Science.gov

Sample records for large scale plasma

  1. Scaled Laboratory Collisionless Shock Experiments in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Schaeffer, D.; Everson, E.; Bondarenko, A.; Winske, D.; Constantin, C.; Niemann, C.

    2013-12-01

    Collisionless shocks in space plasmas have been investigated since the fifties and are typically studied via in-situ satellite observations, which are limited due to the large structure of collisionless shocks in space environments relative to the satellite observation platform. Scaled, repeatable experiments in the Large Plasma Device (LAPD) at UCLA provide a test bed for studying collisionless shocks in the laboratory, where questions of ion and electron heating and acceleration can be addressed and examined in detail. The experiments are performed by ablating a graphite or plastic target using the Raptor kilojoule-class laser facility at UCLA. The laser provides an on-target energy in the range of 100-500 J that drives a super-Alfvénic (MA > 1) debris plasma across a background magnetic field (200-800 G) into the ambient, magnetized LAPD plasma. Typical plasma parameters in the LAPD consist of a H+ or He+ ambient plasma with a core column (diameter > 20 cm ) density ni ~ 1013 cm-3 and electron temperature Te ~ 10 eV embedded in a larger plasma discharge (diameter ~ 80 cm) of density ni ~ 1012 cm-3 and Te ~ 5 eV. The ambient ion temperature is Ti ~ 1 eV. Experimental results from the latest collisionless shock campaign will be presented and compared with two dimensional hybrid simulations of the experiment. Fielded diagnostics include Thomson scattering, ion spectroscopy, magnetic flux probes, Langmuir probes, and microwave reflectometry.

  2. The Conversion of Large-Scale Turbulent Energy to Plasma Heat In Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Howes, Gregory

    2015-11-01

    Turbulence in space and astrophysical plasmas plays a key role in the conversion of the energy of violent events and instabilities at large scales into plasma heat. The turbulent cascade transfers this energy from the large scales at which the motions are driven down to small scales, and this essentially fluid process can be understood in terms of nonlinear wave-wave interactions. At sufficiently small scales, for which the dynamics is often weakly collisional, collisionless mechanisms damp the turbulent electromagnetic fluctuations, and this essentially kinetic process can be understood in terms of linear wave-particle interactions. In this talk, I will summarize the possible channels of the turbulent dissipation in a weakly collisional plasma, and present recent results from kinetic numerical simulations of plasma turbulence. Finally, I will discuss strategies for the definitive identification of the dominant dissipation channels using spacecraft measurements of turbulence in the solar wind.

  3. Large-scale quantization in space plasmas (Invited)

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2013-12-01

    n plasmas, Debye screening structures correlations between particles. In our recent paper [Livadiotis & McComas, Entropy, 15, 1118; Nature, doi:10.1038/nature.2013.13159], we identify a phase-space minimum h* that connects the energy of particles within a Debye sphere to an equivalent wave frequency. In theory, there was no a priori reason to expect a single value of h* across different plasmas. However, we find that this quantity remains constant across a wide range of space plasmas, from the solar wind and the planetary magnetospheres in the inner heliosphere to the distant plasma in the inner heliosheath and the local interstellar medium. We used four independent methods to derive the value of h* 2π(1.2×0.4)×10^{-22} Js: (1) Ulysses solar wind measurements, (2) a variety of space plasmas spanning a broad range of physical properties, (3) the entropic limit emerging from statistical mechanics applied to space plasmas, (4) waiting-time distributions of explosive events in space plasmas. Finding a constant value for h* in a variety of different of systems, similar to the classical Planck constant but 12 orders of magnitude larger, reveals a possible type of new quantization in plasmas but in a larger scale. The value of h* calculated for the solar wind ion-electron plasma using Ulysses daily measurements. (a) Diagram of the smallest particle energy ɛc vs. the particle lifetime tc in a Debye sphere (log-log scale). (b) Their product, 2ɛctc, depicted as a function of heliocentric distance r. (c) Histogram of the values of log h*. Four Different Methods of the Estimation of h* Four independent methods to calculate the value of h* 2π(1.2×0.4)×10-22 Js.

  4. Modeling parametric scattering instabilities in large-scale expanding plasmas

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Hüller, S.; Pesme, D.; Casanova, M.; Loiseau, P.; Labaune, Ch.

    2006-06-01

    We present results from two-dimensional simulations of long scale-length laser-plasma interaction experiments performed at LULI. With the goal of predictive modeling of such experiments with our code Harmony2D, we take into account realistic plasma density and velocity profiles, the propagation of the laser light beam and the scattered light, as well as the coupling with the ion acoustic waves in order to describe Stimulated Brillouin Scattering (SBS). Laser pulse shaping is taken into account to follow the evolution ofthe SBS reflectivity as close as possible to the experiment. The light reflectivity is analyzed by distinguishing the backscattered light confined in the solid angle defined by the aperture of the incident light beam and the scattered light outside this cone. As in the experiment, it is observed that the aperture of the scattered light tends to increase with the mean intensity of the RPP-smoothed laser beam. A further common feature between simulations and experiments is the observed localization of the SBS-driven ion acoustic waves (IAW) in the front part of the target (with respect to the incoming laser beam).

  5. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device.

    PubMed

    Kharchev, Nikolay; Tanaka, Kenji; Kubo, Shin; Igami, Hiroe; Batanov, German; Petrov, Alexandr; Sarksyan, Karen; Skvortsova, Nina; Azuma, Yoshifumi; Tsuji-Iio, Shunji

    2008-10-01

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k(s) approximately 34 cm(-1)) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose. PMID:19044538

  6. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    SciTech Connect

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr; Sarksyan, Karen; Skvortsova, Nina; Tanaka, Kenji; Kubo, Shin; Igami, Hiroe; Azuma, Yoshifumi; Tsuji-Iio, Shunji

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  7. Meter-Scale Large-Area Plasma Sources for Next-Generation Processes

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi

    Development of large-area high-density plasma sources with a scale length of meters is strongly desired for a variety of plasma processes, especially the flat panel display fabrications. Considering design issues for plasma production with high-frequency power sources to satisfy the requirements for enlargement of source-size exceeding a meter, the power deposition profile and hence the plasma distribution become inherently non-uniform, largely due to standing wave effects, which cannot be avoided with increasing source size when the source employs power-coupling devices (inductive antennas or capacitive electrodes) with a scale-length equivalent to or as long as the 1/4 wavelength of the HF-power transmission. In this article, these constraints associated with large-area sources are reviewed, and an inductively coupled RF plasma source with multiple low-inductance antenna (LIA) units is presented as a promising candidate to avoid the problems with conventional sources.

  8. Assimilative Modeling of Large-Scale Equatorial Plasma Trenches Observed by C/NOFS

    NASA Astrophysics Data System (ADS)

    Su, Y.; Retterer, J. M.; de La Beaujardiere, O.; Burke, W. J.; Roddy, P. A.; Pfaff, R. F.; Hunton, D. E.

    2009-12-01

    Low-latitude plasma irregularities commonly observed during post sunset local times have been studied extensively by ground-based measurements such as coherent and incoherent scatter radars and ionosondes, as well as by satellite observations. The pre-reversal enhancement in the upward plasma drift due to eastward electric fields has been identified as the primary cause of these irregularities. Reports of plasma depletions at post-midnight and early morning local times are scarce and are typically limited to storm time conditions. Such dawn plasma depletions were frequently observed by C/NOFS in June 2008 [de La Beaujardière et al., 2009]. We are able to qualitatively reproduce the large-scale density depletion observed by the Planar Langmuir Probe (PLP) on June 17, 2008 [Su et al., 2009], based on the assimilative physics-based ionospheric model (PBMOD) using available electric field data obtained from the Vector Electric Field Instrument (VEFI) as the model input. In comparison, no plasma depletion or irregularity is obtained from the climatology version of our model when large upward drift velocities caused by observed eastward electric fields were absent. In this presentation, we extend our study for the entire month of June 2008 to exercise the forecast capability of large-scale density trenches by PBMOD with available VEFI data. Geophys. Res. Lett, 36, L00C06, doi:10.1029/2009GL038884, 2009.Geophys. Res. Lett., 36, L00C02, doi:10.1029/ 2009GL038946, 2009.

  9. Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Suvorova, A. V.

    2015-06-01

    Time History of Events and Macroscale Interactions during Substorms multipoint observation of the plasma and magnetic fields, conducted simultaneously in the dayside magnetosheath and magnetosphere, were used to collect 646 large-scale magnetosheath plasma jets interacting with the magnetopause. The jets were identified as dense and fast streams of the magnetosheath plasma whose energy density is higher than that of the upstream solar wind. The jet interaction with the magnetopause was revealed from sudden inward motion of the magnetopause and an enhancement in the geomagnetic field. The penetration was determined as appearance of the magnetosheath plasma against the background of the hot magnetospheric particle population. We found that almost 60% of the jets penetrated through the magnetopause. Vast majority of the penetrating jets was characterized by high velocities V > 220 km/s and kinetic βk > 1 that corresponded to a combination of finite Larmor radius effect with a mechanism of impulsive penetration. The average plasma flux in the penetrating jets was found to be 1.5 times larger than the average plasma flux of the solar wind. The average rate of jet-related penetration of the magnetosheath plasma into the dayside magnetosphere was estimated to be ~1029 particles/d. The rate varies highly with time and can achieve values of 1.5 × 1029 particles/h that is comparable with estimates of the total amount of plasma entering the dayside magnetosphere.

  10. Large-scale plasma transport in the magnetotail during different solar wind conditions

    NASA Astrophysics Data System (ADS)

    Myllys, Minna; Kilpua, Emilia; Pulkkinen, Tuija

    2015-04-01

    We present results from a study on how solar wind conditions affect the energy and plasma transport in the geomagnetic tail and how they modify the large-scale magnetotail configuration. We study the large-scale plasma transport in the magnetotail using tail observations from the five THEMIS spacecrafts during 2008-2011. During this period the THEMIS spacecraft spent a considerable time in the geomagnetic tail allowing us to compile statistical maps of plasma flow and energy transport properties. Furthermore, this time period corresponds to the extended and prolonged solar activity minimum between solar cycle 23 and 24 and relatively quiet rising phase of cycle 24. This allowed us to investigate magnetospheric processes and solar wind-magnetospheric coupling during relatively quiet state of the magnetosphere. In order to separate the role of different solar wind parameters and their activity level on the average sunward and tailward plasma flows and the occurrence rate of fast plasma bursts, the magnetospheric data was binned according to solar wind speed, dynamic pressure and IMF measurements. Our results show that the tailward flow bursts are not dependent on the solar wind conditions, but that the sign of the IMF z-component (GSM coordinates) causes the most visible effect to the occurence rate and pattern of sunward flows.

  11. Hybrid-PIC Algorithms for Simulation of Large-Scale Plasma Jet Accelerators

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten; Welch, Dale

    2009-11-01

    Merging coaxial plasma jets are envisioned for use in magneto-inertial fusion schemes as the source of an imploding plasma liner. An experimental program at HyperV is considering the generation of large plasma jets (length scales on the order of centimeters) at high densities (10^16-10^17 cm-3) in long coaxial accelerators. We describe the Hybrid particle-in-cell (PIC) methods implemented in the code LSP for this parameter regime and present simulation results of the HyperV accelerator. A radiation transport algorithm has also been implemented into LSP so that the effect of radiation cooling on the jet mach number can be included self-consistently into the Hybrid PIC formalism.

  12. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses.

    PubMed

    Liao, G Q; Li, Y T; Li, C; Su, L N; Zheng, Y; Liu, M; Wang, W M; Hu, Z D; Yan, W C; Dunn, J; Nilsen, J; Hunter, J; Liu, Y; Wang, X; Chen, L M; Ma, J L; Lu, X; Jin, Z; Kodama, R; Sheng, Z M; Zhang, J

    2015-06-26

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100  μJ per steradian in the laser specular direction at an optimal preplasma scale length around 40-50  μm. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas. PMID:26197129

  13. Initial operation of a large-scale Plasma Source Ion Implantation experiment

    SciTech Connect

    Wood, B.P.; Henins, I.; Gribble, R.J.; Reass, W.A.; Faehl, R.J.; Nastasi, M.A.; Rej, D.J.

    1993-10-01

    In Plasma Source Ion Implantation (PSII), a workpiece to be implanted is immersed in a weakly ionized plasma and pulsed to a high negative voltage. Plasma ions are accelerated toward the workpiece and implanted in its surface. Experimental PSII results reported in the literature have been for small workpieces. A large scale PSII experiment has recently been assembled at Los Alamos, in which stainless steel and aluminum workpieces with surface areas over 4 m{sup 2} have been implanted in a 1.5 m-diameter, 4.6 m-length cylindrical vacuum chamber. Initial implants have been performed at 50 kV with 20 {mu}s pulses of 53 A peak current, repeated at 500 Hz, although the pulse modulator will eventually supply 120 kV pulses of 60 A peak current at 2 kHz. A 1,000 W, 13.56 MHz capacitively-coupled source produces nitrogen plasma densities in the 10{sup 15} m{sup {minus}3} range at neutral pressures as low as 0.02 mtorr. A variety of antenna configurations have been tried, with and without axial magnetic fields of up to 60 gauss. Measurements of sheath expansion, modulator voltage and current, and plasma density fill-in following a pulse are presented. The authors consider secondary electron emission, x-ray production, workpiece arcing, implant conformality, and workpiece and chamber heating.

  14. Large-scale plasma patterning of transparent graphene electrode on flexible substrates.

    PubMed

    Kim, Ji Hye; Ko, Euna; Hwang, Joonki; Pham, Xuan-Hung; Lee, Joo Heon; Lee, Sung Hwan; Tran, Van-Khue; Kim, Jong-Ho; Park, Jin-Goo; Choo, Jaebum; Han, Kwi Nam; Seong, Gi Hun

    2015-03-10

    Graphene, a two-dimensional carbon material, has attracted significant interest for applications in flexible electronics as an alternative transparent electrode to indium tin oxide. However, it still remains a challenge to develop a simple, reproducible, and controllable fabrication technique for producing homogeneous large-scale graphene films and creating uniform patterns with desired shapes at defined positions. Here, we present a simple route to scalable fabrication of flexible transparent graphene electrodes using an oxygen plasma etching technique in a capacitively coupled plasma (CCP) system. Ascorbic acid-assisted chemical reduction enables the large-scale production of graphene with solution-based processability. Oxygen plasma in the CCP system facilitates the reproducible patterning of graphene electrodes, which allows controllable feature sizes and shapes on flexible plastic substrates. The resulting graphene electrode exhibits a high conductivity of 80 S cm(-1) and a transparency of 76% and retains excellent flexibility upon hard bending at an angle of ±175° and after repeated bending cycles. A simple LED circuit integrated on the patterned graphene film demonstrates the feasibility of graphene electrodes for use in flexible transparent electrodes. PMID:25692852

  15. Plasma turbulence driven by transversely large-scale standing shear Alfven waves

    SciTech Connect

    Singh, Nagendra; Rao, Sathyanarayan

    2012-12-15

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  16. Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.

    1992-01-01

    Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.

  17. Observation of the saturation of Langmuir waves driven by ponderomotive force in a large scale plasma

    SciTech Connect

    Kirkwood, R. K.; Moody, J. D.; MacGowan, B. J.; Glenzer, S. H.; Kruer, W. L.; Estabrook, K. G.; Wharton, K. B.; Williams, E. A.; Berger, R. L.

    1997-06-22

    We report the observation of amplification of a probe laser beam (I {le} 1 {times} 10{sup 14} W/cm{sup 2}) in a large scale ({approximately} 1 mm) plasma by interaction with a pumping laser beam (I = 2 {times} 10{sup 15} W/cm{sup 2}) and a stimulated Langmuir wave. When the plasma density is adjusted to allow the Langmuir wave dispersion to match the difference frequency and wave number of the two beams, amplification factors as high as {times} 2.5 result. Interpretation of this amplification as scattering of pump beam energy by the Langmuir wave that is produced by the ponderomotive force of the two beams, allows the dependence of Langmuir wave amplitude on ponderomotive force to be measured. It is found that the Langmuir wave amplitude saturates at a level that depends on ion wave damping, and is generally consistent with secondary ion wave instabilities limiting its growth. 20 refs., 4 figs.

  18. The formation of small-scale irregularities as a result of ionospheric plasma mixing by large-scale drifts

    NASA Astrophysics Data System (ADS)

    Fridman, S. V.

    1990-08-01

    This paper reports some results derived by studying statistical characteristics of irregularities which are produced as a result of plasma mixing by random drifts. It is found that as time progresses, the irregularity amplitude grows in proportion to sq rt of t. Characteristics of the irregularity spectrum undergo more violent changes. For example, the spectrum width grows according to a law close to the exponential one. Thus, relatively large-scale random motions rapidly generate a broad spectrum of small-scale irregularities as small as meter scales. A broadening of the spectrum is stopped by the transverse diffusion or by the longitudinal diffusion and recombination. An assessment is made of the influence of these processes.

  19. Properties of large scale plasma flow during the early stage of the plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Craven, P.; Torr, D. G.; Richards, P. G.

    1990-01-01

    The objective is to better characterize the macroscopic properties of the interhemisphere plasma flow by solving a more complete set of hydrodynamic equations than that solved previously. Specifically, the ion continuity, momentum and energy equations were solved for the plasma flow along the closed magnetic field lines. During the initial stage of the supersonic outflow in the equatorial region, the ions cool substantially. Using the hydrodynamic model for the large-scale plasma flow, the dynamics of shocks was examined which form in the geomagnetic flux tubes during the early stages of refilling. These shocks are more like those forming in neutral gases than the electrostatic shocks driven by microinstabilities involving ion-ion interaction. Therefore, the shocks seen in the hydrodynamic model are termed as hydrodynamic shocks. Such shocks are generally unsteady and therefore the usual shock jump conditions given by Rankine-Hugoniot relations are not strictly applicable to them. The density, flow velocity and temperature structures associated with the shocks are examined for both asymmetrical and symmetrical flows. In the asymmetrical flow the outflow from one of two conjugate ionospheres is dominant. On the other hand, in the symmetrical case outflows from the two ionospheric sources are identical. Both cases are treated by a two-stream model. In the late type of flow, the early-time refilling shows a relaxation type of oscillation, which is driven by the large-scale interactions between the two identical streams. After this early stage, the resulting temperature structure shows some interesting features. In the equatorial region the streams are isothermal, but in the off-equatorial regions the streams have quite different temperatures, and also densities and flow velocities. The dense and slow stream is found to be warmer than the low-density fast stream. In the late stage of refilling, the temperature is found to steadily increase from the conjugate

  20. Self-organization of the large-scale planetary and plasma drift vortices.

    PubMed

    Nezlin, Mikhail V.; Chernikov, Gennady P.; Rylov, Andrey Yu.; Titishov, Kirill B.

    1996-09-01

    This paper is a semi-review. A new understanding of the self-organization mechanism of solitary (i.e., long-lived and, in this sense, soliton-like) large-scale vortices in geophysical fluid dynamics, as well as that of drift vortices in the magnetized plasma is discussed. This understanding differs from that described in a review paper by Nezlin [Chaos 4, 187-202 (1994)]. Earlier it was believed that formation of the solitary Rossby (and plasma drift) vortices was a result of equilibrium between wave dispersion and KdV-type nonlinearity. Under the influence of experimental data obtained by our team [M. V. Nezlin and E. N. Snezhkin, Rossby Vortices, Spiral Structures, Solitons (Springer-Verlag, Heidelberg, 1993)], it became obvious that the self-organization of the structures inevitably includes an essential effect of other nonlinearities; first, that presented by the Jacobian in the equations. (We replace the term "Rossby soliton" by the more exact one "the Rossby solitary vortex.") It must be noted from the very beginning that the term "self-organization" is used mainly in context with an explanation which factors (dispersion and nonlinearities of different kind) condition formation of the solitary (stable, long-lived) Rossby structures. Although, the experimental fact (see below) that the size of solitary vortices turns out to be close to the Rossby-Obukhov radius, independently of the size of the vortex local source, calls to mind the formation of an attractor. In essence, the Rossby solitary vortex self-organization process (although, only for the case of anticyclones) was described by Nycander and Sutyrin [Dyn. Atmos. Oceans 16, 473-498 (1992)]. Unfortunately, however, the authors did not use the term "self-organization." Our description, being in accord with Nycander and Sutyrin, relates not only to anticyclones, but also to anticyclones and cyclones. Second, a description of the experimental discovery of "anomalous" cyclonic-anticyclonic asymmetry is given

  1. Plasma transport at the dayside magnetopause: observations and large-scale modeling

    NASA Astrophysics Data System (ADS)

    Berchem, Jean; Richard, Robert; Escoubet, C. Philippe; Pitout, Frederic; Taylor, Matthew G.; Laasko, Harri; Masson, Arnaud; Dandouras, Iannis; Reme, Henri

    2013-04-01

    Multipoint observations made by the Cluster spacecraft as they cross the polar cusps can provide significant insight into the plasma transport that occurs at the magnetospheric boundary. In particular, the formation of discrete structures in the energy-latitude dispersion of ions observed in the cusp reflects fundamental properties of the entry and acceleration of solar wind ions at the dayside magnetopause. We present the results of a study that uses large-scale numerical simulations to determine the relationship between the structures observed in ion dispersions in the cusp and the injection process at the magnetopause. This study uses the time-dependent electric and magnetic fields predicted by three-dimensional global MHD simulations to compute the trajectories of large samples of ions launched upstream of the bow shock for different solar wind conditions. Particle information collected in the simulations is then used to reconstruct ion dispersions that are compared with Cluster observations in the cusp. Individual particle trajectories are subsequently analyzed to determine the relationship between the structures observed in the cusp and the entry and acceleration process at the dayside magnetopause.

  2. Extraction of large-scale coherent structure from plasma turbulence using rake probe and wavelet analysis in a tokamak

    SciTech Connect

    Xu, G. S.; Wan, B. N.; Zhang, W.

    2006-06-15

    In fusion plasmas, intermittently occurring large-scale coherent structures in electrostatic turbulence sometimes contribute more than 50% of total transport, so the investigation on these coherent structures is important for understanding plasma confinement. New experimental techniques are required to extract these coherent structures from fluctuating signals. In this work a 12-tip poloidal rake probe was used on the HT-7 superconducting tokamak to measure plasma turbulence in the plasma edge region. Several signal analysis methods based on a biorthogonal wavelet were developed and applied to the probe data. Since the structure of the selected wavelet is every similar to that of the turbulence wave packet, information about large-scale coherent structures can be selectively extracted from the ambient turbulence. The spatiotemporal patterns of the large-scale coherent structures were reconstructed using the selected wavelets as well as those of small-scale details. These wavelet-based techniques can be applied to all kinds of plasma fluctuation diagnostics, so they possibly present a new opportunity for uncovering the mechanism underlying plasma turbulent transport.

  3. X-ray imaging of uniform large scale-length plasmas created from gas-filled targets on Nova

    SciTech Connect

    Kalantar, D.H.; MacGowan, B.J.; Bernat, T.P.; Klem, D.E.; Montgomery, D.S.; Moody, J.D.; Munro, D.H.; Stone, G.F. ); Hsing, W.W. ); Failor, B.H. )

    1995-01-01

    We report on the production and characterization of large scale-length plasmas created by illuminating gas-filled thin-walled balloonlike targets using the Nova laser. The targets consisted of a 5--6000 A skin surrounding 1 atm of neopentane which when ionized becomes a plasma with 10[sup 21] electrons/cm[sup 3]. Results are presented from x-ray imaging used to evaluate the uniformity of the plasma. The most uniform plasmas were produced by illuminating the target with large converging beams that overlapped to cover most of the surface of the gas bag. An alternate focus geometry using small beam spots resulted in a less uniform plasma with low density holes in it.

  4. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  5. Evolution of large-scale plasma structures in comets: Kinematics and physics

    NASA Technical Reports Server (NTRS)

    Brandt, John C.

    1993-01-01

    Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing.

  6. Fabrication and testing of gas-filled targets for large-scale plasma experiments on nova

    SciTech Connect

    Stone, G.F.; Rivers, C.J.; Spragge, M.R.; Wallace, R.J.

    1996-06-01

    The proposed next-generation ICF facility, the National Ignition Facility (NIF) is designed to produce energy gain from x-ray heated {open_quotes}indirect-drive{close_quotes} fuel capsules. For indirect-drive targets, laser light heats the inside of the Au hohlraum wall and produces x rays which in turn heat and implode the capsule to produce fusion conditions in the fuel. Unlike Nova targets, in NIF-scale targets laser light will propagate through several millimeters of gas, producing a plasma, before impinging upon the Au hohlraum wall. The purpose of the gas-produced plasma is to provide sufficient pressure to keep the radiating Au surface from expanding excessively into the hohlraum cavity. Excessive expansion of the Au wall interacts with the laser pulse and degrades the drive symmetry of the capsule implosion. The authors have begun an experimental campaign on the Nova laser to study the effect of hohlraum gas on both laser-plasma interaction and implosion symmetry. In their current NIF target design, the calculated plasma electron temperature is T{sub e} {approx} 3 keV and the electron density is N{sub e} {approx} 10{sup 21}cm{sup {minus}3}.

  7. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  8. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  9. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    SciTech Connect

    Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

    2009-05-01

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  10. Generation of Large-Scale Zonal Structures by Drift Flute Waves in High-Beta HED Plasmas

    NASA Astrophysics Data System (ADS)

    Yasin, Essam; Sotnikov, Vladmir; Kindel, Joseph; Onishchenko, O. G.; Leboeuf, J. N.

    2009-05-01

    Our aim is to develop a more general analysis of nonlinear dynamics of drift-flute waves, applicable to arbitrary plasma beta and arbitrary spatial scales in comparison with the ion Larmor radius. This study is of interest for fundamental plasma theory as well as for the interpretation of Z-pinch and laboratory astrophysics experiments. Description of low-frequency waves and in particular drift flute waves in a high beta plasma, generally speaking, requires a kinetic approach, based on the Vlasov-Maxwell set of equations. In the present work we show that the alternative two-fluid description can adequately describe the ion perturbations with arbitrary ratio of the characteristic spatial scales to the ion Larmor radius in so-called Pade approximation. For this purpose reduced two-fluid hydrodynamic equations which describe nonlinear dynamics of the flute waves with arbitrary spatial scales and arbitrary plasma beta are derived. The linear dispersion relation of the flute waves and the Rayleigh-Taylor instability are analyzed. A general nonlinear dispersion relation which describes generation of large-scale zonal structures by the flute waves is presented and analyzed.

  11. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    NASA Astrophysics Data System (ADS)

    Gauthier, E.; Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A.; Languille, P.; Courtois, X.; Lallier, Y.; Salami, M.

    2013-07-01

    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002-2007.

  12. Turbulence and transport suppression scaling with flow shear on the Large Plasma Device

    SciTech Connect

    Schaffner, D. A.; Carter, T. A.; Rossi, G. D.; Guice, D. S.; Maggs, J. E.; Vincena, S.; Friedman, B.

    2013-05-15

    Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocity fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate (γ{sub s}=∂V{sub θ}/∂r) is comparable to the turbulent decorrelation rate (1/τ{sub ac}). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak (γ{sub s}τ{sub ac}<1) or strong (γ{sub s}τ{sub ac}>1) shear limits.

  13. Quenching of the beam-plasma instability by 3-D spectra of large scale density fluctuations

    NASA Technical Reports Server (NTRS)

    Muschietti, L.; Goldman, M. V.; Newman, D.

    1984-01-01

    A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with Type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large scale density fluctuations that are able to efficiently diffuse small k beam unstable Langmuir waves in phase space, and, second, on the presence of a significantly isotropic nonthermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements.

  14. Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Yuming

    2016-03-01

    Large scale graphene oxide (GO) is directly synthesized on copper (Cu) foil by plasma enhanced chemical vapor deposition method under 500 °C and even lower temperature. Compared to the modified Hummer's method, the obtained GO sheet in this article is large, and it is scalable according to the Cu foil size. The oxygen-contained groups in the GO are introduced through the residual gas of methane (99.9% purity). To prevent the Cu surface from the bombardment of the ions in the plasma, we use low intensity discharge. Our experiment reveals that growth temperature has important influence on the carbon to oxygen ratio (C/O ratio) in the GO; and it also affects the amount of π-π* bonds between carbon atoms. Preliminary experiments on a 6 mm × 12 mm GO based humidity sensor prove that the synthesized GO reacts well to the humidity change. Our GO synthesis method may provide another channel for obtaining large scale GO in gas sensing or other applications.

  15. The solar wind structure that caused a large-scale disturbance of the plasma tail of comet Austin

    NASA Astrophysics Data System (ADS)

    Kozuka, Yukio; Konno, Ichishiro; Saito, Takao; Numazawa, Shigemi

    1992-12-01

    The plasma tail of Comet Austin (1989c1) showed remarkable disturbances because of the solar maximum periods and its orbit. Figure 1 shows photographs of Comet Austin taken in Shibata, Japan, on 29 Apr. 1990 UT, during about 20 minutes with the exposure times of 90 to 120 s. There are two main features in the disturbance; one is many bowed structures, which seem to move tailwards; and the other is a large-scale wavy structure. The bowed structures can be interpreted as arcade structures brushing the surface of both sides of the cometary plasma surrounding the nucleus. We identified thirteen structures of the arcades from each of the five photographs and calculated the relation between the distance of each structure from the cometary nucleus, chi, and the velocity, upsilon. The result is shown. This indicates that the velocity of the structures increases with distance. This is consistent with the result obtained from the observation at the Kiso Observatory.

  16. Large-scale MD simulations investigating H plasma interactions with Tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Cusentino, Mary Alice; Wirth, Brian

    2015-11-01

    Tungsten is a prime candidate material for the divertor in future fusion reactors such as ITER. However, the tungsten divertor will need to be able to withstand high fluxes, on the order of 1024m-2s-1, of low energy hydrogen. It is crucial to understand both the tungsten surface response as well as the hydrogen retention and recycling for the divertor region. Molecular dynamics (MD) is a useful tool to study these effects. One issue with MD is that implantation fluxes tend to be very high, on the order of 1027 m-2s-1, due to time and computational limitations. By performing large scale MD on supercomputers, it is possible to reach more realistic fluxes of 1025 m-2s-1. Results will be presented from MD simulations from a 50 nm x 50 nm x 25 nm tungsten box at 1200 K and 2000 K. Hydrogen is implanted every 10 ps based on the 60 eV depth distribution calculated by SRIM, which amounts to a flux of 4 x 1025 m-2s-1. A modified version of the Juslin bond order W-H potential is used to describe the W-H interactions. Preliminary results show an initially high retention of hydrogen that accumulates in a sub-surface region. These simulations provide insight into the early stages of surface deformation as well as hydrogen retention for the tungsten divertor.

  17. Large-Scale Mini-Magnetosphere Plasma Propulsion (M2P2) Experiments

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Slough, J.; Ziemba, T.; Euripides, P.; Adrian, M. L.; Gallagher, D.; Craven, P.; Tomlinson, W.; Cravens, J.; Burch, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Mini-Magnetosphere Plasma Propulsion (M2P2) is an innovative plasma propulsion system that has the potential to propel spacecraft at unprecedented speeds of 50 to 80 km per second with a low-power requirement of approx. 1 kW per 100 kg of payload and approx. 1 kg of neutral gas [fuel] consumption per day of acceleration. Acceleration periods from several days to a few months are envisioned. High specific impulse and efficiency are achieved through coupling of the spacecraft to the 400 km per second solar wind through an artificial magnetosphere. The mini-magnetosphere or inflated magnetic bubble is produced by the injection of cold dense plasma into a spacecraft-generated magnetic field envelope. Magnetic bubble inflation is driven by electromagnetic processes thereby avoiding the material and deployment problems faced by mechanical solar sail designs, Here, we present the theoretical design of M2P2 as well as initial results from experimental testing of an M2P2 prototype demonstrating: 1) inflation of the dipole magnetic field geometry through the internal injection of cold plasma; and 2) deflection of and artificial solar wind by the prototype M2P2 system. In addition, we present plans for direct laboratory measurement of thrust imparted to a prototype M2P2 by an artificial solar wind during the summer of 2001.

  18. Large-Scale Mini-Magnetosphere Plasma Propulsion (M2P2) Experiments

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Slough, J.; Ziemba, T.; Euripides, P.; Gallagher, D.; Craven, P.; Adrian, M. L.; Tomlinson, W.; Cravens, J.; Burch, J.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Mini-Magnetosphere Plasma Propulsion (M2P2) is an innovative plasma propulsion system that has the potential to propel spacecraft at unprecedented speeds of 50 to 80 km/s, with a low power requirement of approx. 1 kW per 100 kg of payload and -1 kg of neutral gas [fuel] consumption per day of acceleration. Acceleration periods from several days to a few months are envisioned. High specific impulse and efficiency are achieved through coupling of the spacecraft to the 400 km/s. solar wind through an artificial magnetosphere. The mini-magnetosphere or inflated magnetic bubble is produced by the injection of cold dense plasma into a spacecraft-generated magnetic field envelope. Magnetic bubble inflation is driven by electromagnetic processes thereby avoiding the material and deployment problems faced by mechanical solar sail designs. Here, we present the theoretical design of M2P2 as well as initial results from experimental testing of an M2P2 prototype demonstrating: 1) inflation of the dipole magnetic field geometry through the internal injection of cold plasma; and 2) deflection of and artificial solar wind by the prototype M2P2 system. In addition, we present plans for direct laboratory measurement of thrust imparted to a prototype M2P2 by an artificial solar wind during the summer of 2001.

  19. Physics of the interaction of ultra intense laser pulses with cold collisional plasma using large scale kinetic simulations

    SciTech Connect

    Héron, A.; Adam, J. C.

    2015-07-15

    We present a set of 2D collisional particle-in-cell simulations of the interaction of ultra-intense laser pulses with over-dense cold collisional plasmas. The size of these simulations is about 100 times as large as those previously published. This allows studying the transport of energetic particles on time scale of the order of 400 fs without perturbations due to the influence of boundary effects and performing a very detailed analysis of the physics of the transport. We confirm the existence of a threshold in intensity close to the relativistic threshold above which the beam of energetic particles diverges when it penetrates the cold plasma. We also study the applicability of Ohm's law to compute the electric field, which is the method commonly used in hybrid codes. The heating of the cold plasma is then studied and we show that half of the heating is anomalous, i.e., not given by standard Joule effect. We discuss the previously published results in the light of these new simulations.

  20. Physics of the interaction of ultra intense laser pulses with cold collisional plasma using large scale kinetic simulations

    NASA Astrophysics Data System (ADS)

    Héron, A.; Adam, J. C.

    2015-07-01

    We present a set of 2D collisional particle-in-cell simulations of the interaction of ultra-intense laser pulses with over-dense cold collisional plasmas. The size of these simulations is about 100 times as large as those previously published. This allows studying the transport of energetic particles on time scale of the order of 400 fs without perturbations due to the influence of boundary effects and performing a very detailed analysis of the physics of the transport. We confirm the existence of a threshold in intensity close to the relativistic threshold above which the beam of energetic particles diverges when it penetrates the cold plasma. We also study the applicability of Ohm's law to compute the electric field, which is the method commonly used in hybrid codes. The heating of the cold plasma is then studied and we show that half of the heating is anomalous, i.e., not given by standard Joule effect. We discuss the previously published results in the light of these new simulations.

  1. Electron Transport and Related Nonequilibrium Distribution Functions in Large Scale ICF Plasma

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Chapman, T.; Brantov, A. V.; Winjum, B.; Berger, R.; Brunner, S.; Bychenkov, V. Yu.; Tableman, A.

    2014-10-01

    Using the Vlasov-Fokker Fokker-Planck (VFP) code OSHUN and higher order perturbative solutions to the VFP equation, we have studied electron distribution functions (EDF) in inhomogeneous and hot hohlraum plasmas of relevant to the current ICF experiments. For these inhomogeneous ICF plasmas characterized by with the temperature and density gradients consistent with the high flux model [M. D. Rosen et al., HEDP 7, 180 (2011)], nonequilibrium EDF often display unphysical properties related to first and second order derivatives at larger velocities. These EDF strongly modify the linear plasma response, including Lanadau damping of Langmuir waves, electrostatic fluctuation levels, and instability gain coefficients We have found that Langmuir waves propagating in the direction of the heat flow have increased Lanadau damping compared to damping calculated from a Maxwellian EDF, while Langmuir waves propagating in the direction of the temperature gradients are far less damped as compared to damping calculated from the Maxwellian EDF. These effects have been discussed in the context of stimulated Raman scattering, Langmuir decay instability and Thomson scattering experiments.

  2. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    SciTech Connect

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J. |

    1995-03-06

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of {approximately}3 keV electron temperature and an electron density of {approximately}1.0 E + 21 cm{sup {minus}3}. A gas cell target design was chosen to confine as gas of {approximately}0.01 cm{sup 3} in volume at {approximately} 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL.

  3. Transition form collisional to kinetic reconnection in large-scale plasmas

    SciTech Connect

    Daughton, William S; Roytershteyn, Vadim S; Albright, Brian J; Yin, Lin; Bowers, Kevin J; Karimabadi, Homa

    2009-01-01

    Using first-principles fully kinetic simulations with a Fokker-Planck collision operator, it is demonstrated that Sweet-Parker reconnection layers are unstable to a chain of plasmoids (secondary islands) for Lundquist numbers beyond S >{approx} 1000. The instability is increasingly violent at higher Lundquist number, both in terms of the number of plasmoids produced and the super-Alfvenic growth rate. A dramatic enhancement in the reconnection rate is observed when the half-thickness of the current sheet between two plasmoids approaches the ion inertial length. During this transition, the reconnection electric field rapidly exceeds the runaway limit, resulting in the formation of electron-scale current layers that are unstable to the continual formation of new plasmoids.

  4. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  5. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  6. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  7. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  8. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  9. Large Scale Computing

    NASA Astrophysics Data System (ADS)

    Capiluppi, Paolo

    2005-04-01

    Large Scale Computing is acquiring an important role in the field of data analysis and treatment for many Sciences and also for some Social activities. The present paper discusses the characteristics of Computing when it becomes "Large Scale" and the current state of the art for some particular application needing such a large distributed resources and organization. High Energy Particle Physics (HEP) Experiments are discussed in this respect; in particular the Large Hadron Collider (LHC) Experiments are analyzed. The Computing Models of LHC Experiments represent the current prototype implementation of Large Scale Computing and describe the level of maturity of the possible deployment solutions. Some of the most recent results on the measurements of the performances and functionalities of the LHC Experiments' testing are discussed.

  10. Peculiarities of Excitation of Large-Scale Plasma Density Irregularities During Modification of the Ionospheric F 2 Region by High-Power HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Schorokhova, E. A.; Kunitsyn, V. E.; Andreeva, E. S.; Padokhin, A. M.

    2016-03-01

    We present the experimental results concerning the features of large-scale artificial plasma-density irregularities excited in the ionospheric F2 region by high-power HF radio waves. The experiments were performed in recent years using the SURA heating facility. It is shown that at the altitude of the pump-wave reflection, these irregularities are most efficiently generated in the magnetic zenith region. The effect of enhancement of the large-scale irregularity generation at the edge of the pump-wave beam is revealed. The results of studying large-scale irregularities recorded at the altitudes of the topside ionosphere are presented. Experimental results concerning the features of the internal gravity waves generated at the ionospheric altitudes during periodic heating of the ionospheric plasma by high-power HF radio waves are summarized and their possible influence on generation of artificial ionospheric irregularities at a long distance from the heater is discussed.

  11. Observations of Reduced Electron Gyro-scale Fluctuations in National Spherical Torus Experiment H-mode Plasmas with Large E × B Flow Shear

    SciTech Connect

    Smith, D. R.; Kaye, S. M.; Lee, W.; Mazzucato, E.; Park, H. K.; Bell, R. E.; Domier, C. W.; LeBlanc, B. P.; Levinton, F. M.; Luhmann, Jr., N. C.; Menard, J. E.; Yu, H.

    2009-02-13

    Electron gyro-scale fluctuation measurements in National Spherical Torus Experiment (NSTX) H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temper- ature gradient (ETG) turbulence. Large toroidal rotation in NSTX plasmas with neutral beam injection generates E × B flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the E × B flow shear rate exceeds ETG linear growth rates. The observations indicate E × B flow shear can be an effective suppression mechanism for ETG turbulence.

  12. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  13. Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?

    NASA Astrophysics Data System (ADS)

    Belmonte, T.; Gries, T.; Cardoso, R. P.; Arnoult, G.; Kosior, F.; Henrion, G.

    2011-04-01

    This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of μm h-1) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO2 nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O2 micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (~500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (~1 µm), and for relatively high content in HMDSO, SiO2 walls forming hexagonal cells are obtained.

  14. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  15. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  16. Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, H.; Richmond, A. D.

    2013-12-01

    In this study we quantify the contribution of individual large-scale waves to ionospheric electrodynamics, and examine the dependence of the ionospheric perturbations on solar activity. We focus on migrating diurnal tide (DW1) plus mean winds, migrating semidiurnal tide (SW2), quasi-stationary planetary wave 1 (QSPW1), and nonmigrating semidiurnal westward wave 1 (SW1) under northern winter conditions, when QSPW1 and SW1 are climatologically strong. From TIME-GCM simulations under solar minimum conditions, we calculate equatorial vertical ExB drifts due to mean winds and DW1, SW2, SW1 and QSPW1. In particular, wind components of both SW2 and SW1 become large at mid to high latitudes in the E-region, and kernel functions obtained from numerical experiments reveal that they can significantly affect the equatorial ion drift, likely through modulating the E-region wind dynamo. The most evident changes of total ionospheric vertical drift when solar activity is increased are seen around dawn and dusk, reflecting the more dominant role of large F-region Pedersen conductivity and of the F-region dynamo under high solar activity. Therefore, the lower atmosphere driving of the ionospheric variability is more evident under solar minimum conditions, not only because variability is more identifiable in a quieter background, but also because the E-region wind dynamo is more significant. These numerical experiments also demonstrate that the amplitudes, phases and latitudinal and vertical structures of large-scale waves are important in quantifying the ionospheric responses.

  17. In vitro Stability of Heat Shock Protein 27 in Serum and Plasma Under Different Pre-analytical Conditions: Implications for Large-Scale Clinical Studies.

    PubMed

    Zimmermann, Matthias; Traxler, Denise; Simader, Elisabeth; Bekos, Christine; Dieplinger, Benjamin; Lainscak, Mitja; Ankersmit, Hendrik Jan; Mueller, Thomas

    2016-07-01

    The effects of storage temperatures, repeated freeze-thaw cycles, or delays in separating plasma or serum from blood samples are largely unknown for heat shock protein 27 (HSP27). We evaluated (1) the imprecision of the HSP27 assay used in this study; (2) the in vitro stability of HSP27 in blood samples stored at 4°C for up to 6 hr with immediate and delayed serum/plasma separation from cells; and (3) the in vitro stability of HSP27 in blood samples stored at -80°C after repeated freeze-thaw cycles. The ELISA to detect HSP27 in this study showed a within-run CV of <9% and a total CV of <15%. After 4-6 hr of storage at 4°C, HSP27 concentrations remained stable when using serum tubes irrespective of sample handling, but HSP27 concentrations decreased by 25-45% when using EDTA plasma tubes. Compared with baseline HSP27, one freeze-thaw cycle had no effect on serum concentrations. However, plasma concentrations increased by 3.1-fold after one freeze-thaw cycle and by 7.3-fold after five freeze-thaw cycles. In conclusion, serum is an appropriate biological sample type for use in epidemiological and large-scale clinical studies. PMID:27139608

  18. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  19. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L.; Rickert, M.

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  20. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  1. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics.

    PubMed

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  2. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping.

    PubMed

    Dona, Anthony C; Jiménez, Beatriz; Schäfer, Hartmut; Humpfer, Eberhard; Spraul, Manfred; Lewis, Matthew R; Pearce, Jake T M; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2014-10-01

    Proton nuclear magnetic resonance (NMR)-based metabolic phenotyping of urine and blood plasma/serum samples provides important prognostic and diagnostic information and permits monitoring of disease progression in an objective manner. Much effort has been made in recent years to develop NMR instrumentation and technology to allow the acquisition of data in an effective, reproducible, and high-throughput approach that allows the study of general population samples from epidemiological collections for biomarkers of disease risk. The challenge remains to develop highly reproducible methods and standardized protocols that minimize technical or experimental bias, allowing realistic interlaboratory comparisons of subtle biomarker information. Here we present a detailed set of updated protocols that carefully consider major experimental conditions, including sample preparation, spectrometer parameters, NMR pulse sequences, throughput, reproducibility, quality control, and resolution. These results provide an experimental platform that facilitates NMR spectroscopy usage across different large cohorts of biofluid samples, enabling integration of global metabolic profiling that is a prerequisite for personalized healthcare. PMID:25180432

  3. Observations of a large-scale vortex-like structure in the deep-tail plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Sanderson, T. R.; Daly, P.; Wenzel, K.-P.; Hones, E. W., Jr.; Smith, E. J.

    1986-01-01

    ISEE-3 observations of a large-scale vortexlike structure in the deep tail of the magnetosphere at X(GSM) = -217 earth radii are reported. The structure is characterized by two clockwise rotations of the energetic-ion anisotropy vector. Variations in the magnetic-field vector approximately 180 deg out of phase with the ion variations are observed. This structure is most likely the signature within the magnetosphere of a surface wave at the magnetopause driven by a Kelvin-Helmholtz instability. Conditions inside and outside of the magnetosphere, as observed by ISEE-3 and ISEE-2, respectively, are examined; these conditions suggest that the surface wave is most likely propagating in the slow mode.

  4. Influence of quenching gas injection on the temperature field in pulse-modulated induction thermal plasma for large scale nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasunori; Guo, Weixuan; Kodama, Naoto; Kita, Kentaro; Uesugi, Yoshihiko; Ishijima, Tatsuo; Watanabe, Shu; Nakamura, Keitaro

    2015-09-01

    We have so far developed a unique and original method for a large-scale nanopowder synthesis method using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding (PMITP-TCFF). The PMITP is sustained by the coil current modulated into a rectangular waveform. Such the current modulation produces an extremely high-temperature thermal plasma in on-time, and in off-time relatively low-temperature thermal plasma. In PMITP-TCFF method, feedstock powder is intermittently injected to the PMITP synchronously during only on-time for its efficient and complete evaporation. That evaporated materials are rapidly cooled down to promote nucleation of nanoparticles during off-time. This report deals with a numerical approach on influence of quenching gas injection on the temperature field in the PMITP. The thermofluid model for the PMITP was developed on the assumption of local thermodynamic equilibrium (LTE). This model accounted for the pulse-modulation of the coil current and the quenching gas injection. It was found that the quenching gas injection works to increase the PMITP temperature inside the plasma torch during on-time, and then to decrease it effectively in the reaction chamber. This work is partly supported by JSPS KAKENHI Grant No. 26249034.

  5. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  6. LARGE SCALE PURIFICATION OF BUTYRYLCHOLINESTERASE FROM HUMAN PLASMA SUITABLE FOR INJECTION INTO MONKEYS; A POTENTIAL NEW THERAPEUTIC FOR PROTECTION AGAINST COCAINE AND NERVE AGENT TOXICITY

    PubMed Central

    Lockridge, Oksana; Schopfer, Lawrence M.; Winger, Gail; Woods, James H.

    2005-01-01

    Pretreatment of animals with butyrylcholinesterase (EC 3.1.1.8 BChE) provides complete protection from the acute effects of organophosphorus nerve agents. Butyrylcholinesterase has also been shown to protect from cocaine toxicity. Large amounts of highly purified butyrylcholinesterase are needed to test the effectiveness of this new therapeutic agent in monkeys. Only a minimum amount of endotoxin can be present in a therapeutic intended for injection into monkeys. Our goal was to develop a large scale purification method for human BChE from human plasma with precautions to minimize endotoxin content. A protocol was developed that processed up to 100 L of human plasma at a time. Dialysis in pH 4.0 buffer, ion exchange chromatography at pH 4, affinity chromatography on procainamide-Sepharose, and HPLC ion exchange at pH 7.4 yielded highly purified human BChE containing a low endotoxin level of about 800 EU/ml. The purified BChE produced by this method had a mean residence time of 56 h in mice and 93 h in monkeys, and caused no toxic effects. The absence of a toxic effect in monkeys demonstrates that the endotoxin level of 800 EU/ml was well tolerated by monkeys. PMID:16788731

  7. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  8. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  9. Measurement of Electron Density near Plasma Grid of Large-scaled Negative Ion Source by Means of Millimeter-Wave Interferometer

    SciTech Connect

    Nagaoka, K.; Tokuzawa, T.; Tsumori, K.; Nakano, H.; Ito, Y.; Osakabe, M.; Ikeda, K.; Kisaki, M.; Shibuya, M.; Sato, M.; Komada, S.; Kondo, T.; Hayashi, H.; Asano, E.; Takeiri, Y.; Kaneko, O.

    2011-09-26

    A millimeter-wave interferometer with the frequency of 39 GHz ({lambda} 7.7 mm) was newly installed to a large-scaled negative ion source. The measurable line-integrated electron density (n{sub e}l) is from 2x10{sup 16} to 7x10{sup 18} m{sup -2}, where n{sub e} and l represent an electron density and the plasma length along the millimeter-wave path, respectively. Our interest in this study is behavior of negative ions and reduction of electron density in the beam extraction region near the plasma grid. The first results show the possibility of the electron density measurement by the millimeter-wave interferometer in this region. The line-averaged electron density increases proportional to the arc power under the condition without cesium seeding. The significant decrease of the electron density and significant increase of the negative ion density were observed just after the cesium seeding. The electron density measured with the interferometer agrees well with that observed with a Langmuir probe. The very high negative ion ratio of n{sub H-}/(n{sub e}+n{sub H-}) = 0.85 was achieved within 400 min. after the cesium seeding.

  10. X6.9-CLASS FLARE-INDUCED VERTICAL KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Srivastava, A. K.; Goossens, M.

    2013-11-01

    We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In the deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ≈ 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.

  11. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  12. Galaxy clustering on large scales.

    PubMed

    Efstathiou, G

    1993-06-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  13. The ion acoustic decay instability, and anomalous laser light absorption for the OMEGA upgrade, large scale hot plasma application to a critical surface diagnostic, and instability at the quarter critical density. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W.

    1996-11-01

    It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.

  14. Challenges for Large Scale Simulations

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2010-03-01

    With computational approaches becoming ubiquitous the growing impact of large scale computing on research influences both theoretical and experimental work. I will review a few examples in condensed matter physics and quantum optics, including the impact of computer simulations in the search for supersolidity, thermometry in ultracold quantum gases, and the challenging search for novel phases in strongly correlated electron systems. While only a decade ago such simulations needed the fastest supercomputers, many simulations can now be performed on small workstation clusters or even a laptop: what was previously restricted to a few experts can now potentially be used by many. Only part of the gain in computational capabilities is due to Moore's law and improvement in hardware. Equally impressive is the performance gain due to new algorithms - as I will illustrate using some recently developed algorithms. At the same time modern peta-scale supercomputers offer unprecedented computational power and allow us to tackle new problems and address questions that were impossible to solve numerically only a few years ago. While there is a roadmap for future hardware developments to exascale and beyond, the main challenges are on the algorithmic and software infrastructure side. Among the problems that face the computational physicist are: the development of new algorithms that scale to thousands of cores and beyond, a software infrastructure that lifts code development to a higher level and speeds up the development of new simulation programs for large scale computing machines, tools to analyze the large volume of data obtained from such simulations, and as an emerging field provenance-aware software that aims for reproducibility of the complete computational workflow from model parameters to the final figures. Interdisciplinary collaborations and collective efforts will be required, in contrast to the cottage-industry culture currently present in many areas of computational

  15. Microfluidic large-scale integration.

    PubMed

    Thorsen, Todd; Maerkl, Sebastian J; Quake, Stephen R

    2002-10-18

    We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory. PMID:12351675

  16. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  17. Large scale topography of Io

    NASA Technical Reports Server (NTRS)

    Gaskell, R. W.; Synnott, S. P.

    1987-01-01

    To investigate the large scale topography of the Jovian satellite Io, both limb observations and stereographic techniques applied to landmarks are used. The raw data for this study consists of Voyager 1 images of Io, 800x800 arrays of picture elements each of which can take on 256 possible brightness values. In analyzing this data it was necessary to identify and locate landmarks and limb points on the raw images, remove the image distortions caused by the camera electronics and translate the corrected locations into positions relative to a reference geoid. Minimizing the uncertainty in the corrected locations is crucial to the success of this project. In the highest resolution frames, an error of a tenth of a pixel in image space location can lead to a 300 m error in true location. In the lowest resolution frames, the same error can lead to an uncertainty of several km.

  18. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  19. Large Scale Homing in Honeybees

    PubMed Central

    Pahl, Mario; Zhu, Hong; Tautz, Jürgen; Zhang, Shaowu

    2011-01-01

    Honeybee foragers frequently fly several kilometres to and from vital resources, and communicate those locations to their nest mates by a symbolic dance language. Research has shown that they achieve this feat by memorizing landmarks and the skyline panorama, using the sun and polarized skylight as compasses and by integrating their outbound flight paths. In order to investigate the capacity of the honeybees' homing abilities, we artificially displaced foragers to novel release spots at various distances up to 13 km in the four cardinal directions. Returning bees were individually registered by a radio frequency identification (RFID) system at the hive entrance. We found that homing rate, homing speed and the maximum homing distance depend on the release direction. Bees released in the east were more likely to find their way back home, and returned faster than bees released in any other direction, due to the familiarity of global landmarks seen from the hive. Our findings suggest that such large scale homing is facilitated by global landmarks acting as beacons, and possibly the entire skyline panorama. PMID:21602920

  20. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  1. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  2. Production of a large, quiescent, magnetized plasma

    NASA Technical Reports Server (NTRS)

    Landt, D. L.; Ajmera, R. C.

    1976-01-01

    An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.

  3. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  4. Quantification of soy isoflavones and their conjugative metabolites in plasma and urine: an automated and validated UHPLC-MS/MS method for use in large-scale studies.

    PubMed

    Soukup, Sebastian T; Al-Maharik, Nawaf; Botting, Nigel; Kulling, Sabine E

    2014-09-01

    The biotransformation of isoflavones by gut microbiota and by drug metabolizing enzymes plays a crucial role in the understanding of their potential health-promoting effects. The purpose of our work was to develop a simultaneous, sensitive, and robust automated ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to quantify the soy isoflavones daidzein and genistein, their conjugative metabolites, as well as their major microbial degradation products in order to provide a method for use in large clinical trials or animal studies. An automated, 96-well solid-phase extraction method was used to extract the isoflavone analytes from plasma and urine. Separation of genistein, daidzein, and 19 of its metabolites, including five glucuronides, seven sulfates, and two sulfoglucuronides, as well as five microbial metabolites, was achieved in less than 25 min using a sub-2 μm particle column and a gradient elution with acetonitrile/methanol/water as mobile phases. Analysis was performed under negative ionization electrospray MS via the multiple reaction monitoring (MRM). Validation was performed according to the analytical method validation guidelines of Food and Drug Administration (FDA) and International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) consisting of selectivity, accuracy, precision, linearity, limit of detection, recovery, matrix effect, and robustness. All validated parameters essentially matched the FDA and ICH requirements. The application of this method to a pharmacokinetic study in postmenopausal women showed that isoflavones are extensively metabolized in vivo. A robust automated analytical approach was developed, which allows the handling of large sample sizes but nevertheless provides detailed information on the isoflavone metabolite profile leading to a better understanding and interpretation of clinical and animal studies. PMID:25103528

  5. Quenching of the beam-plasma instability by large-scale density fluctuations in 3 dimensions. [Langmuir waves in type 3 solar radio bursts

    NASA Technical Reports Server (NTRS)

    Muschietti, L.; Goldman, M. V.; Newman, D.

    1985-01-01

    The highly variable, yet low, level of Langmuir waves measured in situ by spacecraft when electron beams associated with type III solar bursts are passing by are addressed by a model based on the existence of large scale density fluctuations capable of sufficiently diffusing small-k beam-unstable Langmuir waves in phase space. The model is also informed by the presence of a significant isotropic nonthermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The model is able to predict various levels of Langmuir waves, depending on the parameters; calculations indicate that, for realistic parameters, the most unstable small k modes are fully stabilized, while some oblique mode with higher k and lower growth rate may remain unstable.

  6. Large area atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  7. Quasisymmetric toroidal plasmas with large mean flows

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.; Nishimura, S.

    2011-08-15

    Geometric conditions for quasisymmetric toroidal plasmas with large mean flows on the order of the ion thermal speed are investigated. Equilibrium momentum balance equations including the inertia term due to the large flow velocity are used to show that, for rotating quasisymmetric plasmas with no local currents crossing flux surfaces, all components of the metric tensor should be independent of the toroidal angle in the Boozer coordinates, and consequently these systems need to be rigorously axisymmetric. Unless the local radial currents vanish, the Boozer coordinates do not exist and the toroidal flow velocity cannot take any value other than a very limited class of eigenvalues corresponding to very rapid rotation especially for low beta plasmas.

  8. Laser propagation in underdense plasmas: Scaling arguments

    SciTech Connect

    Garrison, J.C.

    1993-05-01

    The propagation of an intense laser beam in the underdense plasma is modelled by treating the plasma as a relativistic, zero temperature, charged fluid. For paraxial propagation and a sufficiently underdense plasma ({omega}p/{omega} {much_lt} 1), a multiple-scales technique is used to expand the exact equations in powers of the small parameter {theta} {equivalent_to} {omega}p/{omega}. The zeroth order equations are used in a critical examination of previous work on this problem, and to derive a scaling law for the threshold power required for cavitation.

  9. Space-plasma campaign on UCLA's Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.

    2007-05-01

    Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.

  10. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  11. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  12. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects. PMID:26551120

  13. Large area cold plasma applicator for decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, G. A.

    2008-04-01

    Cold plasma applicators have been used in the Medical community for several years for uses ranging from hemostasis ("stop bleeding") to tumor removal. An added benefit of this technology is enhanced wound healing by the destruction of infectious microbial agents without damaging healthy tissue. The beam is typically one millimeter to less than a centimeter in diameter. This technology has been adapted and expanded to large area applicators of potentially a square meter or more. Decontamination applications include both biological and chemical agents, and assisting in the removal of radiological agents, with minimal or no damage to the contaminated substrate material. Linear and planar multiemitter array plasma applicator design and operation is discussed.

  14. Large-Scale Reform Comes of Age

    ERIC Educational Resources Information Center

    Fullan, Michael

    2009-01-01

    This article reviews the history of large-scale education reform and makes the case that large-scale or whole system reform policies and strategies are becoming increasingly evident. The review briefly addresses the pre 1997 period concluding that while the pressure for reform was mounting that there were very few examples of deliberate or…

  15. Large-scale infrared scene projectors

    NASA Astrophysics Data System (ADS)

    Murray, Darin A.

    1999-07-01

    Large-scale infrared scene projectors, typically have unique opto-mechanical characteristics associated to their application. This paper outlines two large-scale zoom lens assemblies with different environmental and package constraints. Various challenges and their respective solutions are discussed and presented.

  16. Synthesis of small and large scale dynamos

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    Using a closure model for the evolution of magnetic correlations, we uncover an interesting plausible saturated state of the small-scale fluctuation dynamo (SSD) and a novel analogy between quantum mechanical tunnelling and the generation of large-scale fields. Large scale fields develop via the α-effect, but as magnetic helicity can only change on a resistive timescale, the time it takes to organize the field into large scales increases with magnetic Reynolds number. This is very similar to the results which obtain from simulations using the full MHD equations.

  17. Large-scale inhomogeneities and galaxy statistics

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    The density fluctuations associated with the formation of large-scale cosmic pancake-like and filamentary structures are evaluated using the Zel'dovich approximation for the evolution of nonlinear inhomogeneities in the expanding universe. It is shown that the large-scale nonlinear density fluctuations in the galaxy distribution due to pancakes modify the standard scale-invariant correlation function xi(r) at scales comparable to the coherence length of adiabatic fluctuations. The typical contribution of pancakes and filaments to the J3 integral, and more generally to the moments of galaxy counts in a volume of approximately (15-40 per h Mpc)exp 3, provides a statistical test for the existence of large scale inhomogeneities. An application to several recent three dimensional data sets shows that despite large observational uncertainties over the relevant scales characteristic features may be present that can be attributed to pancakes in most, but not all, of the various galaxy samples.

  18. Meter scale plasma source for plasma wakefield experiments

    NASA Astrophysics Data System (ADS)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-01

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 1017 cm-3 has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  19. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  20. Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Manoharan, P. K.

    2013-05-01

    We present a multiwavelength study of the formation and ejection of a plasma blob and associated extreme ultraviolet (EUV) waves in active region (AR) NOAA 11176, observed by SDO/AIA and STEREO on 25 March 2011. The EUV images observed with the AIA instrument clearly show the formation and ejection of a plasma blob from the lower atmosphere of the Sun at ~9 min prior to the onset of the M1.0 flare. This onset of the M-class flare happened at the site of the blob formation, while the blob was rising in a parabolic path with an average speed of ~300 km s. The blob also showed twisting and de-twisting motion in the lower corona, and the blob speed varied from ~10-540 km s. The faster and slower EUV wavefronts were observed in front of the plasma blob during its impulsive acceleration phase. The faster EUV wave propagated with a speed of ~785 to 1020 km s, whereas the slower wavefront speed varied in between ~245 and 465 km s. The timing and speed of the faster wave match the shock speed estimated from the drift rate of the associated type II radio burst. The faster wave experiences a reflection by the nearby AR NOAA 11177. In addition, secondary waves were observed (only in the 171 Å channel), when the primary fast wave and plasma blob impacted the funnel-shaped coronal loops. The Helioseismic Magnetic Imager (HMI) magnetograms revealed the continuous emergence of new magnetic flux along with shear flows at the site of the blob formation. It is inferred that the emergence of twisted magnetic fields in the form of arch-filaments/"anemone-type" loops is the likely cause for the plasma blob formation and associated eruption along with the triggering of M-class flare. Furthermore, the faster EUV wave formed ahead of the blob shows the signature of fast-mode MHD wave, whereas the slower wave seems to be generated by the field line compression by the plasma blob. The secondary wave trains originated from the funnel-shaped loops are probably the fast magnetoacoustic waves

  1. The large-scale landslide risk classification in catchment scale

    NASA Astrophysics Data System (ADS)

    Liu, Che-Hsin; Wu, Tingyeh; Chen, Lien-Kuang; Lin, Sheng-Chi

    2013-04-01

    The landslide disasters caused heavy casualties during Typhoon Morakot, 2009. This disaster is defined as largescale landslide due to the casualty numbers. This event also reflects the survey on large-scale landslide potential is so far insufficient and significant. The large-scale landslide potential analysis provides information about where should be focused on even though it is very difficult to distinguish. Accordingly, the authors intend to investigate the methods used by different countries, such as Hong Kong, Italy, Japan and Switzerland to clarify the assessment methodology. The objects include the place with susceptibility of rock slide and dip slope and the major landslide areas defined from historical records. Three different levels of scales are confirmed necessarily from country to slopeland, which are basin, catchment, and slope scales. Totally ten spots were classified with high large-scale landslide potential in the basin scale. The authors therefore focused on the catchment scale and employ risk matrix to classify the potential in this paper. The protected objects and large-scale landslide susceptibility ratio are two main indexes to classify the large-scale landslide risk. The protected objects are the constructions and transportation facilities. The large-scale landslide susceptibility ratio is based on the data of major landslide area and dip slope and rock slide areas. Totally 1,040 catchments are concerned and are classified into three levels, which are high, medium, and low levels. The proportions of high, medium, and low levels are 11%, 51%, and 38%, individually. This result represents the catchments with high proportion of protected objects or large-scale landslide susceptibility. The conclusion is made and it be the base material for the slopeland authorities when considering slopeland management and the further investigation.

  2. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  3. The Large-Scale Plasmaspheric Density Trough Associated With the 24 May 2000 Geomagnetic Storm: IMAGE EUV Observations and Global Core Plasma Modeling

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The IMAGE EUV imager observed a plasmaspheric density, trough in association with a geomagnetically active period on 24 May 2000. In EUV, this density, trough appears as an Archimedes spiral extending from Earth's shadow to approximately 1900 MLT. We present an analysis of this density trough using simulated EUV images, Observational EUV images are subjected to edge analysis to establish the plasmapause L-shell and the location of the density trough in terms of L-shell, MLT extent, and radial width. The plasmaspheric density distribution is modeled using both static and dynamic models for the plasmasphere. The background plasmasphere is then numerically simulated using the 4-parameter plasmaspheric density model contained within the Global Core Plasma Model (GCPM) and the Dynamic Global Core Plasma Model (DGCPM). Simulated EUV images of the model plasmasphere are produced once an artificial density, depletion, matching the observed MLT extent and width, has been removed. Once the azimuthal extent and width of the trough have been simulated, the depth of the artificial density depletion is iteratively adjusted to produce simulated EUV images that approximate observation. The results of this analysis and discussion of possible origins for this density trough will be presented.

  4. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  5. Performance of large electron energy filter in large volume plasma device

    SciTech Connect

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K.; Singh, R.

    2014-03-15

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100 G along its axis and transverse to the ambient axial field (B{sub z} ∼ 6.2 G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1 G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ∼ 2 × 10{sup 11} cm{sup −3} and T{sub e} ∼ 2 eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50 and 600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  6. Unification and large-scale structure.

    PubMed Central

    Laing, R A

    1995-01-01

    The hypothesis of relativistic flow on parsec scales, coupled with the symmetrical (and therefore subrelativistic) outer structure of extended radio sources, requires that jets decelerate on scales observable with the Very Large Array. The consequences of this idea for the appearances of FRI and FRII radio sources are explored. PMID:11607609

  7. Stimulated Raman scattering in large plasmas

    SciTech Connect

    Phillion, D.W.; Banner, D.L.

    1980-11-06

    Stimulated Raman scattering is of concern to laser fusion since it can create a hot electron environment which can increase the difficulty of achieving high final fuel densities. In earlier experiments with one micron laser light, the energy measured in Raman-scattered light has been insignificant. But these experiments were done with, at most, about 100 joules of laser energy. The Raman instability has a high threshold which also requires a large plasma to be irradiated with a large diameter spot. Only with a long interaction length can the Raman-scattered light wave convectively grow to a large amplitude, and only in recent long pulse, high energy experiments (4000 joules in 2 ns) at the Shiva laser facility have we observed as much as several percent of the laser light to be Raman-scattered. We find that the Raman instability has a much lower intensity threshold for longer laser pulselength and larger laser spot size on a solid target.

  8. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  9. ARPACK: Solving large scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao

    2013-11-01

    ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w

  10. Laser{endash}plasma interactions in ignition-scale hohlraum plasmas

    SciTech Connect

    MacGowan, B.J.; Afeyan, B.B.; Back, C.A.; Berger, R.L.; Bonnaud, G.; Casanova, M.; Cohen, B.I.; Desenne, D.E.; DuBois, D.F.; Dulieu, A.G.; Estabrook, K.G.; Fernandez, J.C.; Glenzer, S.H.; Hinkel, D.E.; Kaiser, T.B.; Kalantar, D.H.; Kauffman, R.L.; Kirkwood, R.K.; Kruer, W.L.; Langdon, A.B.; Lasinski, B.F.; Montgomery, D.S.; Moody, J.D.; Munro, D.H.; Powers, L.V.; Rose, H.A.; Rousseaux, C.; Turner, R.E.; Wilde, B.H.; Wilks, S.C.; Williams, E.A.

    1996-05-01

    Scattering of laser light by stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) is a concern for indirect drive inertial confinement fusion (ICF). The hohlraum designs for the National Ignition Facility (NIF) raise particular concerns due to the large scale and homogeneity of the plasmas within them. Experiments at Nova have studied laser{endash}plasma interactions within large scale length plasmas that mimic many of the characteristics of the NIF hohlraum plasmas. Filamentation and scattering of laser light by SBS and SRS have been investigated as a function of beam smoothing and plasma conditions. Narrowly collimated SRS backscatter has been observed from low density, low-{ital Z}, plasmas, which are representative of the plasma filling most of the NIF hohlraum. SBS backscatter is found to occur in the high-{ital Z} plasma of gold ablated from the wall. Both SBS and SRS are observed to be at acceptable levels in experiments using smoothing by spectral dispersion (SSD). {copyright} {ital 1996 American Institute of Physics.}

  11. Scaling laws in magnetized plasma turbulence

    SciTech Connect

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar

  12. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    SciTech Connect

    Tang, Lin-Quan; Li, Chao-Feng; Chen, Qiu-Yan; Zhang, Lu; Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan; Chen, Wen-Hui; Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting; Li, Jing; Zhang, Jing-Ping; and others

    2015-02-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease.

  13. Large-scale Alfvén vortices

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Pokhotelov, O. A.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-01

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  14. Large-scale Alfvén vortices

    SciTech Connect

    Onishchenko, O. G.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  15. Large-scale simulations of reionization

    SciTech Connect

    Kohler, Katharina; Gnedin, Nickolay Y.; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  16. "Cosmological Parameters from Large Scale Structure"

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    2005-01-01

    This grant has provided primary support for graduate student Mark Neyrinck, and some support for the PI and for colleague Nick Gnedin, who helped co-supervise Neyrinck. This award had two major goals. First, to continue to develop and apply methods for measuring galaxy power spectra on large, linear scales, with a view to constraining cosmological parameters. And second, to begin try to understand galaxy clustering at smaller. nonlinear scales well enough to constrain cosmology from those scales also. Under this grant, the PI and collaborators, notably Max Tegmark. continued to improve their technology for measuring power spectra from galaxy surveys at large, linear scales. and to apply the technology to surveys as the data become available. We believe that our methods are best in the world. These measurements become the foundation from which we and other groups measure cosmological parameters.

  17. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  18. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  19. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  20. Large Scale Commodity Clusters for Lattice QCD

    SciTech Connect

    A. Pochinsky; W. Akers; R. Brower; J. Chen; P. Dreher; R. Edwards; S. Gottlieb; D. Holmgren; P. Mackenzie; J. Negele; D. Richards; J. Simone; W. Watson

    2002-06-01

    We describe the construction of large scale clusters for lattice QCD computing being developed under the umbrella of the U.S. DoE SciDAC initiative. We discuss the study of floating point and network performance that drove the design of the cluster, and present our plans for future multi-Terascale facilities.

  1. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  2. A Large Scale Computer Terminal Output Controller.

    ERIC Educational Resources Information Center

    Tucker, Paul Thomas

    This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…

  3. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-07-01

    The Jacksonville Electric Authority's large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy's Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process in included.

  4. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-04-01

    The Jacksonville Electric Authority`s large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy`s Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process is included.

  5. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  6. Numerical modeling of the large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 h of deep convection in Brazil

    NASA Astrophysics Data System (ADS)

    Vadas, S. L.; Liu, H.-L.

    2013-05-01

    We study the response of the thermosphere and ionosphere to gravity waves (GWs) excited by 6 h of deep convection in Brazil on the evening of 01 October 2005 via the use of convective plume, ray trace, and global models. We find that primary GWs excited by convection having horizontal wavelengths of λH˜70-300 km, periods of 10-60 min, and phase speeds of cH˜50-225 m/s propagate well into the thermosphere. Their density perturbations are ρ'/ρ300 km. The dissipation of these GWs creates spatially and temporally localized body forces with amplitudes of 0.2- 1.0 m/s2at z˜120-230 km. These forces generate two counter-rotating circulation cells with horizontal velocities of 50-350 m/s. They also excite secondary GWs; those resolved by our global model have λH˜4000-5000 km and cH˜500-600 m/s. These secondary GWs propagate globally and have ρ'/ρplasma perturbations of foF2'˜0.2-1.0 MHz, TEC'˜0.4- 1.5 TECU (total electron content unit, 1TECU =1016 elm-2), and hmF2'˜5-50 km. The large-scale traveling ionospheric disturbances (LSTIDs) induced by the secondary GWs have amplitudes of foF2'˜0.2-0.5 MHz, TEC'˜0.2- 0.6 TECU, and hmF2'˜5-10 km. In a companion paper, we discuss changes to the prereversal enhancement and plasma drift from these forces.

  7. Large-scale extraction of proteins.

    PubMed

    Cunha, Teresa; Aires-Barros, Raquel

    2002-01-01

    The production of foreign proteins using selected host with the necessary posttranslational modifications is one of the key successes in modern biotechnology. This methodology allows the industrial production of proteins that otherwise are produced in small quantities. However, the separation and purification of these proteins from the fermentation media constitutes a major bottleneck for the widespread commercialization of recombinant proteins. The major production costs (50-90%) for typical biological product resides in the purification strategy. There is a need for efficient, effective, and economic large-scale bioseparation techniques, to achieve high purity and high recovery, while maintaining the biological activity of the molecule. Aqueous two-phase systems (ATPS) allow process integration as simultaneously separation and concentration of the target protein is achieved, with posterior removal and recycle of the polymer. The ease of scale-up combined with the high partition coefficients obtained allow its potential application in large-scale downstream processing of proteins produced by fermentation. The equipment and the methodology for aqueous two-phase extraction of proteins on a large scale using mixer-settlerand column contractors are described. The operation of the columns, either stagewise or differential, are summarized. A brief description of the methods used to account for mass transfer coefficients, hydrodynamics parameters of hold-up, drop size, and velocity, back mixing in the phases, and flooding performance, required for column design, is also provided. PMID:11876297

  8. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of

  9. Large-scale drift and Rossby wave turbulence

    NASA Astrophysics Data System (ADS)

    Harper, K. L.; Nazarenko, S. V.

    2016-08-01

    We study drift/Rossby wave turbulence described by the large-scale limit of the Charney–Hasegawa–Mima equation. We define the zonal and meridional regions as Z:= \\{{k} :| {k}y| \\gt \\sqrt{3}{k}x\\} and M:= \\{{k} :| {k}y| \\lt \\sqrt{3}{k}x\\} respectively, where {k}=({k}x,{k}y) is in a plane perpendicular to the magnetic field such that k x is along the isopycnals and k y is along the plasma density gradient. We prove that the only types of resonant triads allowed are M≤ftrightarrow M+Z and Z≤ftrightarrow Z+Z. Therefore, if the spectrum of weak large-scale drift/Rossby turbulence is initially in Z it will remain in Z indefinitely. We present a generalised Fjørtoft’s argument to find transfer directions for the quadratic invariants in the two-dimensional {k}-space. Using direct numerical simulations, we test and confirm our theoretical predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with cases when turbulence is strong. We demonstrate that the qualitative features of the large-scale limit survive when the typical turbulent scale is only moderately greater than the Larmor/Rossby radius.

  10. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  11. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  12. Fractals and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.

  13. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  14. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  15. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  16. Large-scale polarimetry of large optical galaxies

    NASA Astrophysics Data System (ADS)

    Sholomitskii, G. B.; Maslov, I. A.; Vitrichenko, E. A.

    1999-11-01

    We present preliminary results of wide-field visual CCD polarimetry for large optical galaxies through a concentric multisector radial-tangential polaroid analyzer mounted at the intermediate focus of a Zeiss-1000 telescope. The mean degree of tangential polarization in a 13-arcmin field, which was determined by processing images with imprinted ``orthogonal'' sectors, ranges from several percent (M 82) and 0.51% (the spirals M 51, M 81) to lower values for elliptical galaxies (M 49, M 87). It is emphasized that the parameters of large-scale polarization can be properly determined by using physical models for galaxies; inclination and azimuthal dependences of the degree of polarization are given for spirals.

  17. Penetration of Large Scale Electric Field to Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI

  18. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  19. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  20. Precision Measurement of Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    2001-01-01

    The purpose of this grant was to develop and to start to apply new precision methods for measuring the power spectrum and redshift distortions from the anticipated new generation of large redshift surveys. A highlight of work completed during the award period was the application of the new methods developed by the PI to measure the real space power spectrum and redshift distortions of the IRAS PSCz survey, published in January 2000. New features of the measurement include: (1) measurement of power over an unprecedentedly broad range of scales, 4.5 decades in wavenumber, from 0.01 to 300 h/Mpc; (2) at linear scales, not one but three power spectra are measured, the galaxy-galaxy, galaxy-velocity, and velocity-velocity power spectra; (3) at linear scales each of the three power spectra is decorrelated within itself, and disentangled from the other two power spectra (the situation is analogous to disentangling scalar and tensor modes in the Cosmic Microwave Background); and (4) at nonlinear scales the measurement extracts not only the real space power spectrum, but also the full line-of-sight pairwise velocity distribution in redshift space.

  1. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  2. Estimation of large-scale dimension densities.

    PubMed

    Raab, C; Kurths, J

    2001-07-01

    We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is based on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz attractor, and the Roessler attractor. PMID:11461376

  3. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  4. Estimation of large-scale dimension densities

    NASA Astrophysics Data System (ADS)

    Raab, Corinna; Kurths, Jürgen

    2001-07-01

    We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is based on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz attractor, and the Roessler attractor.

  5. The Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  6. Scaling relations for large Martian valleys

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.

    2009-02-01

    The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.

  7. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  8. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  9. Colloquium: Large scale simulations on GPU clusters

    NASA Astrophysics Data System (ADS)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  10. Nonthermal Components in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2004-12-01

    I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

  11. Large scale phononic metamaterials for seismic isolation

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  12. Large-Scale Organization of Glycosylation Networks

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Lee, Dong-Yup; Jeong, Hawoong

    2009-03-01

    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are frequently attached to proteins and lipids. Glycans participate in fundamental biological processes including molecular trafficking and clearance, cell proliferation and apoptosis, developmental biology, immune response, and pathogenesis. N-linked glycans found on proteins are formed by sequential attachments of monosaccharides with the help of a relatively small number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thus generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigate the large-scale organization of such N-glycosylation pathways in a mammalian cell. The uncovered results give the experimentally-testable predictions for glycosylation process, and can be applied to the engineering of therapeutic glycoproteins.

  13. Scaling and Criticality in Large-Scale Neuronal Activity

    NASA Astrophysics Data System (ADS)

    Linkenkaer-Hansen, K.

    The human brain during wakeful rest spontaneously generates large-scale neuronal network oscillations at around 10 and 20 Hz that can be measured non-invasively using magnetoencephalography (MEG) or electroencephalography (EEG). In this chapter, spontaneous oscillations are viewed as the outcome of a self-organizing stochastic process. The aim is to introduce the general prerequisites for stochastic systems to evolve to the critical state and to explain their neurophysiological equivalents. I review the recent evidence that the theory of self-organized criticality (SOC) may provide a unifying explanation for the large variability in amplitude, duration, and recurrence of spontaneous network oscillations, as well as the high susceptibility to perturbations and the long-range power-law temporal correlations in their amplitude envelope.

  14. Large-scale Globally Propagating Coronal Waves

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2015-09-01

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  15. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  16. Territorial Polymers and Large Scale Genome Organization

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander

    2012-02-01

    Chromatin fiber in interphase nucleus represents effectively a very long polymer packed in a restricted volume. Although polymer models of chromatin organization were considered, most of them disregard the fact that DNA has to stay not too entangled in order to function properly. One polymer model with no entanglements is the melt of unknotted unconcatenated rings. Extensive simulations indicate that rings in the melt at large length (monomer numbers) N approach the compact state, with gyration radius scaling as N^1/3, suggesting every ring being compact and segregated from the surrounding rings. The segregation is consistent with the known phenomenon of chromosome territories. Surface exponent β (describing the number of contacts between neighboring rings scaling as N^β) appears only slightly below unity, β 0.95. This suggests that the loop factor (probability to meet for two monomers linear distance s apart) should decay as s^-γ, where γ= 2 - β is slightly above one. The later result is consistent with HiC data on real human interphase chromosomes, and does not contradict to the older FISH data. The dynamics of rings in the melt indicates that the motion of one ring remains subdiffusive on the time scale well above the stress relaxation time.

  17. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  18. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-02-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  19. Multi-Scale Multi-Species Modeling for Plasma Devices

    NASA Astrophysics Data System (ADS)

    Araki, Samuel Jun

    This dissertation describes three computational models developed to simulate important aspects of low-temperature plasma devices, most notably ring-cusp ion discharges and thrusters. The main findings of this dissertation are related to (1) the mechanisms of cusp confinement for micro-scale plasmas, (2) the implementation and merits of magnetic field aligned meshes, and (3) an improved method for describing heavy species interactions. The Single Cusp (SC) model focuses on the near-cusp region of the discharge chamber to investigate the near surface cusp confinement of a micro-scale plasma. The model employs the multi-species iterative Monte Carlo method and uses various advanced methods such as electric field calculation and particle weighting algorithm that are compatible with a non-uniform mesh in cylindrical coordinates. Three different plasma conditions are simulated with the SC model, including an electron plasma, a sparse plasma, and a weakly ionized plasma. It is found that the scaling of plasma loss to the cusp for a sparse plasma can be similar to that for a weakly ionized plasma, while the loss mechanism is significantly different; the primary electrons strongly influence the loss structure of the sparse plasma. The model is also used, along with experimental results, to describe the importance of the local magnetic field on the primary electron loss behavior at the cusp. Many components of the 2D/3D hybrid fluid/particle model (DC-ION) are improved from the original version. The DC-ION code looks at the macroscopic structure of the discharge plasma and can be used to address the design and optimization challenges of miniature to micro discharges on the order of 3 cm to 1 cm in diameter. Among the work done for DC-ION, detailed steps for the magnetic field aligned (MFA) mesh are provided. Solving the plasma diffusion equation in the ring-cusp configuration, the benefit of the MFA mesh has been fully investigated by comparing the solution with a uniform

  20. Large-amplitude solitons in gravitationally balanced quantum plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-08-15

    Using the quantum fluid model for self-gravitating quantum plasmas with the Bernoulli pseudopotential method and taking into account the relativistic degeneracy effect, it is shown that gravity-induced large-amplitude density rarefaction solitons can exist in gravitationally balanced quantum plasmas. These nonlinear solitons are generated due to the force imbalance between the gravity and the quantum fluid pressure via local density perturbations, similar to that on shallow waters. It is found that both the fluid mass-density and the atomic-number of the constituent ions have significant effect on the amplitude and width of these solitonic profiles. Existence of a large-scale gravity-induced solitonic activities on neutron-star surface, for instance, can be a possible explanation for the recently proposed resonant shattering mechanism [D. Tsang et al., Phys. Rev. Lett. 108, 011102 (2012)] causing the intense short gamma ray burst phenomenon, in which release of ≃10{sup 46}–10{sup 47} ergs would be possible from the surface. The resonant shattering of the crust in a neutron star has been previously attributed to the crust-core interface mode and the tidal surface tensions. We believe that current model can be a more natural explanation for the energy liberation by solitonic activities on the neutron star surfaces, without a requirement for external mergers like other neutron stars or black holes for the crustal shatter.

  1. Large-amplitude solitons in gravitationally balanced quantum plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-08-01

    Using the quantum fluid model for self-gravitating quantum plasmas with the Bernoulli pseudopotential method and taking into account the relativistic degeneracy effect, it is shown that gravity-induced large-amplitude density rarefaction solitons can exist in gravitationally balanced quantum plasmas. These nonlinear solitons are generated due to the force imbalance between the gravity and the quantum fluid pressure via local density perturbations, similar to that on shallow waters. It is found that both the fluid mass-density and the atomic-number of the constituent ions have significant effect on the amplitude and width of these solitonic profiles. Existence of a large-scale gravity-induced solitonic activities on neutron-star surface, for instance, can be a possible explanation for the recently proposed resonant shattering mechanism [D. Tsang et al., Phys. Rev. Lett. 108, 011102 (2012)] causing the intense short gamma ray burst phenomenon, in which release of ≃1046-1047 ergs would be possible from the surface. The resonant shattering of the crust in a neutron star has been previously attributed to the crust-core interface mode and the tidal surface tensions. We believe that current model can be a more natural explanation for the energy liberation by solitonic activities on the neutron star surfaces, without a requirement for external mergers like other neutron stars or black holes for the crustal shatter.

  2. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation. PMID:26072893

  3. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05

  4. Large-scale databases of proper names.

    PubMed

    Conley, P; Burgess, C; Hage, D

    1999-05-01

    Few tools for research in proper names have been available--specifically, there is no large-scale corpus of proper names. Two corpora of proper names were constructed, one based on U.S. phone book listings, the other derived from a database of Usenet text. Name frequencies from both corpora were compared with human subjects' reaction times (RTs) to the proper names in a naming task. Regression analysis showed that the Usenet frequencies contributed to predictions of human RT, whereas phone book frequencies did not. In addition, semantic neighborhood density measures derived from the HAL corpus were compared with the subjects' RTs and found to be a better predictor of RT than was frequency in either corpus. These new corpora are freely available on line for download. Potentials for these corpora range from using the names as stimuli in experiments to using the corpus data in software applications. PMID:10495803

  5. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  6. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  7. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  8. Batteries for Large Scale Energy Storage

    SciTech Connect

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  9. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  10. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  11. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  12. Supporting large-scale computational science

    SciTech Connect

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  13. Large-Scale Statistics for Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hauschildt, M.; Gall, M.; Hernandez, R.

    2009-06-01

    Even after the successful introduction of Cu-based metallization, the electromigration failure risk has remained one of the important reliability concerns for advanced process technologies. The observation of strong bimodality for the electron up-flow direction in dual-inlaid Cu interconnects has added complexity, but is now widely accepted. The failure voids can occur both within the via ("early" mode) or within the trench ("late" mode). More recently, bimodality has been reported also in down-flow electromigration, leading to very short lifetimes due to small, slit-shaped voids under vias. For a more thorough investigation of these early failure phenomena, specific test structures were designed based on the Wheatstone Bridge technique. The use of these structures enabled an increase of the tested sample size close to 675000, allowing a direct analysis of electromigration failure mechanisms at the single-digit ppm regime. Results indicate that down-flow electromigration exhibits bimodality at very small percentage levels, not readily identifiable with standard testing methods. The activation energy for the down-flow early failure mechanism was determined to be 0.83±0.02 eV. Within the small error bounds of this large-scale statistical experiment, this value is deemed to be significantly lower than the usually reported activation energy of 0.90 eV for electromigration-induced diffusion along Cu/SiCN interfaces. Due to the advantages of the Wheatstone Bridge technique, we were also able to expand the experimental temperature range down to 150° C, coming quite close to typical operating conditions up to 125° C. As a result of the lowered activation energy, we conclude that the down-flow early failure mode may control the chip lifetime at operating conditions. The slit-like character of the early failure void morphology also raises concerns about the validity of the Blech-effect for this mechanism. A very small amount of Cu depletion may cause failure even before a

  14. CLASS: The Cosmology Large Angular Scale Surveyor

    NASA Technical Reports Server (NTRS)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  16. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  17. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  18. Generation of solution plasma over a large electrode surface area

    NASA Astrophysics Data System (ADS)

    Saito, Genki; Nakasugi, Yuki; Akiyama, Tomohiro

    2015-07-01

    Solution plasma has been used in a variety of fields such as nanomaterials synthesis, the degradation of harmful substances, and solution analysis. However, as existing methods are ineffective in generating plasma over a large surface area, this study investigated the contact glow discharge electrolysis, in which the plasma was generated on the electrode surface. To clarify the condition of plasma generation, the effect of electrolyte concentration and temperature on plasma formation was studied. The electrical energy needed for plasma generation is higher than that needed to sustain a plasma, and when the electrolyte temperature was increased from 32 to 90 °C at 0.01 M NaOH solution, the electric power density for vapor formation decreased from 2005 to 774 W/cm2. From these results, we determined that pre-warming of the electrolyte is quite effective in generating plasma at lower power density. In addition, lower electrolyte concentrations required higher power density for vapor formation owing to lower solution conductivity. On the basis these results, a method for large-area and flat-plate plasma generation is proposed in which an initial small area of plasma generation is extended. When used with a plate electrode, a concentration of current to the edge of the plate meant that plasma could be formed by covering the edge of the electrode plate.

  19. Gravity and large-scale nonlocal bias

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Scoccimarro, Román; Sheth, Ravi K.

    2012-04-01

    For Gaussian primordial fluctuations the relationship between galaxy and matter overdensities, bias, is most often assumed to be local at the time of observation in the large-scale limit. This hypothesis is however unstable under time evolution, we provide proofs under several (increasingly more realistic) sets of assumptions. In the simplest toy model galaxies are created locally and linearly biased at a single formation time, and subsequently move with the dark matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably nonlocal and nonlinear at large scales. We identify the nonlocal gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons), the main signature of which is a quadrupole field in second-order perturbation theory. In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear; these are related to the breaking of Galilean invariance of the bias relation, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed dark matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the nonlocal gravitationally induced fields identified by our formalism, suggesting that the halo distribution at the present time is indeed more closely related to the mass distribution at an earlier rather than present time. However, the nonlocality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. The effects on nonlocal bias seen in the simulations are most important for the most biased halos, as expected from our predictions. Accounting for these

  20. Population generation for large-scale simulation

    NASA Astrophysics Data System (ADS)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  1. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  2. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  3. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  4. Food appropriation through large scale land acquisitions

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  5. Large Scale Computer Simulation of Erthocyte Membranes

    NASA Astrophysics Data System (ADS)

    Harvey, Cameron; Revalee, Joel; Laradji, Mohamed

    2007-11-01

    The cell membrane is crucial to the life of the cell. Apart from partitioning the inner and outer environment of the cell, they also act as a support of complex and specialized molecular machinery, important for both the mechanical integrity of the cell, and its multitude of physiological functions. Due to its relative simplicity, the red blood cell has been a favorite experimental prototype for investigations of the structural and functional properties of the cell membrane. The erythrocyte membrane is a composite quasi two-dimensional structure composed essentially of a self-assembled fluid lipid bilayer and a polymerized protein meshwork, referred to as the cytoskeleton or membrane skeleton. In the case of the erythrocyte, the polymer meshwork is mainly composed of spectrin, anchored to the bilayer through specialized proteins. Using a coarse-grained model, recently developed by us, of self-assembled lipid membranes with implicit solvent and using soft-core potentials, we simulated large scale red-blood-cells bilayers with dimensions ˜ 10-1 μm^2, with explicit cytoskeleton. Our aim is to investigate the renormalization of the elastic properties of the bilayer due to the underlying spectrin meshwork.

  6. Scaling Relations for Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Thomas, F. O.; Wicks, M.; Corke, T. C.; Patel, M.

    2012-11-01

    A parametric investigation into the performance of plasma streamwise vortex generators (PSVG) for flow control was performed. The study utilized an array of PSVGs, which were flush mounted to a flat, zero pressure gradient turbulent boundary layer development plate. This work focused on characterizing the effect of freestream velocity, peak-to-peak applied voltage, inter-electrode spacing and covered electrode length on the streamwise vorticity produced by these devices. The performance of the PSVGs was also compared to that of passive vortex generators under identical flow conditions. Based upon the results of the parametric study, the flow physics of streamwise vorticity production by the PSVGs was discerned and the mechanisms are described in this paper. In addition, scaling relations are developed and presented for PSVGs, which, can be used in order to design actuator arrays for specific flow control applications. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.

  7. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  8. Research and Development of Large Area Color AC Plasma Displays

    NASA Astrophysics Data System (ADS)

    Shinoda, Tsutae

    1998-10-01

    Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.

  9. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  10. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  11. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  12. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  13. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  14. International space station. Large scale integration approach

    NASA Astrophysics Data System (ADS)

    Cohen, Brad

    The International Space Station is the most complex large scale integration program in development today. The approach developed for specification, subsystem development, and verification lay a firm basis on which future programs of this nature can be based. International Space Station is composed of many critical items, hardware and software, built by numerous International Partners, NASA Institutions, and U.S. Contractors and is launched over a period of five years. Each launch creates a unique configuration that must be safe, survivable, operable, and support ongoing assembly (assemblable) to arrive at the assembly complete configuration in 2003. The approaches to integrating each of the modules into a viable spacecraft and continue the assembly is a challenge in itself. Added to this challenge are the severe schedule constraints and lack of an "Iron Bird", which prevents assembly and checkout of each on-orbit configuration prior to launch. This paper will focus on the following areas: 1) Specification development process explaining how the requirements and specifications were derived using a modular concept driven by launch vehicle capability. Each module is composed of components of subsystems versus completed subsystems. 2) Approach to stage (each stage consists of the launched module added to the current on-orbit spacecraft) specifications. Specifically, how each launched module and stage ensures support of the current and future elements of the assembly. 3) Verification approach, due to the schedule constraints, is primarily analysis supported by testing. Specifically, how are the interfaces ensured to mate and function on-orbit when they cannot be mated before launch. 4) Lessons learned. Where can we improve this complex system design and integration task?

  15. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  16. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  17. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John

    2012-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  18. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Tomsick, John; Orosz, Jerry

    2011-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  19. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John

    2013-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  20. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Tomsick, John; Orosz, Jerry

    2011-04-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  1. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John

    2013-04-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  2. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Tomsick, John; Orosz, Jerry

    2012-04-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  3. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.

    PubMed

    Hunana, P; Zank, G P; Shaikh, D

    2006-08-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as "nearly incompressible hydrodynamics," is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term "locally incompressible" to describe the equations. This term should be distinguished from the term "nearly incompressible," which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  4. Multitree Algorithms for Large-Scale Astrostatistics

    NASA Astrophysics Data System (ADS)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    Common astrostatistical operations. A number of common "subroutines" occur over and over again in the statistical analysis of astronomical data. Some of the most powerful, and computationally expensive, of these additionally share the common trait that they involve distance comparisons between all pairs of data points—or in some cases, all triplets or worse. These include: * All Nearest Neighbors (AllNN): For each query point in a dataset, find the k-nearest neighbors among the points in another dataset—naively O(N2) to compute, for O(N) data points. * n-Point Correlation Functions: The main spatial statistic used for comparing two datasets in various ways—naively O(N2) for the 2-point correlation, O(N3) for the 3-point correlation, etc. * Euclidean Minimum Spanning Tree (EMST): The basis for "single-linkage hierarchical clustering,"the main procedure for generating a hierarchical grouping of the data points at all scales, aka "friends-of-friends"—naively O(N2). * Kernel Density Estimation (KDE): The main method for estimating the probability density function of the data, nonparametrically (i.e., with virtually no assumptions on the functional form of the pdf)—naively O(N2). * Kernel Regression: A powerful nonparametric method for regression, or predicting a continuous target value—naively O(N2). * Kernel Discriminant Analysis (KDA): A powerful nonparametric method for classification, or predicting a discrete class label—naively O(N2). (Note that the "two datasets" may in fact be the same dataset, as in two-point autocorrelations, or the so-called monochromatic AllNN problem, or the leave-one-out cross-validation needed in kernel estimation.) The need for fast algorithms for such analysis subroutines is particularly acute in the modern age of exploding dataset sizes in astronomy. The Sloan Digital Sky Survey yielded hundreds of millions of objects, and the next generation of instruments such as the Large Synoptic Survey Telescope will yield roughly

  5. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  6. Multi-Scale Investigation of Sheared Flows In Magnetized Plasmas

    SciTech Connect

    Edward, Jr., Thomas

    2014-09-19

    Flows parallel and perpendicular to magnetic fields in a plasma are important phenomena in many areas of plasma science research. The presence of these spatially inhomogeneous flows is often associated with the stability of the plasma. In fusion plasmas, these sheared flows can be stabilizing while in space plasmas, these sheared flows can be destabilizing. Because of this, there is broad interest in understanding the coupling between plasma stability and plasma flows. This research project has engaged in a study of the plasma response to spatially inhomogeneous plasma flows using three different experimental devices: the Auburn Linear Experiment for Instability Studies (ALEXIS) and the Compact Toroidal Hybrid (CTH) stellarator devices at Auburn University, and the Space Plasma Simulation Chamber (SPSC) at the Naval Research Laboratory. This work has shown that there is a commonality of the plasma response to sheared flows across a wide range of plasma parameters and magnetic field geometries. The goal of this multi-device, multi-scale project is to understand how sheared flows established by the same underlying physical mechanisms lead to different plasma responses in fusion, laboratory, and space plasmas.

  7. Validating Large Scale Networks Using Temporary Local Scale Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  8. Large-Scale Processing of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Finn, John; Sridhar, K. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Scale-up difficulties and high energy costs are two of the more important factors that limit the availability of various types of nanotube carbon. While several approaches are known for producing nanotube carbon, the high-powered reactors typically produce nanotubes at rates measured in only grams per hour and operate at temperatures in excess of 1000 C. These scale-up and energy challenges must be overcome before nanotube carbon can become practical for high-consumption structural and mechanical applications. This presentation examines the issues associated with using various nanotube production methods at larger scales, and discusses research being performed at NASA Ames Research Center on carbon nanotube reactor technology.

  9. Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2016-01-01

    The transport of heat in laboratory and astrophysical plasmas is dominated by the complex nonlinear dynamics of plasma turbulence. In magnetically confined plasmas used for fusion energy research, turbulence is responsible for cross-field transport that limits the performance of tokamak reactors. We report a set of novel gyrokinetic simulations that capture ion and electron-scale turbulence simultaneously, revealing the dynamics of cross-scale energy transfer and zonal flow modification that give rise to heat losses. Multi-scale simulations are required to match experimental ion and electron heat fluxes and electron profile stiffness, establishing the applicability of the newly discovered physics to experiment. Importantly, these results provide a likely explanation for the loss of electron heat from tokamak plasmas, the ‘great unsolved problem’ (Bachelor et al (2007 Plasma Sci. Technol. 9 312-87)) in plasma turbulence and the projected dominant loss channel in ITER.

  10. Intermittent dissipation at kinetic scales in collisionless plasma turbulence.

    PubMed

    Wan, M; Matthaeus, W H; Karimabadi, H; Roytershteyn, V; Shay, M; Wu, P; Daughton, W; Loring, B; Chapman, S C

    2012-11-01

    High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy. PMID:23215389

  11. Large scale structure from viscous dark matter

    NASA Astrophysics Data System (ADS)

    Blas, Diego; Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-11-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale km for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale km, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with N-body simulations up to scales k=0.2 h/Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.

  12. Extreme Scale Computing for First-Principles Plasma Physics Research

    SciTech Connect

    Chang, Choogn-Seock

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  13. On the scaling of small-scale jet noise to large scale

    NASA Astrophysics Data System (ADS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-05-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  14. On the scaling of small-scale jet noise to large scale

    NASA Astrophysics Data System (ADS)

    Soderman, Paul T.; Allen, Christopher S.

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or PNL noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10 exp 6 based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  15. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or PNL noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10 exp 6 based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  16. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  17. Plasma beta control of scaling of solar wind turbulent structures

    NASA Astrophysics Data System (ADS)

    Safrankova, Jana; Nemecek, Zdenek; Nemec, Frantisek; Prech, Lubomir; Chen, Christopher H. K.; Zastenker, Georgy N.

    2016-04-01

    The high-time resolution of Spektr-R plasma measurements allows us to make direct observations of solar wind turbulence below ion kinetic length scales. The paper analyzes solar wind power spectra of bulk and thermal speeds that are computed with a time resolution of 32 ms in the frequency range of 0.001-2 Hz. The statistics based on more than 5000 of individual spectra shows that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectra fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the segment attributed to the MHD scale are ‑1.43 and ‑1.38, respectively for the bulk and thermal speeds, whereas those in the kinetic scale are ‑3.08 and ‑2.43, respectively; (4) the break between both MHD and kinetic scales is controlled the ion beta; and (5) the power index corresponding to kinetic turbulence depends on a level of the density variations in the high beta solar wind, whereas the ion gyromotion determines it for low beta intervals.

  18. Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment

    NASA Astrophysics Data System (ADS)

    Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor

    2015-11-01

    Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.

  19. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.

    PubMed

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS. PMID:17979417

  20. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.

  1. Evolution of magnetically rotating arc into large area arc plasma

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wan-Wan; Zhang, Xiao-Ning; Zha, Jun; Xia, Wei-Dong

    2015-06-01

    An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).

  2. Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device

    SciTech Connect

    Popovich, P.; Carter, T. A.; Friedman, B.; Umansky, M. V.

    2010-10-15

    The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the three-dimensional fluid code BOUT[M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves and the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For Large Plasma Device relevant profiles including strongly driven flows, it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.

  3. Real or virtual large-scale structure?

    PubMed Central

    Evrard, August E.

    1999-01-01

    Modeling the development of structure in the universe on galactic and larger scales is the challenge that drives the field of computational cosmology. Here, photorealism is used as a simple, yet expert, means of assessing the degree to which virtual worlds succeed in replicating our own. PMID:10200243

  4. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  5. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  6. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of

  7. Light propagation and large-scale inhomogeneities

    SciTech Connect

    Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria E-mail: ntetrad@phys.uoa.gr

    2008-04-15

    We consider the effect on the propagation of light of inhomogeneities with sizes of order 10 Mpc or larger. The Universe is approximated through a variation of the Swiss-cheese model. The spherical inhomogeneities are void-like, with central underdensities surrounded by compensating overdense shells. We study the propagation of light in this background, assuming that the source and the observer occupy random positions, so that each beam travels through several inhomogeneities at random angles. The distribution of luminosity distances for sources with the same redshift is asymmetric, with a peak at a value larger than the average one. The width of the distribution and the location of the maximum increase with increasing redshift and length scale of the inhomogeneities. We compute the induced dispersion and bias of cosmological parameters derived from the supernova data. They are too small to explain the perceived acceleration without dark energy, even when the length scale of the inhomogeneities is comparable to the horizon distance. Moreover, the dispersion and bias induced by gravitational lensing at the scales of galaxies or clusters of galaxies are larger by at least an order of magnitude.

  8. Large-scale sparse singular value computations

    NASA Technical Reports Server (NTRS)

    Berry, Michael W.

    1992-01-01

    Four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture are presented. Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography are emphasized. The target architectures for implementations are the CRAY-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices.

  9. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  10. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  11. Plasma response to electron energy filter in large volume plasma device

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-01

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  12. Numerically modelling the large scale coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  13. Implicit solvers for large-scale nonlinear problems

    SciTech Connect

    Keyes, D E; Reynolds, D; Woodward, C S

    2006-07-13

    Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications.

  14. Large-Scale Organizational Performance Improvement.

    ERIC Educational Resources Information Center

    Pilotto, Rudy; Young, Jonathan O'Donnell

    1999-01-01

    Describes the steps involved in a performance improvement program in the context of a large multinational corporation. Highlights include a training program for managers that explained performance improvement; performance matrices; divisionwide implementation, including strategic planning; organizationwide training of all personnel; and the…

  15. Linking Large-Scale Reading Assessments: Comment

    ERIC Educational Resources Information Center

    Hanushek, Eric A.

    2016-01-01

    E. A. Hanushek points out in this commentary that applied researchers in education have only recently begun to appreciate the value of international assessments, even though there are now 50 years of experience with these. Until recently, these assessments have been stand-alone surveys that have not been linked, and analysis has largely focused on…

  16. Probes of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Gorski, Krzysztof; Juszkiewicz, Roman; Silk, Joseph

    1988-01-01

    A general formalism is developed which shows that the gravitational instability theory for the origin of the large-scale structure of the universe is now capable of critically confronting observational results on cosmic background radiation angular anisotropies, large-scale bulk motions, and large-scale clumpiness in the galaxy counts. The results indicate that presently advocated cosmological models will have considerable difficulty in simultaneously explaining the observational results.

  17. MicroScale - Atmospheric Pressure Plasmas

    SciTech Connect

    Sankaran, Mohan

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  18. Wavelength scaling of laser plasma coupling

    SciTech Connect

    Kruer, W.L.

    1983-11-03

    The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized.

  19. Simulation of Large-Scale HPC Architectures

    SciTech Connect

    Jones, Ian S; Engelmann, Christian

    2011-01-01

    The Extreme-scale Simulator (xSim) is a recently developed performance investigation toolkit that permits running high-performance computing (HPC) applications in a controlled environment with millions of concurrent execution threads. It allows observing parallel application performance properties in a simulated extreme-scale HPC system to further assist in HPC hardware and application software co-design on the road toward multi-petascale and exascale computing. This paper presents a newly implemented network model for the xSim performance investigation toolkit that is capable of providing simulation support for a variety of HPC network architectures with the appropriate trade-off between simulation scalability and accuracy. The taken approach focuses on a scalable distributed solution with latency and bandwidth restrictions for the simulated network. Different network architectures, such as star, ring, mesh, torus, twisted torus and tree, as well as hierarchical combinations, such as to simulate network-on-chip and network-on-node, are supported. Network traffic congestion modeling is omitted to gain simulation scalability by reducing simulation accuracy.

  20. Large-scale linear rankSVM.

    PubMed

    Lee, Ching-Pei; Lin, Chih-Jen

    2014-04-01

    Linear rankSVM is one of the widely used methods for learning to rank. Although its performance may be inferior to nonlinear methods such as kernel rankSVM and gradient boosting decision trees, linear rankSVM is useful to quickly produce a baseline model. Furthermore, following its recent development for classification, linear rankSVM may give competitive performance for large and sparse data. A great deal of works have studied linear rankSVM. The focus is on the computational efficiency when the number of preference pairs is large. In this letter, we systematically study existing works, discuss their advantages and disadvantages, and propose an efficient algorithm. We discuss different implementation issues and extensions with detailed experiments. Finally, we develop a robust linear rankSVM tool for public use. PMID:24479776

  1. Large scale properties of the Webgraph

    NASA Astrophysics Data System (ADS)

    Donato, D.; Laura, L.; Leonardi, S.; Millozzi, S.

    2004-03-01

    In this paper we present an experimental study of the properties of web graphs. We study a large crawl from 2001 of 200M pages and about 1.4 billion edges made available by the WebBase project at Stanford[CITE]. We report our experimental findings on the topological properties of such graphs, such as the number of bipartite cores and the distribution of degree, PageRank values and strongly connected components.

  2. Long-pulse plasma discharge on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Nakamura, Y.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ohkubo, K.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Kobayashi, M.; Ogawa, H.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Watari, T.; Watanabe, T.; Sakamoto, M.; Ichimura, M.; Takase, Y.; Notake, T.; Takeuchi, N.; Torii, Y.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Y.; Kwak, J. G.; Yoon, J. S.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD experiment Group

    2006-03-01

    A long-pulse plasma discharge of more than 30 min duration was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. The total injected heating energy was 1.3 GJ. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by sweeping the magnetic axis inward and outward. Causes limiting the long pulse plasma discharge are discussed. An ion impurity penetration limited further long-pulse discharge in the 8th experimental campaign (2004).

  3. A complex plasma device of large surface area

    SciTech Connect

    Nakamura, Y.; Ishihara, O.

    2008-03-15

    A novel complex plasma device (YCOPEX) to create two-dimensional monolayer plasma crystals of a large surface area of 15x90 cm{sup 2} is described. The YCOPEX, in which a plasma is produced by a rf discharge of argon gas, is designed to utilize gravitational force to study fundamental physics of complex plasmas. The device may be used for observation of spatial change of a phase state, propagation of waves, and collisions of flowing dust particles with an obstacle. As an example of experiments, neutral drag forces on microspheres are measured using the gravitational force on those particles. The obtained neutral drag force agrees reasonably with the values estimated from Epstein's formula.

  4. Infrasonic observations of large scale HE events

    SciTech Connect

    Whitaker, R.W.; Mutschlecner, J.P.; Davidson, M.B.; Noel, S.D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, we work between 0.1 Hz to 10 Hz; however, much of our work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. This discussion will concentrate on measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because the equipment is well suited for mobile deployments, it can easily establish temporary observing sites for special events. The measurements in this report are from our permanent sites, as well as from various temporary sites. In this short report will not give detailed data from all sites for all events, but rather will present a few observations that are typical of the full data set. The Defense Nuclear Agency sponsors these large explosive tests as part of their program to study airblast effects. A wide variety of experiments are fielded near the explosive by numerous Department of Defense (DOD) services and agencies. This measurement program is independent of this work; use is made of these tests as energetic known sources, which can be measured at large distances. Ammonium nitrate and fuel oil (ANFO) is the specific explosive used by DNA in these tests. 6 refs., 6 figs.

  5. Plasma Boundaries and Kinetic-Scale Electric Field Structures in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Malaspina, David; Larsen, Brian; Ergun, R. E.; Skoug, Ruth; Wygant, John; Reeves, Geoffrey; Jaynes, Allison

    2016-07-01

    Recent advances in spacecraft instrumentation have enabled fresh examination of coupling between macro-scale and micro-scale physics in the terrestrial magnetosphere, demonstrating not only that cross-scale interactions are a key component of magnetospheric dynamics, but also that plasma boundaries play a crucial role in mediating cross-scale coupling. We use Van Allen Probe observations to study the cross-scale interaction between inner magnetospheric plasma boundaries (including the plasmapause and injection fronts) and kinetic-scale electric field structures including kinetic Alfven waves, double layers, phase space holes, and nonlinear whistler mode waves. We focus on the spatial distribution of these kinetic structures in the inner magnetosphere and their interaction with plasma boundaries. We demonstrate that both the occurrence probability and amplitude of these structures peak at plasma boundaries. Further, it is found that regions of kinetic-scale electric field structure activity travel with plasma boundaries. These observations imply that kinetic-scale electric field structures are continually generated by instabilities localized to these boundaries, constraining their ability to energize radiation belt particles over large spatial regions.

  6. Test of an argon cusp plasma for tin LPP power scaling

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2015-03-01

    Scaling the power of the tin droplet laser-produced-plasma (LPP) extreme ultraviolet (EUV) source to 500W has eluded the industry after a decade of effort. In 2014 we proposed [2] a solution: placing the laser-plasma interaction region within an argon plasma in a magnetic cusp. This would serve to ionize tin atoms and guide them to a large area annular beam dump. We have since demonstrated the feasibility of this approach. We present first results from a full-scale test plasma at power levels relevant to the generation of at least 200W, showing both that the argon cusp plasma is very stable, and that its geometrical properties are ideal for the transport of exhaust power and tin to the beam dump.

  7. Energy Loss of a High Charge Bunched Electron Beam in Plasma: Nonlinear Plasma Response and Linear Scaling

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Barov, N.; Thompson, M. C.; Yoder, R.

    2002-12-01

    There has been much experimental and theoretical interest in blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity, and relativistic plasma effects become important or dominant. The physical bases for this persistence of linear response are pointed out. As a byproduct of our analysis, we re-examine the issue of field divergence as the point-charge limit is approached, suggesting an important modification of commonly held views of evading unphysical energy loss. Deviations from linear behavior are investigated using simulations with finite length beams. The peak accelerating field in the plasma wave excited behind a finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude well into the nonlinear regime. On the other hand, at large enough normalized charge, linear scaling of fields collapses, with serious consequences for plasma wave excitation efficiency. The dramatic implications of these results for observing the collapse of linear scaling in planned experiments are discussed.

  8. Large scale surface heat fluxes. [through oceans

    NASA Technical Reports Server (NTRS)

    Sarachik, E. S.

    1984-01-01

    The heat flux through the ocean surface, Q, is the sum of the net radiation at the surface, the latent heat flux into the atmosphere, and the sensible heat flux into the atmosphere (all fluxes positive upwards). A review is presented of the geographical distribution of Q and its constituents, and the current accuracy of measuring Q by ground based measurements (both directly and by 'bulk formulae') is assessed. The relation of Q to changes of oceanic heat content, heat flux, and SST is examined and for each of these processes, the accuracy needed for Q is discussed. The needed accuracy for Q varies from process to process, varies geographically, and varies with the time and space scale considered.

  9. Picosecond laser-driven terahertz radiation from large scale preplasmas of solid targets

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Su, L. N.; Zheng, Y.; Liu, M.; Dunn, J.; Nilsen, J.; Hunter, J.; Wang, W. M.; Sheng, Z. M.; Zhang, J.

    2016-05-01

    The terahertz (THz) radiation from the front of solid targets with a large-scale preplasma irradiated by relativistic picosecond laser pulses has been studied. The THz radiation measured at the specular direction nonlinearly increases with laser energy and an optimal plasma density scalelength is observed. Particle-in-cell simulations indicate that the radiation can be attributed to the model of mode conversion. While the THz radiation near the target normal direction is saturated with laser energy and plasma scalelength. Unlike the radiation in the specular direction’ the transient current formed at the plasma-vacuum interface could be responsible for the radiation near the target normal.

  10. Large-scale motions in a plane wall jet

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer; Jonathan, Latim; Shibani, Bhatt

    2015-11-01

    The dynamic significance of large-scale motions in turbulent boundary layers have been the focus of several recent studies, primarily focussing on canonical flows - zero pressure gradient boundary layers, flows within pipes and channels. This work presents an investigation into the large-scale motions in a boundary layer that is used as the prototypical flow field for flows with large-scale mixing and reactions, the plane wall jet. An experimental investigation is carried out in a plane wall jet facility designed to operate at friction Reynolds numbers Reτ > 1000 , which allows for the development of a significant logarithmic region. The streamwise turbulent intensity across the boundary layer is decomposed into small-scale (less than one integral length-scale δ) and large-scale components. The small-scale energy has a peak in the near-wall region associated with the near-wall turbulent cycle as in canonical boundary layers. However, eddies of large-scales are the dominating eddies having significantly higher energy, than the small-scales across almost the entire boundary layer even at the low to moderate Reynolds numbers under consideration. The large-scales also appear to amplitude and frequency modulate the smaller scales across the entire boundary layer.

  11. Toward Increasing Fairness in Score Scale Calibrations Employed in International Large-Scale Assessments

    ERIC Educational Resources Information Center

    Oliveri, Maria Elena; von Davier, Matthias

    2014-01-01

    In this article, we investigate the creation of comparable score scales across countries in international assessments. We examine potential improvements to current score scale calibration procedures used in international large-scale assessments. Our approach seeks to improve fairness in scoring international large-scale assessments, which often…

  12. Plasma graviton production in TeV-scale gravity

    NASA Astrophysics Data System (ADS)

    Melkumova, E. Yu

    2010-11-01

    We develop the theory of interaction of classical plasma with Kaluza-Klein (KK) gravitons in the ADD model of TeV-scale gravity. Plasma is described within the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with n compact extra dimensions is introduced within the linearized theory. The KK gravitons emission rates are computed taking into account plasma collective effects through the two-point correlation functions of the fluctuations of the plasma energy-momentum tensor. Apart from known mechanisms (such as bremsstrahlung and gravi-Primakoff effect) we find essentially collective channels such as the coalescence of plasma waves into gravitons which may be manifest in turbulent plasmas. Our results indicate that commonly used rates of the KK gravitons production in stars and supernovae may be underestimated.

  13. Plasma deposited diamond-like carbon films for large neutralarrays

    SciTech Connect

    Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

    2004-07-15

    To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

  14. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  15. Large-scale GW software development

    NASA Astrophysics Data System (ADS)

    Kim, Minjung; Mandal, Subhasish; Mikida, Eric; Jindal, Prateek; Bohm, Eric; Jain, Nikhil; Kale, Laxmikant; Martyna, Glenn; Ismail-Beigi, Sohrab

    Electronic excitations are important in understanding and designing many functional materials. In terms of ab initio methods, the GW and Bethe-Saltpeter Equation (GW-BSE) beyond DFT methods have proved successful in describing excited states in many materials. However, the heavy computational loads and large memory requirements have hindered their routine applicability by the materials physics community. We summarize some of our collaborative efforts to develop a new software framework designed for GW calculations on massively parallel supercomputers. Our GW code is interfaced with the plane-wave pseudopotential ab initio molecular dynamics software ``OpenAtom'' which is based on the Charm++ parallel library. The computation of the electronic polarizability is one of the most expensive parts of any GW calculation. We describe our strategy that uses a real-space representation to avoid the large number of fast Fourier transforms (FFTs) common to most GW methods. We also describe an eigendecomposition of the plasmon modes from the resulting dielectric matrix that enhances efficiency. This work is supported by NSF through Grant ACI-1339804.

  16. Stochastic pattern transitions in large scale swarms

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira; Lindley, Brandon; Mier-Y-Teran, Luis

    2013-03-01

    We study the effects of time dependent noise and discrete, randomly distributed time delays on the dynamics of a large coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. We show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex bifurcating patterns depend on all of the moments of the delay distribution. In addition, we show that for sufficiently large values of the coupling strength and/or the mean time delay, there is a noise intensity threshold, dependent on the delay distribution width, that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Research supported by the Office of Naval Research

  17. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas

    NASA Astrophysics Data System (ADS)

    Culfa, O.; Tallents, G. J.; Rossall, A. K.; Wagenaars, E.; Ridgers, C. P.; Murphy, C. D.; Dance, R. J.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.; Woolsey, N. C.

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (1020W cm-2 ) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μ m ).

  18. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous

  19. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; Rouvreau, Sebastien; Toth, Balazs; Jomaas, Grunde

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  20. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Rouvreau, Sebastien; Jomaas, Grunde

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  1. Python for Large-Scale Electrophysiology

    PubMed Central

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis (“neuropy”). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience. PMID:19198646

  2. Large-Scale Structures of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Murray-Clay, Ruth; Rogers, Leslie A.

    2015-12-01

    A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.

  3. Large-Scale Pattern Discovery in Music

    NASA Astrophysics Data System (ADS)

    Bertin-Mahieux, Thierry

    This work focuses on extracting patterns in musical data from very large collections. The problem is split in two parts. First, we build such a large collection, the Million Song Dataset, to provide researchers access to commercial-size datasets. Second, we use this collection to study cover song recognition which involves finding harmonic patterns from audio features. Regarding the Million Song Dataset, we detail how we built the original collection from an online API, and how we encouraged other organizations to participate in the project. The result is the largest research dataset with heterogeneous sources of data available to music technology researchers. We demonstrate some of its potential and discuss the impact it already has on the field. On cover song recognition, we must revisit the existing literature since there are no publicly available results on a dataset of more than a few thousand entries. We present two solutions to tackle the problem, one using a hashing method, and one using a higher-level feature computed from the chromagram (dubbed the 2DFTM). We further investigate the 2DFTM since it has potential to be a relevant representation for any task involving audio harmonic content. Finally, we discuss the future of the dataset and the hope of seeing more work making use of the different sources of data that are linked in the Million Song Dataset. Regarding cover songs, we explain how this might be a first step towards defining a harmonic manifold of music, a space where harmonic similarities between songs would be more apparent.

  4. Density profile control in a large diameter, helicon plasma

    SciTech Connect

    Cluggish, B.P.; Anderegg, F.A.; Freeman, R.L.; Gilleland, J.; Hilsabeck, T.J.; Isler, R.C.; Lee, W.D.; Litvak, A.A.; Miller, R.L.; Ohkawa, T.; Putvinski, S.; Umstadter, K.R.; Winslow, D.L.

    2005-05-15

    Plasmas with peaked radial density profiles have been generated in the world's largest helicon device, with plasma diameters of over 70 cm. The density profiles can be manipulated by controlling the phase of the current in each strap of two multistrap antenna arrays. Phase settings that excite long axial wavelengths create hollow density profiles, whereas settings that excite short axial wavelengths create peaked density profiles. This change in density profile is consistent with the cold-plasma dispersion relation for helicon modes, which predicts a strong increase in the effective skin depth of the rf fields as the wavelength decreases. Scaling of the density with magnetic field, gas pressure, and rf power is also presented.

  5. The Challenge of Large-Scale Literacy Improvement

    ERIC Educational Resources Information Center

    Levin, Ben

    2010-01-01

    This paper discusses the challenge of making large-scale improvements in literacy in schools across an entire education system. Despite growing interest and rhetoric, there are very few examples of sustained, large-scale change efforts around school-age literacy. The paper reviews 2 instances of such efforts, in England and Ontario. After…

  6. INTERNATIONAL WORKSHOP ON LARGE-SCALE REFORESTATION: PROCEEDINGS

    EPA Science Inventory

    The purpose of the workshop was to identify major operational and ecological considerations needed to successfully conduct large-scale reforestation projects throughout the forested regions of the world. Large-scale" for this workshop means projects where, by human effort, approx...

  7. Using Large-Scale Assessment Scores to Determine Student Grades

    ERIC Educational Resources Information Center

    Miller, Tess

    2013-01-01

    Many Canadian provinces provide guidelines for teachers to determine students' final grades by combining a percentage of students' scores from provincial large-scale assessments with their term scores. This practice is thought to hold students accountable by motivating them to put effort into completing the large-scale assessment, thereby…

  8. A Large Scale Virtual Gas Sensor Array

    NASA Astrophysics Data System (ADS)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  9. Superconducting materials for large scale applications

    SciTech Connect

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  10. Large-scale structural monitoring systems

    NASA Astrophysics Data System (ADS)

    Solomon, Ian; Cunnane, James; Stevenson, Paul

    2000-06-01

    Extensive structural health instrumentation systems have been installed on three long-span cable-supported bridges in Hong Kong. The quantities measured include environment and applied loads (such as wind, temperature, seismic and traffic loads) and the bridge response to these loadings (accelerations, displacements, and strains). Measurements from over 1000 individual sensors are transmitted to central computing facilities via local data acquisition stations and a fault- tolerant fiber-optic network, and are acquired and processed continuously. The data from the systems is used to provide information on structural load and response characteristics, comparison with design, optimization of inspection, and assurance of continued bridge health. Automated data processing and analysis provides information on important structural and operational parameters. Abnormal events are noted and logged automatically. Information of interest is automatically archived for post-processing. Novel aspects of the instrumentation system include a fluid-based high-accuracy long-span Level Sensing System to measure bridge deck profile and tower settlement. This paper provides an outline of the design and implementation of the instrumentation system. A description of the design and implementation of the data acquisition and processing procedures is also given. Examples of the use of similar systems in monitoring other large structures are discussed.

  11. Software for large scale tracking studies

    SciTech Connect

    Niederer, J.

    1984-05-01

    Over the past few years, Brookhaven accelerator physicists have been adapting particle tracking programs in planning local storage rings, and lately for SSC reference designs. In addition, the Laboratory is actively considering upgrades to its AGS capabilities aimed at higher proton intensity, polarized proton beams, and heavy ion acceleration. Further activity concerns heavy ion transfer, a proposed booster, and most recently design studies for a heavy ion collider to join to this complex. Circumstances have thus encouraged a search for common features among design and modeling programs and their data, and the corresponding controls efforts among present and tentative machines. Using a version of PATRICIA with nonlinear forces as a vehicle, we have experimented with formal ways to describe accelerator lattice problems to computers as well as to speed up the calculations for large storage ring models. Code treated by straightforward reorganization has served for SSC explorations. The representation work has led to a relational data base centered program, LILA, which has desirable properties for dealing with the many thousands of rapidly changing variables in tracking and other model programs. 13 references.

  12. Links between small-scale dynamics and large-scale averages and its implication to large-scale hydrology

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2012-04-01

    Changes to the hydrological cycle under a changing climate challenge our understanding of the interaction between hydrology and climate at various spatial and temporal scales. Traditional understanding of the climate-hydrology interaction were developed under a stationary climate and may not adequately summarize the interactions in a transient state when the climate is changing; for instance, opposite long-term temporal trend of precipitation and discharge has been observed in part of the world, as a result of significant warming and the nonlinear nature of the climate and hydrology system. The patterns of internal climate variability, ranging from monthly to multi-centennial time scales, largely determine the past and present climate. The response of these patterns of variability to human-induced climate change will determine much of the regional nature of climate change in the future. Therefore, understanding the basic patterns of variability is of vital importance for climate and hydrological modelers. This work showed that at the scale of large river basins or sub-continents, the temporal variation of climatic variables ranging from daily to inter-annual, could be well represented by multiple sets, each consists of limited number of points (when observations are used) or pixels (when gridded datasets are used), covering a small portion of the total domain area. Combined with hydrological response units, which divide the heterogeneity of the land surface into limited number of categories according to similarity in hydrological behavior, one could describe the climate-hydrology interaction and changes over a large domain with multiple small subsets of the domain area. Those points (when observations are used), or pixels (when gridded data are used), represent different patterns of the climate-hydrology interaction, and contribute uniquely to an averaged dynamic of the entire domain. Statistical methods were developed to identify the minimum number of points or

  13. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Murakami, R.; Habara, H.; Ivancic, S.; Anderson, K.; Haberberger, D.; Iwawaki, T.; Sakagami, H.; Stoeckl, C.; Theobald, W.; Uematsu, Y.; Tanaka, K. A.

    2016-05-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation.

  14. Large-Area Permanent-Magnet ECR Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired

  15. Mechanisms for multi-scale structures in dense degenerate astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Shatashvili, N. L.; Mahajan, S. M.; Berezhiani, V. I.

    2016-02-01

    Two distinct routes lead to the creation of multi-scale equilibrium structures in dense degenerate plasmas, often met in astrophysical conditions. By analyzing an e-p-i plasma consisting of degenerate electrons and positrons with a small contamination of mobile classical ions, we show the creation of a new macro scale L_{macro} (controlled by ion concentration). The temperature and degeneracy enhancement effective inertia of bulk e-p components also makes the effective skin depths larger (much larger) than the standard skin depth. The emergence of these intermediate and macro scales lends immense richness to the process of structure formation, and vastly increases the channels for energy transformations. The possible role played by this mechanism in explaining the existence of large-scale structures in astrophysical objects with degenerate plasmas, is examined.

  16. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  17. Plasma and Ion Sources in Large Area Coatings: A Review

    SciTech Connect

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  18. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  19. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  20. Big Data Archives: Replication and synchronizing on a large scale

    NASA Astrophysics Data System (ADS)

    King, T. A.; Walker, R. J.

    2015-12-01

    Modern data archives provide unique challenges to replication and synchronization because of their large size. We collect more digital information today than any time before and the volume of data collected is continuously increasing. Some of these data are from unique observations, like those from planetary missions that should be preserved for use by future generations. In addition data from NASA missions are considered federal records and must be retained. While the data may be stored on resilient hardware (i.e. RAID systems) they also must be protected from local or regional disasters. Meeting this challenge requires creating multiple copies. This task is complicated by the fact that new data are constantly being added creating what are called "active archives". Having reliable, high performance tools for replicating and synchronizing active archives in a timely fashion is critical to preservation of the data. When archives were smaller using tools like bbcp, rsync and rcp worked fairly well. While these tools are affective they are not optimized for synchronizing big data archives and their poor performance at scale lead us to develop a new tool designed specifically for big data archives. It combines the best features of git, bbcp, rsync and rcp. We call this tool "Mimic" and we discuss the design of the tool, performance comparisons and its use at NASA's Planetary Plasma Interactions (PPI) Node of the Planetary Data System (PDS).

  1. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John; Loh, Alan

    2014-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years. The proposed observations are optimized to discover and study (flux evolution, morphology, SED, proper motion, ...) new radio lobes from microquasars. This will have implications not only for the study of jets from Galactic X-ray binaries, but also for our understanding of relativistic jets from active galactic nuclei (AGN).

  2. Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Madhulika

    1998-01-01

    Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.

  3. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  4. Dynamic scaling and large scale effects in turbulence in compressible stratified fluid

    NASA Astrophysics Data System (ADS)

    Pharasi, Hirdesh K.; Bhattacharjee, Jayanta K.

    2016-01-01

    We consider the propagation of sound in a turbulent fluid which is confined between two horizontal parallel plates, maintained at different temperatures. In the homogeneous fluid, Staroselsky et al. had predicted a divergent sound speed at large length scales. Here we find a divergent sound speed and a vanishing expansion coefficient at large length scales. Dispersion relation and the question of scale invariance at large distance scales lead to these results.

  5. Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field emitters.

    PubMed

    Jiang, Lili; Yang, Tianzhong; Liu, Fei; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Deng, Shaozhi; Xu, Ningsheng; Liu, Yunqi; Gao, Hong-Jun

    2013-01-11

    Large-scale, uniform, vertically standing graphene with atomically thin edges are controllably synthesized on copper foil using a microwave-plasma chemical vapor deposition system. A growth mechanism for this system is proposed. This film shows excellent field-emission properties, with low turn-on field of 1.3 V μm(-1) , low threshold field of 3.0 V μm(-1) and a large field-enhancement factor more than 10 000. PMID:23135968

  6. Global scale-invariant dissipation in collisionless plasma turbulence.

    PubMed

    Kiyani, K H; Chapman, S C; Khotyaintsev, Yu V; Dunlop, M W; Sahraoui, F

    2009-08-14

    A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas. PMID:19792654

  7. Electron acceleration in long scale laser - plasma interactions

    NASA Astrophysics Data System (ADS)

    Kamperidis, Christos; Mangles, Stuart P. D.; Nagel, Sabrina R.; Bellei, Claudio; Krushelnick, Karl; Najmudin, Zulfikar; Bourgeois, Nicola; Marques, Jean Raphael; Kaluza, Malte C.

    2006-10-01

    Broad energy electron bunches are produced through the Self-Modulated Laser Wakefield Acceleration scheme at the 30J, 300 fsec laser, LULI, France, with long scale underdense plasmas, created in a He filled gas cell and in He gas jet nozzles of various lengths. With c.τlaser>>λplasma, electrons reached Emax ˜ 200MeV. By carefully controlling the dynamics of the interaction and by simultaneous observations of the electron energy spectra and the forward emitted optical spectrum, we found that a plasma density threshold (˜5.10^18 cm-3) exists for quasi-monoenergetic (˜30MeV) features to appear. The overall plasma channel size was inferred from the collected Thomson scattered light. 2D PIC simulations indicate that the main long laser pulse breaks up into small pulselets that eventually get compressed and tightly focused inside the first few plasma periods, leading to a bubble like acceleration of electron bunches.

  8. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    SciTech Connect

    Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.

    2012-09-15

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.

  9. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    NASA Astrophysics Data System (ADS)

    Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.

    2012-09-01

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C =-∂ ln B/∂x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.

  10. Large amplitude ion-acoustic solitons in dusty plasmas

    SciTech Connect

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-08-15

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW{sup 2} of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW{sup 2}), are discussed in detail.

  11. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Pribyl, P.; Lucky, Z.; Drandell, M.; Leneman, D.; Maggs, J.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Morales, G.; Carter, T. A.; Wang, Y.; DeHaas, T.

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  12. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  13. Radially dependent large-scale dynamos in global cylindrical shear flows and the local cartesian limit

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Blackman, E. G.

    2016-06-01

    For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.

  14. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  15. On uniform plasma generation for the large area plasma processing in intermediate pressures

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye-Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-21

    Radial plasma discharge characteristics in the range of 450 mm were studied in a dual inductively coupled plasma (ICP) source, which consisted of a helical ICP and the side type ferrite ICPs. Since the energy relaxation length is shorter than the distance between each of the ferrite ICPs in an intermediate pressure (600 mTorr), local difference in the plasma ignition along the antenna position were observed. In addition, large voltage drop in the discharge of the ferrite ICPs causes an increase in the displacement current to the plasma, and separate discharge mode (E and H mode) according to the antenna position was observed. This results in non-uniform plasma distribution. For the improvement in the discharge of the ferrite ICPs, a capacitor which is placed between the ends of antenna and the ground is adjusted to minimize the displacement current to the plasma. As a result, coincident transitions from E to H mode were observed along the antenna position, and radially concave density profile (edge focused) was measured. For the uniform density distribution, a helical ICP, which located at the center of the discharge chamber, was simultaneously discharged with the ferrite ICPs. Due to the plasma potential variation through the simultaneous discharge of helical ICP and ferrite ICPs, uniform radial distribution in both plasma density and electron temperature are achieved.

  16. Surface Wave Plasma Driven by Ring Dielectric Line for Producing Dense, Large Area, Uniform Plasmas

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki

    1999-10-01

    Surface Wave excited Plasma (SWP), has been put into practice as a plasma source for the fabrication process of ULSI and LCD devices. This plasma has several advanced features: 1) Very high electron density with relatively low electron temperature; 2) Very uniform plasma density over large areas; 3) Operation from gas pressure of few mT to the order of thousands of mT. We present a newly developed microwave driven surface wave plasma source called a Ring Dielectric Line (RDL). The RDL is a metal ring wave-guide, filled with dielectric material, driven by a microwave. Slots for coupling the microwave power are symmetrically arrayed under the dielectric, facing towards the processing chamber. The electromagnetic power generates an electromagnetic surface wave, which in turn excites a plasma surface wave on the bottom side of the quartz plate in the processing chamber. In terms of its plasma characteristics, the uniformly distributed argon plasma with wide range of pressure of 20, 40 and 80mT as well as with high density about 5×10^17/m^3 over the cutoff density was observed. The electron temperature was about 2eV. In addition, in the 5000-minutes continuous running test for C_4F8 etching, it achieved repeatability of +/-0.7% and non-uniformity of about +/-3%.

  17. The evolution of large-scale magnetic fields in the ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Shinagawa, H.; Nagy, A. F.

    1984-03-01

    Large-scale magnetic fields are often observed in the ionosphere of Venus by the magnetometer on the Pioneer Venus Orbiter, especially near the subsolar point or when the solar wind dynamic pressure is high. An equation for the time evolution of the magnetic field is derived which includes both a term representing the time rate of change of the field due to the convection of magnetic flux by plasma motions, and a magnetic diffusion/dissipation term. The ionospheric plasma velocities required by these equations were obtained by numerically solving the momentum equation. Numerical solutions to the magnetic field equation indicate that large-scale magnetic fields, which are not being actively maintained, decay with time scales ranging from tens of minutes to several hours. The vertical convection of magnetic flux enables magnetic field structures deep within the ionosphere to persist longer than would otherwise be expected. This vertical convection also explains the shape of these structures.

  18. The energetic coupling of scales in gyrokinetic plasma turbulence

    SciTech Connect

    Teaca, Bogdan; Jenko, Frank

    2014-07-15

    In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.

  19. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  20. Large-scale convective instability in an electroconducting medium with small-scale helicity

    SciTech Connect

    Kopp, M. I.; Tur, A. V.; Yanovsky, V. V.

    2015-04-15

    A large-scale instability occurring in a stratified conducting medium with small-scale helicity of the velocity field and magnetic fields is detected using an asymptotic many-scale method. Such a helicity is sustained by small external sources for small Reynolds numbers. Two regimes of instability with zero and nonzero frequencies are detected. The criteria for the occurrence of large-scale instability in such a medium are formulated.

  1. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  2. Interpretation of large-scale deviations from the Hubble flow

    NASA Astrophysics Data System (ADS)

    Grinstein, B.; Politzer, H. David; Rey, S.-J.; Wise, Mark B.

    1987-03-01

    The theoretical expectation for large-scale streaming velocities relative to the Hubble flow is expressed in terms of statistical correlation functions. Only for objects that trace the mass would these velocities have a simple cosmological interpretation. If some biasing effects the objects' formation, then nonlinear gravitational evolution is essential to predicting the expected large-scale velocities, which also depend on the nature of the biasing.

  3. Large scale suppression of scalar power on a spatial condensation

    NASA Astrophysics Data System (ADS)

    Kouwn, Seyen; Kwon, O.-Kab; Oh, Phillial

    2015-03-01

    We consider a deformed single-field inflation model in terms of three SO(3) symmetric moduli fields. We find that spatially linear solutions for the moduli fields induce a phase transition during the early stage of the inflation and the suppression of scalar power spectrum at large scales. This suppression can be an origin of anomalies for large-scale perturbation modes in the cosmological observation.

  4. Large-scale V/STOL testing. [in wind tunnels

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Aiken, T. N.; Aoyagi, K.; Falarski, M. D.

    1977-01-01

    Several facets of large-scale testing of V/STOL aircraft configurations are discussed with particular emphasis on test experience in the Ames 40- by 80-foot wind tunnel. Examples of powered-lift test programs are presented in order to illustrate tradeoffs confronting the planner of V/STOL test programs. It is indicated that large-scale V/STOL wind-tunnel testing can sometimes compete with small-scale testing in the effort required (overall test time) and program costs because of the possibility of conducting a number of different tests with a single large-scale model where several small-scale models would be required. The benefits of both high- and full-scale Reynolds numbers, more detailed configuration simulation, and number and type of onboard measurements increase rapidly with scale. Planning must be more detailed at large scale in order to balance the trade-offs between the increased costs, as number of measurements and model configuration variables increase and the benefits of larger amounts of information coming out of one test.

  5. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  6. Large-scale microwave anisotropy from gravitating seeds

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1992-01-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. We examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. We describe the pattern of the resulting large angular scale microwave anisotropy.

  7. Transport scaling in interchange-driven toroidal plasmas

    SciTech Connect

    Ricci, Paolo; Rogers, B. N.

    2009-06-15

    Two-dimensional fluid simulations of a simple magnetized torus are presented, in which the vertical and toroidal components of the magnetic field create helicoidal field lines that terminate on the upper and lower walls of the plasma chamber. The simulations self-consistently evolve the full radial profiles of the electric potential, density, and electron temperature in the presence of three competing effects: the cross-field turbulent transport driven by the interchange instability, parallel losses to the upper and lower walls, and the input of particles and heat by external plasma sources. Considering parameter regimes in which equilibrium ExB shear flow effects are weak, we study the dependence of the plasma profiles--in particular the pressure profile scale length--on the parameters of the system. Analytical scalings are obtained that show remarkable agreement with the simulations.

  8. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  9. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  10. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    SciTech Connect

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-10-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form.

  11. Multi-scaling of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Lee, S.

    2015-03-01

    The dense plasma focus is a copious source of multi-radiations with many potential new applications of special interest such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes and imaging. This paper reviews the series of numerical experiments conducted using the Lee model code to obtain the scaling laws of the multi-radiations.

  12. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  13. Large-scale ER-damper for seismic protection

    NASA Astrophysics Data System (ADS)

    McMahon, Scott; Makris, Nicos

    1997-05-01

    A large scale electrorheological (ER) damper has been designed, constructed, and tested. The damper consists of a main cylinder and a piston rod that pushes an ER-fluid through a number of stationary annular ducts. This damper is a scaled- up version of a prototype ER-damper which has been developed and extensively studied in the past. In this paper, results from comprehensive testing of the large-scale damper are presented, and the proposed theory developed for predicting the damper response is validated.

  14. Clearing and Labeling Techniques for Large-Scale Biological Tissues

    PubMed Central

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-01-01

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  15. Contribution of peculiar shear motions to large-scale structure

    NASA Technical Reports Server (NTRS)

    Mueler, Hans-Reinhard; Treumann, Rudolf A.

    1994-01-01

    Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.

  16. Clearing and Labeling Techniques for Large-Scale Biological Tissues.

    PubMed

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-06-30

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  17. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  18. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  19. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  20. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  1. Unsaturated Hydraulic Conductivity for Evaporation in Large scale Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhu, J.

    2014-12-01

    In this study we aim to provide some practical guidelines of how the commonly used simple averaging schemes (arithmetic, geometric, or harmonic mean) perform in simulating large scale evaporation in a large scale heterogeneous landscape. Previous studies on hydraulic property upscaling focusing on steady state flux exchanges illustrated that an effective hydraulic property is usually more difficult to define for evaporation. This study focuses on upscaling hydraulic properties of large scale transient evaporation dynamics using the idea of the stream tube approach. Specifically, the two main objectives are: (1) if the three simple averaging schemes (i.e., arithmetic, geometric and harmonic means) of hydraulic parameters are appropriate in representing large scale evaporation processes, and (2) how the applicability of these simple averaging schemes depends on the time scale of evaporation processes in heterogeneous soils. Multiple realizations of local evaporation processes are carried out using HYDRUS-1D computational code (Simunek et al, 1998). The three averaging schemes of soil hydraulic parameters were used to simulate the cumulative flux exchange, which is then compared with the large scale average cumulative flux. The sensitivity of the relative errors to the time frame of evaporation processes is also discussed.

  2. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  3. Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study.

    PubMed

    Lv, Jia-Wei; Chen, Yu-Pei; Zhou, Guan-Qun; Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Guo, Rui; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-03-29

    We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary end-point was overall survival (OS); progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P <0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA. PMID:26919237

  4. Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study

    PubMed Central

    Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Guo, Rui; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-01-01

    We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary endpoint was overall survival (OS); progression-free survival (PFS), distant metastasisfree survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P<0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA. PMID:26919237

  5. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  6. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  7. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-02-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  8. Large-scale flow generation in turbulent convection

    PubMed Central

    Krishnamurti, Ruby; Howard, Louis N.

    1981-01-01

    In a horizontal layer of fluid heated from below and cooled from above, cellular convection with horizontal length scale comparable to the layer depth occurs for small enough values of the Rayleigh number. As the Rayleigh number is increased, cellular flow disappears and is replaced by a random array of transient plumes. Upon further increase, these plumes drift in one direction near the bottom and in the opposite direction near the top of the layer with the axes of plumes tilted in such a way that horizontal momentum is transported upward via the Reynolds stress. With the onset of this large-scale flow, the largest scale of motion has increased from that comparable to the layer depth to a scale comparable to the layer width. The conditions for occurrence and determination of the direction of this large-scale circulation are described. Images PMID:16592996

  9. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  10. Scaling of Energy Gain with Plasma Parameters in a Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28

    We have recently demonstrating the doubling of the energy of particles of the ultra-short, ultra-relativistic electron bunches of the Stanford Linear Accelerator Center [1]. This energy doubling occurred in a plasma only 85 cm-long with a density of {approx} 2.6 x 10{sup 17} e{sup -}/cm{sup -3}. This milestone is the result of systematic measurements that show the scaling of the energy gain with plasma length and density, and show the reproducibility and the stability of the acceleration process. We show that the energy gain increases linearly with plasma length from 13 to 31 cm. These are key steps toward the application of beam-driven plasma accelerators or plasma wakefield accelerators (PWFA) to doubling the energy of a future linear collider without doubling its length.

  11. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect

    Boehm, Swen; Elwasif, Wael R; Naughton, III, Thomas J; Vallee, Geoffroy R

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  12. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  13. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    SciTech Connect

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  14. Multi-scale particle simulation of bounded plasmas

    SciTech Connect

    Parker, S.E.; Birdsall, C.K. . Electronics Research Lab.); Friedman, A.; Ray, S.L. )

    1989-01-01

    We are using the multi-scale technique to model bounded systems. Certain bounded systems are a naturally suited for the multi-scale method because of the boundary layer that forms at the wall, which is usually a short spatial and time scale structure, can significantly affect the bulk plasma behavior. One goal is to understand the interaction between the bulk plasma and the sheath. If the relevant short time scale physics is local to a few known spatial regions, then one can take advantage of this by advancing particles with variable {Delta}t depending on position, hence reducing computing time. The unmagnetized sheath problem is such a case. The model is a one dimensional bounded slab with kinetic ions and electrons. We start with a collisionless and unmagnetized system for simplicity. The right boundary is a conducting wall that absorbs all particles that come in contact with it. The left boundary is a symmetry point, where the particles are reflected. We allow a specified initial distribution: f(x,v,t = 0). In order to test the numerics of both multi-scale method and boundary conditions we are using the following test problem: a cutoff Maxwellian distribution for the electrons and fixed ions. The system has an analytic solution, so the run may be started from equilibrium. This gives us a benchmark and tests the fast time scale electron sheath dynamics. Results using variable {Delta}t will be given. In the future, we intend to use the more general model to study time dependent bounded plasma problems, such as a plasma expanding toward a conducting wall.

  15. Magnetic effects of large-scale impacts on airless planetary bodies

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Huang, Z.

    1991-01-01

    The analysis of lunar orbital and sample data combined with laboratory measurements of impact-produced plasmas suggest that large-scale impacts on planetary surfaces may have had significant magnetic effects. These effects may potentially explain part of all lunar crustal magnetization and, by extension, may be responsible for producing paleomagnetism on other airless silicate bodies in the solar system. Theoretical studies are presented of the magnetic field and remanent magnetization effects of basin-scale impacts on the Moon. The specific case of a Moon exposed to the solar wind plasma flow and its embedded magnetic field is investigated. It is shown that maximum compressed field amplitudes occur antipodal to the impact point in agreement with the observed tendency for orbital magnetic anomalies to be concentrated antipodal to young large lunar basins. Generalization of these results to include magnetic effects of impacts on other airless or nearly airless bodies in the solar system is presented.

  16. Over-driven control for large-scale MR dampers

    NASA Astrophysics Data System (ADS)

    Friedman, A. J.; Dyke, S. J.; Phillips, B. M.

    2013-04-01

    As semi-active electro-mechanical control devices increase in scale for use in real-world civil engineering applications, their dynamics become increasingly complicated. Control designs that are able to take these characteristics into account will be more effective in achieving good performance. Large-scale magnetorheological (MR) dampers exhibit a significant time lag in their force-response to voltage inputs, reducing the efficacy of typical controllers designed for smaller scale devices where the lag is negligible. A new control algorithm is presented for large-scale MR devices that uses over-driving and back-driving of the commands to overcome the challenges associated with the dynamics of these large-scale MR dampers. An illustrative numerical example is considered to demonstrate the controller performance. Via simulations of the structure using several seismic ground motions, the merits of the proposed control strategy to achieve reductions in various response parameters are examined and compared against several accepted control algorithms. Experimental evidence is provided to validate the improved capabilities of the proposed controller in achieving the desired control force levels. Through real-time hybrid simulation (RTHS), the proposed controllers are also examined and experimentally evaluated in terms of their efficacy and robust performance. The results demonstrate that the proposed control strategy has superior performance over typical control algorithms when paired with a large-scale MR damper, and is robust for structural control applications.

  17. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  18. The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves

    NASA Astrophysics Data System (ADS)

    Namikawa, T.; Hamabata, H.

    1983-04-01

    The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.

  19. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  20. Three-dimensional two-fluid Braginskii simulations of the large plasma device

    SciTech Connect

    Fisher, Dustin M. Rogers, Barrett N.; Rossi, Giovanni D.; Guice, Daniel S.; Carter, Troy A.

    2015-09-15

    The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.

  1. Resonant RF network antennas for large-area and large-volume inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Hollenstein, Ch; Guittienne, Ph; Howling, A. A.

    2013-10-01

    Large-area and large-volume radio frequency (RF) plasmas are produced by different arrangements of an elementary electrical mesh consisting of two conductors interconnected by a capacitor at each end. The obtained cylindrical and planar RF networks are resonant and generate very high RF currents. The input impedance of such RF networks shows the behaviour of an RLC parallel resonance equivalent circuit. The real impedance at the resonance frequency is of great advantage for power matching compared with conventional inductive devices. Changes in the RLC equivalent circuit during the observed E-H transition will allow future interpretation of the plasma-antenna coupling. Furthermore, high power transfer efficiencies are found during inductively coupled plasma (ICP) operation. For the planar RF antenna network it is shown that the E-H transition occurs simultaneously over the entire antenna. The underlying physics of these discharges induced by the resonant RF network antenna is found to be identical to that of the conventional ICP devices described in the literature. The resonant RF network antenna is a new versatile plasma source, which can be adapted to applications in industry and research.

  2. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  3. Effects of small scale energy injection on large scales in turbulent reaction flows

    NASA Astrophysics Data System (ADS)

    Xuan, Yuan

    2014-11-01

    Turbulence causes the generation of eddies of various length scales. In turbulent non-reacting flows, most of the kinetic energy is contained in large scale turbulent structures and dissipated at small scales. This energy cascade process from large scales to small scales provides the foundation of a lot of turbulence models, especially for Large Eddy Simulations. However, in turbulent reacting flows, chemical energy is converted locally to heat and therefore deploys energy at the smallest scales. As such, effects of small scale energy injection due to combustion on large scale turbulent motion may become important. These effects are investigated in the case of auto-ignition under homogeneous isotropic turbulence. Impact of small scale heat release is examined by comparing various turbulent statistics (e.g. energy spectrum, two-point correlation functions, and structure functions) in the reacting case to the non-reacting case. Emphasis is placed on the identification of the most relevant turbulent quantities in reflecting such small-large scale interactions.

  4. Theory of coherent electron-scale magnetic structures in space plasma turbulence

    NASA Astrophysics Data System (ADS)

    Jovanović, Dušan; Alexandrova, Olga; Maksimović, Milan

    2015-08-01

    Recent spacecraft observations in the solar wind and in the Earth’s magnetosheath indicate that the dissipation range of magnetic turbulence probably takes place at electron scales. Here, we derive nonlinear electron magnetohydrodynamic (EMHD) equations for warm plasma, i.e. with the ratio of thermodynamic and magnetic pressures, β ∼ 1. This model describes plasma turbulence under the solar wind and magnetosheath conditions on the electron spatial scales and with the characteristic frequency that does not exceed the electron gyrofrequency. We show that at electron scales and in the presence of a sufficiently large temperature anisotropy {T}{e\\perp }/{T}{e\\parallel }\\gt 1, there exist self-organized, coherent, nonlinear dipole vortex structures associated with obliquely propagating whistler waves. These can be visualized as pairs of counterstreaming helicoidal currents that produce both the compressional and torsional perturbations of the magnetic field. In contrast to the previously known long-range EMHD dipolar vortices in a cold plasma, this novel solution is an evanescent mode, strongly localized in space (with wave numbers {k}\\perp \\gg {k}\\parallel ). It can constitute a building block for the plasma turbulence at short scales and provide a possible scenario of turbulence dissipation at electron scales.

  5. Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1991-01-01

    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized.

  6. Response of Tradewind Cumuli to Large-Scale Processes.

    NASA Astrophysics Data System (ADS)

    Soong, S.-T.; Ogura, Y.

    1980-09-01

    The two-dimensional slab-symmetric numerical cloud model used by Soong and Ogura (1973) for studying the evolution of an isolated cumulus cloud is extended to investigate the statistical properties of cumulus clouds which would be generated under a given large-scale forcing composed of the horizontal advection of temperature and water vapor mixing ratio, vertical velocity, sea surface temperature and radiative cooling. Random disturbances of small amplitude are introduced into the model at low levels to provide random motion for cloud formation.The model is applied to a case of suppressed weather conditions during BOMEX for the period 22-23 June 1969 when a nearly steady state prevailed. The composited temperature and mixing ratio profiles of these two days are used as initial conditions and the time-independent large-scale forcing terms estimated from the observations are applied to the model. The result of numerical integration shows that a number of small clouds start developing after 1 h. Some of them decay quickly, but some of them develop and reach the tradewind inversion. After a few hours of simulation, the vertical profiles of the horizontally averaged temperature and moisture are found to deviate only slightly from the observed profiles, indicating that the large-scale effect and the feedback effects of clouds on temperature and mixing ratio reach an equilibrium state. The three major components of the cloud feedback effect, i.e., condensation, evaporation and vertical fluxes associated with the clouds, are determined from the model output. The vertical profiles of vertical heat and moisture fluxes in the subcloud layer in the model are found to be in general agreement with the observations.Sensitivity tests of the model are made for different magnitudes of the large-scale vertical velocity. The most striking result is that the temperature and humidity in the cloud layer below the inversion do not change significantly in spite of a relatively large

  7. Large scale meteorological influence during the Geysers 1979 field experiment

    SciTech Connect

    Barr, S.

    1980-01-01

    A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

  8. Emergence of large cliques in random scale-free networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Marsili, Matteo

    2006-05-01

    In a network cliques are fully connected subgraphs that reveal which are the tight communities present in it. Cliques of size c > 3 are present in random Erdös and Renyi graphs only in the limit of diverging average connectivity. Starting from the finding that real scale-free graphs have large cliques, we study the clique number in uncorrelated scale-free networks finding both upper and lower bounds. Interestingly, we find that in scale-free networks large cliques appear also when the average degree is finite, i.e. even for networks with power law degree distribution exponents γin(2,3). Moreover, as long as γ < 3, scale-free networks have a maximal clique which diverges with the system size.

  9. Coupling between convection and large-scale circulation

    NASA Astrophysics Data System (ADS)

    Becker, T.; Stevens, B. B.; Hohenegger, C.

    2014-12-01

    The ultimate drivers of convection - radiation, tropospheric humidity and surface fluxes - are altered both by the large-scale circulation and by convection itself. A quantity to which all drivers of convection contribute is moist static energy, or gross moist stability, respectively. Therefore, a variance analysis of the moist static energy budget in radiative-convective equilibrium helps understanding the interaction of precipitating convection and the large-scale environment. In addition, this method provides insights concerning the impact of convective aggregation on this coupling. As a starting point, the interaction is analyzed with a general circulation model, but a model intercomparison study using a hierarchy of models is planned. Effective coupling parameters will be derived from cloud resolving models and these will in turn be related to assumptions used to parameterize convection in large-scale models.

  10. Large-scale current systems in the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Brace, L. H.

    1981-01-01

    The occasional observation of large-scale horizontal magnetic fields within the dayside ionosphere of Venus by the flux gate magnetometer on the Pioneer Venus orbiter suggests the presence of large-scale current systems. Using the measured altitude profiles of the magnetic field and the electron density and temperature, together with the previously reported neutral atmosphere density and composition, it is found that the local ionosphere can be described at these times by a simple steady state model which treats the unobserved quantities, such as the electric field, as parameters. When the model is appropriate, the altitude profiles of the ion and electron velocities and the currents along the satellite trajectory can be inferred. These results elucidate the configurations and sources of the ionospheric current systems which produce the observed large-scale magnetic fields, and in particular illustrate the effect of ion-neutral coupling in the determination of the current system at low altitudes.

  11. Do Large-Scale Topological Features Correlate with Flare Properties?

    NASA Astrophysics Data System (ADS)

    DeRosa, Marc L.; Barnes, Graham

    2016-05-01

    In this study, we aim to identify whether the presence or absence of particular topological features in the large-scale coronal magnetic field are correlated with whether a flare is confined or eruptive. To this end, we first determine the locations of null points, spine lines, and separatrix surfaces within the potential fields associated with the locations of several strong flares from the current and previous sunspot cycles. We then validate the topological skeletons against large-scale features in observations, such as the locations of streamers and pseudostreamers in coronagraph images. Finally, we characterize the topological environment in the vicinity of the flaring active regions and identify the trends involving their large-scale topologies and the properties of the associated flares.

  12. Large-amplitude circularly polarized electromagnetic waves in magnetized plasma

    SciTech Connect

    Vasko, I. Y. Artemyev, A. V.; Zelenyi, L. M.

    2014-05-15

    We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.

  13. Space transportation booster engine thrust chamber technology, large scale injector

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1993-01-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  14. Decomposition and coordination of large-scale operations optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Ruoyu

    Nowadays, highly integrated manufacturing has resulted in more and more large-scale industrial operations. As one of the most effective strategies to ensure high-level operations in modern industry, large-scale engineering optimization has garnered a great amount of interest from academic scholars and industrial practitioners. Large-scale optimization problems frequently occur in industrial applications, and many of them naturally present special structure or can be transformed to taking special structure. Some decomposition and coordination methods have the potential to solve these problems at a reasonable speed. This thesis focuses on three classes of large-scale optimization problems: linear programming, quadratic programming, and mixed-integer programming problems. The main contributions include the design of structural complexity analysis for investigating scaling behavior and computational efficiency of decomposition strategies, novel coordination techniques and algorithms to improve the convergence behavior of decomposition and coordination methods, as well as the development of a decentralized optimization framework which embeds the decomposition strategies in a distributed computing environment. The complexity study can provide fundamental guidelines to practical applications of the decomposition and coordination methods. In this thesis, several case studies imply the viability of the proposed decentralized optimization techniques for real industrial applications. A pulp mill benchmark problem is used to investigate the applicability of the LP/QP decentralized optimization strategies, while a truck allocation problem in the decision support of mining operations is used to study the MILP decentralized optimization strategies.

  15. Lateral stirring of large-scale tracer fields by altimetry

    NASA Astrophysics Data System (ADS)

    Dencausse, Guillaume; Morrow, Rosemary; Rogé, Marine; Fleury, Sara

    2014-01-01

    Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine `advected' fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ˜2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.

  16. Upscaling of elastic properties for large scale geomechanical simulations

    NASA Astrophysics Data System (ADS)

    Chalon, F.; Mainguy, M.; Longuemare, P.; Lemonnier, P.

    2004-09-01

    Large scale geomechanical simulations are being increasingly used to model the compaction of stress dependent reservoirs, predict the long term integrity of under-ground radioactive waste disposals, and analyse the viability of hot-dry rock geothermal sites. These large scale simulations require the definition of homogenous mechanical properties for each geomechanical cell whereas the rock properties are expected to vary at a smaller scale. Therefore, this paper proposes a new methodology that makes possible to define the equivalent mechanical properties of the geomechanical cells using the fine scale information given in the geological model. This methodology is implemented on a synthetic reservoir case and two upscaling procedures providing the effective elastic properties of the Hooke's law are tested. The first upscaling procedure is an analytical method for perfectly stratified rock mass, whereas the second procedure computes lower and upper bounds of the equivalent properties with no assumption on the small scale heterogeneity distribution. Both procedures are applied to one geomechanical cell extracted from the reservoir structure. The results show that the analytical and numerical upscaling procedures provide accurate estimations of the effective parameters. Furthermore, a large scale simulation using the homogenized properties of each geomechanical cell calculated with the analytical method demonstrates that the overall behaviour of the reservoir structure is well reproduced for two different loading cases. Copyright

  17. Meter-Scale Atmospheric-Pressure Microwave Plasma Using Sub-Millimeter-Gap Slot

    NASA Astrophysics Data System (ADS)

    Toyoda, Hirotaka

    2013-09-01

    Atmospheric-pressure pulsed plasmas have been given much attention because of its various possibilities for industrial applications such as surface wettability control, sterilization and so on. Among various atmospheric-pressure plasma sources, microwave plasma that is produced inside waveguide-slots is attractive because high-density plasma up to 1015 cm-3 can be easily produced along very long waveguide with light-weight and rather simple antenna configuration. So far, we have investigated plasma production inside slot of the waveguide and in this talk, elongation of the plasma up to meter-scale with newly-designed plasma source will be presented. In this study, two types of antennas are proposed to elongate the atmospheric-pressure microwave plasma. Firstly, array-structured slot design with a closed-end waveguide is adopted using X-band microwave (10 GHz). In this structure, slot antennas with a total number of more than 40 are positioned with λg/2-pitch along ~1m waveguide so as to utilize standing wave inside the waveguide and to increase the electric field inside the slot. By optimizing the antenna design, arrayed microwave plasmas are successfully produced along ~1m-length waveguide. The arrayed-slot structure, however, the plasma is not completely uniform along the waveguide and plasma density drastically decreases between two adjacent slots. To solve this, an alternative type of antenna that is free from the standing wave effect is designed. In this new-type antenna, travelling wave inside the waveguide with no reflection wave is realized by a combination of a microwave circulator and a ring-structured waveguide. By this transmission line, microwave power flows only to one direction and the average microwave power becomes spatially uniform along the waveguide. By using a single but very long slot up to several tens cm, very uniform plasma is produced along the slot. The result strongly suggests easy scale-up of the plasma source more than one meter that

  18. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  19. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  20. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  1. Large-scale liquid scintillation detectors for solar neutrinos

    NASA Astrophysics Data System (ADS)

    Benziger, Jay B.; Calaprice, Frank P.

    2016-04-01

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed.

  2. Monochromatic waves induced by large-scale parametric forcing.

    PubMed

    Nepomnyashchy, A; Abarzhi, S I

    2010-03-01

    We study the formation and stability of monochromatic waves induced by large-scale modulations in the framework of the complex Ginzburg-Landau equation with parametric nonresonant forcing dependent on the spatial coordinate. In the limiting case of forcing with very large characteristic length scale, analytical solutions for the equation are found and conditions of their existence are outlined. Stability analysis indicates that the interval of existence of a monochromatic wave can contain a subinterval where the wave is stable. We discuss potential applications of the model in rheology, fluid dynamics, and optics. PMID:20365907

  3. Scaling of magnetic reconnection in relativistic collisionless pair plasmas.

    PubMed

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-03-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and approaches the speed of light when σ>O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains ∼0.1 in both the nonrelativistic and relativistic limits. PMID:25793820

  4. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  5. Small-scale plasma irregularities in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.

    1991-01-01

    The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.

  6. Large-scale anisotropy in stably stratified rotating flows

    SciTech Connect

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

  7. Large-scale anisotropy in stably stratified rotating flows

    DOE PAGESBeta

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less

  8. Generating Large-Scale Longitudinal Data Resources for Aging Research

    PubMed Central

    Hofer, Scott M.

    2011-01-01

    Objectives. The need for large studies and the types of large-scale data resources (LSDRs) are discussed along with their general scientific utility, role in aging research, and affordability. The diversification of approaches to large-scale data resourcing is described in order to facilitate their use in aging research. Methods. The need for LSDRs is discussed in terms of (a) large sample size; (b) longitudinal design; (c) as platforms for additional investigator-initiated research projects; and (d) broad-based access to core genetic, biological, and phenotypic data. Discussion. It is concluded that a “lite-touch, lo-tech, lo-cost” approach to LSDRs is a viable strategy for the development of LSDRs and would enhance the likelihood of LSDRs being established which are dedicated to the wide range of important aging-related issues. PMID:21743049

  9. Gyrokinetic simulation of isotope scaling in tokamak plasmas

    SciTech Connect

    Lee, W.W.; Santoro, R.A.

    1995-07-01

    A three-dimensional global gyrokinetic particle code in toroidal geometry has been used for investigating the transport properties of ion temperature gradient (ITG) drift instabilities in tokamak plasmas. Using the isotopes of hydrogen (H{sup +}), deuterium (D{sup +}) and tritium (T{sup +}), we have found that, under otherwise identical conditions, there exists a favorable isotope scaling for the ion thermal diffusivity, i.e., Xi decreases with mass. Such a scaling, which exists both at the saturation of the instability and also at the nonlinear steady state, can be understood from the resulting wavenumber and frequency spectra.

  10. Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma.

    PubMed

    Maeyama, S; Idomura, Y; Watanabe, T-H; Nakata, M; Yagi, M; Miyato, N; Ishizawa, A; Nunami, M

    2015-06-26

    Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and β value are realized for the first time, where the β value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-β effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport. PMID:26197130

  11. Scaling of (MHD) instabilities in imploding plasma liners

    SciTech Connect

    Hussey, T.W.; Roderick, N.F.; Kloc, D.A.

    1980-03-01

    The dynamics of imploding foil plasmas is considered using first-order theory to model the implosion and to investigate the effects of magnetohydrodynamic instabilities on the structure of the plasma sheath. The effects of the acceleration-produced magnetohydrodynamic (MHD) Rayleigh-Taylor instability and a wall-associated instability are studied for a variety of plasma implosion times for several pulsed power drivers. The basic physics of these instabilities is identified and models are developed to explain both linear and nonlinear behavior. These models are compared with the results of detailed two-dimensional magnetohydrodynamic simulations. Expressions for linear Rayleigh-Taylor growth are developed showing its dependence on driving current, plasma conductivity, and density gradient scale length. A nonlinear saturation model, based on magnetic field diffusion, is developed. The model for a wall instability involves the interaction of the plasma sheath with the electrode wall and the material ablated from the electrode. The growth of this instability is shown to be limited by field diffusion. Comparison with two-dimensional simulations has been excellent.

  12. Large-scale quantification of CVD graphene surface coverage

    NASA Astrophysics Data System (ADS)

    Ambrosi, Adriano; Bonanni, Alessandra; Sofer, Zdeněk; Pumera, Martin

    2013-02-01

    The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale fabrication of graphene by the CVD process.The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale

  13. Novel Antenna Coupler Design for Production of Meter-Scale High-Density Planar Surface Wave Plasma

    NASA Astrophysics Data System (ADS)

    Ishijima, Tatsuo; Nojiri, Yasunori; Toyoda, Hirotaka; Sugai, Hideo

    2010-08-01

    A vacuum-sealed antenna coupler was newly developed for excitation of meter-scale high-density surface wave plasma for manufacturing giant microelectronics devices such as liquid crystal displays and thin-film solar cells. To produce large-area uniform plasma, various multislot antenna designs at 2.45 GHz were investigated by slot antenna analysis and simulation using the finite difference time domain (FDTD) method. Optical emission images of the plasma observed using a wide-angle charge-coupled device (CCD) camera and Langmuir probe measurements revealed the production of a very uniform and high-density plasma of 1 m length and 0.3 m width whose dimensions can easily be expanded to a much larger scale. Furthermore, the production of a large-area sheetlike plasma of 2 cm thickness and 1 m length has been demonstrated to reduce the discharge power, heat load, gas consumption, and pumping load.

  14. Large-scale smart passive system for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Jang, Dong-Doo; Lee, Heon-Jae; Cho, Sang-Won

    2008-03-01

    The smart passive system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) part has been recently proposed. An EMI part can generate the input current for an MR damper from vibration of a structure according to Faraday's law of electromagnetic induction. The control performance of the smart passive system has been demonstrated mainly by numerical simulations. It was verified from the numerical results that the system could be effective to reduce the structural responses in the cases of civil engineering structures such as buildings and bridges. On the other hand, the experimental validation of the system is not sufficiently conducted yet. In this paper, the feasibility of the smart passive system to real-scale structures is investigated. To do this, the large-scale smart passive system is designed, manufactured, and tested. The system consists of the large-capacity MR damper, which has a maximum force level of approximately +/-10,000N, a maximum stroke level of +/-35mm and the maximum current level of 3 A, and the large-scale EMI part, which is designed to generate sufficient induced current for the damper. The applicability of the smart passive system to large real-scale structures is examined through a series of shaking table tests. The magnitudes of the induced current of the EMI part with various sinusoidal excitation inputs are measured. According to the test results, the large-scale EMI part shows the possibility that it could generate the sufficient current or power for changing the damping characteristics of the large-capacity MR damper.

  15. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  16. Large scale structure in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard

    1986-01-01

    The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.

  17. The effective field theory of cosmological large scale structures

    SciTech Connect

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  18. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  19. Turbulent large-scale structure effects on wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  20. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  1. Large-scale search for dark-matter axions

    SciTech Connect

    Hagmann, C.A., LLNL; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E.J.; McBride, J.; Peng, H.; Rosenberg, L.J.; Xin, H.; Laveigne, J.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Moltz, D.M.; Powell, J.; Clarke, J.; Nezrick, F.A.; Turner, M.S.; Golubev, N.A.; Kravchuk, L.V.

    1998-01-01

    Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.

  2. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  3. Large-scale search for dark-matter axions

    SciTech Connect

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  4. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  5. Global smoothing and continuation for large-scale molecular optimization

    SciTech Connect

    More, J.J.; Wu, Zhijun

    1995-10-01

    We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.

  6. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  7. Individual Skill Differences and Large-Scale Environmental Learning

    ERIC Educational Resources Information Center

    Fields, Alexa W.; Shelton, Amy L.

    2006-01-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited…

  8. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  9. Large Scale Field Campaign Contributions to Soil Moisture Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale field experiments have been an essential component of soil moisture remote sensing for over two decades. They have provided test beds for both the technology and science necessary to develop and refine satellite mission concepts. The high degree of spatial variability of soil moisture an...

  10. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  11. Considerations for Managing Large-Scale Clinical Trials.

    ERIC Educational Resources Information Center

    Tuttle, Waneta C.; And Others

    1989-01-01

    Research management strategies used effectively in a large-scale clinical trial to determine the health effects of exposure to Agent Orange in Vietnam are discussed, including pre-project planning, organization according to strategy, attention to scheduling, a team approach, emphasis on guest relations, cross-training of personnel, and preparing…

  12. Ecosystem resilience despite large-scale altered hydro climatic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  13. The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; Crowe, Erik; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Stevenson, Thomas; Miller, Nathan J.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.

  14. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  15. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  16. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  17. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  18. Implicit solution of large-scale radiation diffusion problems

    SciTech Connect

    Brown, P N; Graziani, F; Otero, I; Woodward, C S

    2001-01-04

    In this paper, we present an efficient solution approach for fully implicit, large-scale, nonlinear radiation diffusion problems. The fully implicit approach is compared to a semi-implicit solution method. Accuracy and efficiency are shown to be better for the fully implicit method on both one- and three-dimensional problems with tabular opacities taken from the LEOS opacity library.

  19. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  20. Polymers in 2D Turbulence: Suppression of Large Scale Fluctuations

    NASA Astrophysics Data System (ADS)

    Amarouchene, Y.; Kellay, H.

    2002-08-01

    Small quantities of a long chain molecule or polymer affect two-dimensional turbulence in unexpected ways. Their presence inhibits the transfers of energy to large scales causing their suppression in the energy density spectrum. This also leads to the change of the spectral properties of a passive scalar which turns out to be highly sensitive to the presence of energy transfers.

  1. Creating a Large-Scale, Third Generation, Distance Education Course.

    ERIC Educational Resources Information Center

    Weller, Martin James

    2000-01-01

    Outlines the course development of an introductory large-scale distance education course offered via the World Wide Web at the Open University in the United Kingdom. Topics include developing appropriate student skills; maintaining quality control; facilitating easy updating of material; ensuring student interaction; and making materials…

  2. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  3. Measurement, Sampling, and Equating Errors in Large-Scale Assessments

    ERIC Educational Resources Information Center

    Wu, Margaret

    2010-01-01

    In large-scale assessments, such as state-wide testing programs, national sample-based assessments, and international comparative studies, there are many steps involved in the measurement and reporting of student achievement. There are always sources of inaccuracies in each of the steps. It is of interest to identify the source and magnitude of…

  4. Large-Scale Networked Virtual Environments: Architecture and Applications

    ERIC Educational Resources Information Center

    Lamotte, Wim; Quax, Peter; Flerackers, Eddy

    2008-01-01

    Purpose: Scalability is an important research topic in the context of networked virtual environments (NVEs). This paper aims to describe the ALVIC (Architecture for Large-scale Virtual Interactive Communities) approach to NVE scalability. Design/methodology/approach: The setup and results from two case studies are shown: a 3-D learning environment…

  5. Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins.

    PubMed

    Rose, Keith; Bougueleret, Lydie; Baussant, Thierry; Böhm, Günter; Botti, Paolo; Colinge, Jacques; Cusin, Isabelle; Gaertner, Hubert; Gleizes, Anne; Heller, Manfred; Jimenez, Silvia; Johnson, Andrew; Kussmann, Martin; Menin, Laure; Menzel, Christoph; Ranno, Frederic; Rodriguez-Tomé, Patricia; Rogers, John; Saudrais, Cedric; Villain, Matteo; Wetmore, Diana; Bairoch, Amos; Hochstrasser, Denis

    2004-07-01

    Human blood plasma is a useful source of proteins associated with both health and disease. Analysis of human blood plasma is a challenge due to the large number of peptides and proteins present and the very wide range of concentrations. In order to identify as many proteins as possible for subsequent comparative studies, we developed an industrial-scale (2.5 liter) approach involving sample pooling for the analysis of smaller proteins (M(r) generally < ca. 40 000 and some fragments of very large proteins). Plasma from healthy males was depleted of abundant proteins (albumin and IgG), then smaller proteins and polypeptides were separated into 12 960 fractions by chromatographic techniques. Analysis of proteins and polypeptides was performed by mass spectrometry prior to and after enzymatic digestion. Thousands of peptide identifications were made, permitting the identification of 502 different proteins and polypeptides from a single pool, 405 of which are listed here. The numbers refer to chromatographically separable polypeptide entities present prior to digestion. Combining results from studies with other plasma pools we have identified over 700 different proteins and polypeptides in plasma. Relatively low abundance proteins such as leptin and ghrelin and peptides such as bradykinin, all invisible to two-dimensional gel technology, were clearly identified. Proteins of interest were synthesized by chemical methods for bioassays. We believe that this is the first time that the small proteins in human blood plasma have been separated and analyzed so extensively. PMID:15221774

  6. Ecohydrological modeling for large-scale environmental impact assessment.

    PubMed

    Woznicki, Sean A; Nejadhashemi, A Pouyan; Abouali, Mohammad; Herman, Matthew R; Esfahanian, Elaheh; Hamaamin, Yaseen A; Zhang, Zhen

    2016-02-01

    Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (cold, cold-transitional, cool, and warm) of streams that broadly dictate the distribution of aquatic biota in Michigan. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow and water quality in seven watersheds and the Hydrologic Index Tool was used to calculate 171 ecologically relevant flow regime variables. Unique variables were selected for each thermal class using a Bayesian variable selection method. The variables were then used in development of adaptive neuro-fuzzy inference systems (ANFIS) models of EPT, FIBI, HBI, and IBI. ANFIS model accuracy improved when accounting for stream thermal class rather than developing a global model. PMID:26595397

  7. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    PubMed

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind. PMID:23473153

  8. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  9. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­‐scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  10. Large-scale micropropagation system of plant cells.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    Plant micropropagation is an efficient method of propagating disease-free, genetically uniform and massive amounts of plants in vitro. The scale-up of the whole process for plant micropropagation should be established by an economically feasible technology for large-scale production of them in appropriate bioreactors. It is necessary to design suitable bioreactor configuration which can provide adequate mixing and mass transfer while minimizing the intensity of shear stress and hydrodynamic pressure. Automatic selection of embryogenic calli and regenerated plantlets using image analysis system should be associated with the system. The aim of this chapter is to identify the problems related to large-scale plant micropropagation via somatic embryogenesis, and to summarize the micropropagation technology and computer-aided image analysis. Viscous additive supplemented culture, which is including the successful results obtained by us for callus regeneration, is also introduced. PMID:15453194

  11. Large-scale structure in f(T) gravity

    SciTech Connect

    Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.

    2011-05-15

    In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.

  12. Honeycomb: Visual Analysis of Large Scale Social Networks

    NASA Astrophysics Data System (ADS)

    van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.

    The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.

  13. Large-scale quantification of CVD graphene surface coverage.

    PubMed

    Ambrosi, Adriano; Bonanni, Alessandra; Sofer, Zdeněk; Pumera, Martin

    2013-03-21

    The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale fabrication of graphene by the CVD process. PMID:23396554

  14. Large-scale data mining pilot project in human genome

    SciTech Connect

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  15. Dynamic properties of small-scale solar wind plasma fluctuations

    PubMed Central

    Riazantseva, M. O.; Budaev, V. P.; Zelenyi, L. M.; Zastenker, G. N.; Pavlos, G. P.; Safrankova, J.; Nemecek, Z.; Prech, L.; Nemec, F.

    2015-01-01

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350 000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. PMID:25848078

  16. Dynamic properties of small-scale solar wind plasma fluctuations.

    PubMed

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. PMID:25848078

  17. Jet noise generated by large-scale coherent motion

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1991-01-01

    The noise generated by large scale turbulence structures and instability waves of jets is discussed. Emphasis is placed on supersonic jets with moderate to high Reynolds numbers. This is because it is in these jets that unambiguous experimental and theoretical evidence is found indicating that large turbulence structures and instability waves are directly responsible for generating the dominant part of the noise. For subsonic jets similar large turbulence structures and instability waves do play a crucial role in the dynamics, spread, and mixing of the jet fluid. However, at subsonic convection speeds, they do not appear to be efficient noise generators. Many investigators believe that the dominant noise source of subsonic jets is, in fact, the small scale turbulence. As yet, this belief has not yet received universal acceptance. The issues involved are complicated and are not easy to resolve.

  18. Planar Doppler Velocimetry for Large-Scale Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.

    1998-01-01

    Planar Doppler Velocimetry (PDV) concepts using a pulsed laser are described and the obtainable minimum resolved velocities in large-scale wind tunnels are evaluated. Velocity-field measurements are shown to be possible at ranges of tens of meters and with single pulse resolutions as low as 2 m/s. Velocity measurements in the flow of a low-speed, turbulent jet are reported that demonstrate the ability of PDV to acquire both average velocity fields and their fluctuation amplitudes, using procedures that are compatible with large-scale facility operations. The advantages of PDV over current Laser Doppler Anemometry and Particle Image Velocimetry techniques appear to be significant for applications to large facilities.

  19. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  20. Quantum Noise in Large-Scale Coherent Nonlinear Photonic Circuits

    NASA Astrophysics Data System (ADS)

    Santori, Charles; Pelc, Jason S.; Beausoleil, Raymond G.; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-06-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasiprobability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total and functions as a four-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.

  1. Updating Geospatial Data from Large Scale Data Sources

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  2. Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures

    NASA Astrophysics Data System (ADS)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2016-01-01

    Several recent studies discuss of role of skewness of the turbulent velocity fluctuations in near-wall shear layers, in the context of quantifying the correlation between large-scale motions and amplitude variations of small-scale fluctuations—referred to as "modulation." The present study is based on the premise that the skewness of the small-scale fluctuations should be accounted for explicitly in the process of defining their envelope, which characterizes their amplitude variations. This leads to the notion of two envelopes, one for positive and the other for negative small-scale fluctuations, and hence also to two corresponding correlation coefficients. Justification for this concept is provided first by an examination of a high-frequency synthetic signal subjected to realistic skewness-inducing modulation. A new formalism is provided for deriving the two envelopes, and its fidelity is demonstrated for the synthetic test case. The method is then applied to a channel flow at a friction Reynolds number of 4200, for which direct numerical simulation (DNS) data are available. The large-scale and small-scale fields are separated by the empirical mode decomposition method, and the modulation of the small-scale fluctuations by the large scales is examined. Separate maps of the correlation coefficient and of two-point correlations, the latter linking the large-scale motions and the envelopes of the small-scale motions, are derived for the two envelopes pertaining to positive and negative small-scale fluctuations, and these demonstrate a significant sensitivity to the envelope-definition process, especially close to the wall where the skewness of the small-scale fluctuations is the dominant contributor to the total value.

  3. Scale-free transport in fusion plasmas: theory and applications

    SciTech Connect

    Sanchez, R.; Mier, J. A.; Garcia, L.; Newman, D. E.; Carreras, B. A.; Leboeuf, J. N.; Decyk, V.

    2008-11-01

    A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.

  4. Scale-free transport in fusion plasmas: theory and applications

    SciTech Connect

    Sanchez, Raul; Mier, Jose Angel; Newman, David E; Carreras, Benjamin A; Garcia, Luis; Leboeuf, Jean-Noel; Decyk, Viktor

    2008-01-01

    A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.

  5. Large-Scale Modeling of the Entry of Solar Wind Ions into the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.

    2012-12-01

    Ion observations made by multiple spacecraft in the mid-altitude cusps have revealed the complexity of the entry of the solar wind plasma at the magnetospheric boundary. In particular, ion energy-latitude dispersions measured by the Cluster spacecraft often indicate the formation of large-scale structures in ion precipitation. We have carried out large-scale simulations of the entry of ions at the dayside magnetopause. Our study is based on using the time-dependent electric and magnetic fields predicted by three-dimensional global MHD simulations to compute the trajectories of large samples of solar wind ions launched upstream of the bow shock for different solar wind conditions. Particle information collected in the simulations is then analyzed to determine the relation between the structures observed in the cusp and ion injection processes at the magnetospheric boundary. We discuss the results of the study in the context of entry and acceleration processes at the dayside magnetopause.

  6. Experimental Characterization of Plasma Flow in Reconnection Scaling Experiment.

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Sun, X.; Intrator, T.; Hendryx, J.; Wurden, G.

    2007-11-01

    Reconnection Scaling Experiment (RSX) studies linear and non-linear evolution of up to four interacting current-carrying plasma cords with emphasis on kink instability and magnetic reconnection. During the kink instability, the presence of an axial flow gives rise to a Doppler shifted frequency and rotation of the kink, which makes studying the flow important. The axial velocity, plasma density, and electron temperature in one plasma column were measured on RSX with the miniaturized Mach and triple electrostatic probes installed on 3D positioning systems. Significant plasma flow with the velocity on the order of the ion acoustic speed was detected, with the velocity decreasing downstream. 2D profiles obtained at two axial locations were then employed to estimate the radial profile of the ion viscosity using the integral momentum balance equation. The results show that the ion momentum flux is dissipated by the ion-ion viscosity due to significant radial shear of axial velocity. Chord-integrated ion temperature measurements performed at several radial locations using Doppler broadening spectroscopy show temperature of about 1eV. Comparison of the measured viscosity with Braginskii's theoretical predictions demonstrates a good agreement, which is an important new result useful for both astrophysical jets and magnetoplasmadynamic thrusters. Supported by OFES, and DOE/LANL contract DE-AC52-06NA25396.

  7. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  8. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  9. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  10. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  11. Observations of large scale steady magnetic fields in the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Russell, C. T.; Mihalov, J. D.; Wolfe, J. H.

    1980-01-01

    Although the dayside ionosphere of Venus is often field-free except for fine-scale features, large-scale steady ionospheric magnetic fields with magnitudes sometimes exceeding 100 gammas are occasionally observed by the Pioneer Venus Orbiter magnetometer. These fields are mainly horizontal and can assume any angle in the horizontal plane. The orientation of the field may change along the spacecraft trajectory. The field magnitude in the upper ionosphere usually shows a distinct minimum near approximately 200 km altitude, but the altitude profile is otherwise arbitrary. With few exceptions, the observations of these large scale fields occur when periapsis is at solar zenith angles less than 50 deg. The occurrence of large-scale fields is often coincident with the observation of high solar wind dynamic pressures by the Pioneer Venus Orbiter plasma analyzer closely following the ionosphere encounter. However, the detection of this phenomenon even during some orbits for which the dynamic pressure is not extraordinarily high suggests that other factors, such as hysteresis effects, must also play a role in determining the occurrence frequency of large-scale magnetic fields in the dayside Venus ionosphere.

  12. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  13. Solving large scale structure in ten easy steps with COLA

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J.

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 109Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 1011Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  14. Solving large scale structure in ten easy steps with COLA

    SciTech Connect

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J. E-mail: matiasz@ias.edu

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  15. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. PMID:25731989

  16. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. PMID:22727063

  17. Novel algorithm of large-scale simultaneous linear equations.

    PubMed

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-02-24

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented. PMID:21386384

  18. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their

  19. From Systematic Errors to Cosmology Using Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Hunterer, Dragan

    We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".

  20. Laser-plasma interactions in NIF-scale plasmas (HLP5 and HLP6)

    SciTech Connect

    MacGowan, B.; Berger, R.; Fernandez, J.

    1996-06-01

    The understanding of laser-plasma interactions in ignition-scale inertial confinement fusion (ICF) hohlraum targets is important for the success of the proposed National Ignition Facility (NIF). The success of an indirect-drive ICF ignition experiment depends on the ability to predict and control the history and spatial distribution of the x-radiation produced by the laser beams that are absorbed by the inside of the hohlraum wall. Only by controlling the symmetry of this x-ray drive is it possible to obtain the implosion symmetry in the fusion pellet necessary for ignition. The larger hohlraums and longer time scales required for ignition-scale targets result in the presence of several millimeters of plasma (electron density n{sub e} {approximately} 0.1 n{sub c} {approximately} 10{sup 21} cm{sup {minus}3}), through which the 3{omega} (351-nm) laser beams must propagate before they are absorbed at the hohlraum wall. Hydrodynamic simulations show this plasma to be very uniform [density-gradient scalelength L{sub n} = n{sub e}(dn{sub e}/dx){sup {minus}1}{approximately} 2mm] and to exhibit low velocity gradients [velocity-gradient scale-length L{sub v} = c{sub s}(dv/dx){sup {minus}1} > 6 mm].

  1. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  2. Bounded multi-scale plasma simulation: Application to sheath problems

    SciTech Connect

    Parker, S.E. ); Friedman, A.; Ray. S.L. ); Birdsall, C.K. )

    1993-08-01

    In our previous paper we introduced the multi-scale method, a self-consistent plasma simulation technique that allowed particles to have independent timesteps. Here we apply the method to one-dimensional electrostatic bounded plasma problems and demonstrate a significant reduction in computing time. We describe a technique to allow for variable grid spacing and develop consistent boundary conditions for the direct implicit method. Also discussed are criteria for specifying timestep size as a function of position in phase space. Next, an analytically solvable sheath problem is presented, and a comparison to simulation results in made. Finally, we show results for an ion acoustic shock front propagating toward a conducting wall. 20 refs., 16 figs., 2 tabs.

  3. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  4. Scale-Similar Models for Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Sarghini, F.

    1999-01-01

    Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.

  5. Large scale rigidity-based flexibility analysis of biomolecules

    PubMed Central

    Streinu, Ileana

    2016-01-01

    KINematics And RIgidity (KINARI) is an on-going project for in silico flexibility analysis of proteins. The new version of the software, Kinari-2, extends the functionality of our free web server KinariWeb, incorporates advanced web technologies, emphasizes the reproducibility of its experiments, and makes substantially improved tools available to the user. It is designed specifically for large scale experiments, in particular, for (a) very large molecules, including bioassemblies with high degree of symmetry such as viruses and crystals, (b) large collections of related biomolecules, such as those obtained through simulated dilutions, mutations, or conformational changes from various types of dynamics simulations, and (c) is intended to work as seemlessly as possible on the large, idiosyncratic, publicly available repository of biomolecules, the Protein Data Bank. We describe the system design, along with the main data processing, computational, mathematical, and validation challenges underlying this phase of the KINARI project. PMID:26958583

  6. Resolving the paradox of oceanic large-scale balance and small-scale mixing.

    PubMed

    Marino, R; Pouquet, A; Rosenberg, D

    2015-03-20

    A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving gravity, pressure gradient, and Coriolis forces, and the necessary turbulent transport: in the former case, energy flows to large scales, leading to spectral condensation, whereas in the latter, it is transferred to small scales, where dissipation prevails. The known bidirectional constant-flux energy cascade maintaining both geostrophic balance and mixing tends towards flux equilibration as turbulence strengthens, contradicting models and recent observations which find a dominant large-scale flux. Analyzing a large ensemble of high-resolution direct numerical simulations of the Boussinesq equations in the presence of rotation and no salinity, we show that the ratio of the dual energy flux to large and to small scales agrees with observations, and we predict that it scales with the inverse of the Froude and Rossby numbers when stratification is (realistically) stronger than rotation. Furthermore, we show that the kinetic and potential energies separately undergo a bidirectional transfer to larger and smaller scales. Altogether, this allows for small-scale mixing which drives the global oceanic circulation and will thus potentially lead to more accurate modeling of climate dynamics. PMID:25839278

  7. Resolving the Paradox of Oceanic Large-Scale Balance and Small-Scale Mixing

    NASA Astrophysics Data System (ADS)

    Marino, R.; Pouquet, A.; Rosenberg, D.

    2015-03-01

    A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving gravity, pressure gradient, and Coriolis forces, and the necessary turbulent transport: in the former case, energy flows to large scales, leading to spectral condensation, whereas in the latter, it is transferred to small scales, where dissipation prevails. The known bidirectional constant-flux energy cascade maintaining both geostrophic balance and mixing tends towards flux equilibration as turbulence strengthens, contradicting models and recent observations which find a dominant large-scale flux. Analyzing a large ensemble of high-resolution direct numerical simulations of the Boussinesq equations in the presence of rotation and no salinity, we show that the ratio of the dual energy flux to large and to small scales agrees with observations, and we predict that it scales with the inverse of the Froude and Rossby numbers when stratification is (realistically) stronger than rotation. Furthermore, we show that the kinetic and potential energies separately undergo a bidirectional transfer to larger and smaller scales. Altogether, this allows for small-scale mixing which drives the global oceanic circulation and will thus potentially lead to more accurate modeling of climate dynamics.

  8. Large-scale genotoxicity assessments in the marine environment.

    PubMed

    Hose, J E

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. PMID:7713029

  9. Synthesis and sensing application of large scale bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hong, Sung Ju; Yoo, Jung Hoon; Baek, Seung Jae; Park, Yung Woo

    2012-02-01

    We have synthesized large scale bilayer graphene by using Chemical Vapor Deposition (CVD) in atmospheric pressure. Bilayer graphene was grown by using CH4, H2 and Ar gases. The growth temperature was 1050^o. Conventional FET measurement shows ambipolar transfer characteristics. Results of Raman spectroscopy, Atomic Force microscope (AFM) and Transmission Electron Microscope (TEM) indicate the film is bilayer graphene. Especially, adlayer structure which interrupt uniformity was reduced in low methane flow condition. Furthermore, large size CVD bilayer graphene film can be investigated to apply sensor devices. By using conventional photolithography process, we have fabricated device array structure and studied sensing behavior.

  10. Implementation of Large Scale Integrated (LSI) circuit design software

    NASA Technical Reports Server (NTRS)

    Kuehlthau, R. L.; Pitts, E. R.

    1976-01-01

    Portions of the Computer Aided Design and Test system, a collection of Large Scale Integrated (LSI) circuit design programs were modified and upgraded. Major modifications were made to the Mask Analysis Program in the form of additional operating commands and file processing options. Modifications were also made to the Artwork Interactive Design System to correct some deficiencies in the original program as well as to add several new command features related to improving the response of AIDS when dealing with large files. The remaining work was concerned with updating various programs within CADAT to incorporate the silicon on sapphire silicon gate technology.

  11. Large-scale genotoxicity assessments in the marine environment

    SciTech Connect

    Hose, J.E.

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. 31 refs., 2 tabs.

  12. Floodplain management in Africa: Large scale analysis of flood data

    NASA Astrophysics Data System (ADS)

    Padi, Philip Tetteh; Baldassarre, Giuliano Di; Castellarin, Attilio

    2011-01-01

    To mitigate a continuously increasing flood risk in Africa, sustainable actions are urgently needed. In this context, we describe a comprehensive statistical analysis of flood data in the African continent. The study refers to quality-controlled, large and consistent databases of flood data, i.e. maximum discharge value and times series of annual maximum flows. Probabilistic envelope curves are derived for the African continent by means of a large scale regional analysis. Moreover, some initial insights on the statistical characteristics of African floods are provided. The results of this study are relevant and can be used to get some indications to support flood management in Africa.

  13. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  14. Large-scale magnetic variances near the South Solar Pole

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Kota, J.; Smith, E.; Horbury, T.; Giacalone, J.

    1995-01-01

    We summarize recent Ulysses observations of the variances over large temporal scales in the interplanetary magnetic field components and their increase as Ulysses approached the South Solar Pole. A model of these fluctuations is shown to provide a very good fit to the observed amplitude and temporal variation of the fluctuations. In addition, the model predicts that the transport of cosmic rays in the heliosphere will be significantly altered by this level of fluctuations. In addition to altering the inward diffusion and drift access of cosmic rays over the solar poles, we find that the magnetic fluctuations also imply a large latitudinal diffusion, caused primarily by the associated field-line random walk.

  15. Generation of Large-Scale Winds in Horizontally Anisotropic Convection.

    PubMed

    von Hardenberg, J; Goluskin, D; Provenzale, A; Spiegel, E A

    2015-09-25

    We simulate three-dimensional, horizontally periodic Rayleigh-Bénard convection, confined between free-slip horizontal plates and rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind. PMID:26451558

  16. A first large-scale flood inundation forecasting model

    SciTech Connect

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  17. Large-scale quantum networks based on graphs

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  18. Lagrangian space consistency relation for large scale structure

    NASA Astrophysics Data System (ADS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.

  19. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  20. The Large Scale Synthesis of Aligned Plate Nanostructures.

    PubMed

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-01-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ' phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential. PMID:27439672

  1. Large-scale processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, A. P.

    1994-01-01

    Theoretical models of the structure of a minimum mass solar nebula should be able to provide the physical context to help evaluate the efficacy of any mechanism proposed for the formation of chondrules or Ca, Al-rich inclusions (CAI's). These models generally attempt to use the equations of radiative hydrodynamics to calculate the large-scale structure of the solar nebula throughout the planet-forming region. In addition, it has been suggested that chondrules and CAI's (=Ch&CAI's) may have been formed as a direct result of large-scale nebula processing such as passage of material through high-temperature regions associated with the global structure of the nebula. In this report we assess the status of global models of solar nebula structure and of various related mechanisms that have been suggested for Ch and CAI formation.

  2. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  3. Large Scale Diffuse X-ray Emission from Abell 3571

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Observations of the Luman alpha forest suggest that there are many more baryons at high redshift than we can find in the Universe nearby. The largest known concentration of baryons in the nearby Universe is the Shapley supercluster. We scanned the Shapley supercluster to search for large scale diffuse emission with the Rossi X-ray Timing Explorer (RXTE), and found some evidence for such emission. Large scale diffuse emission may be associated to the supercluster, or the clusters of galaxies within the supercluster. In this paper we present results of scans near Abell 3571. We found that the sum of a cooling flow and an isothermal beta model adequately describes the X-ray emission from the cluster. Our results suggest that diffuse emission from A3571 extends out to about two virial radii. We briefly discuss the importance of the determination of the cut off radius of the beta model.

  4. The Large Scale Synthesis of Aligned Plate Nanostructures

    PubMed Central

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-01-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ′ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential. PMID:27439672

  5. Applications of large-scale density functional theory in biology

    NASA Astrophysics Data System (ADS)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  6. Applications of large-scale density functional theory in biology.

    PubMed

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  7. Large-scale quantum effects in biological systems

    NASA Astrophysics Data System (ADS)

    Mesquita, Marcus V.; Vasconcellos, Áurea R.; Luzzi, Roberto; Mascarenhas, Sergio

    Particular aspects of large-scale quantum effects in biological systems, such as biopolymers and also microtubules in the cytoskeleton of neurons which can have relevance in brain functioning, are discussed. The microscopic (quantum mechanical) and macroscopic (quantum statistical mechanical) aspects, and the emergence of complex behavior, are described. This phenomena consists of the large-scale coherent process of Fröhlich-Bose-Einstein condensation in open and sufficiently far-from-equilibrium biopolymers. Associated with this phenomenon is the presence of Schrödinger-Davydov solitons, which propagate, undistorted and undamped, when embedded in the Fröhlich-Bose-Einstein condensate, thus allowing for the transmission of signals at long distances, involving a question relevant to bioenergetics.

  8. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  9. Large-scale objective phenotyping of 3D facial morphology

    PubMed Central

    Hammond, Peter; Suttie, Michael

    2012-01-01

    Abnormal phenotypes have played significant roles in the discovery of gene function, but organized collection of phenotype data has been overshadowed by developments in sequencing technology. In order to study phenotypes systematically, large-scale projects with standardized objective assessment across populations are considered necessary. The report of the 2006 Human Variome Project meeting recommended documentation of phenotypes through electronic means by collaborative groups of computational scientists and clinicians using standard, structured descriptions of disease-specific phenotypes. In this report, we describe progress over the past decade in 3D digital imaging and shape analysis of the face, and future prospects for large-scale facial phenotyping. Illustrative examples are given throughout using a collection of 1107 3D face images of healthy controls and individuals with a range of genetic conditions involving facial dysmorphism. PMID:22434506

  10. Electron drift in a large scale solid xenon

    SciTech Connect

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  11. Electron drift in a large scale solid xenon

    DOE PAGESBeta

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  12. Individual skill differences and large-scale environmental learning.

    PubMed

    Fields, Alexa W; Shelton, Amy L

    2006-05-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited exposure and tested on judgments about relative locations of objects. They also performed a series of spatial and nonspatial component skill tests. With limited learning, performance after route encoding was worse than performance after survey encoding. Furthermore, performance after route and survey encoding appeared to be preferentially linked to perspective and object-based transformations, respectively. Together, the results provide clues to how different skills might be engaged by different individuals for the same goal of learning a large-scale environment. PMID:16719662

  13. The Large Scale Synthesis of Aligned Plate Nanostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-07-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ‧ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential.

  14. Large-scale behavior and statistical equilibria in rotating flows

    NASA Astrophysics Data System (ADS)

    Mininni, P. D.; Dmitruk, P.; Matthaeus, W. H.; Pouquet, A.

    2011-01-01

    We examine long-time properties of the ideal dynamics of three-dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases, the results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, although, in the dissipative rotating case, anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two dimensionalization of the flow undergoing strong rotation as advocated by several authors.

  15. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  16. Characteristics of Turbulence-driven Plasma Flow and Origin of Experimental Empirical Scalings of Intrinsic Rotation

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.

    2011-03-20

    Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.

  17. A first large-scale flood inundation forecasting model

    NASA Astrophysics Data System (ADS)

    Schumann, G. J.-P.; Neal, J. C.; Voisin, N.; Andreadis, K. M.; Pappenberger, F.; Phanthuwongpakdee, N.; Hall, A. C.; Bates, P. D.

    2013-10-01

    At present continental to global scale flood forecasting predicts at a point discharge, with little attention to detail and accuracy of local scale inundation predictions. Yet, inundation variables are of interest and all flood impacts are inherently local in nature. This paper proposes a large-scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas. The model was built for the Lower Zambezi River to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. ECMWF ensemble forecast (ENS) data were used to force the VIC (Variable Infiltration Capacity) hydrologic model, which simulated and routed daily flows to the input boundary locations of a 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of channels that play a key role in flood wave propagation. We therefore employed a novel subgrid channel scheme to describe the river network in detail while representing the floodplain at an appropriate scale. The modeling system was calibrated using channel water levels from satellite laser altimetry and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of between one and two model resolutions compared to an observed flood edge and inundation area agreement was on average 86%. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2.

  18. Large-scale velocity fields. [of solar rotation

    NASA Technical Reports Server (NTRS)

    Howard, Robert F.; Kichatinov, L. L.; Bogart, Richard S.; Ribes, Elizabeth

    1991-01-01

    The present evaluation of recent observational results bearing on the nature and characteristics of solar rotation gives attention to the status of current understanding on such large-scale velocity-field-associated phenomena as solar supergranulation, mesogranulation, and giant-scale convection. Also noted are theoretical suggestions reconciling theory and observations of giant-scale solar convection. The photosphere's global meridional circulation is suggested by solar rotation models requiring pole-to-equator flows of a few m/sec, as well as by the observed migration of magnetic activity over the solar cycle. The solar rotation exhibits a latitude and cycle dependence which can be understood in terms of a time-dependent convective toroidal roll pattern.

  19. Efficient multiobjective optimization scheme for large scale structures

    NASA Astrophysics Data System (ADS)

    Grandhi, Ramana V.; Bharatram, Geetha; Venkayya, V. B.

    1992-09-01

    This paper presents a multiobjective optimization algorithm for an efficient design of large scale structures. The algorithm is based on generalized compound scaling techniques to reach the intersection of multiple functions. Multiple objective functions are treated similar to behavior constraints. Thus, any number of objectives can be handled in the formulation. Pseudo targets on objectives are generated at each iteration in computing the scale factors. The algorithm develops a partial Pareto set. This method is computationally efficient due to the fact that it does not solve many single objective optimization problems in reaching the Pareto set. The computational efficiency is compared with other multiobjective optimization methods, such as the weighting method and the global criterion method. Trusses, plate, and wing structure design cases with stress and frequency considerations are presented to demonstrate the effectiveness of the method.

  20. Large Scale Parallel Structured AMR Calculations using the SAMRAI Framework

    SciTech Connect

    Wissink, A M; Hornung, R D; Kohn, S R; Smith, S S; Elliott, N

    2001-08-01

    This paper discusses the design and performance of the parallel data communication infrastructure in SAMRAI, a software framework for structured adaptive mesh refinement (SAMR) multi-physics applications. We describe requirements of such applications and how SAMRAI abstractions manage complex data communication operations found in them. Parallel performance is characterized for two adaptive problems solving hyperbolic conservation laws on up to 512 processors of the IBM ASCI Blue Pacific system. Results reveal good scaling for numerical and data communication operations but poorer scaling in adaptive meshing and communication schedule construction phases of the calculations. We analyze the costs of these different operations, addressing key concerns for scaling SAMR computations to large numbers of processors, and discuss potential changes to improve our current implementation.

  1. Research on 2x1 plasma electrode electro-optical switch with large aperture

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong Jun; Zheng, Kui Xing; Feng, B.; Wu, D. S.; Lu, J. P.; Tian, X. L.; Jin, F.; Sui, Zhan; Wei, Xiaofeng; Zhang, Xiaomin

    2005-01-01

    In conceptual design of the prototype for SG-III facility, a full aperture electro-optical switch was placed between the cavity mirror and the main amplifier to isolate the reflected beams. The beam on the cavity mirror is 240mm×240mm square. Pockells cells of conversional design with coaxial ring electrodes can not scale to such large square aperture. In the 1980s, a plasma electrode Pockels cell (PEPC) concept was invented at LLNL. It uses transparent plasma electrode formed through gas discharge as the electrodes to apply the voltage across switching crystal to rotate the polarization of a transmitted laser beam. And it can be scaled to large aperture with thin crystal. So the switch which would be used in SG-III is based on this technology. The technical integration line as a prototype of SG-III laser is actually a 4×2 beam bundle. And the full aperture optical switch is mechanically designed four apertures as a removable unit, and electrically two 2×1 PEPC putting together. So we built a 2×1 PEPC to develop the technology first. The 2×1 PEPC is a sandwich structure made of an insulating mid plane between a pair of plasma chambers. The frame of both plasma chambers are machining in duralumin. Each chamber is installed with a planar magnetic cathode and four segments spherical anodes made from stainless steel. The cathode and anode are insulated from the housing with a special shell made from plastic, and plasma is insulated from the housing by an 80-μm-thick anodic coating on the duralumin. The two plasma chambers are separated by a mid plane of glass frame with two square holes. The two holes are filled by two electro-optical crystals with a 240-mm square aperture. With the optimized operating pressure and the electrical parameters, a very good homogeneity and low resistivity plasma electrode is obtained. Finally we tested its switching performance to simulate the case that it will be used in the SG-III prototype facility. It works with a quarter wave

  2. Extreme-ultraviolet radiation transport in small scale length laser-produced tin plasmas

    NASA Astrophysics Data System (ADS)

    Sequoia, Kevin Lamar Williams

    The majority of the studies on laser-produced plasmas as an efficient extreme ultraviolet (EUV) light source have focused on relatively large plasmas produced at large laser facilities. However, to develop a commercially viable light source for EUV lithography, much smaller lasers and hence much smaller plasmas must be employed. Smaller plasmas behave quite differently than large plasmas in that the temperature and density are less uniform, and lateral expansion is more important. These differences affect the energy transport and, in particular, the radiation transport. This work studies the EUV radiation transport in small scale length tin plasmas, focusing on the effects of target geometry and laser pulse duration. Both planar and spherical tin targets were irradiated with an Nd:YAG laser operating at 1.064 microm. Conversion efficiency of laser light to 13.5 nm radiation (in-band), EUV emission spectrum, two-dimensional in-band emission profile, and the plasma electron density were measured experimentally. These measurements provide insight into where the laser is absorbed, where the in-band emission is produced, and how the radiation is transmitted. The plasma evolution in these experiments were simulated with a two-dimensional radiation hydrodynamic code, while the radiation transport and atomic kinetics where modeled with a collisional radiative code. Additional experiments were conducted using planar targets where the pulse duration was varied from 0.5 ns to 16 ns to understand the effects of laser pulse duration. It was found that the optimum plasma temperature for efficient generation and transmission of in-band emission is 20 eV. This is lower than the previously reported optimum temperature of 30 eV. The use of a 1.064 microm heating laser results in overheating of the plasma in a region that is much too dense to transmit the in-band emission. This overheating is necessary for the plasma to reach the optimum temperature in the region where the density is

  3. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  4. Analysis plan for 1985 large-scale tests. Technical report

    SciTech Connect

    McMullan, F.W.

    1983-01-01

    The purpose of this effort is to assist DNA in planning for large-scale (upwards of 5000 tons) detonations of conventional explosives in the 1985 and beyond time frame. Primary research objectives were to investigate potential means to increase blast duration and peak pressures. This report identifies and analyzes several candidate explosives. It examines several charge designs and identifies advantages and disadvantages of each. Other factors including terrain and multiburst techniques are addressed as are test site considerations.

  5. Cosmic string and formation of large scale structure.

    NASA Astrophysics Data System (ADS)

    Fang, L.-Z.; Xiang, S.-P.

    Cosmic string formed due to phase transition in the early universe may be the cause of galaxy formation and clustering. The advantage of string model is that it can give a consistent explanation of all observed results related to large scale structure, such as correlation functions of galaxies, clusters and superclusters, the existence of voids and/or bubbles, anisotropy of cosmic background radiation. A systematic review on string model has been done.

  6. Climate: large-scale warming is not urban.

    PubMed

    Parker, David E

    2004-11-18

    Controversy has persisted over the influence of urban warming on reported large-scale surface-air temperature trends. Urban heat islands occur mainly at night and are reduced in windy conditions. Here we show that, globally, temperatures over land have risen as much on windy nights as on calm nights, indicating that the observed overall warming is not a consequence of urban development. PMID:15549087

  7. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  8. Supporting large scale applications on networks of workstations

    NASA Technical Reports Server (NTRS)

    Cooper, Robert; Birman, Kenneth P.

    1989-01-01

    Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.

  9. Tools for Large-Scale Mobile Malware Analysis

    SciTech Connect

    Bierma, Michael

    2014-01-01

    Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000 Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.

  10. An economy of scale system's mensuration of large spacecraft

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.

    1981-01-01

    The systems technology and cost particulars of using multipurpose platforms versus several sizes of bus type free flyer spacecraft to accomplish the same space experiment missions. Computer models of these spacecraft bus designs were created to obtain data relative to size, weight, power, performance, and cost. To answer the question of whether or not large scale does produce economy, the dominant cost factors were determined and the programmatic effect on individual experiment costs were evaluated.

  11. Improving Design Efficiency for Large-Scale Heterogeneous Circuits

    NASA Astrophysics Data System (ADS)

    Gregerson, Anthony

    Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency

  12. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    NASA Astrophysics Data System (ADS)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  13. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  14. Large scale reconstruction of the solar coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Amari, T.; Aly, J.-J.; Chopin, P.; Canou, A.; Mikic, Z.

    2014-10-01

    It is now becoming necessary to access the global magnetic structure of the solar low corona at a large scale in order to understand its physics and more particularly the conditions of energization of the magnetic fields and the multiple connections between distant active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk magnetograms. We present a method recently developed for reconstructing the global solar coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing our previous results in Cartesian geometry. This method is implemented in the new code XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL. We apply our method by performing a reconstruction at a specific time for which we dispose of a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector magnetogram provided by the same instrument, finally embedded in a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure of the corona and its energetic contents, and also the AR scale, at which we recover the presence of a twisted flux rope in equilibrium.

  15. High Speed Networking and Large-scale Simulation in Geodynamics

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  16. Domain nesting for multi-scale large eddy simulation

    NASA Astrophysics Data System (ADS)

    Fuka, Vladimir; Xie, Zheng-Tong

    2016-04-01

    The need to simulate city scale areas (O(10 km)) with high resolution within street canyons in certain areas of interests necessitates different grid resolutions in different part of the simulated area. General purpose computational fluid dynamics codes typically employ unstructured refined grids while mesoscale meteorological models more often employ nesting of computational domains. ELMM is a large eddy simulation model for the atmospheric boundary layer. It employs orthogonal uniform grids and for this reason domain nesting was chosen as the approach for simulations in multiple scales. Domains are implemented as sets of MPI processes which communicate with each other as in a normal non-nested run, but also with processes from another (outer/inner) domain. It should stressed that the duration of solution of time-steps in the outer and in the inner domain must be synchronized, so that the processes do not have to wait for the completion of their boundary conditions. This can achieved by assigning an appropriate number of CPUs to each domain, and to gain high efficiency. When nesting is applied for large eddy simulation, the inner domain receives inflow boundary conditions which lack turbulent motions not represented by the outer grid. ELMM remedies this by optional adding of turbulent fluctuations to the inflow using the efficient method of Xie and Castro (2008). The spatial scale of these fluctuations is in the subgrid-scale of the outer grid and their intensity will be estimated from the subgrid turbulent kinetic energy in the outer grid.

  17. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    NASA Astrophysics Data System (ADS)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-12-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  18. Alignment of quasar polarizations with large-scale structures

    NASA Astrophysics Data System (ADS)

    Hutsemékers, D.; Braibant, L.; Pelgrims, V.; Sluse, D.

    2014-12-01

    We have measured the optical linear polarization of quasars belonging to Gpc scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is on the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 092.A-0221.Table 1 is available in electronic form at http://www.aanda.org

  19. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  20. Reliability assessment for components of large scale photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir; Ghadimi, Noradin; Mirabbasi, Davar

    2014-10-01

    Photovoltaic (PV) systems have significantly shifted from independent power generation systems to a large-scale grid-connected generation systems in recent years. The power output of PV systems is affected by the reliability of various components in the system. This study proposes an analytical approach to evaluate the reliability of large-scale, grid-connected PV systems. The fault tree method with an exponential probability distribution function is used to analyze the components of large-scale PV systems. The system is considered in the various sequential and parallel fault combinations in order to find all realistic ways in which the top or undesired events can occur. Additionally, it can identify areas that the planned maintenance should focus on. By monitoring the critical components of a PV system, it is possible not only to improve the reliability of the system, but also to optimize the maintenance costs. The latter is achieved by informing the operators about the system component's status. This approach can be used to ensure secure operation of the system by its flexibility in monitoring system applications. The implementation demonstrates that the proposed method is effective and efficient and can conveniently incorporate more system maintenance plans and diagnostic strategies.