; Salaverria, Itziar; Rosenwald, Andreas; d’Amore, Emanuele S.G.; Szczepanowski, Monika; Koch, Karoline; Hansmann, Martin L.; Stein, Harald; Möller, Peter; Reiter, Alfred; Zimmermann, Martin; Rosolen, Angelo; Siebert, Reiner; Jaffe, Elaine S.; Klapper, Wolfram

    2011-01-01

    Background Primary mediastinal large B-cell lymphoma is a rare lymphoma accounting for no more than 3% of all B-cell lymphomas in children and adolescents. However, patients in this young age group with this lymphoma have the shortest event-free survival of patients with any B-cell lymphoma under current standard chemotherapy protocols. Lymphomas with features intermediate between primary mediastinal large B-cell lymphoma and classical Hodgkin’s lymphoma (mediastinal gray zone lymphomas) have been acknowledged in the latest World Health Organization classification. Recent studies suggest that mediastinal gray zone lymphomas have an aggressive clinical course whereas patients, at least adult ones, with primary mediastinal large B-cell lymphoma might respond very well to chemotherapy in combination with anti-CD20 antibody. Design and Methods We aimed to evaluate whether biological differences or so far unrecognized admixed mediastinal gray zone lymphomas might explain the relatively poor outcome of pediatric patients with apparent primary mediastinal large B-cell lymphoma. We, therefore, performed a retrospective histopathological, immunohistochemical and interphase cytogenetic analysis of 52 pediatric lymphomas. Results The childhood primary mediastinal large B-cell lymphomas (n=44) showed a similar pattern of histology, immunophenotype and gains at 9p (59%) and 2p (41%) as adult cases, as determined from published data. We identified only four so far unrecognized cases of mediastinal gray zone lymphoma among 52 lymphomas registered in previous trials. Conclusions Mediastinal gray zone lymphoma is very rare in children and adolescents. It does, therefore, seem unlikely that these lymphomas account for the unsatisfactory clinical results with current therapy protocols in pediatric patients. These data have major implications for the design of future treatment protocols for mediastinal lymphomas in children and adolescents. PMID:20971819

  2. BWR parallel flow recirculation system

    SciTech Connect

    Fennern, L.E.

    1992-01-21

    This patent describes a recirculation system for a boiling water reactor having a cylindrical shroud surrounding a reactor core and spaced radially inwardly from a pressure vessel to define an annular downcomer for channeling downwardly a recirculation reactor coolant into an inlet of the core disposed at a lower plenum of the vessel. It comprises an annular pump deck disposed in the downcomer and fixedly joined to the pressure vessel and the core shroud circumferentially spaced impeller-driven reactor internal pumps (RIPs) disposed in the downcomer and joined to the pump deck for pumping a first portion of the coolant in the downcomer downwardly through the pump deck and into the lower plenum as RIP discharge flow to the core inlet; and circumferentially spaced fluid-driven jet pumps (JPs) disposed in the downcomer and joined to the pump deck for pumping a second portion of the coolant in the downcomer downwardly through the pump deck and into the lower plenum as JP discharge flow to the core inlet in parallel flow with the RIP discharge flow.

  3. Effects of a large northern European no-take zone on flatfish populations.

    PubMed

    Florin, A-B; Bergström, U; Ustups, D; Lundström, K; Jonsson, P R

    2013-10-01

    In March 2006, a 360?km² no-take zone (NTZ) was established north of Gotland in the central Baltic Sea, with the purpose to scientifically evaluate the effects of a fishing ban on flatfish populations. A monitoring programme was set up to study the populations in the NTZ and in a reference area east of Gotland where the fishing pressure was high. The programme included fishing with multimesh survey nets, modelling of potential larval export and estimation of fish consumption by large marine predators. Overall, the results showed a clear positive effect of the NTZ on turbot Scophthalmus maximus, with higher densities in the closed area compared with the fished area and also higher densities after closure compared with before. The NTZ also had older individuals and a more even sex ratio. This, in combination with a high potential for larval export from the NTZ to Gotland, shows that the marine reserve may be important for maintaining a viable S. maximus stock at Gotland. Also, for flounder Platichthys flesus, the densities were higher in the NTZ compared to the reference area and there was a net larval export to the fished area. For both species, density-dependent growth was evident, with a lower length at age in the closed area. Potential predation by grey seal Halichoerus grypus and great cormorant Phalacrocorax carbo sinesis on flatfishes, that could hamper the evaluation of the marine reserve, was also addressed. Taken together, the results show that there are clear benefits of the fishing ban for both flatfish species within the NTZ, while the net effects on fisheries are difficult to quantify. PMID:24090556

  4. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  5. Diagnostic system for exhaust gas recirculation device

    SciTech Connect

    Tsurusaki, S.

    1988-12-27

    A diagnostic system of an exhaust gas recirculation device is described having an exhaust gas recirculation control valve which is arranged in an exhaust gas recirculation passage interconnecting an exhaust passage to an intake passage of an internal combustion engine, the diagnostic system comprising: determining whether the engine is operating in a state at which the recirculation of exhaust gas is to be carried out; detecting a temperature in the exhaust gas recirculation passage downstream of the exhaust gas recirculation control valve; having a count value which is variable between a predetermined first value and a predetermined second value, the count value being changed from the first value toward the second value when the engine is operating in a state where the recirculation of exhaust is to be carried out; means for storing a first temperature detected by the detecting means when the count value is equal to the first value; and second determining means for obtaining a difference between the first temperature and second temperature detected by the detecting means when the count value becomes equal to the second value, to thereby determine that a malfunction has occurred in the exhaust gas recirculation device when the difference is lower than a predetermined value.

  6. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Exhaust gas recirculation. 1065.127 Section...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...Specifications § 1065.127 Exhaust gas recirculation. Use the exhaust gas recirculation (EGR) system...

  7. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Exhaust gas recirculation. 1065.127 Section...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...Specifications § 1065.127 Exhaust gas recirculation. Use the exhaust gas recirculation (EGR) system...

  8. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Exhaust gas recirculation. 1065.127 Section...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...Specifications § 1065.127 Exhaust gas recirculation. Use the exhaust gas recirculation (EGR) system...

  9. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Exhaust gas recirculation. 1065.127 Section...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...Specifications § 1065.127 Exhaust gas recirculation. Use the exhaust gas recirculation (EGR) system...

  10. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Exhaust gas recirculation. 1065.127 Section...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...Specifications § 1065.127 Exhaust gas recirculation. Use the exhaust gas recirculation (EGR) system...

  11. Plant zonation in a tropical irregular estuary: can large occurrence zones be explained by a tradeoff model?

    PubMed

    Ribeiro, Jpn; Matsumoto, R S; Takao, L K; Lima, Mis

    2015-08-01

    Estuaries present an environmental gradient that ranges from almost fresh water conditions to almost marine conditions. Salinity and flooding are the main abiotic drivers for plants. Therefore, plant zonation in estuaries is closely related to the tidal cycles. It is expected that the competitive abilities of plants would be inversely related to the tolerance toward environmental stress (tradeoff). Thus, in estuaries, plant zonation tends to be controlled by the environment near the sandbar and by competition away from it. This zonation pattern has been proposed for regular non-tropical estuaries. For tropical estuaries, the relative importance of rain is higher, and it is not clear to what extent this model can be extrapolated. We measured the tidal influence along the environmental gradient of a tropical irregular estuary and quantified the relative importance of the environment and the co-occurrence degree. Contrary to the narrow occurrence zone that would be expected for regular estuaries, plants presented large occurrence zones. However, the relative importance of the environment and competition followed the same patterns proposed for regular estuaries. The environmental conditions allow plants to occur in larger zones, but these zones arise from smaller and infrequent patches distributed across a larger area, and most species populations are concentrated in relatively narrow zones. Thus, we concluded that the zonation pattern in the Massaguaçu River estuary agrees with the tradeoff model. PMID:26465720

  12. High localization of primary slip zones in large earthquakes from paleoseismic trenches: Observations and implications for earthquake physics

    NASA Astrophysics Data System (ADS)

    Rockwell, Thomas K.; Ben-Zion, Yehuda

    2007-10-01

    Paleoseismic exposures excavated across relatively straight sections of major faults in southern California display a high degree of localization at depths of only a few meters below the surface. In some cases, the width of the slip zone in events with multimeter displacement is on the order of 1-2 mm to a cm, which is the resolution of the observations. Repetitive slip events in the same zone increase the observed width of the faulting, as expressed at trench depths, but the superposed slip again tends to be highly localized. These observations are probably representative of >80% of the length of the faults studied. Based on these results, combined with the expected tendency for narrower slip zone with depth, observations from exhumed faults, and high localization of seismicity along large faults, we hypothesize that the majority of slip carried by large faults occurs in very narrow zones. If correct, the emerging integrated view of high slip localization during earthquake ruptures places important constraints on many issues of earthquake dynamics.

  13. BWR series pump recirculation system

    SciTech Connect

    Dillmann, C.W.

    1992-06-23

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump.

  14. Recovery of coastal ecosystems after large tsunamis in various climatic zones - review of cases from tropical, temperate and polar zones (Invited)

    NASA Astrophysics Data System (ADS)

    Szczucinski, W.

    2013-12-01

    Large tsunamis cause significant changes in coastal ecosystems. They include modifications in shoreline position, sediment erosion and deposition, new initial soil formation, salination of soils and waters, removal of vegetation, as well as direct impact on humans and infrastructure. The processes and rate of coastal zone recovery from large tsunamis has been little studied but during the last decade a noteworthy progress has been made. This study focus on comparison of recovery processes in various climatic zones, namely in monsoonal-tropical, temperate and polar zone. It is based on own observation and monitoring in areas affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami in Japan and 2000 Paatuut landslide-generated tsunami in Vaigat Strait (west Greenland), as well as on review of published studies from those areas. The particular focus is on physical and biological recoveries of beaches, recovery of coastal vegetation, new soil formation in eroded areas and those covered by tsunami deposits, marine salt removal from soils, surface- and groundwater, as well as landscape adjustment after the tsunamis. The beach zone - typically the most tsunami-eroded zone, has been recovered already within weeks to months and has been observed to be in the pre-tsunami equilibrium stage within one year in all the climate zones, except for sediment-starved environments. The existing data on beach ecosystems point also to relatively fast recovery of meio- and macrofauna (within weeks to several months). The recovery of coastal vegetation depends on the rate of salt removal from soils or on the rate of soil formation in case of its erosion or burial by tsunami deposits. The salt removal have been observed to depend mainly on precipitation and effective water drainage. In tropical climate with seasonal rainfall of more 3000 mm the salt removal was fast, however, in temperate climate with lower precipitation and flat topography the salinities still exceeded the recommended concentrations for freshwater plants after one year. The new soil formation and vegetation recovery depends mainly on the rate of biological production. In tropical climate the vegetation largely recovered already after the first rainy season and supported the new soil formation. In temperate climate this process was much slower, in particular in flat lying areas and on coastal dunes with poor sandy soils. In polar climate only limited vegetation recovery (mainly of Salix species) has been observed after 12 years and vegetation withered due to salt stress still marked the tsunami inundation limit and the new soil formation was very slow and focused on low lying, wet areas buried with thin tsunami deposits cover. The post-tsunami recovery processes may be grouped into climate-related (vegetation recovery, removal of salts from soils) and non climate-related (e.g. beach recovery) or modified by climatic and local factors (for instance, the rate of tsunami deposits reworking and thus new soil formation). The rate of recovery varies from days / weeks as in case of beach recovery to several decades as in case of new soil formation on tsunami deposits. The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. The review results from studies in collaboration with number of researchers from Australia, Japan, Poland, Thailand, United Kingdom and United States to whom I express sincere thanks.

  15. Parameters of the Second Muon Recirculating Linear Accelerator for

    E-print Network

    Keil, Eberhard

    Parameters of the Second Muon Recirculating Linear Accelerator for Fermilab Eberhard Keil CERN Mathematica commands for parameter searches of muon recirculating linear accelera- tors RLA, used as injectors

  16. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    SciTech Connect

    Xu, Peng; Yin, Rongxin; Brown, Carrie; Kim, DongEun

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

  17. Large-scale metal zoning in a late-Precambrian skarn-type mineralization, Wadi Kid, SE Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Helmy, H. M.; Shalaby, I. M.; Abdel Rahman, H. B.

    2014-02-01

    A Precambrian skarn-type mineralization is recently discovered in the Wadi Kid area in southeast Sinai, Egypt. Two sulfide ore types define large scale metal zoning; Cu-Zn-Co in calc-silicate rocks and Zn-Pb-As-Ag in metapelites. The sulfides and host rocks underwent amphibolite facies metamorphism (2.1-4.2 kbar and 500-620 °C). Dating by the chemical Th-U-total Pb isochrone method yields an Th-Pb isochrone age of 660 ± 25 Ma for metamorphic monazite from metapelites. Overall structural and textural relationships of silicate and sulfide minerals favor syn-tectonic formation during granitoids emplacement in a continental margin setting. Large-scale metal zoning reflects variable distances from the causative pluton(s). The Wadi Kid area is highly prospective for Cu, Zn, Pb and Ag mineralization.

  18. Engine control with exhaust gas recirculation

    SciTech Connect

    Kodama, K.; Yamazoe, H.

    1987-02-03

    This patent describes an apparatus for controlling the amount of exhaust gases to be recirculated from an exhaust passage of an internal combustion engine to an intake passage of the same, comprising: (a) means for detecting various engine parameters; (b) gas sensor means for detecting the concentration of an exhaust gas in the exhaust passage; (c) means for forcibly interrupting exhaust gas recirculation when the engine is under air/fuel ratio feedback control and exhaust gas recirculation is being performed; and (d) computing means for computing a value representing a desired amount of exhaust to be recirculated using engine parameters and for: (1) producing a correction factor using an output signal from the gas sensor means; (2) obtaining a first mean value of a first plurality of feedback correction factor values during feedback control of air/fuel ratio and during exhaust gas recirculation control; (3) interrupting exhaust gas recirculation during air/fuel ratio feedback control; and (4) obtaining a second mean value of second feedback correction factor values when exhaust gas recirculation is being interrupted.

  19. Xenon Recirculation-Purification with a Heat Exchanger

    E-print Network

    K. L. Giboni; E. Aprile; B. Choi; T. Haruyama; R. F. Lang; K. E. Lim; A. J. Melgarejo; G. Plante

    2011-03-04

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid, forces it to evaporate, and thus cools it down. We show that this temperature difference can be used for an efficient heat exchange process. We investigate the use of a commercial parallel plate heat exchanger with a small liquid xenon detector. Although we expected to be limited by the available cooling power to flow rates of about 2 SLPM, rates in excess of 12 SLPM can easily be sustained, limited only by the pump speed and the impedance of the flow loop. The heat exchanger operates with an efficiency of (96.8 +/- 0.5)%. This opens the possibility for fast xenon gas recirculation in large-scale experiments, while minimizing thermal losses.

  20. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  1. Regional and Large-Scale Climate Influences on Tree-Ring Reconstructed Null Zone Position in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Stahle, D.; Griffin, D.; Cleaveland, M.; Fye, F.; Meko, D.; Cayan, D.; Dettinger, M.; Redmond, K.

    2007-05-01

    A new network of 36 moisture sensitive tree-ring chronologies has been developed in and near the drainage basins of the Sacramento and San Joaquin Rivers. The network is based entirely on blue oak (Quercus douglasii), which is a California endemic found from the lower forest border up into the mixed conifer zone in the Coast Ranges, Sierra Nevada, and Cascades. These blue oak tree-ring chronologies are highly correlated with winter-spring precipitation totals, Sacramento and San Joaquin streamflow, and with seasonal variations in salinity and null zone position in San Francisco Bay. Null zone is the non-tidal bottom water location where density-driven salinity and river-driven freshwater currents balance (zero flow). It is the area of highest turbidity, water residence time, sediment accumulation, and net primary productivity in the estuary. Null zone position is measured by the distance from the Golden Gate of the 2 per mil bottom water isohaline and is primarily controlled by discharge from the Sacramento and San Joaquin Rivers (and ultimately by winter-spring precipitation). The location of the null zone is an estuarine habitat indicator, a policy variable used for ecosystem management, and can have a major impact on biological resources in the San Francisco estuary. Precipitation-sensitive blue oak chronologies can be used to estimate null zone position based on the strong biogeophysical interaction among terrestrial, aquatic, and estuarine ecosystems, orchestrated by precipitation. The null zone reconstruction is 626-years long and provides a unique long term perspective on the interannual to decadal variability of this important estuarine habitat indicator. Consecutive two-year droughts (or longer) allow the null zone to shrink into the confined upper reaches of Suisun Bay, causing a dramatic reduction in phytoplankton production and favoring colonization of the estuary by marine biota. The reconstruction indicates an approximate 10 year recurrence interval between these consecutive two-year droughts and null zone maxima. Composite analyses of the Palmer drought index over North America indicate that the drought and wetness regimes associated with maxima and minima in reconstructed null zone position are largely restricted to the California sector. Composite analyses of the 20th century global sea surface temperature (SST) field indicate that wet years over central California with good oak growth, high flows, and a seaward position for the null zone (minima) are associated with warm El Nino conditions and a "Pineapple Express" SST pattern. The composite SST pattern is not as strong during dry years with poor growth, low flows, and a landward position of the null zone (maxima), but the composite warm SST anomaly in the eastern North Pacific during maxima would be consistent with a persistent ridge and drought over western North America.

  2. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation where a permeable fault zone act as a barrier to fluid flow.

  3. Xenon Recirculation-Purification with a Heat Exchanger

    E-print Network

    Giboni, K L; Choi, B; Haruyama, T; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; 10.1088/1748-0221/6/03/P03002

    2011-01-01

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid...

  4. Recirculating cross-correlation detector

    DOEpatents

    Andrews, W.H. Jr.; Roberts, M.J.

    1985-01-18

    A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.

  5. Exhaust gas recirculation control system

    SciTech Connect

    Egle, L.E.

    1987-09-01

    A system is described for controlling exhaust gas recirculation (EGR) in an internal combustion engine: (a) base means defining an exhaust gas inlet port, an exhaust gas outlet port and an EGR passage communicating the inlet port with the outlet port, the base means adapted for attachment to an exhaust passage and a combustion chamber inlet passage of an engine; (b) flow valve means disposed in the passage and including a valve seat and poppet member operable upon movement with respect to the seat for controlling EGR flow between the inlet and the outlet; (c) actuator means operable upon receipt of an electrical control signal to move the poppet, the actuator means including: (i) a stepper motor, (ii) an axial lead means operatively rotated by the stepper motor, (iii) follower means guided for axial movement, and operably connected to move the poppet in response to rotation of the lead means; (d) plate means disposed in the EGR passage between the seat and the outlet port and defining a flow measuring orifice; (e) pressure tap means operative to sense the pressure in the passage on the upstream and downstream sides of the orifice; (f) transducer means operative in response to the pressure in the pressure tap means to provide the electrical control signal for the stepper motor.

  6. EVLA Memo 163 Recirculation in WIDAR with phase serialization

    E-print Network

    Groppi, Christopher

    EVLA Memo 163 Recirculation in WIDAR with phase serialization R.J. Sault September 11, 2012. This issue is of interest with some modes (but not all modes) of recirculation in WIDAR. WIDAR can use baseboard stacking (sometimes called `static recirculation') as well as classical recirculation to achieve

  7. A Large Eddy Simulation of Turbulent Compressible Convection: Differential Rotation in the Solar Convection Zone

    E-print Network

    Francis J. Robinson; Kwing L. Chan

    2000-11-21

    We present results of two simulations of the convection zone, obtained by solving the full hydrodynamic equations in a section of a spherical shell. The first simulation has cylindrical rotation contours (parallel to the rotation axis) and a strong meridional circulation, which traverses the entire depth. The second simulation has isorotation contours about mid-way between cylinders and cones, and a weak meridional circulation, concentrated in the uppermost part of the shell. We show that the solar differential rotation is directly related to a latitudinal entropy gradient, which pervades into the deep layers of the convection zone. We also offer an explanation of the angular velocity shear found at low latitudes near the top. A non-zero correlation between radial and zonal velocity fluctuations produces a significant Reynolds stress in that region. This constitutes a net transport of angular momentum inwards, which causes a slight modification of the overall structure of the differential rotation near the top. In essence, the {\\it thermodynamics controls the dynamics through the Taylor-Proudman momentum balance}. The Reynolds stresses only become significant in the surface layers, where they generate a weak meridional circulation and an angular velocity `bump'.

  8. A model for large-scale plastic yield of the Gorda deformation zone

    SciTech Connect

    Denlinger, R.P. )

    1992-10-01

    A solution satisfying both continuity and force balance for an elastoplastic Gorda plate in planar coordinates is presented. Continuity on a plane is used to approximate continuity on a spherical surface due to the small area under consideration. The zone of plastic yield vs the seismicity does not change much with fault strength along the Mendocino. Due to the nature of the deformation, the direction of maximum shear stress near the Mendocino triple junction is between 40 and 50 deg to the Mendocino transform in both cases, but curves sharply in the neighborhood of the transform if the fault is strong. It is concluded that the strength of the Mendocino relative to the lithosphere varied over time. Five million years ago a change in pole position increased convergence of the Blanco fracture zone and Mendocino transform, exponentially increasing brittle shear stresses across the fault. Between 2.47 Ma and 1.8 Ma the convergence stabilized, and the resistance to sliding along the transform decayed back to residual levels. The relative slip along the fault during this time was about 1 km. As a result of this history, previous models either for flexural-slip or for right-lateral shear will fit the deformation at different times. 35 refs.

  9. Chronology and dynamics of a large silicic magmatic system. Central Taupo volcanic zone, New Zealand

    SciTech Connect

    Houghton, B.F.; Wilson, C.J.N. ); McWilliams, M.O. ); Lanphere, M.A.; Pringle, M.S. ); Weaver, S.D. ); Briggs, R.M. )

    1995-01-01

    The central Taupo Volcanic Zone in New Zealand is a region of intense Quaternary silicic volcanism accompanying rapid extension of continental crust. At least 34 caldera-forming ignimbrite eruptions have produced a complex sequence of relatively short-lived, nested, and/or overlapping volcanic centers over 1.6 m.y. Silicic volcanism at Taupo is similar to the Yellowstone system in size, longevity, thermal flux, and magma output rate. However, Taupo contrasts with Yellowstone in the exceptionally high frequency, but small size, of caldera-forming eruptions. This contrast reflects the thin, rifted nature of the crust, which precludes the development of long-term magmatic cycles at Taupo. 11 refs., 4 figs., 1 tab.

  10. Peach bottom recirculation piping replacement ALARA program

    SciTech Connect

    Englesson, G.A.; Hilsmeier, A.E.; Mann, B.J.

    1986-01-01

    In late 1983, Philadelphia Electric Company (PECo) began detailed planning to replace the recirculation, residual heat removal, and part of the reactor water cleanup piping of the Peach Bottom Unit 2 reactor. Included in this work was an estimate of the collective exposure expected during piping replacement. That initial estimate, 1945 man-rem, is compared with the actual collective dose incurred during the piping replacement program. Also included are the exposures incurred during two additional tasks (safe end replacement and recirculation pump disassembly and decontamination) not considered in the initial estimate.

  11. Recirculation of air in operating rooms.

    PubMed

    Ulrich, J A; Cribbs, W; Michaelsen, G S

    1976-01-01

    A study of two neurosurgical operating rooms indicated a low, airborne, microbial population could be maintained by recirculating filtered air during surgical procedures. The commonly used turbulent system of air delivery was employed, and high-efficiency filters were effective in removing airborne bacteria generated within the operating room. Optimal rates and percent of recirculation were determined. The method of exhaust was confirmed to be important. Exhaust ports 40 in. above the floor were more effective in maintaining low airborne microbial populations than baseboard-level ports. The degree of activity of the surgical team and the number of personnel in the operating room correlated with the airborne bacterial counts. PMID:1012104

  12. Large shield volcanos on Venus: The effect of neutral buoyancy zone development on evolution and altitude distribution

    NASA Technical Reports Server (NTRS)

    Keddie, S.; Head, James W., III

    1992-01-01

    The Magellan mission to Venus has emphasized the importance of volcanism in shaping the surface of the planet. Volcanic plains make up 80 percent of the terrain and hundreds of regions of localized eruptions have been identified. Large volcanos, defined as edifices with diameters greater than 100 km, are the sites of some of the most voluminous eruptions. Head et al. have identified 158 of these structures. Their spatial distribution is neither random nor arranged in linear chains as on the Earth; large volcanos on Venus are concentrated in two large, near-equatorial clusters that are also the site of many other forms of volcanic activity. The set of conditions that must be met on Venus that controls the change from widespread, distributed volcanism to focused, shield-building volcanism is not well understood. Future studies of transitional features will help to address this problem. It is likely, however, that the formation and evolution of a neutral buoyancy zone (NBZ) plays an important role in both determining the style of the volcanism and the development of the volcanic feature once it has begun to erupt. Head and Wilson have suggested that the high surface pressure on Venus may inhibit volatile exsolution, which may influence the density distribution of the upper crust and hence control the nature and location of a NBZ. The extreme variations in pressure with elevation may result in significantly different characteristics of such a NBZ at different locations on the planet. In order to test these ideas regarding the importance of NBZ development in the evolution of a large shield and to determine the style of volcanism, three large volcanos that occur at different basal elevations were examined and the distribution of large volcanos as a function of altitude was determined.

  13. [Impact of leachate recirculation loadings on efficiency of landfill gas (LFG) generation].

    PubMed

    Yang, Guo-dong; Jiang, Jian-guo; Huang, Yun-feng; Huang, Zhong-lin; Feng, Xiang-ming; Zhou, Sheng-yong; Deng, Zhou

    2006-10-01

    Effects of leachate recirculation loading on the efficiency of aerogenesis or methanogenesis of municipal solid wastes (MSWs) was investigated in four simulated anaerobic bioreactors (R1-R4), which were filled with 30 tons of wet weight waste each and recirculated weekly with 1.6, 0.8 and 0.2 m3 leachate and 0.1 m3 pure water, respectively. The results indicated that R1, with the highest recirculation ratio of 5.3%, began to produce landfill gas (LFG) largely after 5 weeks of leachate recirculation, while the other columns took 7-13 more weeks of lag phase time of LFG production. And LFG generation rates had good relationships with pollution loadings, such as COD and VFA in the leachate. By the 50th week, the waste in R1 was more stabilized with the highest loading rate. The accumulative transfer ratios to gas phase of TOC and COD were 28.96% and 14.57%, respectively, which meant large mount of organic matter was carried out by the effluent of the early stage and thus the potential of LFG generation was reduced. Therefore, to enhance the efficiency of LFG generation, the regimes of leachate recirculation in bioreactor landfills should be adjusted timely according to the phases of waste stabilization. PMID:17256623

  14. Crystal zoning in a large-volume ignimbrite: constraints on the thermal history of a supervolcano magma system

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Pyle, D. M.; Wilson, C. J.

    2009-12-01

    Chemical zoning of crystals provides an important archive of information that allows for the reconstruction of complex thermal histories and changes in melt composition of the magma reservoir during crystallization. Here we investigate cathodoluminescence (CL) and Ti zonation in quartz crystals extracted from pumices from the Whakamaru and Rangitaiki ignimbrite units (part of the large-volume Whakamaru Group Ignimbrites), New Zealand, to reconstruct the thermal history of the parent magma chamber(s). CL intensity images are taken as a proxy for Ti content and temperature variation during crystal growth, and direct estimates of temperature are made using the TitaniQ geothermometer (Wark & Watson 2006 Cont. Min. Pet.) based on Ti concentration in quartz. These results are reviewed in comparison with temperatures from Fe-Ti oxide geothermometry. Quartz zoning is also compared to zonation in feldspars (using BSE imaging) from the same pumice clasts in order to establish the degree to which different crystal species record similar or contrasting magmatic histories. Quartz crystals in Whakamaru pumice display a variety of CL zoning patterns and resorption boundaries. Overgrowths typically appear to truncate CL growth zoning within the crystal core, indicating periods of resorption and subsequent re-growth - consistent with magma recharge causing a marked change in conditions (temperature and/or volatile saturation) and multi-stage crystallisation. Crystals typically display a dark (lower Ti) resorbed core, with an abrupt change to a CL-bright rim, although irregular textures and complex variations between crystals are observed. Core-to-rim profiles of Ti concentration in analysed quartz crystals show Ti variations within the range 50-225 ppm, corresponding to crystallisation temperatures of 733-935°C (assuming TiO2 activity in the melt of 0.6), with the lowest values recorded in the crystal core, increasing in a step-wise pattern towards the rim. These values are consistent with Fe-Ti oxide temperature data for the same pumice clasts which provide a temperature range of 660-933°C. It is inferred that the major steps in Ti content (and thus CL brightness) represent short-term temperature fluctuations due to magma chamber recharge and rejuvenation of a crystal mush, while rim temperatures are likely to record the magma temperature at the time of eruption.

  15. Generation and maintenance of recirculations by Gulf Stream instabilities

    E-print Network

    Beliakova, Natalia Yurievna, 1967-

    1999-01-01

    This thesis studies the problems of generation and maintenance of recirculations by Gulf Stream instabilities. Observations show that the horizontal structure of the jet and its recirculations suffer significant changes ...

  16. Parameters of the First Muon Recirculating Linear Accelerator for

    E-print Network

    Keil, Eberhard

    Parameters of the First Muon Recirculating Linear Accelerator for CERN Eberhard Keil CERN, Geneva Mathematica commands for parameter searches of muon recirculating linear accelera- tors RLA, used as injectors

  17. Flux-free growth of large superconducting crystal of FeSe by traveling-solvent floating-zone technique

    NASA Astrophysics Data System (ADS)

    Ma, Mingwei; Yuan, Dongna; Wu, Yue; Zhou, Huaxue; Dong, Xiaoli; Zhou, Fang

    2014-12-01

    A flux-free solution to the growth of large and composition homogeneous superconducting FeSe crystal is reported for the first time, which is based on the traveling-solvent floating-zone technique. The size of the crystal samples prepared by this approach is up to 15 × 6 × 2 mm3, being far bigger than previously reported in all dimensions, and the main phase of the crystals is of a single preferred orientation along the tetragonal (101) plane. X-ray diffraction analysis identifies the main phase to be the superconducting tetragonal ?-FeSe. The superconducting transition temperature (TC) is determined to be 9.4 K by AC magnetic susceptibility and electronic transport measurements. A nearly perfect diamagnetic shielding of -97% is observed, indicating a bulk superconductivity in the crystal sample.

  18. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet.

    PubMed

    van de Wal, R S W; Boot, W; van den Broeke, M R; Smeets, C J P P; Reijmer, C H; Donker, J J A; Oerlemans, J

    2008-07-01

    Continuous Global Positioning System observations reveal rapid and large ice velocity fluctuations in the western ablation zone of the Greenland Ice Sheet. Within days, ice velocity reacts to increased meltwater production and increases by a factor of 4. Such a response is much stronger and much faster than previously reported. Over a longer period of 17 years, annual ice velocities have decreased slightly, which suggests that the englacial hydraulic system adjusts constantly to the variable meltwater input, which results in a more or less constant ice flux over the years. The positive-feedback mechanism between melt rate and ice velocity appears to be a seasonal process that may have only a limited effect on the response of the ice sheet to climate warming over the next decades. PMID:18599784

  19. Large eddy simulation of soot evolution in an aircraft combustor

    NASA Astrophysics Data System (ADS)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel-to-air ratio, the maximum soot volume fraction is found inside the recirculation zone; at the lower fuel-to-air ratio, turbulent fluctuations in the mixture fraction promote the oxidation of soot inside the recirculation zone and suppress the accumulation of a large soot volume fraction. Downstream, soot exits the combustor in intermittent fuel-rich pockets that are not mixed during the injection of dilution air and subsequent secondary fuel-lean combustion. At the higher fuel-to-air ratio, the frequency of these fuel-rich pockets is increased, leading to higher soot emissions from the combustor. Quantitatively, the soot emissions from the combustor are overpredicted by about 50%, which is a substantial improvement over previous works utilizing RANS to predict such emissions. In addition, the ratio between the two fuel-to-air ratios predicted by LES compares very favorably with the experimental measurements. Furthermore, soot growth is dominated by an acetylene-based pathway rather than an aromatic-based pathway, which is usually the dominant mechanism in nonpremixed flames. This finding is the result of the interactions between the hydrodynamics, mixing, chemistry, and soot in the recirculation zone and the resulting residence times of soot at various mixture fractions (compositions), which are not the same in this complex recirculating flow as in nonpremixed jet flames.

  20. Induced seismicity and CO2 leakage through fault zones during large-scale underground injection in a multilayered sedimentary system

    NASA Astrophysics Data System (ADS)

    Pio Rinaldi, Antonio; Rutqvist, Jonny; Jeanne, Pierre; Cappa, Frederic; Guglielmi, Yves

    2014-05-01

    Overpressure caused by the direct injection of CO2 into a deep sedimentary system may produce changes in the state of stress, as well as, have an impact on the sealing capabilities of the targeted system. The importance of geomechanics including the potential for reactivating faults associated with large-scale geologic carbon sequestration operations has recently become more widely recognized. However, not withstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is more important from safety and storage-efficiency perspectives. In this context, this work extends previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on both short- and long-term integrity of the sealing caprock, and hence of potential leakage of either brine or CO2 to shallow groundwater aquifers during active injection. The first part of this work aims to study the fault responses during underground carbon dioxide injection, focusing on the short-term (5 years) integrity of the CO2 repository, and hence on the potential leakage of CO2 to shallow groundwater aquifers. Increased pore pressure can alter the stress distribution on a fault/fracture zone, which may produce changes in the permeability related to the elastic and/or plastic strain (or stress) during single (or multiple) shear ruptures. We account for stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes along with strain and stress variations. We analyze several scenarios related to the injected amount of CO2 (and hence related to potential overpressure) involving both involving minor and major faults, and analyze the profile risks of leakage for different stress/strain permeability coupling functions, as well as increasing the complexity of the system in terms of hydromechanical heterogeneities. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. In the second part of this work we address the three following questions: (1) is there a link between fault-zone architecture and fault reactivation by CO2 injection? (2) what is the impact of the fault architecture on the induced seismicity and on CO2 leakage? and (3) how do caprock and reservoir thickness impact the results? We analyze the hydromechanical behavior of a fault zone represented either by: (i) a continuous damage zone, or by a discontinuous damage zone caused by (ii) variations in lithology of the different layers (shale caprock and limestone aquifers), and also by (iii) the initial properties of the sedimentary layers within the injection reservoir itself. We use the model to estimate the moment magnitude associated with a sudden fault slip event as well as the amount of CO2 migrating from the injection aquifer and upwards across the primary caprock located just above the injection aquifer after a long-term post-injection period. We recognize that such migration out of the injection aquifer may not formally constitute CO2 leakage up into potable shallow aquifers, if for example there is leak-off into intervening aquifers or multiple overlying low permeability formations that prevent further upward migration of the CO2. Finally, results show that a thin caprock or aquifer allows smaller events, but a much higher percentage of leakage in the upper aquifer. The elevate amount of leakage reduces drastically by assuming a multi-caprock, multi-aquifer system.

  1. Structure of the Koyna-Warna Seismic Zone, Maharashtra, India: A possible model for large induced earthquakes elsewhere

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Dixit, M. M.; Goldman, M. R.; Kumar, S.

    2015-05-01

    The Koyna-Warna area of India is one of the best worldwide examples of reservoir-induced seismicity, with the distinction of having generated the largest known induced earthquake (M6.3 on 10 December 1967) and persistent moderate-magnitude (>M5) events for nearly 50 years. Yet, the fault structure and tectonic setting that has accommodated the induced seismicity is poorly known, in part because the seismic events occur beneath a thick sequence of basalt layers. On the basis of the alignment of earthquake epicenters over an ~50 year period, lateral variations in focal mechanisms, upper-crustal tomographic velocity images, geophysical data (aeromagnetic, gravity, and magnetotelluric), geomorphic data, and correlation with similar structures elsewhere, we suggest that the Koyna-Warna area lies within a right step between northwest trending, right-lateral faults. The sub-basalt basement may form a local structural depression (pull-apart basin) caused by extension within the step-over zone between the right-lateral faults. Our postulated model accounts for the observed pattern of normal faulting in a region that is dominated by north-south directed compression. The right-lateral faults extend well beyond the immediate Koyna-Warna area, possibly suggesting a more extensive zone of seismic hazards for the central India area. Induced seismic events have been observed many places worldwide, but relatively large-magnitude induced events are less common because critically stressed, preexisting structures are a necessary component. We suggest that releasing bends and fault step-overs like those we postulate for the Koyna-Warna area may serve as an ideal tectonic environment for generating moderate- to large- magnitude induced (reservoir, injection, etc.) earthquakes.

  2. Recirculation as a Form of Conservation.

    ERIC Educational Resources Information Center

    Gordon, Jeffrey J.

    1982-01-01

    Discusses nine forms of conservation practices: sustained yield, repair, careful use, greater efficiency, lower consumption, doing without, substitution, new resources, and recycling. Suggests recirculation (saving goods from discard and from being broken down in a new manufacturing stage) as a 10th form of conservation practice. (Author/JN)

  3. Better Management Practices for Recirculating Aquaculture Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under the 2004 federal aquaculture effluent limitation guidelines (Federal Register 2004), recirculating aquaculture systems with an annual production exceeding 45,454 kg (100,000 pounds) are classified as concentrated aquatic animal production (CAAP) facilities and are required to obtain a National...

  4. FEEDING TILAPIA IN INTENSIVE RECIRCULATING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia are well suited for culturing in ponds, cages, tanks, or raceways. Ponds are utilized in the southern United States; however, in the cooler temperate regions tank culture is favored. Indooor recirculating culture is the preferred method when sufficient warm water is not available due to cl...

  5. Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, Tom

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ? 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ???? ? 0.01 MPa) the Ms ? 7.0 shocks are associated with calculated shear stress increases, while ?39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ?7–11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ? 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  6. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ??? 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occured near (defined as having shear stress change ???????? ??? 0.01 MPa) the Ms ??? 7.0 shocks are associated with calculated shear stress increases, while ???39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ???7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristics rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ??? 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  7. Effects of feedstock, airflow rate, and recirculation ratio on performance of composting systems with air recirculation.

    PubMed

    Ekinci, K; Keener, H M; Akbolat, D

    2006-05-01

    The thermodynamics, kinetics, and energy use of composting systems with air recirculation were determined for feedstocks comprising paper mill sludge and biosolids. Results were developed by simulating the composting system using a two-dimensional finite difference numerical model. Incorporated into the simulation model was independent regulation of temperature and oxygen using a closed loop feedback control system with a two-stage fan setting. Results showed that at low airflows and high recirculation ratios, heat removal by the exhaust gas was insufficient to maintain set point temperatures with the result that process temperatures increased and eventually limited the reaction rate. Types of feedstock, magnitude of airflow and recirculation ratio all affected the energy use of the system. Although recirculation leads to high energy use, it can produce high quality compost by having a temperature gradient of less than 2 degrees C across the bed. PMID:15963715

  8. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device...

  9. Fish Health Management Considerations in Recirculating Aquaculture Systems -Part 1

    E-print Network

    Hill, Jeffrey E.

    Cir 120 Fish Health Management Considerations in Recirculating Aquaculture Systems - Part 1 Cooperating. Nick T. Place , Dean Introduction Recirculating aquaculture systems, also known as water reuse of nutrition and water quality, as compared to pond systems. However, recirculating systems have their own

  10. Design of a computerized, temperature-controlled, recirculating aquaria system

    E-print Network

    Bonar, Scott A.

    Design of a computerized, temperature-controlled, recirculating aquaria system Ann M. Widmer November 2005; accepted 15 November 2005 Abstract We built a recirculating aquaria system with computerized B.V. All rights reserved. Keywords: Temperature control; Recirculating; Mixing valves; Fluctuations

  11. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device...

  12. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device...

  13. River Food Web Response to Large-Scale Riparian Zone Manipulations

    PubMed Central

    Wootton, J. Timothy

    2012-01-01

    Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786

  14. River food web response to large-scale riparian zone manipulations.

    PubMed

    Wootton, J Timothy

    2012-01-01

    Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786

  15. The impact of building recirculation rates on secondary organic aerosols generated by indoor chemistry

    NASA Astrophysics Data System (ADS)

    Zuraimi, M. S.; Weschler, C. J.; Tham, K. W.; Fadeyi, M. O.

    Numerous investigators have documented increases in the concentrations of airborne particles as a consequence of ozone/terpene reactions in indoor environments. This study examines the effect of building recirculation rates on the concentrations of secondary organic aerosol (SOA) resulting from reactions between indoor limonene and ozone. The experiments were conducted in a large environmental chamber using four recirculation rates (11, 14, 19 and 24 air change per hour (ACH)) and a constant outdoor air exchange rate (1 ACH) as well as constant emission rates for limonene and ozone. As the recirculation rates increased, the deposition velocities of ozone and SOA increased. As a consequence of reduced production rates (due to less ozone) and larger surface removal rates, number and mass concentrations of SOA in different size ranges decreased significantly at higher recirculation rates. Enhanced coagulation at higher recirculation rates also reduced particle number concentrations, while shifting size-distributions towards larger particles. The results have health implications beyond changes in exposures, since particle size is a factor that determines where a particle deposits in the respiratory tract.

  16. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    PubMed

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7?±?0.3)?×?10¹??N?m/yr, and a recurrence interval of 3900?±?400?yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  17. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    PubMed Central

    Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7?±?0.3)?×?1017?N?m/yr, and a recurrence interval of 3900?±?400?yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  18. Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.

    2008-01-01

    This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.

  19. Recirculation areas underneath solitary waves on gravity-driven film flows

    NASA Astrophysics Data System (ADS)

    Reck, Daniel; Aksel, Nuri

    2015-11-01

    Our experimental study proves the existence of recirculation areas underneath sufficiently large solitary waves that run over gravity-driven film flows. This evidence was obtained by setting up a measurement system that moved with the wave's speed and displayed the streamlines underneath the wave. Solitary waves of different height, length, and speed, which ran over basic flows of different Reynolds numbers and inclination angles were examined systematically. We found that recirculation areas appear underneath waves, whose height exceeds a critical value. This value depends on the basic flow's Reynolds number, irrespective of the inclination angle and the distance from the inlet. Furthermore, the size of the recirculation area grows with the height of the wave.

  20. Exhaust gas recirculation apparatus for engine with turbocharger

    SciTech Connect

    Nakamura, H.; Matsuo, S.; Kawai, N.

    1987-06-02

    This patent describes an exhaust gas recirculation apparatus for an internal combustion engine having an intake air passage and an exhaust gas passage connected thereto. The apparatus comprises: an exhaust gas recirculation passage connecting the exhaust gas passage to the intake air passage for recirculating the exhaust gas into the intake air passage; and a vacuum-operated exhaust gas recirculation control valve disposed in the exhaust gas recirculation passage for controlling the flow of the exhaust gas to be recirculated. The exhaust gas recirculation control valve comprises a diaphragm for receiving admitted operating vacuum such that the valve closes when the absolute value of the admitted operating vacuum is lower than the absolute value of a first predetermined vacuum value and opens when the absolute value of the admitted operating vacuum is higher than the absolute value of the first Predetermined vacuum value.

  1. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  2. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  3. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  4. Large Earthquake Hazard of the San Jacinto Fault Zone, CA, from Long Record of Simulated Seismicity Assimilating the Available Instrumental and Paleoseismic Data

    E-print Network

    Ben-Zion, Yehuda

    Large Earthquake Hazard of the San Jacinto Fault Zone, CA, from Long Record of Simulated Seismicity), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic

  5. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations

    PubMed Central

    Martorell, Jordi; Santomá, Pablo; Kolandaivelu, Kumaran; Kolachalama, Vijaya B.; Melgar-Lesmes, Pedro; Molins, José J.; Garcia, Lawrence; Edelman, Elazer R.; Balcells, Mercedes

    2014-01-01

    Aims Atherogenesis, evolution of plaque, and outcomes following endovascular intervention depend heavily on the unique vascular architecture of each individual. Patient-specific, multiscale models able to correlate changes in microscopic cellular responses with relevant macroscopic flow, and structural conditions may help understand the progression of occlusive arterial disease, providing insights into how to mitigate adverse responses in specific settings and individuals. Methods and results Vascular architectures mimicking coronary and carotid bifurcations were derived from clinical imaging and used to generate conjoint computational meshes for in silico analysis and biocompatible scaffolds for in vitro models. In parallel with three-dimensional flow simulations, geometrically realistic scaffolds were seeded with human smooth muscle cells (SMC) or endothelial cells and exposed to relevant, physiological flows. In vitro surrogates of endothelial health, atherosclerotic progression, and thrombosis were locally quantified and correlated best with an quantified extent of flow recirculation occurring within the bifurcation models. Oxidized low-density lipoprotein uptake, monocyte adhesion, and tissue factor expression locally rose up to three-fold, and phosphorylated endothelial nitric oxide synthase and Krüppel-like factor 2 decreased up to two-fold in recirculation areas. Isolated testing in straight-tube idealized constructs subject to static, oscillatory, and pulsatile conditions, indicative of different recirculant conditions corroborated these flow-mediated dependencies. Conclusions Flow drives variations in vascular reactivity and vascular beds. Endothelial health was preserved by arterial flow but jeopardized in regions of flow recirculation in a quasi-linear manner. Similarly, SMC exposed to flow were more thrombogenic in large recirculating regions. Health, thrombosis, and atherosclerosis biomarkers correlate with the extent of recirculation in vascular cells lining certain vascular geometries. PMID:24841070

  6. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    SciTech Connect

    Valeri Lebedev; S. Bogacz

    2001-10-25

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.

  7. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    SciTech Connect

    Alex Bogacz; Valeri Lebedev

    2001-10-21

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190MeV/c and proceeding to 50GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.

  8. Rock magnetism constrain response thickness on earth surface to large earthquake: Evidence from the Bajiaomiao Outcrop of the Wenchuan Earthquake Rupture Zone, China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H.; Lee, T.; Song, S.; Sun, Z.; Wang, X.; Chou, Y.; Chevalier, M.; Si, J.; Wang, H.

    2013-12-01

    The 2008 Mw 7.9 Wenchuan Earthquake has raptured along two fault zones, the Yingxiu-Beichuan f and the Anxian-Guanxian fault zones. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) funded by the Chinese government, drilled five holes close to the two seismic fault zones. Fault gouge with various thicknesses were found in the drill holes and at the earth surface outcrops. In general, one such large earthquake creates several centimeters-thick fault gouge, i.e. the repeated large earthquakes must have taken place in the Longmen Shan region in order to accumulate the amount of gouge observed here. Rock magnetism is an economic, easy-access and non-destructive method for deciphering the magnetic mineral assemblage during large earthquake slip process, which can give us more information about this intercontinental earthquake dynamics, thanks to the occurrence of many large earthquakes as well as to the thick fault gouge present here. The Bajiaomiao outcrop, crossing to the Yingxiu-Beichuan seismic fault rapture zone, consisted of fault breccia and gouge in the hanging wall and Quaternary conglomerate in the footwall. The samples from the hanging wall of this outcrop were used to study rock magnetic porperties. Basing on the in-situ field magnetic susceptibility measurement, high magnetic susceptibility values were found in the fault gouge, possibly induced by more new-formed ferrimagnetic minerals. We apply other rock magnetic methods (such as Isothermal Remanent Magnetization (IRM), high-temperature thermomagnetism (K-T)) to the samples from the Bajiaomiao outcrop. The IRM results show that the magnetite was present in the gouge and fault breccia of the hand hall of the Yingxiu-Beichuan seismic fault rapture zone. Basing on the K-T results, magnetite and other ferromagnetic minerals existed in the gouge and fault breccia; the <2 cm thick gouge close to the fault rapture zone had existed the only magnetic mineral of magnetite. This < 2cm gouge was most likely induced by one large earthquake. Recently, no evidence shows that this <2 cm-thick gouge close to Yingxiu-Beichuan seismic fault surface rapture zone was induced by the large 2008 Wenchuan Earthquake.

  9. Exhaust gas recirculation system for an internal combustion engine

    DOEpatents

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  10. Late Pleistocene and Holocene paleoseismology of an intraplate seismic zone in a large alluvial valley, the New Madrid seismic zone, Central USA

    NASA Astrophysics Data System (ADS)

    Guccione, Margaret J.

    2005-10-01

    The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811 1812 and had estimated moment magnitudes of 7 8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811 1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314 344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811 1812. Annual Reviews of Earth and Planetary Sciences 24, 339 384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839 23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361 380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451 480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313 349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080 2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489 501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence. Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081 1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313 349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515 518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated. Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting

  11. Geomechanical effects on CO{sub 2} leakage through fault zones during large-scale underground injection

    SciTech Connect

    Rinaldi, A.P.; Rutqvist, J.; Cappa, F.

    2013-09-01

    The importance of geomechanics—including the potential for faults to reactivate during large scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO{sub 2} to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this work extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO{sub 2} to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO{sub 2} injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Consequently, even if some changes in permeability occur, this does not mean that the CO{sub 2} will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  12. Large volume sample stacking in capillary zone electrophoresis for the monitoring of the degradation products of metribuzin in environmental samples.

    PubMed

    Quesada-Molina, Carolina; García-Campaña, Ana M; Del Olmo-Iruela, Laura; Del Olmo, Monsalud

    2007-09-14

    A capillary zone electrophoresis (CZE) method with UV-vis detection has been developed for the simultaneous monitoring of the major degradation products of metribuzin, i.e. deaminometribuzin (DA), deaminodiketometribuzin (DADK) and diketometribuzin (DK). The dissociation acid constants have also been estimated by CE and no significant differences have been observed with the values obtained by applying other techniques. Optimum separation has been achieved in less than 9 min in 40 mM sodium tetraborate buffer, pH 9.5 by applying a voltage of 15kV at 25 degrees C and using p-aminobenzoic acid as internal standard. In order to increase sensitivity, large volume sample stacking (LVSS) with polarity switching has been applied as on-line pre-concentration methodology. Detection limits of 10, 10 and 20 ng/mL for DA, DADK and DK, respectively were obtained. The method has been applied to soil samples, after pressurized liquid extraction (PLE). Samples were extracted at high temperature (103 degrees C and 1500 psi) using methanol as extraction solvent and sodium sulphate as drying agent. This PLE procedure was followed by an off-line pre-concentration and sample clean-up procedure by solid-phase extraction (SPE) using a LiChrolut EN sorbent column. These last two procedures were also suitable for the direct treatment of groundwater samples before CE analysis. The combination of both off-line and on-line pre-concentration procedures provided a significant improvement in sensitivity. LVSS provided pre-concentration factors of 4, 36 and 28 for DK, DA and DADK, respectively and with SPE a pre-concentration of 500-fold for the case of water samples and of 2.5-fold in the case of soil samples was obtained. The method is suitable for the monitoring of these residues in environmental samples with high sensitivity, precision and satisfactory recoveries. PMID:17673223

  13. Determining the extent and characteristics of overrepresentation of large truck crashes in daytime and nighttime work zones 

    E-print Network

    Mokkapati, Naveen

    2009-05-15

    The growth of vehicle travel in the United States has accelerated wear on the interstate highway system leading to frequent pavement repair and rehabilitation projects. The presence of work zones not only causes traffic congestion and backup...

  14. Scales Depencence of Fracture Density and Fabric in the Damage Zone of a Large Displacement Continental Transform Fault 

    E-print Network

    Ayyildiz, Muhammed

    2012-08-28

    Characterization of fractures in an arkosic sandstone from the western damage zone of the San Andreas Fault (SAF) at San Andreas Fault Observatory at Depth (SAFOD) was used to better understand the origin of damage and to determine the scale...

  15. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  16. Preoperational test report, recirculation ventilation systems

    SciTech Connect

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  17. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  18. Passive recirculation in the National Launch System's fuel feedlines

    NASA Technical Reports Server (NTRS)

    Wilson, W. R.; Holt, K. A.

    1993-01-01

    This report contains the passive recirculation tests on the fuel feedline of the National Launch System (NLS). The majority of testing was performed in February 1992, at the National Institute of Standards and Technology in Boulder, CO. The primary objective was to characterize passive recirculation in the NLS fuel feedline. The objective was met by observing the passive recirculation in a one-fifth scale model of the feedline with clear glass sections. The testing was recorded on video tape and with photographs. A description of the testing apparatus and support equipment is included. The experiment indicates that passive recirculation was occurring; higher angles from the horizontal transfer more heat.

  19. Effects of Fluctuating River flow on Groundwater/Surface Water Mixing in the Hyporheic Zone of a Regulated, Large Cobble Bed River

    SciTech Connect

    Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan

    2006-10-31

    Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level of the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.

  20. Gray zone lymphoma with features intermediate between classical Hodgkin lymphoma and diffuse large B-cell lymphoma: characteristics, outcomes, and prognostication among a large multicenter cohort.

    PubMed

    Evens, Andrew M; Kanakry, Jennifer A; Sehn, Laurie H; Kritharis, Athena; Feldman, Tatyana; Kroll, Aimee; Gascoyne, Randy D; Abramson, Jeremy S; Petrich, Adam M; Hernandez-Ilizaliturri, Francisco J; Al-Mansour, Zeina; Adeimy, Camille; Hemminger, Jessica; Bartlett, Nancy L; Mato, Anthony; Caimi, Paolo F; Advani, Ranjana H; Klein, Andreas K; Nabhan, Chadi; Smith, Sonali M; Fabregas, Jesus C; Lossos, Izidore S; Press, Oliver W; Fenske, Timothy S; Friedberg, Jonathan W; Vose, Julie M; Blum, Kristie A

    2015-09-01

    Gray zone lymphoma (GZL) with features between classical Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL) is a recently recognized entity reported to present primarily with mediastinal disease (MGZL). We examined detailed clinical features, outcomes, and prognostic factors among 112 GZL patients recently treated across 19 North American centers. Forty-three percent of patients presented with MGZL, whereas 57% had non-MGZL (NMGZL). NMGZL patients were older (50 versus 37 years, P?=?0.0001); more often had bone marrow involvement (19% versus 0%, P?=?0.001); >1 extranodal site (27% versus 8%, P?=?0.014); and advanced stage disease (81% versus 13%, P?=?0.0001); but they had less bulk (8% versus 44%, P?=?0.0001), compared with MGZL patients. Common frontline treatments were cyclophosphamide-doxorubicin-vincristine-prednisone +/- rituximab (CHOP+/-R) 46%, doxorubicin-bleomycin-vinblastine-dacarbazine +/- rituximab (ABVD+/-R) 30%, and dose-adjusted etoposide-doxorubicin-cyclophosphamide-vincristine-prednisone-rituximab (DA-EPOCH-R) 10%. Overall and complete response rates for all patients were 71% and 59%, respectively; 33% had primary refractory disease. At 31-month median follow-up, 2-year progression-free survival (PFS) and overall survival rates were 40% and 88%, respectively. Interestingly, outcomes in MGZL patients seemed similar compared with that of NMGZL patients. On multivariable analyses, performance status and stage were highly prognostic for survival for all patients. Additionally, patients treated with ABVD+/-R had markedly inferior 2-year PFS (22% versus 52%, P?=?0.03) compared with DLBCL-directed therapy (CHOP+/-R and DA-EPOCH-R), which persisted on Cox regression (hazard ratio, 1.88; 95% confidence interval, 1.03-3.83; P?=?0.04). Furthermore, rituximab was associated with improved PFS on multivariable analyses (hazard ratio, 0.35; 95% confidence interval, 0.18-0.69; P?=?0.002). Collectively, GZL is a heterogeneous and likely more common entity and often with nonmediastinal presentation, whereas outcomes seem superior when treated with a rituximab-based, DLBCL-specific regimen. PMID:26044261

  1. Swirling flow in model of large two-stroke diesel engine

    NASA Astrophysics Data System (ADS)

    Meyer, K. E.; Ingvorsen, K. M.; Mayer, S.; Walther, J. H.

    2012-11-01

    In large two-stroke uniflow scavenged marine diesel engines fresh air is blown in through angled ports in the bottom of the cylinder liner forcing the burned gas out through an exhaust valve in the cylinder head. The scavenging flow is a transient (opening/closing ports) confined port-generated turbulent swirling flow, with complex phenomena such as central recirculation zones, vortex breakdown and vortex precession. A scale model of a simplified cylinder is created with a transparent cylinder five diameters long. The flow in the experiment has a Reynolds number of 50,000 based on the cylinder diameter and bulk velocity. Stereoscopic Particle Image Velocimetry (PIV) is used to investigate the flow for cases with both static and moving piston. Port angles of 0, 10, 20 and 30 degrees are considered. Although the flow has a relatively low swirl number of around 0.4, a central recirculation zone is observed indicating a vortex breakdown. The steady flow is analyzed with proper orthogonal decomposition revealing systematic variations in the shape and location of the vortex core. Transient measurements using phase-locked PIV are carried out with moving piston. The transient measurements reveal a sudden rapid change in flow topology as a central recirculation zone is formed. Also at: Computational Science and Engineering Laboratory, ETH Zurich, Universitatsstrasse 6, CH-8092 Zurich, Switzerland.

  2. Measurement of SRS reactor recirculation pump performance using pump motor power

    SciTech Connect

    Whitehouse, J.C.

    1994-03-01

    In order to accurately predict reactor hydraulic behavior during a hypothetical Loss-of-Coolant-Accident (LOCA) the performance of reactor coolant pumps under off-design conditions must be understood. The LOCA of primary interest for the Savannah River Site (SRS) production reactors involves the aspiration of air into the recirculated heavy water flow as reactor tank inventory is lost (system temperatures are too low to result in significant flashing of water coolant into steam). Entrained air causes degradation in the performance of the large recirculation pumps. The amount of degradation is a parameter used in computer codes which predict the course of the accident. This paper describes the analysis of data obtained during in-reactor simulated LOCA tests, and presents the head degradation curve for the SRS reactor recirculation pumps. The greatest challenge of the analysis was to determine a reasonable estimate of mixture density at the pump suction. Specially designed three-beam densitometers were used to determine mixture density. Since it was not feasible to place them in the most advantageous location the measured pump motor power, along with other techniques (pressure corrected gamma densitometer void fraction), were used to calculate the average mixture density at the pump impeller. These techniques provided good estimates of pump suction mixture density. Measurements from more conventional instruments were used to arrive at the value of pump two-component head over a wide range of flows. The results were significantly different from previous work with commercial reactor recirculation pumps.

  3. Bacterial contamination of recirculating brine used in the commercial production of moisture-enhanced pork.

    PubMed

    Greer, G Gordon; Nattress, Frances; Dilts, Bryan; Baker, Lynda

    2004-01-01

    In a commercial process for the production of moisture-enhanced pork, boneless pork loins were conveyed through a recirculating injection apparatus, and brine (sodium phosphate, sodium chloride, and lemon juice solids) was pumped into the meat through banks of needles inserted automatically into the upper surfaces of cuts. Brine samples were collected at intervals during the production process and analyzed to determine the total plate count and the numbers of lactic acid bacteria, pseudomonads, Brochothrix thermosphacta, and Enterobacteriaceae. Listeria monocytogenes numbers in the brine were determined using a PCR with primers for the hemolysin gene in combination with a most probable numbers determination. Maximum numbers of bacteria (log CFU/ml) recovered from the brine after 2.5 h of recirculation were as follows: total plate count, 4.50; lactic acid bacteria, 2.99; pseudomonads, 3.95; B. thermosphacta, 2.79; and enterics, 3.01. There was an increase in the number of L. monocytogenes in the recirculating brine with time, reaching a maximum of 2.34 log CFU/100 ml after 2.5 h of moisture-enhanced pork production. Thus, recirculating brines can harbor large populations of spoilage bacteria and L. monocytogenes and are an important source of contamination for moisture-enhanced pork. PMID:14717372

  4. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod (Peterborough, GB); Kidder, David J. (Peterborough, GB)

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  5. Performance model of a recirculating stack nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for appropriate pore size distributions, and the maintenance of both convective electrolyte and gas flow paths through the stack, if the recirculating stack nickel hydrogen cell design is to work properly.

  6. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  7. Inshore recirculating systems for the production of marine finfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recirculating aquaculture systems (RAS) for both commercial and experimental uses have been developing for decades in many parts of the world. There are several driving forces behind the implementation of recirculating technology for aquaculture production systems. The availability of good and stab...

  8. Energy conservation by partial recirculation of peanut drying air

    SciTech Connect

    Young, J.H.

    1983-06-01

    Conventional, recirculating, and intermittent type peanut dryers were compared in a three-year study. Comparisons indicate that partial recirculation of peanut drying air may reduce energy consumption per unit of water removed by approximately 25% while also reducing required drying time and maintaining high quality.

  9. Energy savings from air recirculation in peanut curing

    SciTech Connect

    Cook, D.F.; Cundiff, J.S.; Vaughan, D.H.

    1982-12-01

    A thin-layer peanut drying simulation model was adapted to incorporate air recirculation. Laboratory crop dryers were designed and constructed to conduct experiments to verify the model. Five batches of peanuts were dried using different recirculation strategies. The model successfully predicted the results.

  10. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical recirculating air cleaner. 880.5045... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical...

  11. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical recirculating air cleaner. 880.5045... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical...

  12. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  13. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  14. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  15. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  16. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  17. Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles

    PubMed Central

    Pui, David Y.H.; Qi, Chaolong; Stanley, Nick; Oberdörster, Günter; Maynard, Andrew

    2008-01-01

    Background Airborne nanoparticles from vehicle emissions have been associated with adverse effects in people with pulmonary and cardiovascular disease, and toxicologic studies have shown that nanoparticles can be more hazardous than their larger-scale counterparts. Recirculating air filtration in automobiles and houses may provide a low-cost solution to reducing exposures in many cases, thus reducing possible health risks. Objectives We investigated the effectiveness of recirculating air filtration on reducing exposure to incidental and intentionally produced airborne nanoparticles under two scenarios while driving in traffic, and while generating nanomaterials using gas-phase synthesis. Methods We tested the recirculating air filtration in two commercial vehicles when driving in traffic, as well as in a nonventilation room with a nanoparticle generator, simulating a nanomaterial production facility. We also measured the time-resolved aerosol size distribution during the in-car recirculation to investigate how recirculating air filtration affects particles of different sizes. We developed a recirculation model to describe the aerosol concentration change during recirculation. Results The use of inexpensive, low-efficiency filters in recirculation systems is shown to reduce nanoparticle concentrations to below levels found in a typical office within 3 min while driving through heavy traffic, and within 20 min in a simulated nanomaterial production facility. Conclusions Development and application of this technology could lead to significant reductions in airborne nanoparticle exposure, reducing possible risks to health and providing solutions for generating nanomaterials safely. PMID:18629306

  18. Fish Health Management Considerations in Recirculating Aquaculture Systems -Part 2: Pathogens1

    E-print Network

    Hill, Jeffrey E.

    Cir 121 Fish Health Management Considerations in Recirculating Aquaculture Systems - Part 2 Introduction Recirculating aquaculture systems, also known as water reuse systems, have become more and more popular. Recirculating systems are commonly found in aquaculture facilities, wholesale and retail tropical

  19. Engineering development for a small-scale recirculator experiment

    SciTech Connect

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-09-04

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator.

  20. Emission control equipment fractional efficiency considerations for recirculated exhaust systems

    SciTech Connect

    Brackbill, E.A.

    1984-01-01

    Process exhaust recirculation is an often considered, simple method for heat recovery. However, since most process exhaust streams contain some type of contaminant, the air must be cleaned prior to recirculation. In many cases, air-cleaning equipment has already been installed under the impetus of air pollution control regulations. Although adequate for compliance with these regulations, this same control equipment may not be efficient enough to permit recirculation. The mass collection efficiency basis inherent to air pollution control regulations is not necessarily relevant to the evaluation of a potential exhaust recirculation situation. The fractional efficiency, or the control equipment's ability to collect particles of specific size, is far more relevant. All control equipment exhibits varying degrees of reduced efficiency in the respirable particulate size range. Knowledge of the extent of this reduction for the actual system under consideration is very important, since it can result in increased hazard and preclude recirculation as a heat recovery option.

  1. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Final technical report, February 1991-October 1992

    SciTech Connect

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-01

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and recirculating ventilation, and three tests were performed during only split-flow ventilation.

  2. 33 CFR 165.839 - Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in 33 CFR Part 165, Subpart C, no person or vessel may enter or remain in the Safety Zone except for...; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans, LA. 165.839 Section...; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans, LA. (a)...

  3. 33 CFR 165.839 - Safety Zone; Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in 33 CFR Part 165, Subpart C, no person or vessel may enter or remain in the Safety Zone except for...; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans, LA. 165.839 Section...; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker 96.0, New Orleans, LA. (a)...

  4. A micromechanical approach for simulating multiscale fabrics in large-scale high-strain zones: Theory and application

    NASA Astrophysics Data System (ADS)

    Jiang, Dazhi; Bentley, Callan

    2012-12-01

    Deformation fabrics in Earth's crust and mantle are commonly used to constrain the tectonic history, deformation mechanisms, and rheological properties of the lithosphere. Their formation involves heterogeneous and multiscale deformation processes that current single-scale models cannot capture. Here we present a micromechanics-based MultiOrder Power Law Approach (MOPLA) for the simulation of multiscale fabrics in crustal scale high-strain zones. We consider the progressive deformation in a crustal high-strain zone on three different scales. On the macroscopic scale, representing the average assemblage of rock units at a point, we regard the rock mass as a continuum made of many first-order elements. The progressive deformation of first-order elements in the macroscopic flow field simulates tectonic transposition. On the scale of an individual first-order element, we regard it as an Eshelby inhomogeneity embedded in a poly element continuum. We apply Eshelby's inhomogeneity formalism for power law materials to relate the flow field inside a first-order element to the macroscopic flow field. On the scale pertinent to structures observed on the outcrop or smaller scale, the partitioned flow fields inside individual first-order elements are used to examine the fabric development. We implement MOPLA in MathCad, apply the approach to a natural example of the Cascade Lake shear zone, and discuss the implications of multiscale deformation. Our model predicts lineation patterns observed in natural high-strain zones that have remained unexplained by single-scale models.

  5. AP1000 Features Prevent Potential Containment Recirculation Screen Plugging

    SciTech Connect

    Andreychek, Timothy; Anderson, Richard; Schulz, Terry

    2004-07-01

    This paper presents the results of plant design development and evaluations that demonstrate that the AP1000 plant is not subject to potential containment recirculation screen plugging following a loss-of-coolant-accident (LOCA). Following a LOCA in a pressurized water reactor, it is necessary to recirculate water from the containment back into the reactor to maintain long term core cooling. The AP1000 utilizes passive safety systems to provide containment recirculation for long term core cooling following a LOCA. The AP1000 also has non-safety pumps which provide a backup means of providing recirculation. Screens are provided around the recirculation pipes to prevent debris from blocking recirculation flow and core cooling passages. Debris may be generated by the LOCA blowdown from insulation and coatings used inside containment. Even with effective cleanliness programs, there may be some resident debris such as dust and dirt. The potential for plugging the recirculation screens is a current PWR licensing issue. The AP1000 design provides inherent advantages with respect to the potential plugging of containment recirculation screens. These characteristics include prevention of fibrous debris generation, improved debris settling and improved recirculation screen design. Debris settling analysis demonstrates that failure of coatings does not result in debris being transported to the screens before it settles to the floor. Additional analysis also shows that the plant can tolerate conservative amounts of resident debris being transported to the screens. The AP1000 significantly reduces the probability of plugging the containment recirculation screens and significantly reduces inspection and maintenance of coatings used inside containment. (authors)

  6. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  7. Recirculating Molten Metal Supply System And Method

    DOEpatents

    Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  8. Recirculation bubbler for glass melter apparatus

    DOEpatents

    Guerrero, Hector (Evans, GA); Bickford, Dennis (Folly Beach, SC)

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  9. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  10. Origin and emplacement of the andesite of Burroughs Mountain, a zoned, large-volume lava flow at Mount Rainier, Washington, USA

    USGS Publications Warehouse

    Stockstill, K.R.; Vogel, T.A.; Sisson, T.W.

    2002-01-01

    Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic-mafic-felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization- differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier's magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Recirculating industrial air: The impact on air compliance and workers` safety case study -- Hill Air Force Base C-130 painting operations. Final report, September 1996--July 1998

    SciTech Connect

    LaPuma, P.T.

    1998-07-20

    Recent Clean Air Act regulations require industries, including aircraft painting facilities, to capture volatile organic compound (VOC) emissions. Because aircraft painting contaminates large airflows with traces of VOCs, conventional air control systems would be prohibitively expensive to apply. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. A computer model is presented that will calculate air control costs and chemical concentrations at selected recirculation levels. Air concentrations are compared to occupational exposure limits (OELs) to analyze worker safety. The model has a chemical database containing over 1300 chemicals. A case study has been performed on a C-130 aircraft painting facility at Hill Air Force Base, Utah. The model predicts strontium chromate concentrations during application of primer paints will reach 1000 times the OEL, and that the concentration will increase by only 1 or 2% at 90% recirculation. Exposures to strontium chromate and other particulate contaminants are affected only slightly by recirculation because airborne solids are removed efficiently when the air is filtered prior to recirculation. The respiratory protection required for the strontium chromate adequately protects workers from increased concentrations of volatile chemicals, which are caused by recirculation. The model demonstrates that recirculating 75% of the air at the Hill AFB facility has a negligible impact on safety and could save $2.7 million on the initial expenses of a VOC control system.

  12. Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure

    SciTech Connect

    Triantafyllidis, A.; Mastorakos, E.; Eggels, R.L.G.M.

    2009-12-15

    Large Eddy Simulations (LES) of forced ignition of a bluff-body stabilised non-premixed methane flame using the Conditional Moment Closure (CMC) turbulent combustion model have been performed. The aim is to investigate the feasibility of the use of CMC/LES for ignition problems and to examine which, if any, of the characteristics already observed in related experiments could be predicted. A three-dimensional formulation of the CMC equation was used with simple and detailed chemical mechanisms, and sparks with different parameters (location, size) were used. It was found that the correct pattern of flame expansion and overall flame appearance were predicted with reasonable accuracy with both mechanisms, but the detailed mechanism resulted in expansion rates closer to the experiment. Moreover, the distribution of OH was predicted qualitatively accurately, with patches of high and low concentration in the recirculation zone during the ignition transient, consistent with experimental data. The location of the spark relative to the recirculation zone was found to determine the pattern of the flame propagation and the total time for the flame stabilisation. The size was also an important parameter, since it was found that the flame extinguishes when the spark is very small, in agreement with expectations from experiment. The stabilisation mechanism of the flame was dominated by the convection and sub-grid scale diffusion of hot combustion products from the recirculation zone to the cold gases that enter the burner, as revealed by analysis of the CMC equation. (author)

  13. Micro-Fresnel-Zone-Plate Array on Flexible Substrate for Large Field-of-View and Focus Scanning

    NASA Astrophysics Data System (ADS)

    Moghimi, Mohammad J.; Fernandes, Jayer; Kanhere, Aditi; Jiang, Hongrui

    2015-10-01

    Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires. Inspired by compound eyes in nature, these microlenses are designed to point along various angles in order to capture images, offering an exceptionally wide field of view. Moreover, by flexing the substrate, the lens position can be adjusted, thus achieving axial focus scanning. An array of microlenses on a flexible substrate was incorporated into an optical system to demonstrate high resolution imaging of objects located at different axial and angular positions. These silicon based microlenses could be integrated with electronics and have a wide range of potential applications, from medical imaging to surveillance.

  14. Micro-Fresnel-Zone-Plate Array on Flexible Substrate for Large Field-of-View and Focus Scanning

    PubMed Central

    Moghimi, Mohammad J.; Fernandes, Jayer; Kanhere, Aditi; Jiang, Hongrui

    2015-01-01

    Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires. Inspired by compound eyes in nature, these microlenses are designed to point along various angles in order to capture images, offering an exceptionally wide field of view. Moreover, by flexing the substrate, the lens position can be adjusted, thus achieving axial focus scanning. An array of microlenses on a flexible substrate was incorporated into an optical system to demonstrate high resolution imaging of objects located at different axial and angular positions. These silicon based microlenses could be integrated with electronics and have a wide range of potential applications, from medical imaging to surveillance. PMID:26515117

  15. Micro-Fresnel-Zone-Plate Array on Flexible Substrate for Large Field-of-View and Focus Scanning.

    PubMed

    Moghimi, Mohammad J; Fernandes, Jayer; Kanhere, Aditi; Jiang, Hongrui

    2015-01-01

    Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires. Inspired by compound eyes in nature, these microlenses are designed to point along various angles in order to capture images, offering an exceptionally wide field of view. Moreover, by flexing the substrate, the lens position can be adjusted, thus achieving axial focus scanning. An array of microlenses on a flexible substrate was incorporated into an optical system to demonstrate high resolution imaging of objects located at different axial and angular positions. These silicon based microlenses could be integrated with electronics and have a wide range of potential applications, from medical imaging to surveillance. PMID:26515117

  16. Exhaust gas recirculation system for a V-type engine

    SciTech Connect

    Choushi, M.; Ishimi, H.

    1986-10-07

    This patent describes an exhaust gas recirculation system for a V-type engine having a pair of cylinder banks arranged at an angle to each other on opposite sides of a crankshaft, each cylinder bank having cylinders therein and an intake passage being separately provided for each cylinder. The improvement described here comprises that the intake passages have respective proximate portions at which the intake passages to the cylinders in one cylinder bank and the intake passages to the cylinders in the other cylinder bank are aligned with each other as viewed in the direction of the crankshaft. The proximate portions are in the middle of the engine between the cylinder banks, and an exhaust recirculation passage for recirculating exhaust gas from an exhaust passage to the cylinders extending along the proximate portions in the direction of the crankshaft and communicating with each intake passage by way of a communicating aperture, an exhaust recirculation valve, for controlling the amount of exhaust gas, in the open end of the exhaust recirculation passage, and a branch exhaust passage, one end of which communicates with the exhaust recirculation passage by way of the exhaust recirculation valve and the other end of which communicates with an exhaust passage of the engine.

  17. Recirculating induction accelerators for inertial fusion: Prospects and status

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1995-09-03

    The US is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4-5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K{sup +} ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This ``Small Recirculator`` is being developed in a build-and-test sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results.

  18. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  19. Nappe-Bounding Shear Zones Initiated On Syn-Tectonic, Pegmatite-Filled Extensional Shear Fractures During Deep-Crustal Nappe Flow In A Large Hot Orogen

    NASA Astrophysics Data System (ADS)

    Culshaw, Nicholas; Gerbi, Christopher; Marsh, Jeffrey; Regan, Peter

    2014-05-01

    The Central Gneiss Belt (CGB) of the Proterozoic western Grenville Province is an extensive exposure of the mid-crustal levels (upper amphibolite facies, lesser granulites) of a large hot orogen. Numerical models give a credible prediction of structure and metamorphism accompanying CGB deep-crustal nappe flow and define a temporal framework based on four developmental phases: thickening, heating, nappe-flow and post convergence extensional spreading. These phases are diachronous in direction of orogen propagation and imply a spatial framework: externides (close to orogen-craton boundary) containing moderately inclined thickening and/or extensional structures, and internides containing thickening structures overprinted by sub-horizontal nappe flow structures, which may be locally overprinted by those due to extensional spreading. Although on average of granitoid composition, CGB nappes differ in rheology, varying from fertile and weak (unmetamorphosed before Grenville, meltable) to infertile and strong (metamorphosed at high grade before Grenville, unmeltable) or mixed fertile-infertile protoliths. Deformation style varies from diffuse in fertile nappes, weakened by pervasive melting, to localised in shear zones on boundaries or interiors of infertile nappes. Specifically, in terms of deformation phase and location within the orogen, shear zones occur as: thickening structures of externides, early thickening- and later overprinting nappe-flow structures of infertile internide nappes, and extension-related shear zones in externides and internides. Many of the nappe-flow shear zones of the internides are associated with pegmatites. One example has been recognized of a preserved progression from small-scale fracture arrays to regional shear zone. The sequence is present on a km-scale and initiates in the interior of a nappe of layered granulite with arrays of pegmatite filled extensional-shear fractures (mm to cm width) displaying amphibolized margins. The fracture arrays develop into systems of pegmatite cored amphibolite facies shear zones (cm to dm width) lying within metre-scale corridors of variably retrogressed unsheared layered granulite. The sequence culminates with transposition of the layered protolith within the kilometre-scale amphibolite facies shear zone that forms the base of the granulite nappe. The pegmatitic hydrous magma clearly plays a role in initial crack formation, progressive retrogression and weakening of the granulite but its source remains obscure.

  20. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. ...notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  1. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. ...notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  2. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. ...notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  3. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. ...notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  4. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165...Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. ...notice by the Captain of the Port Puget Sound. Captain of the Port Puget Sound...

  5. Recirculating industrial air: The impact on air compliance and workers. Safety case study: Hill Air Force Base C-130 painting operations

    SciTech Connect

    LaPuma, P.T.

    1998-06-29

    The 1990 Clean Air Act Amendment resulted in new environmental regulations called the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Industries such as painting facilities may have to treat large volumes of air, which drives the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. A guided computer model written in Microsoft Excel 97% is developed to analyze worker safety and compliance costs with a focus on recirculation. The model has a chemical database containing over 1300 chemicals and requires inputs such as tasks performed, hazardous products used, and chemical make-up of the products. The model will predict indoor air concentrations in relation to occupational exposure limits (OELs). A case study is performed on a C-130 aircraft painting facility at Hill AFB, UT. The Aerospace NESHAP requires air pollution reductions in aircraft painting operations. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the OEL. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered prior to recirculation. The next highest chemical, hexamethylene diisocyanate (HDI), increases from 2.6 to 10.5 times the OEL at 0% and 75% recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75%. The initial cost of a VOC control system with no recirculation is $4.5 million and $1.8 million at 75% recirculation. To decide the best operating conditions for a facility, all options such as product substitution, operational changes or recirculation should be explored. The model is an excellent tool to evaluate these options.

  6. Design study of a gas turbine combustor with heat recirculation

    NASA Technical Reports Server (NTRS)

    Ganji, A.; Branch, M. C.; Oppenheim, A. K.

    1976-01-01

    A means of avoiding stoichiometric combustion, reducing emissions, and yet providing stable burning for lean mixtures is based on the use of heat recirculation rather than flow recirculation. This paper is concerned with the calculations of the design parameters of a gas turbine combustor with heat exchanger to produce the desired preheat temperature. The combustor inlet temperature, maximum temperature, equivalence ratio and recirculated heat are determined by thermodynamic analysis. The heat transfer analysis then provides the dimensions of the system to produce the predetermined boundary conditions. It is indicated that practical combustor design may be feasible for reactant mixtures as low as equivalence ratio 0.2.

  7. Large-Eddy Simulation of combustion instabilities in a variable-length combustor

    NASA Astrophysics Data System (ADS)

    Garby, Romain; Selle, Laurent; Poinsot, Thierry

    2013-01-01

    This article presents a simulation of a model rocket combustor with continuously variable acoustic properties thanks to a variable-length injector tube. Fully compressible Large-Eddy Simulations are conducted using the AVBP code. An original flame stabilization mechanism is uncovered where the recirculation of hot gases in the corner recirculation zone creates a triple flame structure. An unstable operating point is then chosen to investigate the mechanism of the instability. The simulations are compared to experimental results in terms of frequency and mode structure. Two-dimensional axi-symmetric computations are compared to full 3D simulations in order to assess the validity of the axi-symmetry assumption for the prediction of mean and unsteady features of this flow. Despite the inaccuracies inherent to the 2D description of a turbulent flow, for this configuration and the particular operating point investigated, the axi-symmetric simulation qualitatively reproduces some features of the instability.

  8. Tiny Is Mighty: Seagrass Beds Have a Large Role in the Export of Organic Material in the Tropical Coastal Zone

    PubMed Central

    Gillis, Lucy G.; Ziegler, Alan D.; van Oevelen, Dick; Cathalot, Cecile; Herman, Peter M. J.; Wolters, Jan W.; Bouma, Tjeerd J.

    2014-01-01

    Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and ?13C and ?15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be considered in coastal management especially with respect to their importance as a nutrient source for other ecosystems and organisms. PMID:25386853

  9. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors.

    PubMed

    Thiault, Nicolas; Darrigues, Julie; Adoue, Véronique; Gros, Marine; Binet, Bénédicte; Perals, Corine; Leobon, Bertrand; Fazilleau, Nicolas; Joffre, Olivier P; Robey, Ellen A; van Meerwijk, Joost P M; Romagnoli, Paola

    2015-06-01

    Most T lymphocytes, including regulatory T cells (Treg cells), differentiate in the thymus. The age-dependent involution of this organ leads to decreasing production of T cells. Here we found that the output of new Treg cells from the thymus decreased substantially more than that of conventional T cells. Peripheral mouse and human Treg cells recirculated back to the thymus, where they constituted a large proportion of the pool of Treg cells and displayed an activated and differentiated phenotype. In the thymus, the recirculating cells exerted their regulatory function by inhibiting interleukin 2 (IL-2)-dependent de novo differentiation of Treg cells. Thus, Treg cell development is controlled by a negative feedback loop in which mature progeny cells return to the thymus and restrain development of precursors of Treg cells. PMID:25939024

  10. Recirculation of energetic particles in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.; Van Allen, J. A.; Goertz, C. K.

    1975-01-01

    A significant new finding from analysis of Pioneer 11 observations in the magnetosphere of Jupiter is that there is net streaming of both electrons E above 40 keV and E above 560 keV and protons in the range from .61 to 3.41 MeV away from the planet along high-latitude field lines. This result is compatible with the recent suggestion of Nishida that energetic particles undergo trans-L shell diffusion at low altitudes without significant change of energy. This provides a plausible explanation for the remarkable pitch angle distributions near the equator in the range of L values from 12 to 25; the presence of particles of about 1 MeV energy at the outer edge of the magnetosphere; and hence, via conventional inward diffusion processes, the presence of those having magnetic moments of several hundred MeV per gauss in the inner magnetosphere. The recirculation of energetic particles emerges as an important dynamical feature of the Jovian magnetosphere.-

  11. A closed recirculated sea-water system

    USGS Publications Warehouse

    1967-01-01

    Study of a virus disease in the chinook salmon (Oncorhynchus tshawytscha) necessitated the use of a marine environment to study the long range effects of the disease and to complete the life cycle of its etiologic agent. A closed recirculated sea-water system was designed for use under experimental laboratory conditions so that controlled studies of the disease could be made. As others may wish to do marine environment studies in the laboratory, the design and operation of our system are presented. Other systems currently in use have been described by Chin (1959), DeWitt and Salo (1960), McCrimmon and Berst (1966), and the authors of collected papers edited by Clark and Clark (1964). Preparatory to the design and construction of the system in use in this laboratory, visits were made to marine systems in use at the University of Washington's College of Fisheries, Seattle, -washington, and Friday Harbor Laboratory, San Juan Island, Washington; the Washington State Department of Fisheries' Point whitney Shellfish Laboratory, Brinnon, Washington; Humboldt State College, Arcata, California; and the Steinhart Aquarium of the California Academy of Science, San Francisco, California.

  12. Elastic Properties of Subduction Zone Materials in the Large Shallow Slip Environment for the Tohoku 2011 Earthquake: Laboratory data from JFAST Core Samples

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2014-12-01

    The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica, Cascadia, and Barbados ridge subduction zones. We find that shallow subduction zone sediments in general have similarly low rigidity. These data provide important ground-truth values that can be used to parameterize fault slip models addressing the problem of shallow, tsunamigenic propagation of megathrust earthquakes.

  13. Improving Heating System Operations Using Water Re-Circulation 

    E-print Network

    Li, F.; Han, J.

    2006-01-01

    , China Heating technologies for energy efficiency Vol.III-2-3 Improving Heating System Operations Using Water Re-circulation Fenglei Li Jing Han Graduate Lecturer Student College of Environmental Science and Engineering, Taiyuan...

  14. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR part 136....

  15. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  16. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  17. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  18. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  19. Eddy-Driven Recirculations from a Localized Transient Forcing

    E-print Network

    Waterman, Stephanie

    The generation of time-mean recirculation gyres from the nonlinear rectification of an oscillatory, spatially localized vorticity forcing is examined analytically and numerically. Insights into the rectification mechanism ...

  20. Exhaust gas recirculation system for crankcase scavenged two cycle engine

    SciTech Connect

    Kaufman, V.R.; Geringer, M.S.

    1987-07-28

    This patent describes a two cycle crankcase scavenged engine comprising: a cylinder having a piston reciprocable disposed, the piston and cylinder forming a combustion chamber; a crankcase; an exhaust port opening into the combustion chamber; exhaust system means connected to the exhaust port for conducting exhaust gas away from the engine and cooling the exhaust gas; means for forming an air-fuel mixture and introducing the mixture into the crankcase through an intake opening; a transfer passage connecting the crankcase to the combustion chamber; an exhaust recirculation port opening into the crankcase; and exhaust gas recirculation means connected to the exhaust system means for recirculating exhaust gas into the crankcase through the recirculation port.

  1. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    SciTech Connect

    Tallec, G.; Bureau, C.; Peu, P.; Benoist, J.C.; Lemunier, M.; Budka, A.; Presse, D.; Bouchez, T.

    2009-07-15

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

  2. Heat recirculating cooler for fluid stream pollutant removal

    DOEpatents

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  3. The Pebble Recirculation Experiment (PREX) for the AHTR

    SciTech Connect

    Bardet, P.; An, J.Y.; Franklin, J.T.; Huang, D.; Lee, K.; Mai, A.; Toulouse, M.; Peterson, P.F.

    2007-07-01

    Conceptual design studies for the liquid-salt cooled Advanced High Temperature Reactor (AHTR) have identified three candidate TRISO fuel geometries: prismatic, pebble, and stringer fuels. This paper presents experimental results from the integral Pebble Recirculation Experiment (PREX) that verifies the viability of pebble recirculation in a Pebble Bed AHTR (PB-AHTR). The experiments conducted include injection and extraction of buoyant pebbles, measurements of packing density and pressure losses, and observations of pebble landing dynamics and bed formation. (authors)

  4. Vacuum requirements for heavy ion recirculating induction linacs

    SciTech Connect

    Barnard, J.J.; Yu, S.S. ); Faltens, A. )

    1990-12-01

    We examine the requirements of the vacuum system for the LLNL/LBL recirculating induction linac concept. We reexamine processes, including beam stripping, background gas ionization, intra-beam charge exchange and desorption of gas molecules from the wall due to the incident ionized gas molecules and stripped ions, in the context of the proposed recirculator. We discuss implications for the vacuum system layout and estimate the cost of such a system. 18 refs., 2 figs., 1 tab.

  5. Exhaust gas recirculation control system for an internal combustion engine

    SciTech Connect

    Nishida, M.; Inoue, N.

    1988-03-01

    An exhaust gas recirculation control system for an internal combustion engine is described which comprises; an exhaust gas recirculation control valve for controlling a recirculation rate for exhaust gas to be mixed with intake air which is supplied to the internal combustion engine, an oxygen sensor disposed in an intake air passage downstream of the control valve to detect the concentration of oxygen in the intake air, a control means which compares the oxygen concentration detected by the oxygen sensor with a desired oxygen concentration previously determined depending on operational conditions of the engine and controls the degree of opening of the exhaust gas recirculation control valve so as to cancel the deviation between the detected oxygen concentration and the desired oxygen concentration, a detecting means for detecting the exhaust gas recirculation rate being zero to supply a signal to the control means on the basis of the detection, and a correcting means for correcting the corresponding relation between the output of the oxygen sensor and the detected oxygen concentration on the basis of the output of the oxygen sensor when the exhaust gas recirculation rate is zero.

  6. The Impact of Tropical Recirculation on Polar Composition

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Schoeberl, M. R.; Steenrod, S. D.

    2009-01-01

    We derive the tropical modal age of air from an analysis of the water vapor tape recorder. We combine the observationally derived modal age with mean age of air from CO2 and SF6 to create diagnostics for the independent evaluation of the vertical transport rate and horizontal recirculation into the tropics between 16-32 km. These diagnostics are applied to two Global Modeling Initiative (GMI) chemistry and transport model (CTM) age tracer simulations to give new insights into the tropical transport characteristics of the meteorological fields from the GEOS4-GCM and the GEOS4-DAS. Both simulations are found to have modal ages that are in reasonable agreement with the empirically derived age (i.e ., transit times) over the entire altitude range. Both simulations show too little horizontal recirculation into the tropics above 22 km, with the GEOS4-DAS fields having greater recirculation. Using CH4 as a proxy for mean age, comparisons between HALOE and model CH4 in the Antarctic demonstrate how the strength of tropical recirculation affects polar composition in both CTM experiments. Better tropical recirculation tends to improve the CH4 simulation in the Antarctic. However, mean age in the Antarctic lower stratosphere can be compromised by poor representation of tropical ascent, tropical recirculation, or vortex barrier strength. The connection between polar and tropical composition shown in this study demonstrates the importance of diagnosing each of these processes separately in order to verify the adequate representation of the processes contributing to polar composition in models.

  7. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform

    USGS Publications Warehouse

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.

    2005-01-01

    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  8. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-08-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report.

  9. Visualisation of isothermal large coherent structures in a swirl burner

    SciTech Connect

    Valera-Medina, A.; Syred, N.; Griffiths, A.

    2009-09-15

    Lean premixed combustion using swirl flame stabilisation is widespread amongst gas turbine manufacturers. The use of swirl mixing and flame stabilisation is also prevalent in many other non-premixed systems. Problems that emerge include loss of stabilisation as a function of combustor geometry and thermo-acoustic instabilities. Coherent structures and their relationship with combustion processes have been a concern for decades due to their complex nature. This paper thus adopts an experimental approach to characterise large coherent structures in swirl burners under isothermal conditions so as to reveal the effects of swirl in a number of geometries and cold flow patterns that are relevant in combustion. Aided by techniques such as Hot Wire Anemometry, High Speed Photography and Particle Image Velocimetry, the recognition of several structures was achieved in a 100 kW swirl burner model. Several varied, interacting, structures developed in the field as a consequence of the configurations used. New structures never observed before were identified, the results not only showing the existence of very well defined large structures, but also their dependency on geometrical and flow parameters. The PVC is confirmed to be a semi-helical structure, contrary to previous simulations performed on the system. The appearance of secondary recirculation zones and suppression of the vortical core as a consequence of geometrical constrictions are presented as a mechanism of flow control. The asymmetry of the Central Recirculation Zone in cold flows is observed in all the experiments, with its elongation dependent on Re and swirl number used. (author)

  10. The Large-Scale Morphology and Vadose Zone Dynamics of an Undisturbed Tropical Peat Forest in Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Harvey, C. F.; Cobb, A.; Hoyt, A.; Gandois, L.; Kamariah, A.; Yussof, M.; Jalil, J.; Ali Ahmad, J.

    2013-12-01

    We combine groundwater flow models with hydrologic, flux-chamber, and LIDAR data to study the coupled hydrologic and ecological processes that shape tropical peatlands. We apply this framework to explain the hydrologic behavior and morphology of one of the few remaining primary tropical peat forests, a region on the Mendaram River in the Belait district of Brunei Darussalam. The thickness of the vadose zone remains remarkably uniform across the peatland even as the water table responds to rainstorms, evapotranspiration and discharge to the rivers. Time series from piezometers at different locations all show similar rapid jumps in the watertable during rainstorms, followed initially by quick recessions that are nearly identical across locations, then a slow decline consistent with evapotranspiration as the water table sinks deeper into the peat. The uniform, but transient, thickness of the vadose zone indicates that: (1) Peat oxidation is uniform across the landscape because the same thickness of peat is exposed to the atmosphere; (2) Rainfall infiltrates uniformly until, in exceptional storms, the entire landscape becomes saturated, and; (3) Because the watertable drops and rises uniformly across the region, conservation of water requires that the divergence of pore water flux is also uniform across the domain. This strikingly homogenous hydrologic behavior implies that the topographic curvature of the peatland is described by a uniform Laplacian value. We derive an expression for this uniform Laplacian value as a function of the rainfall statistics and the transmissivity of the peat. Finally, we confirm the predicted topographic Laplacian using airborne LIDAR data gathered across the domain.

  11. Reaction zone visualisation in swirling spray n-heptane flames

    E-print Network

    Yuan, R.; Kariuki, J.; Dowlut, A.; Balachandran, R.; Mastorakos, E.

    2014-06-26

    advanced turbulent combustion models. In gas turbines and industrial furnaces, the flame is virtually always stabilised by swirl. It can be argued that we know little about the fundamental processes of extinction of spray flames in recirculation zones... flames could be made. In this paper, we use simultaneous CH2O and OH imaging in the stabilisation region of an n-heptane spray flame in a swirl-induced recirculation zone, a configuration of great relevance to gas turbine combustion, and in particular...

  12. A simplified multi-zone model for determining the placement of bio-defense sensors in large buildings

    E-print Network

    Van Broekhoven, Scott B. (Scott Bennett)

    2008-01-01

    The anthrax mailings of 2001 increased public and government awareness to the threat of bio-terrorism. Particularly vulnerable to a bio-terrorist event are large indoor facilities such as convention centers, office buildings, ...

  13. 33 CFR 165.1318 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...States, in Portland, OR at the Columbia River Bar “C” buoy and extending eastward on the Columbia River to Kennewick, WA and upriver through Lewiston, ID on the Snake River. (d) Compliance. The large...

  14. 33 CFR 165.1318 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...States, in Portland, OR at the Columbia River Bar “C” buoy and extending eastward on the Columbia River to Kennewick, WA and upriver through Lewiston, ID on the Snake River. (d) Compliance. The large...

  15. 33 CFR 165.1318 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...States, in Portland, OR at the Columbia River Bar “C” buoy and extending eastward on the Columbia River to Kennewick, WA and upriver through Lewiston, ID on the Snake River. (d) Compliance. The large...

  16. 33 CFR 165.1318 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...States, in Portland, OR at the Columbia River Bar “C” buoy and extending eastward on the Columbia River to Kennewick, WA and upriver through Lewiston, ID on the Snake River. (d) Compliance. The large...

  17. Large Earthquake Hazard of the San Jacinto Fault Zone, CA, from Long Record of Simulated Seismicity Assimilating the Available Instrumental and Paleoseismic Data

    NASA Astrophysics Data System (ADS)

    Zöller, G.; Ben-Zion, Y.

    2014-11-01

    We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m ? 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m ? 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m ? 7 earthquakes. The hypocenters of the m ? 5 events in the simulation results move progressively towards the hypocenter of the upcoming m ? 7 earthquake.

  18. Constraints on strain rates during large-scale mid-crustal shearing: An example from the basal Vaddas shear zone, northern Caledonides

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Stünitz, Holger; Nasipuri, Pritam; Menegon, Luca

    2013-04-01

    The Caledonian orogen in Scandinavia is characterized by large-scale crustal nappe stacks which were emplaced east-/southeast-wards onto the Baltica shield. Whereas original thrust relationships are generally obscured by syn- to post-collisional extensional deformation in the southern and central Scandinavian Caledonides, several large-scale thrust systems are well-preserved in the northern Scandinavian Caledonides in Troms and Finnmark. One example is the mid-crustal Vaddas shear zone, which emplaced the Vaddas nappe on top of the Kalak nappe complex. In this contribution we present a structural, petrological and geochronological analysis of the rocks under- and overlying the Vaddas shear zone in northern Troms, in order to estimate the strain rate associated with thrusting along this major shear zone. The Vaddas nappe above the investigated shear zone consists mainly of Upper Ordovician to Silurian metasediments, which were deposited in a marine environment and which were intruded by voluminous gabbroic intrusions, before they were sheared off from their substratum and transported on top of the Kalak nappe complex during the Caledonian orogeny. PT conditions from one of these gabbroic bodies indicate that the body intruded the metasediments at ~9 kbar (Getsinger et al., subm to G3), which corresponds to a depth of ~34 km. U-Pb SIMS dating of zircons from this gabbro indicate that intrusion occurred at 439±2 Ma. The Vaddas nappe is separated from the Kalak nappe by an at least ~150 m thick, amphibolite-facies shear zone with a subhorizontal fabric and top-to-the-SE shear sense. It has developed within the lowest part of the Vaddas nappe as well as the upper part of the Kalak nappe complex and PT calculations indicate that final shearing occurred at ~450° C and ~6 kbar (depth of ~23 km). U-Pb TIMS dating of titanites, which grow parallel to the shear fabric in the Kalak nappe complex, gives 206Pb/238U ages ranging from 442±1 to 429±1 Ma, indicating that shearing probably commenced right after intrusion of the Vaddas gabbros and continued over a period of ~10 m.y. Assuming an original dip of the Vaddas shear zone of 30° , the horizontal displacement would be ~23 km as the most conservative assumption (i.e. for a highest thrust angle) for the depth difference of 11 km between intrusion of the gabbro and late shear deformation. Given the thickness of the shear zone of 150 m and the time for the shearing of ~10 m.y., a strain rate of ~5*10-13 s-1 can be estimated. As suggested, this is a conservative estimate, so that strain rates may well have been faster. These strain rates appear to be similar to those of Alpine nappes, so that it is suggested that Caledonian nappe stacking has probably taken place at the same rates or even faster than Alpine ones. Given the fact that the transport distances in the Caledonides are far greater than in the Alps, this would suggest that the Caledonian orogeny has taken place over a longer period of time than in the Alps.

  19. Bio-desulfurization of biogas using acidic biotrickling filter with dissolved oxygen in step feed recirculation.

    PubMed

    Chaiprapat, Sumate; Charnnok, Boonya; Kantachote, Duangporn; Sung, Shihwu

    2015-03-01

    Triple stage and single stage biotrickling filters (T-BTF and S-BTF) were operated with oxygenated liquid recirculation to enhance bio-desulfurization of biogas. Empty bed retention time (EBRT 100-180 s) and liquid recirculation velocity (q 2.4-7.1 m/h) were applied. H2S removal and sulfuric acid recovery increased with higher EBRT and q. But the highest q at 7.1 m/h induced large amount of liquid through the media, causing a reduction in bed porosity in S-BTF and H2S removal. Equivalent performance of S-BTF and T-BTF was obtained under the lowest loading of 165 gH2S/m(3)/h. In the subsequent continuous operation test, it was found that T-BTF could maintain higher H2S elimination capacity and removal efficiency at 175.6±41.6 gH2S/m(3)/h and 89.0±6.8% versus S-BTF at 159.9±42.8 gH2S/m(3)/h and 80.1±10.2%, respectively. Finally, the relationship between outlet concentration and bed height was modeled. Step feeding of oxygenated liquid recirculation in multiple stages clearly demonstrated an advantage for sulfide oxidation. PMID:25569031

  20. Characterizing the Habitable Zones of Exoplanetary Systems with a Large Ultraviolet/Visible/Near-IR Space Observatory

    E-print Network

    France, Kevin; Linsky, Jeffrey; Roberge, Aki; Ayres, Thomas; Barman, Travis; Brown, Alexander; Davenport, James; Desert, Jean-Michel; Domagal-Goldman, Shawn; Fleming, Brian; Fontenla, Juan; Fossati, Luca; Froning, Cynthia; Hallinan, Gregg; Hawley, Suzanne; Hu, Renyu; Kaltenegger, Lisa; Kasting, James; Kowlaski, Adam; Loyd, Parke; Mauas, Pablo; Miguel, Yamila; Osten, Rachel; Redfield, Seth; Rugheimer, Sarah; Schneider, Christian; Segura, Antigona; Stocke, John; Tian, Feng; Tumlinson, Jason; Vieytes, Mariela; Walkowicz, Lucianne; Wood, Brian; Youngblood, Allison

    2015-01-01

    Understanding the surface and atmospheric conditions of Earth-size, rocky planets in the habitable zones (HZs) of low-mass stars is currently one of the greatest astronomical endeavors. Knowledge of the planetary effective surface temperature alone is insufficient to accurately interpret biosignature gases when they are observed in the coming decades. The UV stellar spectrum drives and regulates the upper atmospheric heating and chemistry on Earth-like planets, is critical to the definition and interpretation of biosignature gases, and may even produce false-positives in our search for biologic activity. This white paper briefly describes the scientific motivation for panchromatic observations of exoplanetary systems as a whole (star and planet), argues that a future NASA UV/Vis/near-IR space observatory is well-suited to carry out this work, and describes technology development goals that can be achieved in the next decade to support the development of a UV/Vis/near-IR flagship mission in the 2020s.

  1. Case study of controlled recirculation at a Wyoming trona mine

    PubMed Central

    Pritchard, C.; Scott, D.; Frey, G.

    2015-01-01

    Controlled recirculation has been used in the metal/nonmetal mining industry for energy savings when heating and cooling air, in undersea mining and for increasing airflow to mining areas. For safe and effective use of controlled district recirculation, adequate airflow to dilute contaminants must exist prior to implementation, ventilation circuit parameters must be accurately quantified, ventilation network modeling must be up to date, emergency planning scenarios must be performed and effective monitoring and control systems must be installed and used. Safety and health issues that must be considered and may be improved through the use of controlled district recirculation include blasting fumes, dust, diesel emissions, radon and contaminants from mine fires. Controlled recirculation methods are expected to become more widely used as mines reach greater working depths, requiring that these health and safety issues be well understood. The U.S. National Institute for Occupational Safety and Health (NIOSH) conducted two controlled recirculation tests over three days at a Wyoming trona mine, utilizing an inline booster fan to improve airflow to a remote and difficult-to-ventilate development section. Test results were used to determine the effect that recirculation had on air qualities and quantities measured in that section and in other adjacent areas. Pre-test conditions, including ventilation quantities and pressures, were modeled using VnetPC. During each test, ventilation quantities and pressures were measured, as well as levels of total dust. Sulfur hexafluoride (SF6) tracer gas was used to simulate a mine contaminant to monitor recirculation wave cycles. Results showed good correlation between the model results and measured values for airflows, pressure differentials, tracer gas arrival times, mine gasses and dust levels. PMID:26251567

  2. Exhaust gas recirculation control system for an engine

    SciTech Connect

    Asayama, Y.

    1987-11-10

    An exhaust gas recirculation control system for an internal combustion engine is described comprising: (a) an intake duct for introducing intake air to the engine; (b) a throttle valve mounted in the intake duct for controlling the flow rate of the intake air; (c) an exhaust pipe for discharging exhaust gas from the engine; (d) conduit means for recirculating exhaust gas from the exhaust pipe back to the intake duct; (e) an exhaust gas recirculation control valve operatively coupled in the conduit means for controlling the flow rate of the recirculated exhaust gas; (f) an oxygen sensor mounted in the intake duct downstream of the opening for sensing the oxygen concentration in the mixed gas flowing in the intake duct; (g) a control unit for controlling the control valve in response to the output of the oxygen sensor to adjust the exhaust gas recirculation rate to a desired value; and (h) means for introducing air as a reference gas to a reference air chamber of the oxygen sensor from a point upstream of the opening but downstream of the throttle valve.

  3. Holocene paleoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    McCalpin, J.P.; Nishenko, S.P.

    1996-01-01

    The chronology of M>7 paleoearthquakes on the central five segments of the Wasatch fault zone (WFZ) is one of the best dated in the world and contains 16 earthquakes in the past 5600 years with an average repeat time of 350 years. Repeat times for individual segments vary by a factor of 2, and range from about 1200 to 2600 years. Four of the central five segments ruptured between ??? 620??30 and 1230??60 calendar years B.P. The remaining segment (Brigham City segment) has not ruptured in the past 2120??100 years. Comparison of the WFZ space-time diagram of paleoearthquakes with synthetic paleoseismic histories indicates that the observed temporal clusters and gaps have about an equal probability (depending on model assumptions) of reflecting random coincidence as opposed to intersegment contagion. Regional seismicity suggests that for exposure times of 50 and 100 years, the probability for an earthquake of M>7 anywhere within the Wasatch Front region, based on a Poisson model, is 0.16 and 0.30, respectively. A fault-specific WFZ model predicts 50 and 100 year probabilities for a M>7 earthquake on the WFZ itself, based on a Poisson model, as 0.13 and 0.25, respectively. In contrast, segment-specific earthquake probabilities that assume quasi-periodic recurrence behavior on the Weber, Provo, and Nephi segments are less (0.01-0.07 in 100 years) than the regional or fault-specific estimates (0.25-0.30 in 100 years), due to the short elapsed times compared to average recurrence intervals on those segments. The Brigham City and Salt Lake City segments, however, have time-dependent probabilities that approach or exceed the regional and fault specific probabilities. For the Salt Lake City segment, these elevated probabilities are due to the elapsed time being approximately equal to the average late Holocene recurrence time. For the Brigham City segment, the elapsed time is significantly longer than the segment-specific late Holocene recurrence time.

  4. Exhaust-gas-recirculation system for use in diesel engines

    SciTech Connect

    Matsui, K.; Miyazaki, T.; Nomura, E.; Sami, H.; Ueda, T.

    1981-10-20

    An exhaust-gas-recirculation system is disclosed for use in diesel engines, having a valve member adapted to control the flow rate of the exhaust gas recirculated from the exhaust pipe to the intake pipe of the diesel engine. The exhaust-gas-recirculation system has a fly-weight rotatable in synchronization with the engine to produce a centrifugal force, a governor sleeve displaceable in response to a thrust thereon given by the fly-weight, a control spring counteracting the thrust on the governor sleeve and having a spring load changeable in response to the change in the amount of depression of an accelerator pedal, and an actuator operative in response to the displacement of the governor sleeve to actuate the valve member.

  5. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  6. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  7. Beam-turning magnet design and test for the Recirculating Linear Accelerator

    SciTech Connect

    Crow, J.T. ); Platt, R.C. )

    1991-01-01

    We have designed and tested a system for applying a ramped vertical magnetic field for turning the electron beam in the IFR Recirculating Linear Accelerator. The field is highly uniform over two Gaussian beam radii, and can be adjusted for a large radial gradient for increased energy bandwidth. The system includes shielding of the current-carrying rods to protect the pulser from REB induced fields and to reduce the effect of REB images on the beam transport to negligible levels. The system has been tested on the IBEX accelerator with > 95% peak current transport and > 90% charge transport through a 90{degree} turn. 2 refs., 6 figs.

  8. Heat transfer characteristics of a heat-recirculating ceramic burner

    SciTech Connect

    Tanaka, Ryo; Shinoda, Masahisa; Arai, Norio

    1999-07-01

    A new type of heat-recirculating ceramic burner has been constructed and its thermal characteristics during steady very-low-heating-value-gas/air combustion were investigated. Longitudinal temperature distribution of air and burned gas flowing in the passes of the burner were determined by means of both experimental measurements and numerical simulations. Using the heat recirculation rate and the thermal efficiency as criteria for the heat transfer performance of the burner, the optimal design of the burner was examined in terms of a chemical parameter (the equivalence ratio), a fluid-mechanical parameter (the Reynolds number) and a geometrical parameter (the number of passes).

  9. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  10. Experimental investigation of reactive turbulent recirculating jet mixing in a dump

    NASA Technical Reports Server (NTRS)

    Smith, G. D.; Giel, T. V.; Catalano, C. G.

    1980-01-01

    A ducted, subsonic, hydrogen air turbulent jet mixing flowfield was investigated, both with and without combustion. The geometric configuration was representative of a sudden expansion or dump combustor, with a central air jet surrounded by a low velocity hydrogen stream at an overall equivalence ratio of 0.12. The ratio of the duct to inner nozzle diameter was 2.5. Radial distributions of mean axial and radial velocity, axial and radial turbulent intensity, velocity cross correlation, gas composition, static temperature and total pressure, as well as axial distributions of wall static pressure, were obtained for axial stations from zero to six duct diameters from the combustor entrance. The data indicate that mixing is slower in the chemically reactive flow field than in the nonreactive flow field, and that the presence of combustion has a significant effect on the size and location of the recirculation zone within the mixing duct.

  11. A search for evidence of large body Earth impacts associated with biological crisis zones in the fossil record

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Gilmore, J. S.; Knight, J. D.

    1985-01-01

    The natural history of the Earth, how the present plant and animal species developed, how others completely died out, etc., was studied. The rock strata sampled and studied were at the time of deposition at sea bottom. It was found that, exactly at the stratigraphic level corresponding to the extinction, a thin clay layer was greatly enriched in the the rare element iridium. It was hypothesized that the excess irridium at the boundary came from a large steroid like object that hit the earth, and that the impact of this object threw up a dust cloud dense enough and long lasting enough to bring about the extinction of a wide variety of plants and animals, producing the unique break in in the fossil record, the cretaceous-tertiary boundary. The same iridium and platinum metals enrichement are found in a thin clay layer that corresponds with the boundary as difined by sudden radical changes in plant populations. The irridium enrichement is confirmed at other fresh water origin rites in the Raton Basin.

  12. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  13. Changes in surf zone morphodynamics driven by multi-decadal contraction of a large ebb-tidal delta

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Barnard, P.; Elias, E.

    2012-12-01

    The impact of large-scale deflation (76 million m3 of sediment loss) and contraction (~1 km) of a 150 km2 ebb-tidal delta over a half-century on hydrodynamics and sediment transport at Ocean Beach in San Francisco, CA (USA), onshore of the delta, is examined using a coupled wave and circulation model. The model is forced with representative wave and tidal conditions using recent (2005) and historic (1956) ebb-tidal delta bathymetry data sets. Comparison of the simulations indicate that along north/south trending Ocean Beach the contraction and deflation of the ebb-tidal delta has resulted in significant differences in the flow and sediment dynamics. Between 1956 and 2005 the transverse bar (the shallow attachment point of the ebb-tidal delta to the shoreline) migrated north ~1 km toward the inlet while a persistent alongshore flow and transport divergence point migrated south by ~500 m (Figure 1). Alongshore migration of these features has resulted in an increasing portion of onshore migrating sediment from the ebb-tidal delta, inferred by the contraction, to be transported north along the beach in 2005 versus south in 1956. The northerly migrating sediment is then trapped by Pt. Lobos, a rocky headland at the northern extreme of the beach, consistent with the observed shoreline accretion in this area. Conversely, alongshore migration of the transverse bar and divergence point has decreased the sediment supply to southern Ocean Beach, consistent with the observed erosion of the shoreline in this area. The approach described here is broadly applicable for investigating the causes of long-term morphological changes along urbanized beaches adjacent to inlet mouths worldwide.Figure 1. Ebb-tidal delta bathymetry in 1956 (A) and 2005 (B), 2 m contour interval to 20 m. Schematized pattern of alongshore transport along Ocean Beach and transport of onshore migrating sediment from the ebb-tidal delta in 1956 (C) and 2005 (D).

  14. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Final report, 15 February 1991-9 October 1992

    SciTech Connect

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-27

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and recirculating ventilation, and three tests were performed during only split-flow ventilation.

  15. In-tank aeration, a necessary compliment of loaded systems in an airlift recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment components in recirculating aquaculture systems in generally address solids removal, nitrification, circulation, aeration, and degasification. Airlift pumps in a recirculating aquaculture system can address water circulation, aeration, and degasification. Recent data indicates oxygen...

  16. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    PubMed

    Garbo?, S?awomir; ?wi?cicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 ?g/L and 1.23 ?g/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. PMID:26143355

  17. An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.

    ERIC Educational Resources Information Center

    Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann

    1999-01-01

    Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)

  18. Recirculating Liquid Nitrogen System for Operation of Cryogenic Pumps

    E-print Network

    Walker, Mitchell

    1 Recirculating Liquid Nitrogen System for Operation of Cryogenic Pumps IEPC-2011-217 Presented Abstract: Cryogenic pumps are attractive for electric propulsion test facilities due to their pumping speed. Introduction Cryogenically-pumped electric propulsion (EP) facilities achieve very high pumping speeds through

  19. Use of low temperature blowers for recirculation of hot gases

    DOEpatents

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  20. Using Residence Time for the Extraction of Recirculation Regions

    E-print Network

    Peraire, Jaime

    ­Wendroff integration. An implementation is discussed that allows the coupling of this solver to any explicit CFD code this procedure and separation surfaces are examined. Introduction In the past, feature extraction that locates regions of recirculation in both steady­state and transient so­ lutions. Separation

  1. Application of airlift technology in recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marine hatcheries implementing recirculating aquaculture technology require pristine water quality and must be designed to provide a disease free environment as much as possible to limit disease transmission. Given the aggressive nature of a variety of marine pathogens, design considerations with re...

  2. Dynamic Scheduling of Internal Exhaust Gas Recirculation Systems.

    E-print Network

    Stefanopoulou, Anna

    - trogen (NOx) in internal combustion engines. The in- ert exhaust gases dilute the inducted airDynamic Scheduling of Internal Exhaust Gas Recirculation Systems. Anna G. Stefanopoulou and Ilya@ford.com and ikolmano@ford.com Abstract In this paper we analyze the nonlinear dynamic be- havior of an internal exhaust

  3. EVALUATION OF A PAINT SPRAY BOOTH UTILIZING AIR RECIRCULATION

    EPA Science Inventory

    The objective of this project was to evaluate the effectiveness of the recirculating air spray booth process at the Deere and Company facility in Davenport, Iowa. The effort involved a field measurement program and subsequent analysis of flow rates and emission data from the spra...

  4. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  5. Prediction-based trajectory tracking of External Gas Recirculation for turbocharged SI Engines

    E-print Network

    strategies to use exhaust gas recirculation (EGR) through a low-pressure circuit, represented in Fig. 1 into the mixture leads to an increase of the auto-ignition delay : intermixing the incoming air with recirculatedPrediction-based trajectory tracking of External Gas Recirculation for turbocharged SI Engines

  6. Mathematical Modeling and Design of Layer Crystallization in a Concentric Annulus With and Without Recirculation

    E-print Network

    Recirculation Lifang Zhou, Min Su, Brahim Benyahia, Aniruddh Singh, Paul I. Barton, Bernhardt L. Trout, Allan S the need for filtration. A dynamic model for layer crystallization with and without a recirculation loop rough estimates when there is no recirculation loop. The model can be used to optimize product yield

  7. Aalborg Universitet Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery

    E-print Network

    Berning, Torsten

    Aalborg Universitet Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat., Sørensen, K., & Condra, T. J. (2014). Implementation of Exhaust Gas Recirculation for Double Stage Waste from vbn.aau.dk on: juli 05, 2015 #12;Implementation of Exhaust Gas Recirculation for Double Stage

  8. Biologically Plausible Error-driven Learning using Local Activation Differences: The Generalized Recirculation Algorithm

    E-print Network

    O'Reilly, Randall C.

    Recirculation Algorithm Randall C. O'Reilly Department of Psychology Carnegie Mellon University Pittsburgh, PA-directional activation recirculation (Hinton & McClelland, 1988) instead of backpropagated error derivatives is more biologically plausible. This paper presents a generalized version of the recirculation al- gorithm (Gene

  9. Performance Evaluation of a Router with Tunable Recirculating Buffers in an Optical Burst Switching Environment

    E-print Network

    Touch, Joe

    Performance Evaluation of a Router with Tunable Recirculating Buffers in an Optical Burst Switching recirculations are a critical requirement; when packets can circulate only once through the buffer, no measurable recirculation is permitted, throughput increases by up to 40%, depending on the combination of the number

  10. The Kuroshio Extension Northern Recirculation Gyre: Profiling Float Measurements and Forcing Mechanism

    E-print Network

    Qiu, Bo

    The Kuroshio Extension Northern Recirculation Gyre: Profiling Float Measurements and Forcing-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally in the Northern Hemisphere subtropical ocean circulation is the existence of an an- ticyclonic recirculation gyre

  11. Contrle de la recirculation de gaz brls pour un moteur essence suraliment : apports d'une

    E-print Network

    Contrôle de la recirculation de gaz brûlés pour un moteur essence suralimenté : apports d, Cedex 06, France Résumé Cet article traite du suivi de trajectoires pour un système de recirculation de retard. 1. INTRODUCTION La recirculation de gaz brûlés (EGR) apparaît actuellement comme une architecture

  12. PS'2006 -Photonics in Switching Conference Efficient Contention Resolution Algorithms for Recirculation Multicast

    E-print Network

    Chuah, Chen-Nee

    for Recirculation Multicast Based Optical Router Switch Architecture Haijun Yang, Zhong Pan, Venkatesh Akella, Chen contention resolution algorithms for the multicast optical switch architecture employing recirculation multi recirculation multi-wavelength converters (MWC) [2] received strong interest [3], since MWC based scheme does

  13. Fish Health Management Considerations in Recirculating Aquaculture systems -Part 3: General

    E-print Network

    Hill, Jeffrey E.

    Cir 122 Fish Health Management Considerations in Recirculating Aquaculture systems -Part 3: General Introduction Both the popularity and use of recirculating systems have increased, and these systems are now. This circular is Part 3 of a three-part series dealing with fish health management in recirculating aquaculture

  14. Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales

    E-print Network

    Qiu, Bo

    Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time-frequency changes and the interconnections of the Kuroshio Extension (KE) jet, its southern recirculation gyre, and their mesoscale eddy field. The dominant signal is characterized by the steady weakening of the KE jet/recirculation

  15. Average Number of Recirculations in SDL Constructions of Optical Priority Queues

    E-print Network

    Chang, Cheng-Shang

    1 Average Number of Recirculations in SDL Constructions of Optical Priority Queues Jay Cheng Abstract--In this letter, we derive the average number of times an optical packet recirculates through assignment. The analytical results on the average number of recirculations are further verified through

  16. On Constructions of Optical Queues with a Limited Number of Recirculations

    E-print Network

    Chang, Cheng-Shang

    On Constructions of Optical Queues with a Limited Number of Recirculations Jay Cheng, Cheng number of recirculations through the fibers in such SDL constructions. Such a limitation on the number of recirculations comes from practical feasibility considerations, such as crosstalk, power loss, amplified sponta

  17. Longitudinal BBU Threshold Current in Recirculating Linacs Changsheng Song and Georg H. Hoffstaetter

    E-print Network

    Hoffstaetter, Georg

    Longitudinal BBU Threshold Current in Recirculating Linacs Changsheng Song and Georg H by the longitudinal recirculating beam-breakup instability (BBU), as well as the transverse BBU instability that the discussion in this report applies to all recirculation linacs and the ERL is a special case

  18. Multiple trophic levels fueled by recirculation in the Columbia River plume

    E-print Network

    Kurapov, Alexander

    Multiple trophic levels fueled by recirculation in the Columbia River plume Raphael M. Kudela,1 document a 700 km2 recirculation or bulge associ- ated with the Columbia River plume that retains recently mouth. Citation: Kudela,R.M., et al. (2010), Multiple trophic levels fueled by recirculation

  19. Moist Recirculation and Water Vapor Transport on Dry Isentropes* FRE DE RIC LALIBERTE

    E-print Network

    Pauluis, Olivier M.

    Moist Recirculation and Water Vapor Transport on Dry Isentropes* FRE´ DE´ RIC LALIBERTE´ Department but different equivalent potential temperature. These mass fluxes, referred to here as the moist recirculation storm tracks. The poleward branch of the moist recirculation occurs at mean equivalent potential

  20. Analysis of non-adiabatic heat-recirculating combustors Paul D. Ronney

    E-print Network

    : Ronney, P. D., "Analysis of non-adiabatic heat-recirculating combustors," Combustion and Flame, Vol. 135Analysis of non-adiabatic heat-recirculating combustors Paul D. Ronney Department of Aerospace, pp. 421-439 (2003). #12;Analysis of non-adiabatic heat-recirculating combustors Paul D. Ronney

  1. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    USGS Publications Warehouse

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  2. Air recirculation and ventilation in the coastal regions of the Black Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina

    2013-06-01

    An initial investigation of recirculation is carried out for the coast of the Black Sea. The local mesoscale circulations (land-sea breezes, mountain and valley winds) in coastal areas are shown to be an additional risk factor in creating favorable conditions for air stagnation and accumulation of air pollutants in the surface atmosphere layer. Two types of annual recirculation patterns are revealed for northern and north-eastern coast of the Black Sea. Long-term changes in recirculation are investigated. It is shown that the recirculation parameter values remained quasistable until the mid-1970s. Since 1976-1977, steady intensification of recirculation in both winter and summer is identified.

  3. Modelling non-volcanic tremor, slow slip events and large earthquakes in the Guerrero subduction zone (Mexico) with space-variable frictional weakening and creep

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Ben-Zion, Yehuda; Campillo, Michel

    2015-07-01

    We explore with numerical simulations basic physical conditions leading to key observed features of non-volcanic tremor (NVT) in relation to slow slip events (SSEs) and earthquakes along the Guerrero segment of the Mexican subduction zone. To study the interactions between different modes of slip, and examine possible variations over timescales larger than the 15 year observational interval, we use a model with a planar interface governed by space-varying static/kinetic friction and dislocation creep in a 3-D elastic solid. A fault section with zero weakening during frictional slip fails in a mode corresponding to a `critical depinning transition' that produces generically many observed features of NVT. A patch with elevated creep coefficients represents a section with SSE. Simulations with small added stress oscillations are used to examine triggering of NVT by large remote earthquakes. The results reproduce well the basic observed properties of NVT and SSE in the Guerrero area, while pointing to complex interactions between large earthquake cycles, quasi-period SSE and scale-invariant NVT behaviour. The model simulations provide additional information on expected frequency-magnitude statistics, slip distributions and space-time properties of the different event types that may be tested with accumulation of future data. Some earthquake and NVT events near the opposite sides of the SSE patch have significant separation between their hypocentres and centroids. The rates of these events are correlated with the creep evolution in the SSE section. The results also suggest that aseismic deformation in the area may have transients on timescales larger than the observational period.

  4. Research on leachate recirculation from different types of landfills

    SciTech Connect

    Wang Qi . E-mail: wangqi@craes.org.cn; Matsufuji, Yasushi; Dong Lu; Huang Qifei; Hirano, Fumiaki; Tanaka, Ayako

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr} over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.

  5. A dented LH2 recirculation line is removed from Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers with United Space Alliance remove Shuttle Discovery's dented main propulsion system liquid hydrogen recirculation line. From left are James Stickley, George Atkins, and Todd Biddle. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  6. A dented LH2 recirculation line is removed from Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Changeout Room, Launch Pad 39B, United Space Alliance and NASA workers look at the replacement main propulsion system liquid hydrogen recirculation line (left) to be installed in Shuttle Discovery's aft compartment. At right is the dented line that has been removed. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  7. A replacement LH2 recirculation line before installation in Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A spare four-inch diameter LH2 recirculation line (shown in photo) will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  8. A replacement LH2 recirculation line before installation in Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Gary Hamilton (left) and James Stickley, both with United Space Alliance, check out a spare four-inch diameter LH2 recirculation line that will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  9. A replacement LH2 recirculation line before installation in Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    James Stickley (left) and Derry Dilby (right), who are with United Space Alliance, check over a spare four-inch diameter LH2 recirculation line that will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  10. Correction to 'Recirculation of energetic particles in Jupiter's magnetosphere'

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.; Van Allen, J. A.; Goertz, C. K.

    1978-01-01

    An error in Pioneer 11 data reduction software has, when present, caused a phase shift of 180 deg in the assignment of spacecraft roll angles. The corrected analysis of the pitch angle distributions of energetic particles in Jupiter's magnetosphere reveals significant proton anisotropies directed toward the planet in the southern hemisphere, contrary to the authors' (1975) original report. In the northern hemisphere, both proton and electron anisotropies are directed away from the planet, as reported previously. The revised data show that the claim of direct evidence for the hypothesis of recirculation of energetic particles in the Jovian magnetosphere is invalid. It is suggested that indirect evidence still supports the hypothesis, although the recirculation process must be weaker than originally envisioned and obscured by other processes.

  11. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    SciTech Connect

    Burjorjee, D. ); Gan, B. )

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops.

  12. Tracking studies in eRHIC energy-recovery recirculator

    SciTech Connect

    Meot, F.; Brooks, S.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  13. Control of synchrotron radiation effects during recirculation with bunch compression

    SciTech Connect

    Douglas, David; Benson, Stephen; Li, Rui; Roblin, Yves; Tennant, Christopher; Krafft, Geoffrey; Terzic, Balsa; Tsai, Cheng

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  14. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    SciTech Connect

    J. N. Corlett; W. A. Barletta; S. DeSantis; L. Doolittle; W. M. Fawley; M.A. Green; P. Heimann; S. Leone; S. Lidia; D. Li; A. Ratti; K. Robinson; R. Schoenlein; J. Staples; W. Wan; R. Wells; A.Wolski; A. Zholents; F. Parmigiani; M. Placidi; W. Pirkl; R. A. Rimmer; S. Wang

    2003-05-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

  15. A recirculating linac-based facility for ultrafast X-ray science

    SciTech Connect

    Corlett, J.N; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Placidi, M.; Pirkl, W.; Parmigiani, F.

    2003-05-06

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac, in particular the incorporation of EUV and soft x-ray production. The project has been named LUX - Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10 s fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short-pulse photon production in the 1-10 keV range. High-brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free-electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by four passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

  16. Journal of Marine Research, 54, 521-540,1996 The eastern boundary of the Gulf Stream recirculation

    E-print Network

    Gordon, Arnold L.

    Journal of Marine Research, 54, 521-540,1996 The eastern boundary of the Gulf Stream recirculation of the Gulf Stream recirculation cell, hence refer to it asthe recirculation front. The surface layer displays west of the recirculation front, and asubsurface salinity maximum to the east. In the lower thermocline

  17. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  18. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA)

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  19. Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry.

    PubMed

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Dovichi, Norman J

    2015-06-01

    A sulfonate-silica hybrid strong cation-exchange (SCX) monolith was synthesized at the proximal end of a capillary zone electrophoresis column and used for on-line solid-phase extraction (SPE) sample preconcentration. Sample was prepared in an acidic buffer and deposited onto the SCX-SPE monolith and eluted using a basic buffer. Electrophoresis was performed in an acidic buffer. This combination of buffers results in formation of a dynamic pH junction, which allows use of relatively large elution buffer volume while maintaining peak efficiency and resolution. All experiments were performed with a 50 µm ID capillary, a 1cm long SCX-SPE monolith, a 60cm long separation capillary, and a electrokinetically pumped nanospray interface. The volume of the capillary is 1.1 µL. By loading 21 µL of a 1×10(-7) M angiotensin II solution, an enrichment factor of 3000 compared to standard electrokinetic injection was achieved on this platform while retaining efficient electrophoretic performance (N=44,000 plates). The loading capacity of the sulfonate SCX hybrid monolith was determined to be ~15 pmol by frontal analysis with 10(-5) M angiotensin II. The system was also applied to the analysis of a 10(-4) mg/mL bovine serum albumin tryptic digest; the protein coverage was 12% and 11 peptides were identified. Finally, by loading 5.5 µL of a 10(-3) mg/mL E. coli digest, 109 proteins and 271 peptides were identified in a 20 min separation; the median separation efficiency generated by these peptides was 25,000 theoretical plates. PMID:25863379

  20. Laminar mixing in a small floating zone

    NASA Technical Reports Server (NTRS)

    Harriott, George M.

    1987-01-01

    The relationship between the flow and solute fields during steady mass transfer of a dilute component is analyzed for multi-cellular rotating flows in the floating zone process of semiconductor growth. When the recirculating flows are weak in relation to the rate of crystal growth, a closed-form solution clearly shows the link between the convection pattern in the melt and the solute distribution across the surface of the growing solid. In the limit of strong convection, finite element calculations demonstrate the tendency of the composition to become uniform over the majority of the melt. The solute segregation in the product crystal is greatest when the recirculating motion is comparable to the rate of crystal growth, and points to the danger in attempting to grow compositionally uniform materials from a nearly convectionless melt.

  1. The Southern Part of the Southern Volcanic Zone (SSVZ; 42-46S) of the Andes: History of Medium and Large Explosive Holocene Eruptions

    NASA Astrophysics Data System (ADS)

    Stern, C. R.; Naranjo, J. A.

    2008-12-01

    Chaitén volcano is one of 13 large volcanic centers, and numerous small cones, comprising the southern part of the Andean Southern Volcanic Zone (SVZ), that results from the subduction of the Nazca plate (at 7.8 cm/yr) between the landward extension of the Chiloé FZ at 42S and the Chile Rise - Trench triple junction at 46S. Chaitén is a rhyolite dome inside a 3 km diameter caldera located 15 km west of the larger Michinmahuida stratovolcano. Other stratovolcanoes in the SSVZ include Yate, Hornopirén, Corcovado, Yanteles, Melimoyu, Mentolat, Cay and Macá. Hudson volcano, the southernmost in the Southern SVZ, is a large 10 km caldera, while Huequi and Hualaihué - Cordón Cabrera are a group of small aligned cinder cones possibly related to a larger eroded volcanic complex. Prior to the May 2008 eruption of Chaitén, the only well documented historic eruptions in this segment of the Andean arc were the explosive eruption of Hudson in August 1991 (Naranjo et al. 1993), and two eruptions of Michinmahuida in 1742 and 1834-35. Tephra deposits provide evidence of 11 prehistoric explosive Holocene eruptions of the southernmost SSVZ Hudson volcano, including two large eruptions near <6700 and <3600 BP (Naranjo and Stern 1998). The 6700 BP eruption produced greater than 18 km3 of andesitic tephra, possibly the largest Holocene eruption in all the southern Andes. Although Hudson is clearly the most active of the Southern SVZ volcanoes in terms of both volume and frequency of explosive eruptions, tephra deposits indicate that seven of the other SSVZ volcanoes, including Chaitén, also have had medium to large Holocene explosive eruptions (Naranjo and Stern 2004). Three of these eruptions were from Corcovado at approximately <9190, <7980 and <6870 BP, one from Yanteles at <9180 BP, two from Melimoyu at <2740 and <1750 BP, one from Mentolat at <6960 and one from Macá at <1540 BP. Two other eruptions, at <6350 and <3820 BP, we interpret as having been produced by Michinmahuida, because no evidence of tephra from this eruption is found around the Chaitén volcano. The younger and larger of these eruptions (MIC2) generated rhyolites similar in composition to those erupted from Chaitén, suggesting some possible relation between the Michinmahuida and Chaitén magma plumbing systems. Chaitén erupted at approximately <9370 BP based on dating of charcoal within the pyroclastic flow deposit produced by this eruption. This deposit decreases from 3.5 m thick 10 km north of the volcano to 1.5 m thick 30 km north of the volcano, and is covered by a 1.65 to 0.3 m thick tehra fall deposit of rhyolite pumice capped by a thin layer of dark mafic scoria. We consider the pre-May 2008 rhyolite obsidian dome to have formed at this time, or at least before 5610 BP, the age of pre-historic occupation sites with obsidian artifacts fashioned from this obsidian (Stern et al. 2002). Both the thickness of this deposit and the size of the dome in the crater prior to the May 2008 eruption suggest that the current event is not yet as large as the 9370 BP event, which ended with the eruption of a more mafic magma. Thus the current eruption cycle may have a way to go yet before it is complete. Naranjo et al. 1993, Boletin No 44, SERNAGEOMIN, 50 p. Naranjo and Stern 1998, Bull Volcanology 59: 291-306. Naranjo and Stern 2004, Revista Geologica de Chile 31: 225-240. Stern et al. 2002, Anales del Intituto de la Patagonia 30: 167-174.

  2. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet.

  3. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  4. A study of NO{sub x} reduction by fuel injection recirculation. Final report, January 1995--June 1996

    SciTech Connect

    Feese, J.J.; Turns, S.R.

    1996-08-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments in natural-gas fired boilers have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of the present investigation is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR by studying laminar diffusion flames. The purpose of studying laminar flames is to isolate chemical effects from the effects of turbulent mixing and heat transfer, which are inherent in practical boilers. The results of both the numerical simulations and the experiments suggest that, although molecular transport and chemical kinetic phenomena are affected by the location of diluent addition depending on flow conditions, the greater effectiveness of FIR over FGR in practical applications may result from differences in turbulent mixing and heat transfer. Further research is required to understand how differences in diluent-addition location affect NO{sub x} production in turbulent flames. The present study, however, provides an underlying basis for understanding how flow conditions can affect flame chemistry. 51 figs., 7 tabs.

  5. Investigation of groundwater recirculation for the removal of RDX from the Pantex Plant perched aquifer

    SciTech Connect

    Woods, A.L.; Barnes, D.L.; Boles, K.M.; Charbeneau, R.J.; Black, S.; Rainwater, K.

    1998-07-01

    The Pantex Plant near Amarillo, Texas, is a US Department of Energy (DOE) facility that has been in operation since 1942. Past and present operations at Pantex include the creation of chemical high explosives components for nuclear weapons and assembly and disassembly of nuclear weapons. The Pantex Plant is underlain by the Ogallala aquifer, which in this area, consists of the main water-bearing unit and a perched water zone. These are separated by a fine-grained zone of low permeability. Multiple contaminant plumes containing high explosive (HE) compounds have been detected in the perched aquifer beneath the plant. The occurrence of these contaminants is the result of past waste disposal practices at the facility. RDX is an HE compound, which has been detected in the groundwater of the perched aquifer at significant concentrations. A pilot-scale, dual-phase extraction treatment system has been installed at one location at the plant, east of Zone 12, to test the effectiveness of such a system on the removal of these contaminants from the subsurface. A tracer test using a conservative tracer, bromide (Br), was conducted at the treatment site in 1996. In addition to the bromide, RDX and water elevations in the aquifer were monitored. Using data from the tracer test and other relevant data from the investigations at Pantex, flow and contaminant transport in the perched aquifer were simulated with groundwater models. The flow was modeled using MODFLOW and the transport of contaminants in the aqueous phase was modeled using MT3D. Modeling the perched aquifer had been conducted to characterize the flow in the perched aquifer; estimate RDX retardation in the perched aquifer; and evaluate the use of groundwater re-circulation to enhance the extraction of RDX from the perched aquifer.

  6. Numerical Model of Turbulence, Sediment Transport, and Sediment Cover in a Large Canyon-Bound River

    NASA Astrophysics Data System (ADS)

    Alvarez, L. V.; Schmeeckle, M. W.

    2013-12-01

    The Colorado River in Grand Canyon is confined by bedrock and coarse-grained sediments. Finer grain sizes are supply limited, and sandbars primarily occur in lateral separation eddies downstream of coarse-grained tributary debris fans. These sandbars are important resources for native fish, recreational boaters, and as a source of aeolian transport preventing the erosion of archaeological resources by gully extension. Relatively accurate prediction of deposition and, especially, erosion of these sandbar beaches has proven difficult using two- and three-dimensional, time-averaged morphodynamic models. We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied further from the bed and banks. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. The model calculates the entrainment of five grain sizes at every time step using a mixing layer model. Where the mixing layer depth becomes zero, the net entrainment is zero or negative. As such, the model is able to predict the exposure and burial of bedrock and coarse-grained surfaces by fine-grained sediments. A separate program was written to automatically construct the computational domain between the water surface and a triangulated surface of a digital elevation model of the given river reach. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Surprisingly, cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs near the reattachment zone and is relatively continuous in time. While, the export of sediment to the main channel by the return current occurs in pulses. Pulsation of the strength of the return current becomes a key factor to determine the rates of erosion and deposition in the main recirculation zone.

  7. Method and apparatus for affecting a recirculation zone in a cross flow

    SciTech Connect

    Bathina, Mahesh; Singh, Ramanand

    2012-07-17

    Disclosed is a cross flow apparatus including a surface and at least one outlet located at the surface. The cross flow apparatus further includes at least one guide at the surface configured to direct an intersecting flow flowing across the surface and increase a velocity of a cross flow being expelled from the at least one outlet downstream from the at least one outlet.

  8. On part load recirculation of pumps and fans-a generic study

    NASA Astrophysics Data System (ADS)

    Stapp, D.; Pelz, P. F.; Loens, J. M.

    2013-12-01

    At part load in turbo machinery, there is a boundary layer separation resulting in a large vortex structure called part load recirculation. Up to now the influence of Reynolds number, relative roughness and degree of turbulence on this important stability limit of machines is not sufficiently understood. To shed some light onto these phenomena, in this work the simplest "machine" is considered by numerical and experimental studies. The apparatus we examine is a circular pipe at rest followed by a rotating co-axial pipe segment. By doing so, we have a generic test case which serves to study the critical flow number, defined by the onset of the separation and formation of a ring vortex.

  9. Liquid hydrogen and liquid oxygen feedline passive recirculation analysis

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly Ann; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.

    1993-01-01

    The primary goal of the National Launch System (NLS) program was to design an operationally efficient, highly reliable vehicle with minimal recurring launch costs. To achieve this goal, trade studies of key main propulsion subsystems were performed to specify vehicle design requirements. These requirements include the use of passive recirculation to thermally condition the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant feed systems and Space Transportation Main Engine (STME) fuel pumps. Rockwell International (RI) proposed a joint independent research and development (JIRAD) program with Marshall Space Flight Center (MSFC) to study the LH2 feed system passive recirculation concept. The testing was started in July 1992 and completed in November 1992. Vertical and sloped feedline designs were used. An engine simulator was attached at the bottom of the feedline. This simulator had strip heaters that were set to equal the corresponding heat input from different engines. A computer program is currently being used to analyze the passive recirculation concept in the LH2 vertical feedline tests. Four tests, where the heater setting is the independent variable, were chosen. While the JIRAD with RI was underway, General Dynamics Space Systems (GDSS) proposed a JIRAD with MSFC to explore passive recirculation in the LO2 feed system. Liquid nitrogen (LN2) is being used instead of LO2 for safety and economic concerns. To date, three sets of calibration tests have been completed on the sloped LN2 test article. The environmental heat was calculated from the calibration tests in which the strip heaters were turned off. During the LH2 testing, the environmental heat was assumed to be constant. Therefore, the total heat was equal to the environmental heat flux plus the heater input. However, the first two sets of LN2 calibration tests have shown that the environmental heat flux varies with heater input. A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) model is currently being built to determine if this variation in environmental heat is due to a change in the wall temperature. During the third set of calibration tests, a faulty reference junction was found. Based on this anomaly with the reference junction, the heat flux calculations from the first two calibration sets are now considered questionable.

  10. Liquid hydrogen and liquid oxygen feedline passive recirculation analysis

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly A.; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.

    1993-01-01

    During the National Launch System design phase, a computer code (FEEDLINE) was written to analyze the feasibility of using passive recirculation propellant conditioning for the LH2 and LO2 feed systems. The FEEDLINE code was employed to provide temperature profiles to the STME design team. The team used the temperature profiles to determine if the required Space Transportation Main Engine net positive suction pressure was met. One desired outcome of the LH2 testing was to determine if modifications are required for the FEEDLINE code. The initial LN2 calibration tests indicate that the environmental heat into the system decreases with increasing heater input.

  11. Anammox bacteria in different compartments of recirculating aquaculture systems.

    PubMed

    van Kessel, Maartje A H J; Harhangi, Harry R; Flik, Gert; Jetten, Mike S M; Klaren, Peter H M; Op den Camp, Huub J M

    2011-12-01

    Strict environmental restrictions force the aquaculture industry to guarantee optimal water quality for fish production in a sustainable manner. The implementation of anammox (anaerobic ammonium oxidation) in biofilters would result in the conversion of both ammonium and nitrite (both toxic to aquatic animals) into harmless dinitrogen gas. Both marine and freshwater aquaculture systems contain populations of anammox bacteria. These bacteria are also present in the faeces of freshwater and marine fish. Interestingly, a new planctomycete species appears to be present in these recirculation systems too. Further exploitation of anammox bacteria in different compartments of aquaculture systems can lead to a more environmentally friendly aquaculture practice. PMID:22103532

  12. Lymphopoiesis and lymphocyte recirculation in the sheep fetus

    PubMed Central

    1976-01-01

    The production and the circulation of lymphocytes has been examined in the sheep fetus where neither foreign antigen nor immunoglobulins occur. It was found that as the lymphoid organs increased in size during fetal life, the numbers and the output of lymphocytes in the thoracic duct lymph increased. The recirculating pool of lymphocytes was estimated to be 5.5 +/- 1.5 X 10(8) cells in fetal lambs 95-100 days of age, 5.7 +/- 1.2 X 10(9) cells in fetuses 130-135 days of age, and 1.2 +/0 9.3 X 10(10) cells in fetuses near to term. The rate of addition of lymphocytes to the recirculating pool was 3.2 +/- 1.9 X 10(6) cells/h in fetuses of 100 days and 3.4 +/- 0.9 X 10(7) cells/h in fetuses of 130 days of age. Lymphocytes recirculated from blood to lymph in fetuses; labeled cells injected into the blood stream reappeared in the thoracic duct lymph promptly and reached maximum levels around 12-18 h after they were injected. Labeled lymphocytes were detected subsequently in greatest numbers in the lymph nodes, particularly in the mesenteric lymph nodes and in the interfollicular areas of the Peyer's patches. Chronic drainage of thoracic duct lymph from fetuses in utero for periods of up to 36 days had no obvious effects on the growth or development of the fetus and only minimal effects on the content of lymphocytes in the various lymphoid tissues even though the number of cells in the blood and lymph were reduced to between 20-30% of normal levels. Thymectomy done in fetuses about 2 mo befor cannulation of the thoracic duct reduced the output of cells in the thoracic duct to about 25% of normal levels and caused a significant reduction in the content of lymphocytes in the various lymphoid tissues. Thymectomized fetal lambs subjected to thoracic duct drainage for periods up to 2 wk in utero had a similar complement of lymphocytes in their lymphoid tissues to intact thymectomized fetal lambs. Lymphocytes obtained from the thoracic duct lymph of lambs thymectomized 2 mo previously recirculated from blood to lymph when they were injected intravenously, although they did this at a significantly slower rate than did lymphocytes from normal lambs. PMID:1244417

  13. Method of controlling exhaust-gas recirculation in internal combustion engine

    SciTech Connect

    Narasaka, S.; Kishida, E.; Otsuka, K.

    1984-10-23

    A method of controlling the recirculation of exhaust gases in an internal combustion engine provided with an exhaust-gas recirculation system by which the exhaust gases emitted from the exhaust manifold are partially recirculated into the intake manifold of the engine, comprising cutting off the recirculation of exhaust gases to the intake manifold of the engine when the engine is being warmed up, recirculating exhaust gases to the intake manifold of the engine at a rate variable in a predetermined required exhaust-gas recirculation ratio to the rate at which air is circulated to the intake manifold of the engine after the engine is warmed up, and recirculating exhaust gases to the intake manifold of the engine with a reduced exhaust-gas recirculation ratio lower than said required exhaust-gas recirculation ratio during a transient period of time intervening the conditions in which the engine is being warmed up and the conditions in which the engine has been warmed up.

  14. Recirculation-aeration: Bibliography for aquaculture. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Perschbacher, P.W.; Powell, R.V.; Freeman, D.W.; Lorio, W.J.; Hanfman, D.T.

    1993-08-01

    The bibliography includes literature citations through 1992 related to water recirculation and aeration in aquaculture. The focus is on filtration, aeration, and circulation techniques in various aquaculture situations.

  15. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  16. Continuous hydroponic wheat production using a recirculating system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  17. Effect of irradiation on nonlinear optical recirculation cavity performance

    NASA Astrophysics Data System (ADS)

    Saitta, M.; Tikhoplav, R.; Jovanovic, I.

    2012-02-01

    In applications such as the production of hydrogen ions for accelerators in spallation neutron sources, charge stripping of hydrogen ions using high-power lasers represents an attractive technical approach. The use of laser-ion interaction in conjunction with a laser recirculation cavity holds promise for improved efficiency, but the high-radiation environment raises concerns about the longevity of the key components of such a system, especially the nonlinear crystal used for frequency conversion. We present the results of an in-reactor irradiation experiment in which a sample beta-barium borate crystal has been irradiated with fast neutrons and gamma-rays, accompanied with the Monte Carlo analysis of the irradiation dose and its comparison with typical conditions at the Spallation Neutron Source at Oak Ridge National Laboratory. The results suggest that our design of the laser recirculation cavity exhibits a radiation hardness consistent with maintaining enhancement factors of the order of 10 over >10 years, but a more detailed experimental study is needed to investigate the radiation hardness of cavity designs exhibiting greater enhancement factors.

  18. High-energy Picosecond Laser Pulse Recirculation for Compton Scattering

    SciTech Connect

    Jovanovic, I; Anderson, S G; Betts, S M; Brown, C; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; McNabb, D P; Messerly, M; Pruet, J; Shverdin, M Y; Siders, C W; Tremaine, A M; Barty, C J

    2007-06-12

    Frequency upconversion of laser-generated photons by inverse Compton scattering for applications such as nuclear spectroscopy and gamma-gamma collider concepts on the future ILC would benefit from an increase of average source brightness. The primary obstacle to higher average brightness is the relatively small Thomson scattering cross section. It has been proposed that this limitation can be partially overcome by use of laser pulse recirculation. The traditional approach to laser recirculation entails resonant coupling of low-energy pulse train to a cavity through a partially reflective mirror. Here we present an alternative, passive approach that is akin to 'burst-mode' operation and does not require interferometric alignment accuracy. Injection of a short and energetic laser pulse is achieved by placing a thin frequency converter, such as a nonlinear optical crystal, into the cavity in the path of the incident laser pulse. This method leads to the increase of x-ray/gamma-ray energy proportional to the increase in photon energy in frequency conversion. Furthermore, frequency tunability can be achieved by utilizing parametric amplifier in place of the frequency converter.

  19. Interactive method for computation of viscous flow with recirculation

    NASA Technical Reports Server (NTRS)

    Brandeis, J.; Rom, J.

    1981-01-01

    An interactive method is proposed for the solution of two-dimensional, laminar flow fields with identifiable regions of recirculation, such as the shear-layer-driven cavity flow. The method treats the flow field as composed of two regions, with an appropriate mathematical model adopted for each region. The shear layer is computed by the compressible boundary layer equations, and the slowly recirculating flow by the incompressible Navier-Stokes equations. The flow field is solved iteratively by matching the local solutions in the two regions. For this purpose a new matching method utilizing an overlap between the two computational regions is developed, and shown to be most satisfactory. Matching of the two velocity components, as well as the change in velocity with respect to depth is amply accomplished using the present approach, and the stagnation points corresponding to separation and reattachment of the dividing streamline are computed as part of the interactive solution. The interactive method is applied to the test problem of a shear layer driven cavity. The computational results are used to show the validity and applicability of the present approach.

  20. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2002-01-01

    A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.

  1. Air recirculation and sick building syndrome: a blinded crossover trial.

    PubMed Central

    Jaakkola, J J; Tuomaala, P; Seppänen, O

    1994-01-01

    OBJECTIVE. This study tested the hypothesis that recirculated air in mechanically ventilated buildings causes symptoms commonly referred to as the sick building syndrome and perceptions of poor indoor air quality. METHODS. A blinded, four-period crossover trial was carried out in two identical buildings, contrasting 70% return air (index phase) with 0% of return air (reference phase). Each period lasted 1 work-week. The study population comprised 75 workers who had reported symptoms related to the work environment or perceptions of poor indoor air quality. Participants reported their ratings of symptoms, their perceptions, and related information in a daily diary. The outcome criteria included aggregative symptom scores for mucosal irritation, skin reaction, allergic reaction, and general symptoms formed of ratings of component symptoms. Perceptions of unpleasant odor, stuffiness, or dustiness were additional outcome criteria. RESULTS. All 75 participants returned their diaries. For no symptoms did the scores differ between the two phases more than could be expected by chance. Mean rating of unpleasant odor was significantly smaller during the index phase, but mean ratings of dustiness and stuffiness did not differ materially between the two phases. CONCLUSIONS. Our results suggest that 70% recirculated air, when accompanied by an adequate intake of outdoor air, can be used without causing adverse effects. PMID:8129059

  2. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System.

    PubMed

    Peters, Thomas M; Sawvel, Russell A; Park, Jae Hong; Anthony, T Renée

    2015-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 ?m was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 ?m) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 ?m). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a companion manuscript, this article provides evidence that an SDC represents a cost-effective solution to improve air quality in agricultural settings. PMID:25955507

  3. Displacement of large-scale open solar magnetic fields from the zone of active longitudes and the heliospheric storm of November 3-10, 2004: 1. The field dynamics and solar activity

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.

    2010-06-01

    The dynamics of the large-scale open field and solar activity at the second stage of the MHD process, including the origination and disappearance of the four-sector structure during the decline phase of cycle 23 (the stage when the blocking field is displaced from the main zone of active longitudes), has been considered. Extremely fast changes in the scales of one of new sectors (from an extremely small sector (“singularity”) to a usual sector that originated after the uniform expansion (“explosion”) of singularity with a “kick” into the zone of active longitudes, westward motion of the MHD disturbance front in the direction of solar rotation, and formation of an active quasi-rigidly corotating sector boundary responsible for the heliospheric storm of November 2004) have been detected in the field dynamics. It has been indicated that a very powerful group of sunspots AR 10656 (which disappeared after the explosion) with an area of up to 1540 ppmh (part per million hemisphere), a considerable deficit of the external energy release, and zero geoeffectiveness in spite of the closeness to the Earth helioprojection existed within singularity. It has been assumed that the energy escaped from this group with effort owing to the interaction between coronal ejections and narrow sector walls (singularity), and a considerable part of the energy was released in the outer layers of the convective zone, as a result of which singularity exploded and this explosion was accompanied by the above effects in the large-scale field and solar activity.

  4. A multiple-segment recirculating flume to quantify chemical transport processes in drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recirculating flumes have been used to quantify chemical transport between the soil (or sediment) and the flowing water. Some researchers used recirculating flumes to simulate chemical transport processes occurring in flowing streams or drainage ditches. When we examined the theoretical basis of the...

  5. Air Charge Control for Turbocharged Spark Ignition Engines with Internal Exhaust Gas Recirculation

    E-print Network

    Stefanopoulou, Anna

    Air Charge Control for Turbocharged Spark Ignition Engines with Internal Exhaust Gas Recirculation an effort to minimize the detri- mental effects of high levels of exhaust gas recirculation (EGR ignition direct injection en- gine equipped with intake and exhaust variable camshafts. The control

  6. NITROGEN REMOVAL FOR ON-SITE SEWAGE DISPOSAL: A RECIRCULATING SAND FILTER/ROCK TANK DESIGN

    E-print Network

    Gold, Art

    NITROGEN REMOVAL FOR ON-SITE SEWAGE DISPOSAL: A RECIRCULATING SAND FILTER/ROCK TANK DESIGN, C. G. McKiel ABSTRACT: The nitrogen removal abilities of recirculating sand filter/rock tank (RSF in buried rock tanks using three different carbon sources. With raw septic tank effluent as the carbon

  7. Identification of optimum potassium nutrition of greenhouse plants grown in recirculating subirrigation 

    E-print Network

    Blessington, Trisha R.

    2002-01-01

    of this research was to determine the optimum potassium nutrition of greenhouse plants grown in recirculating subirrigation. New Guinea impatiens 'Ovation Salmon Pink Swirl' were grown in recirculating subirrigation trays using 0 -12 mM K, with constant 1.5 mM P...

  8. REAL-TIME PLUME DETECTION IN URBAN ZONES USING NETWORKED Tracy Kijewski-Correa, Jeffrey Talley

    E-print Network

    Haenggi, Martin

    , the demonstration to be conducted on the campus of the University of Notre Dame, and the extensions of these concepts to other biological hazards such as E.Coli contaminations in drinking water supplies. INTRODUCTION buildings, convective heating, complex flow patterns in urban canyons and recirculation zones that trap

  9. Timing of large earthquakes since A.D. 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California

    USGS Publications Warehouse

    Fumal, T.E.; Rymer, M.J.; Seitz, G.G.

    2002-01-01

    Paleoseismic investigations across the Mission Creek strand of the San Andreas fault at Thousand Palms Oasis indicate that four and probably five surface-rupturing earthquakes occurred during the past 1200 years. Calendar age estimates for these earthquakes are based on a chronological model that incorporates radio-carbon dates from 18 in situ burn layers and stratigraphic ordering constraints. These five earthquakes occurred in about A.D. 825 (770-890) (mean, 95% range), A.D. 982 (840-1150), A.D. 1231 (1170-1290), A.D. 1502 (1450-1555), and after a date in the range of A.D. 1520-1680. The most recent surface-rupturing earthquake at Thousand Palms is likely the same as the A.D. 1676 ?? 35 event at Indio reported by Sieh and Williams (1990). Each of the past five earthquakes recorded on the San Andreas fault in the Coachella Valley strongly overlaps in time with an event at the Wrightwood paleoseismic site, about 120 km northwest of Thousand Palms Oasis. Correlation of events between these two sites suggests that at least the southernmost 200 km of the San Andreas fault zone may have ruptured in each earthquake. The average repeat time for surface-rupturing earthquakes on the San Andreas fault in the Coachella Valley is 215 ?? 25 years, whereas the elapsed time since the most recent event is 326 ?? 35 years. This suggests the southernmost San Andreas fault zone likely is very near failure. The Thousand Palms Oasis site is underlain by a series of six channels cut and filled since about A.D. 800 that cross the fault at high angles. A channel margin about 900 years old is offset right laterally 2.0 ?? 0.5 m, indicating a slip rate of 4 ?? 2 mm/yr. This slip rate is low relative to geodetic and other geologic slip rate estimates (26 ?? 2 mm/yr and about 23-35 mm/yr, respectively) on the southernmost San Andreas fault zone, possibly because (1) the site is located in a small step-over in the fault trace and so the rate is not be representative of the Mission Creek fault, (2) slip is partitioned northward from the San Andreas fault and into the eastern California shear zone, and/or (3) slip is partitioned onto the Banning strand of the San Andreas fault zone.

  10. Method of detecting a fault of an exhaust gas recirculation system

    SciTech Connect

    Hashimoto, T.; Takahashi, A.; Imaizuma, T.; Saito, S.; Tanaka, H.; Jimbo, T

    1989-05-30

    This patent describes a method of detecting a fault of an exhaust gas recirculation system of an internal combustion engine, wherein a temperature relating to a temperature of the exhaust gas recirculating through the exhaust gas recirculation system is detected when the exhaust gas recirculation system is in a condition in which the system should be operated to return part of the exhaust gas of the engine to an intake passage, and it is detected that the exhaust gas recirculation system in defective, when the detected temperature is lower than a fault discriminating value. The method consists of: detecting a condition of air to be sucked into the engine, and setting the fault discriminating value in accordance with the detected condition of air.

  11. Transverse Recirculating-BBU Threshold Current in the Cornell x-ray Changsheng Song and Georg H. Hoffstaetter

    E-print Network

    Hoffstaetter, Georg

    Transverse Recirculating-BBU Threshold Current in the Cornell x-ray ERL Changsheng Song and Georg H by the transverse recirculating beam-breakup instability (BBU). A one-dimensional analysis of BBU is possible

  12. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.

    1994-11-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  13. Releasing behavior of copper in recirculated bioreactor landfill.

    PubMed

    Long, Yu-Yang; Hu, Li-Fang; Jiang, Chen-Jing; Fang, Cheng-Ran; Wang, Feng-Ping; Shen, Dong-Sheng

    2009-04-01

    The purpose of this study was to determine the releasing behavior of copper in municipal solid waste (MSW) in landfill with respect to refuse and leachate as an inseparable system. Two simulated bioreactor landfills, one with leachate recirculation and the other without, were operated in room temperature for 320 days. Copper in refuse showed behaviors of staggered migration and retention, which corresponded with the degradation process of landfill obviously. The significant different amounts of Cu2+ leached out from refuse into leachate of two landfills were 24.74 mg and 118.53 mg after 320 days' operation, respectively. It also reflected the releasing behavior of copper in landfill refuse at different stage accordingly. The results confirmed that the refuse in landfill had high potential of secondary pollution after closure. PMID:19119001

  14. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  15. Some Observations on Exhaust Recirculation from Clustered Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1966-01-01

    A short-duration rocket testing technique which exactly duplicates the combustion flows of multi-engine rocket boosters at high altitudes is described. The application of this technique to the investigation of the reverse flow characteristics of a 4-engine rocket cluster model is discussed. The use of a comparatively new diagnostic tool, the electron beam density probe, in mapping the recirculating flow field of a rocket cluster is described and experimental density results presented. Finally, the use of a reflection plane for the examination of reverse flow phenomena, whereby a plane of symmetry is replaced by a solid surface on which measurements may be made,is evaluated and experimental data presented.

  16. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  17. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  18. Energy stability in recirculating, energy-recovering linacs

    SciTech Connect

    Merminga, L.; Bisognano, J.J.; Delayen, J.R.

    1996-07-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M{sub 56}, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include amplitude and phase feedback, with the transfer function in the feedback path presently modeled as a low-pass filter. The feedback gain and bandwidth required for stability are calculated for the high power UV FEL proposed for construction at CEBAF. 4 refs.

  19. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  20. Successful water reuse in open recirculating cooling systems

    SciTech Connect

    Vaska, M.; Lee, B.

    1994-12-31

    Water reuse in open recirculating cooling water systems is becoming increasingly prevalent in industry. Reuse can incorporate a number of varied approaches with the primary goal being water conservation. Market forces driving this trend include scarcity of fresh water makeup sources and higher costs associated with pretreatment of natural waters. Utilization of reuse water for cooling tower makeup has especially detrimental effects on corrosion and deposit rates. Additionally, once the reuse water is cycled and treated with inhibitors, dispersants and microbiocides, acceptability for discharge to a public waterway can be a concern. The task for water treatment suppliers is to guide industry in the feasibility and procedures for successfully achieving these goals. This paper focuses particularly on reuse of municipal wastewater for cooling tower makeup and explores techniques which have been found especially effective. Case histories are described where these concepts have been successfully applied in practice.

  1. Traffic and proliferative responses of recirculating lymphocytes in fetal calves.

    PubMed Central

    Hein, W R; Shelton, J N; Simpson-Morgan, M W; Morris, B

    1988-01-01

    The thoracic duct or efferent prescapular duct was cannulated in four fetal calves aged 121-259 days post-conception. The duration of lymph flow ranged from 2 to 20 days and the mean flow rates sustained over these collection periods varied from 5.4 to 48.8 ml/hr. Lymphocyte output ranged from 4.4 x 10(6) cells/hr in thoracic duct lymph from a 121-day fetus to 3.9 x 10(8) cells/hr in efferent prescapular lymph from a 259-day fetus. The circulating lymphocyte pool in fetal calves of about 120 and 190 days gestational age was calculated to contain, respectively, 4 x 10(8) cells and 2 x 10(10) cells. The proportion of lymphocytes bearing surface immunoglobulin detected in fetal lymph ranged from 2.1% to 8.7%. Recirculating lymphocytes from fetal calves produced strong proliferative responses when stimulated by T-cell mitogens but responded poorly to B-cell mitogens. Fetal lymphocytes also responded to stimulation by allogeneic cells and stimulated other cells to proliferate during mixed lymphocyte culture. When stimulated with Con A, fetal lymphocytes secreted IL-2 to a degree that was indistinguishable from the secretory behaviour of lymphocytes from adult animals. The results presented in this paper show that chronic lymphatic fistulae can be established successfully in fetal calves to give access to recirculating lymphocytes. This provides a new experimental approach for studying the development of the bovine immune system. PMID:2971606

  2. Response of the Inertial Recirculation to Intensified Stratification in a Two-Layer Quasigeostrophic Ocean Circulation Model

    E-print Network

    Qiu, Bo

    Response of the Inertial Recirculation to Intensified Stratification in a Two (Capotondi et al.; Cravatte et al.; Deser et al., etc.). The response of the recirculation, which the different dynamic states on multidecadal time scales. 1. Introduction The strong recirculation, which flanks

  3. Aalborg Universitet Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat

    E-print Network

    Berning, Torsten

    Aalborg Universitet Influence of anodic gas recirculation on solid oxide fuel cells in a micro. (2014). Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat.aau.dk on: juli 08, 2015 #12;Original Research Article Influence of anodic gas recirculation on solid oxide

  4. Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney

    E-print Network

    1 Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney@usc.edu Colloquium topic area: 12. New Technology Concepts Keywords: Micro-combustion, Heat-recirculating combustors, Extinction limits Shortened running title: Numerical Modeling of Heat-Recirculating Combustors Word count

  5. Profiling float measurements of the recirculation gyre south of the Kuroshio Extension in May to November 2004

    E-print Network

    Qiu, Bo

    Profiling float measurements of the recirculation gyre south of the Kuroshio Extension in May deployed in the recirculation gyre (RG) region south of the Kuroshio Extension (KE). With the KE and RG . Citation: Chen, S., B. Qiu, and P. Hacker (2007), Profiling float measurements of the recirculation gyre

  6. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control

    E-print Network

    with electrolyte recirculation for pH control Youpeng Qu a , Yujie Feng a, , Xin Wang b , Jia Liu a , Jiangwei Lv November 2011 Keywords: Microbial desalination cell Recirculation pH imbalance a b s t r a c between the anode and cathode chambers. This recirculation avoided pH imbalances that could inhibit

  7. Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone

    USGS Publications Warehouse

    Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.

    1996-01-01

    Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.

  8. Simultaneous methanogenesis and denitrification of aniline wastewater by using anaerobic-aerobic biofilm system with recirculation.

    PubMed

    Chen, Sheng; Sun, Dezhi; Chung, Jong-Shik

    2009-09-30

    Wastewater containing highly concentrated nitrogenous and aromatic compounds, such as aniline, is difficult to degrade and very toxic to microorganisms, especially to nitrifier. In order to remove both carbon and nitrogen from aniline wastewater, recently two biofilm reactors equipped with anaerobic-aerobic cycle and internal recirculation have demonstrated some potential in treating the wastewater. In such system, ammonification, methanogenesis and denitrification reactions occurred simultaneously in one anaerobic reactor, followed by COD removal and nitrification in the aerobic reactor. The effect of recirculation ratio on COD and nitrogen removal using such reactor arrangement was therefore investigated in the present work. The results showed that recirculation had little impact on the overall COD removal or denitrification activity in the anaerobic reactor at any tested ratio, 96-98% of overall COD removal efficiency was achieved with a final effluent COD value below 200mg/L. But nitrification and TN removal were strongly affected by recirculation. The nitrification rate reached a maximum of 0.48 kg N/(m(3)d) at recirculation ratio of 1 and complete nitrification was achieved at the recirculation ratios over 2. TN removal efficiency increased continuously and a sharp reduction of sludge production in the system was observed with increasing recirculation. PMID:19406570

  9. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  10. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. PMID:24140194

  11. Coastal and synoptic recirculation affecting air pollutants dispersion: A numerical study

    NASA Astrophysics Data System (ADS)

    Levy, Ilan; Mahrer, Yizhak; Dayan, Uri

    This study examines the spatial distribution of potential recirculation over the East Mediterranean Sea, and the combined effect of synoptic and meso-scale recirculations on plume dispersion in the region. For this purpose, three case studies are performed by the RAMS-HYPACT modeling system, each for a different synoptic scale flow pattern. Both a quantitative measure of the recirculation potential at each grid cell and particle dispersion are calculated. Although the recirculation index is an Eulerian quantity for the wind field and plume dispersion is a manifestation of the Lagrangian behavior of the wind, good correlation is found between the two. Several locations are identified as having high recirculation potential, including southern Cyprus, the coasts of Israel and Lebanon, the eastern slopes of the Judean Mountains and the Haifa Bay in particular. In the latter location, high recirculation potential could be explained by strong interaction between the land-sea surfaces, curvature of the bay and proximity of the Carmel ridge. It is shown that the synoptic and meso-scale recirculations may, under certain conditions, act together and at the same time in determining particle distribution. Under weak synoptic scale flows, particles are recirculated over the entire East Mediterranean Sea basin, returning onshore after a period of 2-3 days to join freshly emitted particles. At the same time, near-shore land-sea breeze effects cause particles to recirculate on smaller time scales of less then one day, sometimes passing as much as three times over the same airshed. A single elevated emission source is shown to have the potential to impair air quality at a coastal strip as long as 100-200 km upon returning onshore.

  12. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications.

    PubMed

    Britten, Jerald A; Dixit, Shamusundar N; DeBruyckere, Michael; Steadfast, Daniel; Hackett, James; Farmer, Brandon; Poe, Garrett; Patrick, Brian; Atcheson, Paul D; Domber, Jeanette L; Seltzer, Aaron

    2014-04-10

    The ability to fabricate 4-level diffractive structures with 1 µm critical dimensions has been demonstrated for the creation of fast (?f/3.1 at 633 nm) Fresnel zone lenses (FZLs) with >60% diffraction efficiency into the -1 focusing order and nearly complete suppression of 0 and +1 orders. This is done using tooling capable of producing optics with 800 mm apertures. A 4-level grating fabricated in glass at 300 mm aperture is shown to have <15??nm rms holographic phase error. Glass FZLs have also been used as mandrels for casting zero-thermal-expansion, 20 µm thick polymer films created with the 4-level structure as a route to mass replication of efficient diffractive membranes for ultralight segmented space-based telescope applications. PMID:24787399

  13. Design of a computerized, temperature-controlled, recirculating aquaria system

    USGS Publications Warehouse

    Widmer, A.M.; Carveth, C.J.; Keffler, J.W.; Bonar, Scott A.

    2006-01-01

    We built a recirculating aquaria system with computerized temperature control to maintain static temperatures, increase temperatures 1 ??C/day, and maintain diel temperature fluctuations up to 10 ??C. A LabVIEW program compared the temperature recorded by thermocouples in fish tanks to a desired set temperature and then calculated the amount of hot or cold water to add to tanks to reach or maintain the desired temperature. Intellifaucet?? three-way mixing valves controlled temperature of the input water and ensured that all fish tanks had the same turnover rate. The system was analyzed over a period of 50 days and was fully functional for 96% of that time. Six different temperature treatments were run simultaneously in 18, 72 L fish tanks and temperatures stayed within 0.5 ??C of set temperature. We used the system to determine the upper temperature tolerance of fishes, but it could be used in aquaculture, ecological studies, or other aquatic work where temperature control is required. ?? 2005 Elsevier B.V. All rights reserved.

  14. Efficiency of an AMTEC recirculating test cell, experiments and projections

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    1992-01-01

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15 to 35 percent thermal to electric conversion efficiencies, and one experiment has demonstrated 19 percent efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2 percent early in cell life and 9.7 percent after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10 percent. Second, the cell thermal performance could be improved. Efficiencies greater than 14 percent could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies can be accomplished through the development and use of an advanced condenser with improved reflectivity, close to that of a smooth sodium film, and the series connecting of individual cells to further reduce thermal losses.

  15. Efficiency of an AMTEC recirculating test cell, experiments and projections

    SciTech Connect

    Underwood, M.L.; O`Connor, D.; Williams, R.M.; Jeffries-Nakamura, B.; Ryan, M.A.

    1992-05-01

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15% to 35% thermal to electric conversion efficiencies, and one experiment has demonstrated 19% efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2% early in cell life and 9.7% after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10%. Second, the cell thermal performance could be improved. Efficiencies greater than 14% could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies can be accomplished through the development and use of an advanced condenser with improved reflectivity, close to that of a smooth sodium film, and the series connecting of individual cells to further reduce thermal losses.

  16. Recent advances in AMTEC recirculating test cell performance

    SciTech Connect

    Underwood, M.L.; Williams, R.M.; Ryan, M.A.; Jeffries-Nakamura, B.; O'Connor, D. )

    1993-01-15

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of thermal energy to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15% to 35% thermal to electric conversion efficiencies, and one experiment has demonstrated 19% efficiency for a short period of time. A recent experiment in a recirculating test cell (RCT) has demonstrated sustained conversion efficiencies as high as 13.2%. The cell was operated at lower current and 12% efficiency for over 1700 hours at the time of this writing. The cell required a maturation period of 355 hours at high temperature. During this period, the cell was operated once at 12% efficiency but was generally operated at lower powers. The maturation period ended with the formation of a reflective sodium film on the condenser surface which reduced the parasitic thermal losses in the cell. After maturation, the cell demonstrated the first experimental demonstration of the maximum efficiency occuring at a lower current than the maximum power. The cell also demonstrated an unexpected decrease in parasitic loss with increasing cell current. The decrease in parasitic loss resulted from the development of a more reflective sodium film at higher sodium fluxes.

  17. Efficiency of an AMTEC recirculating test cell, experiments, and projections

    NASA Astrophysics Data System (ADS)

    Underwood, M. L.; Oconnor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    1992-05-01

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15 to 35 percent thermal to electric conversion efficiencies, and one experiment has demonstrated 19 percent efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2 percent early in cell life and 9.7 percent after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10 percent. Second, the cell thermal perform ance could be improved. Efficiencies greater than 14 percent could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies can be accomplished through the development and use of an advanced condenser with improved reflectivity, close to that of a smooth sodium film, and the series connecting of individual cells to further reduce thermal losses.

  18. Efficiency of an AMTEC recirculating test cell, experiments and projections

    NASA Astrophysics Data System (ADS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15 to 35 percent thermal to electric conversion efficiencies, and one experiment has demonstrated 19 percent efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2 percent early in cell life and 9.7 percent after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10 percent. Second, the cell thermal performance could be improved. Efficiencies greater than 14 percent could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies can be accomplished through the development and use of an advanced condenser with improved reflectivity, close to that of a smooth sodium film, and the series connecting of individual cells to further reduce thermal losses.

  19. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  20. In situ treatment of VOCs by recirculation technologies

    SciTech Connect

    Siegrist, R.L.; Webb, O.F.; Ally, M.R.; Sanford, W.E.; Kearl, P.M.; Zutman, J.L.

    1993-06-01

    The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 and subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided.

  1. AMTEC recirculating test cell component testing and operation

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Sievers, R. K.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Bankston, C. P.

    1989-01-01

    Alkali metal thermoelectric converter operation in a recirculating test cell (RTC), which requires a small electromagnetic pump (EM) and a high-temperature beta-double-prime alumina-solid-electrolyte (BASE)-to-metal seal, is discussed. The design of a pump and an active metal braze seal and the initial operation of a cell using these components are described. The pump delivered 0.25 cu cm/min against a 28-psia head. A braze seal system was selected after shear strength tests of Ta or Nb brazed to BASE by a variety of fillers including TiCuNi, TiNi, and TiNiCr. The TiCuNi filler was chosen for environment cell testing and showed no failure or observable degradation after short-term tests up to 1055 K. The pump and the Nb/TiCuNi/BASE seal were used in a test that demonstrated all the operational functions of the RTC for the first time. An increase in the radiation reduction factor at constant input power was observed, indicating that the condenser was being wet by sodium resulting in an increased reflectivity.

  2. Biological flocculation treatment on distillery wastewater and recirculation of wastewater.

    PubMed

    Zhang, Wen; Xiong, Rongchun; Wei, Gang

    2009-12-30

    In the present study, a wastewater treatment system for the ethanol fermentation industry was developed by recycling distillery wastewater. The waste was able to be recycled for the next fermentation after being treated with bio-flocculation process. The bio-flocculation process contains three steps: screening, treatment with polyaspartic acid and filtration. When the filtrate from this process was recycled, the average ethanol production yield was very close to that in the conventional process using tap water. In contrast, the recycle of wastewater without flocculation and with chemical flocculation showed negative effects on ethanol yield as recycling was repeated. This new process was confirmed to have stable operation over ten recycles. Hazardous materials influencing distillery wastewater recycles on fermentation were also considered. It was found that the content of suspended solids (SS), volatile acid and Fe ions inhibited fermentation and resulted in a decreased ethanol yield. Bio-flocculation was shown to be an effective way to diminish the content of inhibitory compounds drastically when the waste was recirculated. PMID:19717237

  3. Integrated idle air and exhaust gas recirculation system

    SciTech Connect

    McKay, D.L.

    1991-12-10

    An integrated idle air and exhaust gas recirculation control system for use on an internal combustion engine. A control valve assembly comprising a base having a central chamber therin and inlet means for the introduction of idle air and exhaust gas to the central chamber and an outlet opening for the supply of the idle air and exhaust gas to the engine; first and second source conduits in communication with the central chamber for supply of idle air and exhaust gas respectively to the base and an intake supply conduit disposed between the central chamber outlet and the engine for conducting the supply of idel air and exhaust gas thereto; an electronically controlled two-way valve assembly disposed between the first and second source conduits and the central chamber and movable from a first position in which idle air is supplied to the chamber to a second position in which exhaust gas is supplied to the chamber;an electronically controlled metering valve operable to meter the flow of idle air and exhaust gas through the central chamber outlet and having position sensing means for determining the position of the valve.

  4. Recirculating 1-K-Pot for Pulse-Tube Cryostats

    NASA Technical Reports Server (NTRS)

    Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas

    2013-01-01

    A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo

  5. Energy utilization and recirculation of currant-finishing wastewater.

    PubMed

    Vlyssides, A G; Barampouti, E M P; Mai, S T

    2007-07-16

    In this study, a new method for the treatment of currant-finishing wastewater was proposed in the context of the "clean technology" concept. This method consisted of two stages. In the first stage, the currant-finishing wastewater was recirculated in the currant-wash process and in the second stage this wastewater was utilized for the production of energy through anaerobic digestion. Recycling ratios from 0 to 95% were examined. By increasing the recycling ratio, effluent's COD increased from 3808 to 43,722mg/l, effluent's BOD from 681 to 5378mg/l, total sugars from 2.57 to 42.13g/l, total phosphorous from 0.79 to 5.14mg/l and total Kjeldahl nitrogen from 7.36 to 51.9mg/l while fresh water addition decreased from 6 to 0.3kg per kg of currants processed. The optimum recycling ratio range for the wastewater energy utilization proved to be 30-40%. In this range, the mass of COD and sugars digested was maximized resulting in the highest biogas production. Thus, the proposed system could be promising since water consumption is minimized and wastewater energy utilization is achieved rendering the process almost energetically self-sufficient. PMID:17316987

  6. The growth of New Guinea impatiens with controlled-release fertilizer in a recirculating subirrigation system 

    E-print Network

    Richards, Daphne Ladean

    1999-01-01

    With concerns increasing over the supply and quality of water, pressure on greenhouse growers to use water and fertilizers more efficiently is also increasing. Controlled-release fertilizers (CRF) and recirculating subordination systems...

  7. The evaluation of oxygen and carbon dioxide transfer associated with airlifts in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airlifts in recirculating aquaculture systems (RAS) provide aeration, degasification, and water circulation. They allow the simplification of systems, and if designed properly, can reduce the capital costs and minimize operation and maintenance associated with alternative pumping systems. In order t...

  8. Exhaust gas recirculation system controlled by a microcomputer for an internal combustion engine

    SciTech Connect

    Yano, T.; Yuzawa, H.

    1981-03-24

    An exhaust gas recirculation system controlled by a microcomputer for an internal combustion engine is comprised of a pressure sensor for measuring the pressure of the exhaust gas downstream of an orifice disposed in the exhaust gas recirculation passage, a microcomputer for electrically controlling an electromagnetic valve which fluidly controls an exhaust gas recirculation control valve arranged in the exhaust gas recirculation passage, in view of the comparison of an optimal pressure of the exhaust gases, derived from the engine parameters, and the actual pressure measured by the sensor. The gear position of the transmission, engine temperature, engine speed, and the intake airflow rate are used in the microcomputer to produce an output signal with which the electromagnetic valve is controlled.

  9. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    SciTech Connect

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  10. Mechanical design of recirculating accelerator experiments for heavy-ion fusion

    SciTech Connect

    Karpenko, V.

    1995-05-23

    Recirculating induction accelerators have been studied as a potential low cost driver for inertial fusion energy. At LLNL, we are developing a small (4.5-m diameter), scaled, experimental machine which will demonstrate many of the engineering solutions of a full scale driver. The small recirculator will accelerate singly ionized potassium ions from 80 to 320 keV and 2 to 8 mA, using electric dipoles for bending and permanent magnet quadrupoles for focusing in a compact periodic lattice. {ital While very compact, and low cost, this design allows the investigation of most of the critical physics issues associated with space-charge-dominated beams in future IFE power plant drivers.} This report describes the recirculator, its mechanical design, its vacuum design, and the process for aligning it. Additionally, a straight magnetic transport experiment is being carried out to test diagnostics and magnetic transport in preparation for the recirculator.

  11. Ozone (o3) efficacy on reduction of phytophthora capsici in recirculated horticultural irrigation water 

    E-print Network

    McDonald, Garry Vernon

    2009-05-15

    Microorganisms that cause plant disease have been isolated in recirculated irrigation water and increase the risks of disease incidence in horticultural operations. Ozone is an effective oxidizer used to disinfect drinking ...

  12. Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling 

    E-print Network

    Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

    2006-01-01

    This paper introduces the technology of re-circulation evaporative cooling (REC), which uses a portion of supply air as secondary air to make cool water used to indirectly cool outside air through a heat exchanger. The circulation volume...

  13. The entrainment and homogenization of tracers within the cyclonic gulf stream recirculation gyre

    E-print Network

    Pickart, Robert S

    1987-01-01

    The various distributions of tracer associated with the Northern Recirculation Gyre of the Gulf Stream (NRG) are studied to try to obtain information about the flow. An advective-diffusive numerical model is implemented ...

  14. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    PubMed

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu(max-autotroph), 3.2day(-1) for mu(max-heterotroph), and 1.5day(-1) for mu(max-PAO). PMID:17991508

  15. Estimated Costs and Returns for Catfish Farms with Recirculating Ponds Along the Upper Texas Coast. 

    E-print Network

    Lambregts, J.A.D.; Griffin, W.L.; Lacewell R.D.; Davis, J.T.; Clary, G.M.

    1992-01-01

    .1704 - . , ., TEXAS A&M UNIVERSHY LIBRARY for Catfish Farms ' with Recirculating Ponds Along ? . . the Upper Texas Coast ~7'!K~fi~~~ation ? J. Charles Lee: Interim Director? The Texas A&M University System ? C~J1ege Station, Texas..., monitor water quality, and perform other necessary tasks. The production facilities are designed as a "modi fied recirculating system". This system was originally developed by Naiad, currently the largest catfish pro ducer and processor in Texas. A...

  16. KE basin recirculation/skimmer/IX systems restart acceptance test report

    SciTech Connect

    Derosa, D.C.

    1996-03-27

    The 105 KE Basin Recirculation System and Skimmer Loop have been upgraded to provide the flexibility to run the Ion Exchange Modules on either system to support spent fuel removal for the Spent Nuclear Fuel Project. This Acceptance Test Report Provides the documentation of the leak Testing for the construction work associated with the IXM inlet and outlet piping, places the cartridge filters back in service and provides the functional testing of the IXM`s on the recirculation and skimmer systems.

  17. The ultra-high lime with aluminum process for removing chloride from recirculating cooling water 

    E-print Network

    Abdel-wahab, Ahmed Ibraheem Ali

    2004-09-30

    THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL-WAHAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2003 Major Subject: Civil Engineering THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL...

  18. Effects of inlet geometries on flow recirculation in an axial-flow pump 

    E-print Network

    Alpan, Kenan

    1984-01-01

    apparently 12 broke the recirculatory flow yielding a higher operating range, but no significant improvements were made in delaying recirculation. Changing the inlet piping is another alternative to suppress recirculation. Murakami tested piping with 4 5... having three blades, each inclined 40 degrees with the shaft axis (horizontal) and a tip-to-tip diameter of three inches (Fig. 4). This stage is used during normal mode of operation while the radial stage in the back gains significance when the air...

  19. A method to eliminate odor from recirculating air in the animal house.

    PubMed

    Sato, N L; Fujisawa, N; Maeda, Y; Fukui, M

    1992-01-01

    A new method to eliminate odors from air recirculating in an animal house is described. The new system consists of an ozonizer and titania silica ozone decomposition catalyst in the terminal of a recirculating ventilation system. The principle underlying the elimination of odors is the oxidative reaction of malodorous components on the surface of the catalyst caused by coupling with ozonolysis. This method appeared superior in terms of its durability, efficiency and lack of resistance to air flow. PMID:1740165

  20. Picosecond Pulse Recirculation for High Average Brightness Thomson Scattering-based Gamma-ray Sources

    SciTech Connect

    Semenov, V

    2009-05-28

    Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.

  1. Disinfection of Pythium-infested recirculation water by UV-oxidation technology.

    PubMed

    Runia, W T; Boonstra, S

    2001-01-01

    Selective disinfection against Pythium aphanidermatum in recirculation water was tested with UV-irradiation and with UV-oxidation technology with the objective to reduce the electrical energy consumption per cubic meter treated water. UV-oxidation technology is based on injection of hydrogen peroxide in recirculation water, just before passage along a UV-lamp, thus creating hydroxyl radicals. Pythium aphanidermatum was applied artificially to recirculation water from tomatoes, grown, in rockwool and coconut fibre. Other parameters in this study were pH and transmission value (T10) of the infested recirculation water. Results indicated that the recommended UV-C dose of 100 mJ/cm2 for elimination of fungal pathogens in general can be lowered in case recirculation water is infected with Pythium aphanidermatum only. When UV-oxidation technology was applied with 1 mmol hydrogen peroxide per litre recirculation water, the UV-C dose could be reduced even more in comparison with merely UV irradiation. PMID:12425022

  2. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 ? and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. PMID:25514399

  3. 2001 TRAFFIC ZONE BOUNDARIES Zone Numbers

    E-print Network

    Toronto, University of

    2001 TRAFFIC ZONE BOUNDARIES Zone Numbers & Detailed Definitions #12;2001 TRAFFIC ZONE BOUNDARIES zone boundary definitions. The report is divided into two parts. The first part presents the traffic zone numbers by local municipalities in the 2001 TTS survey area. The second part presents detailed

  4. 2006 TRAFFIC ZONE BOUNDARIES Zone Numbers

    E-print Network

    Toronto, University of

    2006 TRAFFIC ZONE BOUNDARIES Zone Numbers & Detailed Definitions #12;2006 TRAFFIC ZONE BOUNDARIES of Civil Engineering University of Toronto June 2009 #12;PREFACE This report presents the 2006 traffic zone boundary definitions. The report is divided into two parts. The first part presents the traffic zone

  5. Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    PubMed Central

    Kadambala, Ravi; Townsend, Timothy G.; Jain, Pradeep; Singh, Karamjit

    2011-01-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  6. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  7. Energy stability in recirculating, energy-recovering linacs in the presence of a FEL

    SciTech Connect

    Merminga, L.; Bisognano, J.; Delayen, J.R.

    1996-07-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs (free electron lasers). Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M{sub 56}, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. An analytical model which includes amplitude and phase feedback, has been developed to study the stability of the system for small perturbations from equilibrium. The interaction of the electron beam with the FEL is a major perturbation which affects both the stability of the system and development of startup and recovery scenarios. To simulate the system`s response to such large parameter variations, a numerical model of the beam-cavity interaction has been developed which includes low level rf feedback, phase oscillations and beam loss instabilities and the FEL interaction. Agreement between the numerical model and the linear theory has been demonstrated in the limit of small perturbations. In addition, the model has been benchmarked against experimental data obtained during CEBAF`s high current operation. Numerical simulations have been performed for the high power IR DEMO approved for construction at CEBAF.

  8. Large Pore Ion and Metabolite-Permeable Channel Regulation of Postnatal Ventricular Zone Neural Stem and Progenitor Cells: Interplay between Aquaporins, Connexins, and Pannexins?

    PubMed Central

    Wicki-Stordeur, Leigh E.; Swayne, Leigh Anne

    2012-01-01

    The birth of new neurons from unspecialized neural stem and progenitor cells surrounding the lateral ventricles occurs throughout postnatal life. This process, termed neurogenesis, is complex and multistepped, encompassing several types of cellular behaviours, such as proliferation, differentiation, and migration. These behaviours are influenced by numerous factors present in the unique, permissive microenvironment. A major cellular mechanism for sensing the plethora of environmental cues directing this process is the presence of different channel forming proteins spanning the plasma membrane. So-called large pore membrane channels, which are selective for the passage of specific types of small molecules and ions, are emerging as an important subgroup of channel proteins. Here, we focus on the roles of three such large pore channels, aquaporin 4, connexin 43, and pannexin 1. We highlight both their independent functions as well as the accumulating evidence for crosstalk between them. PMID:22754577

  9. Effectiveness of Low Emission Zones: Large Scale Analysis of Changes in Environmental NO2, NO and NOx Concentrations in 17 German Cities

    PubMed Central

    Morfeld, Peter; Groneberg, David A.; Spallek, Michael F.

    2014-01-01

    Background Low Emission Zones (LEZs) are areas where the most polluting vehicles are restricted from entering. The effectiveness of LEZs to lower ambient exposures is under debate. This study focused on LEZs that restricted cars of Euro 1 standard without appropriate retrofitting systems from entering and estimated LEZ effects on NO2, NO, and NOx (?=?NO2+NO). Methods Continuous half-hour and diffuse sampler 4-week average NO2, NO, and NOx concentrations measured inside and outside LEZs in 17 German cities of 6 federal states (2005–2009) were analysed as matched quadruplets (two pairs of simultaneously measured index values inside LEZ and reference values outside LEZ, one pair measured before and one after introducing LEZs with time differences that equal multiples of 364 days) by multiple linear and log-linear fixed-effects regression modelling (covariables: e.g., wind velocity, amount of precipitation, height of inversion base, school holidays, truck-free periods). Additionally, the continuous half-hour data was collapsed into 4-week averages and pooled with the diffuse sampler data to perform joint analysis. Results More than 3,000,000 quadruplets of continuous measurements (half-hour averages) were identified at 38 index and 45 reference stations. Pooling with diffuse sampler data from 15 index and 10 reference stations lead to more than 4,000 quadruplets for joint analyses of 4-week averages. Mean LEZ effects on NO2, NO, and NOx concentrations (reductions) were estimated to be at most ?2 µg/m3 (or ?4%). The 4-week averages of NO2 concentrations at index stations after LEZ introduction were 55 µg/m3 (median and mean values) or 82 µg/m3 (95th percentile). Conclusions This is the first study investigating comprehensively the effectiveness of LEZs to reduce NO2, NO, and NOx concentrations controlling for most relevant potential confounders. Our analyses indicate that there is a statistically significant, but rather small reduction of NO2, NO, and NOx concentrations associated with LEZs. PMID:25115911

  10. Closed recirculating system for shrimp-mollusk polyculture

    NASA Astrophysics Data System (ADS)

    Wu, Xiongfei; Zhao, Zhidong; Li, Deshang; Chang, Kangmei; Tong, Zhuanshang; Si, Liegang; Xu, Kaichong; Ge, Bailin

    2005-12-01

    This paper deals with a new system of aquaculture, i.e., a closed recirculating system for shrimp-mollusk polyculture. The culture system consisted of several shrimp ponds, a mollusk water-purifying pond and a reservoir. During the production cycle, water circulated between the shrimp and mollusk ponds, and the reservoir compensated for water loss from seepage and evaporation. Constricted tagelus, Sinonovacula constricta, was selected as the cultured mollusk, and Pacific white shrimp, Litopenaeus vannamei, as the cultured shrimp. The main managing measures during the production cycle were: setting and using the aerators; introducting the probiotic products timely into the shrimp ponds; adopting a “pen-closing” method for controlling shrimp viral epidemics; setting the flow diversion barriers in the mollusk pond to keep the circulating water flowing through the pond along a sine-like curve and serve as substrate for biofilm; no direct feeding was necessary for the cultured mollusk until the co-cultured shrimp was harvested; natural foods in the water from the shrimp ponds was used for their foods. Two sets of the system were used in the experiment in 2002 and satisfactory results were achieved. The average yield of the shrimp was 11 943.5 kg/hm2, and that of the mollusk was 16 965 kg/hm2. After converting the mollusk yield into shrimp yield at their market price ratio, the food coefficient of the entire system averaged at as low as 0.81. The water quality in the ponds was maintained at a desirable level and no viral epidemics were discovered during the production cycle.

  11. Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.

    PubMed

    Cui, X G; Gutheil, E

    2011-11-10

    The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) ?-? model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport ?-? model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment. PMID:21937045

  12. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion. PMID:25194843

  13. Noscapine recirculates enterohepatically and induces self-clearance.

    PubMed

    Mukkavilli, Rao; Gundala, Sushma R; Yang, Chunhua; Jadhav, Gajanan R; Vangala, Subrahmanyam; Reid, Michelle D; Aneja, Ritu

    2015-09-18

    Noscapine (Nos), an antitussive benzylisoquinoline opium alkaloid, is a non-toxic tubulin-binding agent currently in Phase II clinical trials for cancer chemotherapy. While preclinical studies have established its tumor-inhibitory properties in various cancers, poor absorptivity and rapid first-pass metabolism producing several uncharacterized metabolites for efficacy, present an impediment in translating its efficacy in humans. Here we report novel formulations of Nos in combination with dietary agents like capsaicin (Cap), piperine (Pip), eugenol (Eu) and curcumin (Cur) known for modulating Phase I and II drug metabolizing enzymes. In vivo pharmacokinetic (PK), organ toxicity evaluation of combinations, microsomal stability and in vitro cytochrome P450 (CYP) inhibition effects of Nos, Cap and Pip using human liver microsomes were performed. Single-dose PK screening of combinations revealed that the relative exposure of Nos (2 ?g h/mL) was enhanced by 2-fold (4 ?g h/mL) by Cap and Pip and their plasma concentration-time profiles showed multiple peaking phenomena for Nos indicating enterohepatic recirculation or differential absorption from intestine. CYP inhibition studies confirmed that Nos, Cap and Pip are not potent CYP inhibitors (IC50>1 ?M). Repeated oral dosing of Nos, Nos+Cap and Nos+Pip showed lower exposure (Cmax and AUClast) of Nos on day 7 compared to day 1. Nos Cmax decreased from 3087 ng/mL to 684 ng/mL and AUClast from 1024 ng h/mL to 508 ng h/mL. In presence of Cap and Pip, the decrease in Cmax and AUClast of Nos was similar. This may be due to potential enzyme induction leading to rapid clearance of Nos as the trend was observed in Nos alone group also. The lack of effect on intrinsic clearance of Nos suggests that the potential drug biotransformation modulators employed in this study did not contribute toward increased exposure of Nos on repeated dosing. We envision that Nos-induced enzyme induction could alter the therapeutic efficacy of co-administered drugs, hence emphasizing the need for strategic evaluation of the metabolism of Nos to reap its maximum efficacy. PMID:26026989

  14. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  15. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    PubMed

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-09-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads. PMID:25803484

  16. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  17. Three-Dimensional Numerical Simulation on Passively Excited Flows by Distributed Local Hot Sources Settled at the D" Layer Below Hotspots and/or Large-Scale Cool Masses at Subduction Zones Within the Static Layered Mantle

    NASA Astrophysics Data System (ADS)

    Eguchi, T.; Matsubara, K.; Ishida, M.

    2001-12-01

    To unveil dynamic process associated with three-dimensional unsteady mantle convection, we carried out numerical simulation on passively exerted flows by simplified local hot sources just above the CMB and large-scale cool masses beneath smoothed subduction zones. During the study, we used our individual code developed with the finite difference method. The basic three equations are for the continuity, the motion with the Boussinesq (incompressible) approximation, and the (thermal) energy conservation. The viscosity of our model is sensitive to temperature. To get time integration with high precision, we used the Newton method. In detail, the size and thermal energy of the hot or cool sources are not uniform along the latitude, because we could not select uniform local volumes assigned for the sources within the finite difference grids throughout the mantle. Our results, thus, accompany some latitude dependence. First, we treated the case of the hotspots, neglecting the contribution of the subduction zones. The local hot sources below the currently active hotspots were settled as dynamic driving forces included in the initial condition. Before starting the calculation, we assumed that the mantle was statically layered with zero velocity component. The thermal anomalies inserted instantaneously in the initial condition do excite dynamically passive flows. The type of the initial hot sources was not 'plume' but 'thermal.' The simulation results represent that local upwelling flows which were directly excited over the initial heat sources reached the upper mantle by approximately 30 My during the calculation. Each of the direct upwellings above the hotspots has its own dynamic potential to exert concentric down- and up-welling flows, alternately, at large distances. Simultaneously, the direct upwellings interact mutually within the spherical mantle. As an interesting feature, we numerically observed secondary upwellings somewhere in a wide region covering east Eurasia to the Bering Sea where no hot sources were initially input. It seems that the detailed location of the secondary upwellings depends partly on the numerical parameters such as the radial profile of mantle viscosity especially at the D" layer, etc., because the secondary flows are provoked by dynamic interaction among the distributed direct upwellings just above the CMB. Our results suggest that if we assume not only non-zero time delays during the input of the local hot sources but also parameters related with the difference of their historical surface flux rates, the pattern of the passively excited flows will be different from that obtained with the simultaneously settled hot sources stated above. Second, we simultaneously incorporated simplified thermal anomaly models associated with both the distributed local hotspots and the global subduction zones, as dynamic origins in the initial condition for the static layered mantle. In this case, the simulation result represents that the pattern of secondary radial flows, being different from those in the earlier case, is sensitive to the relative strength between the positive dynamic buoyancy integrated over all of the local hot sources below the hotspots and the total negative buoyancy beneath the subduction zones.

  18. WORK TRIP ORIGINS AND DESTINATIONSEMPLOYMENT Zone 4 Zone 5

    E-print Network

    Toronto, University of

    WORK TRIP ORIGINS AND DESTINATIONSEMPLOYMENT N 5% 37% 33% 16% 8% Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 % Municipality 11%, 2% 10%, 14% 18%, 15% 10%, 5% 3%, 3% Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 TOWN OF ORANGEVILLE

  19. Four-nozzle benchmark wind tunnel model USA code solutions for simulation of multiple rocket base flow recirculation at 145,000 feet altitude

    NASA Astrophysics Data System (ADS)

    Dougherty, N. S.; Johnson, S. L.

    1993-07-01

    Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.

  20. Four-Nozzle Benchmark Wind Tunnel Model USA Code Solutions for Simulation of Multiple Rocket Base Flow Recirculation at 145,000 Feet Altitude

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Johnson, S. L.

    1993-01-01

    Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.

  1. Upstream open loop control of the recirculation area downstream of a backward-facing step

    E-print Network

    Gautier, Nicolas

    2014-01-01

    The flow downstream a backward-facing step is controlled using a pulsed jet placed upstream of the step edge. Experimental velocity fields are computed and used to the recirculation area quantify. The effects of jet amplitude, frequency and duty cycle on this recirculation area are investigated for two Reynolds numbers (Re=2070 and Re=2900). The results of this experimental study demonstrate that upstream actuation can be as efficient as actuation at the step edge when exciting the shear layer at its natural frequency. Moreover it is shown that it is possible to minimize both jet amplitude and duty cycle and still achieve optimal efficiency. With minimal amplitude and a duty-cycle as low as 10\\% the recirculation area is nearly canceled.

  2. Two dimensional aspects of regenerative bbu in two-pass recirculating accelerators

    SciTech Connect

    Eduard Pozdeyev

    2005-05-01

    In this paper, I present the formula, describing a threshold of the regenerative multi-pass Beam Breakup (BBU) for a single dipole higher order mode with arbitrary polarization in a two-pass accelerator with a general-form, 4 x 4 recirculation matrix. To illustrate specifics of the BBU in two dimensions, the formula is used to calculate the threshold for the reflecting and rotating optics of the recirculator that can lead to higher threshold currents. Then, I present a mathematical relation between transfer matrices between cavities of the accelerating structure and recirculation matrices for each cavity, which must be satisfied in order to successfully suppress the BBU by reflection or rotation in several cavities.

  3. Controlled reattachment in separated flows: a variational approach to recirculation length reduction

    E-print Network

    Boujo, E

    2014-01-01

    A variational technique is used to derive analytical expressions for the sensitivity of recirculation length to steady forcing in separated flows. Linear sensitivity analysis is applied to the two-dimensional steady flow past a circular cylinder for Reynolds numbers $40 \\leq Re \\leq 120$, both in the subcritical and supercritical regimes. Regions which are the most sensitive to volume forcing and wall blowing/suction are identified. Control configurations which reduce the recirculation length are designed based on the sensitivity information, in particular small cylinders used as control devices in the wake of the main cylinder, and fluid suction at the cylinder wall. Validation against full non-linear Navier-Stokes calculations shows excellent agreement for small-amplitude control. The linear stability properties of the controlled flow are systematically investigated. At moderate Reynolds numbers, we observe that regions where control reduces the recirculation length correspond to regions where it has a stab...

  4. Recurrent amoebic gill infestation in rainbow trout cultured in a semiclosed water recirculation system

    USGS Publications Warehouse

    Noble, A.C.; Herman, R.L.; Noga, E.J.; Bullock, G.L.

    1997-01-01

    Five lots of commercially purchased juvenile rainbow trout Oncorhynchus mykiss (17-44 g) stocked in a continuous-production water recirculation system became infested with gilt amoebae. The amoebae were introduced into the recirculation system, as evidenced by their presence on gills of fish held in quarantine tanks. Based on their morphology, as seen in histological sections and by electron microscopy, the amoebae appeared to be more closely related to the family Cochliopodiidae than to other taxa of free living amoebae. Attempts to culture the amoebae in different media, at different temperatures of incubation, and in fish cell culture were not successful. Initial treatment of the recirculation system with formalin at 167 parts per million (ppm) for 1 h eliminated amoebae from the gills. Subsequent treatments of the entire system with formalin at 50-167 ppm reduced the intensity of further infestations.

  5. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    DOEpatents

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  6. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. PMID:23384779

  7. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect

    Anuar, S.H.; Keener, H.M.

    1995-12-31

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  8. Measurements of Recirculation during Neonatal Veno-Venous Extracorporeal Membrane Oxygenation: Clinical Application of the Ultrasound Dilution Technique

    PubMed Central

    Clements, David; Primmer, Johanna; Ryman, Pamela; Marr, Bonnie; Searles, Bruce; Darling, Edward

    2008-01-01

    Abstract: Recirculation during dual lumen veno-venous (DLVV) extracorporeal membrane oxygenation (ECMO) is a dynamic event that results in a fraction of the oxygenated blood exiting the arterial lumen and immediately shunting back into the venous lumen. Excessive recirculation will result in suboptimal oxygen delivery to the patient. Ultrasound dilution is a technology that has been shown to rapidly quantify recirculation in veno-venous (VV) ECMO animal models. This manuscript reports the first clinical application of ultrasound dilution in quantifying recirculation during neonatal VV ECMO. A 2.8-kg neonate with congenital diaphragmatic hernia was placed on VV ECMO using a single DLVV cannula inserted into the right atrium through the internal jugular vein. Ultrasound sensors were clamped to the arterial and venous lines near the dual lumen cannula and 3- to 5-mL bolus injections of isotonic saline were used proximal to the circuit heat exchanger to make the recirculation measurements. Recirculation measurements were made after initiation and periodically thereafter. During the 12-day ECMO period, 86 recirculation measurements were performed. The average recirculation was 34.3% (range, 15–57%). Reproducibility of paired measurements was 5.6%. Changes in patient positioning resulted in significant changes in recirculation. Measurements using platelet injections were compared with those made with saline. The two were found to closely correlate (mean difference, .25% ± 2.8%). Ultrasound dilution measurements of recirculation provided rapid monitoring data during a clinical VV ECMO procedure. Application of this technique could provide early data that will assist the clinician in guiding interventions to minimize recirculation. PMID:18853830

  9. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    NASA Astrophysics Data System (ADS)

    Fadeyi, M. O.; Weschler, C. J.; Tham, K. W.

    This study examined the impact of recirculation rates (7 and 14 h -1), ventilation rates (1 and 2 h -1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m 3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h -1 were significantly smaller than at a recirculation rate of 7 h -1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.

  10. Cost analysis of controlled partial recirculation of mine ventilation air at Mount Isa Mines

    SciTech Connect

    Wu, Hsin Wei; Gillies, A.D.S.; Nixon, A.C.

    1995-12-31

    Ventilation and refrigeration strategies for the 3000/3500 orebodies, Mount Isa Mines, Australia were reviewed. The orebodies lie between 1,200 and 1,800 m below surface and are characterised by steep geothermal gradients, intensively mechanised stoping methods and high ambient air temperatures in summer. Providing acceptable working conditions under these situations is difficult and costly. The ventilation air quantity required in the 3000/3500 orebodies exceeds 550 m{sup 3}/s when the production rate is greater than 2.5 million tonnes per year. The maximum quantity that can be supplied and exhausted using the existing intake and return ventilation system is estimated at about 630 m{sup 3}/s. For production rates greater than 3 million tonnes per year, either new intake and return airways will need to be developed or innovative approaches such as controlled partial recirculation used. A description is given of technical and economic investigations conducted at Mount Isa into controlled partial recirculation. During these investigations, a major field trial of a controlled partial recirculation system was undertaken with results indicating that an acceptable working environment can be achieved practically and economically utilising this approach. The cost involved in controlled partial recirculation for supplying the required ventilation quantity when the production of 3000/3500 orebodies exceeds 3 million tonnes per year is examined. A cost comparison between recirculation and other conventional alternatives such as new surface shaft or underground booster fans is included. The results indicate that the option of a new surface shaft will incur a high initial capital cost and moderate annual operating costs. The alternative of underground booster fans will necessitate a moderate capital cost and very high operating costs. Controlled partial recirculation, in this case, offers both the lowest capital and operating costs of the three options evaluated.

  11. Effect of room air recirculation delay on the decay rate of tracer gas concentration

    SciTech Connect

    Kristoffersen, A.R.; Gadgil, A.J.; Lorenzetti, D.M.

    2004-05-01

    Tracer gas measurements are commonly used to estimate the fresh air exchange rate in a room or building. Published tracer decay methods account for fresh air supply, infiltration, and leaks in ductwork. However, the time delay associated with a ventilation system recirculating tracer back to the room also affects the decay rate. We present an analytical study of tracer gas decay in a well-mixed, mechanically-ventilated room with recirculation. The analysis shows that failing to account for delays can lead to under- or over-estimates of the fresh air supply, depending on whether the decay rate calculation includes the duct volume.

  12. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  13. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Volume 2. Final report, 15 February 1991-9 January 1992

    SciTech Connect

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-27

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices, and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation.

  14. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Volume 1. Final report, 15 February 1991-9 January 1992

    SciTech Connect

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-27

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices, and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint the exhaust duct was reconfigured for split-flow and recirculating ventilation.

  15. High-order large-eddy simulation of flow over the "Ahmed body" car model M. Minguez,1,2

    E-print Network

    Pasquetti, Richard

    . Such a SVV-LES approach is extended for the first time to an industrial three-dimensional turbulent flow over shows large unsteady phe- nomena coming from interactions between recirculation bubbles and vortices

  16. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  17. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

  18. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the entire Atlantic Ocean and the eastern Pacific. 'QuikSCAT's wind data confirms there is a double ITCZ, and that they exist all year long,' Liu said. This is a major find for the science community, as the existence, location, and seasonality of the double ITCZ had remained controversial since 1969. full text: Satellite Sees Double Zones of Converging Tropical Winds around The World For more about convergence zones, read: The Intertropical Convergence Zone and Convergence Zones: Where the Action Is Image courtesy Liu and Xie, NASA JPL

  19. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  20. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  1. The Kuroshio Extension and its recirculation gyres Steven R. Jayne a,, Nelson G. Hogg b

    E-print Network

    Qiu, Bo

    Current meter Inverted echo sounders Floats a b s t r a c t This paper reports on the strength echo sounders, and subsurface floats. The position and strength of the recirculation gyres simulated an array of inverted echo sounders and a high-resolution ocean general circulation model are of similar

  2. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    DOEpatents

    Kolb, Gregory J. (Albuquerque, NM)

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  3. Low-head recirculating aquaculture system for juvenile red drum production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service and the Center for Aquaculture and Stock Enhancement at Harbor Branch Oceanographic Institute-FAU (HBOI-FAU) are collaborating to evaluate low-head recirculating aquaculture system designs to intensively produce red drum juveniles as part of the Florida Fish an...

  4. On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg

    E-print Network

    On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power the absolute maximum efficiency of energy conversion by thermoelectric devices that operate as part of the heat

  5. Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation

    E-print Network

    Stefanopoulou, Anna

    Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

  6. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  7. COMPARATIVE PERFORMANCE OF CO2 MEASURING METHODS: MARINE RECIRCULATING SYSTEM APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recirculating aquaculture systems problems are encountered with dissolved carbon dioxide due to the higher supported fish loading rates and limited degassing abilities of the systems for the quantities of carbon dioxide produced. Determining dissolved carbon dioxide (DC) concentrations in recircu...

  8. Removal of organics and nitrogen in sewage treatment using anoxic-aerobic recirculated filter.

    PubMed

    Tanaka, S; Suzuki, A

    2002-01-01

    The anoxic-aerobic recirculated filter (AARF) process was investigated on removal effciencies of organics and nitrogen with regard to loading rates, recirculation ratios of nitrified liquor and contribution of methane production and sulfate reduction in the treatment of the municipal sewage. The AARF process is composed of an anoxic filter for denitrification and an aerobic filter for nitrification and some of the nitrified liquor in the aerobic filter is recirculated to the anoxic filter. The AARF process successfully removed organics and nitrogen achieving high removal rates of 88% for COD and 64-74% for nitrogen. The recirculation ratio (Re) did not affect the COD removal efficiency but did affect the nitrogen removal, which was enhanced at a higher ratio (Re = 4). The methane production was not contributive to the COD removal but the COD consumed by the sulfate reduction was equivalent to 17% of total COD removed at Re = 2. We confirmed that the AARF process was applicable to the sewage treatment including nitrogen removal at a hydraulic retention time close to that of the conventional activated sludge process. PMID:12448483

  9. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    EPA Science Inventory

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  10. RECIRCULATING AQUACULTURE SYSTEM FOR MARINE FINFISH RESEARCH AT HARBOR BRANCH OCEANOGRAPHIC INSTITUTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recirculating aquaculture systems (RAS,) for both commercial and experimental uses, has been under development in many parts of the world in response to several driving forces. With regards to sites for coastal aquaculture, the scarcity of affordable land has driven aquaculture endeavors for marine ...

  11. Improvement of anaerobic digester performance by wastewater recirculation through an aerated membrane.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine wastewater from an anaerobic digester was recirculated through a silicone hose located in an external aeration chamber to determine its effect on wastewater malodorants and biogas composition. The silicone hose acted as a semipermeable membrane for the passage of small molecules. In the first...

  12. Disinfection of water in recirculating aquaculture systems with peracetic acid (PAA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfection behaviour of peracetic acid (PAA) in recirculating aquaculture systems (RAS) was investigated. Peracetic acid is a strong oxidizing agent found in various concentrations in different products. Three Wofasteril PAA products (E400 (c), Lspecical; AC 150) were tested in vitro for the...

  13. Researchers evaluate low-energy recirculating system for inland production of marine finfish juveniles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low-energy recirculating aquaculture system consists of nine separate modules which utilize the double drain fish culture tank paired to a moving bed biofilter. The nine fiberglass tanks are five feet in diameter and normal water depth is about three feet for a total tank volume of approximately...

  14. Find your zone services hub

    E-print Network

    Applebaum, David

    Find your zone red 2 student services hub red 4 Old Entrance Hall QuadRegistration Purple 1Pink 2 strand Building Purple Zone Floor 1 red Zone Ground Floorstrand Building Lift A up to all zones Lift A down to Pink Zone Lift B to Blue Zone Teal Zone Green Zone red 3 Purple 2 Strand Blue Zone Floor 2 Blue

  15. Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D. Ronney

    E-print Network

    1 Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D-stoichiometric) not requiring heat recirculation, a visible flame would propagate out of the center, but this flame could only

  16. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling Georg H. Hoffstaetter,* Ivan V. Bazarov, and Changsheng Song

    E-print Network

    Hoffstaetter, Georg

    Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling Georg will derive the general theory of the beam-breakup (BBU) instability in recirculating linear accelerators to be at the same radio-frequency phase during each recirculation turn. This is important for the description

  17. hilllcd in (ilC~l[ ]~lililill I)cIg;lll/Oll h~urnM~ lid The Northern Recirculation Gyre of the Gulf Stream

    E-print Network

    Pickart, Robert S.

    hilllcd in (ilC~l[ ]~lililill I)cIg;lll/Oll h~urnM~ lid The Northern Recirculation Gyre of the Gulf recirculating gyre which we call the Northern Recirculation Gvre (NRG); it lies to the north of the Stream

  18. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  19. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  20. Factors affecting the safety of infusing recirculated saline or blood in hemodialysis.

    PubMed

    Schrauf, Christine M

    2014-01-01

    It is not surprising that there is no documented evidence supporting a standard for safe infusion of recirculated saline or blood in hemodialysis. A number of factors affect the bacteriologic and pyrogenic quality of recirculated saline and how individuals will physiologically respond to the final product. Attention to strict asepsis when preparing the dialysis circuit, bacterial quality of the dialysate, characteristics of the dialyzer used, and individual physiological response to the presence of endotoxins all play a part in whether individuals being dialyzed experience a pyrogenic response. Those who depend on chronic hemodialysis utilizing catheter access may be especially vulnerable due to the possibility of continued bacterial growth in the catheter lumen. Unit policy regarding the length of time a primed dialysis system can be considered safe for use should consider all of these factors. It may not be possible to create experimental situations in which all relevant factors leading to high quality of primed saline can replicate any one actual experience in a hemodialysis unit. However, practices that decrease the probability of bacterial contamination of priming saline or dialysate can help prevent adverse patient responses. Considering the limited evidence about reasons for thrombosis of blood in dialysis systems, very few conclusions can be drawn about the safety of infusing recirculated blood. The possible interactions of the dialysis system and individual physiological factors are limitless and are probably impossible to predict. The available literature identifies that the coagulation process begins immediately as blood interacts with the dialyzer and can be exacerbated if complement is activated. Combining this probability with the effects of possible pyrogen exposure, it is safe to say that considerable risk may exist the longer blood in the extracorporeal system is recirculated. Weighing these risks with the possible benefits of returning recirculated blood to a person on hemodialysis must be an individual decision each time the situation presents itself. PMID:24818454

  1. Single-station integral measures of atmospheric stagnation, recirculation and ventilation

    NASA Astrophysics Data System (ADS)

    Allwine, K. Jerry; Whiteman, C. David

    Mathematical definitions of integral quantities used to characterize the stagnation, recirculation and ventilation potential of various airsheds are proposed. These integral quantities can be calculated from wind data collected at fixed time intervals and at fixed heights in the atmosphere, and could be calculated, for example, from data from ground-based remote wind profilers. These integral quantities, since they are calculated from data at single stations, provide useful characterizations of the flow at individual measurement points, but are true measures of the transport of a plume only under idealized homogenous wind conditions. The utility of these single-station measures for characterizing the air pollution transport potential of an airshed is illustrated using three months of hourly surface and radar profiler measurements of horizontal wind speed and direction collected at three locations in the Colorado Plateaus Basin region of Arizona during the winter of 1990. A surface station at Bullfrog Basin, located on a sheltered basin floor and exposed to diurnal wind systems, experienced stagnations 62% of the time, recirculations 34% of the time, and ventilations 8% of the time. A surface station at Desert View, located on the south rim of the Grand Canyon and exposed to synoptic-scale wind systems, experienced stagnations 8% of the time, recirculations 4% of the time, and ventilations 35% of the time. A radar profiler station at Page, Arizona, experienced stagnations about 20% of the time and recirculations about 25% of the time during the winter at heights below ˜ 400 m a.g.l.; above this height, to levels near 1100 m a.g.l. (the approximate height of surrounding plateaus), the frequency of stagnations and recirculations dropped rapidly, and the frequency of ventilations ranged from 40 to 70%.

  2. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2015-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  3. Future float zone development in industry

    NASA Technical Reports Server (NTRS)

    Sandfort, R. M.

    1980-01-01

    The present industrial requirements for float zone silicon are summarized. Developments desired by the industry in the future are reported. The five most significant problems faced today by the float zone crystal growth method in industry are discussed. They are economic, large diameter, resistivity uniformity, control of carbon, and swirl defects.

  4. Zoning, equity, and public health.

    PubMed Central

    Maantay, J

    2001-01-01

    Zoning, the most prevalent land use planning tool in the United States, has substantial implications for equity and public health. Zoning determines where various categories of land use may go, thereby influencing the location of resulting environmental and health impacts. Industrially zoned areas permit noxious land uses and typically carry higher environmental burdens than other areas. Using New York City as a case study, the author shows that industrial zones have large residential populations within them or nearby. Noxious uses tend to be concentrated in poor and minority industrial neighborhoods because more affluent industrial areas and those with lower minority populations are rezoned for other uses, and industrial zones in poorer neighborhoods are expanded. Zoning policies, therefore, can have adverse impacts on public health and equity. The location of noxious uses and the pollution they generate have ramifications for global public health and equity; these uses have been concentrated in the world's poorer places as well as in poorer places within more affluent countries. Planners, policymakers, and public health professionals must collaborate on a worldwide basis to address these equity, health, and land use planning problems. PMID:11441726

  5. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  6. Effect of pH-neutralized leachate recirculation on a combined hydrolytic-aerobic biopretreatment for municipal solid waste.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Shao, Li-Ming

    2009-09-01

    Four trials with different durations (1, 2, 3 and 4 days) of neutralized leachate recirculation and a control with distilled water recirculation for 4 days were set up to investigate the effect of recirculation duration on MSW biopretreatment by a combined hydrolytic-aerobic process. Results showed that recirculation could enhance water removal and organics degradation rates and thus lead to a lower water content of biopretreated materials, when compared with the control. Recirculation with duration of 4 days had the highest rates of water removal (83.7%) and organics degradation (62.1%) and lowest final water content (43.1%) due to the elimination of acid inhibition. As a result, recirculation with duration of 4 days had the highest sorting efficiency (75%) and heating value (10570 kJ/kg) and lowest respiration activity (98.6 mgO(2)/g). Thereby, neutralized leachate recirculation with duration of 4 days was suggested to pretreat municipal solid waste with high water content. PMID:19356926

  7. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    PubMed Central

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Campbell, Laura; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains approximately 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All non-recirculating resident memory T cells (TRM) expressed CD69, but the majority were CD4+, CD103? and located in the dermis, in contrast to studies in mice. Both CD4+ and CD8+ CD103+ TRM were enriched in the epidermis, had potent effector functions and had a limited proliferative capacity compared to CD103? TRM. TRM of both types had more potent effector functions than recirculating T cells. Induction of CD103 on human T cells was enhanced by keratinocyte contact, depended on TGF? and was independent of T cell keratinocyte adhesive interactions. We observed two distinct populations of recirculating T cells, CCR7+/L-selectin+ central memory T cells (TCM) and CCR7+/L-selectin? T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions and TMM were depleted more slowly from skin after alemtuzumab, suggesting TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. PMID:25787765

  8. Estimation of Hydraulic Properties Influencing Recharge and Contaminant Transport through Complex Vadose Zones by Analyzing Perched Water Data from the 1994 Large-Scale Infiltration Test at the Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Creasey, K. M.; Nimmo, J. R.

    2014-12-01

    Layers of strong geologic contrast within the vadose zone can control recharge and contaminant transport to underlying aquifers. Above the eastern Snake River Plain Aquifer, multiple sedimentary interbeds are interspersed between fractured basalt. These interbeds have a variety of thicknesses and hydraulic properties, and can impede water flow, which allows perched water to collect on the interbeds. The Large-Scale Infiltration Test (LSIT) of 1994 at the Idaho National Laboratory (INL) maintained a circular pond, 200 meters in diameter, at a constant head for 20 days. Monitoring wells were arranged in circles of different radii around and within the pond, and perched water levels on a major sedimentary interbed, 55 meters below ground surface, were measured over time. Data showed that water formed a mound on the interbed before seeping through the interbed. Such behavior is consistent with a hypothesis of rapid flow through the fractured basalt being impeded by the sedimentary interbed. In 2014, the USGS, in cooperation with the U.S. Department of Energy, used a modified version of a Hantush (1967) equation to model the time-dependent perched water table heights from the LSIT as a function of radial distance from the pond center. The modeled volume change between time-steps and the known inflows to the pond were used in a mass balance to estimate the time-varying volume of water seeping through the interbed. This volume of water, the height of perched water, and the interbed thickness were used in Darcy's Law to estimate the effective saturated hydraulic conductivity of the impeding interbed. Results indicate a slightly higher effective conductivity than laboratory measurements of small core samples taken from the interbed, reflecting the presence of fractures or other heterogeneities that facilitate field-scale flow through the interbed. Applied to other locations, this method can improve estimates of recharge and contaminant transport to underlying aquifers.

  9. Seismic imaging of the mantle transition zone

    E-print Network

    Cao, Qin, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    In this thesis, we developed a generalized Radon transform of SS precursors for large-scale, high-resolution seismo-stratigraphy of the upper mantle transition zone. The generalized Radon transform (GRT) is based on the ...

  10. Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations.

    PubMed

    Reddy, Krishna R; Gangathulasi, Janardhanan; Parakalla, Naveen S; Hettiarachchi, Hiroshan; Bogner, Jean E; Lagier, Thomas

    2009-09-01

    This paper describes a comprehensive laboratory study performed to investigate the compressibility and shear strength properties of 1.5-year-old municipal solid waste (MSW) exhumed from a landfill cell where low amounts of leachate were recirculated. The study results are compared with results from a previous study on fresh MSW collected from the same landfill and data from previous studies with known MSW age to assess the variation in properties due to degradation. Laboratory testing was conducted on shredded landfilled and fresh MSW that consisted of similar particle-size distribution, with maximum particle size less than 40 mm and approximately 80% of the waste consisting of particles ranging from 10 to 20 mm. Standard Proctor, compressibility, direct shear, and triaxial consolidated undrained (CU) shear tests were conducted in general accordance with the American Society of Testing and Materials Standard Procedures. These tests were conducted with samples at an in-situ moisture content of 44% (dry weight basis) as well as elevated moisture contents of 60, 80 and 100% (dry weight basis). Standard Proctor compaction tests yielded a maximum dry density of 600 kg/m(3) at 77% optimum moisture content for landfilled MSW compared to the 420 kg/m(3) maximum dry density at 70% optimum moisture content for fresh MSW. Compression ratio values for landfilled MSW varied in a close range of 0.19-0.24 with a slight increasing trend with increase in moisture content; however, for fresh waste they were in the close range of 0.24-0.33 with no definitive correlation with moisture content. Based on direct shear tests, drained cohesion and friction angle were varied in the range of 12-64 kPa and 31-35 degrees for landfilled MSW and 31-64 kPa and 26-30 degrees for fresh MSW. Neither cohesion nor friction angle demonstrated any correlation with the moisture content. Based on triaxial CU tests, the average total strength parameters (TSP) were found to be 39 kPa and 12 degrees for landfilled MSW and 32 kPa and 12 degrees for fresh MSW, while effective strength parameters (ESP) were 34 kPa and 23 degrees for landfilled MSW and 32 kPa and 16 degrees for fresh MSW. This study was limited to small-scale laboratory testing using MSW samples with the specimen size relative to the maximum particle size in the range of 1.6 to 2.6; therefore, large-scale laboratory and field studies are recommended to systematically assess the influence of composition, particle size distribution and specimen size on the geotechnical properties of MSW. PMID:19423596

  11. Removal of sodium chloride from human urine via batch recirculation electrodialysis at constant applied voltage

    NASA Technical Reports Server (NTRS)

    Gordils-Striker, Nilda E.; Colon, Guillermo

    2003-01-01

    The removal of sodium chloride (NaCl) from human urine using a six-compartment electrodialysis cell with batch recirculation mode of operation for use in advanced life support systems (ALSS) was studied. From the results obtained, batch recirculation at constant applied voltage yields high values (approximately 94% of NaCl removal. Based on the results, the initial rate of NaCl removal was correlated to a power function of the applied voltage: -r=2.0 x 10(-4)E(3.8). With impedance spectroscopy methods, it was also found that the anion membranes were more affected by fouling with an increase of the ohmic resistance of almost 11% compared with 7.4% for the cationic ones.

  12. Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation.

    PubMed

    Boujo, E; Gallaire, F

    2014-10-01

    A variational technique is used to derive analytical expressions for the sensitivity of several geometric indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative quantities are considered: the locations of the separation point and reattachment point connected by the separatrix, the separation angles at these stagnation points, the backflow area and the recirculation area. For each geometric quantity, linear sensitivity analysis allows us to identify regions which are the most sensitive to volume forcing and wall blowing/suction. Validations against full nonlinear Navier-Stokes calculations show excellent agreement for small-amplitude control for all considered indicators. With very resemblant sensitivity maps, the reattachment point, the backflow and recirculation areas are seen to be easily manipulated. By contrast, the upstream separation point and the separatrix angles are seen to remain extremely robust with respect to external steady actuation. PMID:25294968

  13. Identification and origin of plant pathogenic microorganisms in recirculating nutrient solutions

    NASA Astrophysics Data System (ADS)

    Stanghellini, M. E.; Rasmussen, S. L.

    1994-11-01

    Avoidance of root-infecting microorganisms was originally considered one of the advantages of cultivation of crops in a soilless, recirculating nutrient solution. However, to date, four viral, three bacterial and 21 fungal pathogens have been identified as causal agents of root disease in hydroponically-grown crops. Root-infecting fungi, particularly those which produce a motile stage known as a zoospore, have been the primary pathogens associated with extensive crop losses. Documented sources of these root pathogens in hydroponic systems include peat, surface water such as rivers and streams, and insects. The severity of disease caused by these introduced root pathogens is primarily governed by the genetic susceptibility of each crop and the temperature of the recirculating nutrient solution.

  14. CFB combustor with internal solids recirculation -- Pilot testing and design applications

    SciTech Connect

    Belin, F.; Maryamchik, M.; Fuller, T.A.; Perna, M.A.

    1995-12-31

    The new generation of B and W`s CFB boilers with entirely internal recirculation of solids collected by the primary impact separator is uniquely compact and features a simple, low-maintenance solids collection system. Thorough testing of the new concept at the Cold CFB Model and the 2.5 MWth Pilot CFB combustor confirmed its effective performance equal to that of a CFB unit with external solids recirculation from the primary separator. While providing overall advantages of compactness and simplicity, the new design is especially valuable for repowering of the existing power plants where B and W`s CFB boiler fits into the plan area of PC-fired boilers.

  15. Thermal characterization of an AMTEC recirculating test cell. [Alkali Metal ThermoElectric Converter

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.

    1990-01-01

    An alkali metal thermoelectric converter (AMTEC) recirculating test cell has been operated in order to determine the magnitudes of the primary heat losses of the cell and the value of the emissivity of the condenser surface. The energy balance included radiation losses, conductive losses, and losses due to the flow of sodium into the cell. The radiative heat flux dominated the heat loss mechanism of the cell at open circuit, and the condenser emissivity was calculated to be about 0.1. It is shown that, if this emissivity can be reduced to 0.02, then parasitic losses in an AMTEC recirculating test cell operating near peak power would be less than 40 percent of the heat required by the cell. The condenser emissivity decreases with elapsed time, resulting in improved thermal performance of the cell.

  16. Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation

    E-print Network

    Boujo, Edouard

    2014-01-01

    A variational technique is used to derive analytical expressions for the sensitivity of several geometric indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative quantities are considered: the locations of the separation point and reattachment point connected by the separatrix, the separation angles at these stagnation points, the backflow area and the recirculation area. For each geometric quantity, linear sensitivity analysis allows us to identify regions which are the most sensitive to volume forcing and wall blowing/suction. Validations against full non-linear Navier-Stokes calculations show excellent agreement for small-amplitude control for all considered indicators. With very resemblant sensitivity maps, the reattachment point, the backflow and recirculation areas are seen to be easily manipulated. In contrast, the upstream separation point and the separatrix angles are seen to remain extremely robust with respec...

  17. A tracer method for evaluating recirculation of pollutant releases in buildings.

    PubMed

    Rydock, James P; Hermansen, Ove

    2002-01-01

    A method is introduced for evaluating recirculation in a building ventilation system from pollutant emissions in or near the building. Tracer was released at a known rate at the point of pollutant emission. Using measured tracer concentrations, the tracer release rate, and an estimate of the pollutant release rate, pollutant concentrations were estimated at the locations in the building where the tracer was measured. The method can be used to test whether a ventilation system is adequate for maintaining an acceptable work environment before work with a hazardous substance begins. In a case study presented to illustrate the technique, initial attempts to correct a problem of recirculation of sulfuric acid from a fume hood in a chemistry laboratory were shown to be inadequate, prompting the ventilation contractor to make further repairs before work with sulfuric acid could be resumed. PMID:11975662

  18. LUX - A recirculating linac-based ultrafast X-ray source

    SciTech Connect

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2003-08-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme.

  19. Leachate recovery and recirculation. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-04-01

    The bibliography contains citations concerning leachates from landfill operations. The references cover the sampling and analysis of landfill leachate to evaluate leachate flow through landfills and to determine levels of toxic materials. Also discussed are recirculation and recovery systems that prevent entry of leachates into groundwater when used in conjunction with landfill liners or other containment methods. (Contains a minimum of 99 citations and includes a subject term index and title list.)

  20. Study of atmospheric stagnation, recirculation and ventilation potential at Narora Atomic Power Station NPP site.

    PubMed

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Kumar, Jaivender; Ravi, P M

    2013-04-01

    The atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. The estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This paper describes the meteorological characteristics of Narora Atomic Power Station (NAPS) Nuclear Power Project site by using the integral parameters developed by Allwine and Whiteman (Atmospheric Environment 28(4):713-721, 1994). Meteorological data measured during the period 2006-2010 were analysed. The integral quantities related to the occurrence of stagnation, recirculation and ventilation characteristics were studied for the NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation and ventilation characteristics during 2006-2010 at the NAPS site is observed to be 33.8, 19.5 and 34.7 % of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1 and 44.3 %) and recirculation (32.6 % of the summer season). The presence of more dispersed light winds during pre-winter season with predominant wind directions W and WNW results in more stagnation (59.7 % of the pre-winter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent release from any nuclear industry during the pre-operational as well as operational phase. PMID:22821255

  1. Investigations into the reproductive performance and larval rearing of the Brown shrimp, Farfantepenaeus aztecus, using closed recirculating systems 

    E-print Network

    Gandy, Ryan Leighton

    2005-02-17

    The effects of unilateral eyestalk ablation, diets and sex ratios were evaluated on two wild populations of Farfantepenaeus aztecus in a closed recirculating maturation system. Ovarian development and spawning frequencies of ablated females in both...

  2. The design and construction of an open channel recirculating water tank for the study of biological hydrocarbons

    E-print Network

    Hennessey, Thomas V. (Thomas Vincent), III

    2005-01-01

    This project chronicles the design and construction of a small scale recirculating water tank for the purpose of studying biological hydrodynamics. Currently available systems were analyzed and studied prior to developing ...

  3. Design and performance characteristics of a low-head recirculating aquaculture tank system for low salinity finfish production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment components of a recirculating aquaculture system (RAS) consist mainly of: solid removal devices, biofiltration, aeration, degassing units, and water distribution. For each component, multiple options are available and the selection is based on system volume, system hydrodynamics, fis...

  4. On-Road Air Quality and the Effect of Partial Recirculation on In-Cabin Air Quality for Vehicles

    E-print Network

    Grady, Michael

    2013-01-01

    full air-recirculation or outside air for ventilation. Thisventilation speed creates bigger pressure difference across recirculationrecirculation door angle, to be adjusted to a different level. For example a faster ventilation

  5. Simultaneous removal of C and N from fish effluents in filter reactors: Effect of recirculation ratio on the axial distribution of microbial communities.

    PubMed

    Giustinianovich, Elisa A; Aspé, Estrella R; Behar, Jack E; Campos, Víctor L; Roeckel, Marlene D

    2015-09-15

    We simultaneously removed carbon (C) and nitrogen (N) from fish effluents in compact filter reactors operating at different recirculation ratios (RRs) (2, 10 and without recirculation) to demonstrate microbial coexistence and determine the effect of the RR on the axial bacterial stratification. We also examined the global performance of anoxic, anaerobic and aerobic processes. Microbial communities (bacteria and archaea) were analyzed using 16s rRNA amplification followed by DGGE analyses. Their banding profiles were analyzed using ecological parameters and the most representative bands were sequenced. TOC removal was larger than 98% in the three reactors. The total N removal was 48% for the RR-2 reactor, whereas in the RR-10 reactor, there was no N removal due to the absence of nitrification in the final aerobic step. Coexistence and stratification of microorganisms were observed. The microbial communities were correlated with distinct biochemical processes in each reactor fraction. The RR had a large effect on the distribution of the microbial communities. When the RR increased from 2 to 10, the stratification decreased from 60 to 30%, suggesting a close relationship between reactor performance and the presence of nitrifiers. In the RR-10 reactor, the nitrifier concentration was only 4%. Thus, in combined processes, filter reactors should operate with a moderate RR to favor bacterial stratification and improve performance. PMID:26203876

  6. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-?) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-? build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  7. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  8. Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.

    PubMed

    Franke, Matthias; Jandl, Gerald; Leinweber, Peter

    2006-10-01

    Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale. PMID:16477355

  9. Single-station integral measures of atmospheric stagnation, ventilation, and recirculation

    SciTech Connect

    Allwine, K.J.; Whiteman, C.D.

    1992-09-01

    In air pollution work, terms such as stagnation, ventilation, and recirculation have come to be used to indicate special types of flow conditions that produce important effects on the dispersion of air pollutants. Stagnations are events where atmospheric flows decrease in speed, or stop altogether, allowing pollutants to build up in stagnant air in the vicinity of the pollutant sources. Ventilations, on the other hand, are events in which a confined polluted air mass is driven away and replaced by fresh air. Finally, a recirculation is an event in which polluted air is initially carried away from the source region but later returns to produce a high pollution episode. The three terms, when used in air pollution work, are often used in a general sense, but rarely are defined mathematically to allow a numerical evaluation of the flow character. In the present work we develop mathematical definitions of these terms by focusing directly on the relevant atmospheric transport conditions, irrespective of pollution levels. The mathematical definitions of several single- station integral quantities representative of stagnation, ventilation, and recirculation are described, and the approach is applied to a wind data et from a radar profiler at Page, Arizona.

  10. Recipe for Hypoxia: Playing the Dead Zone Game

    ERIC Educational Resources Information Center

    Kastler, Jessica A.

    2009-01-01

    Dead zones--areas experiencing low levels of dissolved oxygen--are growing in shallow ocean waters around the world. Research has shown that dead zones form as a result of a specific type of pollution, called nutrient enrichment or eutrophication, and are found in almost every coastal zone where humans have large populations. Concepts related to…

  11. Duration of a large Mafic intrusion and heat transfer in the lower crust: A SHRIMP U-Pb zircon Study in the Ivrea-Verbano Zone (Western Alps, Italy)

    USGS Publications Warehouse

    Peressini, G.; Quick, J.E.; Sinigoi, S.; Hofmann, A.W.; Fanning, M.

    2007-01-01

    The Ivrea-Verbano Zone in the western Italian Alps contains one of the world's classic examples of ponding of mantle-derived, mafic magma in the deep crust. Within it, a voluminous, composite mafic pluton, the Mafic Complex, intruded lower-crustal, high-grade paragneiss of the Kinzigite Formation during Permian-Carboniferous time, and is now exposed in cross-section as a result of Alpine uplift. The age of the intrusion is still debated because the results of geochronological studies in the last three decades on different rock types and with various dating techniques range from 250 to about 300 Ma. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age determinations on 12 samples from several locations within the Mafic Complex were performed to better constrain the age of the igneous event. The results indicate a long history of magma emplacement and cooling, which reconciles the spread in previously published ages. The main intrusive phase took place at 288 ?? 4 Ma, causing a perturbation of the deep-crustal geotherm, which relaxed to the Sm-Nd closure temperature in garnet-free mafic rocks after about 15-20 Myr of sub-solidus cooling at c. 270 Ma. These results suggest that large, deep crustal plutons, such as those identified geophysically at depths of 10-20 km within extended continental crust (e.g. Yellowstone, Rio Grande Rift, Basin and Range) may have formed rapidly but induced a prolonged thermal perturbation. In addition, the data indicate that a significant thermal event affected the country rock of the Mafic Complex at about 310 Ma. The occurrence of an upper amphibolite- to granulite-facies thermal event in the Kinzigite Formation prior to the main intrusive phase of the Mafic Complex has been postulated by several workers, and is corroborated by other geochronological investigations. However, it remains uncertain whether this event (1) was part of a prolonged perturbation of the deep-crustal geotherm, which started long before the onset of intrusion of the Mafic Complex, or (2) corresponded to the intrusion of the first sills of the Mafic Complex, or (3) was related to an earlier, independent thermal pulse. ?? The Author 2007. Published by Oxford University Press. All rights reserved.

  12. 33 CFR 165.773 - Security Zone; Escorted Vessels in Captain of the Port Zone Jacksonville, Florida.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... zone. Escorted vessel means a vessel, other than a large U.S. naval vessel as defined in 33 CFR 165... within Captain of the Port Zone, Jacksonville, Florida as defined in 33 CFR 3.35-20. (c) Security zone. A...) When escorted vessels are moored, dayboards or other visual indications such as lights or buoys may...

  13. 33 CFR 165.769 - Security Zone; Escorted Vessels, Charleston, South Carolina, Captain of the Port Zone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Escorted vessel means a vessel, other than a large U.S. naval vessel as defined in 33 CFR 165.2015, that is... wake. (b) Regulated area. All navigable waters, as defined in 33 CFR 2.36, within the Captain of the Port Zone, Charleston, South Carolina 33 CFR 3.35-15. (c) Security zone. A 300-yard security zone...

  14. to Purple 3 Orange Zone

    E-print Network

    Applebaum, David

    Orange Zone Boland House Purple Zone Hodgkin Building Ground floor Pink Zone Henriette Raphael House Ground floor Blue Zone New Hunt's House Ground floor Purple 2 Anatomy Lecture Theatre R Entrance R Purple London Bridge R Purple zone Hodgkin Building Pink zone Henriette Raphael House Orange zone Boland House

  15. 33 CFR 165.749 - Security Zone: Escorted Vessels, Savannah, Georgia, Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means a vessel, other than a large U.S. naval vessel as defined in 33 CFR 165.2015, that is accompanied...; or (3) Creating an excessive wake. (b) Regulated area. All navigable waters, as defined in 33 CFR 2.36, within the Captain of the Port Zone, Savannah, Georgia 33 CFR 3.35-15. (c) Security zone. A...

  16. Float Zone Workshop, introduction

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1981-01-01

    The purposes of the float zone working group are summarized. Present and proposed U.S. and European research programs are listed, and power needs for float zoning surveyed. A 1981 to 1991 schedule for development efforts is presented.

  17. Unsaturated Zone I. Overview

    E-print Network

    Chapter 2 Unsaturated Zone I. Overview If the Yucca Mountain site is deemed suitable for re. They reached the following conclusions: 13 Chapter 2 Unsaturated Zone 1. Tuff is a rock formed by consolidation

  18. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.

  19. Modeling process plant plume dispersion and recirculation using computational fluid dynamics

    SciTech Connect

    Berkoe, J.M.

    1999-07-01

    Computational fluid dynamics (CFD) can be used to solve environmental problems caused by heat and contaminant dispersion from process plants. CFD is a CAD-based software tool, which provides profiles of local fluid velocity, fluid temperature and species concentrations. CFD has enabled engineers to identify solutions to problems quickly without resorting to traditional experimental approaches. In this paper, three actual projects are described which demonstrate the utility of CFD to dispersion modeling and the increasing level of sophistication with which it has been applied. In some cases experimental tests or actual field operation provide sources of model validation and verification. In the first case, CFD models of tankhouse ventilation systems, based on three South American projects, were developed to guide the selection of equipment for crossflow ventilation systems to meet workplace air quality requirements. In the course of this study, it was found that significant quantities of recirculation could occur for moderate wind conditions opposite to the fan exhaust. In the second case, CFD models were developed to simulate the fluid dynamics of the buoyant plume released during a copper smelter charging operation and to investigate plume collection system designs. Side skirt and canopy configurations were demonstrated to be key design parameters for plume capture. Although not initially expected, a simplified design configuration was found to achieve maximum plume capture, which was later confirmed in actual operation. In the third case, heat recirculation from LNG Plants was investigated. In a liquefied natural gas (LNG) plant in the Caribbean, it was recognized that wind-induced recirculation of the turbine and condenser exhaust could negatively impact operating margins. Dispersion characteristics for the entire plant were simulated using detailed CFD models to predict the temperature profiles entering the coolers under various wind directions and speeds.

  20. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration. PMID:17784486

  1. Flowing recirculated-water system for inducing laboratory spawning of sea lampreys

    USGS Publications Warehouse

    Fredricks, Kim T.; Seelye, James G.

    1995-01-01

    We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 +/- 2 degrees C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3-6 cm in diameter) to build nests, and a water velocity of 0.2-0.3 m/s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.

  2. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  3. Degradation of oleic acid in anaerobic filters: the effect of inoculum acclimatization and biomass recirculation.

    PubMed

    Pereira, A; Mota, M; Alves, M

    2001-01-01

    The degradation of oleic acid in anaerobic filters was studied and the effect of an acclimated inoculum and biomass recirculation was evaluated. Three anaerobic filters (R1, R2, and R3) were operated in parallel. The anaerobic filters R1 and R2 were inoculated with nonacclimated biomass, whereas the anaerobic filter R3 was inoculated with acclimated biomass. In the anaerobic filters R2 and R3, biomass settling and recirculation were applied. The use of an acclimated inoculum and biomass recirculation (R3) was beneficial in terms of removal efficiency, which was 4 to 8% higher than in the anaerobic filters R1 and R2 when oleate was the sole carbon source fed to the reactors at an applied organic load of 12.5 kg of chemical oxygen demand (COD)/m3 x d, even with an oleate to calcium and magnesium ion molar concentration ratio of 6.8. Biomass recirculation significantly reduced the biomass washout and the toxic effect on the acetogenic and methanogenic populations. The use of an acclimated inoculum was beneficial in terms of methane yield, which was 50% greater than that observed for the reactors inoculated with nonacclimated inoculum for the highest applied organic loading rate (12.5 kg COD/m3 x d). At the end of the operation, the biomass was encapsulated by a whitish matter, which was well detected by microscopic examination. When this sludge was incubated in batch vials at 37 degrees C where no substrate was added, methane production from the adsorbed organic matter was evidenced, attaining a maximum value (at standard temperature and pressure) of 39.7 mL/g volatile solids x d for the biomass taken from R1. With stirring (150 r/min), the methane production rate was 13.8 times higher than under static conditions. When oleate was added to this sludge, methane production was delayed, suggesting that adsorbed matter can be an intermediate of oleate degradation such as stearic, palmitic, myristic, or other saturated acids. PMID:11765998

  4. Jovian electron transport to the polar heliosphere - An analogy to magnetospheric recirculation

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Baker, D. N.

    1992-01-01

    The theory of magnetospheric recirculation for cyclic electron energization and transport may apply in part to heliospheric transport of Jovian electrons if enhanced cross-IMF propagation occurs at heliospheric altitudes near and below the solar wind transition region. Low altitude, ecliptic-to-polar transport would short-circuit conventional interplanetary diffusion, facilitate rapid access to the polar heliosphere with minimal adiabatic energy losses, and provide a seed population for acceleration to 100-1000 MeV energies at the solar wind termination shock and in the heliomagnetotail.

  5. STS-35 Columbia, OV-102, aft fuselage LRU hydrogen recirculation pump

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Closeup view shows the aft fuselage line replaceable unit (LRU) hydrogen recirculation pump from Columbia, Orbiter Vehicle (OV) 102. The pump is being tested at JSC's Thermochemical Test Area (TTA) Support Laboratory Bldg 350. JSC technicians ran the pump package through the battery of leak tests. Preliminary indications showed only minor, acceptable leakage from the package and Kennedy Space Center (KSC) technicians have replaced a crushed seal on the prevalve of the main propulsion system they believe may have caused the STS-35 hydrogen leak.

  6. Involvement of Sialic Acid on Endothelial Cells in Organ-Specific Lymphocyte Recirculation

    NASA Astrophysics Data System (ADS)

    Rosen, Steven D.; Singer, Mark S.; Yednock, Ted A.; Stoolman, Lloyd M.

    1985-05-01

    Mouse lymphocytes incubated on cryostat-cut sections of lymphoid organs (lymph nodes and Peyer's patches) specifically adhere to the endothelium of high endothelial venules (HEV), the specialized blood vessels to which recirculating lymphocytes attach as they migrate from the blood into the parenchyma of the lymphoid organs. Treatment of sections with sialidase eliminated the binding of lymphocytes to peripheral lymph node HEV, had no effect on binding to Peyer's patch HEV, and had an intermediate effect on mesenteric lymph node HEV. These results suggest that sialic acid on endothelial cells may be an organ-specific recognition determinant for lymphocyte attachment.

  7. Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels

    NASA Astrophysics Data System (ADS)

    Mach, P.; Krupenkin, T.; Yang, S.; Rogers, J. A.

    2002-07-01

    We have developed an approach for using electrowetting actuation in recirculating fluidic channels to achieve dynamic tuning of optical fiber structures. The electrically controlled and fully reversible motion of the fluids and lubricants in these channels alters the refractive index profile experienced by the optical waveguide modes of the fiber. When combined with in-fiber gratings and etched fibers, this fluidic system yields dynamically adjustable narrow and broadband fiber filters, respectively. The nonmechanical operation of these systems, their ability to support switching speeds on the order of milliseconds, and their excellent optical characteristics indicate a promising potential for electrowetting-actuated fluidic tuning in optical fiber devices and other photonic components.

  8. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.; Conklin, M.H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single-storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (> 90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (t(s) ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a 'single' lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux-weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.

  9. Adenovirus Vector-Induced CD8+ T Effector Memory Cell Differentiation and Recirculation, But Not Proliferation, Are Important for Protective Immunity Against Experimental Trypanosoma cruzi Infection

    PubMed Central

    Vasconcelos, José Ronnie; Dominguez, Mariana R.; Neves, Ramon L.; Ersching, Jonatan; Araújo, Adriano; Santos, Luara I.; Virgilio, Fernando S.; Machado, Alexandre V.; Bruna-Romero, Oscar; Gazzinelli, Ricardo T.

    2014-01-01

    Abstract Heterologous prime-boost vaccination using plasmid DNA followed by replication-defective adenovirus vector generates a large number of specific CD8+ T effector memory (TEM) cells that provide long-term immunity against a variety of pathogens. In the present study, we initially characterized the frequency, phenotype, and function of these T cells in vaccinated mice that were subjected to infectious challenge with the human protozoan parasite Trypanosoma cruzi. We observed that the frequency of the specific CD8+ T cells in the spleens of the vaccinated mice increased after challenge. Specific TEM cells differentiated into cells with a KLRG1High CD27Low CD43Low CD183LowT-betHigh EomesLow phenotype and capable to produce simultaneously the antiparasitic mediators IFN? and TNF. Using the gzmBCreERT2/ROSA26EYFP transgenic mouse line, in which the cells that express Granzyme B after immunization, are indelibly labeled with enhanced yellow fluorescent protein, we confirmed that CD8+ T cells present after challenge were indeed TEM cells that had been induced by vaccination. Subsequently, we observed that the in vivo increase in the frequency of the specific CD8+ T cells was not because of an anamnestic immune response. Most importantly, after challenge, the increase in the frequency of specific cells and the protective immunity they mediate were insensitive to treatment with the cytostatic toxic agent hydroxyurea. We have previously described that the administration of the drug FTY720, which reduces lymphocyte recirculation, severely impairs protective immunity, and our evidence supports the model that when large amounts of antigen-experienced CD8+ TEM cells are present after heterologous prime-boost vaccination, differentiation, and recirculation, rather than proliferation, are key for the resultant protective immunity. PMID:24568548

  10. INTERNATIONAL DATA Roaming Data Zones

    E-print Network

    Burton, Geoffrey R.

    INTERNATIONAL DATA Roaming Data Zones Roaming Zones Countries Zone 1 Republic of Ireland & Channel Islands Guernsey, Jersey, Republic of Ireland, Isle of Man Zone 2 EE Business Zone Andorra, Austria (including Canary Islands, Ceuta and Melilla), Sweden, Switzerland, Vatican City (Italy) Zones 3 ­ 7 All

  11. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Tian, Bao-Hu; Su, Yao; Lu, Yu-Lan

    2015-12-01

    With comparison of a traditional landfill, a joint recirculation of concentrated leachate and leachate to landfills with or without a microaerobic reactor for leachate treatment was investigated in this study. The results showed that the joint recirculation of concentrated leachate and leachate with a microaerobic reactor for leachate treatment could not only utilize the microaerobic reactor to buffer the fluctuation of quality and quantity of leachate during landfill stabilization, but also reduce the inhibitory effect of acidic pH and high concentrations of ammonium in recycled liquid on microorganisms and accelerate the degradation of landfilled waste. After 390days of operation, the discharge of COD and total nitrogen (TN) from the landfill with leachate pretreatment by a microaerobic reactor was 7.4 and 0.9g, respectively, which accounted for 0.7% and 2.6% of COD, 1.9% and 7.5% of the TN discharge from the landfills without recirculation and directly recirculated with leachate and concentrated leachate, respectively. The degradation of the organic matter and biodegradable matter (BDM) in the landfill reactors could fit well with the first-order kinetics. The highest degradation of the organic matter and BDM was observed in the joint recirculation system with a microaerobic reactor for leachate treatment with the degradation constant of the first-order kinetics of 0.001 and 0.002. PMID:26329845

  12. Earthquake hazards on the cascadia subduction zone

    SciTech Connect

    Heaton, T.H.; Hartzell, S.H.

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M/sub w/) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M/sub w/ 8) or a giant earthquake (M/sub w/ 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M/sub w/ less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M/sub w/ up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis. 35 references, 6 figures.

  13. Earthquake hazards on the cascadia subduction zone.

    PubMed

    Heaton, T H; Hartzell, S H

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis. PMID:17789780

  14. Application of 3D aerodynamic/combustion model to combustor primary zone study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Sutton, R.; Miles, G.; Young, E.; Briehl, D.

    1983-01-01

    A description is provided of the three-dimensional elliptic code for reacting flows used in the combustor design process during the program 'Small Gas Turbine Combustor Primary Zone Study' carried out by a U.S. company. The code, designated MARC-I (multidimensional aerodynamic recirculating combustion-Version I) is an adaptation of the model described by Mongia et al. (1979). The program has the objective to advance the technology of the small reverse-flow annular combustor design through an understanding of primary zone performance factors. The MARC-I code was used for performance predictions of both original designs and later modifications. A test program consisting of both primary zone sampling and overall combustor performance measurements was carried out. It was, therefore, possible to compare the analytical predictions with actual test measurements.

  15. Developments of Optical Resonators and Optical Recirculators for Compton X/? Ray Machines

    NASA Astrophysics Data System (ADS)

    Martens, A.; , Mightylaser, Thomx Collaboration; Eurogammas Association

    2015-10-01

    Optical resonators and optical recirculators are key elements of Compton X/? ray machines. With regard to their use in laser physics or in time-frequency metrology, these devices have to obey severe constraints when implemented in the vaccum of an electron accelerator. Our group has developed both types of devices. In this proceedings an original recirculator design, that was developed within the European proposal to the ELI-NP ? ray source call for tender, is described. This is an aberration free device which allows reciculating 32 times a short and high intensity laser pulse. It also allows synchronizing each of the 32 passes with the electron RF cavities within 100 fs. The second topic of these proceedings is a description of our R & D on optical resonators dedicated to laser-electron interactions. We have locked two different picosecond laser oscillators to the highest cavity finesse F=30000 ever reached in pulsed regime. We also designed and build a new kind of non-planar cavity, tetrahedron shape, providing circularly polarized eigen modes. This cavity was installed in the ATF accelerator of KEK and successfully used to produce a high gamma ray flux. Thanks to an original fibre amplifier, we succeed in stacking 100 kW of average power inside the cavity.

  16. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system.

    PubMed

    Guttman, Lior; van Rijn, Jaap

    2009-02-01

    In a previous study on a recirculating fish culture system, levels of geosmin and 2-methylisoborneol were found to decrease when culture water was recirculated through the anaerobic sludge digestion treatment stage of the system. This finding led us to the present study in which the geosmin and 2-methylisoborneol removal capacity of the sludge derived from this treatment stage was examined in vitro. It was found that reduction of off-flavor compounds by the sludge was mediated by both chemical/physical sorption and biological degradation. At geosmin and 2-methylisoborneol concentrations within the range of those experienced in fish culture systems, chemical/physical sorption by the sludge was found to account for a 93% reduction in geosmin and a 79% reduction in 2-methylisoborneol from the overlying water within 48h of incubation. Combined with the biological degradation taking place in the sludge, a complete removal of these compounds from the water phase occurred within 9 days of incubation. By means of repeated washing of the geosmin and 2-methylisoborneol contaminate sludge with clean water, relatively small amounts of these compounds were released from the sludge, a possible indication for the fact that absorption, rather than adsorption, underlies the chemical/physical removal process. PMID:18986667

  17. Improving the efficiency of zeolites for the removal of CO sub 2 from air recirculation systems

    SciTech Connect

    Smith, V.S. )

    1990-01-01

    In closed, recirculating air systems, such as those needed in submarines and space stations, it is critical to remove CO{sub 2} and trace-level pollutants from the atmosphere before it is recirculated. Strong interactions are observed between the cations contained within the zeolite pore system and atmospheric CO{sub 2}. Such interactions may be improved by impregnation of basic salts. These improved absorbers were examined for their ability to strongly complex CO{sub 2} from the atmosphere. Adsorption isotherms were obtained at various temperatures and comparisons were made between the ion-exchanged and the salt-impregnated zeolites to determine the adsorbent with the optimum performance and to understand the nature of such strong interaction. The LiNO{sub 3} impregnated zeolites A exhibited little adsorption capacity over the salt. Zeolite Li-X exhibited significant capacity for CO{sub 2} at 25{degree}C, 65{degree}C, and 95{degree}C. At 300 torr, CO{sub 2} adsorption capacities were 18.3, 10.6, and 7.1 wt% respectively.

  18. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    SciTech Connect

    V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

    2012-06-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  19. Effects of Exhaust Gas Recirculation on SI Engines at Wide Open Throttle

    NASA Astrophysics Data System (ADS)

    Bronson, Sydney; Puzinauskas, Paulius

    2011-11-01

    Exhaust gas recirculation, a charge dilution technique, has proven to be an effective method of reducing NOx emissions and fuel consumption of spark ignition engines. Wide open throttle operation also increases overall engine efficiency by reducing the pumping losses caused by throttling. In this study, the emissions and fuel economy benefits of exhaust gas recirculation (EGR) at wide open throttle conditions were quantified using a 2.4L port-injected engine. Engine performance and emissions data were recorded as the percentage of EGR in the intake charge was increased from zero to just above thirty percent (the EGR limit). This EGR percentage, in-cylinder pressure measurements, and the temperatures and pressures of the intake and exhaust were all recorded to ensure stable operating conditions. These tests were performed with a stoichiometric air-fuel ratio at a constant speed of 2000 rpm at wide open throttle. The variation of brake specific fuel consumption and emissions (in particular NOx) with increasing EGR percentages was analyzed.

  20. Hot-electron recirculation in ultraintense laser pulse interactions with thin foils

    SciTech Connect

    Huang Yongsheng; Lan Xiaofei; Duan Xiaojiao; Tan Zhixin; Wang Naiyan; Shi Yijin; Tang Xiuzhang; He Yexi

    2007-10-15

    A model, called the Step Model, is proposed to describe hot-electron recirculation. A formula to estimate electron density at the rear side sheath is described. With a fixed initial hot-electron density for some target thicknesses, the results from the Step Model are compared with several experiments. The influences of laser pulse absorption efficiency, laser pulse duration, the opening angle of hot-electrons, hot-electron recirculation, and target thickness on the ion acceleration are discussed. When the target thickness is far less than the laser focus radius, the initial electron density will be proportional to the laser pulse absorption efficiency, and the angular effect and the thickness effect can both be ignored. For any target thickness, the maximum ion velocity accelerated by the rear side sheath can be calculated using the Step Model. As an application to some experiments, the Step Model provides a half-analytic method to achieve the dependence of the laser pulse absorption efficiency on target thickness and the influence of amplified spontaneous emission (ASE) duration on the laser absorption efficiency.