Science.gov

Sample records for large transport aircraft

  1. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  2. Advanced air transport concepts. [review of design methods for very large aircraft

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.

    1979-01-01

    The concepts of laminar flow control, very large all-wing aircraft, an aerial relay transportation system and alternative fuels, which would enable large improvements in fuel conservation in air transportation in the 1990's are discussed. Laminar boundary layer control through suction would greatly reduce skin friction and has been reported to reduce fuel consumption by up to 29%. Distributed load aircraft, in which all fuel and payload are carried in the wing and the fuselage is absent, permit the use of lighter construction materials and the elimination of fuselage and tail drag. Spanloader aircraft with laminar flow control could be used in an aerial relay transportation system which would employ a network of continuously flying liners supplied with fuel, cargo and crews by smaller feeder aircraft. Liquid hydrogen and methane fuels derived from coal are shown to be more weight efficient and less costly than coal-derived synthetic jet fuels.

  3. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  4. The Effect of Yaw Coupling in Turning Maneuvers of Large Transport Aircraft

    NASA Technical Reports Server (NTRS)

    McNeill, Walter E.; Innis, Robert C.

    1965-01-01

    A study has been made, using a piloted moving simulator, of the effects of the yaw-coupling parameters N(sub p) and N(sub delta(sub a) on the lateral-directional handling qualities of a large transport airplane at landing-approach airspeed. It is shown that the desirable combinations of these parameters tend to be more proverse when compared with values typical of current aircraft. Results of flight tests in a large variable-stability jet transport showed trends which were similar to those of the simulator data. Areas of minor disagreement, which were traced to differences in airplane geometry, indicate that pilot consciousness of side acceleration forces can be an important factor in handling qualities of future long-nosed transport aircraft.

  5. Aerodynamic characteristics of a large aircraft to transport space shuttle orbiter or other external payloads

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1975-01-01

    Wind tunnel tests were conducted in the Langley V/STOL tunnel to determine the aerodynamic characteristics of a large transport aircraft designed to carry the space shuttle orbiter or orbiter booster tank. Results indicate that the transport, with or without payloads, is statically stable, the longitudinal static margins being rather excessive. Elevator power is sufficient to trim the transport up to stall except when the orbiter is mounted close to the wing. Maximum lift-drag ratios at wind tunnel Reynolds numbers vary from 12 to 14 depending on model configuration. Tests were conducted at Reynolds numbers from 1.21 x 1 million to 1.49 x 1 million with angle of attack from -2 deg to 20 deg and angle of sideslip from -5 deg to 5 deg.

  6. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  7. Tests and analyses applicable to passenger ride quality of large transport aircraft

    NASA Technical Reports Server (NTRS)

    Holloway, R. B.; Brumaghin, S. H.

    1972-01-01

    A test program was undertaken to determine airline passenger reaction to vibration environments that might be encountered in a supersonic transport or other large commercial jet aircraft. The principal problem addressed was to determine accelerations of vertical and lateral vibration that people find objectionable. Further questions experimentally posed were: (1) what is the relationship between human reactions to vertical and lateral vibration, (2) to single- and combined-frequency vibration, and (3) to single- and combined-axis vibration? Interest was confined to reactions to vibration in the frequency range of 0.20 to 7.0 Hz, a range typical of the vibration environment of a large airplane. Results indicated an increasing sensitivity to vertical vibration as frequency was increased from 1.0 to 7.0 Hz. Subjects were found most sensitive to lateral vibration in the 1.0 to 3.0 Hz range. There was a nearly linear decrease in sensitivity as frequency of lateral vibration was increased from 3.0 to 7.0 Hz.

  8. Boeing 747 aircraft with large external pod for transporting outsize cargo

    NASA Technical Reports Server (NTRS)

    Price, J. E.; Quartero, C. B.; Smith, P. M.; Washburn, G. F.

    1979-01-01

    The effect on structural arrangement, system weight, and range performance of the cargo pod payload carrying capability was determined to include either the bridge launcher or a spacelab module on a Boeing 747 aircraft. Modifications to the carrier aircraft and the installation time required to attach the external pod to the 747 were minimized. Results indicate that the increase in pod size was minimal, and that the basic 747 structure was adequate to safely absorb the load induced by ground or air operation while transporting either payload.

  9. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  10. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  11. Hypersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A hypersonic transport aircraft design project was selected as a result of interactions with NASA Lewis Research Center personnel and fits the Presidential concept of the Orient Express. The Graduate Teaching Assistant (GTA) and an undergraduate student worked at the NASA Lewis Research Center during the 1986 summer conducting a literature survey, and relevant literature and useful software were collected. The computer software was implemented in the Computer Aided Design Laboratory of the Mechanical and Aerospace Engineering Department. In addition to the lectures by the three instructors, a series of guest lectures was conducted. The first of these lectures 'Anywhere in the World in Two Hours' was delivered by R. Luidens of NASA Lewis Center. In addition, videotaped copies of relevant seminars obtained from NASA Lewis were also featured. The first assignment was to individually research and develop the mission requirements and to discuss the findings with the class. The class in consultation with the instructors then developed a set of unified mission requirements. Then the class was divided into three design groups (1) Aerodynamics Group, (2) Propulsion Group, and (3) Structures and Thermal Analyses Group. The groups worked on their respective design areas and interacted with each other to finally come up with an integrated conceptual design. The three faculty members and the GTA acted as the resource persons for the three groups and aided in the integration of the individual group designs into the final design of a hypersonic aircraft.

  12. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  13. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  14. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Loos, Alfred C.

    2000-01-01

    Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.

  15. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  16. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  17. Dual-Mission Large Aircraft Feasibility Study and Aerodynamic Investigation

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri

    1997-01-01

    A Dual-Mission Large Aircraft, or DMLA, represents the possibility of a single aircraft capable of fulfilling both a Global Reach Aircraft (GRA) and Very Large Transport (VLT) roles. The DMLA, by combining the GRA and VLT into a single new aircraft, could possibly lower the aircraft manufacturer's production costs through the resulting increase in production quantity. This translates into lower aircraft acquisition costs, a primary concern for both the Air Force and commercial airlines. This report outlines the first steps taken in this study, namely the assessment of technical and economic feasibility of the DMLA concept. In the course of this project, specialized GRA and VLT aircraft were sized for their respective missions, using baseline conventional (i.e., lacking advanced enabling technologies) aircraft models from previous work for the Air Force's Wright Laboratory and NASA-Langley. DMLA baseline aircraft were then also developed, by first sizing the aircraft for the more critical of the two missions and then analyzing the aircraft's performance over the other mission. The resulting aircraft performance values were then compared to assess technical feasibility. Finally, the life-cycle costs of each aircraft (GRA, VLT, and DMLA) were analyzed to quantify economic feasibility. These steps were applied to both a two-engine aircraft set, and a four-engine aircraft set.

  18. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  19. A parametric determination of transport aircraft price

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1975-01-01

    Cost per unit weight and other airframe and engine cost relations are given. Power equations representing these relations are presented for six airplane groups: general aircraft, turboprop transports, small jet transports, conventional jet transports, wide-body transports, supersonic transports, and for reciprocating, turboshaft, and turbothrust engines. Market prices calculated for a number of aircraft by use of the equations together with the aircraft characteristics are in reasonably good agreement with actual prices. Such price analyses are of value in the assessment of new aircraft devices and designs and potential research and development programs.

  20. Laminar flow control for transport aircraft applications

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  1. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  2. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  3. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  4. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    The fire worthiness of air transport interiors was evaluated. The effect of interior systems on the survival of passengers and crew in an uncontrolled transport aircraft fire is addressed. Modification of aircraft interior subsystem components which provide improvements in aircraft fire safety are examined. Three specific subsystem components, interior panels, seats and windows, offer the most immediate and highest payoff by modifying interior materials of existing aircrafts. It is shown that the new materials modifications reduce the fire hazards because of significant reduction in their characteristic flame spread, heat release, and smoke and toxic gas emissions.

  5. Critical joints in large composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  6. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  7. Cryocooler for Air Liquefaction Onboard Large Aircraft

    NASA Astrophysics Data System (ADS)

    Breedlove, J. J.; Magari, P. J.; Miller, G. W.

    2008-03-01

    Creare has developed a turbo-Brayton cryocooler for the Air Force that is designed to produce approximately 1 kW of refrigeration at 95 K. The cryocooler is intended to provide cryogenic cooling for an air separation system being developed to produce and store liquid oxygen and liquid nitrogen onboard large aircraft. The oxygen will be used for high-altitude breathing and medical evacuation operations, while the nitrogen will be used to inert the ullage space inside the fuel tanks. The cryocooler utilizes gas bearings in the turbomachines for long life without maintenance, which is a critical requirement for this application. The mass of a flight version of this cryocooler is expected to be around 270 kg, while the input power is expected to be 21 to 25 kW. This paper describes the design and testing of the technology demonstration cryocooler that was constructed to establish the feasibility of the approach. In the future, the cryocooler will be integrated and tested with a distillation column subsystem. Subsequent testing may also be performed in-flight on an Air Force transport aircraft.

  8. Engine selection for transport and combat aircraft.

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    Review of the procedures used to select engines for transport and combat aircraft by illustrating the procedures for a long haul CTOL transport, a short haul VTOL transport, a long range SST, and a fighter aircraft. For the CTOL transport, it is shown that advances in noise technology and advanced turbine cooling technology will greatly reduce the airplane performance penalties associated with achieving low noise goals. A remote lift fan powered by a turbofan air generator is considered for the VTOL aircraft. In this case, the lift fan pressure ratio which maximizes payload also comes closest to meeting the noise goal. High turbine temperature in three different engines is considered for the SST. Without noise constraints it leads to an appreciable drop in DOC, but with noise constraints the reduction in DOC is very modest. For the fighter aircraft it is shown how specific excess power requirements play the same role in engine selection as noise constraints for commercial airplanes.

  9. Price Determination of General Aviation, Helicopter, and Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1978-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for general aviation, helicopter, and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly as to how new technologies, aircraft complexity and inflation have affected these.

  10. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  11. Commercial transport aircraft composite structures

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  12. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  13. Improving the efficiency of smaller transport aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1984-01-01

    Considered apart from its propulsive system the high altitude airplane itself adapted to higher flight altitudes than those in current use. Scaling on the assumption of constant aircraft density indicates that this conclusion applies most importantly to smaller transport aircraft. Climb to 60,000 ft could save time and energy for trips as short as 500 miles. A discussion of the effect of winglets on aircraft efficiency is presented. A 10% reduction of induced drag below that of a comparable elliptic wing can be achieved either by horizontal or vertical wing tip extensions.

  14. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  15. Technology requirements and readiness for very large aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Vaughan, J. C., III

    1980-01-01

    Common concerns of very large aircraft in the areas of economics, transportation system interfaces and operational problems were reviewed regarding their influence on vehicle configurations and technology. Fifty-four technology requirements were identified which are judged to be unigue, or particularly critical, to very large aircraft. The requirements were about equally divided among the four general areas of aerodynamics, propulsion and acoustics, structures, and vehicle systems and operations. The state of technology readiness was judged to be poor to fair for slightly more than one-half of the requirements. In the classic disciplinary areas, the state of technology readiness appears to be more advanced than for vehicle systems and operations.

  16. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  17. Allowable response delay for large aircraft

    NASA Technical Reports Server (NTRS)

    Meyer, R. T.; Tingas, S. A.; Grantham, W. D.

    1984-01-01

    The degree of permissible time delay in an airliner flight control system is presently sought by means of a pilot-in-the-loop moving base flight simulator, assuming the characteristics of an advanced L-1011 aircraft variant. Test pilots and engineers from the U.S. Navy, the airliner manufacturer, and NASA Langley were used in a task which encompassed approach and landing after recovery from offsets in localizer and glide slope, during calm, turbulent, and cross-wind conditions. The data obtained in the course of 279 runs included statistics on pilot workload and performance as well as pilot opinion. Preliminary results indicate that requirements for a 0.1-sec maximum delay in aircraft response are excessively conservative for large aircraft, where an offset landing maneuver is the critical design task. Lateral axis delays appear to be more critical than longitudinal ones.

  18. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  19. An Investigation of Large Aircraft Handling Qualities

    NASA Astrophysics Data System (ADS)

    Joyce, Richard D.

    An analytical technique for investigating transport aircraft handling qualities is exercised in a study using models of two such vehicles, a Boeing 747 and Lockheed C-5A. Two flight conditions are employed for climb and directional tasks, and a third included for a flare task. The analysis technique is based upon a "structural model" of the human pilot developed by Hess. The associated analysis procedure has been discussed previously in the literature, but centered almost exclusively on the characteristics of high-performance fighter aircraft. The handling qualities rating level (HQRL) and pilot induced oscillation tendencies rating level (PIORL) are predicted for nominal configurations of the aircraft and for "damaged" configurations where actuator rate limits are introduced as nonlinearites. It is demonstrated that the analysis can accommodate nonlinear pilot/vehicle behavior and do so in the context of specific flight tasks, yielding estimates of handling qualities, pilot-induced oscillation tendencies and upper limits of task performance. A brief human-in-the-loop tracking study was performed to provide a limited validation of the pilot model employed.

  20. Comprehensive analysis of transport aircraft flight performance

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  1. Concept for a large multi-mission amphibian aircraft

    NASA Technical Reports Server (NTRS)

    Vaughan, J. C., III; Earl, T. D.

    1979-01-01

    A very large aircraft has been proposed for meeting both civil cargo and military transport needs for 1995 and beyond. The concept includes a wide noncircular fuselage cross section with a low wing, thick inner wing section, fuselage-mounted engines, and an air cushion landing gear. The civil freighter operates independently of congested passenger airports, using sheltered water as a runway and a waterfront land site for parking and ground operations. The military transport can operate from a wide variety of surfaces and temporary bases. The air cushion landing gear weighs substantially less than conventional gear and permits the use of extended takeoff distance resulting in improved payload/gross weight ratio.

  2. Passenger ride quality in transport aircraft

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Kuhlthau, A. R.; Richards, L. G.; Conner, D. W.

    1978-01-01

    Quantitative relationships are presented which can be used to account for passenger ride quality in transport aircraft. These relations can be used to predict passenger comfort and satisfaction under a variety of flight conditions. Several applications are detailed, including evaluation of use of spoilers to attenuate trailing vortices, identifying key elements in a complex maneuver which leads to discomfort, determining noise/motion tradeoffs, evaluating changes in wing loading, and others. Variables included in the models presented are motion, noise, temperature, pressure, and seating.

  3. Computational aerodynamics applications to transport aircraft design

    NASA Technical Reports Server (NTRS)

    Henne, P. A.

    1983-01-01

    Examples are cited in assessing the effect that computational aerodynamics has had on the design of transport aircraft. The application of computational potential flow methods to wing design and to high-lift system design is discussed. The benefits offered by computational aerodynamics in reducing design cost, time, and risk are shown to be substantial.These aerodynamic methods have proved to be particularly effective in exposing inferior or poor aerodynamic designs. Particular attention is given to wing design, where the results have been dramatic.

  4. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  5. High-transonic-speed transport aircraft study

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.

    1974-01-01

    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range = 5560 km (3000 nmi), payload = 18,143 kg (40,000 lb), Mach = 1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211,828 kg (467,000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226,796 kg (500,000 lb). The off-design subsonic range capability for this configuration exceeded the Mach 1.2 design range by more than 20%. Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-plane development plan is recommended to establish the full potential of the yawed-wing concept.

  6. Conceptual design proposal: HUGO global range/mobility transport aircraft

    NASA Technical Reports Server (NTRS)

    Johnston, Tom; Perretta, Dave; Mcbane, Doug; Morin, Greg; Thomas, Greg; Woodward, Joe; Gulakowski, Steve

    1993-01-01

    With the collapse of the former Soviet Union and the emergence of the United Nations actively pursuing a peace keeping role in world affairs, the United States has been forced into a position as the world's leading peace enforcer. It is still a very dangerous world with seemingly never ending ideological, territorial, and economic disputes requiring the U.S. to maintain a credible deterrent posture in this uncertain environment. This has created an urgent need to rapidly transport large numbers of troops and equipment from the continental United States (CONUS) to any potential world trouble spot by means of a global range/mobility transport aircraft. The most recent examples being Operation Desert Shield/Storm and Operation Restore Hope. To meet this challenge head-on, a request for proposal (RFP) was developed and incorporated into the 1992/1993 AIAA/McDonnell Douglas Corporation Graduate Team Aircraft Design Competition. The RFP calls for the conceptual design and justification of a large aircraft capable of power projecting a significant military force without surface transportation reliance.

  7. Multidisciplinary design optimization of low-noise transport aircraft

    NASA Astrophysics Data System (ADS)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  8. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  9. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  10. Improving the efficiency of smaller transport aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1984-01-01

    The efficiency of small transport aircraft can be improved through the adaptation of high altitude turbine engines, and that flights reaching altitudes of 40,000, 60,000, and 80,000 feet can show savings in both flight time and fuel consumption even for trips as short as 500 miles. Studies for a 40-passenger high altitude transport are presented. An increase in structural weight due to larger wing areas, larger engines, and larger engine frontal areas would make the ratio of gross weight to payload look less favorable, but the efficiency of the plane in passenger miles per gallon would increase with altitude. It is also suggested that supercritical airfoils be designed to achieve higher lift coefficients and speeds. A reduction of reduced drag through the use of horizontal or vertical wing tip extensions is also discussed.

  11. Cabin cruising altitudes for regular transport aircraft.

    PubMed

    2008-04-01

    The adverse physiological effects of flight, caused by ascent to altitude and its associated reduction in barometric pressure, have been known since the first manned balloon flights in the 19th century. It soon became apparent that the way to protect the occupant of an aircraft from the effects of ascent to altitude was to enclose either the individual, or the cabin, in a sealed or pressurized environment. Of primary concern in commercial airline transport operations is the selection of a suitable cabin pressurization schedule that assures adequate oxygen partial pressures for all intended occupants. For the past several decades, 8000 ft has been accepted as the maximum operational cabin pressure altitude in the airline industry. More recent research findings on the physiological and psycho-physiological effects of mild hypoxia have provided cause for renewed discussion of the "acceptability" of a maximum cabin cruise altitude of 8000 ft; however, we did not find sufficient scientific data to recommend a change in the cabin altitude of transport category aircraft. The Aerospace Medical Association (AsMA) should support further research to evaluate the safety, performance and comfort of occupants at altitudes between 5000 and 10,000 ft. PMID:18457303

  12. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  13. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    A study of quiet turbofan short takeoff aircraft for short haul air transportation was conducted. The objectives of the study were to: (1) define representative aircraft configurations, characteristics, and costs associated with their development, (2) identify critical technology and technology related problems to be resolved in successful introduction of representative short haul aircraft, (3) determine relationships between quiet short takeoff aircraft and the economic and social viability of short haul, and (4) identify high payoff technology areas.

  14. The technology assessment of LTA aircraft systems. [hybrid airships for passenger and cargo transportation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advantages of conventional small and large airships over heavier than air aircraft are reviewed and the need for developing hybrid aircraft for passenger and heavy charge transport is assessed. Performance requirements and estimated operating costs are discussed for rota-ships to be used for short distance transportation near large cities as well as for airlifting civil engineering machinery and supplies for the construction of power stations, dams, tunnels, and roads in remote areas or on isolated islands.

  15. The Simulation of a Jumbo Jet Transport Aircraft. Volume 2: Modeling Data

    NASA Technical Reports Server (NTRS)

    Hanke, C. R.; Nordwall, D. R.

    1970-01-01

    The manned simulation of a large transport aircraft is described. Aircraft and systems data necessary to implement the mathematical model described in Volume I and a discussion of how these data are used in model are presented. The results of the real-time computations in the NASA Ames Research Center Flight Simulator for Advanced Aircraft are shown and compared to flight test data and to the results obtained in a training simulator known to be satisfactory.

  16. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  17. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  18. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  19. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  20. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 2: Aircraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study of the quiet turbofan STOL aircraft for short haul transportation was conducted. The objectives of the study were as follows: (1) to determine the relationships between STOL characteristics and economic and social viability of short haul air transportation, (2) to identify critical technology problems involving introduction of STOL short haul systems, (3) to define representative aircraft configurations, characteristics, and costs, and (4) to identify high payoff technology areas to improve STOL systems. The analyses of the aircraft designs which were generated to fulfill the objectives are summarized. The baseline aircraft characteristics are documented and significant trade studies are presented.

  1. Fiber optic hardware for transport aircraft

    NASA Astrophysics Data System (ADS)

    White, John A.

    Fiber Optic Technology is being developed for aircraft and offers benefits in system performance and manufacturing cost reduction. Thr fiber optic systems have high bandwidths that exceeds all of the new aircraft design requirements and exceptional electromagnetic interference (EMI) immunity. Additionally, fiber optic systems have been installed in production aircraft proving design feasiblity.

  2. Fiber optic hardware for transport aircraft

    NASA Astrophysics Data System (ADS)

    White, John A.

    1994-10-01

    Aircraft manufacturers are developing fiber optic technology to exploit the benefits in system performance and manufacturing cost reduction. The fiber optic systems have high bandwidths and exceptional Electromagnetic Interference immunity that exceeds all new aircraft design requirements. Additionally, aircraft manufacturers have shown production readiness of fiber optic systems and design feasibility.

  3. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  4. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high efficiency propeller driven aircraft of non-U.S. manufacture. During the past year, an aircraft was designed with ranges of up to 1500 nautical miles and passenger loads between 50 and 90. Special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Several designs are presented which place a high premium on design innovation.

  5. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  6. Application of active controls to civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.

    1975-01-01

    The impact of active controls on civil transport aircraft and some of the complex problems involved are described. The approach taken by NASA as part of the Active Control Technology Program is discussed to integrate active controls in the conceptual design phase. It is shown that when handled correctly, active controls improve aircraft performance.

  7. The cetaceopteryx: A global range military transport aircraft

    NASA Technical Reports Server (NTRS)

    Brivkalns, Chad; English, Nicole; Kazemi, Tahmineh; Kopel, Kim; Kroger, Seth; Ortega, ED

    1993-01-01

    This paper presents a design of a military transport aircraft capable of carrying 800,000 lbs of payload from any point in the United States to any other point in the world. Such massive airlift requires aggressive use of advanced technology and a unique configuration. The Cetaceopteyx features a joined wing, canard and six turbofan engines. The aircraft has a cost 1.07 billion (1993) dollars each. This paper presents in detail the mission description, preliminary sizing, aircraft configuration, wing design, fuselage design, empennage design, propulsion system, landing gear design, structures, drag, stability and control, systems layout, and cost analysis of the aircraft.

  8. Study of LH2 fueled subsonic passenger transport aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  9. Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  10. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  11. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  12. NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.

  13. Aircraft Ice Accretion Due to Large-Droplet Icing Clouds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Studies of aircraft icing due to clouds consisting of individual droplets 10 times larger than those normally found in icing conditions are being carried out by members of the NASA Lewis Research Center's Icing Technology Branch. When encountered by an aircraft in freezing conditions, clouds consisting of large water droplets have a significantly different effect than those with normal droplets. A large-water-droplet cloud has been suggested as the cause of a commuter airplane accident in the late fall of 1994. As a result, studies of what happens to aircraft flying in these rare, but potentially very hazardous, conditions have been reemphasized.

  14. Prospects for a civil/military transport aircraft

    NASA Technical Reports Server (NTRS)

    Jobe, C. E.; Noggle, L. W.; Whitehead, A. H., Jr.

    1978-01-01

    The similarities and disparities between commercial and military payloads, design features, missions, and transport aircraft are enumerated. Two matrices of civil/military transport aircraft designs were evaluated to determine the most cost effective payloads for a projected commercial route structure and air freight market. The probability of this market developing and the prospects for alternate route structures and freight markets are evaluated along with the possible impact on the aircraft designs. Proposals to stimulate the market and increase the viability of the common aircraft concept are reviewed and the possible impact of higher cargo demand on prospects for common civil/military freighters is postulated. The implications of planned advanced technology developments on the aircraft performance and cost are also considered.

  15. Fuel conservation merits of advanced turboprop transport aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Tullis, R. H.

    1977-01-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  16. Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1981-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.

  17. Cost Analysis for Large Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Coy, John J.

    2006-01-01

    This paper presents cost analysis of purchase price and DOC+I (direct operating cost plus interest) that supports NASA s study of three advanced rotorcraft concepts that could enter commercial transport service within 10 to 15 years. The components of DOC+I are maintenance, flight crew, fuel, depreciation, insurance, and finance. The cost analysis aims at VTOL (vertical takeoff and landing) and CTOL (conventional takeoff and landing) aircraft suitable for regional transport service. The resulting spreadsheet-implemented cost models are semi-empirical and based on Department of Transportation and Army data from actual operations of such aircraft. This paper describes a rationale for selecting cost tech factors without which VTOL is more costly than CTOL by a factor of 10 for maintenance cost and a factor of two for purchase price. The three VTOL designs selected for cost comparisons meet the mission requirement to fly 1,200 nautical miles at 350 knots and 30,000 ft carrying 120 passengers. The lowest cost VTOL design is a large civil tilt rotor (LCTR) aircraft. With cost tech factors applied, the LCTR is reasonably competitive with the Boeing 737-700 when operated in economy regional service following the business model of the selected baseline operation, that of Southwest Airlines.

  18. Technology Assessment for Large Vertical-Lift Transport Tiltrotors

    NASA Technical Reports Server (NTRS)

    Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.

    2010-01-01

    The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.

  19. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Transportation of flammable liquid fuel; aircraft only means of transportation. 175.310 Section 175.310 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE...

  20. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transportation of flammable liquid fuel; aircraft only means of transportation. 175.310 Section 175.310 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE...

  1. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  2. Large Payload Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Pope, James C.

    2011-01-01

    Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure - roads, bridges, airframes, and buildings - necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider how large spacecraft are designed, and where they are manufactured, tested, or launched, could result in unforeseen cost to modify/develop infrastructure, or incur additional risk due to increased handling or elimination of key verifications. During test and verification planning for the Altair project, a number of transportation and test issues related to the large payload diameter were identified. Although the entire Constellation Program - including Altair - was canceled in the 2011 NASA budget, issues identified by the Altair project serve as important lessons learned for future payloads that may be developed to support national "heavy lift" strategies. A feasibility study performed by the Constellation Ground Operations (CxGO) project found that neither the Altair Ascent nor Descent Stage would fit inside available transportation aircraft. Ground transportation of a payload this large over extended distances is generally not permitted by most states, so overland transportation alone would not have been an option. Limited ground transportation to the nearest waterway may be permitted, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary

  3. Impact of composites on future transport aircraft

    NASA Technical Reports Server (NTRS)

    Kinder, Robert H.

    1993-01-01

    In the current environment, new technology must be cost-effective in addition to improving operability. Various approaches have been used to determine the 'hurdle' or 'breakthrough' return that must be achieved to gain customer commitment for a new product or aircraft, or in this case, a new application of the technology. These approaches include return-on-investment, payback period, and addition to net worth. An easily understood figure-of-merit and one used by our airline customers is improvement in direct operating cost per seat-mile. Any new technology must buy its way onto the aircraft through reduction in direct operating cost (DOC).

  4. Transport Aircraft System Identification from Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2008-01-01

    Recent studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and rotary dynamic terms but replace conventional acceleration terms with more general indicial functions. In the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced controls technology. This paper describes initial application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle.

  5. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  6. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  7. The Small Aircraft Transportation System Project: An Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.

    2006-01-01

    To all peoples in all parts of the world throughout history, the ability to move about easily is a fundamental element of freedom. The American people have charged NASA to increase their freedom and that of their children knowing that their quality of life will improve as our nation s transportation systems improve. In pursuit of this safe, reliable, and affordable personalized air transportation option, in 2000 NASA established the Small Aircraft Transportation System (SATS) Project. As the name suggests personalized air transportation would be built on smaller aircraft than those used by the airlines. Of course, smaller aircraft can operate from smaller airports and 96% of the American population is within thirty miles of a high-quality, underutilized community airport as are the vast majority of their customers, family members, and favorite vacation destinations.

  8. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high-efficiency, propeller-driven aircraft of non-U.S. manufacture. During the past year senior student design teams at Purdue developed and then responded to a Request For Proposal (RFP) for a regional transport aircraft. The RFP development identified promising world markets and their needs. The students responded by designing aircraft with ranges of up to 1500 n.m. and passenger loads of 50 to 90. During the design project, special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Twelve student teams worked for one semester developing their designs. Several of the more successful designs and those that placed a high premium on innovation are described. The depth of detail and analysis in these student efforts are also illustrated.

  9. The future of very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Justice, R. Steven; Hays, Anthony P.; Parrott, Ed L.

    1996-01-01

    The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and

  10. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  11. Aircraft systems design studies employing advanced transport technologies

    NASA Technical Reports Server (NTRS)

    Downie, B.; Pearce, C.; Quartero, C.; Taylor, A.

    1972-01-01

    System and design integration studies are presented to define and assess the application of the advanced technology most likely to result in a superior next generation, high subsonic/sonic conventional takeoff and landing transport aircraft system. It is concluded that the new technologies can be directed toward the achievement of improved economy and performance. These benefits may be used to compensate for the penalties associated with reduced noise requirements anticipated to make future aircraft ecologically acceptable.

  12. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  13. Handling Qualities of Large Flexible Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poopaka, S.

    1980-01-01

    The effects on handling qualities of elastic modes interaction with the rigid body dynamics of a large flexible aircraft are studied by a mathematical computer simulation. An analytical method to predict the pilot ratings when there is a severe modes interactions is developed. This is done by extending the optimal control model of the human pilot response to include the mode decomposition mechanism into the model. The handling qualities are determined for a longitudinal tracking task using a large flexible aircraft with parametric variations in the undamped natural frequencies of the two lowest frequency, symmetric elastic modes made to induce varying amounts of mode interaction.

  14. We have just begun to create efficient transport aircraft

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Dollyhigh, S. M.

    1982-01-01

    Factors affecting the cost-effectiveness and economics of the air transportation industry are reviewed. The delivery of more fuel-efficient aircraft and eventual total replacement in the 1990's by fleets of advanced aircraft are seen to offset rising fuel costs. Better airport operations are perceived to eliminate fuel-costly delays due to overcrowded runways, lack of available carriers, and maintenance of aircraft in holding patterns. Noise reduction research will lower the lawsuit costs from noise pollution, and the introduction of advanced turbofans for long, short, and medium range flights, advanced commuter planes, and advanced SSTs offering projected 50% increases in current aircraft efficiencies are seen to be limited only by the airlines' ability to provide purchase financing, rather than by a lack of available new technology.

  15. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  16. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  17. Aerodynamics of seeing on large transport aircraft

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1986-01-01

    Data were obtained in the full scale flight environment of the Kuiper Airborne Observatory (KAO) on the nature of turbulent shear layer over the open cavity. These data were used to verify proposed aerodynamic scaling relationships to describe the behavior of the turbulent layers and to estimate the optical performance of systems of various wavelengths operating within the KAO environment. These data and wind tunnel data are used to scale the expected optical effects for a potential stratospheric observatory for infrared astronomy (SOFIA) in which a telescope approximately 3.5 times larger than that on the KAO is envisioned. It appears that the use of combinations of active and passive aeromechanical flow control techniques can improve the optical behavior of systems in the SOFIA environment. Experiments to verify these potential improvements can be performed on the KAO with sufficient modifications to the cavity and aero-mechanical technique installations.

  18. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  19. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  20. Propulsion challenges and opportunities for high-speed transport aircraft

    NASA Technical Reports Server (NTRS)

    Strack, William C.

    1987-01-01

    For several years there was a growing interest in the subject of efficient sustained supersonic cruise technology applied to a high-speed transport aircraft. The major challenges confronting the propulsion community for supersonic transport (SST) applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraints. A very large improvement in propulsion system efficiency is needed both at supersonic and subsonic cruise conditions. Toward that end, several advanced engine concepts are being considered that, together with advanced discipline and component technologies, promise at least 40 percent better efficiency that the Concorde engine. The quest for higher productivity through higher speed is also thwarted by the lack of a conventional, low-priced fuel that is thermally stable at the higher temperatures associated with faster flight. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage 3 noise levels. Innovative solutions may be necessary to reach acceptably low noise. While the technical challenges are indeed formidable, it is reasonable to assume that the current shortfalls in fuel economy and noise can be overcome through an aggressive propulsion research program.

  1. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  2. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…

  3. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  4. Ride comfort control in large flexible aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, M. E.

    1971-01-01

    The problem of ameliorating the discomfort of passengers on a large air transport subject to flight disturbances is examined. The longitudinal dynamics of the aircraft, including effects of body flexing, are developed in terms of linear, constant coefficient differential equations in state variables. A cost functional, penalizing the rigid body displacements and flexure accelerations over the surface of the aircraft is formulated as a quadratic form. The resulting control problem, to minimize the cost subject to the state equation constraints, is of a class whose solutions are well known. The feedback gains for the optimal controller are calculated digitally, and the resulting autopilot is simulated on an analog computer and its performance evaluated.

  5. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  6. Study of aircraft in intraurban transportation systems, volume 3

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, D. E.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An investigation of three aircraft concepts, deflected slipstream STOL, helicopter VTOL, and fixed wing STOL, is presented. An attempt was made to determine the best concept for the intraurban transportation system. Desirability of the concept was based on ease of maintenance, development timing, reliability, operating costs, and the noise produced. Indications are that the deflected slipstream STOL is best suited for intraurban transportation. Tables and graphs are included.

  7. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  8. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. PMID:25440950

  9. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    During test and verification planning for the Altair lunar lander project, a National Aeronautics and Space Administration (NASA) study team identified several ground transportation and test issues related to the large payload diameter. Although the entire Constellation Program-including Altair-has since been canceled, issues identified by the Altair project serve as important lessons learned for payloads greater than 7 m diameter being considered for NASA's new Space Launch System (SLS). A transportation feasibility study found that Altair's 8.97 m diameter Descent Module would not fit inside available aircraft. Although the Ascent Module cabin was only 2.35 m diameter, the long reaction control system booms extended nearly to the Descent Module diameter, making it equally unsuitable for air transportation without removing the booms and invalidating assembly workmanship screens or acceptance testing that had already been performed. Ground transportation of very large payloads over extended distances is not generally permitted by most states, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA's Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  10. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  11. TAKEOFF AND LANDING PERFORMANCE CAPABILITIES OF TRANSPORT CATEGORY AIRCRAFT

    NASA Technical Reports Server (NTRS)

    Foss, W. E.

    1994-01-01

    One of the most important considerations in the design of a commercial transport aircraft is the aircraft's performance during takeoff and landing operations. The aircraft must be designed to meet field length constraints in accordance with airworthiness standards specified in the Federal Aviation Regulations. In addition, the noise levels generated during these operations must be within acceptable limits. This computer program provides for the detailed analysis of the takeoff and landing performance capabilities of transport category aircraft. The program calculates aircraft performance in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. This program provides for the detailed performance analysis of the takeoff and landing capabilities of specific aircraft designs and allows for sensitivity studies. The program is not designed to synthesize configurations or to generate aerodynamic, propulsion, or structural characteristics. This type of information must be generated externally to the program and then input as data. The program's representation of the aircraft data is extensive and includes realistic limits on engine and aircraft operational boundaries and maximum attainable lift coefficients. The takeoff and climbout flight-path is generated by a stepwise integration of the equation of motion. Special features include options for nonstandard-day operation, for balanced field length, for derated throttle to meet a given field length for off-loaded aircraft, and for throttle cutback during climbout for community noise alleviation. Advanced takeoff procedures for noise alleviation such as programmed throttle and control flaps may be investigated with the program. Approach profiles may incorporate advanced procedures such as two segment

  12. Technology benefits for very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Arcara, Philip C., Jr.; Bartlett, Dennis W.; Mcgraw, Marvin E., Jr.; Geiselhart, Karl A.

    1993-01-01

    Results are presented for a study conducted at the NASA Langley Research Center which examined the effects of advanced technologies on the performance and size of very large, long-range subsonic transports. The study was performed using the Flight Optimization System (FLOPS). a multidisciplinary system of computer programs for conceptual and preliminary design and evaluation of advanced aircraft concepts. A four-engine, baseline configuration representative of existing transport technology was defined having a payload of 412 passengers plus baggage and a design range of 7300 nmi. New 600, 800 and 1000-passenger advanced transport concepts were then developed and compared to the baseline configuration. The technologies examined include 1995 entry-into-service (ELS) engines, high aspect ratio supercritical wings, composite materials for the wing, fuselage and empennage, and hybrid laminar flow control (HLFC). All operational and regulatory requirements and constraints, such as fuel reserves, balanced field length, and second segment climb gradient were satisfied during the design process. The effect of the advanced technologies on the size, weight and performance of the advanced transport concepts are presented. In addition, the sensitivity of the takeoff gross weight of the advanced transport concepts to increases in design range and payload, and designing for stretch capability are also discussed.

  13. Acoustical design economic trade off for transport aircraft

    NASA Astrophysics Data System (ADS)

    Benito, A.

    The effects of ICAO fixed certification limits and local ordinances on acoustic emissions from jets on commercial transport aircraft and costs of operations are explored. The regulations effectively ban some aircraft from operation over populated areas, impose curfews on airports and, in conjunction with local civil aviation rules, levy extra taxes and quotas on noisier equipment. Jet engine manufacturers have attempted to increase the flow laminarity, decrease the exhaust speed and develop acoustic liners for selected duct areas. Retrofits are, however, not usually cost effective due to increased operational costs, e.g., fuel consumption can increase after engine modification because of increased weight. Finally, an attempt is made to assess, monetarily, the costs of noise pollution, wherein fines are levied for noisy aircraft and the money is spent insulating homes from noise.

  14. Study of aircraft in intraurban transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.

  15. Evaluation of all-electric secondary power for transport aircraft

    NASA Technical Reports Server (NTRS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  16. Evaluation of all-electric secondary power for transport aircraft

    NASA Astrophysics Data System (ADS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  17. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport... reciprocating engine powered large transport category airplane from an airport located at an elevation...

  18. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport... reciprocating engine powered large transport category airplane from an airport located at an elevation...

  19. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport... reciprocating engine powered large transport category airplane from an airport located at an elevation...

  20. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport... reciprocating engine powered large transport category airplane from an airport located at an elevation...

  1. Experiences performing conceptual design optimization of transport aircraft

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1984-01-01

    Optimum Preliminary Design of Transports (OPDOT) is a computer program developed at NASA Langley Research Center for evaluating the impact of new technologies upon transport aircraft. For example, it provides the capability to look at configurations which have been resized to take advantage of active controls and provide and indication of economic sensitivity to its use. Although this tool returns a conceptual design configuration as its output, it does not have the accuracy, in absolute terms, to yield satisfactory point designs for immediate use by aircraft manufacturers. However, the relative accuracy of comparing OPDOT-generated configurations while varying technological assumptions has been demonstrated to be highly reliable. Hence, OPDOT is a useful tool for ascertaining the synergistic benefits of active controls, composite structures, improved engine efficiencies and other advanced technological developments. The approach used by OPDOT is a direct numerical optimization of an economic performance index. A set of independent design variables is iterated, given a set of design constants and data. The design variables include wing geometry, tail geometry, fuselage size, and engine size. This iteration continues until the optimum performance index is found which satisfies all the constraint functions. The analyst interacts with OPDOT by varying the input parameters to either the constraint functions or the design constants. Note that the optimization of aircraft geometry parameters is equivalent to finding the ideal aircraft size, but with more degrees of freedom than classical design procedures will allow.

  2. Analytical Fuselage and Wing Weight Estimation of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.

    1996-01-01

    A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.

  3. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  4. Advanced electronic displays and their potential in future transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.

    1981-01-01

    It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.

  5. Composites for large transports - Facing the challenge

    NASA Technical Reports Server (NTRS)

    Bohon, H. L.; Davis, J. G., Jr.

    1984-01-01

    NASA has undertaken development and test programs in collaboration with the large transport aircraft construction industry, in order to remove existing barriers to the use of composite material primary structures and to assess their advantages in terms of both acquisition cost and mission performance. These programs are expected to reach design technology readiness for wing and fuselage structures by 1988, paving the way for the validation of design and manufacturing methods in the early 1990s. While composites promise a reduction in fuselage manufacturing costs, it is judged that the relative cost of a metallic wing will be more difficult to surpass. Nevertheless, a 40 percent wing weight saving may more than compensate for increased wing structure cost.

  6. Design considerations for composite fuselage structure of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Sakata, I. F.

    1981-01-01

    The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.

  7. Perspective on the span-distributed-load concept for application to large cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    Results of a simplified analysis of the span-distributed-load concept (in which payload is placed within the wing structure) are presented. It is shown that a design based on these principles has a high potential for application to future large air cargo transport. Significant improvements are foreseen in increased payload fraction and productivity and in reduced fuel consumption and operating costs. A review of the efforts in the 1940's to develop all-wing aircraft shows the potential of transferring those early technological developments to current design of distributed-load aircraft. Current market analyses are projected to 1990 to show the future commercial demand for large capacity freighters. Several configuration designs which would serve different market requirements for these large freighters are discussed as are some of the pacing-technology requirements.

  8. Ice Accretion Prediction for a Typical Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bidwell, C. S.

    1993-01-01

    Ice accretion calculations were made for a modern commercial transport using the NASA Lewis LEWICE3D ice accretion code. The ice accretion calculations were made for the wing and horizontal tail using both isolated flow models and flow models incorporating the entire airplane. The isolated flow model calculations were made to assess the validity of using these simplified models in lieu of the entire model in the ice accretion analysis of full aircraft. Ice shapes typifying a rime and a mixed ice shape were generated for a 30 minute hold condition. In general, the calculated ice shapes looked reasonable and appeared representative of a rime and a mixed ice conditions. The isolated flow model simplification was good for the main wing except at the root where it overpredicted the amount of accreted ice relative to the full aircraft flow model. For the horizontal tail the size and amount of predicted ice compared well for the two flow models, but the position of the accretions were more towards the upper surface for the aircraft flow model relative to the isolated flow model. This was attributed to downwash from the main wing which resulted in a lower effective angle of attack for the aircraft tail.

  9. Ice accretion prediction for a typical commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bidwell, C. S.

    1993-01-01

    Ice accretion calculations were made for a modern commercial transport using the NASA Lewis LEWICE3D ice accretion code. The ice accretion calculations were made for the wing and horizonal tail using both isolated flow models and flow models incorporating the entire airplane. The isolated flow model calculations were made to assess the validity of using these simplified models in lieu of the entire model in the ice accretion analysis for full aircraft. Ice shapes typifying a rime and a mixed ice shape were generated for a 30 minute hold condition. In general, the calculated ice shapes looked reasonable and appeared representative of a rime and a mixed ice conditions. The isolated flow model simplification was good for the main wing except at the root where it overpredicted the amount of accreted ice relative to the full aircraft flow model. For the horizontal tail the size and amount of predicted ice compared well for the two flow models, but the position of the accretions were more towards the upper surface for the aircraft flow model relative to the isolated flow model. This was attributed to downwash from the main wing which resulted in a lower effective angle of attack for the aircraft tail.

  10. [Cardiovascular disease and aircraft transportation: specificities and issues].

    PubMed

    Touze, Jean-Étienne; Métais, Patrick; Zawieja, Philippe

    2012-02-01

    With the development of air transport and travel to distant destinations, the number of passengers and elderly passengers on board increases each year. In this population, cardiovascular events are a major concern. Among medical incidents occurring in-flight they are second-ranked (10%) behind gastrointestinal disorders (25%). Their occurrence may involve life-threatening events and require resuscitation, difficult to perform during flight or in a precarious health environment. Coronary heart disease and pulmonary thromboembolic disease are the most serious manifestations. They are the leading cause of hospitalization in a foreign country and sudden cardiac death occurring during or subsequent to the flight. Their occurrence is explained on aircraft by hypoxia, hypobaria and decreased humidity caused by cabin pressurization and upon arrival by a different environmental context (extreme climates, tropical diseases). Moreover, the occurrence of a cardiovascular event during flight can represent for the air carrier a major economic and logistic problem when diversion occurred. Furthermore, the liability of the practitioner passenger could be involved according to airlines or to the country in which the aircraft is registered. In this context, cardiovascular events during aircraft transportation can be easily prevented by identifying high risk patients, respect of cardiovascular indications to travel, the implementation of simple preventive measures and optimization of medical equipment in commercial flights. PMID:21719248

  11. Analysis of Small Aircraft as a Transportation System

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  12. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  13. An advanced control system for a next generation transport aircraft

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  14. Aerodynamic Effects and Modeling of Damage to Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    2008-01-01

    A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.

  15. Future regional transport aircraft market, constraints, and technology stimuli

    NASA Technical Reports Server (NTRS)

    Harvey, W. Don; Foreman, Brent

    1992-01-01

    This report provides updated information on the current market and operating environment and identifies interlinking technical possibilities for competitive future commuter-type transport aircraft. The conclusions on the market and operating environment indicate that the regional airlines are moving toward more modern and effective fleets with greater passenger capacity and comfort, reduced noise levels, increased speed, and longer range. This direction leads to a nearly 'seamless' service and continued code-sharing agreements with the major carriers. Whereas the benefits from individual technologies may be small, the overall integration in existing and new aircraft designs can produce improvements in direct operating cost and competitiveness. Production costs are identified as being equally important as pure technical advances.

  16. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  17. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  18. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  19. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  20. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  1. Key issues in application of composites to transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, M.

    1978-01-01

    The application of composite materials to transport aircraft was identified and reviewed including the major contributing disciplines of design, manufacturing, and processing. Factors considered include: crashworthiness considerations (structural integrity, postcrash fires, and structural fusing), electrical/avionics subsystems integration, lightning, and P-static protection design; manufacturing development, evaluation, selection, and refining of tooling and curing procedures; and major joint design considerations. Development of the DC-10 rudder, DC-10 vertical stabilizer, and the DC-9 wing study project was reviewed. The Federal Aviation Administration interface and the effect on component design of compliance with Federal Aviation Regulation 25 Composite Guidelines are discussed.

  2. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  3. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    NASA Technical Reports Server (NTRS)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  4. Technology requirements and readiness for very large aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Vaughan, J. C., III

    1980-01-01

    The technology requirements for designing, manufacturing and operating any vehicle depend largely on the configuration of that vehicle. Under the general heading of Very Large Aircraft (VLA), configurations are many and varied, so, therefore, are the technology requirements. The present work is limited to technology requirements of particular interest to VLA. While many are of common interest, a few technology requirements critical to specific VLA types are also covered. Addressed in turn are common VLA concerns and how they influence configurations and technology; the methodology followed in selecting requirements and assessing readiness; the resultant technology requirements and readiness; and some overall observations regarding technology areas judged to be particularly critical. Over 50 technology requirements are identified as unique or particularly critical to VLA. However, none of the requirements is considered to have an excellent state of technology readiness.

  5. Conceptual design of hybrid-electric transport aircraft

    NASA Astrophysics Data System (ADS)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  6. Small transport aircraft technology. A report for the committee on commerce, science, and transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary assessment of the research and technology that NASA could undertake to improve small transport aircraft is presented. The advanced technologies currently under study for potential application to the small transport aircraft of the future are outlined. Background information on the commuter and shorthaul local service air carriers, the regulations pertaining to their aircraft and operations, and the overall airline system interface is included.

  7. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  8. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... person operating a reciprocating engine powered large transport category airplane may take off that... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations §...

  9. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reciprocating engine powered large transport category airplane may take off that airplane at a weight, allowing... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance...

  10. 14 CFR 135.377 - Large transport category airplanes: Reciprocating engine powered: Landing limitations: Alternate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.377 Large transport category airplanes: Reciprocating engine powered: Landing...

  11. 14 CFR 135.375 - Large transport category airplanes: Reciprocating engine powered: Landing limitations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.375 Large transport category airplanes: Reciprocating engine powered: Landing...

  12. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.371 Large transport category airplanes: Reciprocating engine powered: En route...

  13. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.387 Large transport category airplanes: Turbine engine powered: Landing limitations:...

  14. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route...

  15. Longitudinal Handling Qualities of the Tu-144LL Airplane and Comparisons With Other Large, Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Marshall, Alisa

    2000-01-01

    Four flights have been conducted using the Tu-144LL supersonic transport aircraft with the dedicated objective of collecting quantitative data and qualitative pilot comments. These data are compared with the following longitudinal flying qualities criteria: Neal-Smith, short-period damping, time delay, control anticipation parameter, phase delay (omega(sp)*T(theta(2))), pitch bandwidth as a function of time delay, and flight path as a function of pitch bandwidth. Determining the applicability of these criteria and gaining insight into the flying qualities of a large, supersonic aircraft are attempted. Where appropriate, YF-12, XB-70, and SR-71 pilot ratings are compared with the Tu-144LL results to aid in the interpretation of the Tu-144LL data and to gain insight into the application of criteria. The data show that approach and landing requirements appear to be applicable to the precision flightpath control required for up-and-away flight of large, supersonic aircraft. The Neal-Smith, control anticipation parameter, and pitch-bandwidth criteria tend to correlate with the pilot comments better than the phase delay criterion, omega(sp)*T(theta(2)). The data indicate that the detrimental flying qualities implication of decoupled pitch-attitude and flightpath responses occurring for high-speed flight may be mitigated by requiring the pilot to close the loop on flightpath or vertical speed.

  16. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  17. Damage tolerant composite wing panels for transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Peter J.; Wilson, Robert D.; Gibbins, M. N.

    1985-01-01

    Commercial aircraft advanced composite wing surface panels were tested for durability and damage tolerance. The wing of a fuel-efficient, 200-passenger airplane for 1990 delivery was sized using grahite-epoxy materials. The damage tolerance program was structured to allow a systematic progression from material evaluations to the optimized large panel verification tests. The program included coupon testing to evaluate toughened material systems, static and fatigue tests of compression coupons with varying amounts of impact damage, element tests of three-stiffener panels to evaluate upper wing panel design concepts, and the wing structure damage environment was studied. A series of technology demonstration tests of large compression panels is performed. A repair investigation is included in the final large panel test.

  18. Application of advanced technologies to very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Bartlett, Dennis W.; Mcgraw, Marvin E., Jr.; Arcara, Philip C., Jr.; Geiselhart, Karl A.

    1992-01-01

    A NASA-Langley study has used the interdisciplinary Flight Optimization System to examine the impact of advanced technologies on the performance and plausible size of large, long-range subsonic transport aircraft. The baseline, four-engine configuration studied would carry 412 passengers over 7300 n. mi.; the technologies evaluated encompass high aspect ratio supercritical-airfoil wings, a composite wing structure, an all-composite primary structure, and hybrid laminar flow control. The results obtained indicate that 600-passenger transports, whose takeoff gross weight is no greater than that of the 412-passenger baseline, are made possible by the new technologies.

  19. Demand for large freighter aircraft as projected by the NASA cargo/logistics airlift systems studies

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.; Kuhlman, W. H.

    1979-01-01

    This paper examines the market conditions up through the year 2008 to provide a preliminary assessment of the potential for and the characteristics of an advanced, all-cargo transport aircraft. Any new freighter must compete with current wide-body aircraft and their derivatives. Aircraft larger than the wide-bodies may incur economic penalties and operational problems. A lower direct operating cost is not a sufficient criterion to base a decision for the initiation of a new aircraft development or to select aircraft characteristics. Other factors of equal importance that are reviewed in this paper include considerations of the system infrastructure, the economics of the airlines, and the aircraft manufacturer return on investment. The results of the market forecast and a computer simulation show that an advanced long range aircraft with a payload between 68 to 181 tonnes (75 to 200 tons) could generate a solid foothold beginning around 1994.

  20. Demand for large freighter aircraft as projected by the NASA cargo/logistics airlift system studies

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.; Kuhlman, W. H.

    1979-01-01

    The market conditions are examined up through the year 2008 to provide a preliminary assessment of the potential for and the characteristics of an advanced, all-cargo transport aircraft. Any new freighter must compete with current wide-body aircraft and their derivatives. Aircraft larger than the wide-bodies may incur economic penalties and operational problems. A lower direct operating cost is not a sufficient criterion to base a decision for the initiation of a new aircraft development or to select aircraft characteristics. Other factors of equal importance that are reviewed in this paper include considerations of the system infrastructure, the economics of the airlines, and the aircraft manufacturer return on investment. The results of the market forecast and a computer simulation show that an advanced long range aircraft with a payload between 68 to 181 tonnes (75 to 200 tons) could generate a solid foothold beginning around 1994.

  1. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  2. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  3. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wet leasing of aircraft and other arrangements for transportation by air. 119.53 Section 119.53 Aeronautics and Space FEDERAL AVIATION... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  4. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  5. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  6. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  7. 49 CFR 173.27 - General requirements for transportation by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false General requirements for transportation by aircraft. 173.27 Section 173.27 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS...

  8. Advanced cargo aircraft may offer a potential renaissance in freight transportation

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J.; Sawyer, Wallace C.

    1993-01-01

    The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.

  9. Modified Dynamic Inversion to Control Large Flexible Aircraft: What's Going On?

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1999-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.

  10. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  11. INFORMATION: Audit Report on The Office of Secure Transportation DC-9 Aircraft Refurbishment

    SciTech Connect

    2009-05-01

    The National Nuclear Security Administration's (NNSA) Office of Secure Transportation (OST) maintains a fleet of seven aircraft to transport sensitive items, equipment and security personnel. Based on increasing requirements for transporting components and security personnel, OST decided to add a heavy transport aircraft to meet the Department's weapons surety and emergency response missions. In 2004, as a replacement following the sale of a portion of its fleet, OST acquired a DC-9 cargo aircraft that had been excessed by the U.S. military. Prior to integrating the DC-9 into its fleet, NNSA ordered a refurbishment of the aircraft. This refurbishment project was to permit the aircraft to be certified to civil air standards so that it could transport passengers for site visits, training and other travel. The NNSA Service Center (Service Center) awarded a contract for the refurbishment of the aircraft in December 2004. In recent years, the Office of Inspector General has addressed a number of issues relating to the Department's aircraft management activities and services. As part of our ongoing review process and because of the national security importance of its fleet of aircraft, we conducted this review to determine whether OST had an effective and efficient aviation management program.

  12. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  13. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  14. A head-up display format for application to transport aircraft approach and landing

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1980-01-01

    A head up display (HUD) format used in simulator studies of the application of HUD to the landing of civil transport aircraft is described in detail. The display features an indication of the aircraft's instantaneous flightpath that constitutes the primary controlled element. Discrete ILS error and altitude signals are scaled and positioned to provide precise guidance modes when tracked with the flightpath symbol. Consideration is given to both the availability and nonavailability of inertial velocity information in the aircraft.

  15. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  16. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  17. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  18. National Transportation Safety Board Aircraft Accident Investigation Supported

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    1999-01-01

    The main purpose of this investigation was for NASA to help the National Transportation Safety Board (NTSB) gain better understanding of the events that led to the loss of Comair Flight 3272 over Monroe, Michigan, on January 9, 1997. In-flight icing was suspected as being the primary cause of this accident. Of particular interest to the Safety Board was what NASA could learn about the potential performance degradation of the wing of the Embraer EMB-120 twin-turboprop commuter aircraft with various levels of ice contamination. NASA agreed to undertake (1) ice-accretion prediction computations with NASA s LEWICE program to bound the kind of contaminations that the vehicle may have developed, (2) testing in the NASA Lewis Research Center's Icing Research Tunnel to verify and refine the ice shapes developed by LEWICE, (3) a two-dimensional Navier- Stokes analysis to determine the performance degradation that those ice shapes could have caused, and (4) an examination using three-dimensional Navier-Stokes codes to study the three-dimensional effects of ice contamination.

  19. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  20. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  1. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  2. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  3. Automatic guidance and control of a transport aircraft during a helical landing approach

    NASA Technical Reports Server (NTRS)

    Crawford, D. J.

    1975-01-01

    A linear optimal regulator theory was applied to a nonlinear simulation of a transport aircraft performing a helical landing approach. A closed-form expression for the quasi-steady nominal flight path is presented along with the method for determining the corresponding constant nominal control inputs. The Jacobian matrices and the weighting matrices in the cost functional were time varying. A method of solving for the optimal feedback gains is reviewed. The control system was tested on several alternative landing approaches using both 3 deg and 6 deg flight path angles. On each landing approach, the aircraft was subjected to large random initial-state errors and to randomly directed crosswinds. The system was also tested for sensitivity to changes in the parameters of the aircraft and of the atmosphere. Results indicate that performance of the optimal controller on all the 3 deg approaches is very good. The control system proved to be reasonably insensitive to parametric uncertainties. Performance is not as good on the 6 deg approaches. A modification to the 6 deg flight path was proposed for the purpose of improving performance.

  4. A Backward Modeling Study of Intercontinental Pollution Transport Using Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Huntrieser, H.; Heland, J.; Schlager, H.; Aufmhoff, H.; Arnold, F.; Cooper, O.

    2002-12-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. First, forward calculations of emission tracers from North America, Europe and Asia were made to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. This pollution was then exported by warm conveyor belts to the middle and upper troposphere, and transported rapidly to Europe. Concentrations of many chemical trace species (CO, NOy, CO2, acetone, and several VOCs; O3 in one case) measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses, which to date were mainly used to interpret aircraft measurement data, obsolete for establishing source-receptor relationships. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both North America plumes, we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, the region around New York was clearly the largest contributor, but in the other case, sources in California, Texas, and Florida contributed almost equally. Smaller contributions were made by sources reaching from the Yucatan peninsula to Canada in this case.

  5. Factors affecting the retirement of commercial transport jet aircraft

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.; Swanson, J. A.

    1978-01-01

    A brief historical background of the technology and economics of aircraft replacement and retirement in the prejet era is presented to see whether useful insights can be obtained applicable to the jet area. Significant differences between the two periods were demonstated. Current technological and operational economic perspectives were investigated in detail. Some conclusions are drawn to aircraft retirement policies.

  6. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  7. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. The total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  8. Study of aircraft in intraurban transportation systems, San Francisco Bay area

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The nine-county San Francisco Bay area is examined in two time periods (1975-1980 and 1985-1990) as a scenario for analyzing the characteristics of an intraurban, commuter-oriented aircraft transportation system. Aircraft have dominated the long-haul passenger market for some time, but efforts to penetrate the very-short-haul intraurban market have met with only token success. Yet, the characteristics of an aircraft transportation system-speed and flexibility-are very much needed to solve the transportation ills of our major urban areas. This study attempts to determine if the aircraft can contribute toward solving the transportation problems of major metropolitan areas and be economically viable in such an environment.

  9. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  10. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  11. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  12. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  13. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft; manned free balloons; special classes of aircraft; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  14. Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1988-01-01

    A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.

  15. A study of subsonic transport aircraft configurations using hydrogen (H2) and methane (CH4) as fuel

    NASA Technical Reports Server (NTRS)

    Snow, D. B.; Avery, B. D.; Bodin, L. A.; Baldasare, P.; Washburn, G. F.

    1974-01-01

    The acceptability of alternate fuels for future commercial transport aircraft are discussed. Using both liquid hydrogen and methane, several aircraft configurations are developed and energy consumption, aircraft weights, range and payload are determined and compared to a conventional Boeing 747-100 aircraft. The results show that liquid hydrogen can be used to reduce aircraft energy consumption and that methane offers no advantage over JP or hydrogen fuel.

  16. Evaluating Source Area Contributions from Aircraft Flux Measurements Over Heterogeneous Land Using Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Kustas, William P.; Albertson, John D.

    2013-05-01

    The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in the presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behaviour of passive (e.g. water vapour) versus active (e.g. temperature) scalars may lead to large uncertainties in the source area/flux-footprint estimation for sensible ( H) and latent ( LE) heat-flux fields. This study uses large-eddy simulation (LES) of the land-atmosphere interactions to investigate the atmospheric boundary-layer (ABL) processes that are likely to create differences in airborne-estimated H and LE footprints. We focus on 32~m altitude aircraft flux observations collected over a study site in central Oklahoma during the Southern Great Plains experiment in 1997 (SGP97). Comparison between the aircraft data and traditional model estimates provide evidence of a difference in source area for turbulent sensible and latent heat fluxes. The LES produces reasonable representations of the observed fluxes, and hence provides credible evidence and explanation of the observed differences in the H and LE footprints. Those differences can be quantified by analyzing the change in the sign of the spatial correlation of the H and LE fields provided by the LES model as a function of height. Dry patterns in relatively moist surroundings are able to generate strong, but localized, sensible heating. However, whereas H at the aircraft altitude is still in phase with the surface, LE presents a more complicated connection to the surface as the dry updrafts force a convergence of the surrounding moist air. Both the observational and LES model evidence support the concept that under strongly advective conditions, H and LE measured at the top of the surface layer (≈50 m) can be associated with very different upwind source areas, effectively contradicting surface-layer self-similarity theory for scalars. The results indicate that, under certain

  17. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  18. Passenger ride comfort technology for transport aircraft situations

    NASA Technical Reports Server (NTRS)

    Conner, W.; Jacobson, I. D.

    1976-01-01

    Research in ride comfort and of the resultant technology is overviewed. Several useful relations derived from the technology are: input environments to the vehicle; aircraft operations; and aircraft configurations. Input environments which influence the ride motion environment consist of naturally occuring phenomena such as gusts or turbulence and man generated phenomena such as trailing vortex wakes or runway roughness. Aircraft operations influence ride environments in the form of motions caused by maneuvers, of pressure changes caused by rapid descents, or of too high temperature. Aircraft configurations influence the ride environment by size and shape of external surfaces which generate aerodynamic perturbing forces; by onboard equipment, such as power plant noise and vibrations; and by passive equipment which directly interfaces the passengers such as marginal size seats with limited elbowroom and legroom.

  19. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  20. The future of short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1980-01-01

    Owing to recent economic and regulatory changes and escalating fuel costs, major airlines have begun to shift their short-haul service to longer, more profitable routes, leaving short-haul operations to rapidly growing commuter airlines. The short-haul routes are currently serviced by small turboprop-powered aircraft. The results of some recent design studies aimed at replacing the turboprops with specialized propeller- and rotor-driven aircraft are discussed. Some potential future designs are illustrated and discussed.

  1. On a global aerodynamic optimization of a civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Savu, G.; Trifu, O.

    1991-01-01

    An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.

  2. Outcome, transport times, and costs of patients evacuated by helicopter versus fixed-wing aircraft.

    PubMed Central

    Thomas, F.; Wisham, J.; Clemmer, T. P.; Orme, J. F.; Larsen, K. G.

    1990-01-01

    We determined the differences in transport times and costs for patients transported by fixed-wing aircraft versus helicopter at ranges of 101 to 150 radial miles, where fixed-wing and helicopter in-hospital transports commonly overlap. Statistical analysis failed to show a significant difference between the trauma-care patients transported by helicopter (n = 109) and those transported by fixed-wing (n = 86) for age, injury severity score, hospital length of stay, hospital mortality, or discharge disability score. The times in returning patients to the receiving hospital by helicopter (n = 104) versus fixed-wing (n = 509) did not differ significantly. Helicopter transport costs per mile ($24), however, were 400% higher than those of fixed-wing aircraft with its associated ground ambulance transport costs ($6). Thus, helicopter transport is economically unjustified for interhospital transports exceeding 100 radial miles when an efficient fixed-wing service exists. PMID:2389575

  3. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  4. Industrial approach to piezoelectric damping of large fighter aircraft components

    NASA Astrophysics Data System (ADS)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power

  5. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  6. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations:...

  7. Large-eddy simulation of turbulence in the free atmosphere and behind aircraft

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Dörnbrack, A.; Dürbeck, T.; Gerz, T.

    1997-02-01

    The method of large-eddy simulation has been used for a wide variety of atmospheric flow problems. This paper gives an overview on recent applications of this method to turbulence in the free atmosphere under stably stratified conditions. In particular, flows in the wake of aircraft are studied in light of the potential impact of aircraft exhausts on the chemical and climatological state of the atmosphere. It is shown that different profiles of heat and moisture in the initial conditions of a jet representing engine exhaust gases may cause larger water saturation and hence earlier contrail formation than assumed up to now. The instability of trailing vortices in the wake of an aircraft is simulated up to the fully turbulent regime. The vertical diffusivity of aircraft exhaust is large in the vortex regime and much smaller than horizontal diffusivities in the later diffusion regime. The three-dimensional formation of a critical layer and breaking of gravity waves is simulated.

  8. Effect of electromagnetic interference by neonatal transport equipment on aircraft operation.

    PubMed

    Nish, W A; Walsh, W F; Land, P; Swedenburg, M

    1989-06-01

    The number of civilian air ambulance services operating in the United States has been steadily increasing. The quantity and sophistication of electronic equipment used during neonatal transport have also increased. All medical equipment generates some electromagnetic interference (EMI). Excessive EMI can interfere with any of an aircraft's electrical systems, including navigation and communications. The United States military has strict standards for maximum EMI in transport equipment. Over the past 15 years, approximately 70% of neonatal transport monitors, ventilators, and incubators have failed testing due to excessive EMI. As neonatal transport equipment becomes more sophisticated, EMI is increased, and there is greater potential for aircraft malfunction. The Federal Aviation Administration should develop civilian standards for acceptable EMI, civilian aircraft operators must be aware of the possible dangers of excessive EMI, and equipment which does not meet future FAA standards should not be purchased. PMID:2751593

  9. Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Monks, S.; Arnold, S.; Chipperfield, M.; Turquety, S.; Ancellet, G.; Law, K.; Schlager, H.

    2009-04-01

    Surface temperatures in the Arctic have increased more than in any other region over the past few decades. A better understanding of the processes governing this warming, including the role of short-lived greenhouse gases, is therefore urgently required. During summer 2008, the POLARCAT campaign aimed to collect an extensive gas-phase and aerosol dataset within the Arctic troposphere, which will aid the evaluation of our understanding of oxidant photochemistry and aerosol processing in the region. Previous comparisons of global chemical transport models have shown that they exhibit large variability in their Arctic chemical budgets, indicating that the processes controlling Arctic tropospheric composition are not well understood or represented within models. Here, we will use new trace-gas observations from the French ATR and German DLR Falcon aircraft during the POLARCAT experiment to evaluate the ability of a global chemical transport model (TOMCAT) to simulate the summertime transport of pollutants to the Arctic, and their impact on oxidant budgets. In particular, we aim to quantify the impact of anthropogenic and biomass burning sources on the Arctic tropospheric ozone budget. Initial results show that the model underestimates observed concentrations of CO which has led to a re-evaluation of the different sources of CO to the region. Model performance in the Arctic is highly sensitive to the treatment of boreal biomass burning emissions. Boreal biomass burning plumes were sampled frequently over the course of the campaign therefore accurate representation of emission injection heights and fire locations is essential. Model CO is improved with real-time satellite derived daily biomass burning emissions, however large uncertainties in these emissions result in large variability in the Arctic CO budget. We will also present results on the ability of the model to capture pollution transport pathways to the Arctic and contributions to the oxidant and NOy budgets

  10. National General Aviation Roadmap Definition for a Small Aircraft Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    This paper presents trends and forces that shape 21 st century demand for higher-speed personal air transportation and outlines guidance developed by NASA in partnership with other federal and state government and industry partners, for Small Aircraft Transportation System (SATS) investment and partnership planning.

  11. Application of advanced high speed turboprop technology to future civil short-haul transport aircraft design

    NASA Technical Reports Server (NTRS)

    Conlon, J. A.; Bowles, J. V.

    1978-01-01

    With an overall goal of defining the needs and requirements for short-haul transport aircraft research and development, the objective of this paper is to determine the performance and noise impact of short-haul transport aircraft designed with an advanced turboprop propulsion system. This propulsion system features high-speed propellers that have more blades and reduced diameters. Aircraft are designed for short and medium field lengths; mission block fuel and direct operating costs (DOC) are used as performance measures. The propeller diameter was optimized to minimize DOC. Two methods are employed to estimate the weight of the acoustic treatment needed to reduce interior noise to an acceptable level. Results show decreasing gross weight, block fuel, DOC, engine size, and optimum propfan diameter with increasing field length. The choice of acoustic treatment method has a significant effect on the aircraft design.

  12. 49 CFR Appendix to Part 800 - Request to the Secretary of the Department of Transportation To Investigate Certain Aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation To Investigate Certain Aircraft Accidents Appendix to Part 800 Transportation Other Regulations... the Department of Transportation To Investigate Certain Aircraft Accidents (a) Acting pursuant to the... Safety Board Act of 1974, and as set forth below to investigate the facts, conditions, and...

  13. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  14. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 6: Systems analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems analysis of the quiet turbofan aircraft for short-haul transportation was conducted. The purpose of the study was to integrate the representative data generated by aircraft, market, and economic analyses. Activities of the study were to develop the approach and to refine the methodologies for analytic tradeoff, and sensitivity studies of propulsive lift conceptual aircraft and their performance in simulated regional airlines. The operations of appropriate airlines in each of six geographic regions of the United States were simulated. The offshore domestic regions were evaluated to provide a complete domestic evaluation of the STOL concept applicability.

  15. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  16. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane may take off that airplane at a weight, allowing for normal consumption of fuel and oil, that does... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance...

  17. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  18. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  19. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 4: Markets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A marketing study to determine the acceptance and utilization of a STOL aircraft short-haul air transportation system was conducted. The relationship between STOL characteristics and the economic and social viability of STOL as a short-haul reliever system was examined. A study flow chart was prepared to show the city pair and traffic split analysis. The national demand for STOL aircraft, as well as the foreign and military markets, were analyzed.

  20. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  1. Propulsion challenges and opportunities for high-speed transport aircraft

    NASA Technical Reports Server (NTRS)

    Strack, William C.

    1990-01-01

    The major challenges confronting the propulsion community for supersonic transport applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraint. A very large improvement in propulsion system efficiency is needed both at supersonic cruise and subsonic cruise conditions. Toward this end, several advanced engine concepts are being considered that promise up to 25 pct. better efficiency than the Concorde engine. The quest for high productivity through higher speed is also thwarted by the lack of a conventional, low priced fuel that is thermally stable at the higher temperatures associated with faster flight. Extending Jet A type fuel to higher temperatures and the adoption of liquid natural gas or methane are two possibilities requiring further study. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage III noise levels. Innovative solutions may be necessary to reach acceptably low noise.

  2. Evaluating source area contributions from aircraft flux measurements over heterogeneous land cover by large eddy simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behavior of passive (e.g. moisture) versus active (e.g. temperature) scalar...

  3. A backward modeling study of intercontinental pollution transport using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Spichtinger, N.; Huntrieser, H.; Heland, J.; Schlager, H.; Wilhelm, S.; Arnold, F.; Cooper, O.

    2003-06-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. Forward calculations of emission tracers from North America, Europe, and Asia were made in order to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. Both anthropogenic sources and, to a lesser extent, forest fire emissions contributed to this pollution, which was then exported by warm conveyor belts to the middle and upper troposphere, where it was transported rapidly to Europe. Concentrations of many trace gases (CO, NOy, CO2, acetone, and several volatile organic compounds; O3 in one case) and of ambient atmospheric ions measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses (which, to date, were mainly used to interpret aircraft measurement data) obsolete. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both plumes we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, sources in California, Texas, and Florida contributed almost equally, and smaller contributions were also made by other sources located between the Yucatan Peninsula and Canada. In the other case, sources in eastern North America

  4. Personal Aircraft Point to the Future of Transportation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  5. An advanced media interface for control of modern transport aircraft navigational systems

    NASA Technical Reports Server (NTRS)

    Jones, D. R.; Parrish, R. V.; Person, L. H., Jr.; Old, J. L.

    1984-01-01

    With the advent of digital avionics, the workload of the pilot in a moderen transport aircraft is increasing significantly. This situation makes it necessary to reduce pilot workload with the aid of new advanced technologies. As part of an effort to improve information management systems, NASA has, therefore, studied an advanced concept for managing the navigational tasks of a modern transport aircraft. This concept is mainly concerned with the simplification of the pilot interface. The advanced navigational system provides a simple method for a pilot to enter new waypoints to change his flight plan because of heavy traffic, adverse weather conditions, or other reasons. The navigational system was implemented and evaluated in a flight simulator representative of a modern transport aircraft. Attention is given to the simulator, flight simulation, multimode devices, and the navigational system.

  6. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  7. Hydrogen powered aircraft : The future of air transport

    NASA Astrophysics Data System (ADS)

    Khandelwal, Bhupendra; Karakurt, Adam; Sekaran, Paulas R.; Sethi, Vishal; Singh, Riti

    2013-07-01

    This paper investigates properties and traits of hydrogen with regard to environmental concerns and viability in near future applications. Hydrogen is the most likely energy carrier for the future of aviation, a fuel that has the potential of zero emissions. With investigation into the history of hydrogen, this study establishes issues and concerns made apparent when regarding the fuel in aero applications. Various strategies are analyzed in order to evaluate hydrogen's feasibility which includes production, storage, engine configurations and aircraft configurations.

  8. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 5: Economics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The economic aspects of the STOL aircraft for short-haul air transportation are discussed. The study emphasized the potential market, the preferred operational concepts, the design characteristics, and the economic viability. Three central issues governing economic viability are as follows: (1) operator economics given the market, (2) the required transportation facilities, and (3) the external economic effects of a set of regional STOL transportation systems.

  9. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  10. Large wood recruitment and transport during large floods: A review

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Lucía, A.; Rickenmann, D.

    2016-09-01

    Large wood (LW) elements transported during large floods are long known to have the capacity to induce dangerous obstructions along the channel network, mostly at bridges and at hydraulic structures such as weirs. However, our current knowledge of wood transport dynamics during high-magnitude flood events is still very scarce, mostly because these are (locally) rare and thus unlikely to be directly monitored. Therefore, post-event surveys are invaluable ways to get insights (although indirectly) on LW recruitment processes, transport distance, and factors inducing LW deposition - all aspects that are crucial for the proper management of river basins related to flood hazard mitigation. This paper presents a review of the (quite limited) literature available on LW transport during large floods, drawing extensively on the authors' own experience in mountain and piedmont rivers, published and unpublished. The overall picture emerging from these studies points to a high, catchment-specific variability in all the different processes affecting LW dynamics during floods. Specifically, in the LW recruitment phase, the relative floodplain (bank erosion) vs. hillslope (landslide and debris flows) contribution in mountain rivers varies substantially, as it relates to the extent of channel widening (which depends on many variables itself) but also to the hillslope-channel connectivity of LW mobilized on the slopes. As to the LW transport phase within the channel network, it appears to be widely characterized by supply-limited conditions; whereby LW transport rates (and thus volumes) are ultimately constrained by the amount of LW that is made available to the flow. Indeed, LW deposition during floods was mostly (in terms of volume) observed at artificial structures (bridges) in all the documented events. This implies that the estimation of LW recruitment and the assessment of clogging probabilities for each structure (for a flood event of given magnitude) are the most important

  11. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  12. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  13. Potential benefits for propfan technology on derivatives of future short- to medium-range transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.; Bowles, J. V.

    1980-01-01

    It is noted that several NASA-sponsored studies have identified a substantial potential fuel savings for high subsonic speed aircraft utilizing the propfan concept compared to the equivalent technology turbofan aircraft. Attention is given to a feasibility study for propfan-powered short- to medium-haul commercial transport aircraft conducted to evaluate potential fuel savings and identify critical technology requirements using the latest propfan performance data. An analysis is made of the design and performance characteristics of a wing-mounted and two-aft-mounted derivative propfan aircraft configurations, based on a DC-9 Super 80 airframe, which are compared to the baseline turbofan design. Finally, recommendations for further research efforts are also made.

  14. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  15. Damage tolerance for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1992-01-01

    The damage tolerance experience in the United States Air Force with military aircraft and in the commercial world with large transport category aircraft indicates that a similar success could be achieved in commuter aircraft. The damage tolerance process is described for the purpose of defining the approach that could be used for these aircraft to ensure structural integrity. Results of some of the damage tolerance assessments for this class of aircraft are examined to illustrate the benefits derived from this approach. Recommendations are given for future damage tolerance assessment of existing commuter aircraft and on the incorporation of damage tolerance capability in new designs.

  16. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  17. Overview of the Small Aircraft Transportation System Project Four Enabling Operating Capabilities

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.; Johnson, Sally C.

    2005-01-01

    It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand still steadily increasing. NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have partnered to aid in increasing the mobility throughout the United States through the Small Aircraft Transportation System (SATS) project. The SATS project has been a five-year effort to provide the technical and economic basis for further national investment and policy decisions to support a small aircraft transportation system. The SATS vision is to enable people and goods to have the convenience of on-demand point-to-point travel, anywhere, anytime for both personal and business travel. This vision can be obtained by expanding near all-weather access to more than 3,400 small community airports that are currently under-utilized throughout the United States. SATS has focused its efforts on four key operating capabilities that have addressed new emerging technologies, procedures, and concepts to pave the way for small aircraft to operate in nearly all weather conditions at virtually any runway in the United States. These four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the accomplishments achieved throughout the project and demonstrating that a small aircraft transportation system could be viable. The technologies, procedures, and concepts were successfully demonstrated to show that they were safe, effective, and affordable for small aircraft in near all weather conditions. The focus of this paper is to provide an overview of the technical and operational feasibility of the

  18. Factors affecting the retirement of commercial transport jet aircraft

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1979-01-01

    The historical background of the technology and economics of aircraft replacement and retirement in the prejet era is reviewed in order to determine whether useful insights can be obtained applicable to the jet era. Significant differences between the two periods are noted. New factors are identified and examined. Topics discussed include concern over current policies regarding deregulation, regulatory reform, and retroactive noise regulations; financing and compliance legislation; aging; economic environment and inflation; technological progress; fuel efficiency and cost; and a financial perspective of replacement decisions.

  19. Development of stitched/RTM primary structures for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hawley, Arthur V.

    1993-01-01

    This report covers work accomplished in the Innovative Composite Aircraft Primary Structure (ICAPS) program. An account is given of the design criteria and philosophy that guides the development. Wing and fuselage components used as a baseline for development are described. The major thrust of the program is to achieve a major cost breakthrough through development of stitched dry preforms and resin transfer molding (RTM), and progress on these processes is reported. A full description is provided on the fabrication of the stitched RTM wing panels. Test data are presented.

  20. Feedback laws for fuel minimization for transport aircraft

    NASA Technical Reports Server (NTRS)

    Price, D. B.; Gracey, C.

    1984-01-01

    The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.

  1. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.21 Issue of type certificate: normal, utility, acrobatic, commuter, and transport category...

  2. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.21 Issue of type certificate: normal, utility, acrobatic, commuter, and transport category...

  3. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.21 Issue of type certificate: normal, utility, acrobatic, commuter, and transport category...

  4. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.21 Issue of type certificate: normal, utility, acrobatic, commuter, and transport category...

  5. Structural dynamics research in a full-scale transport aircraft crash test

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Hayduk, R. J.; Thomson, R. G.

    1986-01-01

    A remotely piloted air-to-ground crash test of a full-scale transport aircraft was conducted for the first time for two purposes: (1) to demonstrate performance of an antimisting fuel additive in suppressing fire in a crash environment, and (2) to obtain structural dynamics data under crash conditions for comparison with analytical predictions. The test, called the Controlled Impact Demonstration (CID), was sponsored by FAA and NASA with cooperation of industry, the Department of Defense, and the British and French governments. The test aircraft was a Boeing 720 jet transport. The aircraft impacted a dry lakebed at Edwards Air Force Base, CA. The purpose of this paper is to discuss the structural aspects of the CID. The fuselage section tests and the CID itself are described. Structural response data from these tests are presented and discussed. Nonlinear analytical modeling efforts are described, and comparisons between analytical results and experimental results are presented.

  6. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  7. Large 15-in. flat-panel display glass cockpit for general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Schaefer, Lyle H.

    2002-08-01

    The large format Active Matrix Liquid Crystal Display (AMLCD) brings new possibilities to the aircraft cockpit environment. Broad-based format flexibility, enhanced situational awareness, sharp contrast and brilliant chromaticity are all features inherent in this product. This paper reviews cockpit instrument design, traces the evolution of electronic flight instrument systems (EFIS) and describes an optimized format of a large format cockpit display from an engineering test pilot's perspective. Additional potential uses for the large format display are described.

  8. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  9. Judgements of relative noisiness of a supersonic transport and several commercial-service aircraft

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1977-01-01

    Two laboratory experiments were conducted on the relative noisiness of takeoff and landing operations of a supersonic transport and several other aircraft in current commercial service. A total of 96 subjects made noisiness judgments on 120 tape-recorded flyover noises in the outdoor-acoustic-simulation experiment; 32 different subjects made judgments on the noises in the indoor-acoustic-simulation experiment. The judgments were made by using the method of numerical category scaling. The effective perceived noise level underestimated the noisiness of the supersonic transport by 3.5 db. For takeoff operations, no difference was found between the noisiness of the supersonic transport and the group of other aircraft for the A-weighted rating scale; however, for landing operations, the noisiness of the supersonic transport was overestimated by 3.7 db. Very high correlation was found between the outdoor-simulation experiment and the indoor-simulation experiment.

  10. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…

  11. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED REGULATORY AUTHORITY IN AGREEMENT STATES AND IN OFFSHORE WATERS UNDER SECTION 274 Reciprocity §...

  12. AIRCRAFT OBSERVATIONS OF REGIONAL TRANSPORT OF OZONE IN THE NORTHEASTERN UNITED STATES

    EPA Science Inventory

    A regional scale aircraft sampling program was conducted during August 1979 to obtain data for validation of a regional scale photochemical air quality simulation model and for studying the physical and chemical processes important in long-range transport of ozone and ozone precu...

  13. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED REGULATORY AUTHORITY IN AGREEMENT STATES AND IN OFFSHORE WATERS UNDER SECTION 274 Reciprocity §...

  14. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED REGULATORY AUTHORITY IN AGREEMENT STATES AND IN OFFSHORE WATERS UNDER SECTION 274 Reciprocity §...

  15. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  16. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 3: Airports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The airport siting, design, cost, operation, and implementation aspects of a short takeoff aircraft transportation system are analyzed. Problem areas are identified and alternative solutions or actions required to achieve system implementation by the early 1980's are recommended. Factors associated with the ultimate community acceptance of the STOL program, such as noise, emissions, and congestion, are given special emphasis.

  17. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  18. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  19. 49 CFR 173.27 - General requirements for transportation by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transportation aboard aircraft. Except for materials not subject to performance packaging requirements in subpart E of this part, a packaging containing a Packing Group III material with a primary or subsidiary... inner packaging which does not itself meet the pressure requirement provided that the inner packaging...

  20. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  1. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  2. Study of aircraft in intraurban transportation systems. Volume 4: Appendix

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An appendix of the supporting data leading to conclusions and recommendations for an effective intraurban transportation system from volumes 1, 2, and 3 is presented. The data are given in tables and graphs.

  3. Large Eddy Simulation of Aircraft Wake Vortices: Atmospheric Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Kao, C.-T.

    1997-01-01

    Crow instability can develop in most atmospheric turbulence levels, however, the ring vortices may not form in extremely strong turbulence cases due to strong dissipation of the vortices. It appears that strong turbulence tends to accelerate the occurrences of Crow instability. The wavelength of the most unstable mode is estimated to be about 5b(sub 0), which is less than the theoretical value of 8.6b(sub 0) (Crow, 1970) and may be due to limited domain size and highly nonlinear turbulent flow characteristics. Three-dimensional turbulence can decay wake vortices more rapidly. Axial velocity may be developed by vertical distortion of a vortex pair due to Crow instability or large turbulent eddy motion. More experiments with various non-dimensional turbulence levels are necessary to get useful statistics of wake vortex behavior due to turbulence. Need to investigate larger turbulence length scale effects by enlarging domain size or using grid nesting.

  4. Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.

    2005-01-01

    The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.

  5. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  6. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Astrophysics Data System (ADS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  7. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  8. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  9. Operational Weight Estimations of Commercial Jet Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1972-01-01

    In evaluating current or proposed commercial transport airplanes, there has not been available a ready means to determine weights so as to compare airplanes within this particular class. This paper describes the development of and presents such comparative tools. The major design characteristics of current American jet transport airplanes were collected, and these data were correlated by means of regression analysis to develop weight relationships for these airplanes as functions of their operational requirements. The characteristics for 23 airplanes were assembled and examined in terms of the effects of the number of people carried, the cargo load, and the operating range. These airplane characteristics were correlated for the airplanes as one of three subclasses, namely the small, twin-engine jet transport, the conventional three- and four-engine jets, and the new wide-body jets.

  10. Fuel conservation possibilities for terminal area compatible transport aircraft

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Heath, A. R., Jr.

    1975-01-01

    Design characteristics that would reduce mission fuel consumption and improve terminal-area operations for advanced transports are discussed. Sensitivity studies of the effects of cruise speed, wing geometry, propulsion cycle, operational procedures, and payload on fuel usage are presented and utilized to arrive at a conceptual configuration which offers mission fuel savings as well as desirable operational characteristics in the terminal area. Technical and economic evaluation is provided in the form of a comparison of the resulting configuration with transports reflecting the current level of technology. The research and technology programs required to realize potential benefits are described.

  11. Transport Aircraft System Identification Using Roll and Yaw Oscillatory Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2010-01-01

    Continued studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and dynamic terms but replace conventional acceleration terms with indicial functions. In the Subsonic Fixed Wing Project of the NASA Fundamental Aeronautics Program and the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced simulation and control design technology. This paper continues development and application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle. In the present study models for the lateral-directional aerodynamics are developed.

  12. Design of Large Momentum Acceptance Transport Systems

    SciTech Connect

    D.R. Douglas

    2005-05-01

    The use of energy recovery to enable high power linac operation often gives rise to an attendant challenge--the transport of high power beams subtending large phase space volumes. In particular applications--such as FEL driver accelerators--this manifests itself as a requirement for beam transport systems with large momentum acceptance. We will discuss the design, implementation, and operation of such systems. Though at times counterintuitive in behavior (perturbative descriptions may, for example, be misleading), large acceptance systems have been successfully utilized for generations as spectrometers and accelerator recirculators [1]. Such systems are in fact often readily designed using appropriate geometric descriptions of beam behavior; insight provided using such a perspective may in addition reveal inherent symmetries that simplify construction and improve operability. Our discussion will focus on two examples: the Bates-clone recirculator used in the Jefferson Lab 10 kW IR U pgrade FEL (which has an observed acceptance of 10% or more) and a compaction-managed mirror-bend achromat concept with an acceptance ranging from 50 to 150 MeV.

  13. Evaluation of routing and scheduling considerations for possible future commercial hypersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Feir, J. B.

    1974-01-01

    Travel markets which would be served by high speed commercial transport aircraft and the ability of the airlines to schedule and route the aircraft in a way that would achieve good daily utilization and productivity are examined. The following areas are considered: (1) identification of the major long-haul city pairs that would most likely demand nonstop service; (2) selection of flight tracks observing alternative sonic boom restrictions; (3) estimation of flight times for all city pairs for the various sonic boom constraints; (4) impact of airport curfews on possible departure and arrival schedules; (5) projection of passenger traffic volumes on the selected city pairs; and (6) potential daily utilization and aircraft productivity.

  14. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  15. Air Force use of civil airworthiness criteria for testing and acceptance of military derivative transport aircraft

    SciTech Connect

    Marx, R.I.; Chapman, D.M.; Langley, M.J.; Fouts, R.S.

    1990-01-01

    A review of commercial aircraft programs and the use of FAA certification criteria in the acquisition of off-the-shelf transport aircraft by the USAF to fulfill its airlift requirements is presented. In addition, major differences between military and commercial test programs and acquisition are cited to illustrate the principal benefits to the Air Force of this method. Significantly reduced acquisition time, and reduced ground and flight testing and development costs are shown as benefits of this process. The unique aspects of certification of military derivatives, recent initiatives to codify the processes, and the impacts on changes required in the manner in which the USAF currently contracts for aircraft are discussed. 20 refs.

  16. Soil runway friction evaluation in support of USAF C-17 transport aircraft operations

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    A series of NASA Diagonal-Braked Vehicle (DBV) test runs were performed on the soil runway 7/25 at Holland landing zone, Fort Bragg, North Carolina, near Pope Air Force Base in March 1995 at the request of the Air Force C-17 System Program Office. These ground vehicle test results indicated that the dry runway friction level was suitable for planned C-17 transport aircraft landing and take-off operations at various gross weights. These aircraft operations were successfully carried out. On-board aircraft deceleration measurements were comparable to NASA DBV measurements. Additional tests conducted with an Army High Mobility Multi-Purpose Wheeled Vehicle equipped with a portable decelerometer, showed good agreement with NASA DBV data.

  17. Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Gregory, Irene

    2007-01-01

    This paper presents an application of robust gain-scheduled control concepts using a linear parameter-varying (LPV) control synthesis method to design fault tolerant controllers for a civil transport aircraft. To apply the robust LPV control synthesis method, the nonlinear dynamics must be represented by an LPV model, which is developed using the function substitution method over the entire flight envelope. The developed LPV model associated with the aerodynamic coefficient uncertainties represents nonlinear dynamics including those outside the equilibrium manifold. Passive and active fault tolerant controllers (FTC) are designed for the longitudinal dynamics of the Boeing 747-100/200 aircraft in the presence of elevator failure. Both FTC laws are evaluated in the full nonlinear aircraft simulation in the presence of the elevator fault and the results are compared to show pros and cons of each control law.

  18. Application of parametric weight and cost estimating relationships to future transport aircraft

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Morris, M. A.; Anderson, J. L.

    1979-01-01

    A model comprised of system level weight and cost estimating relationships for transport aircraft is presented. In order to determine the production cost of future aircraft its weight is first estimated based on performance parameters, and then the cost is estimated as a function of weight. For initial evaluation CERs were applied to actual system weights of six aircraft (3 military and 3 commercial) with mean empty weights ranging from 30,000 to 300,000 lb. The resulting cost estimates were compared with actual costs. The average absolute error was only 4.3%. Then the model was applied to five aircraft still in the design phase (Boeing 757, 767 and 777, and BAC HS146-100 and HS146-200). While the estimates for the 757 and 767 are within 2 to 3 percent of their assumed break-even costs, it is recognized that these are very sensitive to the validity of the estimated weights, inflation factor, the amount assumed for nonrecurring costs, etc., and it is suggested that the model may be used in conjunction with other information such as RDT&E cost estimates and market forecasts. The model will help NASA evaluate new technologies and production costs of future aircraft.

  19. High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation

    NASA Technical Reports Server (NTRS)

    Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.

    1999-01-01

    The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.

  20. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  1. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  2. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Fu, G.; Lin, H. X.; Heemink, A. W.; Segers, A. J.; Lu, S.; Palsson, T.

    2015-08-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be run with Eruption Source Parameters (ESP) such as plume height and mass eruption rate as input, and with data assimilation techniques to continuously improve the initial conditions of the forecast. Reliable and accurate ash measurements are crucial for providing a successful ash clouds advice. In this paper, simulated aircraft-based measurements, as one type of volcanic ash measurements, will be assimilated into a transport model to identify the potential benefit of this kind of observations in an assimilation system. The results show assimilating aircraft-based measurements can significantly improve the state of ash clouds, and further providing an improved forecast as aviation advice. We also show that for advice of aeroplane flying level, aircraft-based measurements should be preferably taken from this level to obtain the best performance on it. Furthermore it is shown that in order to make an acceptable advice for aviation decision makers, accurate knowledge about uncertainties of ESPs and measurements is of great importance.

  3. FIRE aircraft observations of horizontal and vertical transport in marine stratocumulus

    NASA Technical Reports Server (NTRS)

    Paluch, Ilga R.; Lenschow, Donald H.

    1990-01-01

    A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.

  4. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  5. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  6. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  7. Study of Aerodynamic Design Procedure of a Large-Scale Aircraft Noise Suppression Facility

    NASA Astrophysics Data System (ADS)

    Kawai, Masafumi; Nagai, Kiyoyuki; Aso, Shigeru

    The aerodynamic design procedure of a large-scale aircraft noise suppression facility has been developed. Flow quality required for the engine inlet flow has been determined through basic experiment. Aerodynamic design of the facility has been performed by using wind tunnel experiment and CFD. Important relationship between the length of the facility and the inlet flow quality has been found. The operational envelope of the designed facility has been estimated. Then, the aerodynamic characteristics of an actual large-scale aircraft noise suppression facility, constructed based on the new design procedure, have been measured. Obtained flow field showed good agreement with CFD results, and the effectiveness of the design procedure based on CFD and wind tunnel experiment has been confirmed. The engine operations were satisfactory under various wind conditions. Furthermore, the data under commercial operations thereafter have been collected and analyzed. As the result, the aerodynamic design procedure has been validated.

  8. A preliminary look at an optimal multivariable design for propulsion-only flight control of jet-transport aircraft

    NASA Technical Reports Server (NTRS)

    Azzano, Christopher P.

    1992-01-01

    Control of a large jet transport aircraft without the use of conventional control surfaces was studied. Engine commands were used to attempt to recreate the forces and moments typically provided by the elevator, ailerons, and rudder. Necessary conditions for aircraft controllability were developed pertaining to aircraft configuration such as the number of engines and engine placement. An optimal linear quadratic regulator controller was developed for the Boeing 707-720, in particular, for regulation of its natural dynamic modes. The design used a method of assigning relative weights to the natural modes, i.e., phugoid and dutch roll, for a more intuitive selection of the cost function. A prototype pilot command interface was then integrated into the loop based on pseudorate command of both pitch and roll. Closed loop dynamics were evaluated first with a batch linear simulation and then with a real time high fidelity piloted simulation. The NASA research pilots assisted in evaluation of closed loop handling qualities for typical cruise and landing tasks. Recommendations for improvement on this preliminary study of optimal propulsion only flight control are provided.

  9. Modal analysis of sailplane and transport aircraft wings using the dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Banerjee, J. R.

    2016-05-01

    The purpose of this paper is to provide theory, results, discussion and conclusions arising from an in-depth investigation on the modal behaviour of high aspect ratio aircraft wings. The illustrative examples chosen are representative of sailplane and transport airliner wings. To achieve this objective, the dynamic stiffness method of modal analysis is used. The wing is represented by a series of dynamic stiffness elements of bending-torsion coupled beams which are assembled to form the overall dynamic stiffness matrix of the complete wing. With cantilever boundary condition applied at the root, the eigenvalue problem is formulated and finally solved with the help of the Wittrick-Williams algorithm to yield the eigenvalues and eigenmodes which are essentially the natural frequencies and mode shapes of the wing. Results for wings of two sailplanes and four transport aircraft are discussed and finally some conclusions are drawn

  10. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  11. A head-up display format for transport aircraft approach and landing

    NASA Technical Reports Server (NTRS)

    Bray, R. S.; Scott, B. C.

    1981-01-01

    An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept applied to transport aircraft landing. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to electronic flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training.

  12. In-service inspection methods for graphite-epoxy structures on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Phelps, M. L.

    1981-01-01

    In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.

  13. Study of the application of hydrogen fuel to long-range subsonic transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility of using liquid hydrogen as fuel in advanced designs of long range, subsonic transport aircraft is assessed. Both passenger and cargo type aircraft are investigated. Comparisons of physical, performance, and economic parameters of the LH2 fueled designs with conventionally fueled aircraft are presented. Design studies are conducted to determine appropriate characteristics for the hydrogen related systems required on board the aircraft. These studies included consideration of material, structural, and thermodynamic requirements of the cryogenic fuel tanks and fuel systems with the structural support and thermal protection systems.

  14. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  15. Transportation in commerical aircraft of passengers having contagious diseases.

    PubMed

    Perin, M

    1976-10-01

    Most airlines refuse to board passengers known or believed to have contagious diseases. Such rigor can scarcely be justified by reference to either laws or regulations. It introduces the risk of arbitrary, mistaken, or prejudiced conduct in areas in which international organizations recommend the greatest liberalization, and it can cause serious harm to certain patients. Finally, it does not seem logical, for airlines learn about only a small fraction of the contagious persons who travel, and public health is much more greatly endangered by unknown contagious persons. Normal hygienic conditions aboard planes suppress the risks of contagion concerning most diseases transmitted by insects or through contact with the skin, with mucuous membranes, with the faeces, or with urine. Airlines should continue to refuse to transport only those passengers having diseases which are characterized by vomiting or serious diarrhoea or which are transmitted through the air if it is impossible by simple means to avoid the risk of contaminating other travellers and any members of the flight crew who might be receptive. PMID:985288

  16. Multilevel decomposition approach to the preliminary sizing of a transport aircraft wing

    NASA Technical Reports Server (NTRS)

    Wrenn, Gregory A.; Dovi, Augustine R.

    1990-01-01

    A multilevel/multidisciplinary optimization scheme for sizing an aircraft wing structure is described. A methodology using nonlinear programming in application to a very large engineering problem is presented. This capability is due to the decomposition approach. Over 1300 design variables are considered for this nonlinear optimization task. In addition, a mathematical link is established coupling the detail of structural sizing to the overall system performance objective, such as fuel consumption. The scheme is implemented as a three level system analyzing aircraft mission performance at the top level, the total aircraft structure as the middle level, and individual stiffened wing skin cover panels at the bottom level. Numerical show effectiveness of the method and its good convergence characteristics.

  17. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine

    2004-01-01

    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  18. Neural Network and Regression Approximations in High Speed Civil Transport Aircraft Design Optimization

    NASA Technical Reports Server (NTRS)

    Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    1998-01-01

    Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.

  19. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  20. Vortex Particle-Mesh methods for large scale LES of aircraft wakes

    NASA Astrophysics Data System (ADS)

    Chatelain, Philippe; Duponcheel, Matthieu; Marichal, Yves; Winckelmans, Grégoire

    2015-11-01

    Vortex methods solve the NS equations in vorticity-velocity formulation. The present Particle-Mesh variant exploits the advantages of a hybrid approach: advection is handled by the particles while the mesh allows the evaluation of the differential operators and the use of fast Poisson solvers (here a Fourier-based solver which allows for unbounded directions and inlet/outlet boundaries). A lifting line approach models the vorticity sources in the flow; its immersed treatment efficiently captures the development of vorticity from thin sheets into 3-D field. Large scale simulations of aircraft wakes (including ``encounter'' cases where a following aircraft flies into the wake) are presented, which also demonstrate the performance of the methodology: the adequate treatment of particle distortion, the high-order discretization, and the multiscale subgrid models allow to capture wake dynamics with minimal spurious dispersion and diffusion.

  1. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... person may smoke, carry a lighted cigarette, cigar, or pipe, or operate any device capable of causing an... aircraft is being operated by a holder of a certificate issued under 14 CFR part 121 or part 135... operated under 14 CFR part 91, operations must be conducted in accordance with an operations plan...

  2. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aircraft is being operated by a holder of a certificate issued under 14 CFR part 121 or part 135... operated under 14 CFR part 91, operations must be conducted in accordance with an operations plan accepted... person may smoke, carry a lighted cigarette, cigar, or pipe, or operate any device capable of causing...

  3. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aircraft is being operated by a holder of a certificate issued under 14 CFR part 121 or part 135... operated under 14 CFR part 91, operations must be conducted in accordance with an operations plan accepted... person may smoke, carry a lighted cigarette, cigar, or pipe, or operate any device capable of causing...

  4. Vertical transport and removal of black carbon over East Asia in spring during the A-FORCE aircraft campaign

    NASA Astrophysics Data System (ADS)

    Oshima, N.; Koike, M.; Kondo, Y.; Nakamura, H.; Moteki, N.; Matsui, H.; Takegawa, N.; Kita, K.

    2014-12-01

    The Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign was conducted at 0-9 km in altitude over East Asia in March-April 2009 to investigate transport and removal processes of aerosols, their physical and chemical properties, and cloud microphysical properties in Asian outflow. In this study, mechanisms of vertical transport of black carbon (BC) aerosols and their three-dimensional transport pathways over East Asia in spring were examined through numerical simulations for the A-FORCE campaign using a modified version of the Community Multiscale Air Quality (CMAQ) modeling system. The simulations reproduced the spatial distributions of mass concentration of BC and its transport efficiency observed by the A-FORCE campaign reasonably well, including its vertical and latitudinal gradients and dependency on precipitation amount that air parcels experienced during the transport. During the A-FORCE period, two types of pronounced upward BC mass fluxes from the planetary boundary layer (PBL) to the free troposphere (FT) were found over northeastern and inland-southern China. Over northeastern China, cyclones with modest precipitation were the primary uplifting mechanism of BC. Over inland-southern China, both cumulus convection and orographic uplifting along the slopes of the Tibetan Plateau played important roles in the upward transport of BC, despite its efficient wet deposition due to a large amount of precipitation supported by an abundant moisture supply by the low-level southerlies. In addition to the midlatitude (35-45°N) eastward outflow within the PBL (21% BC removal by precipitation during transport), the uplifting of BC over northeastern and inland-southern China and the subsequent BC transport by the midlatitude lower tropospheric (50% BC removal) and subtropical (25-35°N) midtropospheric westerlies (67% BC removal), respectively, provided the major transport pathways for BC export from continental East Asia to the Pacific.

  5. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  6. Proposal and preliminary design for a high speed civil transport aircraft. Swift: A high speed civil transport for the year 2000

    NASA Technical Reports Server (NTRS)

    Banuelos, Aerobel; Caballero, Maria L.; Fields, Richard S., Jr.; Ledesma, Martha E.; Murakami, Lynne A.; Reyes, Joe T.; Westra, Bryan W.

    1992-01-01

    To meet the needs of the growing passenger traffic market in light of an aging subsonic fleet, a new breed of aircraft must be developed. The Swift is an aircraft that will economically meet these needs by the year 2000. Swift is a 246 passenger, Mach 2.5, luxury airliner. It has been designed to provide the benefit of comfortable, high speed transportation in a safe manner with minimal environmental impact. This report will discuss the features of the Swift aircraft and establish a solid, foundation for this supersonic transport of tomorrow.

  7. National General Aviation Roadmap for a Small Aircraft Transportation System (SATS)

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), Federal Aviation Administration, as well as state, industry, and academia partners have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This long-term strategic undertaking has a goal to bring next-generation technologies and improve air access to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing a new generation of single-pilot light planes for personal and business transportation between the nation's 5,400 public use general aviation airports. Current NASA investments in aircraft technologies are enabling industry to bring affordable, safe, and easy-to-use features to the marketplace, including "Highway in the Sky" glass cockpit operating capabilities, affordable crash worthy composite airframes, more efficient IFR flight training, and revolutionary engines. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. State partnerships are proposed to coordinate research support in key public infrastructure areas. Ultimately, SATS may permit more than tripling aviation system throughput capacity by tapping the under-utilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  8. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  9. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  10. Wing design for a civil tiltrotor transport aircraft: A preliminary study

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1993-01-01

    A preliminary study was conducted on the design of the wing-box structure for a civil tiltrotor transport aircraft. The wing structural weight is to be minimized subject to structural and aeroelastic constraints. The composite wing-box structure is composed of skin, stringers, ribs, and spars. The design variables include skin ply thicknesses and orientations and spar cap and stringer cross-sectional areas. With the total task defined, an initial study was conducted to learn more about the intricate dynamic and aeroelastic characteristics of the tiltrotor aircraft and their roles in the wing design. Also, some work was done on the wing finite-element modeling (via PATRAN) which would be used in structural analysis and optimization. Initial studies indicate that in order to limit the wing/rotor aeroelastic and dynamic interactions in the preliminary design, the cruise speed, rotor system, and wing geometric attributes must all be held fixed.

  11. Air traffic control resource management strategies and the small aircraft transportation system: A system dynamics perspective

    NASA Astrophysics Data System (ADS)

    Galvin, James J., Jr.

    The National Aeronautics and Space Administration (NASA) is leading a research effort to develop a Small Aircraft Transportation System (SATS) that will expand air transportation capabilities to hundreds of underutilized airports in the United States. Most of the research effort addresses the technological development of the small aircraft as well as the systems to manage airspace usage and surface activities at airports. The Federal Aviation Administration (FAA) will also play a major role in the successful implementation of SATS, however, the administration is reluctant to embrace the unproven concept. The purpose of the research presented in this dissertation is to determine if the FAA can pursue a resource management strategy that will support the current radar-based Air Traffic Control (ATC) system as well as a Global Positioning Satellite (GPS)-based ATC system required by the SATS. The research centered around the use of the System Dynamics modeling methodology to determine the future behavior of the principle components of the ATC system over time. The research included a model of the ATC system consisting of people, facilities, equipment, airports, aircraft, the FAA budget, and the Airport and Airways Trust Fund. The model generated system performance behavior used to evaluate three scenarios. The first scenario depicted the base case behavior of the system if the FAA continued its current resource management practices. The second scenario depicted the behavior of the system if the FAA emphasized development of GPS-based ATC systems. The third scenario depicted a combined resource management strategy that supplemented radar systems with GPS systems. The findings of the research were that the FAA must pursue a resource management strategy that primarily funds a radar-based ATC system and directs lesser funding toward a GPS-based supplemental ATC system. The most significant contribution of this research was the insight and understanding gained of how

  12. Aircraft Measurements of Saharan dust properties and impact of atmospheric transport during Fennec

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Highwood, Ellie; Rosenberg, Phil; Trembath, Jamie; Brooke, Jennifer; Bart, Mark; Dean, Angela; Dorsey, James; Crosier, Jonny; McQuaid, Jim; Brindley, Helen; Banks, James; Marsham, John; Sodemann, Harald; Washington, Richard

    2013-04-01

    Measurements of Saharan dust from recent airborne campaigns have found variations in size distributions and optical properties across Saharan and sub-Saharan Africa. These variations have an impact on radiation and thus weather and climate, and are important to characterise and understand, in particular, to understand how they vary with time after dust uplift, transport, and height in the atmosphere. New in-situ aircraft measurements from the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert and the Atlantic Ocean will be presented and compared to previous airborne measurements. Size distributions extending to 300 μm will be shown, representing measurements extending further into the coarse mode than previously published for Saharan dust. The dust sampled by the aircraft covered a wide variety of loadings, dust source regions (Mali, Mauritania and Algeria) and dust ages (from fresh uplift to several days old). A significant coarse mode was present in the size distribution measurements with effective diameter up to 23 μm, and the mean size distribution showed greater concentrations of coarse mode than previous aircraft measurements. Single scattering albedo (SSA) values at 550nm calculated from these size distributions revealed high absorption from 0.77 to 0.95, with a mean of 0.85. Directly measured SSA values were higher (0.91 to 0.99) but new instrumentation revealed that these direct measurements, behind Rosemount inlets, overestimate the SSA by 0.02 to 0.20 depending on the concentration of coarse particles present. This is caused by inlet inefficiencies and pipe losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. This has a significant impact on atmospheric heating rates. The largest dust particles were encountered closest to the ground, and were most abundant in cases where dust was freshly uplifted. Number concentration, mass loading and extinction coefficient showed inverse

  13. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  14. Large >60 gallon/day ‘pulse-tube’ oxygen liquefier for aircraft carriers

    NASA Astrophysics Data System (ADS)

    Spoor, P. S.

    2015-12-01

    An oxygen liquefier using a large ‘pulse-tube’ or acoustic-Stirling cryocooler is described, which has a liquefaction rate in excess of 60 gallons per day (227 liters per day) as measured by the increase in weight of a storage dewar, from <20 kWe input. Several of these systems will be deployed on U.S. Navy aircraft carriers to provide shipboard liquid oxygen. Paths to improvement in future systems are identified, although it is noted that since the present system exceeds the required specifications, these improvements may not be implemented in the near term.

  15. 49 CFR 372.117 - Motor transportation of passengers incidental to transportation by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Motor transportation of passengers incidental to... (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS EXEMPTIONS, COMMERCIAL ZONES, AND TERMINAL AREAS Exemptions § 372.117...

  16. 49 CFR 372.117 - Motor transportation of passengers incidental to transportation by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Motor transportation of passengers incidental to... (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS EXEMPTIONS, COMMERCIAL ZONES, AND TERMINAL AREAS Exemptions § 372.117...

  17. Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.

    1999-01-01

    This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.

  18. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  19. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  20. Aeroelastic Tailoring Study of N+2 Low-Boom Supersonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2015-01-01

    The Lockheed Martins N+2 Low-boom Supersonic Commercial Transport (LSCT) aircraft is optimized in this study through the use of a multidisciplinary design optimization tool developed at the NASA Armstrong Flight Research Center. A total of 111 design variables are used in the first optimization run. Total structural weight is the objective function in this optimization run. Design requirements for strength, buckling, and flutter are selected as constraint functions during the first optimization run. The MSC Nastran code is used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses are based on ZAERO code and landing and ground control loads are computed using an in-house code.

  1. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  2. System data communication structures for active-control transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  3. Implementation and Evaluation of Multiple Adaptive Control Technologies for a Generic Transport Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.

    2010-01-01

    Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies

  4. Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept

    NASA Technical Reports Server (NTRS)

    Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara

    2004-01-01

    New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.

  5. Design Process for High Speed Civil Transport Aircraft Improved by Neural Network and Regression Methods

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.

    1998-01-01

    A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).

  6. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  7. Transport and Chemical Evolution over the Pacific (TRACE-P)Aircraft Mission: Design, Execution, and First Results

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-01-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 plus or minus 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to

  8. 14 CFR Appendix J to Part 141 - Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate J Appendix J to Part 141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Pt. 141, App. J Appendix J to...

  9. 14 CFR Appendix J to Part 141 - Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate J Appendix J to Part 141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Pt. 141, App. J Appendix J to...

  10. Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Sohn, R. A.; Stroup, J. W.

    1990-01-01

    The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles.

  11. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  12. Detection of very large ions in aircraft gas turbine engine combustor exhaust: charged small soot particles?

    NASA Astrophysics Data System (ADS)

    Wilhelm, S.; Haverkamp, H.; Sorokin, A.; Arnold, F.

    Small electrically charged soot particles (CSP) present in the exhaust of a jet aircraft engine combustor have been detected by a Large Ion Mass Spectrometer and quantitatively measured by an Ion Mobility Analyzer. The size and concentration measurements which took place at an aircraft gas-turbine engine combustor test-rig at the ground covered different combustor conditions (fuel flow=FF, fuel sulphur content=FSC). At the high-pressure turbine stage of the engine, CSP-diameters were mostly around 6 nm and CSP-concentrations reached up to 4.8×10 7 cm -3 (positive and negative) corresponding to a CSP-emission index ECSP=2.5×10 15 CSP kg -1 fuel burnt. The ECSP increased with FF but did not increase with FSC. The latter indicates that sulphur was not a major component of the large ions. Possible CSP-sources and CSP-sinks as well as CSP-roles are discussed.

  13. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  14. Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Coen, Peter G.

    1991-01-01

    A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

  15. Optimizing Airspace System Capacity Through a Small Aircraft Transportation System: An Analysis of Economic and Operational Considerations

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.

    2001-01-01

    America's air transport system is currently faced with two equally important dilemmas. First, congestion and delays associated with the overburdened hub and spoke system will continue to worsen unless dramatic changes are made in the way air transportation services are provided. Second, many communities and various regions of the country have not benefited from the air transport system, which tends to focus its attention on major population centers. An emerging solution to both problems is a Small Aircraft Transportation System (SATS), which will utilize a new generation of advanced small aircraft to provide air transport services to those citizens who are poorly served by the hub and spoke system and those citizens who are not served at all. Using new innovations in navigation, communication, and propulsion technologies, these aircraft will enable users to safely and reliably access the over 5,000 general aviation landing facilities around the United States. A small aircraft transportation system holds the potential to revolutionize the way Americans travel and to greatly enhance the use of air transport as an economic development tool in rural and isolated communities across the nation.

  16. Small Aircraft Transportation System Simulation Analysis of the HVO and ERO Concepts

    NASA Technical Reports Server (NTRS)

    Millsaps, Gary D.; Yackovetsky, Robert E. (Technical Monitor)

    2003-01-01

    It is acknowledged that the aviation and aerospace industries are primary forces influencing the industrial development and economic well being of the United States and many countries around the world. For decades the US national air transportation system has been the model of success - safely and efficiently moving people, cargo, goods and services and generating countless benefits throughout the global community; however, the finite nature of the system and many of its components is becoming apparent. Without measurable increases in the capacity of the national air transportation system, delays and service delivery failures will eventually become intolerable. Although the recent economic slowdown has lowered immediate travel demands, that trend is reversing and cargo movement remains high. Research data indicates a conservative 2.5-3.0% annual increase in aircraft operations nationwide through 2017. Such growth will place additional strains upon a system already experiencing capacity constraints. The stakeholders of the system will continue to endure ever-increasing delays and abide lesser levels of service to many lower population density areas of the country unless more efficient uses of existing and new transportation resources are implemented. NASA s Small Aircraft Transportation System program (SATS) is one of several technologies under development that are aimed at using such resources more effectively. As part of this development effort, this report is the first in a series outlining the findings and recommendations resulting from a comprehensive program of multi-level analyses and system engineering efforts undertaken by NASA Langley Research Center s Systems Analysis Branch (SAB). These efforts are guided by a commitment to provide systems-level analysis support for the SATS program. Subsequent efforts will build upon this early work to produce additional analyses and benefits studies needed to provide the technical and economic basis for national

  17. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  18. Point-to-Point! Validation of the Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.

    2006-01-01

    Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).

  19. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  20. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  1. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  2. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  3. Using large eddy simulation to evaluate source area contributions from aircraft flux measurements over heterogeneous land cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in presence of heterogeneous land cover, related to the effects of turbulence on scalar transport, the different behavior of passive (moisture) versus active (temperature) scalars. This in turn h...

  4. Large-Scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2001-01-01

    The paper discusses the following: 1. The Brewer-Dobson circulation: tropical upwelling. 2. Mixing into polar vortices. 3. The latitudinal structure of "age" in the stratosphere. 4. The subtropical "tracer edges". 5. Transport in the lower troposphere. 6. Tracer modeling during SOLVE. 7. 3D modeling of "mean age". 8. Models and measurements II.

  5. Acoustic characteristics of a large scale wind-tunnel model of a jet flap aircraft

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.

    1975-01-01

    The expanding-duct jet flap (EJF) concept is studied to determine STOL performance in turbofan-powered aircraft. The EJF is used to solve the problem of ducting the required volume of air into the wing by providing an expanding cavity between the upper and lower surfaces of the flap. The results are presented of an investigation of the acoustic characteristics of the EJF concept on a large-scale aircraft model powered by JT15D engines. The noise of the EJF is generated by acoustic dipoles as shown by the sixth power dependence of the noise on jet velocity. These sources result from the interaction of the flow turbulence with flap of internal and external surfaces and the trailing edges. Increasing the trailing edge jet from 70 percent span to 100 percent span increased the noise 2 db for the equivalent nozzle area. Blowing at the knee of the flap rather than the trailing edge reduced the noise 5 to 10 db by displacing the jet from the trailing edge and providing shielding from high-frequency noise. Deflecting the flap and varying the angle of attack modified the directivity of the underwing noise but did not affect the peak noise. A forward speed of 33.5 m/sec (110 ft/sec) reduced the dipole noise less than 1 db.

  6. 49 CFR 372.117 - Motor transportation of passengers incidental to transportation by aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Chicago O'Hare International Airport (Chicago, Ill.). The transportation by motor vehicle, in interstate..., between O'Hare International Airport, at Chicago, Ill., on the one hand, and, on the other, points...

  7. Further tests of a model-based scheme for predicting pilot opinion ratings for large commercial transports

    NASA Technical Reports Server (NTRS)

    Rickard, W. W.; Levison, W. H.

    1981-01-01

    A methodology was demonstrated for assessing longitudinal-axis handling qualities of transport aircraft on the basis of closed-loop criteria. Six longitudinal-axis approach configurations were studied covering a range of handling quality problems that included the presence of flexible aircraft modes. Using closed-loop performance requirements derived from task analyses and pilot interviews, predictions of performance/workload tradeoffs were obtained using an analytical pilot/vehicle model. A subsequent manned simulation study yielded objective performance measures and Cooper-Harper pilot ratings that were largely consistent with each other and with analytic predictions.

  8. Integration of Multiple Non-Normal Checklist Procedures into a Single Checklist Procedure for Transport Aircraft: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Foernsler, Lynda J.

    1996-01-01

    Checklists are used by the flight crew to properly configure an aircraft for safe flight and to ensure a high level of safety throughout the duration of the flight. In addition, the checklist provides a sequential framework to meet cockpit operational requirements, and it fosters cross-checking of the flight deck configuration among crew members. This study examined the feasibility of integrating multiple checklists for non-normal procedures into a single procedure for a typical transport aircraft. For the purposes of this report, a typical transport aircraft is one that represents a midpoint between early generation aircraft (B-727/737-200 and DC-10) and modern glass cockpit aircraft (B747-400/777 and MD-11). In this report, potential conflicts among non-normal checklist items during multiple failure situations for a transport aircraft are identified and analyzed. The non-normal checklist procedure that would take precedence for each of the identified multiple failure flight conditions is also identified. The rationale behind this research is that potential conflicts among checklist items might exist when integrating multiple checklists for non-normal procedures into a single checklist. As a rule, multiple failures occurring in today's highly automated and redundant system transport aircraft are extremely improbable. In addition, as shown in this analysis, conflicts among checklist items in a multiple failure flight condition are exceedingly unlikely. The possibility of a multiple failure flight condition occurring with a conflict among checklist items is so remote that integration of the non-normal checklists into a single checklist appears to be a plausible option.

  9. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  10. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  11. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  12. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  13. Demonstration of a Probabilistic Technique for the Determination of Economic Viability of Very Large Transport Configurations

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    1998-01-01

    Over the past few years, modem aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This report contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft concept may be assessed. The assessment is evaluated with the FPI technique to determine the cumulative probability distributions of the design space, as bound by economic objectives and performance constraints. These distributions were compared to established targets for a comparable large capacity aircraft, similar in size to the Boeing 747-400. The conventional baseline configuration design space was determined to be unfeasible and marginally viable, motivating the infusion of advanced technologies, including reductions in drag, specific fuel consumption, wing weight, and Research, Development, Testing, and Evaluation costs. The resulting system design space was qualitatively assessed with technology metric "k" factors. The infusion of technologies shifted the VLT design into regions of feasibility and greater viability. The study also demonstrated a method and relationship by which the impact of new technologies may be assessed in a more system focused approach.

  14. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  15. Computation of wake/exhaust mixing downstream of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Teske, Milton E.; Bilanin, Alan J.

    1993-01-01

    The mixing of engine exhaust with the vortical wake of high speed aircraft operating in the stratosphere can play an important role in the formation of chemical products that deplete atmospheric ozone. An accurate analysis of this type of interaction is therefore necessary as a part of the assessment of the impact of proposed High Speed Civil Transport (HSCT) designs on atmospheric chemistry. This paper describes modifications to the parabolic Navier-Stokes flow field analysis in the UNIWAKE unified aircraft wake model to accommodate the computation of wake/exhaust mixing and the simulation of reacting flow. The present implementation uses a passive chemistry model in which the reacting species are convected and diffused by the fluid dynamic solution but in which the evolution of the species does not affect the flow field. The resulting analysis, UNIWAKE/PCHEM (Passive CHEMistry) has been applied to the analysis of wake/exhaust flows downstream of representative HSCT configurations. The major elements of the flow field model are described, as are the results of sample calculations illustrating the behavior of the thermal exhaust plume and the production of species important to the modeling of condensation in the wake. Appropriate steps for further development of the UNIWAKE/PCHEM model are also outlined.

  16. Low Order Equivalent System Identification for the Tu-144LL Supersonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    Low order equivalent system models were identified from flight test data for the Tu-144LL supersonic transport aircraft. Flight test maneuvers were executed by Russian and American test Pilots flying the aircraft from Zhukovsky airfield outside Moscow, Russia. Flight tests included longitudinal and lateral / directional maneuvers at supersonic cruise flight conditions. Piloted frequency sweeps and multi-step maneuvers were used to generate data for closed loop low order equivalent system modeling. Model parameters were estimated using a flexible. high accuracy Fourier transform and an equation error / output error (EE/OE) formulation in the frequency domain. Results were compared to parameter estimates obtained using spectral estimation and subsequent least squares fit to frequency response data in Bode plots. Modeling results from the two methods agreed well for both a frequency sweep and multiple concatenated multi-step maneuvers. For a single multi-step maneuvers the EE/OE method gave a better model fit with improved prediction capability. A summary of closed loop low order equivalent system identification results for the Tu-144LL, including estimated parameters, standard errors, and flying qualities level predictions, were computed and tabulated.

  17. Aeroelastic Tailoring Study of N+2 Low Boom Supersonic Commerical Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2015-01-01

    The Lockheed Martin N+2 Low - boom Supersonic Commercial Transport (LSCT) aircraft was optimized in this study through the use of a multidisciplinary design optimization tool developed at the National Aeronautics and S pace Administration Armstrong Flight Research Center. A total of 111 design variables we re used in the first optimization run. Total structural weight was the objective function in this optimization run. Design requirements for strength, buckling, and flutter we re selected as constraint functions during the first optimization run. The MSC Nastran code was used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses we re based on ZAERO code, and landing and ground control loads were computed using an in - house code. The w eight penalty to satisfy all the design requirement s during the first optimization run was 31,367 lb, a 9.4% increase from the baseline configuration. The second optimization run was prepared and based on the big-bang big-crunch algorithm. Six composite ply angles for the second and fourth composite layers were selected as discrete design variables for the second optimization run. Composite ply angle changes can't improve the weight configuration of the N+2 LSCT aircraft. However, this second optimization run can create more tolerance for the active and near active strength constraint values for future weight optimization runs.

  18. Annotated Bibliography of Enabling Technologies for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    ONeil, Patrick D.; Tarry, Scott E.

    2002-01-01

    The following collection of research summaries are submitted as fulfillment of a request from NASA LaRC to conduct research into existing enabling technologies that support the development of the Small Aircraft Transportation System aircraft and accompanying airspace management infrastructure. Due to time and fiscal constraints, the included studies focus primarily on visual systems and architecture, flight control design, instrumentation and display, flight deck design considerations, Human-Machine Interface issues, and supporting augmentation technologies and software. This collation of summaries is divided in sections in an attempt to group similar technologies and systems. However, the reader is advised that many of these studies involve multiple technologies and systems that span across many categories. Because of this fact, studies are not easily categorized into single sections. In an attempt to help the reader more easily identify topics of interest, a SATS application description is provided for each summary. In addition, a list of acronyms provided at the front of the report to aid the reader.

  19. Robust active noise control in the loadmaster area of a military transport aircraft.

    PubMed

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft. PMID:21568404

  20. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  1. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Samant, S. S.; Yu, N. J.

    1986-01-01

    An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.

  2. Flight Test of an Adaptive Configuration Optimization System for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Georgie, Jennifer; Barnicki, Joseph S.

    1999-01-01

    A NASA Dryden Flight Research Center program explores the practical application of real-time adaptive configuration optimization for enhanced transport performance on an L-1011 aircraft. This approach is based on calculation of incremental drag from forced-response, symmetric, outboard aileron maneuvers. In real-time operation, the symmetric outboard aileron deflection is directly optimized, and the horizontal stabilator and angle of attack are indirectly optimized. A flight experiment has been conducted from an onboard research engineering test station, and flight research results are presented herein. The optimization system has demonstrated the capability of determining the minimum drag configuration of the aircraft in real time. The drag-minimization algorithm is capable of identifying drag to approximately a one-drag-count level. Optimizing the symmetric outboard aileron position realizes a drag reduction of 2-3 drag counts (approximately 1 percent). Algorithm analysis of maneuvers indicate that two-sided raised-cosine maneuvers improve definition of the symmetric outboard aileron drag effect, thereby improving analysis results and consistency. Ramp maneuvers provide a more even distribution of data collection as a function of excitation deflection than raised-cosine maneuvers provide. A commercial operational system would require airdata calculations and normal output of current inertial navigation systems; engine pressure ratio measurements would be optional.

  3. Large-scale Atmospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2004-01-01

    Continuing earlier work, we continued an investigation of the seasonal behavior of the edges of the stratospheric surf zone. These edges form a barrier between the rapidly mixed surf zone and the relatively isolated tropics. In collaboration with Dr Lynn Sparling at GSFC, we used a statistical analysis of HALOE and CLAES trace gas data from UARS to identify and locate these edges during each UARS observing period. We found that the edges on both sides of the equator are present all year (a fact that is important for conceptual models of stratospheric transport), though that on the summer side of the equator is much less sharp than the winter edge. The edges migrate seasonally into the summer hemisphere. Their location also shows influence of the QBO, together with the SAO at higher altitudes. Comparisons with effective diffusivities, and the edge locations, suggest that the edge is sustained by surf zone entrainment during winter, but by the residual circulation during summer.

  4. Large-scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2003-01-01

    The PI has undertaken a theoretical analysis of the existence and nature of compact tracer-tracer relationships of the kind observed in the stratosphere, augmented with three-dimensional model simulations of stratospheric tracers (the latter being an extension of modeling work the group did during the SOLVE experiment). This work achieves a rigorous theoretical basis for the existence and shape of these relationships, as well as a quantitative theory of their width and evolution, in terms of the joint tracer-tracer PDF distribution. A paper on this work is almost complete and will soon be submitted to Rev. Geophys. We have analyzed lower stratospheric water in simulations with an isentropic-coordinate version of the MATCH transport model which we recently helped to develop. The three-dimensional structure of lower stratospheric water, in particular, attracted our attention: dry air is, below about 400K potential temperature, localized in the regions of the west Pacific and equatorial South America. We have been analyzing air trajectories to determine how air passes through the tropopause cold trap. This work is now being completed, and a paper will be submitted to Geophys. Res. Lett. before the end of summer. We are continuing to perform experiments with the 'MATCH' CTM, in both sigma- and entropy-coordinate forms. We earlier found (in collaboration with Dr Natalie Mahowald, and as part of an NSF-funded project) that switching to isentropic coordinates made a substantial improvement to the simulation of the age of stratospheric air. We are now running experiments with near-tropopause sources in both versions of the model, to see if and to what extent the simulation of stratosphere-troposphere transport is dependent on the model coordinate. Personnel Research is supervised by the PI, Prof. Alan Plumb. Mr William Heres conducts the tracer modeling work and performs other modeling tasks. Two graduate students, Ms Irene Lee and Mr Michael Ring, have been participating

  5. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  6. A 3-Dimensional Cockpit Display with Traffic and Terrain Information for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.

    2004-01-01

    The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.

  7. Analytic and subjective assessments of operator workload imposed by communications tasks in transport aircraft

    NASA Technical Reports Server (NTRS)

    Eckel, J. S.; Crabtree, M. S.

    1984-01-01

    Analytical and subjective techniques that are sensitive to the information transmission and processing requirements of individual communications-related tasks are used to assess workload imposed on the aircrew by A-10 communications requirements for civilian transport category aircraft. Communications-related tasks are defined to consist of the verbal exchanges between crews and controllers. Three workload estimating techniques are proposed. The first, an information theoretic analysis, is used to calculate bit values for perceptual, manual, and verbal demands in each communication task. The second, a paired-comparisons technique, obtains subjective estimates of the information processing and memory requirements for specific messages. By combining the results of the first two techniques, a hybrid analytical scale is created. The third, a subjective rank ordering of sequences of communications tasks, provides an overall scaling of communications workload. Recommendations for future research include an examination of communications-induced workload among the air crew and the development of simulation scenarios.

  8. Convection During SEAC4RS: Comparing Aircraft Observations to WRF Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Heath, N.; Fuelberg, H. E.; Tanelli, S.

    2014-12-01

    Deep convection remains a challenge to accurately parameterize in global and climate models. Increases in computer power recently have allowed large-eddy simulations (LES; grid spacing of O(100 m)) of deep convection, which are beginning to increase our understanding of this unresolved issue. Our research examined the Weather Research and Forecasting model in LES mode (WRF-LES) as a potential tool to further our understanding of deep convective cloud dynamics and microphysics. Idealized and nested WRF-LESs were made for 02 September 2013, a day on which 3 aircraft from the recent NASA SEAC4RS campaign extensively sampled deep convection during all phases of its lifecycle. When modeling deep convection at the LES scale, one of the greatest uncertainties is the choice of cloud microphysical parameterization. Thus, we tested the sensitivity of the WRF-LESs to several microphysical schemes. Simulated flight tracks were used to evaluate the WRF-LESs against the dynamical and microphysical data gathered during the SEAC4RS aircraft cloud penetrations. Results indicated the importance of cloud microphysical parameterizations when making deep convective LESs, especially if they are used to develop cumulus parameterizations. Results from the idealized WRF-LESs then were used to "tune" a real-data run in which the WRF-LES domain was nested within a mesoscale domain. This multi-scale nesting of an LES provides a framework for making detailed simulations of case studies when high-resolution observed data are available for evaluation. This nesting approach also might provide a new method, which uses more realistic atmospheric forcing for the LES, to develop cumulus parameterizations.

  9. Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2007-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a

  10. On-site characterisation, re-packaging and transport of luminised, former aircraft escape hatches

    SciTech Connect

    Reeves, Nigel; John, Gordon; Beadle, Ian; Grundy, Colette; Sutherland, Alex; Shaw, Cath; Green, Lisa

    2007-07-01

    AMEC NNC, under contract to the UK Environment Agency, recovered a number of redundant aircraft hatches from an insecure location in North Wales. The Environment Agency instigated emergency action under the Radioactive Substances Act 1993 (RSA93), to recover the hatches. Section 30(1) of RSA93 gives the Environment Agency powers to dispose of radioactive waste where it is unlikely the waste will be lawfully disposed of. Funding for this project was provided by the UK Government, within the Surplus Source Disposal Programme. The Environment Agency worked closely with partner regulatory organisations including the Health and Safety Executive (HSE), the Department for Transport (DfT) and the Local Authority to ensure the safe packaging, removal and transport of the material to a part-shielded store pending final disposal. The project comprised a number of technical difficulties that needed to be overcome. These included poor existing characterisation of the waste, insecure premises requiring daily lock-down, construction of a temporary containment facility with associated filtered extract and the inclement weather. AMEC NNC's initial risk assessment identified the likelihood of high levels of loose, airborne radiological material. In order to provide adequate protection for personnel, and to prevent the spread of any radioactive contamination, the decision was made to implement radiological containment and to equip contractors with appropriate RPE (Respiratory Protective Equipment). Accurate characterisation of the radiological nature of the material was a crucial objective within the project. This was in order to correctly identify the Proper Shipping Name for consignment for transport, and to ensure that suitable transport containers were used. The packaged wastes were then transported to a secure location for temporary storage prior to final disposal. An innovative route was identified for processing of this material. Beneficial recycling and re-use within the

  11. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  12. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    PubMed Central

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2015-01-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin’s lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides. PMID:25642134

  13. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  14. Durability and damage tolerance of Large Composite Primary Aircraft Structure (LCPAS)

    NASA Technical Reports Server (NTRS)

    Mccarty, John E.; Roeseler, William G.

    1984-01-01

    Analysis and testing addressing the key technology areas of durability and damage tolerance were completed for wing surface panels. The wing of a fuel-efficient, 200-passenger commercial transport airplane for 1990 delivery was sized using graphite-epoxy materials. Coupons of various layups used in the wing sizing were tested in tension, compression, and spectrum fatigue with typical fastener penetrations. The compression strength after barely visible impact damage was determined from coupon and structural element tests. One current material system and one toughened system were evaluated by coupon testing. The results of the coupon and element tests were used to design three distinctly different compression panels meeting the strength, stiffness, and damage-tolerance requirements of the upper wing panels. These three concepts were tested with various amounts of damage ranging from barely visible impact to through-penetration. The results of this program provide the key technology data required to assess the durability and damage-tolerance capability or advanced composites for use in commercial aircraft wing panel structure.

  15. Transport of large solids in sewer pipes.

    PubMed

    Walski, Thomas; Edwards, Bryce; Helfer, Emil; Whitman, Brian E

    2009-07-01

    This paper presents a method for determining the conditions under which large solids (i.e., solids with a vertical dimension greater than the depth of water) are able to move in a pipe. Depending on the value of a dimensionless number [s(d/y) - 1], where s = specific gravity of the solids, d = water depth, and y = height of solids, motion will occur if a sufficient velocity (also reported as a Froude number or modified "solids" Froude number) is exceeded. Flume experiments were used to determine the coefficients to be used in the design. The velocity required to reach fluid movement was approximately 0.6 to 1.0 m/s (2 to 3 ft/s), which is consistent, although slightly higher than values generally used in conventional sewer design practice. However, it was demonstrated that increasing the pipe slope to achieve a higher velocity does not ensure that the solid will move. PMID:19691252

  16. Technology for design of transport aircraft. Lecture notes for MIT courses: Seminar 1.61 freshman seminar in air transportation and graduate course 1.201, transportation systems analysis

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The design parameters which determine cruise performance for a conventional subsonic jet transport are discussed. It is assumed that the aircraft burns climb fuel to reach cruising altitude and that aeronautical technology determines the ability to carry a given payload at cruising altitude. It is shown that different sizes of transport aircraft are needed to provide the cost optimal vehicle for different given payload-range objectives.

  17. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.

    PubMed

    Alves, J G; Mairos, J C

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made. PMID:17277329

  18. California's Methane Budget derived from CalNex P-3 Aircraft Observations and the WRF-STILT Lagrangian Transport Model

    NASA Astrophysics Data System (ADS)

    Santoni, G. W.; Xiang, B.; Kort, E. A.; Daube, B.; Andrews, A. E.; Sweeney, C.; Wecht, K.; Peischl, J.; Ryerson, T. B.; Angevine, W. M.; Trainer, M.; Nehrkorn, T.; Eluszkiewicz, J.; Wofsy, S. C.

    2012-12-01

    We present constraints on California emission inventories of methane (CH4) using atmospheric observations from nine NOAA P-3 flights during the California Nexus (CalNex) campaign in May and June of 2010. Measurements were made using a quantum cascade laser spectrometer (QCLS) and a cavity ring-down spectrometer (CRDS) and calibrated to NOAA standards in-flight. Five flights sampled above the northern and southern central valley and an additional four flights probed the south coast air basin, quantifying emissions from the Los Angeles basin. The data show large (>100 ppb) CH4 enhancements associated with point and area sources such as cattle and manure management, landfills, wastewater treatment, gas production and distribution infrastructure, and rice agriculture. We compare aircraft observations to modeled CH4 distributions by accounting for a) transport using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by Weather Research and Forecasting (WRF) meteorology, b) emissions from inventories such as EDGAR and ones constructed from California-specific state and county databases, each gridded to 0.1° x 0.1° resolution, and c) spatially and temporally evolving boundary conditions such as GEOS-Chem and a NOAA aircraft profile measurement derived curtain imposed at the edge of the WRF domain. After accounting for errors associated with transport, planetary boundary layer height, lateral boundary conditions, seasonality of emissions, and the spatial resolution of surface emission prior estimates, we find that the California Air Resources Board (CARB) CH4 budget is a factor of 1.64 too low. Using a Bayesian inversion to the flight data, we estimate California's CH4 budget to be 2.5 TgCH4/yr, with emissions from cattle and manure management, landfills, rice, and natural gas infrastructure, representing roughly 82%, 26%, 9% and 32% (sum = 149% with other sources accounting for the additional 15%) of the current CARB CH4 budget estimate of 1.52 TgCH4

  19. Low speed wind tunnel investigation of span load alteration, forward-located spoilers, and splines as trailing-vortex-hazard alleviation devices on a transport aircraft model

    NASA Technical Reports Server (NTRS)

    Croom, D. R.; Dunham, R. E., Jr.

    1975-01-01

    The effectiveness of a forward-located spoiler, a spline, and span load alteration due to a flap configuration change as trailing-vortex-hazard alleviation methods was investigated. For the transport aircraft model in the normal approach configuration, the results indicate that either a forward-located spoiler or a spline is effective in reducing the trailing-vortex hazard. The results also indicate that large changes in span loading, due to retraction of the outboard flap, may be an effective method of reducing the trailing-vortex hazard.

  20. Carbon/graphite fiber risk analysis and assessment study: An assessment of the risk to Douglas commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Schjelderup, H. C.; Cook, C. Q.; Snyder, E.; Henning, B.; Hosford, J.; Gilles, D. L.; Swanstrom, C. W.

    1980-01-01

    The potential hazard to electrical and electronic devices should there be a release of free carbon fibers due to an aircraft crash and fire was assessed. Exposure and equipment sensitivity data were compiled for a risk analysis. Results are presented in the following areas: DC-9/DC-10 electrical/electronic component characterization; DC-9 and DC-10 fiber transfer functions; potential for transport aircraft equipment exposure to carbon fibers; and equipment vulnerability assessment. Results reflect only a negligible increase in risk for the DC-9 and DC-10 fleets either now or projected to 1993.

  1. A comparison of communication modes for delivery of air traffic control clearance amendments in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.; Hansman, R. J.

    1989-01-01

    A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.

  2. Impact data from a transport aircraft during a controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Alfaro-Bou, E.; Hayduk, R. J.

    1986-01-01

    On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage.

  3. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  4. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... part 4a of the Civil Air Regulations. ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance...

  5. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... part 4a of the Civil Air Regulations. ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance...

  6. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... part 4a of the Civil Air Regulations. ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance...

  7. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1993-01-01

    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  8. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  9. INTERIOR VIEW WITH LARGE, COMPLETED VALVEMOLD BEING TRANSPORTED BY THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE, COMPLETED VALVE-MOLD BEING TRANSPORTED BY THE "BOX FLOOR" OVERHEAD RAIL CRANE TO THE POURING AREA. (THE BOX FLOOR AREA IS WHERE THE COMPANY PREPARES MOLDS TOO LARGE TO BE MADE ON MOLDING MACHINES OR POURED ON THE CONVEYOR) - Stockham Pipe & Fittings Company, Ductile Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  10. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  11. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  12. The Philosophy which underlies the structural tests of a supersonic transport aircraft with particular attention to the thermal cycle

    NASA Technical Reports Server (NTRS)

    Ripley, E. L.

    1972-01-01

    The information presented is based on data obtained from the Concorde. Much of this data also applies to other supersonic transport aircraft. The design and development of the Concorde is a joint effort of the British and French, and the structural test program is shared, as are all the other activities. Vast numbers of small specimens have been tested to determine the behavior of the materials used in the aircraft. Major components of the aircraft structure, totalling almost a complete aircraft, have been made and are being tested to help the constructors in each country in the design and development of the structure. Tests on two complete airframes will give information for the certification of the aircraft. A static test was conducted in France and a fatigue test in the United Kingdom. Fail-safe tests are being made to demonstrate the crack-propagation characteristics of the structure and its residual strength. Aspects of the structural test program are described in some detail, dealing particularly with the problems associated with the thermal cycle. The biggest of these problems is the setting up of the fatigue test on the complete airframe; therefore, this is covered more extensively with a discussion about how the test time can be shortened and with a description of the practical aspects of the test.

  13. HiVision millimeter-wave radar for enhanced vision systems in civil and military transport aircraft

    NASA Astrophysics Data System (ADS)

    Pirkl, Martin; Tospann, Franz-Jose

    1997-06-01

    This paper presents a guideline to meet the requirements of forward looking sensors of an enhanced vision system for both military and civil transport aircraft. It gives an update of a previous publication with special respect to airborne application. For civil transport aircraft an imaging mm-wave radar is proposed as the vision sensor for an enhanced vision system. For military air transport an additional high-performance weather radar should be combined with the mm-wave radar to enable advanced situation awareness, e.g. spot-SAR or air to air operation. For tactical navigation the mm-wave radar is useful due to its ranging capabilities. To meet these requirements the HiVision radar was developed and tested. It uses a robust concept of electronic beam steering and will meet the strict price constraints of transport aircraft. Advanced image processing and high frequency techniques are currently developed to enhance the performance of both the radar image and integration techniques. The advantages FMCW waveform even enables a sensor with low probability of intercept and a high resistance against jammer. The 1997 highlight will be the optimizing of the sensor and flight trials with an enhanced radar demonstrator.

  14. Large scale motions of thermal transport in a turbulent channel

    NASA Astrophysics Data System (ADS)

    Dharmarathne, Suranga; Tutkun, Murat; Araya, Guillermo; Leonardi, Stefano; Castillo, Luciano

    2015-11-01

    The importance of large scale motions (LSMs) on thermal transport in a turbulent channel flow at friction number of 394 is investigated. Two-point correlation analysis reveals that LSM which significantly contribute to turbulence kinetic energy and scalar transport is a reminiscent of a hairpin packet. Low-order mode representation of the original fields using proper orthogonal decomposition (POD) unveils that the most dominant mode that transports is 3-4 channel half-heights long and such structure which contribute to scalar transport is 2-4 channel half-heights long. Consequently, the study discloses that LSMs are effective in transporting both streamwise component of turbulence kinetic energy and scalar variances.

  15. Safety Verification of the Small Aircraft Transportation System Concept of Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor; Munoz, Cesar

    2005-01-01

    A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.

  16. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  17. Economic effects of propulsion system technology on existing and future transport aircraft

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1974-01-01

    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.

  18. Operational requirements for flight control and navigation systems for short haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1976-01-01

    Operational procedures for use in an assumed short haul transport route were evaluated. The curved path approaches in airline use by large jet airplanes were studied. The characteristics of these approaches were included in development of operational procedures for transitions and approaches by a jet STOL transport. These procedures were used in a simulation experiment and were satisfactory for autoflight operation. A minimum turn radius of 3,000 ft. for a 180 final turn was determined for the wind conditions tested. The accuracy of the approaches was very good.

  19. Population Census of a Large Common Tern Colony with a Small Unmanned Aircraft

    PubMed Central

    Chabot, Dominique; Craik, Shawn R.; Bird, David M.

    2015-01-01

    Small unmanned aircraft systems (UAS) may be useful for conducting high-precision, low-disturbance waterbird surveys, but limited data exist on their effectiveness. We evaluated the capacity of a small UAS to census a large (>6,000 nests) coastal Common tern (Sterna hirundo) colony of which ground surveys are particularly disruptive and time-consuming. We compared aerial photographic tern counts to ground nest counts in 45 plots (5-m radius) throughout the colony at three intervals over a nine-day period in order to identify sources of variation and establish a coefficient to estimate nest numbers from UAS surveys. We also compared a full colony ground count to full counts from two UAS surveys conducted the following day. Finally, we compared colony disturbance levels over the course of UAS flights to matched control periods. Linear regressions between aerial and ground counts in plots had very strong correlations in all three comparison periods (R2 = 0.972–0.989, P < 0.001) and regression coefficients ranged from 0.928–0.977 terns/nest. Full colony aerial counts were 93.6% and 94.0%, respectively, of the ground count. Varying visibility of terns with ground cover, weather conditions and image quality, and changing nest attendance rates throughout incubation were likely sources of variation in aerial detection rates. Optimally timed UAS surveys of Common tern colonies following our method should yield population estimates in the 93–96% range of ground counts. Although the terns were initially disturbed by the UAS flying overhead, they rapidly habituated to it. Overall, we found no evidence of sustained disturbance to the colony by the UAS. We encourage colonial waterbird researchers and managers to consider taking advantage of this burgeoning technology. PMID:25874997

  20. Population census of a large common tern colony with a small unmanned aircraft.

    PubMed

    Chabot, Dominique; Craik, Shawn R; Bird, David M

    2015-01-01

    Small unmanned aircraft systems (UAS) may be useful for conducting high-precision, low-disturbance waterbird surveys, but limited data exist on their effectiveness. We evaluated the capacity of a small UAS to census a large (>6,000 nests) coastal Common tern (Sterna hirundo) colony of which ground surveys are particularly disruptive and time-consuming. We compared aerial photographic tern counts to ground nest counts in 45 plots (5-m radius) throughout the colony at three intervals over a nine-day period in order to identify sources of variation and establish a coefficient to estimate nest numbers from UAS surveys. We also compared a full colony ground count to full counts from two UAS surveys conducted the following day. Finally, we compared colony disturbance levels over the course of UAS flights to matched control periods. Linear regressions between aerial and ground counts in plots had very strong correlations in all three comparison periods (R2 = 0.972-0.989, P < 0.001) and regression coefficients ranged from 0.928-0.977 terns/nest. Full colony aerial counts were 93.6% and 94.0%, respectively, of the ground count. Varying visibility of terns with ground cover, weather conditions and image quality, and changing nest attendance rates throughout incubation were likely sources of variation in aerial detection rates. Optimally timed UAS surveys of Common tern colonies following our method should yield population estimates in the 93-96% range of ground counts. Although the terns were initially disturbed by the UAS flying overhead, they rapidly habituated to it. Overall, we found no evidence of sustained disturbance to the colony by the UAS. We encourage colonial waterbird researchers and managers to consider taking advantage of this burgeoning technology. PMID:25874997

  1. Massive positive and negative ions in the wake of a jet aircraft: Detection by a novel aircraft-based large ion mass spectrometer (LIOMAS)

    NASA Astrophysics Data System (ADS)

    Wohlfrom, K.-H.; Eichkorn, S.; Arnold, F.; Schulte, P.

    2000-12-01

    Negative and positive chemiions (CI) were measured by an aircraft-based large ion mass spectrometer (LIOMAS) in the wake of a jet aircraft (ATTAS) at an altitude of 8 km and at plume ages between 0.6 and 6.2s. CI mass distributions were measured for mass numbers m up to 8500 atomic mass units, and additionally total fractional CI abundances fM for CI with m > 8500 were obtained. Very massive CI were observed even when nearly sulfur free jet fuel was burnt in the ATTAS engines (fuel sulfur content FSC = 2mg/kg). This indicates that a CI growth process was operative which did not involve sulfur, but more likely low volatility organic compounds (LVOC). However, when fuel with an FSC = 118mg/kg was used a significant additional negative CI growth was observed which must be due to sulfur-bearing molecules, probably sulfuric acid which is formed by oxidation of fuel sulfur. Use of the fuel with higher FSC did not change the size distribution of positive ions significantly. For both FSC the negative ions had a larger mean m compared to the positive ions.

  2. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some U.S. and U.S.S.R. aircraft. The emphasis is on the historical development of large aircraft - civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  3. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some US and USSR aircraft. The emphasis is on the historical development of large aircraft-civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  4. A Preliminary Study of V/STOL Transport Aircraft and Bibliography of NASA Research in the VTOL-STOL Field

    NASA Technical Reports Server (NTRS)

    1961-01-01

    This group of papers was prepared by the staff of the Langley Research Center to assist in planning for future commercial air-transport facilities in the New York metropolitan area. Areas of particular interest were predictions regarding the types of V/STOL aircraft that are likely to be developed for various commercial transport applications, estimates of the performance and probable operating procedures for such aircraft, and the approximate dates these aircraft could be available for use. Although the NASA has made no comprehensive studies of this type, the extensive research program in the VTOL-STOL field during the last 10 years appeared to provide a source for some of the desired information . The five papers included herein were therefore prepared to summarize pertinent available material in a form suitable for the intended use. In several instances, new studies and analysis were required to provide the necessary information, but because of a time deadline, many of the significant points received only a cursory examination. For example, much of the quantitative data used in the papers for making generalized comparisons was obtained by approximate methods and is not considered appropriate for use in applications where precise estimates are required. It should be recognized, then, that the treatment of the V/STOL transport provided by this group of papers is necessarily of a preliminary nature.

  5. Progress in manufacturing large primary aircraft structures using the stitching/RTM process

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Thrash, Patrick; Rohwer, Kim

    1993-01-01

    The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.

  6. Bayesian model selection for a finite element model of a large civil aircraft

    SciTech Connect

    Hemez, F. M.; Rutherford, A. C.

    2004-01-01

    Nine aircraft stiffness parameters have been varied and used as inputs to a finite element model of an aircraft to generate natural frequency and deflection features (Goge, 2003). This data set (147 input parameter configurations and associated outputs) is now used to generate a metamodel, or a fast running surrogate model, using Bayesian model selection methods. Once a forward relationship is defined, the metamodel may be used in an inverse sense. That is, knowing the measured output frequencies and deflections, what were the input stiffness parameters that caused them?

  7. Lattice thermal transport in large-area polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Aksamija, Z.; Knezevic, I.

    2014-07-01

    We study lattice thermal transport in large-area polycrystalline graphene, such as the samples grown by chemical vapor deposition (CVD) of carbon on Cu. These systems are composed of single-crystalline grains with a broad range of sizes and crystal orientations, separated by atomically rough grain boundaries. We solve the phonon Boltzmann transport equation and calculate the thermal conductivity in each grain, including scattering from the grain boundary roughness. Thermal transport in the large-area sample is considered in the Corbino-membrane geometry, with heat flowing through a network of thermal resistors and away from a pointlike heat source. The thermal transport in polycrystalline graphene is shown to be highly anisotropic, depending on the individual properties of the grains (their size and boundary roughness), as well as on grain connectivity. Strongest heat conduction occurs along large-grain filaments, while the heat flow is blocked through regions containing predominantly small grains. We discuss how thermal transport in CVD graphene can be tailored by controlling grain disorder.

  8. Transport of Carbon-14 in a Large, Unsaturated Soil Column

    SciTech Connect

    Mitchell Plummer; Don Fox; Larry Hull

    2004-03-01

    Wastes buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering and Environmental Laboratory (INEEL) include activated metals that release radioactive 14C as they corrode. To test and refine transport predictions that describe releases to the environment with time, we conducted a series of transport experiments with nonreactive gas- and aqueous-phase tracers and inorganic 14C species in a large unsaturated soil column filled with sediment representative of that at the RWMC. The tracer tests, hydraulic measurements, and chemical monitoring provided constraints on physical transport parameters, water content, and aqueous–gas partitioning behavior. With those constraints, we estimated a solid–aqueous distribution coefficient for the sediment through inverse modeling of the 14C transport data, using both a simple gas-diffusion model and a multiphase flow and transport simulator (STOMP). Results indicate that 14C transport in this system is well described by a reactive gas diffusion model, with a pH-dependent retardation factor. Fitting transport simulations to the early-time transport data yielded Kd 0.5 ± 0.1 mL g–1, while soil samples removed approximately 1 yr later yielded Kd values of 0.8 to 2.4 mL g–1. These values are consistent with those derived from smaller-scale experiments, demonstrating that laboratory-based measurements provide a valid means of estimating transport behavior at much larger spatial and temporal scales. Assuming that 14CO2 migration in the RWMC is dominated by gas transport, our results suggest that most 14C released from the RWMC would discharge to the atmosphere rather than to the underlying Snake River Plain aquifer

  9. LARGE-SCALE CO2 TRANSPORTATION AND DEEP OCEAN SEQUESTRATION

    SciTech Connect

    Hamid Sarv

    1999-03-01

    Technical and economical feasibility of large-scale CO{sub 2} transportation and ocean sequestration at depths of 3000 meters or grater was investigated. Two options were examined for transporting and disposing the captured CO{sub 2}. In one case, CO{sub 2} was pumped from a land-based collection center through long pipelines laid on the ocean floor. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating structure for vertical injection to the ocean floor. In the latter case, a novel concept based on subsurface towing of a 3000-meter pipe, and attaching it to the offshore structure was considered. Budgetary cost estimates indicate that for distances greater than 400 km, tanker transportation and offshore injection through a 3000-meter vertical pipe provides the best method for delivering liquid CO{sub 2} to deep ocean floor depressions. For shorter distances, CO{sub 2} delivery by parallel-laid, subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines and tankers were 1.5 and 1.4 dollars per ton of stored CO{sub 2}, respectively. At these prices, economics of ocean disposal are highly favorable. Future work should focus on addressing technical issues that are critical to the deployment of a large-scale CO{sub 2} transportation and disposal system. Pipe corrosion, structural design of the transport pipe, and dispersion characteristics of sinking CO{sub 2} effluent plumes have been identified as areas that require further attention. Our planned activities in the next Phase include laboratory-scale corrosion testing, structural analysis of the pipeline, analytical and experimental simulations of CO{sub 2} discharge and dispersion, and the conceptual economic and engineering evaluation of large-scale implementation.

  10. Aircraft noise effects on sleep: application of the results of a large polysomnographic field study.

    PubMed

    Basner, Mathias; Samel, Alexander; Isermann, Ullrich

    2006-05-01

    The Institute of Aerospace Medicine at the German Aerospace Center (DLR) investigated the influence of nocturnal aircraft noise on sleep in polysomnographic laboratory and field studies between 1999 and 2004. The results of the field studies were used by the Regional Council of Leipzig (Germany) for the establishment of a noise protection plan in the official approval process for the expansion of Leipzig/Halle airport. Methods and results of the DLR field study are described in detail. Special attention is given to the dose-response relationship between the maximum sound pressure level of an aircraft noise event and the probability to wake up, which was used to establish noise protection zones directly related to the effects of noise on sleep. These protection zones differ qualitatively and quantitatively from zones that are solely based on acoustical criteria. The noise protection plan for Leipzig/Halle airport is presented and substantiated: (1) on average, there should be less than one additional awakening induced by aircraft noise, (2) awakenings recalled in the morning should be avoided as much as possible, and (3) aircraft noise should interfere as little as possible with the process of falling asleep again. Issues concerned with the representativeness of the study sample are discussed. PMID:16708935

  11. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  12. Flight dynamics analysis and control of transport aircraft subject to failure

    NASA Astrophysics Data System (ADS)

    Daşkɪran, O.; Kavsaoğlu, M. Ş.

    2013-12-01

    After a structural damage or component failure during any flight mode, aircraft dynamics are dramatically altered. A quick and adequate stabilization effort is crucial. Flight dynamics for several failure scenarios are analyzed. Necessary amounts of control deflections for postfailure trim are calculated. These trim values are used as control input in an open loop manner and validity of this approach is tested via flight simulations. Alternatively, a closed loop flight control system, which does not need the postfailure trim values, is also designed. This closed loop controller is based on a linearized aircraft model whereas flight simulations are based on nonlinear aircraft dynamics.

  13. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  14. Transport In The Antarctic Lowermost Stratosphere Inferred From In-situ Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Werner, A.; Ivanova, E.; Riediger, O.; Schmidt, U.; Strunk, M.; Volk, M.

    During the APE-GAIA campaign in Ushuaia, Argentina (54 S) in September/October 1999 measurements of long-lived tracers were made on board the M55 Geophys- ica aircraft with the High Altitude Gas Analyser (HAGAR), an in-situ instrument designed and built at the Institute for Meteorology and Geophysics, University of Frankfurt. HAGAR consists of a two channel gas chromatograph (GC/ECD) com- bined with a non-dispersive IR analyser which together measure the species N2O, CFC11, CFC12, H1211, SF6, and CO2. Most of the data were obtained between 50S and 70S latitude outside and inside the Antarctic polar vortex up to altitudes of about 21 km. Good coverage of samples in the lowermost stratosphere is achieved during horizontal flight legs at potential temperatures < 380K as well as vertical profiles at various latitudes. To estimate transport into the lowermost stratosphere we will present simple mass- balance calculations based on a method by Ray et al. (JGR, Vol. 104, No.D21, p. 26565-26580, 1999). With the knowledge of mixing ratios of trace gases at the 380 K isentropic surface, the tropopause, and data within the lowermost stratosphere it is pos- sible to determine the portions of air coming from above 380 K and across the extrat- ropical tropopause. In order to investigate seasonal variations, comparisons are made with NASA-ER-2 data from the ASHOE/MAESA (1994) campaign. Hemispheric dif- ferences are discussed by comparing our results with the northern hemispheric results of Ray et al.

  15. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  16. THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY

    SciTech Connect

    WONG,SK; CHAN,VS

    2002-11-01

    OAK B202 THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY. This article presents a comprehensive description of neoclassical transport theory in the banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical constraints. it is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  17. Conflict Prevention and Separation Assurance Method in the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Carreno, Victor A.; Williams, Daniel M.; Munoz, Cesar

    2005-01-01

    A multilayer approach to the prevention of conflicts due to the loss of aircraft-to-aircraft separation which relies on procedures and on-board automation was implemented as part of the SATS HVO Concept of Operations. The multilayer system gives pilots support and guidance during the execution of normal operations and advance warning for procedure deviations or off-nominal operations. This paper describes the major concept elements of this multilayer approach to separation assurance and conflict prevention and provides the rationale for its design. All the algorithms and functionality described in this paper have been implemented in an aircraft simulation in the NASA Langley Research Center s Air Traffic Operation Lab and on the NASA Cirrus SR22 research aircraft.

  18. Optimization-based tuning of LPV fault detection filters for civil transport aircraft

    NASA Astrophysics Data System (ADS)

    Ossmann, D.; Varga, A.

    2013-12-01

    In this paper, a two-step optimal synthesis approach of robust fault detection (FD) filters for the model based diagnosis of sensor faults for an augmented civil aircraft is suggested. In the first step, a direct analytic synthesis of a linear parameter varying (LPV) FD filter is performed for the open-loop aircraft using an extension of the nullspace based synthesis method to LPV systems. In the second step, a multiobjective optimization problem is solved for the optimal tuning of the LPV detector parameters to ensure satisfactory FD performance for the augmented nonlinear closed-loop aircraft. Worst-case global search has been employed to assess the robustness of the fault detection system in the presence of aerodynamics uncertainties and estimation errors in the aircraft parameters. An application of the proposed method is presented for the detection of failures in the angle-of-attack sensor.

  19. Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2008-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system.

  20. The use of parametric cost estimating relationships for transport aircraft systems in establishing initial Design to Cost Targets

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Anderson, J. L.

    1977-01-01

    This paper provides a brief overview of Design to Cost (DTC). Problems inherent in attempting to estimate costs are discussed, along with techniques and types of models that have been developed to estimate aircraft costs. A set of cost estimating relationships that estimate the total production cost of commercial and military transport aircraft at the systems level is presented and the manner in which these equations might be used effectively in developing initial DTC targets is indicated. The principal point made in this paper is that, by using a disagregated set of equations to estimate transport aircraft costs at the systems level, reasonably accurate preliminary cost estimates may be achieved. These estimates may serve directly as initial DTC targets, or adjustments may be made to the estimates obtained for some of the systems to estimate the production cost impact of alternative designs or manufacturing technologies. The relative ease by which estimates may be made with this model, the flexibility it provides by being disaggregated, and the accuracy of the estimates it provides make it a unique and useful tool in establishing initial DTC targets.

  1. New Algorithms for Large-scale 3D Radiation Transport

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.

    2009-05-01

    Radiation transport is critical not only for analysis of astrophysical objects but also for the dynamical transport of energy within. Increased fidelity and dimensionality of the other components of such models requires a similar improvement in the radiation transport. Modern astrophysical simulations can be large enough that the values for a single variable for the entire computational domain cannot be stored on a single compute node. The natural solution is to decompose the physical domain into pieces with each node responsible for a single sub-domain. Using localized plus "ghost" zone data works well for problems like explicit hydrodynamics or nuclear reaction networks with modest impact from inter-process communication. Unfortunately, radiation transport is an inherently non-local process that couples the entire model domain together and efficient algorithms are needed to conquer this problem. In this poster, I present the early development of a new parallel, 3-D transport code using ray tracing to formally solve the transport equation across numerically decomposed domains. The algorithm model takes advantage of one-sided communication to develop a scalable, parallel formal solver. Other aspects and future direction of the parallel code development such as scalability and the inclusion of scattering will also be discussed.

  2. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    NASA Technical Reports Server (NTRS)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  3. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  4. Analysis for the application of hybrid laminar flow control to a long-range subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Arcara, P. C., Jr.; Bartlett, D. W.; Mccullers, L. A.

    1991-01-01

    The FLOPS aircraft conceptual design/analysis code has been used to evaluate the effects of incorporating hybrid laminar flow control (HLFC) in a 300-passenger, 6500 n. mi. range, twin-engine subsonic transport aircraft. The baseline configuration was sized to account for 50 percent chord laminar flow on the wing upper surface as well as both surfaces of the empennage airfoils. Attention is given to the additional benefits of achieving various degrees of laminar flow on the engine nacelles, and the horsepower extraction and initial weight and cost increments entailed by the HLFC system. The sensitivity of the results obtained to fuel-price and off-design range are also noted.

  5. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  6. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  7. AVION: A detailed report on the preliminary design of a 79-passenger, high-efficiency, commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe

    1990-01-01

    The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.

  8. Large-scale variability in marine stratocumulus clouds defined from simultaneous aircraft and satellite measurements

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Barlow, Roy W.

    1990-01-01

    Satellite images often show significant variations in the structure of marine stratocumulus clouds on scales ranging from 10 to 1000 km. This is illustrated where a GOES West satellite image shows a well-defined variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft measurements were made with the UK C-130 and the NCAR Electra on this day as part of the FIRE Marine Stratocumulus Intensive Field Observations (IFO). The mean, turbulent, and the microphysical structure of the clouds sampled in these two areas are compared an an attempt is made to explain the differences in cloud structure. In an attempt to identify any systematic differences between the measurements made with the two aircraft, data were analyzed that were collected on 14 July 1987 with the C-130 and the Electra flying in close formation at an altitude of 250 m. The microphysical and turbulence data are being compared in an attempt to explain the differences in the cloud liquid water content obtained with the two aircraft and the differences in cloud structure shown by the GOES image. In addition, data are being analyzed for three other days during the experiment when coordinated downstream flights were made with the Electra and the C-130.

  9. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  10. Fast and efficient transport of large ion clouds

    NASA Astrophysics Data System (ADS)

    Kamsap, M. R.; Pedregosa-Gutierrez, J.; Champenois, C.; Guyomarc'h, D.; Houssin, M.; Knoop, M.

    2015-10-01

    The manipulation of trapped charged particles by electric fields is an accurate, robust, and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of an ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this article, we experimentally study the transport of ion clouds of up to 80 000 ions over a distance of 20 mm inside a linear radio-frequency trap. Ion transport is controlled by a transfer function, which is designed taking into account the local electric potentials. We observe that the ion response is very sensitive to the details of the description of the electric potential. Nevertheless, we show that fast transport—with a total duration of 100 μ s —results in transport efficiencies attaining values higher than 90% of the ion number, even with large ion clouds. For clouds smaller than 2000 ions, a 100% transfer efficiency is observed. Transport induced heating, which depends on the transport duration, is also analyzed.

  11. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.

    1999-01-01

    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the

  12. Overview: Small Aircraft Transportation System Airborne Remote Sensing Fuel Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Holmes, Bruce; Gogos, George; Narayanan, Ram; Smith, Russell; Woods, Sara

    2004-01-01

    , Codes, and Strategic Enterprises. During the first year of funding, Nebraska established open and frequent lines of communication with university affairs officers and other key personnel at all NASA Centers and Enterprises, and facilitated the development of collaborations between and among junior faculty in the state and NASA researchers. As a result, Nebraska initiated a major research cluster, the Small Aircraft Transportation System Nebraska Implementation Template.

  13. Determination of Sun Angles for Observations of Shock Waves on a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Haering, Edward A., Jr.; Noffz, Gregory K.; Aguilar, Juan I.

    1998-01-01

    Wing compression shock shadowgraphs were observed on two flights during banked turns of an L-1011 aircraft at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photos and video recording of the shadowgraphs were taken during the flights to document the shadowgraphs. Bright sunlight on the aircraft was required. The time of day, aircraft position, speed and attitudes were recorded to determine the sun azimuth and elevation relative to the wing quarter chord-line when the shadowgraphs were visible. Sun elevation and azimuth angles were documented for which the wing compression shock shadowgraphs were visible. The shadowgraph was observed for high to low elevation angles relative to the wing, but for best results high sun angles relative to the wing are desired. The procedures and equations to determine the sun azimuth and elevation angle with respect to the quarter chord-line is included in the Appendix.

  14. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  15. Computer program to perform cost and weight analysis of transport aircraft. Volume 2: Technical volume

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.

  16. Study of the impact of cruise speed on scheduling and productivity of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bond, E. Q.; Carroll, E. A.; Flume, R. A.

    1977-01-01

    A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.

  17. Development potential of Intermittent Combustion (I.C.) aircraft engines for commuter transport applications

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1982-01-01

    An update on general aviation (g/a) and commuter aircraft propulsion research effort is reviewed. The following topics are discussed: on several advanced intermittent combustion engines emphasizing lightweight diesels and rotary stratified charge engines. The current state-of-the-art is evaluated for lightweight, aircraft suitable versions of each engine. This information is used to project the engine characteristics that can be expected on near-term and long-term time horizons. The key enabling technology requirements are identified for each engine on the long-term time horizon.

  18. Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 2

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Shia, Run-Lie; Rodriguez, Jose M.; Heisey, Curtis

    1991-01-01

    The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified.

  19. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  20. TCV software test and validation tools and technique. [Terminal Configured Vehicle program for commercial transport aircraft operation

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Williams, J. R.

    1976-01-01

    The paper describes techniques for testing and validating software for the TCV (Terminal Configured Vehicle) program which is intended to solve problems associated with operating a commercial transport aircraft in the terminal area. The TCV research test bed is a Boeing 737 specially configured with digital computer systems to carry out automatic navigation, guidance, flight controls, and electronic displays research. The techniques developed for time and cost reduction include automatic documentation aids, an automatic software configuration, and an all software generation and validation system.

  1. Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.

  2. The effects of history and predictive information on the ability of the transport aircraft pilot to predict an alert

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    1993-01-01

    The early detection of a developing aircraft-subsystem fault has the potential to lessen its ultimate severity. The lack of capability for such early detection is becoming critical in the aviation community. In the commercial sector, for example, twin-engine aircraft are being used for extended transport operations over water. One method to decrease the severity of a developing problem is to predict its behavior and to take appropriate corrective action. In order to investigate pilots' ability to predict events, an experiment was conducted where eighteen airline pilots predicted the time to an alert using three different displays of dials and three different time profile complexities. The three displays of dials were as follows: standard, resembling current aircraft dial presentations; history, indicating the value five seconds in the past; and predictive, indicating the value five seconds into the future. The time profiles describing the behavior of the parameter consisted of constant velocity profiles, decelerating profiles, and accelerating then decelerating profiles. Although pilots indicated that they preferred the predictive dial, the objective data did not support its use. The objective data did show that the time profiles had the most significant effect on performance in estimating the time to an alert.

  3. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft...

  4. Characteristics of future aircraft impacting aircraft and airport compatibility

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1982-01-01

    Results are reported of an opinion survey of selected individuals at the decision-making level within the five major manufacturers of transport aircraft in the United States and Europe. Opinions were obtained concerning both possible and probable existence of over 50 compatibility-related characteristics of transport aircraft in use in the years 1990, 2000, and 2010. The maximum size of aircraft is expected to increase, at a roughly uniform rate, to the year 2010 by 85 percent in passengers, 55 percent in airfreighter payload, and 35 percent in gross weight weight. Companion to the expected growth in payloads and gross weight was the identification of probable increases in aircraft geometrical dimensions and component capability, and use of fully double-decked passenger compartments. Wing span will increase considerably more than normally expected to provide wings of higher aspect ratio. New aircraft features coming into probable use include large turboprops, synthetic jet-A fuel, winglets, wake-vortex-reducing devices and laminar flow control. New operational concepts considered probable include steep approaches, high-speed turnoffs, and taxiway towing for the aircraft, plus passenger bypass of the terminal building, expedited handling of belly cargo and an intermodal cargo container for the payloads.

  5. First-Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2011-01-01

    Aircraft fuel efficiency is a function of many different parameters, including characteristics of the engines, characteristics of the airframe, and the conditions under which the aircraft is operated. For a given vehicle, the airframe and engine characteristics are for the most part fixed quantities and efficiency is primarily a function of operational conditions. One important influence on cruise efficiency is cruise altitude. Various future scenarios have been postulated for cruise altitude, from the freedom to fly at optimum altitudes to altitude restrictions imposed for environmental reasons. This report provides background on the fundamental relationships determining aircraft cruise efficiency and examines the sensitivity of efficiency to cruise altitude. Analytical models of two current aircraft designs are used to derive quantitative results. Efficiency penalties are found to be generally less than 1% when within roughly 2000 ft of the optimum cruise altitude. Even the restrictive scenario of constant altitude cruise is found to result in a modest fuel consumption penalty if the fixed altitude is in an appropriate range.

  6. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  7. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1980-01-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  8. Large Eddy Simulation of Flow and Sediment Transport over Dunes

    NASA Astrophysics Data System (ADS)

    Agegnehu, G.; Smith, H. D.

    2012-12-01

    Understanding the nature of flow over bedforms has a great importance in fluvial and coastal environments. For example, a bedform is one source of energy dissipation in water waves outside the surf zone in coastal environments. In rivers, the migration of dunes often affects the stability of the river bed and banks. In general, when a fluid flows over a sediment bed, the sediment transport generated by the interaction of the flow field with the bed results in the periodic deformation of the bed in the form of dunes. Dunes generally reach an equilibrium shape, and slowly propagate in the direction of the flow, as sand is lifted in the high shear regions, and redeposited in the separated flow areas. Different numerical approaches have been used in the past to study the flow and sediment transport over bedforms. In most research works, Reynolds Averaged Navier Stokes (RANS) equations are employed to study fluid motions over ripples and dunes. However, evidences suggests that these models can not represent key turbulent quantities in unsteady boundary layers. The use of Large Eddy Simulation (LES) can resolve a much larger range of smaller scales than RANS. Moreover, unsteady simulations using LES give vital turbulent quantities which can help to study fluid motion and sediment transport over dunes. For this steady, we use a three-dimensional, non-hydrostatic model, OpenFOAM. It is a freely available tool which has different solvers to simulate specific problems in engineering and fluid mechanics. Our objective is to examine the flow and sediment transport from numerical stand point for bed geometries that are typical of fixed dunes. At the first step, we performed Large Eddy Simulation of the flow over dune geometries based on the experimental data of Nelson et al. (1993). The instantaneous flow field is investigated with special emphasis on the occurrence of coherent structures. To assess the effect of bed geometries on near bed turbulence, we considered different

  9. Civil Applications For New V/STOL and STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1990-01-01

    New designs offer benefits in congested urban areas and remote regions. Report explores potential uses in civil aviation of advanced rotorcraft, vertical/short-takeoff-and-landing (V/STOL) aircraft, and short-takeoff-and-landing (STOL) aircraft. Future opportunities overcome formidable geographic barriers and lack of major airport facilities, bringing fast, flexible transportation to remote areas. Aircraft relieves congestion at airports in densely populated areas by utilizing pads and short runways without interfering with large-air-carrier traffic.

  10. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  11. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  12. The vehicle design evaluation program - A computer-aided design procedure for transport aircraft

    NASA Technical Reports Server (NTRS)

    Oman, B. H.; Kruse, G. S.; Schrader, O. E.

    1977-01-01

    The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.

  13. An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Shuart, Mark J.

    2001-01-01

    An assessment of the State-of-the-Art in the design and manufacturing of large composite structures has been conducted. The focus of the assessment is large structural components in commercial and military aircraft. Applications of composites are reviewed for commercial transport aircraft, general aviation aircraft, rotorcraft, and military aircraft.

  14. A survey of new technology for cockpit application to 1990's transport aircraft simulators

    NASA Technical Reports Server (NTRS)

    Holt, A. P., Jr.; Noneaker, D. O.; Walthour, L.

    1980-01-01

    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels.

  15. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  16. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  17. 77 FR 22504 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Policies and Procedures of the Department of Transportation (44 FR 11034). Additionally, E.O. 13563... transportation of liquid hazardous materials by preventing releases or containing releases that do occur within... that a combination packaging intended for the air transportation of liquid hazardous materials...

  18. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  19. Investigation of a laser Doppler velocimeter system to measure the flow field of a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    An experimental research program for measuring the flow field around a 70 percent scale V/STOL aircraft model in ground effect is described. The velocity measurements were conducted with a ground-based laser Doppler velocimeter at an outdoor test pad. The remote sensing instrumentation, experimental tests, and results of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain, the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft heights above ground. The study shows that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  20. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  1. Competing mechanisms of momentum transport in large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Meneveau, Charles

    2011-11-01

    In very large wind farms in the atmospheric boundary layer, energy, and momentum are on average transported from layers above the farm downward towards the turbines (Calaf, Meneveau, Meyers, Phys. Fluids 2010). In the current work, we investigate in more detail the three-dimensional flows of mass, momentum and energy towards individual turbines, based on a suite of large-eddy simulations. We find that there are two competing mechanisms which bring momentum to the turbines, i.e. a sideways flux, and a top-down flux of momentum (sideways fluxes themselves are fed by a top-down flux in regions outside the turbine wake area). For large spanwise turbine spacings, sideways momentum fluxes are dominating; for small spanwise spacings, the top-down mechanism is dominant. Inspired by these observations, we propose a new integral model for wind-farm performance, in which competing fluxes of momentum are represented by closed analytical expressions obtained by integrating momentum equations over different regions in the ABL. The research of CM is supported by NSF AGS 1045189.

  2. Coupled Eulerian-Lagrangian transport of large debris by tsunamis

    NASA Astrophysics Data System (ADS)

    Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos

    2016-04-01

    Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the

  3. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  4. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1982-01-01

    Kevlar-49 fairing panels, installed as flight service components on three l-1011's, were inspected after 8 years service. The fairings had accumulated a total of 62,000 hours, with one ship set having 20,850 hours service. Kevlar-49 components were found to be performing satisfactorily in service with no major problems. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structures.

  5. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  6. Some considerations in the design of transport aircraft /The W. Rupert Turnbull Lecture for 1975/

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1975-01-01

    The slow landing speeds (30 mph, 65 mph) and light wing loading required for safety in the early days of aviation are shown to be irrelevant to safe landings of propeller-driven aircraft, while increases in wing loading and landing speed have been accompanied by improved safety records. This is attributed to length of runway and time available for approach maneuvers, plus immunity to wind gusts and turbulence conferred by higher wing loadings. Aerodynamical and mechanical aspects of safe landing are discussed, with no mention of instruments. Fuel savings achievable through high aspect ratio, variable sweep angle, and supercritical airfoils are also considered.

  7. Locating inefficient links in a large-scale transportation network

    NASA Astrophysics Data System (ADS)

    Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu

    2015-02-01

    Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T < 0 or Δ T > 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.

  8. Recommendations for ground effects research for V/STOL and STOL aircraft and associated equipment for large scale testing

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1986-01-01

    The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the ground.

  9. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities.

    PubMed

    McNeill, K S; Cancilla, D A

    2009-03-01

    Soil samples from three USA airports representing low, mid, and large volume users of aircraft deicing fluids (ADAFs) were analyzed by LC/MS/MS for the presence of triazoles, a class of corrosion inhibitors historically used in ADAFs. Triazoles, specifically the 4-methyl-1H-benzotriazole and the 5-methyl-1H-benzotriazole, were detected in a majority of samples and ranged from 2.35 to 424.19 microg/kg. Previous studies have focused primarily on ground and surface water impacts of larger volume ADAF users. The detection of triazoles in soils at low volume ADAF use airports suggests that deicing activities may have a broader environmental impact than previously considered. PMID:19082516

  10. Large wood budget and transport dynamics on a large river using radio telemetry

    USGS Publications Warehouse

    Schenk, Edward R.; Moulin, Bertrand; Hupp, Cliff R.; Richte, Jean M.

    2014-01-01

    Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in-channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in-transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in-channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system.

  11. Viscous-flow analysis of a subsonic transport aircraft high-lift system and correlation with flight data

    NASA Technical Reports Server (NTRS)

    Potter, R. C.; Vandam, C. P.

    1995-01-01

    High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.

  12. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1995-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT's) on a universal airline network.Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT's. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  13. Effect of display size on utilization of traffic situation display for self-spacing task. [transport aircraft

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.

    1981-01-01

    The weather radar cathode ray tube (CRT) is the prime candidate for presenting cockpit display of traffic information (CDTI) in current, conventionally equipped transport aircraft. Problems may result from this, since the CRT size is not optimized for CDTI applications and the CRT is not in the pilot's primary visual scan area. The impact of display size on the ability of pilots to utilize the traffic information to maintain a specified spacing interval behind a lead aircraft during an approach task was studied. The five display sizes considered are representative of the display hardware configurations of airborne weather radar systems. From a pilot's subjective workload viewpoint, even the smallest display size was usable for performing the self spacing task. From a performane viewpoint, the mean spacing values, which are indicative of how well the pilots were able to perform the task, exhibit the same trends, irrespective of display size; however, the standard deviation of the spacing intervals decreased (performance improves) as the display size increased. Display size, therefore, does have a significant effect on pilot performance.

  14. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network. Final report

    SciTech Connect

    Baughcum, S.L.; Henderson, S.C.

    1995-07-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT`s) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT`s. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  15. Mass transport and element mobilisation during large-scale metasomatism

    NASA Astrophysics Data System (ADS)

    Putnis, C. V.; Austrheim, H.; Jamtveit, B.; Engvik, A. K.; Putnis, A.

    2009-04-01

    Replacement textures commonly occur in relation to fluid-driven large scale metasomatism and metamorphism and these processes are often related to mineralisation. For example, the albitisation of gabbroic rocks in the Bamble District, southern Norway is associated with ore deposits. Similar albitised rocks are also characteristic of the Curnamona Province, Australia, which includes large areas of mineralisation such as the Pb, Zn, Ag of the Broken Hill deposits as well as Cu, Au and U deposits. The main question addressed here is the mechanism of mass transport and hence element mobilisation. An indication of the former presence of fluids within a rock can be seen in mineral textures, such as porosity, replacement rims, replacement induced fracturing and crystallographic continuity across sharp compositional boundaries. Such textural observations from natural rocks as well as experimental products show that during mineral-fluid interaction, the crystallographic relations between parent and product phases control the nucleation of the product, and hence a coupling between dissolution and reprecipitation. If the rate of nucleation and growth of the product equals the dissolution rate, a pseudomorphic replacement takes place. The degree of epitaxy (or lattice misfit) at the interface, the relative solubility of parent and product phases and the molar volume changes control the microstructure of the product phase. The key observation is that these factors control the generation of porosity as well as reaction induced fracturing ahead of the main reaction interface. Porosity is generated whenever the amount of parent dissolved is greater than the amount of product reprecipitated, irrespective of the molar volume changes of the solid reactants and products. This porosity is occupied by the fluid phase during the reaction, and provides a mechanism of mass transport and fluid movement between reaction interface and the surrounding phases. The reaction-induced fracturing

  16. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  17. CFD Variability for a Civil Transport Aircraft Near Buffet-Onset Conditions

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Morrison, Joseph H.; Biedron, Robert T.

    2003-01-01

    A CFD sensitivity analysis is conducted for an aircraft at several conditions, including flow with substantial separation (buffet onset). The sensitivity is studied using two different Navier-Stokes computer codes, three different turbulence models, and two different grid treatments of the wing trailing edge. This effort is a follow-on to an earlier study of CFD variation over a different aircraft in buffet onset conditions. Similar to the earlier study, the turbulence model is found to have the largest effect, with a variation of 3.8% in lift at the buffet onset angle of attack. Drag and moment variation are 2.9% and 23.6%, respectively. The variations due to code and trailing edge cap grid are smaller than that due to turbulence model. Overall, the combined approximate error band in CFD due to code, turbulence model, and trailing edge treatment at the buffet onset angle of attack are: 4% in lift, 3% in drag, and 31% in moment. The CFD results show similar trends to flight test data, but also exhibit a lift curve break not seen in the data.

  18. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  19. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  20. Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 1

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Rodriguez, Jose M.; Heisey, Curtis

    1991-01-01

    The AER two-dimensional chemistry-transport model is used to study the effect on stratospheric ozone (O3) from operations of supersonic and subsonic aircraft. The study is based on six emission scenarios provided to AER. The study showed that: (1) the O3 response is dominated by the portion of the emitted nitrogen compounds that is entrained in the stratosphere; (2) the entrainment is a sensitive function of the altitude at which the material is injected; (3) the O3 removal efficiency of the emitted material depends on the concentrations of trace gases in the background atmosphere; and (4) evaluation of the impact of fleet operations in the future atmosphere must take into account the expected changes in trace gas concentrations from other activities. Areas for model improvements in future studies are also discussed.

  1. A reappraisal of transport aircraft needs 1985 - 2000: Perceptions of airline management in a changing economic, regulatory, and technological environment

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1982-01-01

    Views of the executives of 24 major, national, regional, and commuter airlines concerning the effect of recent regulatory, economic, and technological changes on the roles they see for their airlines, and consequent changes in their plans for acquiring aircraft for the 1985 to 2000 period were surveyed. Differing perceptions on the economic justification for new-technology jets in the context of the carriers' present and projected financial conditions are outlined. After examining the cases for new or intermediate size jets, the study discusses turboprop powered transports, including the carriers' potential interest in an advanced technology, high-speed turboprop or prop-fan. Finally, the implications of foreign competition are examined in terms of each carrier's evaluation of the quality and financial offerings, as well as possible 'Buy American' policy predisposition.

  2. Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Khong, Thuan H.; Shin, Jong-Yeob

    2007-01-01

    This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.

  3. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes....367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a) No person operating a reciprocating engine powered large transport category airplane may take off...

  4. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes....367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a) No person operating a reciprocating engine powered large transport category airplane may take off...

  5. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  6. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  7. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  8. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  9. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Acoustical change: Transport category large... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  10. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes....367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a) No person operating a reciprocating engine powered large transport category airplane may take off...

  11. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  12. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  13. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  14. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  15. The CAM/IMPACT/CoCiP Coupled Climate Model: Radiative forcing by aircraft in large-scale clouds

    NASA Astrophysics Data System (ADS)

    Penner, J. E.; Schumann, U.; Chen, Y.; Zhou, C.; Graf, K.

    2013-12-01

    Radiative forcing by aircraft soot in large-scale clouds has been estimated to be both positive and negative, while forcing by contrails and contrail cirrus (i.e. spreading contrails) is positive. Here we use an improved model to estimate the forcing in large-scale clouds and evaluate the effects of coupling the hydrological cycle within CAM with the CoCiP contrail model. The large-scale cloud effects assume that the fraction of soot particles that have been processed through contrails are good heterogeneous ice nuclei (IN), in agreement with laboratory data. We explore the effect of sulfate deposition on soot in decreasing the ability of contrail-processed soot to act as IN. The calculated total all-sky radiative climate forcing with and without coupling of CoCiP to the hydrological cycle within CAM and its range is reported. We compare results with observations and discuss what is needed to narrow the range of forcing.

  16. Aerodynamic and flowfield hysteresis of slender wing aircraft undergoing large-amplitude motions

    NASA Technical Reports Server (NTRS)

    Nelson, Robert C.; Arena, Andrew S., Jr.; Thompson, Scott A.

    1991-01-01

    The implication of maneuvers through large angles of incidence is discussed by examining the unsteady aerodynamic loads, surface pressures, vortical position, and breakdown on slender, flat plate delta wings. Two examples of large amplitude unsteady motions are presented. First, the unsteady characteristics of a 70 degree swept delta wing undergoing pitch oscillation from 0 to 60 degrees is examined. Data is presented that shows the relationship between vortex breakdown and the overshoot and undershoot of the aerodynamic loads and surface pressure distribution. The second example examines the leading edge vortical flow over an 80 degree swept wing undergoing a limit cycle roll oscillation commonly called wing rock.

  17. Advanced composite aileron for L-1011 transport aircraft: Ground tests and flight evaluation

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1981-01-01

    A composite aileron and a metal aileron were subjected to a series of comparative stiffness and vibration tests. These tests showed that the stiffness and vibration characteristics of the composite aileron are similar to the metal aileron. The first composite ground test article was statically tested to failure which occurred at 139 percent of design ultimate load. The second composite ground test article was tested to verify damage tolerance and fail-safe characteristics. Visible damage was inflicted to the aileron and the aileron was subjected to one lifetime of spectrum fatigue loading. After conducting limit load tests on the aileron, major damage was inflicted to the cover and the aileron was loaded to failure which occurred at 130 percent of design ultimate load. A shipset of composite ailerons were installed on Lockheed's L-1011 flight test aircraft and flown. The composite aileron was flutter-free throughout the flight envelope.

  18. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1979-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after five years' service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 150 C (300 F) service aft engine fairing. The fairings have accumulated a total of 40,534 hours, with one ship set having 16,091 hours service as of Feb. 11, 1979. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.

  19. Large-area Ice Sheet and Sea Ice mapping from High-altitude Aircraft: Examples from the LVIS Sensor

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Hofton, M. A.; Rabine, D. L.

    2010-12-01

    High altitude airborne surveys of remote polar regions is a relatively recent addition to the remote sensing capabilities serving the Cryospheric science community. The NASA/GSFC-developed airborne sensor, LVIS (Land, Vegetation, and Ice Sensor) is a wide-swath, full-waveform laser altimeter system that produces large-area topographic maps with the highest levels of accuracy and precision. Recent data collections in support of NASA's Operation IceBridge over Antarctica and Greenland have demonstrated the extraordinary mapping capability of the LVIS sensor. Areal coverage is accumulated at a rate of > 1,000 sq. km/hr with repeatability of the surface elevation measurements at the decimeter level. With this new capability come new applications, new insights, the ability to fully capture the spatial extent and variability of changes occurring in highly dynamic areas, and enhanced input into ice sheet models. One example is over 7,000 sq. km collected over the Antarctic Peninsula in just 7 hours from 40,000 ft on the NASA DC-8 aircraft. The wide swath and dense coverage enabled by the LVIS sensor results in significant overlap with legacy ICESat data permitting statistically powerful comparisons and eliminate the need for interpolation or slope corrections. Several examples of ICESat comparisons and change detection between LVIS data takes and other topographic data sets will be presented . Further, a description of the LVIS waveform vector data product and examples of advanced data products and analysis techniques with be shown. A fully-autonomous version of LVIS is now under development (LVIS-GH) for use in the Global Hawk aircraft. Long duration flights over remote areas will be possible with this sensor. Testing on the Global Hawk UAV is scheduled for the Summer of 2011. The LVIS data are freely available from the NSIDC website (http://nsidc.org/data/icebridge/) and the LVIS website (https://lvis.gsfc.nasa.gov).

  20. Simulated vortex encounters by a twin-engine commercial transport aircraft during final approach

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1980-01-01

    Piloted simulations of encounters with vortices of various ages and degrees of attenuation were performed with the Visual Motion Simulator. In the simulations, a twin-engine, commercial transport on final approach encountered the modeled vortices of a four-engine, wide-body, commercial transport. The data in this report show the effect of vortex age and ground effect on the severity of the initial upset, as well as the effect of the vortex encounters on the landing capability.